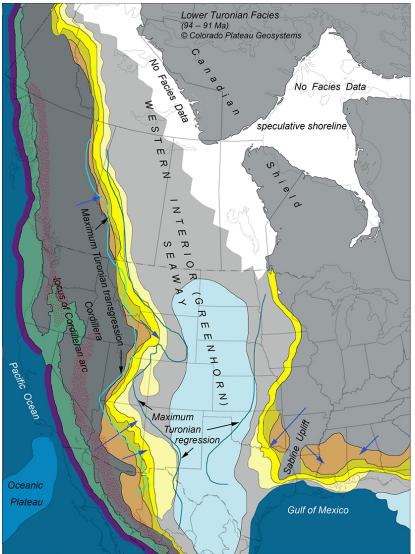
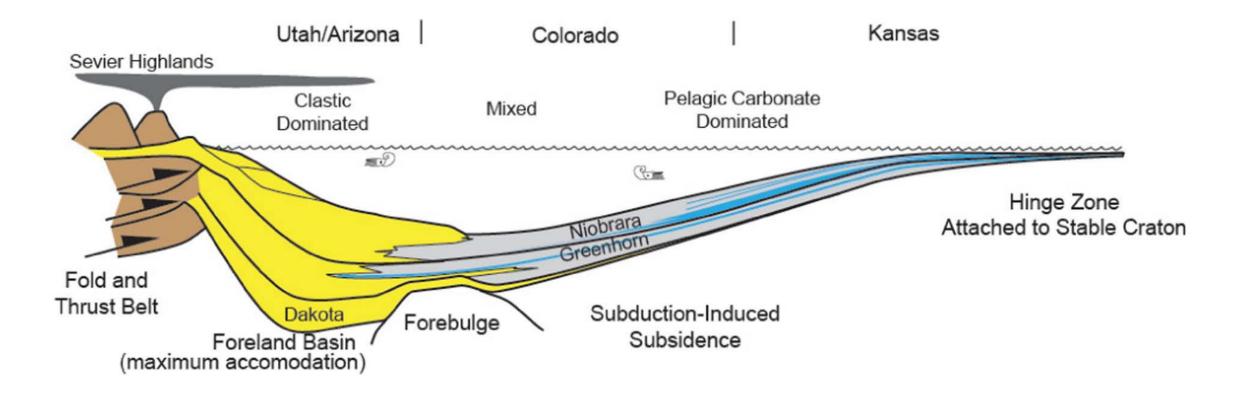
Distribution of anoxia and water mass circulation during the Cretaceous Ocean Anoxic Event 2 (Cenomanian-Turonian); a global carbon cycle perturbation in the Western Interior Seaway

> Chris Matson PhD Student matson@mymail.mines.edu


Outline

- Brief paleogeography of the WIS/WIB during the Cenomanian-Turonian Boundary
- OAE2 evidence in the WIS/WIB during the Greenhorn Cyclothem
 - Sedimentological
 - Paleontological
 - Elemental, isotopic
 - Biomarker analyses
- Mixed signals
- Proposed approach of study

Paleogeography of NA


Cenomanian-Turonian Boundary (ca. ~94 Ma)

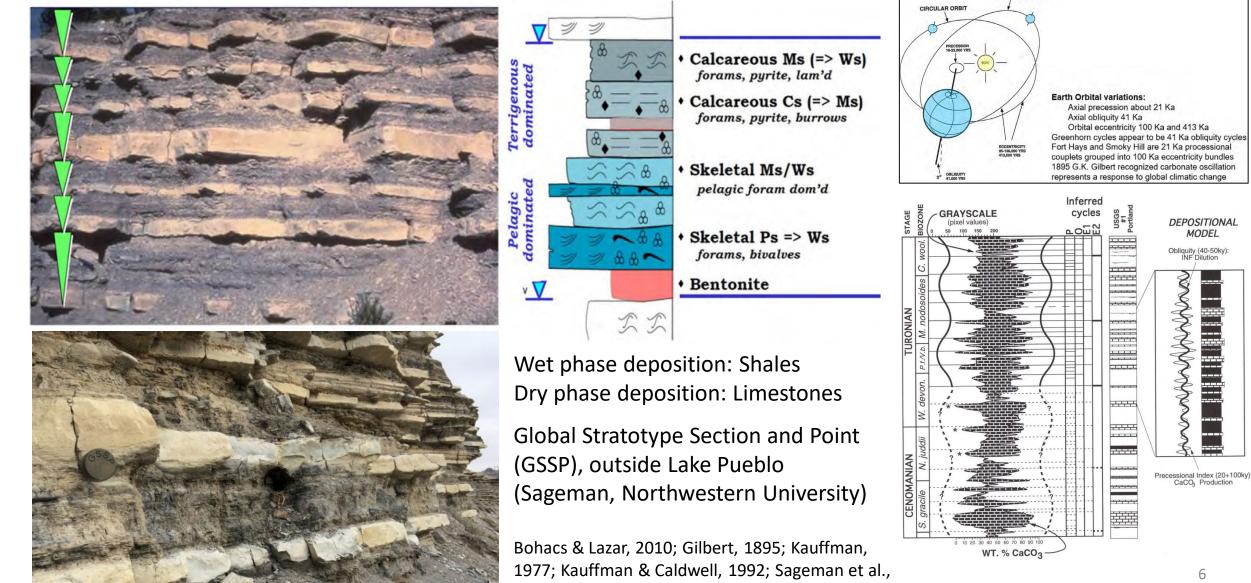
© DeepTimeMaps R. Blakey

Idealized cross section (Niobrara time)

Lowery et al., 2018 modified from Kauffman, 1984

Eustacy in the WIS during OAE2

Age (Ma)	Series	Stage	Ammonite Zones (Kirkland, 1991; Kauffinan et al., 1993; Tibert et al., 2003)	Big Water, UT (This Study)	Lohali Point, AZ (Kirkland, 1991)		Mesa Verde, CO (Kirkland et al., 1995; Leckie et al., 1997)		Pueblo, CO (Leckie et al., 1998)		WIS 3rd-Order & 4th-Order Cycles of Relative Sea Level (From Leithold, 1994)	
93.6-			Mammites nodosoides					estone			High Cycle 3 Low Ber	n. D
93.7-		Turonian	Watinoceras devonense					Creek Limestone				D -
93.8-					2	-	e	Bridge	rmation	imestone	Cycle 2	n. C
93.9- 94.0-	Upper Cretaceous		Neocardioceras juddii	Tropic Shale	Mancos Shale	Lower Shale	Mancos Shale		Greenhorn Formation	Bridge Creek Limestone	Over Ber	
94.1-		Cenomanian						Graneros Shale				n. B
94.2-		Cenor	Sciponoceras gracile					Graner			Cycle 1	n A
94.3-			Metoicoceras mosbyense	Dakota Formation					Hart Sh		ber	-Ben. A


Parker, 2016 (MSc Thesis); Leithold, 1994

Bridge Creek LS at the CTB

ELLIPTICAL ORBIT

Rhythmically interbedded LS & Shales

1998; Dodsworth & Eldrett, 2018...

CaCO, Production

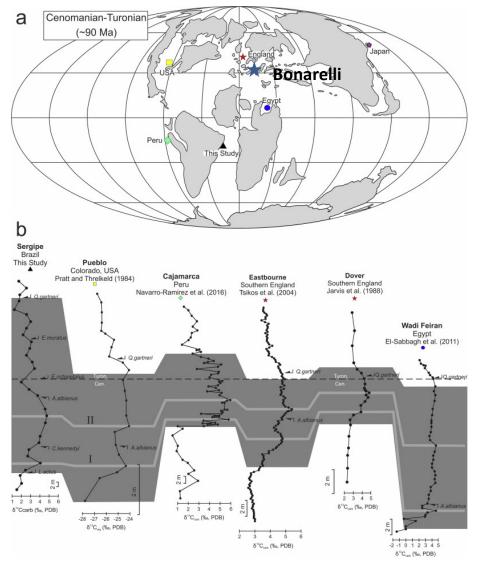
MODEL

......

Z

SEE

Cenomanian-Turonian Boundary and OAE2

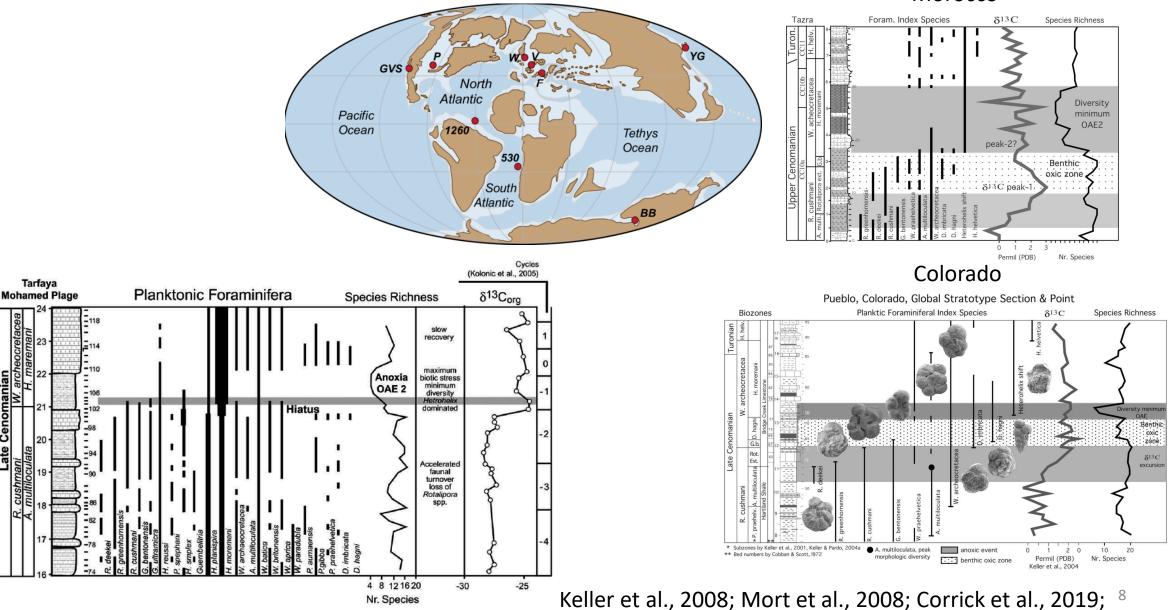


Marked by significant positive shift in $\delta^{13}\text{C}$

- Largest disturbance of global C cycle in the last 110 Ma
- Significant increase in C burial
- Widespread deposition of carbon-rich sediments
- Extensive organic matter preservation at sedimentwater interface

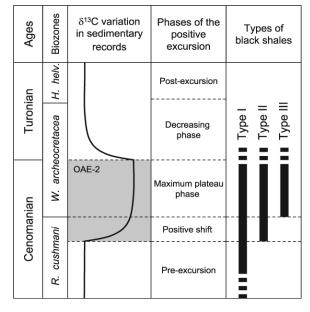
Characterized by:

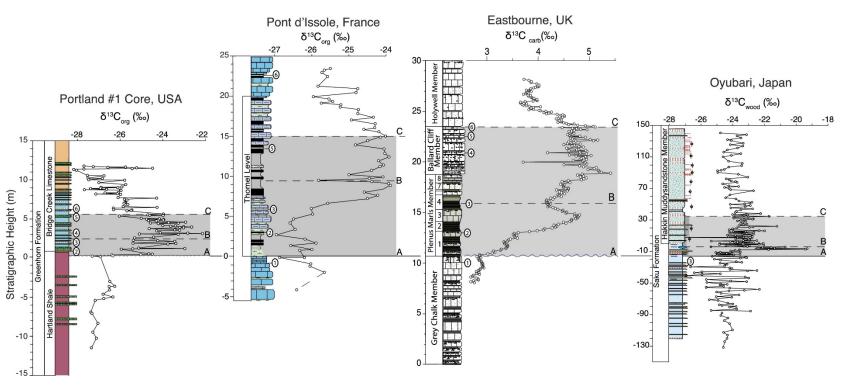
- Black, interbedded shales* and bottom water anoxia (OAE2)*
- "Spikes" of marine productivity followed by stasis and likely eutrophication
- Turnover/extinction of marine invertebrate (53% of all marine species) & foraminifera heterohelix "shift"
- Increased atmospheric CO₂, SO₂, H₂S, and halogens
- Warm global temperatures and high oceans with periods of oxygen deficient or stratified water columns



Valle et al., 2019 *Notable exceptions

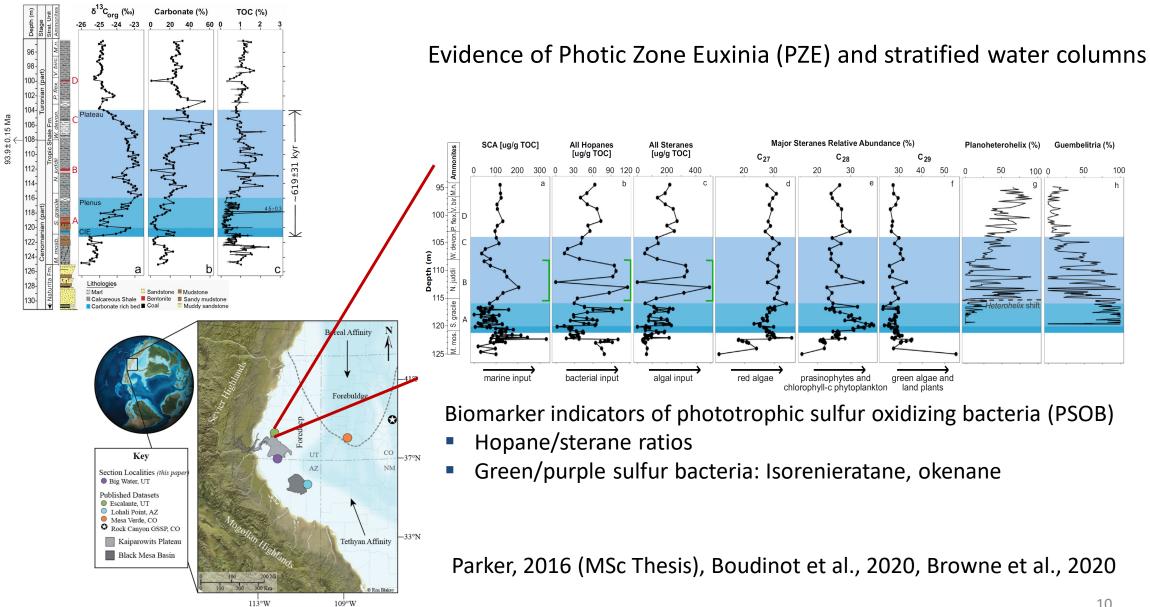
OAE2 Extinction and Turnover

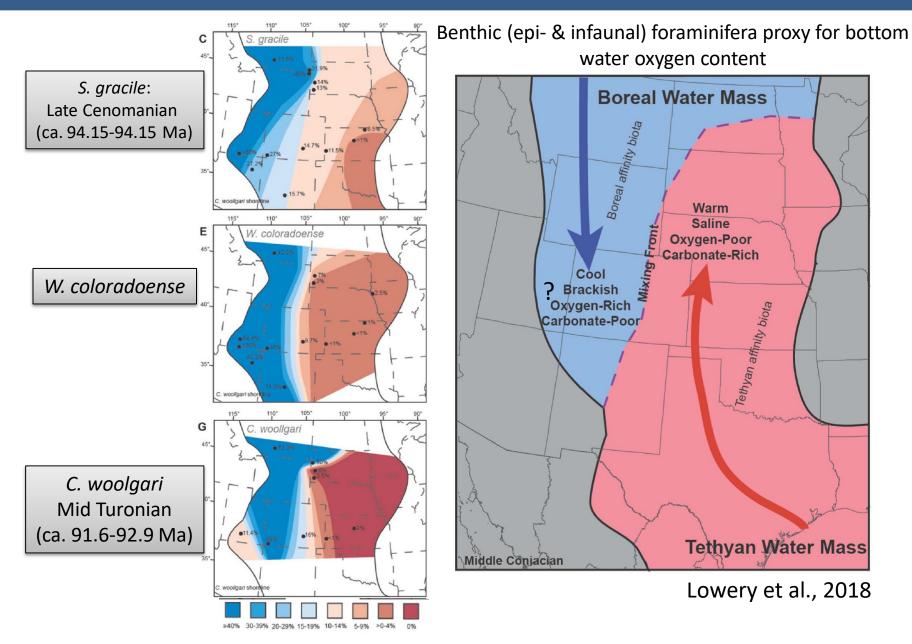

ate Cenom


Carbon Isotope Signal OAE2

OAE2 = 619 \pm 39 kyr (UT) & 820 \pm 25 kyr (Tibet) Large perturbation in C but also O, N, Cr, Sc, Os, Re, Li, Cu, Co...

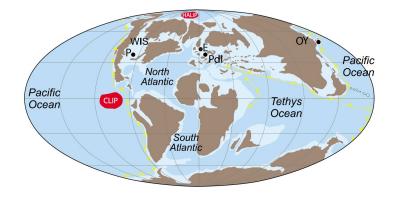
Idealized OAE2 C isotope excursion



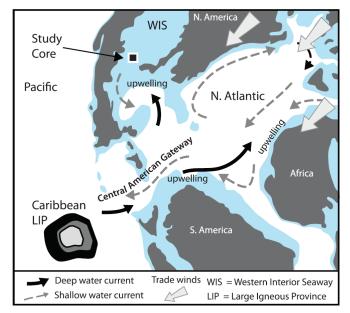

Positive C excursion recorded in inorganic and organic sources

Keller et al., 2008; Du Vivier et al., 2015; Jones et al., 2019; Li et al., 2017

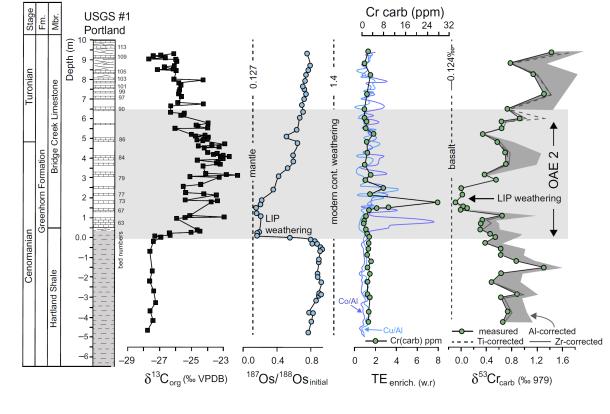
Proximal, neritic Tropic Shale during OAE2



Mixed signals and mixing currents



11


Large Igneous Provinces (LIPs) and OAE2

Os and Cr fractionation pathways may indicate marine vs. terrestrial origin

HALIP: High Artic Large Igneous Province CLIP: Caribbean Large Igneous Province

Du Vivier et al., 2015 Holmden et al., 2016

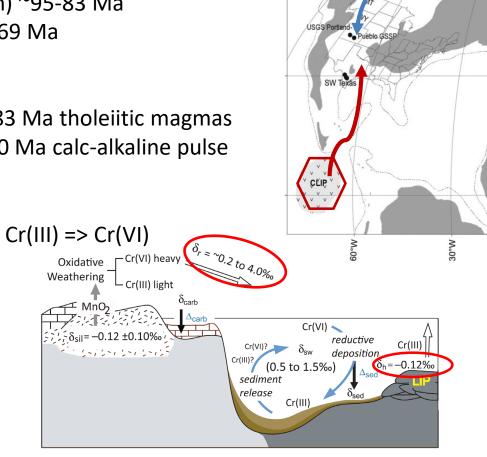
LIP-influenced geochemical cycling & isotopic fractionation

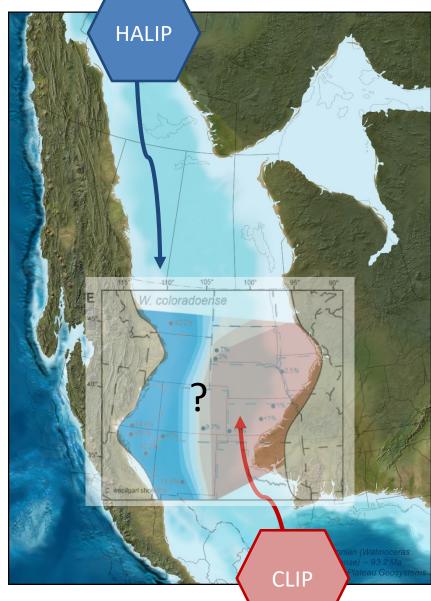
60°N

30°N

0°N

Tarfaya




Long-lived magmatic events with discrete pulses CLIP:

- 1st (Main) ~95-83 Ma
- 2nd ~81-69 Ma

HALIP:

- 1st 130-83 Ma tholeiitic magmas
- 2nd 93-60 Ma calc-alkaline pulse

Schröder-Adams et al., 2019; Holmden et al., 2016; Lowery et al., 2018; Dodsworth & Eldrett, 2018

Proposed Study

- LECO TOC & Pyrolysis
- Whole Oil-extract GC
 - Biomarker analyses
- C-Isotope (δ¹³ organic and inorganic where necessary)
- Bulk elemental, trace and majors
- Fe-speciation (Fe_{HR}/Fe_T)
- Isotopic Cr (δ⁵³), Os (^{187/188}), and possibly Re & Li (ppb) trace element ratios
- Benthic foraminifera proxies where available

Phase I

Redtail Field Bridge Creek LS

- Multi-proxy redox study attempt to differentiate oxygen state of water column, bottom water, sedwater interface before, during, and after OAE2
- Detect a submarine LIP weathering water provenance signature vs. continental weathering

Phase II

- W-E and N-S time-correlative variability: Mancos (Mancobrara), Tropic Shale
- Water mass circulation, restriction, and mixing in the WIS
- Relationship between water provenance and anoxia
- Assess degree of continental weathering to nutrient cycling during OAE 2 related to LIP emplacement

References

Arthur, M. A., et al. (1988). "Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary." Nature (London) 335(6192):714-717.

Dodsworth, P. and J. S. Eldrett (2019). "A dinoflagellate cyst zonation of the Cenomanian and Turonian (Upper Cretaceous) in the Western Interior, United States." Palynology 43(4): 701-723.

Boudinot, F. G., et al. (2020). "Neritic ecosystem response to Oceanic Anoxic Event 2 in the Cretaceous Western Interior Seaway, USA." Palaeogeography, palaeoclimatology, palaeoecology 546: 109673.

Browne, T. N., et al. (2020). "Redox and paleoenvironmental conditions of the Devonian-Carboniferous Sappington Formation, southwestern Montana, and comparison to the Bakken Formation, Williston Basin." Palaeogeography, palaeoclimatology, palaeoecology 560: 110025.

Corrick, A.J., Selby, D., McKirdy, D.M., Hall, P.A., Gong, S., Trefry, C. and Ross, A.S., (2019). Remotely constraining the temporal evolution of offshore oil systems. Scientific reports, 9(1), pp.1-10.

Da Gama, R. O. B. P., et al. (2014). "Integrated paleoenvironmental analysis of the Niobrara Formation: Cretaceous Western Interior Seaway, northern Colorado." Palaeogeography, palaeoclimatology, palaeoecology 413: 66-80.

Du Vivier, A., et al. (2015). "Pacific 187Os/188Os isotope chemistry and U–Pb geochronology: Synchronicity of global Os isotope change across OAE 2." Earth and Planetary Science Letters 428: 204-216.

Holmden, C., et al. (2016). "Response of the Cr isotope proxy to Cretaceous Ocean Anoxic Event 2 in a pelagic carbonate succession from the Western Interior Seaway." Geochimica et cosmochimica acta 186: 277-295.

Jones, M. M., et al. (2020). "Regional chronostratigraphic synthesis of the Cenomanian-Turonian Oceanic Anoxic Event 2 (OAE2) interval, Western Interior Basin (USA): New Re-Os chemostratigraphy and 40Ar/39Ar geochronology." GSA Bulletin.

Kauffman, E.G., (1984). Paleobiogeography and evolutionary response dynamic in the Cretaceous Western Interior Seaway of North America. In Jurassic-Cretaceous biochronology and paleogeography of North America (Vol. 27, pp. 273-306). Geological Association of Canada Special Paper.

Keller, G., et al. (2008). "Oceanic events and biotic effects of the Cenomanian-Turonian anoxic event, Tarfaya Basin, Morocco." Cretaceous research 29(5-6): 976-994.

Li, Y.-X., et al. (2017). "Astronomical constraints on global carbon-cycle perturbation during Oceanic Anoxic Event 2 (OAE2)." Earth and Planetary Science Letters 462: 35-46.

Lowery, C. M., et al. (2017). "Micropaleontological evidence for redox changes in the OAE3 interval of the US Western Interior: Global vs. local processes." Cretaceous research 69: 34-48. Ma, C., et al. (2017). "Theory of chaotic orbital variations confirmed by Cretaceous geological evidence." Nature (London) 542(7642): 468-470.

Mills, J. V., et al. (2017). "Massive volcanism, evaporite deposition, and the chemical evolution of the Early Cretaceous ocean." Geology (Boulder) 45(5): 475-478.

Mort, H.P., Adatte, T., Keller, G., Bartels, D., Föllmi, K.B., Steinmann, P., Berner, Z. and Chellai, E.H., 2008. Organic carbon deposition and phosphorus accumulation during Oceanic Anoxic Event 2 in Tarfaya, Morocco. Cretaceous Research, 29(5-6), pp.1008-1023.

Nakamura, K. (2015). Chemostratigraphy of the Late Cretaceous Western Interior (Greenhorn, Carlile, and Niobrara formations), Denver basin, CO, U.S.A.

Parker, A. L. (2016). "Oceanic Anoxia Event 2 (~ 94 Ma) in the US Western Interior Sea: High resolution foraminiferal record of the development of anoxia in a shallow epicontinental sea."

Schröder-Adams, C., et al. (2019). "Influence of the High Arctic Igneous Province on the Cenomanian/Turonian boundary interval, Sverdrup Basin, High Canadian Arctic." Earth and Planetary Science Letters 511: 76-88.

MUDTOC Consortium Sponsors

Fall 2020

