

Ozan Uzun PhD Candidate, Petroleum Engineering uzun@mines.edu

EVALUATING PRODUCTION PERFORMANCE OF PERMIAN BASIN WELLS TO IMPROVE HYDROCARBON RECOVERY

Drivers and Motivation

- Permian Basin is the most prolific oil and gas producing geologic basins in the United Sates—spanning West Texas and Southeastern New Mexico. It has produced more than 33.4 Bbbl of oil and 118 Tcf of natural gas during a 100-year period (EIA 2018).
- The ever-increasing water production and usage in the Permian Basin is a major issue and continues to require attention.
- Classical waterflooding in unconventional reservoirs is not plausible because of the small pore size and low permeability of the mudstone matrix. A practical alternative is cyclic gas injection.

Project Plan

Phase 1:

- Determine production characteristics of Delaware Basin wells
- Plan for several innovative EOR experiments

Phase 2:

- Build an appropriate numerical model to forecast future performance
- Prepare for the EOR experiments

Phase 3:

- Conduct EOR experiments
- Characterize field performance using numerical model (history match production data)
- Automated interpreation

Reservoir Properties

Gross thickness: 600 ft
Initial res pressure: 8175 psia
Reservoir temp: 181.5 °F
Porosity: 0.06
Matrix permeability: 0.0003 mD
Matrix pore compressibility: 1 x 10⁻⁵ psia⁻¹

Numerical Model Grid Structure

- IMAX : 600
- JMAX : 60
- KMAX : 60

Δy : 10 ft Δz : 10 ft

Δx : 10 ft

27 HF stages

Numerical Model Rock Properties

Matrix

Natural Fractures

Property	Value	Unit
Porosity	0.06	-
Permeability	0.0003	mD
Compressibility	1 x 10 ⁻⁵	psia ⁻¹

Property	Value	Unit
Porosity	0.1	-
Effective permeability	0.01	mD
Compressibility	1 x 10 ⁻⁵	psia ⁻¹

Property	Value	Unit
L _x	1	ft
L _y	1	ft
Lz	1	ft
σ	12	ft ⁻²

Hydrocarbon Fluid Model

Initial Numerical Model Input

Matrix

Natural Fractures

Property	Value	Unit	Property	Value	Unit
Initial reservoir pressure	8175	psi	Initial reservoir pressure	8175	psi
Initial water saturation	0.58	-	Initial water saturation	0.58	-
Global composition, CH ₄	67.59	Mole %	Global composition, CH ₄	67.59	Mole %
Global composition, C_2H_6	9.24	Mole %	Global composition, C ₂ H ₆	9.24	Mole %
Global composition, C ₃ H ₈	5.51	Mole %	Global composition, C ₃ H ₈	5.51	Mole %
Global composition, IC ₄ - NC ₄	2.79	Mole %	Global composition, IC ₄ - NC ₄	2.79	Mole %
Global composition, $IC_5 - FC_6$	2.31	Mole %	Global composition, $IC_5 - FC_6$	2.31	Mole %
Global composition, $FC_7 - FC_{10}$	5.62	Mole %	Global composition, FC ₇ - FC ₁₀	5.62	Mole %
Global composition, FC_{11} - C_{15}	2.98	Mole %	Global composition, $FC_{11} - C_{15}$	2.98	Mole %
Global composition, $FC_{16} - C_{22}$	1.69	Mole %	Global composition, $FC_{16} - C_{22}$	1.69	Mole %
Global composition, $FC_{23} - C_{30+}$	1.35	Mole %	Global composition, $FC_{23} - C_{30+}$	1.35	Mole %

GOHFER Hydraulic Fracture Model Data

STIMULATION TREATMENT INFORMATION

Number of Stages	27
Cluster per stage	4
Stage Length (ft)	212
Cluster Spacing (ft)	52
Total Perforation shot per stage	24
Perforation Diameter (in)	0.54/0.46
Total Fluid per stage (bbls)	8,300
Total proppant volume per stage (lbs)	283,977

GOHFER Hydraulic Fracture Model

GOHFER Hydraulic Fracture Model Results

Number of Stages	27
Cluster per stage	4
Stage Length (ft)	212
Cluster Spacing (ft)	52
Total Perforation shot per stage	24
Perforation Diameter (in)	0.54/0.46
Average Proppant Concentration (lb/ft ²)	0.24
Average Fracture Width (in)	0.32
Proppant Cutoff Length (ft)	350.34
Estimated Flowing Fracture Length (ft)	27.34
Fracture Height (ft)	48.41
Average Effective Conductivity (mD.ft)	0.78
	Number of StagesCluster per stageStage Length (ft)Cluster Spacing (ft)Total Perforation shot per stagePerforation Diameter (in)Average Proppant Concentration (lb/ft²)Average Fracture Width (in)Proppant Cutoff Length (ft)Estimated Flowing Fracture Length (ft)Fracture Height (ft)Average Effective Conductivity (mD.ft)

CMG Model (GEM) History Match Results

CMG Model History Match Results

Well-1, Well Bottom-hole Pressure, perm_frac_0.01_pres_8175.sr3 Well-1, Well Bottom-hole Pressure, pressure data_for single stagep.fhf

Relative Permeability and Capillary Pressure experiments are required to tune the history matching

Fluid-Rock Interactions

Fluid-Fluid Interactions

IFT: The force of attraction between the molecules at the interface of two fluids.

Fluid-Rock Interactions

Wettability: Tendency of a fluid to spread on (or adhere to) a solid surface in the presence of another immiscible fluid.

Wettability Concept

 $\theta = 90 \Rightarrow$ Intermediate – wet

15

Drop Shape Analyzer (DSA-100)

Captive droplet method (Wettability)

0

(Yakshi-Tafti et al. 2011)

Pendant drop method (IFT)

where: $\sigma = IFT (N/m)$ $R_1 \& R_2 = principal radii of curvaturelar to R_1$ $\Delta p = differential \ pressure(N / m^2)$ $\rho = density(kg / m^3)$ g = graviatational acceleration (9.8 m² / sec) $\varphi = angle between R_1 and z - axis$

$$\sigma_{ro} = \sigma_{rw} + \sigma_{ow} \cos \theta$$

where;

 $\sigma_{ro} = IFT$ between rock and oil (dynes / cm) $\sigma_{rw} = IFT$ between rock and brine (dynes / cm) $\sigma_{ov} = IFT$ between oil and brine (dynes / cm)

IFT Measurements - Niobrara

Parameters	
Formation Brine Salinity (ppm)	40,000
Formation Brine Density (g/cc)	1.0406
Oil Density (g/cc)	0.8364
Oil Viscosity (cP at 20°C)	8.13
IFT (dynes/cm)	17.02

IFT Measurements – Eagle Ford & Wolfcamp

Parameters	
Formation Brine Salinity (ppm)	70,000
Formation Brine Density (g/cc)	1.0566
Oil Density (g/cc)	0.8364
Oil Viscosity (cP at 20°C)	8.13
IFT (dynes/cm)	16.07

Samples

Comparison of Results

Lower Eagle Ford – 1

Niobrara A - chalk Niobrara B - chalk Niobrara C - chalk Codell sandstone

Sample	Depth (ft)	Contact Angle
Wolfcamp A – Siliceous Mudstone	9575	45.6
Wolfcamp A – Skeletal Wackestone Packstone	9571.6	58.3
Niobrara A-chalk	5534.95	42.7
Niobrara B-chalk	5605.55	43.3
Niobrara C-chalk	5696.4	46.6
Codell sandstone	5830.75	42.2
Lower Eagle Ford – 1	12100.95	45.1
Lower Eagle Ford – 2	12101.35	44.0

ACKNOWLEDGEMENT

- Dr. Hossein Kazemi (Co-Advisor)
- Dr. Steve Sonnenberg (Co-Advisor)
- Dr. Bob Barree and GOHFER Development Team
- Kathy & Jim Emme
- Emre Cankut Kondakci (XRF)

MUDTOC Consortium Sponsors Fall 2021

MUDTOC

Platte River Associates. Inc.