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Introduction

This is a collection of my answers to problems from a graduate course in electrodynamics. These
problems are mainly from the book by Jackson [4], but appended are some practice problems. My
answers are by no means guaranteed to be perfect, but I hope they will provide the reader with a
guideline to understand the problems.

Throughout these notes I will refer to equations and pages of Jackson and Duffin [2]. The latter is
a textbook in electricity and magnetism that I used as an undergraduate student. References to
equations starting with a “D” are from the book by Duffin. Accordingly, equations starting with
the letter “J” refer to Jackson.

In general, primed variables denote vectors or components of vectors related to the distance between
source and origin. Unprimed coordinates refer to the location of the point of interest.

The text will be a work in progress. As time progresses, I will add more chapters.
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Chapter 1

Introduction to Electrostatics

1.1 Electric Fields for a Hollow Conductor

a. The Location of Free Charges in the Conductor

Gauss’ law states that
ρ

ε0
= ∇ ·E, (1.1)

where ρ is the volume charge density and ε0 is the permittivity of free space. We know that
conductors allow charges free to move within. So, when placed in an external static electric field
charges move to the surface of the conductor, canceling the external field inside the conductor.
Therefore, a conductor carrying only static charge can have no electric field within its material,
which means the volume charge density is zero and excess charges lie on the surface of a conductor.

b. The Electric Field inside a Hollow Conductor

When the free charge lies outside the cavity circumferenced by conducting material (see figure
1.1b), Gauss’ law simplifies to Laplace’s equation in the cavity. The conducting material forms a
volume of equipotential, because the electric field in the conductor is zero and

E = −∇Φ (1.2)

Since the potential is a continuous function across a charged boundary, the potential on the inner
surface of the conductor has to be constant. This is now a problem satisfying Laplace’s equation
with Dirichlet boundary conditions. In section 1.9 of Jackson, it is shown that the solution for this
problem is unique. The constant value of the potential on the outer surface of the cavity satisfies
Laplace’s equation and is therefore the solution. In other words, the hollow conductor acts like a
electric field shield for the cavity.

7
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q
q

q

a b

Figure 1.1: a: point charge in the cavity of a hollow conductor. b: point charge outside the cavity
of a hollow conductor.

With a point charge q inside the cavity (see figure 1.1a), we use the following representation of
Gauss’ law: ∮

E · dS =
q

ε0
(1.3)

Therefore, the electric field inside the hollow conductor is non-zero. Note: the electric field outside
the conductor due to a point source inside is influenced by the shape of the conductor, as you can
see in part c.

c. The Direction of the Electric Field outside a Conductor

An electrostatic field is conservative. Therefore, the circulation of E around any closed path is
zero ∮

E · dl = 0 (1.4)

This is called the circuital law for E (E4.14 or J1.21). I have drawn a closed path in four legs

1
2

3

4

Figure 1.2: Electric field near the surface of a charged spherical conductor. A closed path crossing
the surface of the conductor is divided in four sections.

through the surface of a rectangular conductor (figure 1.2). Sections 1 and 4 can be chosen
negligible small. Also, we have seen earlier that the field in the conductor (section 3) is zero. For
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the total integral around the closed path to be zero, the tangential component (section 2) has to
be zero. Therefore, the electric field is described by

E =
σ

ε0
r̂ (1.5)

where σ is the surface charge density, since – as shown earlier – free charge in a conductor is located
on the surface.

1.4 Charged Spheres

Here we have a conducting, a homogeneously charged and an in-homogeneously charged sphere.
Their total charge is Q. Finding the electric field for each case in- and outside the sphere is an
exercise in using Gauss’ law ∮

E · dS =
q

ε0
(1.6)

For all cases:

• Problem 1.1c showed that the electric field is directed radially outward from the center of
the spheres.

• For r > a, E behaves as if caused by a point charge of magnitude of the total charge Q of
the sphere, at the origin.

E =
Q

4πε0r2
r̂

As we have seen earlier, for a solid spherical conductor the electric field inside is zero (see figure
1.3). For a sphere with a homogeneous charge distribution the electric field at points inside the
sphere increases with r. As the surface S increases, the amount of charge surrounded increases
(see equation 1.6):

E =
Qr

4πε0a3
r̂ (1.7)

For points inside a sphere with an inhomogeneous charge distribution, we use Gauss’ law (once
again)

E4πr2 = 1/ε0

∫ 2π

0

∫ π

0

∫ r

0

ρ(r′)r′2sinθ′dr′dφ′dθ′ (1.8)

Implementing the volume charge distribution

ρ(r′) = ρ0r
′n,

the integration over r′ for n > −3 is straightforward:

E =
ρ0r

n+1

ε0(n+ 3)
r̂, (1.9)
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inhomogeneously charged: n=2
inhomogeneously charged: n=−2
conductor

Figure 1.3: Electric field for differently charged spheres of radius a. The electric field outside the
spheres is the same for all, since the total charge is Q in all cases.

where

Q =

∫ a

0

4πρ0r
n+2dr =

4πρ0a
n+3

n+ 3
⇔

ρ0 =
Q(n+ 3)

4πan+3
(1.10)

It can easily be verified that for n = 0, we have the case of the homogeneously charged sphere
(equation 1.7). The electric field as a function of distance are plotted in figure 1.3 for the conductor,
the homogeneously charged sphere and in-homogeneously charged spheres with n = −2, 2.

1.5 Charge Density for a Hydrogen Atom

The potential of a neutral hydrogen atom is

Φ(r) =
q

4πε0

e−αr

r

(
1 +

αr

2

)
(1.11)

where α equals 2 divided by the Bohr radius. If we calculate the Laplacian, we obtain the volume
charge density ρ, through Poisson’s equation

ρ

ε0
= ∇2Φ
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Using the Laplacian for spherical coordinates (see back-cover of Jackson), the result for r > 0 is

ρ(r) = − α3q

8πr2
e−αr (1.12)

For the case of r → 0
lim
r→0

Φ(r) = lim
r→0

q

4πε0r
(1.13)

From section 1.7 in Jackson we have (J1.31):

∇2(1/r) = −4πδ(r) (1.14)

Combining (1.13), (1.14) and Poisson’s equation, we get for r → 0

ρ(r) = qδ(r) (1.15)

We can multiply the right side of equation (1.15) by e−αr without consequences. This allows for
a more elegant way of writing the discrete and the continuous parts together

ρ(r) =

(
δ(r) − α3

8πr2

)
qe−αr (1.16)

The discrete part represents the stationary proton with charge q. Around the proton orbits an
electron with charge −q. The continuous part of the charge density function is more a statistical
distribution of the location of the electron.

1.7 Charged Cylindrical Conductors

Two very long cylindrical conductors, separated by a distance d, form a capacitor. Cylinder 1 has
surface charge density λ and radius a1, and number 2 has surface charge density −λ and radius a2

(see figure 1.4). The electric field for each of the cylinders is radially directed outward

-λ

0 d

a
a

1

2

P

λ

Figure 1.4: Top view of two cylindrical conductors. The point P is located in the plane connecting
the axes of the cylinders.

E =
λ

2πε0|r|
r̂, (1.17)
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where r̂ is the radially directed outward unit vector. Taking a point P on the plane connecting
the axes of the cylinders, the electric field is constructed by superposition:

E =
λ

2πε0

(
1

r
+

1

d− r

)
(1.18)

The potential difference between the two cylinders is

|Va2 − Va1 | =
λ

2πε0

∫ a1

d−a2

(
1

r
+

1

d− r

)
dr

=
λ

2πε0
[lnr + ln(d− r)]a1

d−a2

=
λ

2πε0
[lna1 + ln(d− a1) + ln(d− a2)− lna2] (1.19)

If we average the radii of the cylinders to a1 = a2 = a and assume d � a, then the potential
difference is

|Va2 − Va1 | ≈
λ

πε0

(
ln
d

a

)
(1.20)

The capacitance per unit length of the system of cylinders is given by

C =
λ

|Va1 − Va2 |
≈ πε0

ln(d/a)
(1.21)

From here, we can obtain the diameter δ of wire necessary to have a certain capacitance C at a
distance d:

δ = 2a ≈ 2d · e−
πε0
C , (1.22)

where the permittivity in free space ε0 is 8.854 · 10−12F/m. If C = 1.2 · 10−11F/m and

• d = 0.5 cm, the diameter of the wire is 0.1 cm.

• d = 1.5 cm, the diameter of the wire is 0.3 cm.

• d = 5 cm, the diameter of the wire is 1 cm.

1.13 Green’s Reciprocity Theorem

Two infinite grounded parallel conducting plates are separated by a distance d. What is the induced
charge on the plates if there is a point charge q in between the plates?

Split the problem up in two cases with the same geometry. The first is the situation as sketched by
Jackson; two infinitely large grounded conducting plates, one at x = 0 and one at x = d (see the
right side of figure 1.5). In between the plates there is a point charge q at x = x0. We will apply
Green’s reciprocity theorem using a “mirror” set-up. In this geometry there is no point charge but
the plates have a fixed potential ψ1 and ψ2, respectively (see the left side of figure 1.5).
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| | |

q

Plate 1
Plate 2

φ1
φ

2

x00 d

S2S1

S3

S4
| |

ψ2ψ1

Plate 1
Plate 2

0 d

S2S1

S3

S4

Figure 1.5: Geometry of two conducting plates and a point-charge. S is the surface bounding the
volume between the plates. The right picture is the situation of the imposed problem with the point
charge between two grounded plates. The left side is a problem with the same plate geometry, but
we know the potential φ on the plates.

Green’s theorem (J1.35) states

∫

V

(
φ∇2ψ − ψ∇2φ

)
dV =

∮

S

(
φ
∂ψ

∂n
− ψ∂φ

∂n

)
dS (1.23)

The volume V is the space between the plates bounded by the surface S. S1 and S2 bound the
plates and S3 and S4 run from plate 1 to plate 2 at + and -∞, respectively. The normal derivative
∂
∂n at the surface S is directed outward from inside the volume V.

When the plates are grounded, the potential in the plates is zero. The potential is continuous
across the boundary, so on S1 and S2 φ = 0. Note that if the potential was not continuous the
electric field (E = −∇φ) would go to infinity. At infinite distance from the point source, the
potential is also zero: ∮

S

φ
∂ψ

∂n
dS = 0 (1.24)

The remaining part of the surface integral can be modified according to Jackson, page 36:

∂φ

∂n
= ∇φ · n = −E · n (1.25)

The electric field across a boundary with surface charge density σ is (Jackson, equation 1.22):

n · (Econductor −Evoid) = σ/ε0 (1.26)

However, inside the conductor E = 0, therefore

n ·Evoid = −σ/ε0, (1.27)
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for each of the plates. The total surface integral in equation 1.23 is then

∮

S

ψ
∂φ

∂n
dS =

∫

S1

ψ1
σ1

ε0
dS +

∫

S2

ψ2
σ2

ε0
dS (1.28)

In case of the plates of fixed potential ψ, the legs S3 and S4 have opposite potential and thus
cancel. Using ∫

S

σdS = Q, (1.29)

the surface integral of Greens theorem is

∮

S

ψ
∂φ

∂n
dS = 1/ε0(ψ1QS1 + ψ2QS2) (1.30)

In the volume integral in equation (1.23), the mirror case of the charged boundaries includes no
free charges:

∇2ψ = −(total charge)/ε0 = 0 (1.31)

Applying Gauss’ law to the case with the point charge gives us

∇2φ = −(total charge)/ε0 = −q/ε0δ(x− x0), (1.32)

where x0 is the x-coordinate of the point source location. The volume integral will be

∫

V

−q/ε0δ(x− x0)ψ(x)dV = −q/ε0ψ(x0) (1.33)

For two plates with fixed potentials, the potential in between is a linear function

ψ(x0) = ψ1 + (
ψ2 − ψ1

d
)(1− x0)d = x0ψ1 + ψ2(1− x0) (1.34)

Green’s theorem is now reduced to equation (1.30) and equation (1.34) in (1.33):

−q(x0ψ1 + (1− x0)ψ2) = QS1ψ1 +QS2ψ2 (1.35)

Since this equality must hold for all potentials, the charges on the plates must be

QS1 = −qx0 and QS2 = −q(1− x0) (1.36)



Chapter 2

Boundary-Value Problems in
Electrostatics: 1

2.2 The Method of Image Charges

a. The Potential Inside the Sphere

This problem is similar to the example shown on pages 58, 59 and 60 of Jackson. The electric field
due to a point charge q inside a grounded conducting spherical shell can also be created by the
point charge and an image charge q′ only. For reasons of symmetry it is evident that q′ is located
on the line connecting the origin and q. The goal is to find the location and the magnitude of the
image charge. The electric field can then be described by superposition of point charges:

Φ(x) =
q

4πε0|x− y| +
q′

4πε0|x− y′| (2.1)

In figure 2.1 you can see that x is the vector connecting origin and observation point. y connects
the origin and the unit charge q. Finally, y′ is the connection between the origin and the image
charge q′. Next, we write the vectors in terms of a scalar times their unit vector and factor the
scalars y′ and x out of the denominators:

Φ(x) =
q/4πε0

x|n− y
xn′| +

q′/4πε0
y′|n′ − x

y′n|
(2.2)

The potential for x = a is zero, for all possible combinations of n ·n′. The magnitude of the image
charge is

q′ = −a
y
q (2.3)

at distance

y′ =
a2

y
(2.4)

15
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q q’y y’
θ

a

0

P
x

Figure 2.1: A point charge q in a grounded spherical conductor. q′ is the image charge.

This is the same result as for the image charge inside the sphere and the point charge outside (like
in the Jackson example). After implementing the amount of charge (2.3) and the location of the
image (2.4) in (2.1), potential in polar coordinates is

Φ(r, θ) =
q

4πε0




1√
y2 + r2 − 2yrcosθ

−

(
a
y

)

√(
a2

y

)2

+ r2 − 2
(
a2

y

)
rcosθ


 , (2.5)

where θ is the angle between the line connecting the origin and the charges and the line connecting
the origin and the point P (see figure 2.1). r is the length of the vector connecting the origin and
observation point P .

b. The Induced Surface Charge Density

The surface charge density on the sphere is

σ = ε0

(
∂Φ

∂r

)

r=a

(2.6)

Differentiating equation (2.5) is left to the reader, but the result is

σ = − q

4πa2

(
a

y

) 1−
(
a
y

)2

(
1 +

(
a
y

)2

− 2ay cosθ

)3/2
(2.7)
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c. The Force on the Point Charge q

The force on the point charge q by the field of the induced charges on the conductor is equal to
the force on q due to the field of the image charge:

F = qE′ (2.8)

The electric field at y due to the image charge at y′ is directed towards the origin and of magnitude

|E′| = q′

4πε0(y′ − y)2
(2.9)

We already computed the values for y′ and q′ in equation (2.4) and (2.3), respectively. The force
is also directed towards the origin of magnitude

|F| = 1

4πε0

q2

a2

(
a

y

)(
1−

(
a

y

)2
)−2

(2.10)

d. What If the Conductor Is Charged?

Keeping the sphere at a fixed non-zero potential requires net charge on the conducting shell. This
can be imaged as an extra image charge at the center of the spherical shell. If we now compute
the force on the conductor by means of the images, the result will differ from section c.

2.7 An Exercise in Green’s Theorem

a. The Green Function

The Green function for a half-space (z > 0) with Dirichlet boundary conditions can be found by the
method of images. The potential field of a point source of unit magnitude at z ′ from an infinitely
large grounded plate in the x-y plane can be replaced by an image geometry with the unit charge
q and an additional (image) charge at z = −z′ of magnitude q′ = −q. The situation is sketched in
figure 2.2. The potential due to the two charges is the Green function GD:

1√
(x − x′)2 + (y − y′)2 + (z − z′)2

− 1√
(x − x′)2 + (y − y′)2 + (z + z′)2

(2.11)

b. The Potential

The Green function as defined in equation (2.11) can serve as the “mirror set-up” required in
Green’s theorem: ∫

V

(
φ∇2ψ − ψ∇2φ

)
dV =

∮

S

(
φ
∂ψ

∂n
− ψ∂φ

∂n

)
dS (2.12)
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’z

aV

z

x

P

q

φ

rθ

q’

yz

Figure 2.2: A very large grounded surface in which a circular shape is cut out and replaced by a
conducting material of potential V .

with GD = ψ and Φ = φ. There are no charges the volume z > 0, so Laplace equation holds
throughout the half-space V:

∇2Φ = 0 (2.13)

Chapter one in Jackson (J1.39) showed

∇2GD = −4πδ(ρ− ρ′) (2.14)

leaving Φ(ρ′) after performing the volume integration. The Green function on the surface S (GD)
is constructed with the assumption that part of the surface (the base, if you will) is grounded, and
the other parts stretch to infinity. Therefore

∮

S

GDdS = 0 (2.15)

The potential Φ = V in the circular area with radius a, but everywhere else Φ = 0. Also:
∮

S

∇GD · n̂dS = −
∮

S

∂GD
∂z

dS, (2.16)

since the normal n̂ is in the negative z-direction −k̂. Thus we are left with the following remaining
terms in Green’s theorem (in cylindrical coordinates):

Φ(r′) = ε0V

∫ a

0

∫ 2π

0

∂GD
∂z

ρdρdφ (2.17)

From here on we will exchange the primed and unprimed coordinates. This is OK, since the
reciprocity theorem applies. Some algebra left to the reader leads to

Φ(r) =
V z

2π

∫ a

0

∫ 2π

0

ρ′dρ′dφ′

(ρ2 + ρ′2 + z2 − 2ρρ′cos(φ− φ′))3/2
(2.18)
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c. The Potential on the z-axis

For ρ = 0, general solution (2.18) simplifies to

Φ(ρ, φ) =
V z

2π

∫ a

0

∫ 2π

0

ρ′dρ′dφ′

(ρ′2 + z2)3/2

= −V z
[

1√
ρ′2 + z2

]a

0

= V

(
1− z√

a2 + z2

)
(2.19)

d. An Approximation

Slightly rewriting equation (2.18):

Φ(r) =
V z

2π (ρ2 + z2)
3/2

∫ a

0

∫ 2π

0

ρ′dρ′dφ′
(

1 + ρ′2−2ρρ′cos(φ−φ′)
ρ2+z2

)3/2
(2.20)

The denominator in the integral can be approximated by a binomial expansion. The first three
terms of the approximation give

Φ(r) ≈ V a2z

2 (ρ2 + z2)
3/2

(
1− 3a2

4 (ρ2 + z2)
+

5a4

8 (ρ2 + z2)
2 +

15a2ρ2

8 (ρ2 + z2)
2

)
(2.21)

Along the axis (ρ = 0) the expression simplifies to

Φ(φ, z) ≈ V a2

2z2

(
1− 3a2

4z2
+

5a4

8z4

)
(2.22)

This is the same result when we expand expression (2.19):

Φ(ρ, φ) = V

(
1− z√

a2 + z2

)

= V

(
1−

(
1 +

a2

z2

)−1/2
)

≈ V a2

2z2

(
1− 3a2

4z2
+

5a4

8z4

)
(2.23)

2.9 Two Halves of a Conducting Spherical Shell

A conducting spherical shell consists of two halves. The cut plane is perpendicular to the homoge-
neous field (see figure 2.3). The goal is to investigate the force between the two halves introduced
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r̂

z
E0

a

E0

Figure 2.3: A spherical conducting shell in a homogeneous electric field directed in the z-direction.

by the induced charges.

The electric field due to the induced charges on the shell is (see [2], p. 51):

Eind =
σ

2ε0
r̂ (2.24)

You can see this as the resulting field in a capacitor with one of the plates at infinity. The electric
field inside the conducting shell is zero. Therefore the external field has to be of the same magnitude
(see figure 2.4).

The force of the external field on an elementary surface dS of the conductor is:

dF = Eextdq =
σ2dS

2ε0
, (2.25)

directed radially outward from the sphere’s center. From the symmetry we can see that all forces
cancel, except the component in the direction of the external field.1

a. An Uncharged Shell

The derivation of the induced charge density on a conducting spherical shell in a homogeneous
electrical field E0 is given ([4], p. 64). The homogeneous field is portrayed by point charges of
opposite magnitude at + and − infinity. Next, the location and magnitude of the image charges
are computed. The result is

σ(θ) = 3ε0E0cosθ (2.26)

1The external field is a superposition of the homogeneous electric field plus the electric field due to the induced
charges excluding dq! This external field is perpendicular to the surface of the conductor with magnitude σ/(2ε0).
This is not addressed in Jackson.
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E

E E

E

ind ind

extext

Figure 2.4: Zooming in on that small part of the conductor with induced charges, where the
external field is at normal incidence.

When we plug this result into equation (2.25), we get for the horizontal component of the force
(dFz) on an elementary surface:

dFz = dFcosθ =
9

2
ε0E

2
0cos3θdS. (2.27)

Now we can integrate to get the total force on the sphere halves. From symmetry we can also see
that the force on the left half is opposite of that on the right half (see figure 2.3). So we integrate
over the right half and multiply by two to get the total net force:

Fz = 2

∫ 2π

0

∫ π/2

0

9

2
ε0E

2
0cos3θa2sinθdθdφ ẑ

= 9πa2ε0E
2
0

∫ π/2

0

cos3θsinθdθ ẑ

= 9πa2ε0E
2
0

[
−1/4cos4θ

]π/2
0

ẑ

=
9

4
πa2ε0E

2
0 ẑ (2.28)

b. A Shell with Total Charge Q

When the shell has a total charge Q it changes the charge density of equation (2.26) to

σ(θ) = 3ε0E0cosθ +
Q

4πa2
(2.29)
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When we plug this expression into equation (2.25) and compute again the net (horizontal) com-
ponent of the force, we find that

Fz =

(
9

4
πa2ε0E

2
0 +

Q2

32πε0a2
+
E0Q

2

)
ẑ (2.30)

The total force is bigger then for the uncharged case. This makes sense when we look at equation
(2.25); when the shell is charged there is more charge per unit volume to, hence the force is bigger.

2.10 A Conducting Plate with a Boss

a. σ On the Boss

By inspection it can be seen that the system of images as proposed in figure (2.5) fits the geometry
and the boundary conditions of our problem. We can write the potential as a function of these
four point charges. This is done in Jackson (p. 63). It has to be noted that R has to be chosen at
infinity to apply to the homogeneous character of the field. The potential can then be described
by expanding “the radicals after factoring out the R2.”

Φ(r, θ) =
Q

4πε0

(
− 2

R2
rcosθ +

2a3

R2r2
cosθ

)
+ . . .

= −E0

(
r − a3

r2

)
cosθ (2.31)

The surface charge density on the boss (r = a) is

σ = − ε0
∂Φ

∂r

∣∣∣∣
r=a

= 3ε0E0cosθ (2.32)

b. The Total Charge on the Boss

The total charge Q on the boss is merely an integration over half a sphere with radius a:

Q = 3ε0E0

∫ 2π

0

∫ π/2

0

cosθa2sinθdθdφ

= 3ε0E02πa2

[
1

2
sin2θ

]π/2

0

= 3ε0E0πa
2 (2.33)
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Figure 2.5: On the left is the geometry of the problem: two conducting plates separated by a distance
D. One of the plates has a hemispheric boss of radius a. The electric field between the two plates
is E0. On the right is the set of charges that image the field due to the conducting plates. In part
a and b, R→∞ to image a homogeneous field. In c, R = d.

c. The Charge On the Boss Due To a Point Charge

Now we do not have a homogeneous field to image, but the result of a point charge on a grounded
conducting plate with the boss. Again we use the method of images to replace the system with
the plate by one entirely consisting of point charges. Checking the boundary conditions leads to
the same set of four charges as drawn in figure 2.5. The only difference is that R is not chosen
at infinity to mimic the homogeneous field, but R = d. The potential is the superposition of the
point charge q at distance d and its three image charges:

Φ(r, θ) =
q

4πε0

(
1

(r2 + d2 + 2rdcosθ)1/2
− 1

(r2 + d2 − 2rdcosθ)1/2

− a

d
(
r2 + a4

d2 + 2a2r
d cosθ

)1/2 +
a

d
(
r2 + a4

d2 − 2a2r
d cosθ

)1/2


 (2.34)

The charge density on the boss is

σ = −ε0
∂Φ

∂r

∣∣∣∣
r=a

(2.35)

The total amount of charge is the surface charge density integrated over the surface of the boss:

Q = 2πa2

∫ π/2

0

σsinθdθ (2.36)
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The differentiation of equation (2.34) to obtain the the surface charge density and the following
integration in equation (2.36) are left to the reader. The resulting total charge is2

Q = −q
[
1− d2 − a2

d
√
d2 + a2

]
(2.37)

2.11 Line Charges and the Method of Images

a. Magnitude and Position of the Image Charge(s)

Analog to the situation of point charges in previous image problems, one image charge of opposite

magnitude at distance b2

R (see figure 2.6) satisfies the conditions the boundary conditions

lim
r→∞

Φ(r, φ) = 0 and

Φ(b, φ) = V0

b

V0

P

τ τ-

r r
r2

1

φ

R

Figure 2.6: A cross sectional view of a long cylinder at potential V0 and a line charge τ at distance
R, parallel to the axis of the cylinder. The image line charge −τ is placed at b2/R from the axis
of the cylinder to realize a constant potential V0 at radius r = b.

2I have chosen to keep Q as the symbol for the total charge. Jackson calls it q′. I find this confusing since the
primed q has been used for the image of q.
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b. The Potential

The potential in polar coordinates is simply a superposition of the line charge τ and the image line
charge τ ′ with the conditions as proposed in section a. The result is

Φ(r, φ) =
τ

4πε0
ln

(
(R2r2 + b4 − 2rRb2cosφ)

R2(r2 +R2 − 2Rrcosφ)

)
(2.38)

For the far field case (r >> R) we can factor out (Rr)2. The b4 and R2 in equation (2.38) can be
neglected:

Φ(r, φ) ≈ τ

4πε0
ln

(
(Rr)2(1− 2b2

Rr cosφ)

(Rr)2(1− 2R
r cosφ)

)
(2.39)

The first order Taylor expansion is

Φ(r, φ) ≈ τ

4πε0
ln

(
(1− 2b2

Rr
cosφ)(1 +

2R

r
cosφ)

)

≈ τ

4πε0
ln

(
(1 +

(
2R

r
cosφ− 2b2

Rr
cosφ)

))

≈ τ

2πε0

(R2 − b2)

Rr
cosφ (using ln(1 + x) ≈ x) (2.40)

c. The Induced Surface Charge Density

σ(φ) = −ε0
∂Φ

∂r

∣∣∣∣
r=b

(2.41)

Differentiation of equation (2.38) and substituting r = b:

σ(φ) = − τ

4π

(
2bR2 − 2Rb2cosφ

R2b2 +R2 + b4 − 2b3Rcosφ
− R2(2b− 2Rcosφ

R2(b2 +R2 − 2Rbcosφ

)

= − τ

2π

(
(R/b)2 − 1

(R/b)2 + 1− 2(R/b)cosφ

)
(2.42)

When R/b = 2, the induced charge as a function of φ is

σ(φ)|R=2b = − τ

2πb

(
3

5− 4cosφ

)
(2.43)

When the position of the line charge τ is four radii from the center of the cylinder, the surface
charge density is

σ(φ)|R=4b = − τ

2πb

(
15

17− 8cosφ

)
(2.44)

The graphs for either case are drawn in figure 2.7.
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Figure 2.7: The behavior of the surface charge density σ with angle for two different ratios between
the radius of the cylinder and the distance to the line charge.

d. The Force on the Line Charge

The force per meter on the line charge is Coulomb’s law:

F = τE(R, 0) = − τ2

2πε0

1

(R2 − b2)
ı̂ per meter (2.45)

where ı̂ is the directed from the the axis of the cylinder to the line charge, perpendicular to the
line charge and the cylinder axis.

2.13 Two Cylinder Halves at Constant Potentials

a. The Potential inside the Cylinder

In this case (see figure 2.8) there are no free charges in the area of interest. Therefore the potential
Φ inside the cylinder obeys Laplace’s equation:

∇2Φ = 0 (2.46)

We can write the potential in cylindrical coordinates and separate the variables:

Φ(ρ, φ) = R(r)F (φ) (2.47)
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The general solution is (see J2.71):

Φ(ρ, φ) = a0 + b0lnρ+

∞∑

n=1

[
anρ

nsin(nφ+ αn) + bnρ
−ncos(nφ+ αn)

]
(2.48)

From this geometry it is obvious that at the center ρ = 0 the solution may not blow up, so:

bn = b0 = 0 (2.49)

This results in a potential

Φ(ρ, φ) = a0 +

∞∑

n=1

anρ
nsin(nφ+ αn) (2.50)

The next step is to implement the boundary conditions

V1

b

P

r

V2

φ

Figure 2.8: Cross-section of two cylinder halves with radius b at constant potentials V1 and V2.

Φ(b, φ) = V2 = a0 +

∞∑

n=1

anb
nsin(nφ+ αn) for (−π/2 < φ < π/2)

Φ(b, φ) = V1 = a0 +
∞∑

n=1

anb
nsin(nφ+ αn) for (π/2 < φ < 3π/2) (2.51)

b. The Surface Charge Density

σ = − ε0
∂Φ

∂r

∣∣∣∣
r=b

(2.52)
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2.23 A Hollow Cubical Conductor

a. The Potential inside the Cube

z

y

x

a

a

a

V

Vz

z

Figure 2.9: A hollow cube, with all sides but z=0 and z=a grounded.

∇2Φ = 0 (2.53)

Separating the variables:
1

X

d2X

dx2
+

1

Y

d2Y

dy2
+

1

Z

d2Z

dz2
= 0. (2.54)

x and y can vary independently so each term must be equal to a constant −α2:

1

X

d2X

dx2
+ α2 = 0 ⇒ X = Acosαx+Bsinαx (2.55)

1

Y

d2Y

dy2
+ β2 = 0 ⇒ Y = Ccosβy +Dsinβy (2.56)

1

Z

d2Z

dz2
+ γ2 = 0 ⇒ Z = Esinh(γz) + F cosh(γz), (2.57)

where γ2 = α2 + β2. The boundary conditions determine the constants:

Φ(0, y, z) = 0 ⇒ A = 0
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Φ(a, y, z) = 0 ⇒ αn = nπ/a (n = 1, 2, 3, ...)

Φ(x, 0, z) = 0 ⇒ C = 0

Φ(x, a, z) = 0 ⇒ βm = mπ/a (m = 1, 2, 3, ...)

⇒ γnm = π
√
n2 +m2

The solution is thus reduced to

Φ(x, y, z) =

∞∑

n,m=1

sin
(nπx

a

)
sin
(mπy

a

) [
Anmsinh

(γnmz
a

)
+Bnmcosh

(γnmz
a

)]
(2.58)

Now, let’s use the last boundary conditions to find the coefficients Anm and Bnm. The top and
bottom of the cube are held at a constant potential Vz , so

Φ(x, y, 0) = Vz =

∞∑

n,m=1

Bnmsin
(nπx

a

)
sin
(mπy

a

)
(2.59)

This means that Bnm are merely the coefficients of a double Fourier series (see for instance [1] on
Fourier series):

Bnm =
4Vz
a2

∫ a

0

∫ a

0

sin
(nπx

a

)
sin
(mπy

a

)
dxdy (2.60)

It can be easily shown that the individual integrals in equation (2.60) are zero for even integer
values and 2a

nπ for n is odd. Thus Bnm is

Bnm =
16Vz
π2nm

for odd (n,m) (2.61)

The top of the cube is also at constant potential Vz, so

Φ(x, y, 0) = Vz = Φ(x, y, a)⇔
Bnm = Anmsinh(γnm) +Bnmcosh(γnm)⇔

Anm = Bnm
1− cosh(γnm)

sinh(γnm)
(2.62)

Substituting the expressions for Anm and Bnm into equation (2.58), gives us

Φ(x, y, z) =
16Vz
π2

∞∑

n,m odd

1

nm
sin
(nπx

a

)
sin
(mπy

a

)[1− cosh(γnm)

sinh (γnm)
sinh

(γnmz
a

)

+ cosh
(γnmz

a

)]
, (2.63)

where γnm = π
√
n2 +m2.
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b. The Potential at the Center of the Cube

The potential at the center of the cube is

Φ(
a

2
,
a

2
,
a

2
) =

16Vz
π2

∞∑

n,m odd

1

nm
sin
(nπ

2

)
sin
(mπ

2

)[1− cosh(γnm)

sinh (γnm)
sinh

(γnm
2

)

+ cosh
(γnm

2

)]
(2.64)

With just n,m = 1, the potential at the center is

16Vz
π2

[
1− cosh(

√
2π)

sinh(
√

2π)
sinh

(
π√
2

)
+ cosh

(
π√
2

)]
≈ 0.347546Vz (2.65)

When we add the two terms (n = 3, m = 1) and (n = 1, m = 3), the potential is 0.332498Vz.

c. The Surface Charge Density

The surface charge density on the top surface of the cube is given by

σ = −ε0
∂Φ

∂z

∣∣∣∣
z=a

(2.66)

In the appendix it is shown that the differentiation of the hyperbolic sine is the hyperbolic cosine.
Furthermore

dcosh(az)

dz
= asinh(az) (2.67)

Using this equality in differentiating the expression for the potential in equation (2.63), we get

∂Φ

∂z
=

16Vz
π2

∞∑

n,m odd

γnm
nma

sin
(nπx

a

)
sin
(mπy

a

)[1− cosh(γnm)

sinh (γnm)
cosh

(γnmz
a

)

+ sinh
(γnmz

a

)]
, (2.68)

where γnm = π
√
n2 +m2. Now we evaluate this expression for z = a:

σ = −ε0
∂Φ

∂z

∣∣∣∣
z=a

=

−16ε0Vz
π2

∞∑

n,m odd

γnm
nma

sin
(nπx

a

)
sin
(mπy

a

)[1− cosh(γnm)

sinh (γnm)
cosh (γnm) + sinh (γnm)

]
=

−16ε0Vz
π2

∞∑

n,m odd

γnm
nma

sin
(nπx

a

)
sin
(mπy

a

)
[(1− cosh(γnm))coth(γnm) + sinh (γnm)] (2.69)

Further simplification??



Chapter 8

Waveguides, Resonant Cavities
and Optical Fibers

8.1 Time Averaged Forces Per Unit Area on a Conductor

a. A Good Conductor

The relationship between force F on one side and current density J and magnetic field H on the
other is

F = µc

∫

V

J×H dV. (8.1)

The force per unit area (or pressure) would then be

dF

dA
= −µc

∫

ξ

J×H dξ, (8.2)

where ξ is the normal pointing into the conductor. This is opposite of the “normal” n̂, resulting
in the change of sign. The time average of this quantity f is

f = 〈 dF
dA
〉 = −1

2
µc

∫

ξ

< [J×H∗] dξ. (8.3)

See section 6.9 in Jackson for the time-averaging. When we insert the following properties (see
J8.9):

H = H‖e
ξ/δ(1−ı) and J = σE, (8.4)

and the approximation for a good conductor that

E ≈
√
µcω

2σ
(1− ı)

(
n̂×H‖

)
eξ/δ(ı−1), (8.5)

31
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into equation 8.3, we are left with a simple integration of the exponential
∫ ∞

0

e−2ξ/δ dξ =
−δ
2

(8.6)

and a series of cross products (for which we have the equality as defined in the appendix and in
the inside cover of Jackson)

(
n̂×H‖

)
×H∗‖ = −H∗‖ ×

(
n̂×H‖

)
= −

(
H∗‖ ·H‖

)
n̂+

(
H‖ · n̂

)
H‖. (8.7)

The first dot-product is the square of the magnetic field magnitude and the last dot-product is
obviously zero, since the magnetic field is perpendicular to the normal. Putting all this together,
gives us the time average force per unit area

f = −n̂µc
4

∣∣H‖
∣∣2 . (8.8)

b. A Perfect Conductor

dF = Idl×B. (8.9)

dK =
I

dl
(8.10)

Therefore

f = 〈 dF
dA
〉 =

1

2
K×B∗. (8.11)

Using
B∗ = µH∗ and K = n̂×H, (8.12)

we get in a perfect conductor for the time averaged force per unit area

f = −µ
2
n̂|H‖|2. (8.13)

This is twice as large as the force found in a good conductor in part a. This has to do with the
discontinuity between the fields inside and outside the conductor. For an explaination, see [3].

c. A Superposition of Different Frequencies

As in section 6.8 in Jackson, time averaging leads to

〈|H|2〉 = 〈<[H] · <[H]〉 = 1/2H ·H∗, (8.14)

where H =
∑

k H‖eıωkt. Therefore, the dot-product of the leads to an exponential dependence,
but due to averaging the individual frequencies over time, they all cancel:

〈|H|2〉 =
1

2

∑

k

∑

l

H‖ ·H∗‖ eı(ωk−ωl)t =
1

2
H‖ ·H∗‖ =

1

2
|H‖|2. (8.15)

The rest of the derivation stays the same, so for the result to stay the same we have to replace
|H‖|2 by 2〈|H|2〉 in equation 8.8.
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8.2 TEM Waves in a Medium of Two Concentric Cylinders

a. Time Averaged Power Flow Along the Guide

For TEM waves, Ez and Hz are by definition zero. This simplifies equations J8.23 and J8.25 to

∇t ·ETEM = 0 and ∇t ×ETEM = 0 (8.16)

This implies that our problem is reduced to an electrostatic potential Φ that obeys Laplace’s
equation in the cavity between the two cylindrical surfaces:

ETEM = −∇tΦ and ∇2
tΦ = 0. (8.17)

When we solve this equation in cylindrical coordinates and use the symmetry of the problem, the
solution is only a function of ρ:

Φ(ρ) = Alnρ+B (8.18)

where A and B are arbitrary constants which will be defined by the boundary conditions. The
electric field ETEM is

ETEM (ρ) = −∇tΦ = −Aρ̂
ρ
. (8.19)

According to equation J8.28, the magnetic field is

HTEM (ρ) = ±
√
ε

µ
ẑ×ETEM = ∓

√
ε
µAρ̂× ẑ

ρ
. (8.20)

The boundary condition for this problem is that at ρ = a, H = H0. This means the constant is
defined is

A = aH0

√
µ

ε
. (8.21)

Next, we compute the Poynting vector

S =
1

2
(E×H∗) =

a2
√

µ
ε |H0|2 (ρ̂× (ẑ× ρ̂))

2ρ2
. (8.22)

Using the vector identity from the appendix and realizing that ρ̂ · ẑ = 0, we are left with

S =
a2
√

µ
ε |H0|2

2ρ2
ẑ. (8.23)

Equation J8.49 gives us the power flow

P =

∫

A

S · ẑda =

∫ 2π

0

∫ b

a

∫ π

0

dφdρdθ
a2
√

µ
ε |H0|2

2ρ2
ρsinθ =

√
µ

ε
πa2|H0|2ln

(
b

a

)
. (8.24)



34 CHAPTER 8. WAVEGUIDES, RESONANT CAVITIES AND OPTICAL FIBERS

b. Attenuation of the Transmitted Power

Attenuation is due to power lost through the walls of the conductor. According to equations J8.56,
J8.57 and J8.58, the power flow is

P (z) = P0e
1
P
dP
dz , (8.25)

The goal is therefore to find P , which is related to the Poynting vector as defined in equation 8.22.
S follows from equation 8.22. All that is left is to determine the values for H and E. The magnetic
field is continuous across the boundary and thus is the same as in part a:

H‖ =
aH0φ̂

ρ
(8.26)

The electric field can then be approximated as before in equation 8.5, evaluated at the surface
ξ = 0:

E‖ ≈
√
µcω

2σ
(1− ı)

(
n̂×H‖

)
. (8.27)

The Poynting vector is

S =
1

2

(
E‖ ×H∗‖

)
= −1

2

√
µcω

2σ

(
a

ρ

)2

|H0|2ρ̂. (8.28)

This Poynting vector is directed outward of the guide walls. This is the direction of the power loss.
This leaves us with the contributions of the two cylinders to the power loss P :

P = Pa + Pb = −π
√
µcω

2σ
a2|H0|2

(∫

ρ=a

1

ρ
dz +

∫

ρ=b

1

ρ
dz

)
(8.29)

Therefore
dP

dz
= −π

√
µcω

2σ
a2|H0|2

(
1

b
+

1

a

)
(8.30)

Using P from equation 8.24, we can write |H0|2 as function of P and substitute into equation 8.30:

dP

dz
= −2π

√
µcω

2σ

√
ε

µ

P

π

(
1/a+ 1/b

ln
(
b
a

)
)

= −2γP. (8.31)

So P is indeed P0e
−2γz where

γ =
1

2σδ

√
ε

µ

(
1/a+ 1/b

ln
(
b
a

)
)

(8.32)

c. The Characteristic Impedance

The voltage difference between the cylinders is

∆V = −
∫ a

b

E · dl =

∫ b

a

E · dρρ̂. (8.33)
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Using the electric field that we computed in part a (equation 8.19), we get

∆V = aH0

√
µ

ε
ln

(
b

a

)
. (8.34)

By Ampere’s Law, the current is related to the magnetic field as computed in equation 8.20.

I =

∫
H · dl =

∫
aH0

ρ
φ̂ · ρdφφ̂ = 2πaH0. (8.35)

d. Series Resistance and Inductance

To find the resistance per unit length, we use that

dP

dz
=

1

2
I2Rl, (8.36)

where Rl is the resistance per unit length. In part c, we found that

I = 2πaH0 (8.37)

and dP
dz we obtained in equation8.30. Plugging these results into equation 8.36, gives

Rl =
1

2πδσ

(
1

a
+

1

b

)
, (8.38)

where we used that σδ =
√

2σ
µcω

.

Finally, we’ll compute the inductance L. The inductance is related to the power loss as follows:

dP

dz
=

1

2

(
Φ

L

)2

Rl, (8.39)

where Φ is the flux thorugh the walls of the conductor and medium, as

Φ =

∫
Bcond · dA +

∫
Bmedium · dA (8.40)

Using the resistance Rl as computed above, we get

L2 =
Rl

2dPdz

(∫
Bcond · dA +

∫
Bmedium · dA

)2

(8.41)
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8.3 TEM Waves Between Metal Strips

a. Two Identical Thin Strips

The Power

In the previous problem we saw that for TEM waves, we can define a potential that satisfies
Laplace’s equation. Since b >> a, we consider only variations in electric field in the x-direction.
The Laplace equation simplifies to

∂Φ2

∂2x
= 0. (8.42)

The solutions are a linearly varying field and a constant. When we compute the electric field by
taking the gradient, we find that

ETEM = E0x̂. (8.43)

From equation J8.28, we know the relation between the magnetic and electric field for TEM waves
to be

HTEM = ±
√
ε

µ
ẑ×ETEM = ±

√
ε

µ
E0ŷ. (8.44)

If H0 is the (peak) amplitude for the magnetic field, then H0 =
√

ε
µE0. The Poynting vector is

defined as

S =
1

2
(E×H∗) =

1

2

√
µ

ε
|H0|2ẑ. (8.45)

P =

∫

A

S · ẑda =

∫ a

0

∫ b

0

Sdxdy =
ab

2

√
µ

ε
|H0|2. (8.46)

The Exponential Decay Factor

γ = − 1

2P

dP

dz
, (8.47)

where P was calculated in the first part of this exercise and dP
dz is

dP

dz
= − 1

2σδ

∮

C

|n̂×H|2dl. (8.48)

The magnetic field is oriented in the z-direction and the normal n̂ is in the x-direction. Now we
integrate around the plates individually to get the total power. Only between the plates there is
a magnetic field. Therefore the closed line integral reduces to

dP

dz
= − 1

2σδ

∮

C

|n̂×H|2dl =

∫ b

0

|x̂×H0ẑdl =
|H0|2b

2σδ
. (8.49)

This is the ohmic power loss per plate. The exponential decay factor is thus

γ = − 1

2P

dP

dz
=

√
ε

µ

1

aσδ
. (8.50)
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The Characteristic Impedance

THe characteristic impedance was defined in problem 8.2 as the voltage frop between the plates
divided by the current flowing along one of the plates. The voltage difference between the cylinders
is

∆V = −
∫ a

b

E · dl =

∫ a

0

E0dx =

∫ a

0

√
µ

ε
H0 = a

√
µ

ε
H0. (8.51)

The other leg is the current along one of the plates. To find this, we use

I =

∮

C

H0ŷ · dl =

∫ b

0

H0dy = H0b. (8.52)

The characteristic impedance is therefore

Z0 =
dV

I
=

√
µ

ε

a

b
. (8.53)

The Series Resistance

Rl =
2

I2
0

∣∣∣∣
dP

dz

∣∣∣∣ =
2

(H0b)2

b|H0|2
σδ

=
2

bσδ
. (8.54)

The Series Inductance

The inductance is

L =
Φ

I
, (8.55)

where Φ =
∫

B · n̂da and we know I = H0b. In the conducting plate (and we are looking at only
one plate, like we did to compute the current, too), the flux is

Φc = µcH0

∫ δ

0

∫

0

∞ŷ · dxdzŷ. (8.56)

Therefore, the flux per unit length in the conductor is

Φl,c = µcH0δ. (8.57)

For the medium, we integrate from zero to a, and get

Φl,0 = µ0H0a. (8.58)

The total inductance per unit length is the addition of the two, divided by the current:

Ll =
µ0a+ µcδ

b
. (8.59)
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8.4 TE and TM Waves along a Brass Cylinder

8.4.1 a. Cutoff Frequencies

A brass cylinder with radius R is oriented with its axis along the z-direction. TE or TM waves
propagate along the cylinder. Both TE and TM waves have a z-component that satisfies

(
∇t + γ2

)
ψ = 0, (8.60)

where γ2 = µεω2− k2 and ψ is either Ez for TM waves or Bz for TE waves. Solving this equation
in cylindrical coordinates (and recognizing that there is no z-dependence), we get solutions

ψ = eımφJm(γρ)eı(kz−wt). (8.61)

We already discarded the other solution to the Bessel equation, because it has a singularity at the
origin. Lets apply the rest of the boundary conditions for the appropriate wave. For TM waves we
know that

ψ|s = ψ|ρ=R = 0. (8.62)

Hence the Bessel function is zero when ρ = R:

γmnR = xmn, (8.63)

where xmn is the n-th root of the m-th order Bessel function. The cutoff frequency is the lowest
frequency for which the wave does not become inhomogeneous or evanescent. In other words, the
wave number should be real. The cutoff frequency is therefore

ωmn =
γmn√
µε

=
xmn
R
√
µε

(8.64)

All that’s left to do is look up the four smallest roots. From page 114 in Jackson or any book
with tables of Bessel functions it is obvious that ω11 is the dominant frequency. The next three
are ω21, ω02, ω12, respectively.

For TE waves, the boundary condition is

∂ψ

∂n

∣∣∣∣
ρ=R

= 0, (8.65)

where the normal is n̂ = ρ̂. We’ll call

∂ψ

∂ρ

∣∣∣∣
ρ=R

=
∂Jm(γρ)

∂ρ

∣∣∣∣
ρ=R

= J ′m(γR), (8.66)

which is a function conveniently tabulated on page 370 of Jackson. The dominant mode is

ω11 =
1.841

R
√
µε
. (8.67)
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The next four higher modes have ratios:

ω21

ω11
= 1.656,

ω01

ω11
= 2.081,

ω31

ω11
= 2.282,

ω12

ω11
= 2.896.
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Chapter 10

Scattering and Diffraction

10.3 Scattering Due to a Solid Uniform Conducting Sphere

a. The Magnetic Field around the Sphere

Since there are no currents present, we find that

∇×H = J = 0 and ∇ ·H = 0. (10.1)

Therefore the magnetic field can be described by a magnetic scalar potential Φm that satisfies
Laplace’s equation:

H = −∇Φm

∇2Φm = 0. (10.2)

The general solution to Laplace’s equation, simplifies for our boundary conditions to (J5.117):

Φm = −Hincr cos θ +

∞∑

l=0

αl
rl+1

Pl(cos θ). (10.3)

where αl is defined by (J5.121). With a = 0 (our shell is a solid sphere), µ = 0, because we are

dealing with a perfectly conducting sphere, αl = 0 for l 6= 1 and α1 = − b3Hinc2 . This means that
the magnetic scalar potential is

Φm = −Hinc cos θ

(
r +

R3

2r2

)
(10.4)

and

H = Hr +Hθ = −1

r

∂Φm
∂θ

θ̂ = −Hinc sin θ

(
1 +

R3

2r3

)
θ̂. (10.5)
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Hr is zero inside the sphere H = 0 and the boundary conditions say that Hr is continuous across
the boundary. Just outside the sphere, the magnetic field is

H|r=R = −3

2
Hinc sin θ θ̂ (10.6)

b. The Absorption Cross Section

According to (J8.12), the power loss per unit area is

dPloss
da

=
1

4
µcωδ

∣∣H‖
∣∣2 =

9

16
µcωδH

2
inc sin2 θ. (10.7)

The loss of power is then just a simple integration over area:

Ploss =

∫

S

dPloss
da

da =
9

16
µcωδH

2
inc2πR

2

∫ π

0

sin2 θ sin θdθ =
3

2
πR2µcωδH

2
inc. (10.8)

According to the experts (I could not find this anywhere), the absorption cross section is defined
as

σabs =
Ploss

dPinc/da
, (10.9)

where the denominator is the total incidence power per unit area. For plane waves, Griffiths writes:

dPinc
da

=
1

2
< [n̂ ·Einc ×H∗inc] =

|Hinc|2
2c

. (10.10)

Plugging this and the expression for the loss of power into equation 10.9 shows that the absorption
cross section is proportional to the square root of frequency:

σabs =
3
2πR

2µcωδH
2
inc

|Hinc|2
2c

=
3πR2µcωδ

c
=

3πR2µcω
√

2

c
√
µcωσ

=
3πR2

c

√
2µc
σ

√
ω. (10.11)

10.14 Diffraction from a Rectangular Opening

This problem involves an infinite conducting sheet in the x-y plane with diffraction from a rectan-
gular aperture as depicted in figure 10.1.

a. The Smythe-Kirchhoff Relation

According to the vector Smythe-Kirchoff relation, the electric field at an arbitrary point O at
location x due to diffraction from an aperture S1 is

E(x) =
ıeıkr

2πr
k×

∫

S1

n×E(x′)e−ık·x
′
da′, (10.12)
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Ei

β
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θ

φ

k

O
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x

z

b/2-b/2
a/2

-a/2

Figure 10.1: A rectangular aperture in a conducting sheet in the x-y plane.

where the electric field inside the aperture is assumed to be that of the incoming one:

E(x′) = E0e
−ık·x′ (sinβx̂+ cosβŷ) . (10.13)

Since n = ẑ,
ẑ ×E(x′) = E0e

−ık·x′ (sinβŷ − cosβx̂) . (10.14)

The integration is now straightforward:

∫

S1

n×E(x′)e−ık·x
′
da′ = E0 (sinβŷ − cosβx̂)

∫ a/2

−a/2

∫ b/2

−b/2
e−ı(kxx

′+kyy
′)dx′dy′

= E0 (sinβŷ − cosβx̂)
4

kxky
sin

(
kxa

2

)
sin

(
kyb

2

)
. (10.15)

With k = k(sin θ cosφx̂+ sin θ sinφŷ + cos θẑ), the total expression for the diffracted electric field
is

E(x) =
2ıE0e

ıkr

πrkxky
sin

(
kxa

2

)
sin

(
kyb

2

)
k× (sinβŷ − cosβx̂)

=
2ıE0e

ıkr

πrkxky
sin

(
kxa

2

)
sin

(
kyb

2

)
(ẑ (kx sinβ + ky cosβ)− x̂kz sinβ − ŷkz cosβ)

=
2ıE0e

ıkr

πrk sin2 θ cosφ sinφ
sin

(
ka sin θ cosφ

2

)
sin

(
kb sin θ sinφ

2

)
×

× (ẑ (sin θ cosφ sinβ + sin θ sinφ cosβ)− x̂ cos θ sinβ − ŷ cos θ cosβ)

=
2ıE0e

ıkr

πrk sin2 θ cosφ sinφ
sin

(
ka sin θ cosφ

2

)
sin

(
kb sin θ sinφ

2

)
×

× (ẑ sin θ sin(φ− β)− x̂ cos θ sinβ − ŷ cos θ cosβ) (10.16)

The magnetic field for plane waves has a relation to the electric field that can easily be understood
by applying the far field (where waves are “plane”) approximation of ∇ = ık:

∇×E = −∂B

∂t
⇔ ıkk̂ ×E = ıωB ⇔
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B(x) =
k× E

c
=

2ıE0e
ıkr

cπr sin2 θ cosφ sinφ
sin

(
ka sin θ cosφ

2

)
sin

(
kb sin θ sinφ

2

)
×

×
(
ẑ
(
sin2 θ cosφ(sin(φ− β))− sin θ sinφ(cos θ sinβ)

)
−

x̂
(
sin2 θ sinφ(sin(φ− β))− cos θ cos θ cosβ

)
−

ŷ
(
sin2 θ cosφ(sin(φ− β)) − cos θ(cos θ sinβ)

))
. (10.17)

The power per unit angle is defined as

dP

dω
=

r2

2Z0
|E|2 =

2E2
0

Z0k2π2 sin4 θ cos2 φ sin2 φ
sin2

(
ka sin θ cosφ

2

)
sin2

(
kb sin θ sinφ

2

)
×

×
(
sin2 θ sin2(φ− β) + cos2 θ

)
. (10.18)

b. The Scalar Kirchhoff Approximation

We can get a scalar approximation from the far field version of the Kirchhoff integral (J10.79),
which is (J10.108):

ψ(x) =
eıkr

4πr

∫

S1

e−ık·x
′
(n · ∇′ψ(x′) + ık · nψ(x′)) da′, (10.19)

where the assumption is that the scalar ψ(x′) in the aperture is the magnitude of the incoming
field:

ψ(x′) = E0e
ık0·x′ = E0e

ıkz′ . (10.20)

Therefore

n · ∇′ψ(x′)|z′=0 = ıkE0. (10.21)

And

ık · nψ(x′)|z′=0 = ık cos θE0. (10.22)

So what we are left with is an integral we solved in part a:

ψ(x) =
ıkE0e

ıkr (1 + cos θ)

4πr

∫

S1

e−ık·x
′
da′

=
ıE0e

ıkr (1 + cos θ)

πrk sin2 θ cosφ sinφ
sin

(
ka sin θ cosφ

2

)
sin

(
kb sin θ sinφ

2

)
. (10.23)

The power per unit angle in the scalar approximation is

dP

dω
=

E2
0 (1 + cos θ)

2

2Z0π2k2 sin4 θ cos2 φ sin2 φ
sin2

(
ka sin θ cosφ

2

)
sin2

(
kb sin θ sinφ

2

)
. (10.24)
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c. A Comparison

For the case: b = a, β = π/4, φ→ 0 and ka/2 = kb/2 = 2π the power per unit angle for the vector
and the scalar approximation is respectively

dP

dω
=

2E2
0

k2π2 sin4 θ cos2 φ sin2 φ
sin2

(
ka sin θ cosφ

2

)
sin2

(
kb sin θ sinφ

2

)
×

×
(
sin2 θ sin2(φ− β) + cos2 θ

)

=
2E2

0

k2π2 sin4 θφ2
sin2(2π sin θ) sin2(2π sin θφ)

(
sin2 θ

2
+ cos2 θ

)
. (10.25)

Using that

lim
φ→0

sin2(2π sin θφ)

φ2
≈ (2π sin θ)2 = 4π2 sin2 θ, (10.26)

we get for the vector approximation of the power per unit angle that

lim
φ→0

dP

dω
=

8E2
0

k2 sin2 θ
sin2(2π sin θ)

(
1

2
+

cos2 θ

2

)
=

4E2
0 sin2(2π sin θ)

(
1 + cos2 θ

)

k2 sin2 θ
. (10.27)

And for the scalar approximation:

lim
φ→0

dP

dω
=
E2

0 (1 + cos θ)2

2π2k2 sin4 θφ2
sin2 (2π sin θ) sin2 (2π sin θφ) =

2E2
0 sin2 (2π sin θ) (1 + cos θ)2

k2 sin2 θ
.(10.28)

The results are plotted (with E0

k2 = 1) in figure 10.2. Note that for small scattering angle θ the
results are identical.
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Figure 10.2: Scalar and vector approximation of the radiated power per unit angle. For θ close to
zero (i.e. close to the direction of k0, the approximations lead to the same result.



Chapter 11

Special Theory of Relativity

11.3 The Parallel-velocity Addition Law

Two reference frames K ′,K ′′ move in the same direction from K with different velocities v1 and
v2, respectively. The frames can be oriented such that the direction of propagation with respect
to K is x̂. The Lorentz transform can then be written in matrix form x′ = AK→K′x

 K K’

vv1

K’’

2

Figure 11.1: Three reference frames. K ′ and K ′′ move in the same direction from K with velocity
v1 and v2, respectively.




x′0
x′1
x′2
x′3


 =




γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1







x0

x1

x2

x3


 , (11.1)

where

β =
v

c
and γ =

1√
1− β2

(11.2)

47
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with c equal to the speed of light. The transform from K to K ′′ can then be written as the
multiplication of the transform matrix AK→K′ and AK′→K′′ . Here we will show that that is the
same as a direct Lorentz transform AK→K′′ .




γ1 −γ1β1 0 0
−γ1β1 γ1 0 0

0 0 1 0
0 0 0 1







γ2 −γ2β2 0 0
−γ2β2 γ2 0 0

0 0 1 0
0 0 0 1


 =




γ1γ2 + γ1γ2β1β2 −γ1γ2β2 − γ1γ2β1 0 0
−γ2γ1β1 − γ2γ1β2 γ1γ2β1β2 + γ1γ2 0 0

0 0 1 0
0 0 0 1


 (11.3)

We can define γ and β in the total transformation AK→K′′ and find the total transformation
velocity:

γ = γ1γ2 + γ1γ2β1β2 and βγ = γ1γ2β2 − γ1γ2β1. (11.4)

Therefore

β =
γ1γ2β2 − γ1γ2β1

γ
=
γ1γ2β2 − γ1γ2β1

γ1γ2 + γ1γ2β1β2
=

β2 + β1

1 + β1β2
=

v1

c + v2

c

1 + v1v2

c2
=
v

c
⇔

v =
v1 + v2

1 + v1v2

c2
. (11.5)

11.5 The Lorentz Transformation Law for Acceleration

Reference frame K ′ moves from K with velocity v. We arrange our reference frame that v = vx̂.
To find the acceleration transform we first find how velocity u and time t transform, so that we
can define a = du

dt . From equation (J11.18) it is clear that

dt =
dx0

c
=
γ

c
(dx′0 + βdx′1) = γ

(
dt′ +

v

c2
dx′
)

(11.6)

The derivative of the transformed displacement with respect to time (11.6) gives us (J11.31) which
states

u‖ =
u′‖ + v

1 + v·u′
c2

and u⊥ =
u′⊥

γ
(
1 + v·u′

c2

) . (11.7)

The acceleration parallel to the relative velocity between the reference frames is

a‖ =
du‖
dt

=

(
1 + v·u′

c2

)
du′‖ −

(
u′‖ + v

) (
v
c2

)
du′‖

(
1 + v·u′

c2

)2
γ
(
dt′ + v

c2 dx
′) . (11.8)
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Use dx′1 =
u′1
c dx

′
0 (Jackson page 531) and a′‖ = du′‖/dt

′ to conclude that

a‖ =
a′‖

(
1 + v2

c2

)

γ
(

1 +
vu′‖
c2

)3 =
a′‖

(
1− v2

c2

)3/2

(
1 +

vu′‖
c2

)3 . (11.9)

The acceleration perpendicular to the direction of propagation is

a⊥ =
du⊥
dt

=

d

(
u′⊥

γ(1+ v·u′
c2

)

)

γ
(
dt′ + v

c2 dx
′) . (11.10)

After computing the differential of the numerator with the chain rule, we obtain

du⊥ =
du′⊥

γ
(
1 + v·u′

c2

) − u⊥′ v·du
′

c2

γ
(
1 + v·u′

c2

)2 . (11.11)

Use v · du′ = vdu′‖ and we have

a⊥ =

(
1 + v·u′

c2

)
du′⊥ − v

c2 u⊥′du′‖

γ2dt′
(
1 + v·u′

c2

)3 . (11.12)

Realizing that du⊥
dt′ = a′⊥,

du‖
dt′ = a′‖ and 1/γ2 = 1− v2/c2 simplifies equation 11.12 to

a⊥ =

(
1− v2

c2

)

(
1 + v·u′

c2

)3
(

a′⊥ +
v · u′
c2

a′⊥ −
v · a′
c2

u⊥
′
)
. (11.13)

Writing out the outer products v × (a′ × u′) shows that

a⊥ =

(
1− v2

c2

)

(
1 + v·u′

c2

)3
(
a′⊥ +

v

c2
× (a′ × u′)

)
. (11.14)

11.6 The Rocket Ship

a. How long are they gone?

There a four legs to the trip. We’ll do the calculations on the first and then use symmetry to find
the total answer. The first leg is five years to the people in the rocket ship: t′1 = 5 years. They
experience an acceleration of a′1 = g in the direction which I will call x̂. What we want to know is
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how long are those five years in the rocket ship to the observers (the other part of the twins) on
earth. In other words, what is t? They are related by

t = γ

(
t′ +

β

c
x′
)
, (11.15)

where

β =
v

c
and γ =

1√
1− β2

. (11.16)

The twin in the rocket ship feels a force but does not move in its reference frame: x′ = 0, so

dt = γdt′. (11.17)

I wrote this in differentials because γ is function of velocity and the velocity of the space ship as
seen from earth increases with time. We’ll find this velocity via the acceleration a. We know a′ = g
and that

a = a‖x̂ =
a′‖

(
1− v2

c2

)3/2

(
1 +

vu′‖
c2

)3 x̂ = g

(
1− v2

c2

)3/2

x̂⇔

dv

dt
= g

(
1− v2

c2

)3/2

x̂⇔

gdt =

(
1− v2

c2

)−3/2

dv ⇔

gt =
v√

1− v2

c2

. (11.18)

Rewriting this result as a function of velocity leads to

v(t) =
gt√

1 +
(
gt
c

)2 (11.19)

Plugging this result into equation 11.16 gives

dt′ = dt/γ =
dt√

1 +
(
gt
c

)2 . (11.20)

This we integrate to

τ =
c

g
sinh−1

(
gt

c

)
. (11.21)

The time on the clock in the space ship records τ = 5 years for the first leg. Equation 11.21 written
as a function of time on earth t is

t =
c

g
sinh

(gτ
c

)
= 83.7612 years. (11.22)

Since all four stages are symmetric the total time spent away from earth is 4 · 83.7612 = 335.05
years, while 20 years passed on the rocket. The space ship left in 2100, so the year of return is
2435.05 AD.
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b. How far did the rocket ship get?

From Earth dx = vdt, where the velocity for leg one is calculated in equation 11.19. Therefore
the distance traveled is merely an integration over time from zero to the t1 seconds from part a
(83.7612 years):

d1 =

∫ t1

0

v(t)dt =

∫ t1

0

gt√
1 +

(
gt
c

)2 dt = fracc2g



√

1 +

(
gt1
c

)2

− 1


 = 7.83×1017 m = 82.77 light years.

(11.23)
The total is distance is just twice the first leg distance: d = 2d1 = 165.55 light years.
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Chapter 12

Practice Problems

12.1 Angle between Two Coplanar Dipoles

p
2

p
1

Er
Eθ

θ’

θ

r

Figure 12.1: Coplanar dipoles separated by a distance r.

Two dipoles are separated by a distance r. Dipole p1 is fixed at an angle θ as defined in figure
12.1, while p2 is free to rotate. The orientation of the latter is defined by the angle θ′ as defined
in figure 12.1. Let us calculate the angular dependence between the two dipoles in equilibrium.

The electric field due to a dipole can be decomposed into a radial and a tangential component
(D3.39):

E(r, θ) =
2pcosθ

4πε0r3
r̂ +

psinθ

4πε0r3
θ̂, (12.1)

where ε0 is the dielectric permittivity. Writing p2 in terms of r and θ:

p2(r, θ) = (p2 · r̂)r̂ + (p2 · θ̂ = p2cosθ′r̂ + p2sinθ′θ̂ (12.2)

The potential energy of the second dipole in the electric field due to the first dipole is

U2(r, θ, θ′) = −E1 · p2 = − p1p2

4πε0r3
(2cosθcosθ′ − sinθsinθ′) (12.3)

53
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The second dipole will rotate to minimize its potential energy, defining the angular dependence
between the two dipoles:

∂U2

∂θ′
= 0 ⇔

p1p2

4πε0r3
(2cosθsinθ′ + sinθcosθ′) = 0 ⇔

2cosθsinθ′ = −sinθcosθ′ ⇔
tanθ′ = −(tanθ)/2. (12.4)

12.2 The Potential in Multipole Moments

b
a

+q

-q

x

y

z

Figure 12.2: Concentric rings of radii a and b. Their charge is q and −q, respectively.

This exercise is how to find the potential due to two charged concentric rings (see figure 12.2) in
terms of the monopole dipole and quadrupole moments. Discarding higher order moments (J4.10):

Φ(r) =
q

4πε0r
+

p · r
4πε0r3

+
1

8πε0r5

∑

i,j

xixjQij + .... (12.5)

The monopole moment is zero since there is no net charge. The dipole moment is (J4.8):

p =

∫

V

rρ(r)dV, (12.6)
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where the volume charge density for our case can be written in cylindrical coordinates:

ρ(r) =
q

2πa
δ(r − a)δ(z)− q

2πb
δ(r − b)δ(z) (12.7)

After the x-component of the dipole moment is also written in cylindrical coordinates, the integral
can be easily evaluated:

px =

∫

V

xρ(r, z)dV =

∫ ∞

−∞

∫ 2π

0

∫ ∞

0

cosφρ(r, z)r2drdφdz = 0, (12.8)

because the cosφ integrated over one period is zero. The y-component is zero, because the inte-
gration involves a sinusoid over one period. Finally, the z-component is zero, because

pz ∝
∫
zδ(z)dz = 0 (12.9)

if the value 0 is within the integration limits.

The quadrupole moment is a tensor:

Qij =

∫

V

(3xixj − r2)ρ(r)dV (12.10)

We use the following properties of the δ-function:

∫
δ(z)dz = 1 and

∫
rδ(r − a)dr = a, (12.11)

where 0 and a are within the respective integral limits. Knowing this, the calculations for each
element of Q is left to the reader. After some algebra, the quadrupole moment turns out to be

Qij =




1 0 0
0 1 0
0 0 −2


 q

2

(
a2 − b2

)
(12.12)

This means the potential of the two charged concentric rings is approximately

Φ(r) ≈ (a2 − b2)

16πε0r5
(x2 + y2 − 2z2) (12.13)

12.3 Potential by Taylor Expansion

Here, I will show that the electrostatic potential Φ(x, y, z) can be approximated by the average of
the potentials at the positions perturbed by a small quantity +/− a by doing a Taylor expansion.
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This expansion is correct to the third order. First, the Taylor expansion around the Φ(x, y, z)
perturbed in the positive x-component

Φ(x+ a, y, z) = Φ(x, y, z) +
∂Φ(x, y, z)

∂x
a+

∂2Φ(x, y, z)

∂x2
a2 +

∂3Φ(x, y, z)

∂x3
a3 +O(a4) (12.14)

Next, the same expansion around Φ(x− a, y, z):

Φ(x− a, y, z) = Φ(x, y, z)− ∂Φ(x, y, z)

∂x
a+

∂2Φ(x, y, z)

∂x2
a2 −

∂3Φ(x, y, z)

∂x3
a3 +O(a4) (12.15)

When we add up these two equations, the odd powers of a cancel. This is the same for the y- and
z-component. The a2-term adds up to the Laplacian ∇2. Assuming there is no charge within the
radius a of (x, y, z), Laplace’s equation holds:

∇2Φ = 0 (12.16)

and thus the a2 term is zero, too. Therefore, the potential at (x, y, z) can be given by:

Φ(x, y, z) = 1/6(Φ(x+ a, y, z) + Φ(x− a, y, z) + Φ(x, y + a, z)

+Φ(x, y − a, z) + Φ(x, y, z + a) + Φ(x, y, z − a)) +O(a4) (12.17)
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Mathematical Tools

A.1 Partial integration

∫ b

a

f(x)g′(x)dx = [f(x)g(x)]
b
a −

∫ b

a

f ′(x)g(x)dx (A.1)

A.2 Vector analysis

Stokes’ theorem

∮

L

M · dl =

∫

S

curlM · dS (A.2)

Gauss’ theorem

∮

S

M · dS =

∫

V

divM · dV (A.3)

Computation of the curl

curlM =
1

h1h2h3

∣∣∣∣∣∣∣∣∣

hiî h2ĵ h3k̂

∂
∂x1

∂
∂x2

∂
∂x2

h1M1 h2M2 h3M3

∣∣∣∣∣∣∣∣∣
(A.4)
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hi are the geometrical components that depend on the coordinate system. For a Cartesian coordi-
nate system they are one. For the cylindrical system:

h1 = 1

h2 = r

h3 = 1

For the spherical coordinate system:

h1 = 1

h2 = r

h3 = r sin θ

Computation of the divergence

divM =
1

h1h2h3

(
∂

∂x1
(h2h3M1) +

∂

∂x2
(h1h3M2) +

∂

∂x3
(h1h2M3)

)
(A.5)

With the same factors hi depending on the coordinate system.

a× (b× c) = (a · c) b− (a · b) c. (A.6)

Relations between grad and div

∇×∇×M = ∇∇ ·M−∇2M (A.7)

M = ∇Φ +∇×A (A.8)

A.3 Expansions

Taylor series

f(x) = f(a) + (x− a)f ′(a) +
(x − a)2f ′′(a)

2!
+ ....+

xn

n!
(x− a)nf (n)(a) (A.9)
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A.4 Euler Formula

eiφ = cosφ+ i sinφ (A.10)

sin θ =
eıθ − e−ıθ

2i
(A.11)

cos θ =
eıθ + e−ıθ

2
(A.12)

sinh θ =
eθ − e−θ

2
(A.13)

cosh θ =
eθ + e−θ

2
(A.14)

A.5 Trigonometry

sin2 θ =
1− cos(2θ)

2
(A.15)

cos(φ− θ) = Re
[
eı(φ−θ)

]
= Re

[
eıφe−ıθ

]

= Re [cosφ cos θ + sinφ sin θ + i(..)]

= cosφ cos θ + sinφ sin θ (A.16)
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