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CCUS Process Schematic (University of North Dakota EERC, 2021) CO, Flood and Injection Designs Schematic (Jarrell et al., 2002)
CCUS is the process of capturing carbon dioxide (CO,), injecting it into reservoirs to enhance oil and

gas production, and safely/permanently storing it in the subsurface

Tapered Water Alternating Gas or TWAG is the most common technigue where the water acts as a
“slug” pushing the hydrocarbons through the reservoir to production

CO, has ~60% success factor in remaining stored



CCUS Projects, Operators, Projections
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Updated U.S. CO, EOR Survey (EOY 2019)

Region Enhanced Recov CO; Su
No. Projects (MBID) o t(:l'llcf?g:y

Permian Basin (W TX, NM) 80 204 .4 1,830
Gulf Coast (MS, LA, E TX) %5 | 433 600
Rockies (CO, WY, MT, UT) 17 _ 3838 445
Mid Continent (OK) 10 . 13 135
Mid West (MI) 10 14 20

Total 142 2993 3,030

Table of CCUS Projects by Enhanced Recovery and CO, Supply (Advanced Resources

International, Inc., 2020)
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Status of U.S. for CO, EOR Projects EOY 2019 (Advanced Resources International, Inc., 2020)
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Projections of CO, Sequestration by Method Modlified (Serdoner, 2019)

The world released ~31.5 gigatons of CO, in 2020
and ~33 gigatons of CO, in 2021

Projections show ~6 gigatons per year of CO,
captured by 2050



CO, Trapping Mechanisms &s
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CO2 trapping mechanisms (Hosseininoosheri, Hosseini,
Nufiez-Lépez, & and Lake, 2018)
Four main trapping mechanisms for CO,: Structural/stratigraphic trapping, Residual/permeability trapping,

Dissolution/solubility trapping, and Mineralization trapping

Stratigraphic trapping represents the highest chance of leakage while mineralization is the safest

The trapping mechanism for CCUS in the Niobrara should be mostly structural, so understanding fracturing
5

is important



CCUS Geologic Parameters 0
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Number of . Porosity Perm. Depth ravity Viscosity Temp. i i i i
ooless Lithology oaien. S P /ﬁ( AP i s Optimum Rc?serv?lr Paramt.eters ?nd Weighting Factors
Niscible / \ for Ranking Oil Reservoirs Suitable for CO2 EOR
42 7-2 16-280  1,600-11,95 30-45 0.6-3.0 82-257 . I ol aps . Parametric
B ° - " y o ’ ° > Reservoir Parameters Optimum Values" | Niobrara A | Niobrara B
2 ss./ls.~dol. 10 4-5 5,400-6,40 35 1 70-181

Weight

41 dol. 7-5 2-28 4,000-11,10 28-42 0.6-6.0 86-232 API Gravity (°API) 37 0.24
2 doldls. s ok 4.700-6,700 bt St 00-133 Remaining Oil Saturation 60% Working Working 0.20
6 Is. 4-20 5-70 5.600-6,800 04-15 125-135 i Worki 019
: dol rip: chert ias 5 5666 - . Pressure OveroMMP (Mpa) 14 Working orking .
7 tripolite 18-24 2-5 5,200-7,500 0.4-1.0 101-123 Temperature (°C) 71 0.14
1 inadequate data Net Qil Thickness (ft) 49 0.11
Immiscible T Permeability (mD) 300 0.07
8 ss. 17-30  30-1,000 1,500-8,500 11-35 0.6-45 99-198 Reservoir Dip 20 0.03
! dol 17 o A 2 6 82 Porosity 20% 13-15% 11-13% 0.02
Table Showing EOR Projects Broken into Lithology, Porosity, Amended Chart Weighing the Various Parameters
Permeability, etc. (Koottungal, 2012) for EOR (Gozalpour, Ren, & Tohidi, 2005)

All types of reservoirs (siliciclastic, carbonate, etc.) are suitable for EOR
Most of the applications of EOR have been with medium to light gravity oils

As shown, the API of oil, OIP, pressure and temperature matter more than other geologic parameters
though permeability is important and imperative

Miscible (where CO, mixes with oil) is preferred as that better facilitates production



Niobrara and Lower Eagle Ford Similarities
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Ternary plot showing comparison of mineralogy from the
Niobrara, Lower Eagle Ford, and Middle Bakken (Cho, Eker,
Uzun, Yin, & Kazemi, 2016)

Crushed core porosity to permeability relationship from the
Niobrara, Lower Eagle Ford, and Middle Bakken (Cho, Eker,
Uzun, Yin, & Kazemi, 2016)

The Lower Eagle Ford has a similar mineralogical composition to the Niobrara

Mineralogical data from XRD shows similar composition in the Niobrara and Lower Eagle Ford where the
dominant clay is illite, and an illite-smectite mixture is frequently found in both

Lower Eagle Ford has a lower (~2x) permeability compared to the Niobrara, but similar relationship looking
at the permeability to porosity relatively
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CCUS Lower Eagle Ford Project as Analog O

(Net Mbo) Screening Reservoirs for CO2 EOR Suitability
o0 , Depth, ft 2,000 to 9,800
Enhanced Oil Recovery 1.3% = 1.7x

il Temperature, °F >250
490 1 - Pressure, psia above 1,200
300 1 Permeability, mD above 1
200 Py Fosamery Qil gravity, °API above 27
100 1 Viscosity, cp below 12

0 —— S, fraction of pore space >0.25

2-5 Years (after waterflood)

Reservoir Screening for CCUS Suitability (Rice University, 2019
EOG Projected EOR Uplifi (EOG Resources, 2016) eservoir Screening for uitability (Rice University, 2019)

*2016 EOG project in Gonzalez county with 41 wells in
development area with 32 wells used for huff-n-puff injection

L : £ of Comparison GOR Range API°
Comp:flred to EOG estlmatlon_, an?Iy5|s showed uplift of ~1.36x Eagle Ford Project | ~1000.3.000 165
(American Resource International) Niobrara 1.800-2.300 2540
CCUS projects often use geological screening Niobrara Notes In Range Below Range
Comparing parameters, the Niobrara A and B GOR is ~1,800- Geologic Data from EOG EOR Eagle Ford Project
2,300 and APl is ~32.0°- 40.0° Compared to the Niobrara (Rice University, 2019)

*Inferred, limited information on study (Hoffman, 2018) 8



4 Niobrara A
Core Plugs

5 Niobrara B
Core Plugs

Petrophysical Properties Overview
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Petrophysical Overview for the Razor 25-2514H
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Most favorable petrophysical properties are over the Niobrara A
and B (particularly the B2) with increased resistivity and porosity

Niobrara C and Codell are targeted in certain parts of the Redtail
Field as well

Resistivity shaded at 15 ohms
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Redtail Field Study
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Sharon Springs Structure Map O
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Redtail/East Pony Field Production O
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e ~40MM MCF Gas Produced * ~78MM MCF Produced (~2x A, C, Codell)

2,296 GOR (~25% higher than B, C, Codell) * 1,856 GOR 14



Flow Units of Razor Over Niobrara A & B
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Cumulative Flow Capacity
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T2LM curve highly correlated (as expected) with permeability measurements and further defines payzones
Flow Unit 1 generally defines the payzone of the Niobrara A and B
Flow Unit 2 defines the middle to upper hydrocarbon bearing zone of the upper Niobrara A
Flow Unit 3 defines just above the Niobrara A which is a low permeability to porosity interval
15

Flow Unit 4, just 2 data points, is the Sharon Springs above the hot shale marker



P&P Data from CMS-300 Experiment
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25-2514H
T10N RE8W S25
NPHI PERM (md)
-0.1 L0.02  0.08

DPHZ PORLAB | LAB P (md) | T2LM (ms)

-0.1j0 2010.02  0.080 50
‘? o Sample # Porosity |Permeabity| Formation
SF‘ 1 7.64 0.00256 Niobrara A
—_— 2 13.44 0.0639 Niobrara A
x x|’y B % 3 14.82 0.00544 | Niobrara A
: == ... o 4 13.54 0.00261 | Niobrara A
y T TP TEIT] ' i 5 11.51 0.0011 Niobrara B
\% 6 11.23 0.00116 Niobrara B
S B T T e 7 12.2 0.00149 Niobrara B
% ¥ E 8 13.11 0.00214 Niobrara B
] [ i 9 12.22 0.00112 Niobrara B

CMS-300 e 9 (~1.5” diameter, ~2” tall) core plugs were chemically cleaned for experiment and
analyzed by the CMS-300 at a confining pressure of 2,000 psi
- e Porosity ranged from ~11-15% and permeability mostly matched CorelLab data
e Qutlier permeability value that is “near” an outlier from CoreLab measurements
e Core plugs used for additional tests (7 for FRT 6100 and 2 for LBNL Core Flood)

Core Laboratories CMS-300 Test (Uzun, 2018)



Lab Work: Formation Response Tester 6100
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o Chandler’s Formation Response Tester (FRT) Model 6100 allows CO, to be flowed across

N-Dodecane saturated core to simulate flow or injection treatments

e N-Dodecane is a clear/colorless oily hydrocarbon less subject to variable imperfections compared to oil
found in formation

e Used to look at reaction to flow where LBNL test is a pressurization-depressurization
compression test

Chandler’s FRT Model 6100 (Chandler Engineering, 2020) 17



Lab Work: LBNL Core Flooding System 0
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Prepare Cores for Experiment NES
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1. Water ’ | H 1. Moisturize cores with water vapor (~2 days)

Container L g_i I 2. Weigh (lightly water vapor saturated) core samples

2. Weigh \‘ = e M = ‘

Force Saturation of Cores
3. Saturate core with N-Dodecane in reactor
container and weigh saturated core

4. Connect to CO, cylinder and pressurize to 1,500 G
PSI at ~150°F (~2-3 weeks)

-Pressure creates fractures for gas to saturate matrix

5. Remove all excess N-Dodecane

Replicate Production
6. Re-pressurize back to 1,500 PSI and slowly de-

Set P&T
pressurize to replicate production (~2 days) Metrics 2o

7. Collect expunged N-Dodecane from de- “,a
pressurization in container and calculate

y 6. Valve for
pressure

3. Container _
: _‘ forCore & [
Control SN : N-Dodecane |




Research Moving Forward Nﬁ
Finish lab work HoRToc

Detailed mapping work in the Redtail field, particularly for resistivity, gross/net
thickness, API gravity, OOIP, and porosity to understand the Niobrara A and B

Examine the Sharon Springs as it’s important to mitigate CO, leakage while
considering permeability, thickness, top seal potential, and ductility

|dentify key geologic parameters for CCUS and determine feasibility of CCUS in
Redtail Field
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