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A B S T R A C T

The geometry of the subsurface hydraulic fracture is complicated which deviates from the conventional single
pan shape. It can be in multi-wing shape by the formation heterogeneity and/or 3D fracture networks caused by
the pre-exising natural fractures. Effective and flexible handling of hydraulic fractures is crucial for the reservoir
simulation of unconventional reservoirs. In this paper, we discuss the robust implementations of the 3D-EDFM
algorithm, which is applicable to numerical simulation of fluid flow in unconventional reservoirs with com-
plicated, arbitrary 3D hydraulic fracture networks.

Key features of this 3D-EDFM methodology consist of vertex-based geometric calculations, and polygons with
three to six vertices from box-plane intersections can be captured with this algorithm. The 3D-EDFM has been
implemented in reservoir simulators via the integral finite difference (IFD) method. Its numerical scheme and
implementation are verified by comparisons with analytical solutions and other established numerical solutions.
This method not only provides an effective approach of handling realistic hydraulic fractures, but also sig-
nificantly improves computational efficiency, while keeping sufficient accuracy. For some extreme cases that the
transient state flow lasts long (i.e., large-size matrix blocks with extremely low permeability), our numerical
analysis indicates only one level of local grid refinement (LGR) is needed to retain the required accuracy. We also
provide an analytical-solution based method to optimize this LGR grid size if needed.

This enhanced method is able to handle multiple 3D hydraulic fractures with arbitrary strikes and dip angles,
shapes, curvatures, conductivities, and connections. Therefore, the 3D-EDFM provides great flexibility to handle
hydraulic-fracture input data, interpreted from geomechanics modelings as well as microseismic data, for re-
servoir simulation. We present illustrative application examples for three unconventional reservoir engineering
problems of interest in practice: (1) a single fracture with a complicated shape due to multi-layer geological
features, (2) multiple isolated fractures with curvatures due to the stress shadow effect, and (3) multiple frac-
tures with complicated orientations caused by natural fracture interactions. The 3D-EDFM is demonstrated to
capture all the key flow patterns dominated by the discrete fractures in these three cases.

1. Introduction

Numerical simulation is a widely practiced and accepted technique
in reservoir engineering to study flow and transport processes in sub-
surface systems. It helps reservoir development and management by
forecasting fluid production, optimizing well design and completion,
identifying the needs of artificial lift at present or in future, and eval-
uating options of improved or enhanced oil recovery approaches. For
unconventional reservoirs, however, there are some limitations on ap-
plications of reservoir simulation technology, and current under-
standings and reservoir simulation technologies used in this area are far
behind industry needs. One of the major limitations is effective and

flexible handling of hydraulic fractures, which are well-known to be
crucial to hydrocarbon production from unconventional reservoirs,
because they provide a high conductivity pathway for fluid flow from
the tight matrix to producing wells. These hydraulic fractures will most
likely deviate from conventional bi-wing, ideal planar patterns and
have a more complex geometry, due to formation heterogeneities, stress
shadow effect, and interactions with natural fractures.

Several methods have been developed and applied to quantify flow
and transport in the porous medium with fractures. The first metho-
dology is to represent the rock as dual continua (Warren and Root,
1963; Kazemi, 1969; Duguid and Lee, 1977; Pruess, 1985; Wu and
Pruess, 1988). The dual-continuum approach is applicable to a
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naturally fractured reservoir with a denser fracture network or under
the condition that fractures can be represented as a continuum. It in-
cludes one rock matrix continuum (high storage capacity and low
conductivity) and another overlapping fracture continuum (negligible
storage capacity and high conductivity). Interactions between these two
continua are accounted by fluid flow assumed at quasi-steady state
under pressure differences. The double-porosity model assumes global
flow only occurs in the fracture continuum, and the matrix continuum
supports fractures locally. The dual permeability model, which is a
more general version, accounts both fracture and matrix global con-
nections.

Only two parameters (one governing inter-porosity flow and the
other relating to matrix storage capacity) are additionally introduced in
this dual-continuum method for fractures. These two parameters are
typically inferred from the build-up well test by assuming fractures
uniformly distributed in the reservoir scale (Warren and Root, 1963;
Neuman, 2005). Hence this approach will inevitably miss some local
dominant, discrete features, e.g., hydraulic fractures in unconventional
reservoirs. The second approach (discrete fracture method, DFM for
short), which can capture these local dominant features, is thus widely
used to handle hydraulic fractures.

The DFM is to depict a reservoir system as a network of discrete
fractures together with the permeable or impermeable matrix. This
method directly makes use of fracture geometry data by considering
fracture locations, orientations, shapes, apertures, and sizes.
Numerically, fractures are explicitly modeled using specifically de-
signed grid systems. The first gridding approach refines structured grids
intersected by fractures at the scale of fracture widths. Fractures are
then represented by a set of small-size and high-permeability grids
(Slough et al., 1999; Sadrpanah et al., 2006). This local grid refinement
(LGR) method can reduce numerical errors to an acceptable level.
However, the substantial differences or highly contrasting respect ratios
between adjacent grids regarding their dimensions can lead to numer-
ical convergence problems. To overcome this problem, an approach of
combining regular size grid and “pseudoized” fracture permeability is
proposed, making the fracture conductivity (the multiplication between
the fracture permeability kf and the fracture aperture Af ) in the si-
mulation identical to the real fracture conductivity (Rubin, 2010; Ding
et al., 2014).

The second DFM approach is based on unstructured grids. The space
domain is gridded by treating fractures as internal boundaries. To
conform the fracture geometries, triangle or PEBI grids are used for 2D
simulations (Karimi-Fard et al., 2004; Sun and Schechter 2014), and 3D
tetrahedral grids (Hui et al., 2007) are used for 3D simulations. Com-
pared with the LGR method, this approach is more flexible to handle
fractures with arbitrary directions. However, constructing such meshes
is quite challenging, especially, in three-dimensional problems con-
sidering multiple connected fractures, because the mesh has to be built

in a way that the grid edges/faces coincide with all fracture surfaces.
The EDFM is another numerical technique of the generalized dis-

crete fracture method. This method is first introduced by Lee et al. (Lee
et al., 2001) to simulate long fractures and further extended by Li and
Lee, (2008) and Moinfar (Moinfar et al., 2014). As its name implies,
fractures are virtually embedded into the nearby matrix grid blocks.
The fracture thickness is only considered in the computation domain for
fracture volume calculations, but not represented in the grid domain,
because fracture thickness is several orders of magnitude smaller than a
typical simulation grid size.

As an analogy, the idea of the EDFM is similar to the well handling
method in traditional reservoir simulation (Peaceman, 1978). This way,
the mesh does not need to be specially processed to track the fracture
path, which greatly reduces the number of grid cells and generate a
Jacobian matrix with a similar sparsity pattern as the traditional re-
servoir simulation. Such features can significantly improve simulation
efficiency. Because localized features are not efficiently resolved by its
mesh refinement, this method cannot avoid introducing numerical
discretization errors in the local approximation space domain. To re-
solve the problem, accuracy evaluation is one of focus points in this
study.

This paper summarizes our recent study of enhancing the EDFM to
model fluid flow in unconventional reservoirs with arbitrary 3D hy-
draulic fractures. In particular, we develop a vertex-based geometric
algorithm to evaluate key parameters in the EDFM - the fracture index.
It is able to handle multiple 3D hydraulic fractures with arbitrary strike
and dip angles, shapes, conductivities, and connections. Its numerical
implementation is verified by comparison with both analytical solutions
and other established numerical solutions. In addition, our analytical
and simulation results conclude the EDFM can provide results with
acceptable accuracy for practical engineering applications. For some
extreme cases that the transient state flow lasts long (large-size matrix
grids with extremely low permeability), only one level of local grid
refinement is needed to guarantee accuracy. We provide an analytical
solution based approach to optimize this grid size, if local grid refining
is needed. To illustrate this new approach, we present several appli-
cation examples of interest to unconventional reservoir simulation. We
demonstrate that the 3D EDFM is capable of handling common pro-
blems in unconventional reservoirs with complicated fractures, caused
by multi-scale heterogeneity, stress shadow effect, and interactions
between hydraulic and natural fractures.

2. Governing equations

In our previous work, we introduced a generalized framework
model to simulate fluid flows in unconventional reservoirs (Wu, 1998;
Wang, 2013; Wu et al., 2014; Wang and Wu, 2015; Cai et al., 2015).
The integral finite difference method (equivalent to the Finite Volume

Nomenclature

Af =Section area of a fracture, L2
a b c D E, , , , =3D plane parameters
d =distance, L
eij =vector from 3D point i to j
FI = fracture index, L
k =absolution permeability, L2
kr =relative permeability
n̂ = the unit normal vector
p =fluid pressure, m/Lt2
P =3D point coordinates
q =volumetric flow rate, L3/t
Qi =volumetric rate in element i; L3/t
S = liquid saturation of -phase

t = time, t
T =single-variable function of t
Vi =volume of element i, L3
V V, ji =coordinates of a 3D point
wf = fracture width, L
x y z, , =3D coordinates
X =single-variable function of x
xf = fracture half-length, L

=weight coefficient
= porosity
= flow potential, m/Lt2

µ =viscosity of -phase, m/Lt
= constant for convention
=mass density of -phase, m/L3
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method) is chosen to discretize governing PDEs in the space domain
(Narasimhan and Witherspoon, 1976; Pruess et al., 1999). Two types of
equations in this method will be briefly discussed in this section, be-
cause both are involved with geometric quantities. The first group is the
discrete equation for mass conservation of multiphase, multi-compo-
nent fluid flow at grid block or node i, which can be written in a general
form (Wu, 1998).
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where is the effective porosity of porous or fractured media; S and
are the saturation and density of fluid ; superscript k serves as an
equation index for various phases with k = 1 (gas), 2 (water), and 3
(oil); superscript n and n+1 denote the previous time level and the
current time level; subscript i is the index of grid block i; N is the total
number of nodes or grid blocks; Δt is time step size; Vi is the node i
volume; ηi contains neighboring nodes (j) of node i; the component
mass “flow” term between node i and j are further explained in Eq. (2);
Q is the sink/source term at node i for phase k.

The second set of equation is the expanded form of the flow term in
the right-hand side of Eq. (1). It represents the mass flux by multiphase
flow or advective processes mainly, which are described by a discrete
version of Darcy's law or various non-Darcy flow models (Wu, 2002).
When Darcy's law applies, the mass flux of fluid phase β along the
connection in discrete mass conservation Eq. (1) is given by
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where kr and µ are the relative permeability and viscosity of fluid ;
Aij is the node i and j common interface area; di is the distance between
the center of block i and the common interface Aij. kij+1/2 is an aver-
aged (such as harmonic-weighted) absolute permeability. j is the
flow potential of fluid in node j.

Three geometric quantities involved in these two sets of equations
are the element volume Vi , the connection area Aij, and the connection
distances d , di j. One attractive feature of the IFD method is that these
geometric quantities are input directly instead of having them gener-
ated during the simulation. Therefore, great flexibility is achieved so
that a computational volume element in any one continuum (fracture or
matrix) can connect with another element in its own or other con-
tinuum. In other words, no specific programming changes are required
in the simulator to distinguish fracture-fracture, matrix-matrix, and
fracture-matrix connections. All these different types of connections are
handled numerically in the same way once their geometric properties
are prepared and defined in the input file.

From this point of view, the IFD (or FV) is general for implementing
various conceptual models of fractured reservoirs, which includes the
classical dual-porosity and dual-permeability model, multiple inter-
acting continua (MINC) model, discrete fracture model (DFM), and
embedded discrete fracture model (EDFM). Therefore, the hybrid

fracture model, which combines DFM, MINC, and a homogeneous
porous medium, can be handled straightforwardly (Pruess, 1985). The
key is obtaining geometric features or properties (volume, distance, and
interface area) based on the model approximations and assumptions.

3. Geometric property calculation

The method of the 3D-EDFM is conceptually similar to 2D cases (Lee
et al., 2001; Li and Lee, 2008; Yan et al., 2016), of which the key is the
appropriate preprocessing of geometrical information. But its practical
implementation is more complicated. As shown in Fig. 1, one full in-
tersection between a box and a 3D plane could lead to a polygon with
3–6 vertices, not to mention if the plane partly penetrates the box,
which makes the geometric calculation more complicated. In this sec-
tion, some key geometry issues are described, aiming towards an ac-
curate and robust implementation for multiple fractures with arbitrary
shapes, directions, conductivities and connections.

3.1. Connection area

Our approach of computing the area of intersection polygons is
based directly on vertices, which includes three major steps: 1) finding
all vertices of the intersected polygon; 2) sorting all these vertices in the
clockwise or counter-clockwise order; and 3) calculating the intersected
polygon area based on the well-sorted vertices; To obtain all intersec-
tions in a fractured reservoir, we need to calculate the intersection
between each fracture and each grid cell first, which starts from finding
all vertices of the intersected polygon by checking:

1. if one or more of the fracture polygon points are inside the box;
2. if any of the box edges are intersected with the fracture polygon

face; and
3. if any of the fracture polygon's edges are intersected with the box

faces.

Once the vertex coordinate array and the vertex order are prepared,
the area of the intersected polygon can be calculated by summing up a
series of triangle areas.

=
=

A CEpolygon
i

n

i
1 (3)

where n is the number of polygon edges; C is the central point of the
polygon; E is the ith edge of the polygon.

3.2. Connection distances

In this numerical method, the distance from the center of a fracture
element to the fracture-matrix interface is set to zero, because the
fracture width or aperture is negligible compared with a typical matrix
block size, and the pressure within the fracture grid reaches equilibrium
in the perpendicular direction to the fracture plane almost in-
stantaneously. The distance from the computational center of the ma-
trix element to the common interface is estimated by the numerical

Fig. 1. Schematic of the full intersection between a box and a fracture plane, leading to a polygon with 3–6 vertices.

C. Wang, et al. Journal of Petroleum Science and Engineering 181 (2019) 106229

3



integration over the grid volume.
It can be proven that this geometrical average distance equals to the

fluid-flow average distance if flow inside the intersected grid block is in
the steady and pseudo-steady state (Appendix B). However, if fluid flow
is in the transient state (e.g. only part of the grid volume is drained), the
geometrical average distance cannot represent the fluid-flow average
distance anymore. This situation usually happens at the beginning of
productions or injections. A substantial amount of simulation errors can
be expected if this transient-state situation lasts long, which possibly
occurs for cases with large-size matrix blocks with extremely low matrix
permeability. To quantify this effect and to optimize grid-block sizes for
the EDFM, analytical solutions of a 1D fluid flow problem with single
fracture are derived.

In the 1D problem, constant fracture pressure is applied on the right
(Dirichlet condition), and closed boundary condition is applied on the
left (Neumann condition). Eq. (4) gives its analytical solution. Details
about the derivation are included in Appendix A.
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The geometrical average distance (dm g) for the fracture-intersected
grid block (the first grid block in this problem) is half of the grid size.
The fluid-flow average distance (dm f ) is derived based on the

analytical solution.
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where the average distance dm f is a function of grid block size x1,
reservoir/matrix permeability k, reservoir/matrix porosity , fluid
viscosity µ, total compressibility c, time t , and reservoir size xL. Further
analysis indicates that dm f is most sensitive to reservoir/matrix per-
meability, grid block size, and time among all these parameters within
physically reasonable ranges. We plot the ratio of these two average
distances as a function of time with two different permeability (1.0 mD
and 0.01 mD) and three different matrix grid-block sizes (1m, 5m, and
10m), as shown in Fig. 2. For the matrix permeability of 1.0md, the
geometrically calculated average distance with these three grid-block
sizes is close to the analytically derived distance in early-, mid-, and
late-stages. This means the numerical solution from the EDFM method
will be in good agreement with the analytical (true) solution. For the
permeability of 0.01 mD, however, cases with 5m and 10m blocks
have a considerable discrepancy before 1.0 day. Numerical solutions
with the EDFM method will have substantial errors in the early time
correspondingly. The case with the 1m grid keeps close almost all the

Fig. 2. Ratio of two average distances with time for two different matrix permeability (1.0 mD and 0.01 mD) and three different matrix-block sizes (1m, 5m, and
10m).
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time.
Quantitative studies above indicate that the EDFM does not guar-

antee to provide accurate solutions under all conditions, which can be
verified by simulation results in the later section. A quick evaluation of
the grid size based on the analytical solution is thus suggested to per-
form before numerical simulations. For a specific reservoir simulation
case, this grid size can be quantitatively determined given the simula-
tion time step and the error tolerance of the distance ratio discussed
above. Since the EDFM only introduces errors near the fracture in the
space domain, i.e., grid blocks that are intersected by the fracture, we
only need to refine these grids if the original grid-block size is too large,
instead of applying the refined grid in the global reservoir domain.

3.3. Infinite and finite conductivity fracture

Infinite conductivity fractures refer to fractures with zero pressure
drop along the fracture during production or infinite large fracture
permeability, while finite conductivity fractures are those with nonzero
pressure drop along the fracture. The assumption of infinite fracture
conductivity is valid if the dimensionless fracture conductivity

=F k w k x( )/( )cd f f m f is larger than 300 (Cinco-Ley and Fernando
Samaniego, 1981). These two kinds of fractures are handled differently
in this study. For the infinite-conductivity case, the fracture is re-
presented by only one computational volume element, of which the
volume is the total volume of the fracture (left one in Fig. 3). This
computational volume element connects to many matrix grid blocks.
Calculations of the area and distances for each connection are discussed
above. In this way, the pressure inside the fracture is the same.

For the finite-conductivity case, the fracture is further gridded into a
set of fracture elements, as shown in the right plot of Fig. 3. In addition
to matrix-matrix connections and matrix-fracture connections, we have
fracture-fracture connections as well. Fracture-fracture connections can
be calculated geometrically by checking their shared edges. The effec-
tive intersection between the fracture and one grid block leads to one
fracture element. Thus, each fracture element only connects to one
matrix grid block or two (if the fracture plane is on the face of the grid
box).

3.4. Multiple connected fractures

Discussion above is about the processing of a single discrete frac-
ture. For cases with multiple discrete fractures, if these fractures do not
intersect, they are embedded in matrix grids separately as the single
fracture. Otherwise, if there are intersections, special treatments need
to be made for grids containing intersections (grids intersected with
more than one fractures). Our solutions for this part are explained using
a 2D synthetic problem for simple illustration, as shown in the upper
left part of Fig. 4. It includes two matrix blocks and three fractures. In
this approach, multiple fracture segments intersected with the same

grid are aggregated into one computational volume element. Thus, this
problem is transferred into fluid flow among four computational vo-
lume elements (two matrix elements and two fracture elements). It
includes one matrix-matrix, one fracture-fracture, and two matrix-
fracture connections, as shown in the right part of Fig. 4. This trans-
formation follows the same idea as the classical double-permeability
model (Duguid and Lee, 1977). It will not introduce significant nu-
merical discretization errors, because pressure drops among various
jointed fracture segments inside one grid block (especially in a locally
refined grid) are negligible given their short connecting distance and
high conductivities.

Compared with other alternative treatment methods (Moinfar et al.,
2014), this local fracture-segment aggregation method reduces efforts
of geometric calculations. The matrix-matrix and fracture-fracture
connections can be obtained straightforwardly. For the matrix-fracture
connections, the connection area is the sum of all intersected polygon
area. Unlike the distance for the single-fracture intersection, d i j k( , , ) is
the distance from the point i j k( , , ) to the nearest fracture.

=
=

d i j k P Fracture( , , ) min [distance( , )]
t m

i j k t
1:

, , (7)

where m is the number of fractures intersected with this matrix grid.
The lower left plot in Fig. 4 shows the contour of this distance for two
matrix-fracture connections in this problem.

4. Model verification

Based on foregoing discussions, the calculated geometric informa-
tion can be immediately implemented into our simulator by taking the
advantage of the IFD method. In our developed simulator, the compo-
nent mass-balance equations are discretized in space with the IFD
concept, in which the upstreaming weighting method is applied to the
mobility term and the harmonic mean method for the transmissivity
term. Time discretization is carried out with a first-order, backward,
fully implicit finite-difference method (or backward Euler method). The
discrete nonlinear equations are solved via the Newton iteration
method (Wu et al., 2014; Wang and Wu, 2015; Xiong et al., 2015;
Zhang et al., 2016). Three examples are designed, and several simula-
tions are performed to examine the accuracy of the 3D-EDFM algo-
rithm. The first example involves single 2D fracture; the second one
contains multiple 2D connected fractures; and the third one is to study a
3D facture. Benchmark solutions include the approximate analytical
solutions from the literature (the first example) and simulation results
from two other established numerical approaches (the second and third
example).

4.1. Single fracture

Fig. 5 shows a schematic diagram of the first case. The system
contains a horizontal, infinite-acting, homogeneous, and isotropic

Fig. 3. Demonstrations of different numerical methods to handle infinite-conductivity fracture (left) and finite-conductivity fracture (right).
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formation. One vertical well and one vertical hydraulic fracture are put
inside this reservoir. The plane of the hydraulic fracture includes the
wellbore. It totally penetrates the reservoir formation in the vertical
direction. A single-phase, slightly compressible fluid is produced from
the well at constant rate. For the infinite fracture conductivity case, the
pressure along hydraulic fractures remains equal to the bottom-hole
pressure. For the finite fracture conductivity case, the fracture perme-
ability is calculated based on the fracture conductivity value. Para-
meters are given in Table 1. Analytical solution of the well pressure
with the infinite- and finite-conductivity fracture are given by
Gringarten et al., (1974) and Cinco and Meng (Cinco-Ley and Fernando
Samaniego, 1981; Cinco-Ley and Meng, 1988), respectively.

Fig. 6 presents comparisons between the numerical solutions and
analytical (true) solutions with various fracture conductivities. It in-
dicates from low conductivities ( =C 0.5fd ) to high ones ( =C 10,000fd ),
all results from the EDFM are in good agreement with the analytical
solution. In numerical models, the reservoir length and width are fifteen
times of the fracture length to approximate the “infinite-acting” set-up.
The minor discrepancy for some cases in the very early time is because
the fracture volume in the analytical approach is set to be zero, while
this volume should be given a non-zero value in the numerical ap-
proach.

Fig. 7 shows the sensitivity analysis of the EDFM with respect to the
grid size. Comparison results from Fig. 7 indicate that numerical results
are in good agreement with the analytical solution for this problem
with a grid size of 1m and 2m. For the grid size of 5m and 10m, some
discrepancies are observed when the dimensionless time is smaller than
0.2, which is 0.65s in real time for this problem. Numerical results are
acceptable after this point of time. This discrepancy comes from the
difference between transient state flow (real) and steady state flow
(numerical approach assumption) inside the grids which contains
fractures in the very early time. For most of the simulation cases,

however, the interested time interval is far larger than this short time.
In addition, this discrepancy can be eliminated if the local grids are
refined with the 2m grid, as shown in the case of the 10m grid with 2m
LGR in Fig. 7.

Fig. 8 shows simulation results by rotating the vertical fracture with
various angles. Two-meter grid is used for all these simulation cases.
Though the fracture geometry (length, width, and height) in these cases
stay the same, the number of intersected grids, intersection areas for
various grids, and the average distance in these numerical cases are
different. Simulation results are shown to be almost the same since the
reservoir size is much larger than the fracture size. All these numerical
simulation results are in good agreement with the analytical solution,
which demonstrates the ability of the method to handle fractures with
arbitrary directions.

4.2. Multiple fractures

This section examines the validity of EDFM to handle multiple
connected fractures. A simple synthetic 2D model containing four
fracture branches (28 fractures in total) is built as shown in Fig. 9. The
infinite conductivity condition is assumed in this verification example.
The initial reservoir pressure is 8000 psi, and this reservoir is under
production with constant BHP control (2000 psi) for 30 months. For
this problem, fractures are handled explicitly using three different ap-
proaches: the local grid refinement method, the unstructured grid
method (triangular grids for 2D cases), and the EDFM (Fig. 10). The
first two approaches are well established as discussed in section 1.
Fig. 11 displays the simulation results for these cases. We observed that
the EDFM results are nearly indistinguishable from the reference LGR
and triangular grid methods.

In the problem, the EDFM shows a better computational efficiency

Fig. 4. Upper left: a 2D synthetic problem with two matrix blocks and three intersected fractures. Right: Numerical idealization for this problem, which includes two
matrix elements and two fracture elements; Lower left: contour of distance for two matrix-fracture connections.

Fig. 5. Vertical fracture in an infinite slab reservoir.

Table 1
Synthetic model parameters for numerical model verifications.

Parameters, Units Values

Fracture half-length, m 5.00
Reservoir permeability, m^2 9.87E-16
Porosity 0.05
Fluid viscosity, Pa*S 8.90E-04
Total compressibility, 1/Pa 4.58E-10
Initial pressure, Pa 4.14E+07
Production rate, m^3/s 2.00E-06
Reservoir length, m 150
Reservoir width, m 150
Reservoir thickness, m 1.0
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for the simulation. As shown in Table 2, the number of cells and con-
nections for the EDFM is much less than other two methods. For this
example, the EDFM provides about 15 times speed up relative to the
reference LGR method and 3.6 times speed up relative to the triangular
grid method. This enhanced performance results from the decrease of
Jacobian matrix size and complexity. Solving the Jacobian matrix re-
lated linear algebra is the single-most time consuming part in reservoir
simulation. As shown in Fig. 12, the LGR method leads to an irregular
seven band sparse Jacobian matrix with the size of 10,120×10,120. The
triangular grid method has a relatively dense matrix with the size of
6,800×6,800. The EDFM has a five diagonal band sparse Jacobian
matrix with the size of 1,601×1,601, which has a similar sparsity pat-
tern with the traditional simulation approach.

5. Application

The EDFM method is here applied to three problems that are of
special interest in unconventional reservoirs. We present simulations
results with (1) fractures with complicated shapes due to the multi-
layer features and vertical heterogeneity, (2) multiple curved fractures
due to the stress shadow effect, and (3) multiple arbitrary-direction
fractures with complicated connections due to the hydraulic fracture
and natural fracture interactions. The first problem is described in de-
tail, and the other two are relatively illustrative. The major objective of
these three examples is to demonstrate the capacity of the EDFM to
capture all of the common phenomena related to complicated fractures
in developing unconventional reservoirs. Note that single-phase flow is
involved in most simulated cases, a two-phase flow is added into the

third problem. The 3D-EDFM method can be directly applied for the
first two cases with multi-phase fluid flow because gridding and
handling fluid flow physics are two independent modules under our
numerical scheme.

5.1. The multi-layer case

The hydraulic fracture shape in unconventional reservoir forma-
tions will most likely deviate from the classical, ideal bi-wing shape in
conventional reservoirs (Zhou, 2016). This results from the multiple
layer features or formation heterogeneity that are observed in many
unconventional reservoirs (Passey et al., 2010; Donovan et al., 2012;
Hart et al., 2013). Since the geomechanical and fracturing properties,
such as elastic modulus, fracture toughness, and leak-off coefficients,
vary distinctly among these layers, created hydraulic fracture widths
and lengths in different layers are significantly different.

Fig. 13 (the left part) shows such a hydraulic fracture with com-
plicated shapes from geomechanics simulations (Zhai and Fonseca,
2015; Geilikman et al. 2015). The color contour indicates local varia-
tions of the fracture width. As shown in the right part of Fig. 13, the
reservoir containing this fracture is assumed to be rectangular with
dimensions of × ×200 m 300 m 120 m. This is a closed-boundary re-
servoir. It is subdivided into regular grids of 1800 blocks with dimen-
sions of × ×20 m 20 m 10 m. These grid blocks are visualized on the
surfaces of the reservoir box.

The fracture is embedded into these regular grids, leading to 1899
computational grids (1800 matrix grids and 99 fracture grids), and
5239 computational connections (4950 matrix-matrix connections, 99

Fig. 6. Comparisons of wellbore pressure vs. time between the analytical solution (“Cinco-Samaniego” type curve), and numerical solution with various fracture
conductivities (Cinco-Ley and Fernando Samaniego, 1981).

Fig. 7. Comparisons of wellbore pressure vs. time between the analytical solution, and numerical solution with various grid sizes for infinite fracture conductivity.
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matrix-fracture connections, and 190 fracture-fracture connections).
The horizontal well connects with one fracture grid in the mid-lower
part, as illustrated in the left part of Fig. 13.

In our simulation, the fracture permeability is correlated from the
fracture width following the cubic law ( =k w /12f f

2 ). The lateral re-
servoir permeability is given a value of 0.1mD. The vertical reservoir
permeability is assumed to be one tenth of this value to account the
layering effect. The estimation of the dimensionless fracture con-
ductivity indicates that this fracture cannot be treated with infinite
conductivities. The initial reservoir pressure is 6000 psi, and this re-
servoir is depleted with a constant BHP of 1000 psi. Fluids in this
system are in the single phase with the viscosity of 1.0 cp and the
compressibility of 4.58E-10 Pa−1.

The lateral (y-z) view of the pressure distribution inside the fracture
at 1.0 day is shown in Fig. 14, which indicates fluids within the frac-
tures travels towards the wellbore. It has a pseudo-radial flow pattern
close to the wellbore and a linear flow pattern away from the wellbore.
This flow pattern is controlled by both the distance from the wellbore
and the fracture shape.

Fluid flow inside the fracture is feed by fluids from the reservoir.
Three layers (shown in Fig. 13) are selected to demonstrate our simu-
lated flow patterns inside the reservoir. These three layers are pene-
trated with hydraulic fractures by different lengths. Fig. 15 shows the
top (x-y) view of contour lines of pressure for these three layers at 10.0
days. For the first one, the fracture extends nearly to the reservoir
drainage boundary. Our simulation results (the left one in Fig. 15) tell
this layer of reservoir feeds the fractures via linear flow instead of
pseudo-radial flow. It matches the analytical study in literature
(Wattenbarger et al., 1998). For the second layer, in which the fracture

length is about one-third of the reservoir width, simulated contour lines
inside can be described using elliptical geometry (the mid one in
Fig. 15). This elliptical pattern of the propagating pressure transient
matches the analytical solution by Hale and Evers, (1981). The third
layer connects with two relatively short fracture segments. Simulated
pressure contour lines can be described as two sets of ellipses with
shorter focal lengths surrounded by one set of longer focal-length el-
lipses (the right one in Fig. 15). Furthermore, in this highly anisotropic
reservoir, flow towards the hydraulic fracture is mainly along the
horizontal direction, and there are little vertical flow crossing layers.

5.2. The natural fracture interaction case

The microseismic data may give some information on that the

Fig. 8. Comparisons of wellbore pressure vs. time between the analytical solution, and numerical solution with various fracture orientation for infinite fracture
conductivity.

Fig. 9. Synthetic 2D model with 4 fracture branches.

Fig. 10. Space discretization for three different fracture simulation methods (from left to right: LGR, triangular grids, and EDFM).

Fig. 11. Oil production rate results for three solutions for synthetic 2D flow.

Table 2
Comparison of problem size and simulation times for these three approaches.

Number of
Cells

Number of
Connections

Simulation Time (s)

LGR 10120 66482 435.16
Triangular Grids 6800 10480 101.55
EDFM 1601 8197 28.17
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fracture shape involves not only a single isolated planar fracture, but
also has irregular traces with a fractured zone around (Fisher and
Warpinski, 2012; Geilikman et al. 2015). Small fractures in the fracture
zone are originally natural fractures which are partly open or sealed
under natural condition. The sealed fractures cannot contribute to
permeability enhancement initially but act as planes of weakness and
reactive during drilling or hydraulic fracturing (Gale et al., 2007; Olson
and Taleghani 2009). Considering these complicated fracture geome-
tries will improve simulation results in a more realistic and accurate
way.

Fig. 16 shows three DFNs generated from the same set of micro-
seismic data considering distance uncertainties by use of Hough
transforms (Yu et al., 2016). These DFNs are extracted from figures in
Yu's publication. Complexities of this fracture network come from in-
teractions with natural fractures during hydraulic fracture propagation.
In this problem, all activated fractures are assumed to be propped and
act as effective high-conductivity pathways for fluid production.

Fig. 12. Comparison of Jacobian matrix size and complexity of these three approaches (from left to right: LGR, triangular grids, and EDFM).

Fig. 13. Left: Illustrations of a hydraulic fracture with complicated shapes from geomechanics simulations. Three layers are selected to demonstrate our simulated
flow patterns inside the reservoir. Right: Discretization grids for the reservoir and the embedded fracture.

Fig. 14. The lateral (y–z) view of the pressure distribution inside the fracture at
1.0 day.

Fig. 15. The top (x–y) view of contour lines of pressure for these three layers at 10.0 days.
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Fracture widths are given a uniform value of 0.01m, and the effective
fracture permeability is assumed to be × m4.9345 10 10 2. Matrix per-
meabilities in three directions are × m9.87 10 18 2. The reservoir under
consideration is the area associated with only one stage of hydraulic

fractures, which is a represented by a closed-boundary rectangle,
× ×m m m20 20 14 in extent. Grid dimensions are × ×m m m0.5 0.5 0.5 .

All other simulation input parameters keep the same with the case in
section 5.1. Note that the two-dimensional (or 2.5D) fracture handling
approach is not applicable for this case, because most fractures are not
aligned with grid axes. The 3D-EDFM discretization of these fractures
leads to a combination of triangles, quadrilaterals, pentagons and
hexagons. Details about the discretization results are listed in Table 3.

Two sets of reservoir simulation studies are conducted. The first
involves single-phase fluid flow with these three DFNs. Fig. 17 presents
horizontal slices of the simulated pressure-change contour for case 1 at
1,038s and 12,960s, which shows pressure depletion patterns with
thirteen fractures are qualitatively captured. Quantitative analysis is
presented in Fig. 18 and Fig. 19. Fig. 18 plots the simulated production
rate vs. time in the log-log scale, following the routine of rate transient
analysis (RTA). Simulation results indicate that linear fracture flow is

Fig. 16. Three DFN geometries extracted from Yu's paper (Yu et al., 2016) and corresponding 3D-EDFM grids (right).

Table 3
Information of the fracture geometry and EDFM gridding for these three cases.

Cases Fracture
Number

Fracture
Area
(m^2)

Fracture
Connection
Number

Fracture Grid Number

M-F F-F Trian Quadra Penta Hexa

No. 1 13 100.3 707 1751 132 660 72 6
No. 2 6 225.7 1548 2931 602 516 483 35
No. 3 5 176.2 1125 2184 446 464 251 68
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the dominate flow regime in the early time in these three cases (slopes
of curves are close to −1/2), followed by a boundary dominated flow
regime. This matches with physics, in turn, proves the effectiveness of
the 3D-EDFM to handle complicated 3D fractures. Fig. 19 plots the area-
normalized production rate (production rate divided by the total frac-
ture area) vs. time. Fracture area data can be referred in Table 3. These
three curves coincide in the early time, and this coincidence indicates
that the most sensitive parameter of hydraulic fractures to early tran-
sient fluid flow through extremely low permeability matrix rock is the
fracture-matrix contacting area, no matter how complicated the frac-
ture geometry is. Based on this observation, it is possible to use rate
transient testing data to estimate the effective area of fractures even for

3D complicated fractures.
Two-phase flow (gas and water) is also investigated using the DFN

in case 2. Two simulation cases are designed to evaluate the impact of
spontaneous imbibition or injection into matrix of fracturing fluids on
post-fracturing production. In these two cases, the initial water sa-
turation in matrix is set at the residual value (0.45), while the water
saturation in fractures is 1.0. Initial pressure in matrix and fractures
keep the same. The well is shut in for a while before turning on pro-
duction with a constant BHP. Shut-in time varies in these two cases: no
shut-in time in case 1 and one week in case 2. The simulated water
saturation profile after one-week shut-in, with a range between 0.45
and 0.60, is shown in Fig. 20. Simulated gas production rate and

Fig. 17. Horizontal slices of simulated pressure contours for case 1 at 1038s (left) and 12,960s (right).

Fig. 18. Simulated production rate vs. time (log-log scale) for these three cases.

Fig. 19. Simulated area-normalized production rate vs. time (log-log scale).

Fig. 20. Water saturation profiles after one-week well shut-in.

Fig. 21. Simulated gas production rate vs. time.
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accumulative water production from these two cases are presented in
Fig. 21 and Fig. 22, respectively. From Fig. 21, the gas flow rate in case
2 is higher in the very early time. This is because most of the produced
gas in this period is from fractures, and certain amounts of gas origin-
ally in matrix is displaced and flows into fractures by water imbibition
during the shut-in (Fakcharoenphol et al., 2013). When gas produced
from matrix becomes dominant, gas flow rate in case 1 becomes higher
as the imbibed water forms a blockage by reducing the gas-phase re-
lative permeability (Farah et al., 2017). From Fig. 22, the simulated
cumulative water production from case 2 is only about 50% of that
from case 1. This numerical simulation study supports observations
from the field that typically only 10%–50% of fracturing fluids can be
recovered (Zhou et al., 2014).

6. Conclusions

1. We present a 3D-EDFM method, which is applicable of modeling
3D complicated hydraulic fractures in reservoir simulation. The 3D-
EDFM is generally able to handle 3D hydraulic fractures with arbitrary
strike and dip angles, shapes, curvatures, conductivities, connections,

and number of discrete fractures. In addition, it provides significant
improvement in computational efficiency because of the decrease in
Jacobian matrix size and the similarity in matrix sparsity pattern.

2. In the proposed 3D-EDFM, 3D complicated hydraulic fractures
are handled by a geometric methodology in gridding for an un-
structured-grid reservoir simulator. Our analysis indicates that the
geometric-based parameters are reliable to represent flow-based para-
meters. With these preprocessed grid parameters, the 3D-EDFM can be
directly implemented into reservoir simulators via the integral finite
difference (IFD) method.

3. The 3D-EDFM is verified by comparison with the Gringarten
analytical solution for fluid flow with a single fracture of infinite con-
ductivity and arbitrary directions, with the Cinco-Samaniego type
curves for fluid flow with a single fracture of finite conductivities, with
two other DFM models for fluid flow with multiple connected fractures
as well as with the LGR approach for 3D fractures.

4. The 3D-EDFM is flexible of handling hydraulic-fracture input
data, as interpreted from geomechanics modelings as well as micro-
seismic data. Several synthetic, but realistic testing cases are simulated.
The 3D-EDFM captures key flow patterns qualitatively and quantita-
tively, inside both fractures and reservoirs, related to complicated
fractures in these cases. For the layer in which the fracture extends
nearly to the reservoir drainage boundary, fractures are feed via linear
flow. For shorter fractures, pressure contour lines can be described
using an elliptical geometry. In addition, the most sensitive parameter
of hydraulic fractures to early transient fluid flow through extremely
low permeability rock matrix is the fracture-matrix contacting area, no
matter how complicated the fracture geometry is.
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Appendix A. General Analytical Solutions for 1D Fluid Flow with a Fracture

The governing equation of 1D fluid flow of a single-phase single-component slightly compressible fluid in a homogeneous porous medium can be
expressed as:

=p
t

k
µc

p
x
2

2 (B-1)

The corresponding initial conditions and boundary conditions (Dirichlet conditions on the left and Neumann conditions on the right) are:

=p x p( , 0) i (B-2)

= <p t p p(0, ) , pf f i (B-3)
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Introduce dimensionless variables
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We have the dimensionless form of 1D fluid flow in porous medium governing equations as well as its boundary and initial conditions:

Fig. 22. Simulated cumulative water production vs. time.
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Through the superposition principle (Gordon, 1989), the dimensionless analytical solution for this 1D fluid flow problem is
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Correspondingly, the analytical solution of pressure as a function of time and space is
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Production rate into the fracture can be derived based on Darcy's Law and Eq. (B-13):
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The average pressure in the first grid (with the width of x1) is obtained by the integration over this grid volume:
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For our simulation, discretized Darcy's law for the first grid is

=q A k
µ

p x t p t
d

(0: , ) (0, )
f

ave

m f

1

(B-16)

Thus, the equivalent average matrix-fracture distance in the first grid

=

=
=

=

dm f
p x t p t

A Q

x n n t

x n t

(0 : , ) (0, )

1 cos ( 0.5) exp ( 0.5)

exp ( 0.5)

ave

f
k
µ

L n n
x

xL
k

µcxL

n
k

µcxL

1

2
1

1
( 0.5)2

1 2 2
2

1 2
1

2 2
2 (B-17)

Appendix B. Analytical Solutions of 1D Fluid Flow with a Fracture Under Steady or Pseudo-Steady State

The governing equation of 1D fluid flow of a single-phase single-component slightly compressible fluid in a homogeneous porous medium can be
expressed as:

=p
t

k
µc

p
x
2

2 (C-1)

When fluids flow in this 1D reservoir reaches pseudo-steady state, the rate of pressure drop at each point is the same:

=p
t

C (C-2)

Substituting Eq. (C-2) into Eq. (C-1), we have:

= =p
x

µc
k

C B
2

2 1 (C-3)

The general solution for differential equation Eq. (C-3) is

= + + +p x t B x B x B Ct( , )
2

1 2
2 3 (C-4)

where B1, B2, B3 and C are four constants.
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The partial derivative of p with respect to x from Eq. (C-4) is

= +p
x

B x B1 2 (C-5)

At the right boundary, the pressure derivative is zero with the definition of pseudo-steady state:

= + =p
x

x t B x B( , ) 0L L1 2 (C-6)

Pressure at the left boundary is the fracture pressure:

= + =p t B Ct p(0, ) f3 (C-7)

Another boundary condition on the left is based on Darcy's law:

= =p
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Combining Eq. (C-6) and Eq. (C-8), we have:

=B qµ
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The average pressure in the first grid (with the width of x1) is obtained by the integration over this grid volume:
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Substitute Eq. (C-8) and Eq. (C-9) into Eq. (C-10), we have:
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In Eq. (C-11), the ratio of x1 (in the grid-size scale) and xL (in the reservoir-size scale) is typically very small. Thus, the first term inside the
bracket is negligible. By reformulating Eq. (C-11), we can obtain the equivalent average matrix-fracture distance in the first grid:
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For the steady-state flow, the constant C in Eq. (C-2) becomes zero. The constant B1 becomes zero correspondingly. In addition, the boundary
condition on the right changes from Neumann conditions to Dirichlet conditions. Following the same procedure, we can obtain that the equivalent
average matrix-fracture distance for the steady-state flow in the first grid is also half of the grid size.
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