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* Brief Geologic History of the Niobrara

e Study Area and Overview of Redtail Field Production by
Bench

 CCUS Overview and Current Projects

* Progress on Lab Work and Preliminary Work

e Different Lab Techniques Going Forward to Examine
Feasibility of CCUS



Brief Niobrara Background
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Increasing TOC% to the east to a certain extent

though we now know TOC% extending into Kansas
and Nebraska is not as high as once thought
Deepest part of WIC along the Western Margin
Cooler, nutrient rich, carbonate poor arctic water
from the north mixed with warmer, oxygen poor,

carbonate rich chalk-rich water from the Gulf of
Mexico

Oxygen-Poor
athpnate-Rich

Schematic of the Western Interior Cretaceous Basin during the
Niobrara time modified from (Longman, Luneau, & Landon, 1998)

Schematic of the Western Interior Cretaceous Basin water mixture
during the Niobrara time (Lowery, et al. 2017)

3



Brief Niobrara Background [a)
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Petrophysical Properties Overview [l
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Petrophysical Overview for the Razor 25-2514H

* Most favorable petrophysical properties are over the Niobrara A and B
(particularly the B2) with increased resistivity and porosity
e 11 core plugs to run experiments on



Redtail Field Study Area
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Redtail/East Pony Field Production [
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* 158 Horizontal Wells

+ ~6-8 Wells per Developed Section
18,688,688 Cum Bbls Oil Produced
40,830,731 Cum MCF Gas Produced

« 21,020 Bbls/QOil/1,000’ of Lateral

* 45,249 MCF/Gas/1,000’ of Lateral

2,296 GOR (~25% higher than B, C, Codell)
* Wells completed between ~2012-2016

336 Horizontal Wells

~6-8 Wells per Developed Section

43,741,284 Cum Bbls Oil Produced (~2x A, C, Codell)
78,296,643 Cum MCF Gas Produced (~2x A, C, Codell)
25,999 Bbls/Qil/1,000’ of Lateral (Best Among Benches)
46,331 MCF/Gas/1,000’ of Lateral (Best Among Benches)
1,856 GOR

Wells completed between ~2011-2016



Redtail/East Pony Field Production [
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160 Horizontal Wells * 32 Horizontal Wells
« ~6-8 Wells per Developed Section  ~2-4 Wells per Developed Section
-Increased Around Razor 25-2514H Core * 2,629,164 Cum Bbls Oil Produced
« 19,571,371 Cum Bbls Oil Produced * 3,985,642 Cum MCF Gas Produced
« 32,838,208 Cum MCF Gas Produced » 16,006 Bbls/Oil/1,000’ of Lateral
« 25,020 Bbls/Oil/1,000’ of Lateral « 25,116 MCF/Gas/1,000’ of Lateral
41,386 MCF/Gas/1,000’ of Lateral « 1570 GOR
« 1,766 GOR  Lowest Overall/Average Production and GOR

«  Wells completed between ~2012-2016 * Wells completed between ~2012-2016 3



CCUS Overview a)

CCUS is the is the process to capture CO, from gas, utilize that
carbon in some way, and find a safe, permanent storage option

CO, can and has been used successfully by the oil and gas industry
for enhanced recovery techniques, most notably, Enhanced Oil
Recovery (EOR)

— Up to 80% of oil can be left in place after primary and secondary recovery
methods

Four major types of enhanced recovery are:
— Enhanced Oil Recovery (EOR)
— Enhanced Coalbed Methane Recovery (ECBM)
— Enhanced Gas Recovery (EGR)
— Enhanced Shale Gas Recovery (ESGR)

45Q tax credit introduced in 2008 originally provided $10/tCO,
stored via CCUS and $20/tCO, stored via CCS
— Since increased to $35/tCO, stored via CCUS and $50/tCO, stored via CCS

Hydrocarbon gas injection also increasingly being used



CCUS Process N
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CO2 return
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Oil combined Oil sales
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(Reservoir)

CCUS Process Schematic (University of North Dakota EERC, 2021)
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CCUS Practicality and Design N

DESIGN ILLUSTRATED DESIGN
1 |
U.S. EOR Production |
Nitrogen injection i '
700 N ] i ;
. - I 009090
3 i i
— 600 HC gas injection | :
e 1 1
$ 400 | i
= . :
[ =
2 o] IR >
S 200 ! ;
E=]
g . Thermal - EEEN |
1 1
1 1
0 | Start Stop | Start End
1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 | Flood Flood) Chase Project
Year ! Time
U.S. EOR Production by year Showing an co,
. . . Water
Increase in CO, Injection (Koottungal, 2012) Gas

CO, Flood and Injection Designs Schematic (Jarrell et al., 2002)

Tapered Water Alternating Gas or TWAG is the most common technique where the
water acts as a “slug” pushing the hydrocarbons through the reservoir to production
CO, has ~60% success factor in remaining stored
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CCUS- Where Are We Today?
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Graph from (Liu, et al., 2017) Showing CC(U)S Projects by Projections of CO, Sequestration by Method Modified (Serdoner, 2019)
Country

. Most of the CCUS projects are in the United States and most of those are EOR
«  To put the graph on the right in perspective, the world released ~33 gigatons of
CO,in 2019
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CCUS Projects and Operators

Region Projects Operators Updated U.S. CO, EOR Survey (EOY 2019)
Apache, Chevron, ConocoPhillips, Fasken, Four Comers Petroleum, Region Enhanced Recovery* CO; Supply
Permian (TX, NM) 80 George R. Brown, Great Westemn Drilling, KinderMorgan, Oxy, OrlaPetco, No. Projects (MB/D) (MMcf/D)
Remnant, Sabinal, Tabula Rasa, XTO

: ) Permian Basin (W TX, NM) 80 2044 1,830

Gulf Coast (MS, LA, TX 25 Denbury, Hillcorp, Tellus, TMR Exploration ORI ey e | s 1 R e
bl ) _ bl s _ Guf Coast (MS, LA ETX) | 25 | 433 600
Rockies (WY, UT, MT, CO) 7 Amplify Energy, Chevron, Denbury, Devon, EIk Petroleum, Fleur De Lis Rockies (CO, WY, MT. UT) ‘ 17 “ 388 445
Mid Confinent (OK, KS) 10 Daylight Petroleum, Maverick Energy, Perdure Petroleum, PetroSantander Mid Continent (OK) , 10 13 135
Mid West (MI) 10 Core Energy Mid West (MI) 10 14 20

Total 142 Total \ 142 2993 3,030

Table of CCUS Projects by Region and Operator (CCUS)

Table of CCUS Projects by Enhanced Recovery and CO, Supply

ccus
The Status of U.S. CO, EOR (EOY 2019) (ccus)
2 Oil Production (EQY 2019)
Dakots Coud CO,EOR Projects 142
Ganfication Plent
: Od Producton (MBbld) 20
' "
,.h:?r‘w Ureencore Pamine Andrim Gag Plast €O, Supplies (EOY 2019)
Shate Croek — o,
LaBarge Gas Plant Number of Sources 18
o Netwal 5
Sheep Mountan o industral 13
Vebino Coffeyvise Fertizes Plant
o ~ CO, Supply (Bctid) 30
Bravo Domme o - e o Natwal 20
* Industnal 10
Centuy PCS Ntrogen Plant 22 . VR M
Gan Plant AR ‘_ S @ Ve OO, Surce
Val Verde Gae OrmR e oW Wdusieal 0O, Scurce
Planss Ar Irodects 00, Pgetrn
A e N | 0, Propesed Ppekee

Table of CCUS Projects by Region (CCUS)

« As of 2019, 27 operators engaging in CCUS in the United States
*+ CCUS producing ~300k BOEPD
« Chevron operates in the Redtail/East Pony Field, and is engaged in CCUS projects in other areas:3




Flow Units of Razor Core Over Niobrara A & BB

Cumulative Flow Capacity
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Flow Unit 1 generally defines the payzone of the Niobrara B and A
Flow Unit 2 defines the more limited hydrocarbon zone of the upper Niobrara A
Flow Unit 3 defines just above the Niobrara A low permeability to porosity interval

-Could be promising for CO, storage by providing a barrier helping prevent escape
Flow Unit 4, just 2 data points, is the Sharon Springs above the hot shale marker
As expected, the NMR curve is highly correlated with permeability lab measurements and
also offers a comparison between the overlying Sharon Springs formation and marls in
between the Niobrara Intervals
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6 Niobrara A
Core Plugs

5 Niobrara B

Core Plugs

11 1.5” diameter, 2”
chloroform, toluene,
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Core Plugs for Experiment

Sample #

Depth

Formation

1

5,563.25

Niobrara A

5,569.25

Niobrara A

5,569.50

Niobrara A

5,569.75

Niobrara A

5,570.00

Niobrara A

5,570.50

Niobrara A

5,664.75

Niobrara B

5,665.75

Niobrara B

O (00 (N (| |W|N

5,670.00

Niobrara B

=
o

5,670.50

Niobrara B

[y
=

5,672.50

Niobrara B

tall core plugs being chemically cleaned with
and methanol for experimentation

Niobrara C core proved too unstable to effectively run lab tests on; focus on
the Niobrara A & B with samples spanning ~8’ over the payzone
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Methodology of Lab Work N

* Core Measurement System (CMS 300) to measure porosity, permeability, and pore
volume at different confining stresses

CMS-300

Computer

Core Laboratories CMS-300 unsteady-state permeameter/porosimeter
(McPhee et al. 2015)
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Methodology of Lab Work N

* Use the Beckman ultra-fast centrifuge (ACES-200) to surround and oil saturated
core plug with another type of fluid (such as CO, or methane) to displace the fluid

inside the core observing changes quantitatively and qualitatively
* A high resolution camera and captures the fluid interaction and data is collected
looking at changes in oil saturation

Schematic of Centrifuge (Uzun 2018)

Core Laboratories ACES-200 ultra-high-
speed centrifuge (Uzun 2018)
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Methodology of Lab Work N

* Chandler’s Formation Response Tester (FRT) Model 6100 allows CO, to be flowed
across the core to observe permeability changes
— Can look at both potential production flow or injection treatments

Chandler’s FRT Model 6100 (Chandler Engineering, 2020)
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Research Moving Forward N

« Run the aforementioned lab tests over the Summer and Fall

« Tiein lab results to log data to make this process repeatable in lieu of
core

« Detailed mapping work in the Redtail field, particularly for gross/net
thickness and porosity to understand the Niobrara A and B

« Understand the porosity and permeability of the Sharon Springs as it’s
important to mitigate CO, leakage
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Case Study: Cased Hole Log Monitorind
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Cased Hole Loggmg Response by Month After CO, Injectlon (Frailey, 2021)

« CCS project by the lllinois Geological Survey as part of the lllinois Basin Decatur project
« Pumped ~1,000 tons/day of CO, over ~3 years for a total of ~1M tons of CO,

* Above the perforated interval, some leakage, but not much

* Increased leakage first ~4 months, but steady after

« Shale break above image where there was no CO, observed from this experiment 22



CCUS Geologic Parameters N

YN

y 4 \
N:::jti::f Lithology (732:22:5 I::‘rg; ?\;ﬂ? L(?::\;’Ilt)y Vi?n(f::s)lty TF:“;;’ ’ Optimum reservoir parameters and weighting factors
Miscible I \ for ranking oil reservoirs suitable for CO, EOR
42 ss. 7-26 16280  1.600-11.950]  30-45 0.6-3.0 82-257 et oarameters Optimum Parametric
2 ss/ls~dol. 10 4-5 5,400-6.400 35 1 170-181 Servoir p g valnes weight
41 dol. 7-5 2-28 4,000-11,100f 2842 0.6-6.0 86-232 —
12 dol/ls. 312 25 4,900-6,700 0.4-18 100-139 API Gravity (*APD) 37 0.24
6 Is. 4-20 570 5 600-6.800 0.4-15 125-135 Remaining oil saturation 60% 0.20
1 dol /trip. chert 135 9 8,000 122 Pressure over MMP (MPa) 1.4 0.19
7 tripolite 18-24 2-5 5.200-7,500 0.4-1.0 101-123 Temperature (°C) 71 0.14
1 inadequate data Net oil thickness (m) 15 0.11
Immiscible — Permeability (mD) 300 0.07
8 ss. 17-30 30-1,000 1,500-8,500 11-35 0.6-45 99-198 Reservoir dip 20 0.03
1 dol. 17 175 1.400 30 6 82 Porosity 20% 0.02
Table Showing EOR Projects Broken into Lithology, Porosity, Chart Weighing the Various Parameters for
Permeability, etc. (Koottungal, 2012) EOR (Gozalpour, Ren, & Tohidi, 2005)

* All types of reservoirs (siliclastic, carbonate, etc.) are suitable for EOR

* Most of the applications of EOR have been with medium to light gravity oils

 Asshown, the API of oil, OIP, pressure and temperature matter more than other
geologic parameters though permeability is important and imperative

* Miscible (where CO, mixes with oil) is preferred as that better facilitates production
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CCUS Process a)

Images from a Video Explaining Part
of the CCUS Process (Total, 2018)
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to recover the carbon only

Finally, the mixture is heated to recover just the
carbon where it is cooled and used for various
purposes including to produce more hydrocarbons
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Monitoring
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