The Diagenesis and Petroleum Potential of the Mowry Shale in the Powder River Basin, Wyoming

BRIAN HANKINS	5
MS Geology	
hankins@mines.edu	(

Diagenetic Processes

70

10°

20°

30°

60°

70°

80°-

90°

30

O 40°

emperature 50°

Early Diagenesis

- **Early Mineralization**
- Bioturbation

Burial Diagenesis

- Mechanical and Chemical Compaction _
- **Biogenic Silica Diagenesis**
- Illitization of Smectite
- **Organic Matter Catagenesis**
- **Deep Burial Mineralization**

Silica Diagenesis - Silica Source

- Biogenic Opal
- Illitization of Smectite
- Volcanic Ash

Silica Diagenesis – Opal-A Conversion

Lynne, 2007

Early Diagenetic Alterations

Bioturbation

mag ⊞ HFW WD HV det ______ 30 μm _____ 2 500 x 59.7 μm 10.9 mm 15.00 kV ETD Stratum - HH-57896 - Sample

Late Diagenetic Alterations

Fe-Dolomite

Kaolinite & Chlorite

Silicification of the Matrix

Microcrystalline Quartz Preserved Pores

iew field: 17.6 un

Det: SE

SEM MAG: 11 7 kg

Bitumen Expulsion

Organic Matter Hosted Pores

Other Pore Systems

Study Area

Diagenetic Transitions

Well	SSTVD (ft)
Alcova Res.	5,185
TCF	-3,736
Well 5	-5,611
Well 1	-7,575

Alcova Reservoir Well

- Mineral Matrix Pores
- 80% Expandable interlayers I/S
- Partial Early Bitumen Formation
- No OM-hosted pores
- Ro: 0.51%

TCF Well

- Mostly Mineral Matrix Pores

huntur

- 80% Expandable interlayers I/S
- Moderate Bitumen Formation
- Minor OM-hosted pores
- Ro: 0.75%

Well 5

- Dominate Pore Type: Unknown
- 20% Expandable interlayers I/S
- Bitumen Formation
- Expect OM-hosted pores
- Ro: 0.98%

Well 1

- Mineral Matrix Pores are less common
- 20% Expandable interlayers I/S
- Extensive Bitumen Formation
- OM-hosted pores are most abundant pore type
- Ro: 1.26%

Illitization of Smectite

18

Mineralogical Maturity Trends

Catagenesis Trends

Bitumen Network Perm Development

^{*} Ro calculated from Tmax

Paragenetic Sequence

Petroleum Potential

Average TOC: 2.71 wt.% (n=164)

- Upper Mowry: 2.35 wt.%
- Middle Mowry: 3.03%
- Lower Mowry: 2.56 wt.%

Avg S1 in peak oil maturity wells: 1.8 mg/g - Middle Mowry: 33% higher than Upper and Lower

Avg S2 in Alcova Reservoir well: 11.06 mg/g - Middle Mowry 42% higher

TOC and Saturations by Formation Member

Generated Hydrocarbon Calculations

Step 1:
$$HI_0 = \left(\frac{\% Type I}{100} x750\right) + \left(\frac{\% Type II}{100} x450\right) + \left(\frac{\% Type III}{100} x125\right) + \left(\frac{\% Type IV}{100} x50\right)$$

Step 2:
$$TR_{HI} = 1 - \frac{HI_{pd}[1200 - HI_o(1 - PI_o)]}{HI_o[1200 - HI_{pd}(1 - PI_{pd})]}$$

Step 3:
$$TOC_o = \frac{HI_{pd} \left(\frac{TOC_{pd}}{1+k}\right) x 83.33}{\left[HI_o x (1-TR_{HI}) \left(83.33 - \left(\frac{TOC_{pd}}{1+k}\right)\right)\right] - \left[HI_{pd} \left(\frac{TOC_{pd}}{1+k}\right)\right]}$$

Step 4: $S2_o = \frac{HI_o \ x \ TOC_o}{100}$

Step 5: Generated Hydrocarbons = $S2_o - S2_{pd}$

Jarvie et al., 2007

Middle Mowry

Source Rock Quality in the PRB

Mowry Present Day TOC Map

Mowry Tmax Maturity Map

Hydrocarbon Generation In the PRB

Mowry Generated Hydrocarbons Map

Mowry Available Hydrocarbons Map

Main Takeaways

- Primary diagenetic processes affecting reservoir properties:
 - Silicification of matrix from biogenic silica source
 - Illitization of smectite
 - Organic matter catagenesis and porosity development
- Hydrocarbon Generation
 - Average Original Potential of the Mowry is 329 bbls/a-ft
 - The three wells in the late oil window have generated on average 234 bbls/a-ft
 - Wells in the peak oil window have the highest retention factor of 67%
 - The amount of generated hydrocarbons varies between the northern and southern Powder River Basin

Acknowledgements

- Dr. Steve Sonnenberg
- Dr. Marsha French and Dr. Jeff May
- Kathy Emme and MUDTOC Team
- MUDTOC Consortia Members

MUDTOC Consortium Sponsors Spring 2021

Sponsoring Member Companies

