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Compare the oil recovery from fluid expansion-drive vs. huff-n-puff gas
injection EOR, using hydrocarbon gas mixture, and CO, in low-permeability,
unfractured and fractured outcrop, reservoir, and synthetic cores.

Determine the role of interconnected fractures on oil recovery in
unconventional reservoirs.

Determine the impact of gas-oil mass transfer across fracture-matrix
interface on oil recovery mechanism in stimulated unconventional shale
reservoirs and assess the role of pore type and pore-size distribution on the
efficacy of oil recovery.

Formulate practical engineering guidelines for planning successful gas
injection EOR in shale reservoirs.
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Tasks performed:

 Conducted 65 gas injection EOR experiments in low-permeability synthetic cores.
* Conducted 9 gas injection experiments in Wolfcamp outcrop carbonate cores.
 Conducted 2 gas injection experiments in Wolfcamp formation siliciclastic cores.

Expected contributions:

e \alidate impact of gas-oil mass transfer across fracture-matrix interface on oil
recovery mechanism in stimulated unconventional shale reservoirs.
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9 x Wolfcamp carbonate cores 2 x Wolfcamp siliciclastic cores 3 x synthetic cores
(2-in dia x 7-in long) (1.5-in dia x 3.1-in long) (2.1-in dia x 5.8-in long)
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Porous Media Transport Properties MINES
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Requires very precise core flooding apparatus.
Low porosity, low permeability shale cores.
Very small matrix pore volume of the shale cores.

Too large holdup fluid volume at the production end of the core.
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* Compression-decompression system to conduct both depletion drive
experiments and gas injection EOR by repressurization.
e Suitable for evaluating the ‘huff-n-puff’ EOR process in shale reservoirs.

Photo of the EOR apparatus Gas injection EOR apparatus
(Courtesy: Lawrence Berkeley National Laboratory) (Simplified schematic)

Gas Pump  Vessel



Oil Infusion Process
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Phase Diagrams for nC,, - Gas Mixtures

lllustrating the Probable Phase Behavior of Gas-Oil Interactions

nC,, and CH, gas

(Courtesy: Kaveh Amini, CSM, 2022)

6000
— CH,
4500 — 30% nC,, -70% CH,
— 60% nC,,- 40% CH,
3000 - — 90% nC,, - 10% CH,
— nCy,
S o
1500 = y¢System @]
o E
o]
I — 1
-300 -200 -100 O 100 200 300 400 500 600 700 800
Temperature (°F)
nC,, and 67% CO, — 33% CH, gas mixture
6000
— CH,
4500 — 20% nC,, - 80% mix
40% nC,, - 60% mix
3000+ — 60% nC,, - 40% mix
a — 80% nC,,- 20% mix
& —nG
1500 = 12
@)
G I | I
-300 -200 -100 0 100 200 300 400 500 600 700 800

Temperature (°F)

Pressure (psia)

Pressure (psia)

nC,, and CO, gas

6000

45004

3000

1500+

-200 -100 O

Temperature (°F)

COLORADO

NES
MUDTOC

e (13,
— 20%nC,, - 80% CO,

40% nC, - 60% CO,
— 60% nC,, - 40% CO,
— 80% nC,, - 20% CO,
— nCy,

100 200 300 400 500 600 700 800

nC,, and 33% CO, — 67% CH, gas mixture

— CH,

— 20% nC,, - 80% mix
40% nC,, - 60% mix

— 60% nC,, - 40% mix

— 80% nC,, - 20% mix

— nCy,

6000
4500
3000
o
1500 L,
e
(8}
O I 1 1
-300 -200 -100 O 100 200 300 400 500 600 700 800

Temperature (°F)



CO, - CH, EOR Performance NES
MUDTOC
Lo 159 23X Iﬁrgerhoill mass
N s than shales
o 12—
2 8.2
EOR in all cores ]
('
o 4 -
0
Carbonate Siliciclastic Synthetic
core core core
EOR vs. shale frac. spacing EOR vs. shale frac. SA/matrix PV
25 25
Two frac. —[@— 67%CO, - 33%CH, EOR —[— 67%CO, - 33%CH, EOR
204 @ [0 33%CO, - 67%CH, EOR — 20— 33%CO,- 67%CH, EOR m
54 @ - O Primary oil prod. 8 .| [} Primary oil prod. .
_ H — X - B o
10_ - —= e . d o 10- d . / E
—f & o S =
[ S — £ O - =
— @ 9 o
One frac. = =z One frac.
0 1 T T T 0 1 | T 1 T T
1 2 3 4 5 6 20 25 30 35 40 45 50 55

Core fracture spacing (cm)

O

COLORADO

Fracture surface area/matrix pore vol. (cm)



O

Conclusions MiNES

MUDTOC

Increasing the number of fractures in cores promotes larger oil recoveries both in
depletion drive and in the ‘huff-n-puff’ process.

Gas injection EOR oil recovery is the result of favorable interface mass transfer of
gas components into n-dodecane across the fracture-matrix interface.

CO, gas yielded a superior gas injection EOR efficacy as compared to the
hydrocarbon gas.

Synthetic cores produced much larger EOR oil than the carbonate cores because of
favorable pore structure and pore connectivity.

The results of this laboratory study are consistent with the results from numerical
modeling and field pilot projects—indicating that increasing the number of
interconnected fractures in the field promotes increased oil recoveries in
unconventional reservoirs.
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