

COLORADO SCHOOL OF MINES MUDTOC

Adam Simonsen, M.S. Geology Candidate, Spring 2022 apsimonsen@mines.edu

RESERVOIR CHARACTERIZATION OF THE NIOBRARA B INTERVAL AT REDTAIL FIELD: WELD COUNTY, DENVER JULESBURG BASIN, NORTHEAST COLORADO

Outline

- Interval of Study
- Niobrara B Maps
- FE-SEM
- Source Rock Analysis
- Kerogenites
- Future Work

Area of Study

PETRA 2021-04-21 9:16:35 PM

Niobrara B2 has a variable thickness in the field ranging from 24-43 ft. B1 thin is compensated by thicker B2.

B1 Chalk has a variable thickness in the field ranging from 20-35 ft. The dark blue spot is the location of the Razor 26J-2633L well. The thickness of the other interval seem appropriate and my current theory is that there is a fault that thinned the Nio B1.

Niobrara B Cumulative Production Data

Cumulative oil ranges from 10,000-260,000 BO

Cumulative water rages from 0-280,000 BW

B2 Chalk Resistivity Isopach Maps

Niobrara B2 chalk 15 ohm

Niobrara B2 chalk 30 ohm resistivity

Ranges from 0-28 feet thick

() ()

Ranges from 0-44 feet thick

9N 57V

B1 Chalk Resistivity Isopach Maps

Niobrara B1 chalk 15 ohm resistivity

Niobrara B1 chalk 30 ohm resistivity

Ranges from 0-30 feet thick

Ranges from 0-5 feet thick

THIN SECTIONS RAZOR 25-2514H

COLORADO SCHOOL OF MINES MUDTOC

Organic Matter and Pore Space

B1 Stylolites

Niobrara B2 Chalk

14

Foram Variations

Empty

Partially Filled with Calcite Cement

Almost Completely Filled with Calcite Cement

Filled with Pyrite Framboid

	Spectrum	0	Mg	S	Ca
Spot 1	Spot 919	2.1	0.2	1.0	1.0
Spot 2	Spot 920	2.0	0.2	1.1	0.8

Clay Composition

-Foram Calcite Shell

Montmorillonite $Al_2H_2O_{12}Si_4$

> AI Si

48.7 18.2 19.9

0

50.9

Spectrum

Spot 1

Spot 2

Clay Characterization

COLORADO SCHOOL OF MUDTOC

PYROLYSIS DATA RAZOR 25-2514H

COLORADO SCHOOL OF MINES MUDTOC

Modified Van Krevelen Diagram

20

Kerogen Quality Plots

Vitrinite Reflectance

Horsetail 19N-1924M

Terrace 36-32M

Wolf 12L-0103

Organic Richness

Organic Richness

Nio B1

Nio B2

Marls

Razor 25-2514H B2 Kerogenites

COLORADO SCHOOL OF MINES MUDTOC

SEM B2 KEROGENITES RAZOR 25-2514H

27

Variations in Particle Orientation

Variations in Particle Orientation

Particle Orientation

Random Particle Orientation in Calcite Matrix and Coccolith Fragments

Coccolith Fragments

Pyrite Framboid

Preferred Particle Orientation with Single Clay Plates **Displaying Shale** Fabric

MIRA3 TESC

Preferred Particle Orientation with Single Clay Plates **Displaying Shale** Fabric

Preferred Particle

Orientation with

Single Clay Plates

Displaying Shale

Fabric

Organic Matter

Pyrite Framboid

Foram Variations

31

Empty Foram with Only Calcite Shell

Foram Showing Calcite Cement on Outer Shell and is Half Filled with a Calcite

Foram Alteration

Organic Carbon

SEM HV: 15.0 kV SEM HV: 15.0 kV WD: 9.87 mm SEM MAG: 868 x Det: SE 100 µm View field: 319 µm Date(m/d/y): 03/31/22 Performance in nanospace

Spectrum N O S Cl Ti Spot 2 Spot 1195 1.6 4.9 2.2 0.4 0.6

Future Work

- Look into FMI logs to study the natural fractures within the Niobrara
- Go into more detail of the kerogenites in each well using SRA, FE-SEM, and XRF
- Further study into kerogenites and depositional history, duration of deposition and reason for sporadic anoxic/euxinic environments

MUDTOC Consortium Sponsors Spring 2022

In-Kind Supporting Companies

Mike Johnson & Associates

