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* Brief geologic history of the Niobrara

* Overview of CCUS; where the technology stands today

e Data collection & plan going forward

* Different lab techniques to look at the feasibility of CCUS



Brief Niobrara Background
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Increasing TOC% to the east to a certain extent

though we now know TOC% extending into Kansas
and Nebraska is not as high as once thought
Deepest part of WIC along the Western Margin
Cooler, nutrient rich, carbonate poor arctic water
from the north mixed with warmer, oxygen poor,

carbonate rich chalk-rich water from the Gulf of
Mexico

Boreal

Schematic of the Western Interior Cretaceous Basin during the
Niobrara time modified from (Longman, Luneau, & Landon, 1998)

Schematic of the Western Interior Cretaceous Basin water mixture

during the Niobrara time (Lowery, et al. 2017) 3



Brief Niobrara Background O
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Petrophysical Properties Overview
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Type log from East Pony/Redtail field area (Sonnenberg, Keys to
Niobrara and Codell Production, East Pony/Redtail Area, Denver Basin,
Colorado, 2017)

* Most favorable petrophysical properties are over the Niobrara A and B with
increased resistivity and porosity



CCUS Overview O

* CCUS is the is the process to capture CO, from gas, utilize that
carbon in some way, and find a safe, permanent storage option

* (CO,can and has been used successfully by the oil and gas industry
for enhanced recovery techniques, most notably, Enhanced Oil
Recovery (EOR)

— Up to 80% of oil can be left in place after primary and secondary recovery
methods
* Four major types of enhanced recovery are:
— Enhanced Oil Recovery (EOR)
— Enhanced Coalbed Methane Recovery (ECBM)
— Enhanced Gas Recovery (EGR)
— Enhanced Shale Gas Recovery (ESGR)



CCUS Process O

Images from a Video Explaining Part
of the CCUS Process (Total, 2018)
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Finally, the mixture is heated to recover just the
carbon where it is cooled and used for various
purposes including to produce more hydrocarbons




CCUS- Where Are We Today?
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. Most of the CCUS projects are in the United States and most of those are EOR
«  To put the graph on the right in perspective, the world released ~33 gigatons of
CO,in 2019



CCUS Geologic Parameters O
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All types of reservoirs (siliciclastic, carbonate, etc.) are suitable for EOR

Most of the applications of EOR have been with medium to light gravity oils

As shown, the API of oil, OIP, pressure and temperature matter more than other geologic
parameters though permeability is important and imperative

Miscible (where CO, mixes with oil) is preferred as that better facilitates production



CCUS Practicality and Design O
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CO, Flood and Injection Designs Schematic (Jarrell et al., 2002)

Both hydrocarbon gas injection and CO, injection have increased in recent years for EOR
The viscosity of oil in EOR projects ranged from .4 to 6 cp where CO, has a viscosity of .05
to .08 cp

Tapered Water Alternating Gas or TWAG is the most common technigue where the water
acts as a “slug” pushing the hydrocarbons through the reservoir to production

CO, has ~60% success factor in remaining stored
10



Data Collection & Analysis O

Pick a well that has sufficient core data over the Niobrara A, B, C, and the Codell
(at a minimum)

Use reservoir properties (including permeability, porosity, thickness, produced
fluids, and lithology) to observe changes in CO, or Methane injection

Obtain well production and flow-back data

Look at PVT analysis

Work with petrophysical data (including NMR logs) to correlate log properties to
favorable CCUS environments with the idea to make this work scalable and an
analog for other basins

Look at around a 1 township area to start around the well of choice with sufficient
core data

11



Methodology of Lab Work

Obtain 1.5” core plugs and use Core Measurement System (CMS 300) to measure
porosity, permeability, and pore volume at different confining stresses

Pressure transducer
CMS-300

Helium/nitrogen tank
(manifold)

Open valve for

pressure drawdown
Hydrostatic

confining
pressure

Core samples

Computer

Carousel

Gas escapes
through core to
atmosphere

Pressure, psig

Core Laboratories CMS-300 unsteady-state permeameter/porosimeter
(McPhee et al. 2015)
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Methodology of Lab Work O

* Use the Beckman ultra-fast centrifuge (ACES-200) to surround and oil saturated
core plug with another type of fluid (such as CO, or methane) to displace the fluid

inside the core observing changes quantitatively and qualitatively
* A high resolution camera and captures the fluid interaction and data is collected
looking at changes in oil saturation (good proxy for miscibility)

Core Laboratories ACES-200 ultra-high-speed . ) -
centrifuge (Uzun 2018) Schematic of Centrifuge (Uzun 2018)

13



Methodology of Lab Work O

* Chandler’s Formation Response Tester (FRT) Model 6100 allows CO, to be flowed
across the core to observe permeability changes

— Can look at both potential production flow or injection treatments of various fluids including carbon
dioxide, methane, or hydrocarbons

Chandler’s FRT Model 6100 (Chandler Engineering, 2020)

14
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