High Resolution reservoir Characterization of the Lewis Shale. Greater Green River Basin

Carolina Mayorga

Fall 2020

lcmayorga@mymail.mines.edu

- Introduction
- Objectives
- Core facies and thin section analyses
- XRF and XRD profiles
- Correlations
- Conclusions

Introduction

introduction

Paleomap from Colorado Plateau Geosystems

Introduction

5

Introduction

Figure 5

Source of hydrocarbons

Asquith Marker Structural Map

Asquith Marker Isopach Map

Source of hydrocarbons

Kerogen Type

Objectives

- Perform a high-resolution reservoir characterization of the Lewis Shale in the Sweetwater and Carbon County.
- Define depositional environments of the cores obtained within the basin.
- Evaluate the internal characteristics of the different reservoirs and determine reservoir quality.

Data Available

- Four cores located on the northern part of the basin. Close to the town of Wamsutter.
 One located close to the Wamsutter arch
- Analyses include:
 - Log Data
 - XRD
 - XRF
 - TOC
 - Rock-Eval data
 - Vitrinite Reflectance
 - Porosity and Permeability data

Cores Location

Some of the wells close to the cored areas had produced about 20000 BBLS and 187000 MCF Oil gravity is between 50-60 API

Chain Lakes 5-5-4

"Massive" Sandstone (Cryptobioturbated)

Pyrite

14

Finely laminated bioturbated silty fine sandstone

- Pyrite

Depositional Environment: Channel Fill

Finely laminated bioturbated sandy siltstone

- 11620.7
- Plagioclase (Albite)
- Vclay

Quartz

- K feldspar (Orthoclase)
- Pyrite

Resistivity (ohm)

Depositional Environment

FIGURE 4.74 (a) Borehole-image log illustrating an erosional surface lined with shale clasts, as calibrated to a core in the same interval. (b) Borehole-image log illustrating a contorted (slumped) bedset; the slumped beds are more easily recognized on the borehole-image log than in the core! This example is from the Cretaceous Lewis Shale, Wyoming. *Images and photographs provided by S. Goolsby*.

Channel or Slump deposit

Example

Depositional Environment: 18 Channel fill

Correlation Chain Lakes-5-4-4 Area

+ 14 13

Monument Lake 5-15-1

Heavily Bioturbated Sandy Siltstone

- K feldspar (Orthoclase)
- Pyrite

Bioturbated Sandy Siltstone

- Quartz
- Plagioclase (Albite)
- Vclay
- K feldspar (Orthoclase)
- Pyrite

Slightly Bioturbated Sandy Siltstone

- Quartz
- Plagioclase (Albite)
- Vclay
- K feldspar (Orthoclase)
- Pyrite

Source Rock

DEPTH	•	FORMATION	"T	тос	Tmax T	-	HI 🔽	S1 🔻	S2	-
11399	9.5	Lewis		0.7	5					
11401	5	Lewis		0.7251	7	463	85.49719	0.21	\checkmark	0.62
11430).5	Lewis		0.8	3					
114	39	Lewis		0.6921	4	461	98.24602	0.23	\checkmark	0.68
11448.	75	Lewis		0.5130	1	465	95.51471	. 0.17	*	0.49
11460).5	Lewis		0.	3					
11468	8.8	Lewis		0.7256	8	461	78.54702	0.18	Į	0.57
11490.	45	Lewis		0.6	9					
11498	8.5	Lewis		0.6782	1	464	78.14689	0.17	Į	0.53
11508.	75	Lewis		0.5660	4	459	44.16649	0.09	×	0.25
11508.	75	Lewis		0.5	7					
11520).3	Lewis		0.6	4					
11550).4	Lewis		0.9	1					
11558	3.4	Lewis		1.096	4	468	95.76797	0.38	V	1.05

Wet gas window

Depth (ft): 11401.50	
Min Value	1.03
Max Value	1.37
Mean Value	1.25
# of Measurements	17
Strd Deviation	0.10
Bit	Ke

The above values were measured on bitumen. The VRo-eq is estimated to be 1.17% using the Jacob formula (Rvit = Rbit x 0.618 + 0.4).

- Solid bitumen can be Allochthonous or Autochthonous. It forms when liquid hydrocarbons are present and crack onto gas and condensate with increasing depth and temperature.
- Defining if it is formed in situ can be based on thin section and SEM analyses and how it fills cavities.
- According to the lab these solid bitumen particles seem to formed after migrated hydrocarbons cracked into gas and condensate 24

XRF Marine proxies

Low resolution XRF analyses

It seems there is a small event of euxinia shown by the increase of Mo and Ni, but in general it is very difficult to identify clear changes. Mix of anoxic environments and continental input

Detrital Source

Correlation ML area

Ε

W

Chain Lakes 5-15-1

Ν

_

S

B

Sheet sands, channel fill, flood plain?

XRF data

Interval Correlation

Echo Springs

Mineralogy

TOC data

Tmax data and low TOC showed low potential for hydrocarbon generation

Formation	Depth	TOC	
Lewis C2 SS	7597.15	0.95	Shale
Lewis C2 SS	7629.15	0.52	Base of upper sand transition to shale
Lewis C2 SS	7629.35	0.41	Twined for corelab
Lewis C2 SS	7642.15	0.77	Top of second transitioning into sand

Correlation core area

Future Work

- Maps of the individual intervals
- XRF data from the remaining wells
- Map the shelf edge to help identify depositional environment
- Further analyze elemental composition and build mineralogical models
- Analyze thin sections and perform SEM analyses on silty intervals
- Petrophysical model of each of the intervals

Conclusions

- The core descriptions and analyses available show the complexity and heterogeneity of these reservoirs
- Some natural migration pathways such as injectites and burrows were identified
- High quartz content will facilitate hydraulic fracturing
- Although these intervals have some organic matter, the presence of burrows and sedimentary structures such as ripples evidence an oxygenated environment where very low preservation of organic matter took place. Thus, these intervals are not source of hydrocarbons

MUDTOC Consortium Sponsors

Fall 2020

Supporting Companies

Mike Johnson & Associates

THE ENERGY OF

