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Abstract

Seismic data collected in the field are often not ideal for processing. The process
known as data continuation computes data not recorded from those that are recorded
so that data requirements for processing techniques can be met. Although there are
many techniques of data continuation currently used in seismic processing, the majority
of these assume that the seismic wave velocity is either constant or varying only with
depth. A notable exception is the downward continuation of data, often referred to as
survey sinking, for which techniques applicable in most velocity models exist.

We extend data continuation techniques used to fill in missing data to veloc-
ity models in which caustics are generated in the wavefield. To do this, we use a
method based on the composition of Fourier integral operators. To demonstrate that
this method doesn’t introduce false reflections, we show that the composite operator is
also a Fourier integral operator. We illustrate the utility of this theory with a synthetic
example, with caustics, in which we fill in missing traces in a shot record. This method
is computationally more expensive than similar methods that assume simple velocity
models.

First order internal multiples are a source of errors seismic imaging. Artifacts
caused by internal multiples are often similar to true reflectors and thus can be difficult
to attenuate. Typically multiples are estimated in the data and then subtracted from
the data before an image is created. We propose a method by which artifacts in the
image are estimated as part of the imaging process; an integral part of this method is
the downward continution of data.
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Chapter 1

Introduction

The subject of this thesis is data continuation through operator composition, in the
general context of seismic imaging. Two applications are investigated, seismic data regular-
ization and the attenuation of imaging artifacts caused by internal multiples. Each chapter
is written to be published independently. As such, each contains its own summary and
introduction describing the material contained in it. The purpose of this introduction is to
tie the four papers together and to give the reader a general overview of the thesis contents.
Rather than explain the basics of seismic processing here, I refer the reader not familiar
with exploration seismology to two excellent books on the subject: Claerbout (1985) and
Yilmaz (1987). Similarly, the reader not familiar with the techniques of microlocal analysis
is referred either to the book by Sjostrand & Grigis (1994), or Appendix A of Le Rousseau
(2001). Some of the theory used for multiple prediction is described in detail in Appendix G.

Because this thesis is a complitation of papers, it is not designed to be read cover-
to-cover. Chapters 2 and 3 deal primarily with data regularization, whereas Chapters 4
and 5 deal with estimating imaging artifacts caused by internal multiples. The majority
of the appendices are associated to particular chapters, as noted in the footnotes at the
beginning of each chapter. Appendices A and B give some constant velocity examples of
the theory described in Chapter 2. Appendices C-F give some of the more detailed deriva-
tions associated with Chapter 3. Appendix G attempts to describe some of the theory of
the Lippmann-Schwinger and Bremmer series, which are used extensively in Chapter 4.
Appendix H describes some of the artifacts that caused problems in the algorithm develop-
ment phase leading up to the examples shown in Chapter 5. In Appendix I the amplitude
factors necessary for the imaging procedure performed in Chapter 5 are discussed to bridge
the gap between the theoretical development and the implementation of these amplitude
factors. The final two appendices, J and K are associated with Chapter 4. Appendix J
gives a particularly long proof of one of the results in Chapter 4 and Appendix K compares
the approach for suppressing internal multiples discussed here with that of Weglein et al.
(1997) and ten Kroode (2002).

Data continuation is the process by which data are computed at a location different
from that at which they were collected. A typical example from seismic imaging is so called
survey-sinking wave equation' migration (Beve et al., 2003). In this example, data collected
at the surface are used to estimate data that would have been recorded at some depth, say

'This type of migration goes by many names, the most common of which is wave equation migration.
This name is somewhat misleading, however, as all migration techniques are based on the wave equation.
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(the distance between the source and receiver) were compensated for (i.e., normal-moveout
corrected) with the goal of producing a flat section that could be averaged to give a one-
dimensional (1D) estimate of subsurface properties. This is in essence a data regularization
as the correction for offset is designed to mimic zero-offset data, which are more easily
interpreted than are nonzero-offset data. These first approaches made strong assumptions
on Earth structure [see Green (1938) for a list], most of which are not at all valid in areas
of current interest for oil exploration. Two of the most fundamental assumptions were that
the underlying structure consists of a stack of horizontal layers and that the background
velocity is constant or at most varies consistently (e.g., linearly) as a function of depth only.

Accounting for dip came first, before computers were readily available, by adjusting the
velocity used in common-midpoint (CMP) stacking® to stack to account for dipping layers.
This is discussed by Levin (1971), drawing on the derivation of the reflection response to
a dipping layer made by Brown (1969). Again the goal is to reduce a common-depth-point
(CDP)* gather to a set of identical traces to be stacked to determine Earth structure at the
shared depth point. Further research along these lines introduced the process known as Dip
moveout (DMO), described in detail by Hale (1983, 1991). Dip moveout is a method by
which zero-offset data are estimated from nonzero-offset data extending normal moveout to
dipping reflectors. The strengths of this method are in its relatively weak dependence on
the precise subsurface velocity and the speed with which it can be computed. A weakness
of the method is its inability to account for lateral velocity variations. This is addressed as
part of this thesis.

The data regularization method described in this thesis involves the composition of two
(or three) operators. The first is an imaging operator from which an estimate of subsurface
properties is obtained. The second is a modeling operator that models output data with the
desired acquisition geometry. (The third is a restriction operator, used to set up the desired
output geometry; it is discussed in both Chapter 2 and 3.) A similar vein of research has
been followed by others, a few of which are described in the following paragraphs.

A recently developed method, similar to DMO is azimuth moveout (AMO), first de-
scribed by Biondi et al. (1998). This technique allows the regularization of a data set from
multi-azimuth to a single-azimuth. It has proved particularly useful to do this in marine
seismology where data are typically collected with a streamer running behind a boat. In
this situation there are not enough data to make a true 3D image, but the data are spread
over too large an area in the direction perpendicular to the streamer for 2D processing tech-
niques. The technique works by using DMO to go from the original data set to a zero-offset
data set and then inverse DMO to go from this zero-offset data set to a nonzero-offset data
set at a chosen azimuth. In a constant-background velocity, these imaging and modeling
operators can be composed to form a single operator mapping from one azimuth to an-
other. The constant background assumption is often sufficient provided the true subsurface
velocity is not overly complex.

3The midpoint is halfway between the source and receiver; stacking is an average over offset.

1A CDP gather is a set of traces that are assumed to have scattered from the same point at depth. A
CDP gather is often approximated by a common midpoint gather (CMP) in which all of the traces share
the same midpoint between the source and receiver; the two are equivalent in horizontally layered media.
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continuation of data from one source-receiver configuration to another without introducing
false reflections. (For a detailed explanation see the discussion around Equation 25.22 of
Hormander (1985a).)

Chapter 2 treats the two special cases of DMO and AMO discussed previously. In Ap-
pendix A a number of these results are derived for a constant-background velocity, including
the derivation of a closed form expression for the DMO impulse response. Appendix A also
includes an explanation as to why not all the phase variables® can necessarily be integrated
out when applying the method of stationary phase. In Appendix B, we give the AMO
impulse response.

1.1.2 Examples and Illustrations

The purpose of Chapter 3 is to explain and illustrate the theory described in Chapter 2
in the context of exploration geophysics rather than mathematics. There is little material
directly repeated from the previous chapter, although the derivations in Appendix D are
contained also in Appendix A and Appendix B in a slightly different form.

The first sections of this chapter give a physical overview of the theory developed
in Chapter 2. As part of this development a number of impulse responses are shown to
illustrate the salient points of the theory. These impulse responses are not sufficient to
demonstrate the applicability of the theory but they do illustrate the construction of the
composite operators and show the extent, both in time and in space, of the resultant
operators. Following this, the method is illustrated by estimating missing traces in shot
records. A description of the algorithm used to do this is also given in this section.

The algorithm discussed in Chapter 3 works but is not the most computationally
efficient algorithm possible. Examples of a more efficient algorithm are the fast marching
techniques of Sethian (2002). With these techniques, it is possible to construct the table,
which will be described in Chapter 3, relating subsurface and surface parameters, with a
single pass through the velocity model. Once the table is constructed, data continuation,
velocity model building, and imaging can be performed through direct operations on the
table. Another way to get a faster algorithm is to use the curvelet techniques currently
being developed by my fellow student Huub Douma.

The data regularization theory described in this thesis extends the family of velocity
models in which data regularization techniques can be applied. The cost of this extension
is in additional time requirements for computations and the requirement that the velocity
model be known.

SPhase variables are the variables typically integrated out through the method of stationary phase. They
are often, though not always, Fourier variables associated with the space/time variables of the equation.
For an operator to be an FIO its phase is required to be homogeneous of degree one in these variables, i.e.,
Oz, A0) = Ap(z,0), where 0 is the phase variable and the FIO, F', is defined through its action on a test
function a by

(Fa) = / /a(:c, O)u(x)e* ™ dbdz .
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Fokkema et al. (1994); Berkhout & Verschuur (1997); Verschuur & Berkhout (1997) and
van Borselen (2002). In some sense, the work presented here is an extension of the surface-
related multiples attenuation theory proposed by Aminzadeh & Mendel (1981), who used the
Bremmer series to suppress surface multiples. The closest approach to that discussed here,
however, is that of Jakubowicz (1998) in which he implicitly uses the Generalized Bremmer
series to estimate internal multiples, under the traveltime monotonicity assumption of ten
Kroode (2002) (see Figure 1.2). The work of Weglein et al. (1997), the mathematical
fundamentals of which are presented by ten Kroode (2002), is another series expansion of
the wavefield used to estimate internal multiples. Their approach uses a scattering series
derived from the Lippmann-Schwinger equation, which will be referred to in what follows
as the Lippmann-Schwinger series.

1.2.1 Theoretical description

Chapter 4 describes a theory for attenuating imaging artifacts caused by multiples.
This theory involves the development of a hybrid series between the Lippmann-Schwinger
and Bremmer series. These two series are discussed in more detail in Appendix G.

The Lippmann-Schwinger series, first proposed by Lippmann (1956) [see also Lipp-
mann & Schwinger (1950); Lippmann (1950)], has been investigated extensively for atten-
uating internal multiples by Weglein et al. (1997, 2003) and ten Kroode (2002). This series
is an expansion in the difference between the wave operators in a known reference model
and of the unknown true velocity model. Each successive term in the series is of higher
order in the difference between the wave operators in these two models. Internal multiples
can be estimated from this series, and attenuated through the associated inverse series,
which is constructed by assuming that the medium contrast can be expanded in a series
with each successive term of higher order in the data. Currently, there are no estimates for
convergence on either the forward or inverse seres. With two assumptions on the velocity
model, however, this series can be used to attenuate internal multiples without knowledge
of the subsurface velocity. The two assumptions are that the wavefield does not contain
caustics, and the traveltime monotonicity assumption of ten Kroode (2002), illustrated in
Figure 1.2.

The Bremmer series was first developed by Bremmer (1951) for modeling atmospheric
phenomena. This series builds up a wavefield by adding together the contributions from
successive reflections from different layers in the medium. As constructed by Bremmer,
this series is applicable only in a velocity model consisting of a stack of horizontal layers.
This series was generalized by de Hoop (1996) to arbitrary reflector geometry and variable
background; it is this generalization that is used throughout the thesis. The Bremmer series
separates the wavefield into its up- and down-going constituents and as such fits into the
framework of a wave-equation migration in which an image is formed by propagating the
wavefield down into the Earth and extracting the part of the wavefield at zero offset and
zero time to be added to the image at each depth. This imaging method works well in
the presence of caustics. de Hoop (1996) gives convergence estimates for the Generalized
Bremmer series. Drawbacks to the use of this series are that it is not straightforward to
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involved in the multiple scattering. The computational cost of the algorithm is not pro-
hibitive however; the multiples are estimated with roughly twice the computational cost of
a standard migration.

1.3 Acknowledgment

Each chapter of this thesis was written to be published with various co-authors; a full
citation of each paper may be found in the footnotes on the title page of the associated
chapter. Although each of them was written with the goal of being part of this thesis,
‘much of the work presented was done in close collaboration with Maarten de Hoop, Jéréme
Le Rousseau and Henri Calandra. The author gratefully acknowledges their contributions
here.
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Chapter 2

Seismic wavefield ‘continuation’ in the single
scattering approximation: A framework for Dip
and Azimuth MoveOut!

2.1 Summary

Seismic data are commonly modeled by a high-frequency single scattering approxi-
mation. In this paper we use methods from microlocal analysis and the theory of Fourier
integral operators, to study continuation of the seismic wavefield in this single scattering
approximation. This amounts to a linearization in the medium coefficient about a smooth
background. The discontinuities are contained in the medium perturbation. We use the
smooth background to derive the continuation as the composition of imaging, modeling and
restriction operators.

2.2 Introduction

In reflection seismology one places point sources and point receivers on the Earth’s
surface. The source generates acoustic waves in the subsurface, that are reflected where the
medium properties vary discontinuously. The recorded reflections that can be observed in
the data are used to reconstruct these discontinuities. In principle, the recordings are taken
on an acquisition manifold, made up of all source and receiver positions and a time interval.
In practice, however, certain subsets in the acquisition manifold are not covered. In this
paper, we discuss how, and conditions when, data can be continued from an acquisition
submanifold to the complete acquisition manifold.

The data are commonly modeled by a high-frequency single scattering approximation.
This amounts to a linearization in the medium coefficient about a smooth background. The
discontinuities are contained in the medium perturbation (Beylkin, 1985). Thus a linear
operator, the modeling operator, depending on the background, that maps the perturbation
to the data is obtained. The smooth background (C'*°) is associated with a computational
medium (which can be chosen) rather than a physical one, the distributional (£’) perturba-

'This chapter has been published, along with appendices A and B as:
de Hoop, M. V., Malcolm, A. E. and Le Rousseau, J. H. 2003. Seismic wavefield ‘continuation’ in the single
scattering approximation: A framework for dip and azimuth moveout Can. Appl. Math. @Q., 10, 199-238.
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smooth background. (iii) AMO can be employed to carry out approximate (based on a
linearized scattering model) seismic data ‘regularization’.

The basic idea of investigating the composition of imaging and modeling operators
dates back in particular to the work of Goldin (1994).

2.3 High-frequency Born modeling and imaging

We consider the scalar wave equation for acoustic waves in a constant density medium
in R™. We introduce coordinates € R™. The scalar acoustic wave equation is given by

2\
Pu=f, P=c 8t2+ZD (2.1)
where D, = —i%- a . The equation is considered in a time interval ]0,7T7.

If ¢ € C*° the solution operator of (2.1) propagates singularities along bicharacteristics.
These are the solutions of a Hamilton system with Hamiltonian given by the principal
symbol of P,

P(z,€,7) = —c(z)72r% + ||€||*.
The Hamilton system is given by

O(x,t)  OP o¢,r) 0P
B 8E) ox  am (22)

Its solutions will be parameterized by initial position (x¢), take-off direction (a € S™71),
frequency (7) and time (t),
x = x(zo,, T, 1)

and similarly for ¢,&; 7 is invariant along the Hamilton flow. The evolution parameter \ is
the time t.

By Duhamel’s principle, a causal solution operator for the inhomogeneous equation
(2.1) is given by

t
(o, ) = /0 / Gzt — to, 70) f (20, to) dzodto, (2.3)

where G defines a Fourier integral operator (FIO) with canonical relation, Ag, that is
essentially a union of bicharacteristics,
Ac=CLuUC_, Cy ={(x(xo,, T, 1), t,&(x0, 0, 7, £), F7 ; x0,— F(7/c(20))2)}.
— —
o

Let
(xr,20,&5,7) with TUJ={1,...,n}, N:=|J|+1,
6




Alison E. Malcolm / Data Continuation 15

Figure 2.1. Source-receiver bicharacteristics.

Theorem 2.3.1. (Rakesh, 1988) With Assumption 1 the map F' is a Fourier integral op-
erator D'(X) — D'(Y) of order (n — 1)/4 with canonical relation

T(zo0,2,8)

Ap = {(s(z0, B), (z0, @), T(x0, @) + T(z0, 8), & (z0, B), p(z0, ), T
20, — (t/e(x0)) (@ + B)) | (z0,,8) € K, 7 € R\O} C T*Y\O x T*X\0,  (2.8)

£(z0,0,8,7)

where K C R™ x {(a, 8) € S"1 x "1 | a + B # 0}. Here,

:D(SL'O,OL,T,T(ZL’O,Q))JE OT s $($03/B771T(x07ﬁ))16 Osv

g

=:r(zo,a) =58(;0,»5)

which expresses that the time T is locally solved from the equation describing the intersection
of the rays with the acquisition manifold, while

p(.’L’(), a) = (I —ny® nr)£($0, «, T,T(CE(),CE)) (29)
where n,. is the unit normal to O, at r(xo,a). A similar expression holds for o(xg,[3).

The parametrization of Ap is illustrated in Figure 2.1. The cotangent vectors o, p can be
identified with acquisition ‘slopes’ ps, p,, in accordance with o(zo,3) = —7ps(x0,3) and
p(xo, ) = —7pr(z0, ).

Assumption 1 is microlocal. One can identify the conic set of points (s, t,0,p,7) €
T*Y\O where this assumption is violated. If the symbol ¢ = (s, t,0,p,7) vanishes
on a neighborhood of this set, then the composition ¥ F of the pseudodifferential cutoff
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minimum number of phase variables is given by the corank of the projection
Dr : TA->T(Y x X)

at (zo,a, 8,7), which is here given by

0
corank Dm = 1 + corank g—;(mo, B) + corank —r(mo, Q).

Oa

This corank is > 1 when s or r is in a caustic point relative to zg. Let
Ar = Ap\{closed neighborhood of {\ € A | corank Dm > 1}} . (2.10)

'» can be described by phase functions of the ‘traveltime’ form 7 (¢t — T’ (m)) with the only
phase variable being 7. Here, T is the value of the time variable in (2.8). The index
m labels the branches of the multi-valued traveltime function. Thus the set {T(m)}me M
describes the canonical relation (2.8) except for a neighborhood of the subset of the canonical
relation where the mentioned projection is degenerate. Each T(™ can be viewed as a
function defined on a subset D™ of X x O4 x O,. We define F(™) to be a contribution to
F with phase function given by 7(t— T (z, s,7)), and symbol A™ in a suitable class such
that on the subset A, of the canonical relation F' is given microlocally by >/ F(m),

2.4 Generalized Radon transform

We can use (z,£) € T*X\0 as local coordinates on the canonical relation (2.8) (cf.
(Hormander, 1985b, Prop. C.3.3)). In addition, we need to parameterize the subsets (these
are characteristic strips) of the canonical relation given by (z,£) = constant; we denote
such parameters by e. The canonical relation (2.8) was parameterized by (z,«,3,7). We
relate (z,€,e) by a coordinate transformation to (z,a, 3,7): A suitable choice when o # 3
is the scattering angles given by de Hoop et al. (1999)

—a+f
" 2sin(arccos(a - 3)/2)

e(z,a, ) = (arccos(a - B) ) €]0, w[x ™2, (2.11)

On D there is a map (z,a,) — (z,s,r). We define elm = e(m)(:r,s,r) as the compo-
sition of e with the inverse of this map.

In preparation for the generalized Radon transform (GRT) we define the ‘angle’ trans-
form, L, via a restriction in F* of the mapping €™ to a prescribed value e, i.e. the
distribution kernel of each contribution F(™" is multiplied by d(e — e(™ (x, s, r)) (which is
justified by (Hérmander, 1983, Thm. 8.2.10)). Invoking the Fourier representation of this
d, the kernel of L follows as

L(z,e,r s,t) = Z (27r)("1)/A("l)(3:,s,r,T) expl[i®™ (z,e, 5,7, t,e,7) drde, (2.12)
meM




Alison E. Malcolm / Data Continuation 19

Figure 2.3. The origin of artifacts generated by the GRT. (Inside the T*Y\0 box of Fig-
ure 2.2.)

with F' can be evaluated through solving the system of equations

r = r(z,a), (2.15)

s = s(z,p), (2.16)

T™M (z,5,7) = T(z,a)+T(z,p), (2.17)
p™(z,8,7,7,6) = —1p(z,0), (2.18)
o™ (z,8,7,1,6) = —1ps(z, ). (2.19)

(The frequency is preserved.) Equations (2.15)-(2.17) imply that the image point z must lie
on the isochrone determined by (z,s,r). Equations (2.18)-(2.19) enforce a match of slopes
(apparent in the appropriate ‘slant stacks’) in the measurement process,

—Tﬁ‘rT(m)(z,s,r)—I—(e,@re(m)(z,s,r)) = —7pr(z, ), (2.20)
—70,T ™ (2,5,7) + (£,0:e™ (2,5,7)) = —7ps(z, ). (2.21)

For € # 0 the take-off angles of the pairs of rays at (r, s) following from the right-hand sides
of (2.15)-(2.19) may be distinct from those following from the left-hand sides. Equations
(2.20)-(2.21) imply the matrix compatibility relation (upon eliminating €/7)

[3re(m) (z,s, r)]_1 [pr(z, ) — 8,T<m)(z, s,7)]
= [0, (z,5,7)] ps(z, B) — T (2, s,7)]. (2.22)

The geometrical composition equations determining the artifacts are solved as follows: For
each (z,a, §) € K solve the (3n—2) equations (2.15)-(2.17), (2.22) for the (3n—2) unknowns
(z,8,7). (From (2.20) we then obtain /7 hence ¢.)

The GRT reconstructs a distribution in £'(X) smoothly indexed by e € E. We can
trivially extend the domain of modeling operator F' from £'(X) to &'(X x E), its action
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has full rank. In other words

ay//
8("1"7 a, /877—)

has mazimal rank.

Applying (Duistermaat, 1996, Thm. 4.2.2) to the pair F' and the restriction R¢ from
Os x O, — X¢ with Assumption 4 implies that R¢F is an FIO of order (n + ¢ —1)/4 with
canonical relation

A%’ = {(y/, t» 77/7 T, g) | 3 (y/7 y”, 77/, 7]”) SUCh that
y" =0and (y,m;2,¢) € Ap}
C T*Y°\0 x T*X\0. (2.23)

We will encounter two examples: Zero offset (ZO), where ¢ = n—1and £¢ := ¥y C diag(0X)
(subject to the n — 1 constraints r = s when arccos(a - 3) = 0 and e, at z follows from
(2.11)), and common azimuth (CA), where ¢ = 1 and X¢ := ¥4 subject to one constraint
typically of the form that the (n — 1)st coordinate in r — s is set to zero, while F, > e at
follows from the mapping (™). We set Yy = $¢x]0,T[ and Y4 = £4x]0,T[.

The restriction to acquisition submanifolds is placed in the context of inversion in
Nolan & Symes (1997).

2.6 Exploding reflector modeling

In this section we introduce a procedure to model zero-offset (ZO) data: data with
coinciding sources and receivers. To ensure that the zero-offset experiment can be modeled
by an FIO we invoke Assumption 4 with 3¢ := ¥y. We denote its canonical relation by Ay.

For the zero-offset reduction to be ‘image preserving’, i.e. for the associated normal
operator to be pseudodifferential, we mention

Assumption 5. The projection
Yy - Ao — T*Yo\o

is an embedding.

(In fact, Assumption 4 with ¥¢ = ¥y implies that 7y, is an immersion.) This assumption is
most easily verified by checking whether an element (yo,70) in 7*Y\0 uniquely determines
an element (xo,&o = 02,Tp) in T*X\0 smoothly; here, Tj is the zero-offset traveltime. (In
fact, Assumption 5 implies that the projection 7y, is a diffeomorphism, which coincides
with Beylkin’s condition (Beylkin, 1985).)

Remark 2.6.1. Assumptions 4 and 5 precisely allow the introduction of so-called map
migration-demigration between the wavefront set of zero-offset data and the wavefront set
of the singular medium perturbation.

In the absence of Assumption 5 we introduce the notion of the exploding reflector (ER)
model in the following
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Remark 2.6.4. Subjecting the configuration to Assumption 5, the exploding reflector
modeling, Fp, is up to leading order singularities equivalent to restricting the multiple-
offset modeling to zero offset, RodG, where Ry is the restriction of X x X x]0,T[ to Yp.
Otherwise, the exploding reflector models only part of the zero-offset data.

2.7 Transformation to zero offset: Dip MoveOut

In applications, the data at zero offset is usually missing: Receivers cannot be placed
on top of sources. Hence, as a first example, we analyze the continuation of multiple finite-
offset seismic data to zero-offset seismic data. Dip MoveOut is the process following upon
composing ER modeling with Ly, the imaging GRT for a neighborhood of a given value of e
(conventionally for given value of offset r — s); the sing supp of the Lagrangian-distribution
kernel of the resulting operator is what seismologists call the DMO ‘impulse response’. The
compose, FyL, is a well-defined operator D'(Y') — D’(Yp). Its wavefront set is contained in
the composition of the wavefront sets of Fjy and L (Duistermaat, 1996, Thm. 1.3.7), hence
in the composition of canonical relations,

Ag oA} ={(zt0,(,70;8,7,t,0,p,7) | 3 (z,€,€) such that
(Z,t()vaTO;myg) € AE and ("L‘7e,€a€;3a7‘»t70$ p7T) € AL}
C T*Yo\0O x T*Y\O . (2.25)

with A} = {(z,&;s,7,t,0,p,7) | 3 € such that (z,e,&,¢;s,7,t,0,p,7) € Ap}. Whether the
compose is an FIO is yet to be investigated.

Using the parametrization of Ag in (2.24) and the parametrization of Ay, in (2.13), the
compose (2.25) can be evaluated through solving a system of equations, the first n being
trivial fixing the scattering point 2oy = z, the second n equating the cotangent vectors

27100, T (20, g) = 70, T™ (20, 5,7) — (€, 0™ (20, 5,7)) . (2.26)

&o(%0,a0,70) .ﬁ(m)(z(),s,r,r,e)

Given zg, these constitute n equations with the n unknowns (g, 79). Thus for each (s, r, 7, ¢€)
we need to solve these equations.

Note that, given e = e(™)(zq, s,7), we can obtain r from s (cf. (2.11)). Thus we can
parametrize the composition Ag o A} by (zo,s,7,¢). We can interpret the computation of
the composition as follows: (i) Given (z¢,s) we compute 7 and then T™); (ii) then, given
(7,€) we compute o = o™ and p = p(™); (iii) we solve (2.26) for (g, 7o); (iv) with these
initial values, we solve the Hamiltonian flow (with (2.2) in the exploding reflector model)
up to its intersection with the acquisition manifold Yy, from which we deduce ty and z, as
well as (.

Theorem 2.7.1. With Assumptions 2 and 3 the composition FoLy yields a smooth family
of FIOs parametrized by e. The compose is called Dip MoveOut. Its canonical relation is
given by (2.25)

Ap=AgoUL = {(Z, to, ¢, 70; 8,7, t, 0, p, T)}
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[deFo(N~YL is an FIO, D'(Y) — D'(Yo). With Assumption 5 the reduced dataset is
image preserving.

The proof follows that of Theorem 2.3.2 closely (see (Stolk & de Hoop, 2002, Thm. 4.5)).

Remark 2.7.4. The adjoint (FoLy)* is by Theorem 2.7.1 also an FIO. This operator is
called ‘inverse’ DMO.

2.8 Continuation, transformation to common azimuth

Continuation

We analyze the ‘continuation’ of multiple finite-offset seismic data.

The compose FL is a well-defined operator D'(Y) — D'(Y). Its wavefront set is
contained in the composition of the wavefront sets of F' and L (Duistermaat, 1996, Thm.
1.3.7), hence in the composition of canonical relations,

Ap o A}, = {(s2,72,t2, 09, p2,T2; 51,71, 1,01, p1,71) | 3 (2,€,€) such that
(32,7"27t2,‘72,/02a7'2§$,€) € AF and (1'767675;SlarlatlaalaplaTl) S AL}
C T*Y\0 x T*Y\0. (2.28)

Whether the compose is an FIO is yet to be investigated.

Using the parametrizations of Ap in (2.8) and Ay, in (2.13), the compose (2.28) can be
evaluated through solving a system of equations, the first n being trivial fixing the scattering
point xg = z, the second n equating the cotangent vectors

190, T (z0, @, B) = 110, T (z,5,7) — (¢, 0,€™ (z,5,7)) . (2.29)
ENCES £ (2,5,7,71,6)
Given e(z,o,8) = e (n — 1 constraints) these constitute n equations with the 2n — 1

unknowns (a, 3,72). (On D™ the constraints on e can be invoked on s, r instead, viz. via
the inverse of the map (z, o, 5) — (z, s, ) as before.)

Lemma 2.8.1. With Assumptions 2 and 3 the composition F Ly yields a smooth family of
FIOs parametrized by e. Their canonical relations are given by

Ac = ApoUr = {(s2,r2,t2,09,p2,72;51,71,t1,01,p1,71) }

parameterized by (g, a, $1,71,€), where upon substituting x = x¢ and once ry is obtained
from si through the value e of €™ (which mapping is defined below equation (2.11)),
(s1,71,t1,01,p1) are given in (2.18), and, given («,¢€), (s2,7r9,t2,09, p2) are giwen in Theo-
rem 2.3.1 in which (3,72) are obtained by solving (2.29).

Proof. First we extend the operator F' to act on distributions in £'(X x E) by assuming
that the action does not depend on e € E. The calculus of FIOs gives sufficient conditions
that the composition of two FIOs, here F' and Ly, is again an FIO. The essential condition
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resulting operator is what seismologists call the AMO ‘impulse response’. The composition
F Ly has been addressed in Lemma 2.8.1. The general restriction has been addressed in
Section 2.5. Here we combine these results in the following

Theorem 2.8.4. With Assumptions 2, 3 and 4 with Y ¢ = Yy, the composition RLF Ly
yields a smooth family of FIOs parametrized by e. The resulting operator is called Azimuth
MoveOut.

The following Bolker-like condition ensures that the restriction to common azimuth is
‘image preserving’. Let A4 denote the canonical relation of RLF in accordance with the
analysis of Section 2.5,

Assumption 7. The projection
my, @ Aa— T*Y4\0

is an embedding.

This assumption is most easily verified whether an element in 7*Y4\0 uniquely deter-
mines an element in 7% X\0 smoothly given the medium co.

Using ‘all’ the data (when available), integration over the (n—1) dimensional e removes
the artifacts under the Bolker condition, Assumption 2: We obtain the transformation to
common azimuth (TCA)

Corollary 2.8.5. Let (N~!) denote the regularized inverse of the normal operator in Theo-
rem 2.3.2. With Assumptions 1, 2 and J (with £¢ = X 4), the composition R4 F(N 1) F* =
[deRYF(N~YL is an FIO, D'(Y) — D'(Ya). With Assumption 7 the reduced dataset is
1mage preserving.

The proof follows that of Theorem 2.3.2 closely (see (Stolk & de Hoop, 2002, Thm. 4.5)).

2.9 Examples

We give a seismologists’ perspective on Dip and Azimuth MoveOut. We illustrate their
perspective in the constant coefficient cg case. This is the common case where the associated
transformations are applied. In this paper, however, we have established the methodology
to honor the heterogeneity in the subsurface.

The smooth background coefficient function cg is called the (seismic) velocity model
and characterizes the speed at which waves travel through the medium. Invoking Cartesian
coordinates, the acquisition manifold is obtained by setting the nth coordinate of s and r to
zero. Then O and O, are open subsets of a plane hypersurface. In seismology, the midpoint
in this hypersurface is defined as y = %(s + ) and the offset is defined as h = %(r —s). In
some sense, the midpoint is associated with the direction of £ while the offset is a particular
choice for e. Here, we assume that cg is constant. We will illustrate both DMO and AMO,
i.e. the singular supports of their respective kernels. In this section, we will highlight the
transition from a parametrization including (y, h,t) to a parametrization including (s, e, )
where e relates to the scattering angles.
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Figure 2.6. Notation for the derivation of the constant medium impulse response (cf. Ap-
pendix A). Black lines are rays, the dashed white curve is the zero-offset isochron, the solid
white curve is the e ‘isochron’ and the black dot is the location of the scattering point for
the rays shown in Figure 2.5.

that the shape of the finite e ‘isochron’ differs from the one of the finite h isochron, but
that the shapes of exploding reflector model isochrons are the same.

Figure 2.7 shows the ‘isochron’ in the (s,e,t) parametrization for different values of
e. All isochrons, except the exploding reflector one, have two points in common. One of
these is the point at which the source ray travels for one time sample less than the full
(fixed) time before the ray is scattered and returns to the acquisition surface; the other is
the source point.

The impulse response of the DMO operator is the zero-offset traveltime to and the
distance dp from the source (s) to the exploding reflector source/receiver position (z) both
as a function of the direction (6;) of the ray at the source (related to o); all other parameters
are fixed. In Figure 2.8 we plot these functions parameterically against one another. They
are derived in Appendix A.

Azimuth MoveOut

The azimuth in Azimuth MoveOut Biondi et al. (1998) is the polar angle associated
with the two-dimensional offset (n = 3) in the acquisition manifold. As the key parameter,
we will employ the azimuthal angle in e rather than azimuth in A.

The composition of canonical relations that determines the AMO canonical relation,
implies the ‘matching’ in (z, &) of two ‘isochrons’; one associated with the imaging operator
Ly and one associated with the modeling operator F. The points at which these two
‘isochrons’ touch and share the same (co)tangent plane are the points which contribute to
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Figure 2.9. Surface plot of the AMO impulse response as a function of input ray directions.

the canonical relation of the AMO operator.

The impulse response of the AMO operator is the traveltime to as a function of the
direction ((fs,s)) of the ray at the source (related to o); all other parameters are fixed.
In Figure 2.9 we plot this function. The expression is derived in Appendix B.
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Chapter 3

The applicability of DMO/AMO in the presence of
caustics!

3.1 Summary

Reflection seismic data continuation is the computation of data at source and receiver
locations that differ from those in the original data, using what data are available. We
develop a general theory of data continuation in the presence of caustics and illustrate it with
three examples: dip moveout (DMO), azimuth moveout (AMO), and offset continuation.
This theory does not require knowledge of the reflector positions. We construct the output
data set from the input through the composition of three operators: an imaging operator,
a modeling operator, and a restriction operator. This results in a single operator that
maps directly from the input data to the desired output data. We use the calculus of
Fourier integral operators to develop this theory in the presence of caustics. For both
DMO and AMO, we compute impulse responses in a constant-velocity model and in a
more complicated model in which caustics arise. This analysis reveals errors that can be
introduced by assuming, for example, a model with a constant vertical velocity-gradient
when the true model is laterally heterogeneous. Data continuation uses as input a subset
(common-offset, common-angle) of the available data, which may introduce artifacts in the
continued data. One could suppress these artifacts by stacking over a neighborhood of input
data (using a small range of offsets, or angles, for example). We test data continuation on
synthetic data from a model known to generate imaging artifacts. We show that stacking
over input scattering angles suppresses artifacts in the continued data.

3.2 Introduction

Data collected in the field are often not ideal for processing. For example, zero-offset
data are important in seismic data processing but limitations preclude collecting such data
in the field. In general, we refer to methods to remedy this problem as data continuation
or data mapping. Stolt (2002) gives an excellent description of why data continuation is
necessary, as well as a theory for performing data mapping with a constant-background-
velocity model. Patch (2002) gives an example of data continuation in medical imaging.

!This chapter has been published, along with Appendices C, D, E, and F as:
Malcolm, A. E., de Hoop, M. V. and Le Rousseau, J. H. 2005. The applicability of DMO/AMO in the
presence of caustics. Geophysics 70 S1-S17.
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Data continuation is not a stand-alone process but rather exists within a larger frame-
work. Imaging-inversion, migration-velocity-analysis and ‘offset’ continuation are closely
dependent on one another; the operators that connect the three processes are the annihila-
tors of the seismic data (Stolk & de Hoop, 2002; Brandsberg-Dahl et al., 2003b).

We first give an outline of how the continuation operators are constructed and then
show three examples: DMO, AMO and offset continuation in shot records. To illustrate the
properties of the first two operators we compute their impulse responses in both a constant-
velocity model and a gas lens model. For the offset continuation section, we demonstrate the
applicability of our theory by filling in missing offsets in synthetic shot records. We include
three appendices with derivations of certain parts of this theory in constant-velocity media.
Appendix A contains the derivation of the impulse responses in closed form. In Appendix B
we derive an expression for the amplitudes of the data continuation operator. This result
could also be applied in varying velocity models by using the root-mean-square velocity
as a local approximation to the true velocity. In Appendix C we show that if the input
and output data configurations are the same, the operator does not change the positions of
reflections in the data.

3.3 Imaging-Modeling-Restriction

Data continuation is developed from the composition of three processes: imaging/migra-
tion, modeling, and restriction. By composition we mean applying one operator after an-
other and simplifying the result, by integrating over intermediate phase variables, into a
single operator. The continuation process is a single operation that computes data for the
desired acquisition geometry from the original data. This is similar to the derivation of
AMO (Biondi et al., 1998), in which the observed data are first migrated to form an image
of the subsurface (imaging), from which data with another acquisition geometry are mod-
eled (modeling). The output data are assumed to have a certain acquisition azimuth, which
is accomplished with the use of a restriction operator.

Composing the operators, given the acquisition surface, requires that we impose cer-
tain conditions on the velocity model (e.g., removing grazing caustics, caustics that are both
at and parallel to the acquisition surface). In our scheme, the first operator, the imaging
operator, is a Generalized Radon Transform [GRT; Miller et al. (1987) and de Hoop &
Brandsberg-Dahl (2000)]. The second operator models the data for all possible (continu-
ous) source and receiver positions at the surface, using an image of the subsurface as input.
The final operator restricts this modeling operator so that only the desired output data are
modeled, rather than the complete data set. Composing the three operators yields a single
operator that computes the desired output data directly from the input data. This com-
position is done in Appendix B, for a general continuation operator, in a constant-velocity
(or mildly depth varying) model. All three operators are Fourier integral operators (F10)2.

2Fourier integral operators, which generalize Fourier integrals, can be used to solve wave equations.
These operators are characterized by an amplitude and a phase, but the phase is not necessarily linear in the
space variables as it is in Fourier transforms. Stationary phase analysis yields a leading-order asymptotic
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the final operator. In some cases, for example 3D DMO in constant media (Bleistein et al.,
2000, p. 326), additional phase variables must remain in the final operator, as explained in
Appendix A of de Hoop et al. (2003a).

3.4 DMO

For DMO, finite-offset data are used in the imaging step, after which (normal-incidence)
zero-offset data are modeled. When the zero-offset modeling is done by restricting a
multiple-offset modeling operator to zero-offset, data from non-normal incidence data will
also be modeled. We construct an exploding-reflector (Loewenthal et al., 1976; Claerbout,
1985) modeling operator and use it in place of the restricted modeling operator. The
exploding-reflector modeling operator models only a single ray from the scattering point, to
the surface point. (From this point onward we will refer to this, single, ray as the zero-offset
ray and the associated data as zero-offset data.) This means that for DMO the composition
of three operators (imaging, modeling, and restriction) is reduced to a composition of only
two (imaging and exploding-reflector modeling).

Using the exploding-reflector modeling operator rather than the full zero-offset model-
ing operator results in a different amplitude for the final transformation to zero-offset (TZO).
A partial explanation for this is that the exploding-reflector operator models the data along
a single ray as if the wave speed of the medium were half its true value, while the zero-
offset modeling operator models two rays (up- and down-going) in the true medium, with
coincident surface and subsurface positions. The amplitude of the exploding-reflector mod-
eling operator differs from that of the restricted multiple-offset modeling operator (RMO);
the RMO models a ray that travels from the surface to the subsurface applying geometrical
spreading, followed by modeling a ray from the subsurface to the surface applying geometri-
cal spreading once again (thus resulting in the geometrical spreading squared). In contrast,
the exploding-reflector modeling operator considers the geometrical spreading for just one
ray with half the wave speed along the path.

3.4.1 Homogeneous model

For any operator, we can construct a table relating the input parameters to the output
parameters. In migration, for example, this table would relate a point in the subsurface
(the output of migration) to the source position, receiver position and two-way travel time
(the input to migration). The table can be parameterized in different ways. For example,
midpoint and offset, or source position and scattering angle can be used in place of the
source and receiver positions. Fixing different sets of these parameters allows us to plot
cross-sections of this table. (We use the term cross-section in analogy with the cross-sections
of a function; a cross-section of a function of two variables is the function values as a function
of one variable with the other variable held fixed.) As a first example, we plot the standard
migration ellipse in Figure 3.1; in this case the midpoint, offset and traveltime are fixed
giving us a particular cross-section of the table. Similarly we can fix the source point,s,
scattering angle, 8, and traveltime giving what we will call an angle isochron. An example
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Figure 3.2. Angle DMO, in a constant-velocity medium (v = 1.7 km/s). The black lines
are rays; the dashed white line is the exploding-reflector isochron; the solid white line is
the angle isochron. The black dot is the scattering point from Figure 3.1; this point will
have a different contribution to the operator illustrated in this figure than it does to the
operator illustrated in Figure 3.1. The angle 6y, between the zero-offset ray and the surface
is variable; it depends on the particular value of the scattering angle. This illustration
shows 6y close to 90°, which is not generally the case. The notation shown in this figure is
used throughout the text and in Appendix A, where the impulse response is computed.
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Figure 3.3. Angle isochrons in a constant-velocity medium (v = 1.7 km/s), for various
scattering angles. All other parameters are the same as in Figure 3.2. The smaller the
scattering angle, the deeper the isochron penetrates into the model. The angle isochron for
the smallest scattering angle shown, 2.86°, is the closest to the exploding-reflector isochron
(black circle), and the angle isochron for the largest scattering angle, 148.97°, is the shal-
lowest line. This plot shows several cross-sections of the migration table described in the
text.
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Figure 3.5. DMO impulse response for a constant-velocity medium, for scattering angle 45°,
velocity 1.7 km/s, T'= 2 s. The spacing of the points is constant in take-off angle at the

source ray (increments of 5.73°). Areas of the impulse response with denser sampling, which
are regions of high curvature, can be expected to have relatively high associated amplitude.

0.8

To compute the impulse response in the angle domain (using the notation of Fig-
ure 3.2), we fix the scattering angle 6, the source position s, and the traveltime T' = t; +t,,
and compute the one-way zero-offset traveltime t¢ as a function of the distance, dg, from
the source position s to the zero-offset source/receiver position z. In a constant-velocity
medium, this impulse response can be computed in closed form. This is done in Appendix A.
Figure 3.5 shows the impulse response for angle DMO, as derived in Appendix A. This im-
pulse response is the zero-offset traveltime as a function of the distance from the source
position to the zero-offset position (the distance dy in Figure 3.2). The solid line is the
closed-form solution, and the points are computed numerically with ray tracing; the spac-
ing between the points is constant (increment 5.73°) in the take-off angle 5 (defined in
Figure 3.2).

3.4.2 Gas-lens model

The gas-lens model consists of a vertical velocity gradient (0.45 s~!) beginning at
1600 m/s, with a low-velocity circular lens with Gaussian parameter variations (maximum
velocity contrast 800 m/s) located at lateral position 4600 m, and depth 600 m, with a
diameter (Gaussian standard deviation) of 600 m. This model, introduced by Brandsberg-
Dahl et al. (2003a), is based on a feature in the BP Valhall field. Throughout this subsection,
we compare results for this model with those of a constant-velocity-gradient model (the same
as the lens model but without the lens). The background shading of Figures 3.6 and 3.7
depicts the velocity model, with darker shading indicating higher velocity.

In Figure 3.6, we show the relationship between the shape of the angle isochron in
the lens model (solid line) and that in the constant-gradient model (dashed line). The
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Figure 3.7. Raypaths in the lens model for scattering angle fixed at 45°. This figure
illustrates the origin of the complicated structure of the angle isochron by showing the rays
that were used to compute it. Where both white and black rays are present, white rays
come from the main branch while black rays come from inner (closer to lens) branches.
Each panel shows a different region of the same angle isochron.
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Figure 3.8. Angle DMO impulse responses for the lens model for scattering angles of 40° (a
and b), 45° (c and d), and 50° (e and f). The dashed box in a, ¢, and e outlines the region
shown in b, d, and f. The dashed curves in ¢ and d are the impulse responses computed in
the constant vertical velocity gradient that makes up the background of the lens model.
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Figure 3.10. 3D angle isochron in a constant-velocity medium, the asterisk indicates the
position of the source. This extends to three dimensions the angle isochron shown in 2D in

Figure 3.2.
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Figure 3.13. AMO impulse response for the lens model. Compared with the impulse
response for DMO (2D case) in Figure 3.8, the 3D nature of AMO introduces further
complications in this impulse response.

spherical lens with Gaussian parameter variations of 100 m diameter (standard deviation
of Gaussian) with center at x; = 600 m, x5 = 600 m, x3 = 100 m and a maximum velocity
contrast of 800 m/s. The model extends to x7 = 2400 m, xo = 2400 m, 23 = 800 m with
an initial velocity of 1600 m/s and a vertical gradient of 0.45 s~ .

The angle isochron, shown in Figure 3.12, exhibits a gross shape similar to that in
the constant-velocity case (Figure 3.10). Just as with the 2D angle isochron (Figure 3.6),
the 3D version has a complicated shape, in which we recognize the presence of caustics.
Figure 3.13 shows the AMO impulse response, which bears little resemblance to that for
the constant-velocity model (Figure 3.11). The complications in the AMO impulse response
and angle isochrons for the lens model are significantly greater for the 3D problem than for
the 2D one.

3.6 Synthetic Data Example

We show an example of data continnation. The example uses the same 2D lens model
used for the DMO impulse response calculations, with the addition of a reflector from
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is based on the escape equations developed by Sethian (2002).

Figure 3.15 shows the results of this procedure applied to the data in three synthetic
shot records for the model in Figure 3.14. The top panels show a shot record reconstructed
away from the influence of the lens. At this position the event is filled in correctly. Because
the event is so simple at this point, interpolation would work just as well. The second
panels down show the reconstruction of a shot record on the edge of the lens. Traces with
events from both the dipping and flat portions of the reflector are missing, making the
reconstruction more difficult. The reconstruction is reasonably successful although there
are some amplitude errors. The next panel down shows a shot record for the shot right
over the lens. We have removed the traces containing the caustic and are attempting to fill
them in with the algorithm. Again the reconstruction is not perfect but it is considerably
better than what would have been achieved using conventional interpolation schemes. The
data shown have been bandpass filtered to match the frequency content of the original
data. We expect some amplitude inaccuracies because the amplitudes are obtained from
equation (E.27) which are for a constant velocity model, whereas this model is clearly more
complicated. In these examples we have corrected for only the obliquity factor (|cos8;|?).

The single shot record in Figure 3.16 shows the same computation as above it with a
range of only 2° in scattering angle for the input data (compared with the section above it
which uses all the available data). A particularly high amplitude artifact appears just below
the latest true event in this section. This example can be generated much more quickly
than the other images because so few input angles are used. The other panels most likely
use more angles than necessary and so the optimal data quality and computational time
trade-off is probably somewhere in between the two.

Finally, to mimic the DMO discussion above, we show in Figure 3.17 the exploding
reflector data computed from the original data set (with offsets from —6 to 7 km) while
removing offsets from —100 m to 100 m. The smallest offset data (offset of 6 m) from the
true data set are shown for comparison. This illustrates the difference between zero-offset
modeling and exploding reflector modeling.

3.7 Conclusions

We have described and illustrated a method for source-receiver continuation of seismic
data in the presence of caustics. In the absence of caustics the method reduces to a form of
offset continuation. The computational complexity of this method depends on the geologic
complexity and varies in space as the geology changes. In the most complex situation a
table must be constructed relating the subsurface and surface parameters, and a search
performed in this table; the computational complexity depends on the algorithms used to
perform these steps. Both DMO and AMO are examples of data continuation that can
be obtained from the continuation framework presented here. It is possible to continue
data only when the subsurface point and reflector orientation generating the data point
are sampled in the original data set. Thus, the issue of illumination is directly related to
data continuation. Similarly, data continuation provides a framework for estimating the
smallest necessary data set, by using a combination of acquisition and data continuation
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Chapter 4

A method for inverse scattering based on the
generalized Bremmer coupling series!

4.1 Summary

Imaging with seismic data is typically done under the assumption of single scattering.
Here we formulate a theory that includes multiply scattered waves in the imaging process.
We develop both a forward and an inverse scattering series derived from the Lippmann-
Schwinger equation and the Bremmer coupling series. We estimate leading-order internal
multiples explicitly using the third term of the forward series. From the inverse series, two
images are constructed, one formed with all the data, the other with the estimated leading-
order internal multiples; the final image is formed from the difference of these two images.
We combine the modeling of the leading-order internal multiples with the construction of
the second image resulting in one two-part imaging step.

4.2 Introduction

A seismic experiment is typically modeled as a set of sources at the Earth’s surface
that generate waves that are reflected once from medium discontinuities in the subsurface
and recorded at a set of receivers again located on the surface. The goal of this paper
is to move beyond the single-reflection assumption to allow for multiply scattered waves.
We consider only scalar waves and assume that the sources and receivers are on the same
horizontal surface. A finite collection of scatterers with a separation large compared to the
wavelength is also assumed, so that each reflection may be treated separately.

Fokkema & van den Berg (1993) developed a rigorous theory for the suppression of
surface-related multiples. A surface-related multiple is a wave that has been reflected at
least three times, with at least one reflection at the surface. Their analysis is derived from
the reciprocity theorem in integral form and results in a Neumann series representation to
predict surface-related multiples. If assumptions allowing the construction of data at zero-
offset, such as those given by de Hoop et al. (2003a) are satisfied, then, in theory, Fokkema
and van den Berg’s theory solves the surface-related multiple attenuation problem. This

!This chapter has been accepted, along with Appendices J and K to Inverse Problems as:
Malcolm, A. E. and de Hoop, M. V. A method for inverse scattering based on the generalized Bremmer
coupling series.
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multiples (Fokkema et al., 1994; Berkhout & Verschuur, 1997; Verschuur & Berkhout, 1997;
van Borselen, 2002). In these methods, a particular layer is identified as the multiple gen-
erator (i.e. the layer where the second reflection occurs) and the surface-related multiple
attenuation is adapted to be applied at that layer. Dragoset and Jeri¢evié¢ give a practical
algorithm for attenuating surface-related multiples in (Dragoset & Jericevié, 1998); an algo-
rithm such as that discussed by Dragoset and Jeri¢evié¢ could be used for internal multiples
in any of the mentioned extensions. Weglein and others (Weglein et al., 1997) have used the
Lippmann-Schwinger series to model and process seismic data, including the suppression
of both surface-related and internal multiples, without knowledge of the velocity model. In
ten Kroode (2002) the mathematical theory behind that approach is given in both one and
two dimensions. He shows that internal multiples can be estimated without knowledge of
the velocity model if the velocity model satisfies two conditions: ten Kroode’s traveltime
monotonicity assumption (this condition is described in Appendix K), and the condition
that the wavefield contains no caustics. When the two assumptions of ten Kroode are sat-
isfied, our method can be rewritten in a form consistent with the method of Weglein et al.
(1997); this is discussed further in Appendix K. Jakubowicz (1998) proposes a method
for modeling internal multiples by correlating one primary reflection with the convolution
of two other primary reflections; his approach implicitly uses the Bremmer series and is
similar to the work presented here under ten Kroode’s traveltime monotonicity assumption.
Kelamis et al. (2002) use an approach similar to that of Jakubowicz, in which the multiples
are constructed from a combination of different data sets, both at the surface and in the
subsurface. In any method that predicts internal multiples and subtracts them, an adaptive
subtraction technique such as that suggested by Guitton & Verschuur (2004) must be used.

Aside from reflection seismology, there are other applications in which multiply scat-
tered waves are important. In earthquake seismology, Burdick & Orcutt (1979) investigate
the truncation of the generalized ray sum, from which they find earth models in which the
inclusion of internal multiples becomes important. Revenaugh & Jordan (1987) observe
both internal and surface-related multiples and use them to estimate the attenuation qual-
ity factor, @, of the mantle. In (Revenaugh & Jordan, 1989, 1991), the same authors use
multiples to investigate layering in the mantle. Bostock et al. (2001) use incident teleseismic
P-waves scattered from a free surface and then subsurface structure before being recorded
in an inversion scheme in which the teleseismic P-wave coda is used to invert for subsurface
structure. For synthetic aperture radar (SAR) data, Cheney & Borden (2002) derive a the-
ory to relate the singular structure (wavefront set) of the object to the singular structure
of the multiply scattered data.

In the next section we describe the techniques of the directional decomposition used in
the Bremmer series. In the third section, we describe some of the details of the construction
of one-way Green functions. This is followed by a description of the contrast-source method
used for the Lippmann-Schwinger series. In the fifth section, we construct the hybrid series.
In the sixth section we use the hybrid series to model data, giving the first of our three
main results in (4.84). The proof of this result is given in Appendix J. Following this,
we summarize a method of constructing an inverse to the modeling operator. We then
describe, through a series of results in Section 4.9, a method to estimate artifacts in the
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of pseudodifferential operator matrices Q(z) such that microlocally,

U= ( u ) —Q@)D,  X= ( B > —Q()M. (4.5)
The diagonalization procedure requires that cut-offs be applied to U to remove constituents
of the wavefield that propagate anywhere horizontal; these cut-offs are described in the
following section. We have omitted any indication that these cut-offs are not present in this
section to keep the notation in this section consistent with the notation in the remainder
of the paper, in which the cut-offs are assumed to have been applied. In this notation, u4
satisfy the one-way wave equations

(10, + Q(2)0.Q () -B) U = X, (4.6)

where [ is the identity matrix, introducing

(4.7)

— B ] anIZ’D O
B=Q(2)AQ'(2) = ( e 37:0 g iB_(z,z, Dy, Dy) ) ’

where By has principal symbol by(z,z,&,7) = £7+/c(2,2)72 — 772||¢||2 = Lb(2,1,€,7),
which corresponds with &, in the seismological notation.

With the conventions used here, uy represents downward propagating waves and u_
represents upward propagating waves. (As is standard in geophysics, we have chosen the
positive z-axis downward.) The columns of the Q operator matrix are an operator general-
ization of eigenvectors and we are free to choose their normalization in the operator sense.
We choose the vertical power flux normalization of de Hoop (1996) so as to make B in
(4.6) self-adjoint (the normalization changes the sub-principal part of the operator). In this
normalization, the composition and decomposition operators are

1@ —HQ, ) -1 ( QL QL )
- , = a -1, 4.8
=3 ( @) HQ- ? HQT' —HQZ! “8)
where * denotes the adjoint of the operator, H is the Hilbert transform in time, and the

)—1/4

principal symbol of both Q4 is given by (ﬁ; — I€I1? . From these expressions we

find that
w=Qhus +Q u_, and fo=+IHQLF. (4.9)

The @+ operators act in the time variable as time convolutions.

In the flux normalization, the term Q19,Q in (4.6) is of lower-order in the singularities
(i.e. the operator is smoothing in comparison with other terms), thus we omit it. If required,
its contribution can be accounted for by including it in the B matrix. We introduce the
propagators for the one-way wave equations (4.6) as

(0. +B)L=15, L= ( “ ) (4.10)
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Zmin,—

Figure 4.1. Removing horizontal propagations. The symbol of the cut-off operator v is
one up to an angle 6; and then decays smoothly to zero at the angle 6. This removes all
propagation at angles larger than 609, i.e., the region within the gray wedges.

In phase space, we introduce the set
Iy = {(2,z,t,¢,&,7) | arcsin(c(z, z)||7 7€) < 8,|¢] < C|7|}, (4.14)
illustrated in Figure 4.2, where C' is the maximum slowness. Finally, we construct the sets

J_(20,0) ={(z,z,t,(,&,7) € Iy |7'”1C < 0 and zpax—(2,2,&,7,0) > 2o}, (4.15)
and
Ji(20,0) ={(z,2,t,(,& 7)€ Ig|7"1§ > 0 and zyint (2, 2,€,7,0) < 20}. (4.16)

Figure 4.1 illustrates the set J_(zg, 62), considering the shaded region as excluded from the
set.

The sets J1 encompass the regions of phase space that must be excluded in order to
remove horizontally propagating singularities while analyzing G 4 (z, zp). To actually remove
singularities from these regions, we define a pseudodifferential cutoff
Yo =1_(z, 29,2, Dy, Dy) with symbol satisfying

Y_(z,2,§,7) ~ 1lon J_(z20,61), (4.17)
Y (z,x2,&,7) € S outside J_(z0,62), if z— 2z > > 0; (4.18)

here 0 < 6; < 6. Singularities propagating at an angle less than 6; are unaffected by the
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G* (20, xo,to — t, z, ) follows from

/dso dto v(z0, so, to) </ds dt G_(z0, s0,to — t, 2, s)u(z, s,t))
= /ds dt (/dso dto v(zo, S0, t0) G- (20, s0,t0 — t, 2, 3)> u(z,s,t)

= /ds dt (/dso dto(G_(20,2))*(s,t — to,so)v(zo,so,to)> u(z,s,t)
(4.21)

Using the self-adjoint property of B, G_(zq, so,t0 — ¢, 2, 5) = G4 (2, s,t — to, 20, So), microlo-
cally so that (G_(z9,2))* = G4(z,20). A similar result holds with + and — interchanged.
Note that G4 are causal.

Remark 4.4.2. The G4 propagators obey the reciprocity relation (of the time convolution
type)
Q4(2)G (2, 20)Qx (20) = — Q" (20)G— (20,2)Q(2).. (4.22)

This reciprocity relation is derived from the reciprocity of the full-wave Green propagator.

Remark 4.4.3. We have
G_(2,2)G_(¢,2") = G_(z,2"), (4.23)

for z < 2/ < 2”; this property is known as the semi-group property. The same property
holds for G .

In the above, we have nowhere assumed the absence of caustics in the wavefield.
This section has addressed the necessary assumption that rays are nowhere horizontal:
the double-square-root DSR assumption (Stolk & de Hoop, 2004a, Assumption 2).

4.5 Scattering: Contrast source formulation

The Bremmer formulation assumes a degree of smoothness in the velocity model. In
the contrast formulation of the Lippmann-Schwinger approach, the velocity, ¢, is split into a
background, cp, which is here assumed to be smooth (C'*°) and a singular contrast, dc, which
is here assumed to be a superposition of conormal distributions. A series is then constructed
with terms of increasing order in dc. We use a hybrid of the two approaches; the contrast-
source integral equation (Lippmann-Schwinger) subjected to a directional decomposition
(Bremmer). We begin with the wave equation in the smooth background and in the true
medium respectively

(8. + Ao)Do = M, (3, +A)D = M, (4.24)

where the subscript 0 indicates that an operator is using the smooth background parameters
and no subscript indicates an operator acting on the full medium. Subtracting the equation
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operators of de Hoop (1996) viz,

) - . S., S
V = QADIQ ! = 1K ( _gf : gi _gf ’ g; ) p? = ( st ) D?. (433)

Here, S; 4 and S__ are interpreted as transmission operators since they govern scatterings
between singularities traveling in the same principal direction before and after scattering.
In contrast, S;_ and S_, are interpreted as reflection operators because they govern scat-
terings that result in a change of principal direction; from up-going to down-going and
down-going to up-going, respectively.

To simplify the notation, we define

Py =0, + By, (434)

Lo = ( Cf; c?_ ) . (4.35)

Recall also that V' = Q(z) dA Q~1(z) from (4.33). In this notation, (4.31) reduces to

and its forward parametrix,

Py U = -VU, (4.36)

" §U = —Lo(VU). (4.37)

The V operator is a distributional multiplication along with a second time derivative,
whereas L is the forward parametrix of a partial differential operator. Writing U = U+ 06U
gives

§U = —Lo(VUp) — Lo(V6U), (4.38)

or equivalently,
(I+Lo V) U =—Lo(VUy). (4.39)

As was done in (4.26), we take out the time derivative in the formulation of V. Thus we
introduce V', the matrix of Sy operators (cf (4.33)), viz,

V(z,2,D;) = V(z,2)D?, (4.40)

which results in R R
(I+D?Ly V) 6U = —D2Lo(VUy), (4.41)

where V§U and VUO are products of distributions (subject to the condition that their wave-
front are favorably oriented (Friedlander & Joshi, 1998, proposition 11.2.3), (Hérmander,
1983, Theorem 8.2.10)). This is the resolvent equation in our hybrid Lippmann-Schwinger-
Bremmer formulation for scattered waves. (See Yosida (1995) for details on resolvent equa-
tions.)
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where
§UL(V) = DILo(VUy), and Unm(V) = D2Lo(VoUn_1(V)), m=2,3,....  (4.43)

Each subsequent term in the series is a multilinear operator of higher order than previous
terms.

To compare the Bremmer series formulation ((VII.1)-(VIL.22) of de Hoop (1996)) to
the recursion in (4.42) we first make the following identifications. From (VII.1) and (VIL.12)
we note that Wy of de Hoop (1996) corresponds to 6U;. From this formulation we note that
—D2LoV corresponds with K of equation (VII.15) in de Hoop (1996) and (4.42) corresponds
to equation (VII.22). The major difference between this hybrid series and the Bremmer
series is in that the coupling of the different components is different. In the Bremmer series
the reflection and transmission operators come from derivatives of the medium contrast
whereas in the hybrid series they come from difference between the reference and true
model. We use this hybrid formulation to derive operators that model both ‘singly’ and
‘triply’ scattered waves.

The expressions in (4.42) and (4.43) are not quite in the form of observables, however;
data are acquired only at the Earth’s surface, but the Ly operator models data at all depths.
We therefore define a restriction operator, R, which restricts a distribution to the acquisition
surface, z = 0. This operator does not account for the free-surface boundary condition, thus
we assume a homogeneous medium (with no reflectors) above the acquisition surface. In
this we way have excluded incoming waves from above the acquisition surface. We assume
that there are no reflectors at or near this surface, i.e., we assume that the support of the
medium contrast, a, does not contain source or receiver points. The composition RLg is
well-defined provided there are no grazing rays (Stolk & de Hoop, 2002), which have been
excluded already by the v cut-off from section 4.4. The composition with Q1 also does
not change the properties of the composite operator provided we satisfy the assumptions
in the generalized Bremmer series (de Hoop, 1996). Observable quantities are obtained by
applying Q™! to 06U, as in (4.30). We thus rewrite (4.42)

M .
RQ'SUWV) =Y (=1)"RQ~16U,,(V). (4.44)
m=1
With ~ -
RQ'6UL (V) = D?RQ'Lo(VUy), (4.45)
we introduce the operator
Mo = RQ7 L. (4.46)

We then have,

RQLU(V) = ADfMo( (Uo+z 1)Uy, )>>’ (4.47)
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These equations are assumed to hold anywhere in the interior of the scattering region.
Restricting 6U to the surface and transforming it into observables by applying RQ~! to
(4.52-4.54) yields a recursion for V,, in terms of the data d,

6D = —D?My(V1Up) (4.55)
0 = —D?Mo(Vallp) + DEMo(ViLo(ViUy)) (4.56)
0 = —DIMo(V3lo) + DfMo(VaLo(Villp)) + DiMo(ViLo(Va(Uo)))  (4.57)

—D{Mo(ViLo(ViLo(ViTh)))
ete.

These equations hold on the acquisition surface, z = 0. In general, 9,d (the second compo-
nent of §D) is not recorded. We assume that we record only the up-going field, d_, from
z > 0. With this assumption, d = Q* d_ and 8,d = —HQ~'d_ allowing 8,d to be estimated
directly from d.

The first term in the series, given in (4.55), models singly scattered data. The third
term, in (4.57), models leading-order internal multiples as well as other primary events
such as the one shown on the right in Figure 4.3. (The second term, given in (4.56), models
events which have scattered twice, including primary events with one transmission and one
reflection.)

Equation (4.57) can be simplified using (4.53). This is done by noting that the distri-
butions D?Lo(VaUp) from the second term of (4.57) and DiLo(ViLo(V1Up)) from the third
term are identical by (4.53) and D2MoVy(-), which acts on these distributions (again in the
second and third terms) is a linear operator. With this simplification we have, for (4.57)

D2Mo(VsUp) = DEMo(Valo(ViUy)) . (4.58)

The general equation in the recursion follows from the fact that higher order terms are built
from lower-order terms through the application of D?MOVQ to (j —i)*P-order terms to form
terms of order j. For example, terms of order 4 are formed by subtracting D; M0171 applied
to (4.54), D?MoV; applied to (4.53), and D?MoVs applied to the right side of (4.52), from
D M0V4U0 In general terms of order j will contain sub-series of the form

D?MgV; (sum of terms of order j — 1 from (4.52)-(4.54)), (4.59)
D?MOVQ(sum of terms of order j — 2 from (4.52)-(4.54)), (4.60)

etc. For j > 2 the sub-series in parentheses sum to zero because of the zero on the left-hand
side of (4.53).

We obtain the final form of the recursion,

D2Mo(V;Up) = DiMo(V;-1Lo(ViUp)), 5 > 2,
_ (4.61)
while D2Mq(V,Up) = —6D
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We give here an alternate derivation of this equation, resulting in our equation (4.76). We
formulate the solution only for the upward propagating constituent of U+, which we denote
by du_ 1. We first determine the form of the down-going constituent of Uy, denoted by u g,
which is the down-going wave excited at the surface and arriving at the scattering point.
With the expression for the source f in (4.9) and that for u, in (4.11) we find that

zZ1 N ~ 3 3
U+,0(Z17 Xy, tly 20, 30) = % / dZO/d§0/dtsoG+(zly xy, tl — tSO’ 20, 30)
—00 R
HQ+7§0(20)f(20a §07 5807 20, 30) 5 (466)

where we will adopt the convention that an integral without limits is assumed to be an
integration over R"1. In general, s represents a source position, r represents a receiver
position, t is a time variable and z is depth, regardless of subscripts and superscripts. The
notation Q_ 4(z) is short for Q_(z, s, Ds, D;). The t integrations are limited implicitly by
the causality of the Green operator, G, discussed in Remark 4.4.1. The operator G in
(4.66) propagates between the levels zg and 27, with its action being in the lateral variables
5o, and t4,; we will also use the notation G (21, zg) for the propagator G, when the lateral
positions in which it acts are unambiguous. We adopt the standard kernel notation that
the input variables to an operator are written to the right of the output variables. We are
justified in writing the time dependence of G as the difference of elapsed time and initial
source time as the wave equation is time translation invariant. Expression (4.66) is valid
for z1 > z9. The parameters zq, sg are assumed to be known.

Next, we derive an expression for c¢_, the up-going constituent in the contrast source

given by,
“ ) ovu,=v ([ Y0 (4.67)
c_ 0 u_g )’ '

Using the expression for V' in (4.33), and recalling that u_o = 0 for z > 0, we obtain an
expression for c_,

c_(z1,21,t1) = —AHDF Q_ 2, (21)a(z1,21)Q% 4, (21)u4 0(21, 1, t1, 20, S0) - (4.68)

Substituting c_ from (4.68) for f_ in (4.11) gives

oo
Su_1(20, 70, trg, 20, 50) = —SHD}. / dzy /dxl /dt1
20 R

G (20,70, try — t1,21,71) Q- 2, (21) a(z1, 1)@ 4, (21) ut o(21, 21,11, 20,50) (4.69)

Sy

in the diagonal system without the restriction to the Earth’s surface, zg = Zp = 0. This
is the first term in the series in (4.42)-(4.43). Because a is compactly supported in z1, the
integral over z; is actually over a compact set. As in the previous section, we assume that
the medium contrast, a, has its support away from z = 0. To obtain modeled data, we
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Figure 4.4. Notation for single scattering modeling.

To obtain a more compact expression, we return to operator notation, first introducing

(H (20, 21))(s0,70,t — to, 51,71) =

/R(G_ (20, Zl))(’l‘o,t —t' — to,’l‘l)(G_ (=0, 21))(80, t/, s1) dt/, (4.75)

the kernel of the propagator H(zp,z1) associated with the so-called double-square-root
(DSR) equation (Claerbout, 1985), which propagates data from the depth z; to the depth
zp. Substituting this expression for the two Green functions in (4.74) gives equation (3.10)
of Stolk & de Hoop (2004a, Theorem 5.1),

dl(s()v To, tro) =

— 1D?Q* ,,(0)Q* ,,(0) /0:121 (H(O, zl)Q_,,«l(zl)Q_,sl(zl)(EgEla)> (80,70, try) - (4.76)
0

4.7.2 Leading-order internal multiple scattering

In (4.76), we showed how singly scattered data can be constructed given the medium
perturbation. Our ultimate goal is to construct the medium contrast given data containing
both primaries and leading-order internal multiples. In this section we establish a relation
between the modeling of primaries and internal multiples.

Following the diagram in Figure 4.5, the first scattering of the internal multiple, from
sp through so, 79 to m, is nearly identical to the single scattering case. We cannot use the
H operator however, because the second leg (from rs to m,) does not reach the surface,
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which acts as a contrast source for the final wave, propagating from (z3,73) to (0,79),

o0
d3(80,7‘0,t4) = —%HD&Q*_’TO(O)/ d23 /dl‘g/dt3
0 R
G_(0,70,t4 — t3, 23, 73)Q_ 25 (23)a(23, 23) Q7 4 (23)0uy 2(23,23,13,0,50), (4.79)

where we have returned to observables through the operator RQ ™!, introduced in (4.47).
For the above construction to be valid, (z1,z1), (22,22) and (z3,23) cannot be arbitrarily
close to one another.

We now apply reciprocity (4.22) to the G4 occurring in the expression for duy o in
(4.78). We do this by substituting the expression for du o in (4.78) into (4.79) to use the
@, operators from both expressions combined and introduce the extension operators Ej,
E,. This gives

d3(80,7‘0,t4) - D4 / d23 /d33/d7‘3/dt3/d21 /dms/dmr/dta

QL+ (0)G_(0,r0,t4 — t3,23,73)Q— ry(23)
Q—,ms(zl) —(z17m37t3 - ta)z3as3)Q—,33(z3)
(Era)(zs, s3,73)(E1a) (21, ms, my ) QY ) (21)0u— 1 (21, M, ta,0,80);  (4.80)

we have also introduced the extension operator F1, to split each of the m and z3 integrations
into two.

Identifying the propagator Q_ ;,(2a)G—(2a, 25)@— 2, (2) in (4.80) with the function
G(zq,Za,t, zp, xp) in equation (8) of ten Kroode (2002) along with the substitution of the
expression for du_ 1 in (4.77) shows the correspondence of (4.80) with expression (8) in ten
Kroode (2002). (Note that V(z) in ten Kroode (2002) is a(z, z) here.)

We interchange the order of integration in t3 and t,, and change integration variables
from t3 to t5 = t3 — t,, introducing the Fy operator at the third scatter. This results in

o) 23
d3(80,7‘0,t4) = —-%D?/ dZ3 /d33 /d’l‘3/dt30/dta /d21 /dms /dmr
0 R R 0

/dt?)Q» o (0)G_(0,70,t4 — tq — t3 — t30,23,73)Q_ r5(23)

Q*—,ms (ZI)G— (217 ms, t‘l37 23, 53)Q7,33(23)
(EQEIG)(Z37 53,73, t30)(E1a)(Z17 ms, mT‘)Q*—,mT (Zl)(su—,l(zl , My, taa 05 50) ) (481)

which is a modeling operator for triply scattered waves. We need not introduce E9 at the
ms, m, scattering point here, but it will be required later. Equations (4.81) and (4.78) are
expressed entirely in terms of up-going propagators (G_); they comprise the m = 2 term
of the forward series, given in the summation in (4.47).

The recursion in equation (4.61) demonstrates that it is possible to express the triply
scattered data, ds, in terms of the singly scattered data d;. The first step to writing d3 in
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thus far. To this end, we now discuss an inverse scattering theory. From the inverse series,
constructed in section 4.6.2, we note that only a single-scattering inverse is required, be-
cause for each term in the series we estimate 173 from MO(VJ-UO) based on the recursion in
(4.61).

The Born modeled data, dj, as given in (4.48), is measured in the field but its vertical
derivative is not. A left inverse to the Born modeling operator, the inverse scattering oper-
ator, can be constructed under the double-square root (DSR) assumption (see section 4.4
and Stolk & de Hoop (2004a)). This operator gives an estimate of a(z,z) via

(a1) = Tdy, (4.85)

where T is the inverse scattering operator and (a;) is the single scattering estimate of a.
Once an estimate of a is obtained, it can be substituted into (4.33) to obtain an estimate
of V.

Stolk & de Hoop (2004b) give a detailed method for inverse scattering from singly
scattered data; here we give a brief summary. The construction involves the depth-to-time
conversion operator, K, defined as

K:ar — /00 H(0, z)(E2a)(z,-,-,)(s,r, t)dz . (4.86)
0

Stolk and de Hoop show that this operator is an invertible Fourier integral operator. Upon
substitution of a point source in (4.76), we obtain

d = 1D2Q° [(0Q" (0K J(Era). (4.87)

The operator J (denoted V' by Stolk & de Hoop (2004b)), has symbol

J(z’ 87 r’ C, 07 p) =

|7’|_1(Co(z, 8)_2 - 7-_2”0”2)—1/4(60(2"7‘)_2 - T_2“p”2)_1/4|7‘=9—1(z,s,r,C,a,p) . (4'88)

This operator is related to the Q_ s(2)Q— »(z) appearing in (4.76); the difference is that J
is applied before the Ey extension operator whereas Q_ s(z)Q_ »(z) is applied after (note
that @ and Fy do not commute). The map © is defined by

O(z,s,r,0,p,7) = —b(z,8,0,7) — b(z,r,p,T) . (4.89)

Stolk & de Hoop (2004a, Lemma 4.1) show that 7 — ( = O(z,s,7,0,p,7) is a diffeo-
morphism. The mapping from frequency to vertical wavenumber described by this map is
required for J to be applied before the F9 extension operator.

After defining the adjoint operator in space (restriction to h = 0) by R; = EY, the
adjoint operator in time (restriction to t = 0) by Ry = Ej, and the normal operator =
which is equal to the principal part of K*K we have

&(z,2,D,,Dy)a = RiJ'ETTK*QT (0)7'Q* .(0) ' D, ?dy (4.90)
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Figure 4.6. Time notations used to estimate ds at z;.
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Figure 4.7. Illustration of Lemma 4.9.1; the construction of Jl from d;.

Lemma 4.9.1. We define

- ,s' o

di(z,s,m,t) = —%D?/oaz’ <H(z,z')Q_’r/(z')Q_,s/(z')(EgEla)(z R )) (s,m,t). (4.94)
Fort>0 )

(H(0,2)*Q* (0)7'Q* .(0) " dy) (s, 7, t) = di(z,s,7,t), (4.95)
where dy is modeled by (4.76).

This Lemma is illustrated in Figure 4.7.

Proof. We first define @ = xa where x is the characteristic function of (z,00). With this
definition we write d; as

dy(s,r,t) = —%D?/ozlz/ (H(z,z’)Q_’T/(z')Q_,s/(z’)(EgE'la)(z’,S.:T./’t./)> (s,r,t). (4.96)

0
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Figure 4.8. Illustration of the surface-related multiple case (SRME).

relating our method to the surface-related multiple elimination (SRME) procedure of Fokkema
& van den Berg (1993, chapter 12). This is illustrated in Figure 4.8.

The following theorem describes the relation between the internal multiple estimated
at the surface through (4.84) given in Theorem 4.7.1 and the estimate of d3 defined in
(4.99).

Theorem 4.9.3. Let the data be modeled by the forward scattering series (4.47) for M =
2. Then there is the following correspondance between the leading-order internal multiple
modeled at the surface and d3

srt

dafos70s10) = Q" 1, (0)Q° .y (0) [ (HO. a1, ) Gouronto). (4102

The theorem is illustrated in Figure 4.9.

Proof. We begin by returning to (4.77),
ou_1(z1,m,14,0,50)

D2 QT 5 /dZQ/dSQ/dT’Q/dto/dtG (21, m,tq —t' — to, z9,72)

/dSl/dtslG(O, 307t51sZ1731)G—(217317t/ — tsl7 22732)
R

Q- ry(22)Q sy (22)(E2Era) (22, 82,72,t0), (4.103)
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The same sequence of steps applied to (4.81) gives

o0
d3(307 70, t4) = _%D? / dzl/drl/dt’r'lQi,ro (O)G— (07 To, t7‘1 y 215 7'1)
0
/dms /dmrQi,ms (Zl )/]S‘tad] (Zl, Mg, T1,t4 — tg — trl)
(Ela) (zla mg, mr)Q*_,m,_ (zl)du—,l (Z]_, my, ta, 07 80) ) (4106)

where we have also interchanged the order of integration. Substituting the expression for
du_; from (4.105) into (4.106) and re-ordering the @ operators and the G _ propagators
results in

ds(so,70,t4) =
o0
D¥Q" . (0)Q" o, (0) /0 dzy /dms '/dmrQi’ms(zl)(Ela)(zl,ms,m,.)
* 7 r1 try ~ s1 sy
QL . (21) £taG_(0,zl)d1(z1,ms, Sty —ta— - )G_(0,21)d1(21, ©,mp,te— ). (4.107)

Combining the two G_ propagators into a single H operator gives the result.
|

Equation (4.102) is equivalent to (4.76) with ds taking the place of the contrast source.

Theorem 4.9.4. Assume the inverse scattering series (4.62) for M = 2. If we replace d;
in (4.95) in Lemma 4.9.1 by d and a in equation (4.99) for ds by ai then

(a3(z,2)) = (8" RiJ'E ' RyD; 2da (2,7, ) (x). (4.108)
Proof. Recall from the recursion in (4.61) that
DMo(V3Uo) = DfMo(ViLo(ViLo (V1)) - (4.109)

".Eheorem 4.7.1 shows that dg is third order in ‘71 and thus third order in d. We then estimate
V3 directly from ds using (4.92).

(az) = O 'RyJIETIK*D2d;
= O 'RJTIETIRH(0,2) Q" (0)71Q (0) 1Dy 2ds . (4.110)

The argument in the proof of Lemma 4.9.1 can be repeated for the expression for ds in
(4.102), recalling that ds is defined for t > 0 giving

ds(z,s,7m,t) = (H(0,2)*Q* 4(0)7'Q* ,.(0) ds)(z,s,7,1), (4.111)
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Figure 4.10. A contribution to (a3). The solid rays are the triply scattered rays. The
dash-dot line is the singly scattered contribution with the same source and receiver posi-
tions as well as slopes. The dashed curve is the single scattering isochron, for the time
t4 corresponding to the amount of time required to travel along the triply scattered path.
The shaded region extends to the depth level z; to which the entire wavefield is propagated
before generating the image correction via (as).

4.10 Discussion

We propose a method for attenuating artifacts in the image generated by leading-order
internal multiples. We give two main results: a structure for modeling leading-order internal
multiples in (J.8) and (4.84), and a system to estimate leading-order internal multiples as
part of the imaging procedure in (4.112). Our suggested algorithm is illustrated by the
following flowchart

d (e)
(@) |
d ~ b ~ d
)2 Ak 8 &) Das)
() | e

In (a) the data are downward continued to the depth z, through Lemma 4.9.1. Following
this, in (b) leading-order internal multiples are estimated via (4.99). In (c), both the
data and the estimated multiple are propagated to the next depth, again through (4.95)
in Lemma 4.9.1. An image is formed, in (d), at this depth via (4.112). The image is
also used to obtain an estimate of a used in the estimate of d3 from (4.99). The theory
discussed requires knowledge of the velocity model to the depth z; of the up-to-down scatter
at which the image is formed. In addition, an adaptive subtraction technique is necessary
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Chapter 5

Identification of image artifacts due to
leading-order internal multiples !

5.1 Summary

First order internal multiples are a source of coherent noise in seismic images. There
are a number of techniques to estimate internal multiples in the data, but few methods exist
that estimate imaging artifacts caused by internal multiples. We propose a method to do
this in which the artifacts are estimated as part of the imaging process. Our technique is
based on a hybrid of the Lippmann-Schwinger scattering series and the generalized Bremmer
coupling series. Although we require knowledge of the velocity model this allows us to
estimate internal multiples without assumptions inherent to other methods.

5.2 Introduction

Internal multiples have been recognized in seismic experiments for a long time (Sloat,
1948). A lot more is known about the attenuation of surface-related multiples (Aminzadeh
& Mendel, 1980; Fokkema, et al., 1994; Berkhout & Verschuur, 1997; Verschuur & Berkhout,
1997; Weglein et al., 1997), than is known about the attenuation of internal multiples (We-
glein et al., 1997; Jakubowicz, 1998; Kelamis et al., 2002; ten Kroode, 2002; van Borselen,
2002). It is still not possible, to estimate multiples in data with sufficient accuracy to remove
all the artifacts they introduce in seismic images. In this paper, we propose a technique for
estimating imaging artifacts caused by internal multiples as part of the imaging process.

Fokkema & van den Berg (1993) use reciprocity to show the possibility of predicting
surface-related multiples through a Neumann series expansion. As a point of departure we
use the generalized Bremmer coupling series to model internal multiples, because its behav-
ior and convergence are known (de Hoop, 1996). We then construct a hybrid series, using
the contrast source formulation from the Lippmann-Schwinger scattering series (Lippmann,
1956; Weglein et al., 1997), to estimate imaging artifacts caused by leading-order internal
multiples. This hybrid series is amenable to the downward continuation approach unlike
the Kirchhoff approximation (de Hoop, 2004). Using this method requires knowledge of the
velocity model. Technically this knowledge is necessary only to the depth of the shallowest
reflector involved in the generation of internal multiples (the depth of the up-to-down reflec-

!This chapter is expected to grow into a published paper with co-authors M. V. de Hoop and H. Calandra
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many problems (see van Stralen (1997) for an overview) and the convergence of various
generalizations of the original series has also been a subject of interest (Atkinson, 1960;
Corones, 1975; Gray, 1983; McMaken, 1986). Aminzadeh & Mendel (1980, 1981) were the
first to propose a method using the Bremmer series to attenuate surface-related multiples
in a horizontally layered medium.

To estimate artifacts in the image caused by first-order internal multiples (FOIM),
we proceed in two steps. We first develop a method to model FOIM, using the hybrid se-
ries; this is described in Section 5.3. We circumvent the traveltime monotonicity condition
through downward continuation. Following this, we predict internal multiples from down-
ward continued data, to estimate the artifacts they cause in the image, using ideas from
the inverse series in Section 5.4. In Section 5.5 we describe an algorithm to perform these
two steps at the same time. We illustrate the application of this algorithm to synthetic and
field data in Section 5.6.

5.3 The scattering series

We begin by decomposing the pressure wavefield, u, into its up- and down-going con-
stituents, uy (— denotes an up-going constituent and + a down-going constituent). Follow-
ing Stolk & de Hoop (2004a), we find that

()= (2).

where L[ (@ 0
QY)" —HQ+ )
S : 5.2
a=3( (e e (52)
‘H denotes the Hilbert transform in time and * denotes adjoint. From this,
QLG_HQ—,

generates the upgoing constituents of the full-wave Green’s function. The Q matrix, along
with its inverse, diagonalizes the wave operator written as a first order system and thus
splits the wavefield into its up- and down-going constituents.

The hybrid series uses the decomposition discussed above along with the contrast
source from the Lippmann-Schwinger series. We use a subscript 0 to indicate the field in
the background model and ¢ to represent a contrast, thus the field U in the unknown true
medium is related to that in the known background medium by U = Uy + dU. We denote
by 6U; the vector of up- and down-going wave constituents scattered j times. The terms in
the hybrid forward scattering series are related by

§UL(V) = DLo(VUy), and U, (V) = D?Lo(VoUp_1(V)), m =2,3,... (5.3)
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5.4 Inverse scattering

In inverse scattering the goal is to solve for V in terms of the data d. To this end, we
assume that the contrast operator V' can be written as a series

V=" Vnd), (5.9)

meN

where V,, is of order m in the data. Substituting this equation into (5.6) leads to the
following relation between the V,,,(d),

D?Mo(VinUg) = DEMo(Vi—1Lo(ViUp)) ,m > 2, (5.10)
where R
6D = —D2Mo(V1Up) . (5.11)
From this it follows that
—D?Mo(VUp) = 6D — (Z D?Mo(f/maU)> . (5.12)
meN

If we ignore the second term on the right-hand side, the problem of expressing V in terms of
the data reduces to inverse scattering in the Born approximation (Stolk & de Hoop, 2004b).
In the context of wave-equation migration, the inverse scattering procedure is split into two
parts: downward continuation and imaging, which are discussed in the next section.

5.5 Artifacts due to internal multiples in imaging

The first step in imaging is downward continuation. To do this, we apply the adjoint
propagator H (0, 2)* to the modeled data in (5.8) yielding the downward continued data at
depth z,

di(z) = H(0,2)*Q* ,(0)7'Q* .(0)"'d, (5.13)

—,8

for t > 0. This downward continuation uses the usual background velocity model to estimate
the data that would have been recorded at the depth z. The downward continuated data,
dy(z) is found directly from the medium contrast via

~ /sl 7‘/ t/

dyi(z,s,r,t) = ‘iDtQ/ dz’ (H(z,z')Q_’,/(z')Q’S/(z')(EzEla)(z RN )) (s,r,t). (5.14)
Next, we apply the ‘true-amplitude’ imaging condition, M, to the downward continued data
a1(z,.) = RIMRyD; %d, (2) (5.15)

where Ry = Ef and Ry = Ej are the usual imaging conditions (t = 0 and h = 0); this
procedure is described in Stolk & de Hoop (2004b). We apply (5.13)-(5.15) to (5.12), from
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Using relation (5.17) along with (5.13) we find that artifact in the image caused by
FOIM at the depth z can be estimated by

a3(z,.) = RIMRyD;?d3(z) (5.19)

the analog of (5.15).
We propose an algorithm summarized by the following flow chart

d (e)
(@ |
d . b .
a9 de Y% A Qe
© 1 NG

di(z + Az) ® I3(z + Az).

The algorithm can be divided into several steps. First, in (a), we downward continue the
data to the depth z. Then in (b), the multiples are estimating using (5.18); this also requires
an estimate of the image in (d). An estimate of the artifacts in the image is made in (f).
The data and multiples are then downward continued to the next depth in (c).

5.6 Examples

Techniques like the angle-domain filtering proposed by Sava & Guitton (2005) are
promising because they attenuate multiples directly in the image as opposed to in the data.
In this way, even though the multiples are still not completely removed their location in
the image is known. Thus, they are less likely to be misinterpreted as primary reflection
energy.

In this section we describe both synthetic and field data results of the technique de-
scribed above to estimate artifacts from FOIM directly in the image space. Three different
synthetic models are presented. A simple flat model illustrates the steps of the algorithm.
Following this a more complicated model is used to test the ability of the method to esti-
mate imaging artifacts caused by FOIM in the presence of caustics and to test the sensitvity
of the method to the velocity model. The third model shows the techniques applicability
in a model with more complicated reflector shapes. The field data example is a 2D line
extracted from a 3D survey in the Gulf of Mexico.

The algorithm used to generate the examples shown here falls into the category of a
Generalized Screen Propagator. It is implemented as a split step propagator along with
an implicit finite difference residual wide-angle correction. The propagator works in the
midpoint-offset coordinates, requiring us to use a subset of the available data to obtain an
uniformly sampled data set in these coordinates. This algorithm was proposed by Jin et al.
(1998).
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offset (km)

time (s)

Figure 5.4. The estimated multiple, in the data, at a depth of 1.5 km; note the agreement
with the true multiple in Figure 5.3.

sampling.

In our method, the data are first downward continued as part of a standard wave-
equation migration technique ((a) in the flowchart). In Figure 5.3 we show dj(z = 1.5 km),
a single common-midpoint gather (cmp) downward continued to the depth z = 1.5 km of
the top of the layer. The primary reflected from the top of the layer is located around ¢ = 0,
the reflection from the bottom of the layer at about ¢ = 1 s and the first order internal
multiple at about ¢t = 2 s.

We now estimate the multiples at depth using equation (5.16). This requires restricting
dy to time t > 0. The procedure removes the primary reflection from the current depth
(which theoretically arrives at t = 0), in this case 1.5 km, before doing the convolution.
If this process is not done correctly and energy remains at t < 0, all primary reflections
from deeper depths will be duplicated in the estimated multiples section. In this model a
simple time-windowing procedure is sufficient, because the reflections are far apart in time.
In some situations, we find a 7-p filter to be more effective. This is because we typically see
tails at small positive and negative times caused by the band-limited signal. A 7-p filter is
more effective at removing these tails when they are mixed with later reflections. Figure 5.3
show the results of applying the 7-p filter to the data.

Once the negative time contributions to the data have been removed, the multiple is
estimated with (5.16), through a convolution. The convolved wavefield is multiplied by an
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Figure 5.6. Velocity model, similar to the flat layered example discussed previously, with
the addition of a low-velocity lens to demonstrate that the method works in laterally het-
erogeneous velocity models.
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Figure 5.7. Shot record from s = 9.8 km, 200 m to the left of the center of the lens. Note
the caustic introduced by the lens around zero-offset. The ringing on the second primary
(at about 2 s) and the multiple (at about 3 s) is numerical dispersion from the modeling of
the data.
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offset (km) offset (km)
10 1

Figure 5.9. Left: Common midpoint gather at 9.8 km and 2 km depth, after the ¢ < 0
times have been removed. Note the disappearance of the multi-pathing as the data are now
below the lens. The solid line shows the expected moveout curve for the reflection from the
bottom of the reflector. Right: estimated multiples at this depth.
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Figure 5.10. Left: Image with an artifact from the first-order intérnal multiple at approxi-
mately 6 km depth. Right: Estimated artifacts from first-order internal multiples.
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Figure 5.12. In these images, the reflector has been extended to 3.5 km from 3 km to test
the sensitivity of the method to the velocity model. Left: Image with artifacts from internal
multiples. Right: Estimated artifacts from first-order internal multiples.
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Figure 5.13. In these images, a second lens has been added beneath the layer to introduce a
laterally varying velocity perturbation. Left: Image with artifacts from internal multiples.
Right: Estimated artifacts from first-order internal multiples.




Alison E. Malcolm / Data Continuation 103

midpoint (km) midpoint (km)

10.0 09.0 9.5 10.0

depth (km)
depth (km)

Figure 5.15. In this model the lens was moved 0.2 km deeper than in the correct velocity
model. Because this perturbation is above the top of the layer, we expect this to have
an impact on the estimated multiple. Note the phase difference between the estimated
artifact and the image. Left: Image with artifacts from first-order internal multiples. Right:
Estimated artifacts from first-order internal multiples.
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Figure 5.16. Velocity model for the North Sea example.
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midpoint (km)
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Figure 5.18. The image in the chalk model, with artifacts from a first-order internal multiple
at about 4.5 km depth.

midpoint (km)
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Figure 5.19. This figure repeats the estimated artifacts from internal multiples shown in
Figure 5.18, with arrows indicating locations at which multiples can be observed in the
results of ten Kroode (2005). '
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Figure 5.20. Image for the real data example. The base of salt is marked with white arrows
and three areas of the image are marked, two of which contain artifacts from internal
multiples (left and top right) and one of which does not (bottom right). The locations of
the CIGs shown in Figures 5.22 and 5.23 are marked with the black arrows below the image.

midpoint

depth

Figure 5.21. Estimated artifacts for the real data example. The three areas marked are the

same as those marked on the image above. The locations of the CIGs shown in Figures 5.22
and 5.23 are marked with the arrows below the image.
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Figure 5.23. Real data example, common image gather at cmp 600. On the left is the
standard image gather and on the right are the estimated artifacts from internal multiples.
Arrows 1 and 2 indicate the locations of accurately estimated artifacts. Arrow number 2 is
within the upper-right highlighted region of the image. Arrow number 3 marks the artifact
in the lower right highlighted region on the image shown in Figure 5.20. That this artifact
does not appear in the estimated artifacts indicates that this energy does not come from
an internal multiple.

to be done to have a robust algorithm for real data applications. This example illustrates
that at the least this method can be used to ascertain whether artifacts in the image come
from internal multiples or not.

5.7 Discussion

We have described a method to estimate imaging artifacts caused by first-order inter-
nal multiples. This method requires knowledge of the velocity model down to the top of
the layer that generates the multiple (the depth of the up-to-down reflection). The main
computational cost of the algorithm comes from the downward continuation of the data
and the internal multiples. Because two data sets are downward continued (the data them-
selves and the estimated multiples), the cost of the algorithm described here is about twice
that of a usual pre-stack depth migration, plus the cost of the removal of negative times.
The removal of negatives times can be compuationally expensive because it is necessary to
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Data continuation has many application in seismology, two of which are discussed in
this thesis. By employing the mathematics of Fourier Integral Operators, we are able to
extend data regularization or data mapping techniques to situations in which the wavefield
contains caustics. In addition, we have shown that techniques for the downward contin-
uation of data allow us to dispence with two commonly made assumptions in multiple
attenuation: that the wavefield does not contain caustics and the traveltime monotonic-
ity assumption. We have developed a technique that is able to estimate imaging artifacts
caused by first-order internal multiples without these two assumption. Both of these appli-
cations also involve operator composition, in which several operators are combined to make
a final, single, operator. For data regularization, this composition comes with conditions
under which the resulting operator does not introduce false reflections in the data. For mul-
tiples the application of successive Green’s operators illustrates the need for the traveltime
monotonicity assumption used in other multiple attenuation techniques.

For data regularization we have shown that, even in the presence of caustics, it is
possible to fill in missing data. We have illustrated this theory by computing impulse
responses and by filling in missing data in synthetic shot records. The major limitation
of this technique is its computational cost. Although we believe it to be possible to fill in
missing data with the cost on the order of a prestack migration that is still expensive as a
pre-conditioning step. On the other hand, this technique is designed to be applied in the
most complicated geologic structures where traditional, faster techniques fail.

We have developed a theory for multiple attenuation in the presence of caustics, when
the traveltime monotoncity condition does not hold. We have begun to illustrate the prac-
tical value of the process but a lot of work remains in that direction. First of all, artifacts
caused by internal multiples have significantly smaller amplitudes than do primary reflec-
tions. This presents problems for accurately modeling data containing multiples, but not
containing other artifacts such as aliasing, numerical dispersion, refractions and boundary
reflections. Even if such modeled data are available it is also difficult to see the artifacts
from internal multiples on synthetic data because of errors in the migration itself, such as
wrap-around, aliasing and wide-angle effects that interfere with the low amplitude multi-
ples. The problem of modeling data is removed by application to real data but this comes
with its own set of problems as the data contain noise, have been pre-processed introducing
other errors that are difficult to assess.
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analysis because they do not satisfy the assumptions of the method; they are triply scattered
not singly scattered. Multiples are sensitive to the velocity model, however, in particular
they are sensitive to the structure in which they scatter three times rather than the single
time primaries are reflected. By estimating the multiples in the image, or preferably in the
image gather, the flatness criteria often used in velocity analysis can be replaced with a
joint criteria on the flatness of the primaries and the successful prediction of artifacts from
internal multiples. In addition the matching between the predicted and true multiple is
influenced by the velocity above the shallowest scattering point only, providing an indicator
of which parts of the velocity model need to be updated.

Multiples are also more sensitive to reflector positions in the Earth because they scatter
three times rather than once. When they are mixed with primaries it is difficult to use
this information because whether the recorded energy is a primary scattered deep in the
Earth or a multiple scattered shallower is not easily assessed. Seperating the multiples
from the primaries opens up the possibility of imaging with multiples as is currently under
investigation for surface-related multiples by Brown (2004).
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Appendix A

Dip MoveOut: n = 3 and constant coefficient!

The aim of this appendix is two-fold: (i) to show that the analysis presented in the
main text encompasses the usual DMO analysis in the absence of caustics as practiced
in seismology, and (ii) to clarify the issue of number of phase variables needed in the OI
representation of the DMO kernel for n = 3 in the constant coefficient case.

It is noted, that in the case of constant ¢, e can be chosen to be offset h = 1(r — s)
in the acquisition manifold. We define an acquisition submanifold, Y’ by prescribing the
value of h. Throughout the analysis, in particular of the operator L, the manifold Y can
be replaced by the submanifold Y’ and the cotangent bundle T*Y\0 by T*Y"\0.

A.1 Modeling and imaging operators

In the case of a medium with constant velocity c, the generating function S in (2.4) is
simply given by —7T(z,z¢) with T(z, z) the traveltime function along the ray connecting
T with xzg, viz.

CE—:Bol

T(z,x0) = | (A.1)

c
Since, away from the point source, no caustics occur, the traveltime function is single
valued and only one phase variable, namely 7, is required in the phase function. We will
use Cartesian coordinates.

The Green’s function, G, is given by the OI (cf. (2.6))

1
8m2c2|z — x|

G(z,t,x0) =/

explit(t — T'(z,z¢))] dr,

from which the modeling operator kernel of F' is derived,

_r2

F(Sl,SQ,T],TQ,t,CEO) :/ (SC(.TO)

explit(t — T'(zo, 51, 82,0,71,72,0))]dT,

16¢773|r — zo||s — o

!This appendix has been published, along with Chapter 2 and Appendix B in:
de Hoop, M. V., Malcolm, A. E. and Le Rousseau, J. H. 2003. Seismic wavefield ‘continuation’ in the single
scattering approximation: A framework for dip and azimuth moveout Can. Appl. Math. @Q., 10, 199-238.
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18 transversal.

Proof. The partial derivatives of ¥ with respect to the phase variables are given by

oY _nof(m)izz) 7 (((zo)i —yi—hi) | ((@0)i—yi+ m)) (A3)
0(z0); ¢ |wo—2| c\ |zo—y—hl |zo —y + A ’
ov 1
5. = —tt-(zo—y—hl+|ro—y+hl), (A.4)
ov 2|zo — 2|
0 to————> (A.5)

1 =1,2,3. The form of the differentials with respect to all the variables is:

d(8(z0), %) (i=1,2,3) d(0,1) d(0,,0)
. t , o
(’L’LZ) Zj (.7 =1, 2) —2% <_Ixoliz| + ((’”0)1']:;)_((272)1_2])) * %
(iv) to [0] [0]
(v) (z0); (1=1,2,3) * % *
(Ui) T * 0 0

Because of the entries related to ¢t and to [rows (i¢) and (iv)] the rank of the matrix is
2+ rank(d(g—g))). Now, 3% x (iii); —cllzo)i=z) (vii), for j = 1,2 yields the form of rows

2 |zo—z|
(¢44) and (viz):

(472)1 m 0 0
(i) | 0 mly 0
(vit) * =2 ((ﬂlﬁgt))i—;s)

Since |zg — z| > 0, (0 = 23 < (z0)3), rank(d(g—z))) = 3. The rank of the differentials is

therefore maximal; the phase is nondegenerate. It follows that the composition of the two
canonical relations is transversal (Hérmander, 1985b, Thm. 21.2.19). O

Parametrization of the canonical relation

As already mentioned above in the case e = h one can restrict the DMO operation to
a constant offset one, replacing Y by Y’. Comparing to the main text, observe that one
does not need the cotangent variable € to parameterize the canonical relation: we make use
of only s, xg, 7 here. In this case Ap then follows as

AD = {(Z(S,CL‘O),to(S,iL‘()),C(S,l’o,T),To(S,:L‘(),T);y(S),t(S,."L'()),T](S,l‘o,T),T)} .
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and a similar expression for 0,, 6.

From (zg, s) we determine the direction of the ray at the source,

_ 8—xp
A= |s — zo] ’
and the traveltime
~ |S - 930|
t= ——.
c

The angle 65 is defined through

B = (cosbs,sinby) .

127

(A.6)

(A7)

(A.8)

(A.9)

Using the relation 6, = 0,46 (cf. Figure 3.2) we find the angle 6, which defines the direction

of the ray at the receiver
—a = —(cosb,,sinb,) .

The receiver ray traveltime then follows from

(z0)3 .

sinf,ct =

Then the receiver position is found to be
r=—tca+xg .
The total traveltime is simply given by
T=t+t.

The cotangent variables ¢ and p are then given by

T

g = —— COS 93 - E\6819(2707 S, 7') )
C

p = _Z CcOS 07, — 68”9(1007 S, T') :
&

We determine (ag, 79) from the equality

T T0

(a+ B) — €0r,0(x0,8,7) =€ =2 (—) ag .

& C

The zero-offset traveltime, tg, thus follows as

to = (x0)3/(c sinbp) ,

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)
(A.15)

(A.16)
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Proof. The structure of the differentials of f with respect to (zg, 7, 70) is

(a) (b) (c)
d(0(z0); ¥) (1=1,2,3) d(0-¥) d(9-, %)
27 ( 8ij _ ((z0)i—zi)((z0);—2)
c \lzo—z] lzo—z[3
. ) Sij ((z0)i —yi—hi)(z0); —yj—hj) 1 (z0)i=yi— h) ((x0)i—yi+hs) 2 ((z0)s—=3)
(Z) ((L‘O)z +£ Izo—;—hl |lzo—y— h|] : E( xl?zo y—h + xlgo :+h| ) < T;:)O—ZT
+I 51‘]‘ ((10)1 —yith; )((IO)] y_7+h )
¢ \Tzo—y+h — [zo—y+h[3
.. ((®0)j—vyj—hj) | ((z0)j—yjth;)
(@) G = y]h|(( J)” lo)zé ) 0
(i) 7o P P

with ¢ = 1,2,3. On the stationary point set, Sy, in view of equation (A.3), rows (i7) and
(t4t) are linearly dependent and the same holds for columns (b) and (c). Equation (A.3) for

Izo 2|

of the upper left 3 x 3 matrix. Therefore rank(9z, f, 0r f, 0, f) is that of:

(a) (b)
9 (@i =2)(G0); =)

(z0)3 ((zo)s # 0) gives —zﬂ +I (I:co—ly—hl + |x0_1y+h|) = 0 and hence a simplification

E
(@) ((wo» woh(EmuTh) (g0, — )

((330)@ y1+h )((“’Ok —y;i+h;)
[xo—y+h[3

(i) ((z0)j — 2) 0

((z0)j— ZJ) (((‘EO)J yi—h;) + ((z0)j —yj+h; ))]
|zo—2|3 [zo—y—h[3 [zo—y+h[3
(a)j, j =1,2,3, and using the fact that hg = hg =0, 23 = y3 = 0, and 22 = y2 on Sg, the

matrix further simplifies to

with 7,7 = 1,2,3. By subtracting [27'0 x (b) from

h h (a) h h; (b)
(i)1 _T(Zl—yl-lz(l))_(gi)’)fl'a—yj— D G yl-i-lz(l))(?(’,ﬁ)})ﬂg yit+hs) ((zo)1 — 21)
(4)2 0 ((zo)2 — y2)
(i)3 0 (z0)3
(i2) ((zo); — 2) 0
Performing a similar operation with rows instead yields that the rank is that of ((z¢)3 > 0)
ga)l . (a)s (b)
()1 | —rGEBl _clontl o ((ag), — 1)
OF! 0 0 (20)3 (A.17)
(12) ((zo)1 — 21) (z0)3 0
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The signature of the second order differential (02 /7)/(0?((x0)1, (x0)3,To)) is constant.
It is easy to compute it at a point xg half-way between source and receiver. The signature
is then —1.

At stationarity the phase function simplifies to

ro—y—nh — h
[wo—y —hl  |ro—y+hl
C C

7( t),

and the entire amplitude of the associated oscillatory integral representatio becomes

/272

exp(—im /4)——
32c14(2m)3/2|z — zo|?ly + h — zo|ly — h — o P )

|H|1/2
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Appendix B

Azimuth MoveOut: n = 3 and constant coefficient!

In a constant velocity medium, it is possible to derive an expression for the impulse
response in closed form. In Biondi et al. (1998) the impulse response of AMO was derived
as the time t9 as a function of translation in midpoint location, %(7‘2 + s9) — %(rl + s1) for
given offsets 3(ry — s1) and 3(ry — s3). Here, we determine time ty as a function of ray
direction at sy (associated with o1) for given e; and (subsurface) scattering angle from eg
and (acquisition surface) azimuth direction, i.e. direction of (ry — s2).

We derive the impulse response in two steps. First, we determine the three-dimensional
DMO zero-offset traveltime (tg) from (s1,71,t1), and then we determine the AMO time (t2)
by performing inverse DMO from the zero-offset ray to (sg,72,t2). Since the zero-offset ray
will always be in the plane defined by the source and receiver rays, we need only compute
the scattering angle in that plane, as a function of the initial ray angles at the source s1.
We apply the DMO formula derived in Appendix A.

In Figure B.1 we introduce the unit vectors

a1 = (cos(p1)cos(v1),cos(p1)sin(yr),sin(e1)) , (B.1)
= (cos(p2) cos(12), cos(p2) sin(1h2), sin(p2)) (B.2)

]

(&1 determines o and = determines £.) We observe that w = &; — AZ, while also w lies in
the x3 = 0 plane. We evaluate A by setting w3 = 0,

_ sin(e1)
A= s (B.3)

Then

cos(ip1) cos(p1) — sgngmg
w=| cos(p1)sin(y1) — ==

cos(p2) sin(2) (B.4)

with
sin?(p1) ~ sin(2¢1)
tan(p2)  tan(ys)

lw||* = cos* (1) + cos(y — 1) . (B.5)

" 1This appendix has been published, along with Chapter 2 and Appendix A in:
de Hoop, M. V., Malcolm, A. E. and Le Rousseau, J. H. 2003. Seismic wavefield ‘continuation’ in the single
scattering approximation: A framework for dip and azimuth moveout Can. Appl. Math. Q., 10, 199-238.
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The angle 6 is defined in Figure B.1 and is given by

- &1 w
6, = acos (—) . (B.6)
[[w|
With 6; we derive the zero-offset time ¢ using (A.17),
t = t1sin(6;) sin(6) ‘ (B.7)

(sin(él) + sin(él)) sin(6o.1)

We now rotate this DMO ray geometry about the = axis to obtain the desired azimuthal
orientation. We have chosen our coordinates such that this orientation coincides with the 1
axis, which implies that w := (1,0,0). We determine the time t9 by applying inverse DMO
to the rotated geometry. Thus,

6o.2 = acos(E - (1,0,0)) = acos(cos(p2) cos(1)2)) , (B.8)

and it follows that ) A
ty =Ty + 1y = to(Sin(OQ.) +~sinF02)A) sin(fo2)
sin(fg) sin(62)

(B.9)
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Appendix C

Table of Symbols for Appendix D, E, F and

Chapter 3!

137

Table C.1. Table of symbols. In general quantities with a sub or super-script s refer to
source quantities, with r to receiver quantities. Bold symbols are vectors and an underlined

symbol is a function of other variables.

symbol in or near meaning

0 p- 37 scattering angle

s p- 38 source position

a p- 38 rightmost surface position in Figure 3.3
do p. 40, Figure 3.2 | distance from source to zero offset

surface position

x p. 40, Figure 3.2 | subsurface position

I3 p. 40, Figure 3.2 | migration dip
z, Z p. 40, Figure 3.2 | surface position of zero-offset ray

T p- 41 two-way time

ts p- 41 Figure 3.2 time along source ray

to p. 41 Figure 3.2 one-way zero-offset time

0s p. 41, Figure 3.2 | angle between surface and source ray

Do p- 46 spherical angle measured clockwise from z
Va p- 46 spherical angle measured downward from

0o Eqn D.2, Figure 3.2

y p. 140
h, h Eqn. D.8
F Egn. E.1

oc Egn. E.1

c Egn. E.1
G(r,t,x) Eqn. E.1
X Egn. E.1

x — y plane

angle from zero-offset ray to surface
midpoint

half-offset

modeling operator

velocity contrast

smooth background velocity

Green’s function for singularities from x to r
in time ¢

set of subsurface scattering points

!This appendix has been published, along with Chapter 3 and Appendices D, E, and F as:
Malcolm, A. E., de Hoop, M. V. and Le Rousseau, J. H. 2005. The applicability of DMO/AMO in the

presence of caustics. Geophysics 70 S1-S17.
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Appendix D

Impulse Responses!

D.1 DMO

For a constant-velocity model one can derive, in closed form, the shape of the angle-
domain DMO impulse response. To do this, we fix the source position, s, the scattering
angle, 6, and the two-way traveltime T', and compute the output time to and the source to
zero-offset distance, dy. We use the notation defined in Figure 3.2.

Since we assume the traveltime to be fixed and the medium to have a constant velocity
(straight rays), we have the following three relations (see Figure 3.2):

O, =m—0—0 (D.1)
90=7r——g——03 (D.2)
T=ts+t,. (D.3)

From the law of sines we derive the following relationships:

— T sin 0, sin 6

to = (sin 93+si; 0,) s;n 6o (D4)
_ vT'siné,sin( g )

do = (sin @s+sin 6y, )sinbg’ (DS)

which gives both the one-way zero-offset travel time t¢ and the distance dy between the
source and the zero-offset source/receiver as a function of the source angle 6. Figure 3.5
shows this impulse response (¢ as a function of dp). In these expressions, § and T are fixed,
while the other angles vary.

Although equations (D.4), (D.5) are given in terms of 65, 6, and 6y, it is possible
to fully determine both ty and dy in terms of only two angles. Using equation (D.1) to
substitute for 6, and (D.2) for 65, equation (D.4) simplifies to

B sin? 0y — sin2(g)
25sin? cos(g) '

(D.6)

!This appendix has been published, along with Chapter 3 and Appendices C, E, and F as:
Malcolm, A. E., de Hoop, M. V. and Le Rousseau, J. H. 2005. The applicability of DMO/AMO in the
presence of caustics. Geophysics 70 S1-S17.
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Appendix E

On Amplitudes’

E.1 Modeling

We begin with the kernel of the Born modeling operator (de Hoop et al. (2003a);
equation 7),

Flod(r,s,t) = / / vt — ¢, %) 23 (x)020e(x)G(x, ,5) dfdx.  (E.1)

In the above equation, G(r,t — t/,x) is the Green’s function for the ray from the scattering
point to the receiver, and 2 ¢=3(x) 02 dc(x) G(x,t', s) is the contrast source at the scattering
point, generated by the true source at the surface. The background velocity is denoted by
¢(x), dc(x) is the velocity perturbation that contains the locations of the reflectors, and
X is the set of scattering points in the subsurface. The notation F[dc|(r,s,t) indicates
that the operator F' acts on the perturbation dc, with the result being dependent on the
variables (r,s,t). We use the full Born theory; the amplitudes will change if the Kirchhoff
approximation is used in place of Born. For example Biondi et al. (1998) use the Zhang-
Black Black et al. (1993) amplitudes, which are different from those used in this paper. The
amplitude in equation (7.2.1) of Bleistein et al. (2000) should be compared with that of
equation (E.1). Equation (20) of Black et al. (1993) gives the comparison between Black’s
DMO amplitudes and Hale’s DMO amplitudes. Equation (7.6.36) of Bleistein et al. (2000)
compares the Bleistein amplitudes with those of Hale (1991).

From this point onward we will assume that the background velocity, ¢, of the medium
is constant. Thus, the Green’s function is given by

1 1 .
G = mw(t-T(xy)) g 9
) = 3= [ e " (82)

where T'(x,y) = [x— y [x=¥ i5 the traveltime between x and y. The Green’s function, as written

in equation (E.2), is the kernel of a Fourier integral operator Stolk & de Hoop (2002). To

!This appendix has been published, along with Chapter 3 and Appendices C, D, and F as:
Malcolm, A. E., de Hoop, M. V. and Le Rousseau, J. H. 2005. The applicability of DMO/AMO in the
presence of caustics. Geophysics 70 S1-S17.
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where A(s,x,r) = m and T'(r,x,s) = T(x,r) + T(s,x). The integration in ¢
results in 2m§(w — w’). Performing both this integration and that in w’ results in

Nloc|(y /dw/rxos/ wt 4c78A(s, x, 1) A(s, y, 1) =

eiw(T(r,x,S)—T(r,yvs))] dc(x) dx ds dr.

We now change variables to the ray directions at the scattering point (a® and a').
We will use subscripts 1, 2, 3 to denote the components of a vector in the x1, x2, r3 direction
respectively. To change from (s,r) to (a®,a”), we compute the Jacobian

8(as, a3) 8(af, af) v v
= I I (E.8)
O(s1,82) O(r1,m2) |y —s|*|y —r
since
Y1,2 — 51,2 Y1,2 —T1,2
al o =222 and aof e
1,2 |y — S| 1,2 = |y _ I‘|

Performing this change of variables we obtain

S 4,6 oy —s|tly — )
N = 5 [ aw [ i, [ [t et sy .

(E.9)
ew(m,x,g_m,y,g))} be(x) dxda da

Underlined symbols are used to indicate that a variable is a function of other variables and
S2 (S2) is the unit sphere on which the direction of the source (receiver) ray lies. We have
expanded A(s,x,r) about y, using that x & y at stationarity in a” and a® (see de Hoop
& Brandsberg-Dahl (2000, p. 553) and Beylkin (1985)).

Expanding T'(r, x,s) to first order in a Taylor series about y, we can write the phase

r-(x-y), (E.10)

where I' = V,T(r,y,s). We will also scale the w variable by |T'|~! and introduce v = I'/|T|.
Note that v corresponds to the migration dip. The expression thus becomes

N[oc)(y) /dw/S2 52/ 4c wiups(r,a’,s, o y)eV x= y)] de(x) dxda’da”,
X

(E.11)

letting pzs(r, s, &, y) = A(s,¥,r)? gases T ~°.
We now change variables again, to the scattering angle 6, scattering azimuth v and mi-
gration dip v (these quantities are defined in terms of a® and " by de Hoop & Brandsberg-
Dahl (2000, eqn (127))). This introduces a Jacobian, %((?Jséoi)) , which is computed for the

general case by Burridge & Beylkin (1988) and for the homogeneous, isotropic case by Bur-
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in a Taylor series about x =y, we can write the phase of the above operator as
iwv - (x —y) —w'V,T(r,y,s)  (x —y) —w'T(r,y,s).
We can now perform the integration in x (noting that x =~ y at stationarity), giving

(2m)®

2m)38(wv — W'V, T(r,y,8) = W2[T|2

§(w — ' IT)6( — v), (E.16)

where v = V,T'(r,y,s)/|V,T(r,y,s)|. This allows us to integrate out both the v and w
variables resulting in

PR =g [ gl ey

(E.17)

lRe [ / u(s, r,w’)e” @ TEYs) 4o/ | dsdr.
s Ry

Changing variables from (s, r) to (a®, &) as before and substituting prs(r, a”,s, a®,y)
gives

C3 3 v -1 r.o’.s. o’
T(y) = PF*fu(y) = — /Szxsz ITP(A(y,v)) 'uLs(r,a’,s, o, y)

1672 A(s,y,r)
(E.18)
1

—Re [/ e‘i“”T(z’y’§)u(§, r,w') dv’| da®da’.
™ Ry

We can then perform the integration with respect to w’, obtaining

Iu)(y) = _1__/ SITP Ay, v) ups(r, o’ s, y)
1672 5252 Ay 1)

’I_L(§, r, T(§7 Y, E)) da’da’.
(E.19)

In equation (E.18), we recognize the form of equation (27) of Miller et al. (1987), by
noting that

and setting purs = 1. The two equations are not exactly the same however; our equation
contains a factor, S‘X(). The sin € is introduced by changing to the same coordinates as used
by Miller et al. The factor A1 is present since we construct the least squares inverse and

is equal to [ o sin 6 dé.
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We now continue with the stationary phase analysis in (0], 0%), following Bleistein et al.
(2000). The stationary phase condition
ox

601,2(1) = viT : 80"1’2 =0,

gives that VT is parallel to V,T" or equivalently, the unit normal to the input angle
isochron 1’ is equal to the unit normal, f, to the output standard isochron. The Hessian
of second derivatives is
o’T
H = det | == | = |V.T|*det[B}, — B
[aaiao_é:l | z | [ kl kl]
where we have used the relation

82T 0T oz, 0z; T 0%,

80’{80’2 N 8§18§] Bajc 60’; ox; 60’280’2 (E'25)
and i »
oL Ly . z _q , ,
dz; 0o} d0] n 6o§cc‘90;|V§T| wlVeT(r', x,8')], (E.26)

using the fact that n’ = f at stationarity. By is the second fundamental tensor, which
is a rotation of the matrix of principle curvatures for the level sets (standard isochrons)
of the function T'. Bj,; denotes By in the input parameters (i.e., a rotation of the matrix
of principle curvatures for the level sets (angle isochrons) of T”). Equation (E.26) gives
B}, because the (of,0)) are coordinates on the angle isochrons (level sets of 7). The
transformation of the first term in equation (E.25) to By is explained in section 7.7 of
Bleistein et al. (2000).

We note at this point that the preceding stationary phase analysis is applicable only
when the Hessian, H, is nonzero. One example of when H = 0 is when the input and output
configurations are the same, in which case By = Bj;. Assuming that H # 0 we may write
the final continuation operator as

-1 1 .
Flul(s,r,t :/ —/ / /wsin@’l"“" A(xg,v)) !
Wert) = [ 5 fo, e fyesnd P )

o, 0)
a(s', ', 0")

A(Sa X0 I‘)
A(S/7 X[)v E/)\/ﬁlvon/)

uLS(Elv grlv S,7QS/7 §0)|60'1§ A 80’25'

U(Sl,f,T(£/>Ko, S/))eiw(T(r,go,s)—t)H%sig(H)ds/ dwdr’ 46’ d'l,bl~
(E.27)
In this expression, X, is the stationary point (in ¢} and 0%, i.e., xg = z(0o7’,0%,7), Vo, T’ =
Vo T(r',x,8')|¢—z,, and sig(H) is not evaluated as this will depend on the exact input and
output configuration.
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Appendix F

Properties of FF* for Common Offset!

A formal definition of a pseudodifferential operator is beyond the scope of this paper;
we refer the reader to either Treves (1980b) or Appendix A of de Hoop et al. (2003Db) for the
mathematical details. Roughly speaking, however, an operator is pseudodifferential if it can
be written in the form of a forward and inverse Fourier transform along with a multiplication
by an amplitude in the Fourier domain. In general F'F'* is not a pseudodifferential operator.
In certain cases, however, when the input and output offsets are constrained to be equal for
example, F'F* does have this property. In this particular case, we write the kernel of F'F'*
as that of a pseudodifferential operator and extract its amplitude behavior.

The phase of FF* is given by (cf. equation (E.20))

®=-w(t-T(r,x,s)) +'{ - T, x,s)), (F.1)

in which x, w and ' are identified as phase variables. Subjecting equation (F.1) to the
common offset condition, the travel time, T, and phase function, ®, can be rewritten in

. . - _ PR
terms of midpoints, y = 3£, y’ = ST and offset, h = 55F = 555 as

®=—w(t—T(x,h,y) +'{t —T(xh,y)). (F.2)

Treatment of phase variables

The representation of the kernel of the operator F'F'* will contain integrations over x,
w and «’. The application of this operator to input data will result in integrations over y’
and t’, the input midpoint and time (but not over h as this is fixed). For this phase to be
that of a pseudodifferential operator, we must be able to write it in the form

S =t +n' - (y -y, (F.3)

where w't’ and —n’ -y’ are associated with Fourier transforms and —w’t and 0’ -y are

associated with inverse Fourier transforms. Thus the oscillatory integral representation of

!This appendix has been published, along with Chapter 3 and Appendices C, D, and E as:
Malcolm, A. E.; de Hoop, M. V. and Le Rousseau, J. H. 2005. The applicability of DMO/AMO in the
presence of caustics. Geophysics 70 S1-S17.
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for given (y,t) and h still fixed (note that the m dependence contains implicitly a depen-
dence on x1, x9). With this definition, equation (F.13) gives (F.3). To compute the Jacobian
associated with the transformation (z1,z2) — (n},75), we compute

: 99 0zl
;o 2| O 77,1 + awsnll_—_g O, 771 + 81‘3771 =
y_ OUhmp) _ w? Oz Ozs (F.15)
3(1‘1, $2) c? / / 82:—8 ! / a-q:-g . .
Oy M5 + 33;37725}: Oz + Ozg 7 By

Introducing the vectors p = (x —y —h) and q = (x — y + h), and orienting the system of

coordinates so that h = (h1,0,0), we have, upon substituting 7' = mclpl,
0
—lal®+¢f | —Ipl*+p} ( ) ‘95'33 192 | pip2 (tnqa ) Ox3
W2 T T er st (T R faff + 5oF + (F + 57 ) os,
c? q1q2 Q9 4 1)_,:33_ + (g_qg_ + plps) 3:1:3 —IQI2+q% 4 —|pl*+p} 4 (g_qg_ + pzpz) 8_38 ‘
PP ) 9z, [af® Pl PP ) Hzq
(F.16)
We solve equation (F.4) for z3,
zd = —2p2c2t2 — 4q2c2t2 + pi + qf — 2p2q% — 2¢3c2t2 + A4, (F.17)

2ct

noting that go = pp and g3 = p3 = 3 and taking the positive square-root as x3 is constrained
to be greater than zero. We then compute

oz k1 —(p1 + q1)(¢3 + 23 + 192 + |allp|)

= = h ki = F.18
8331 p3’ where 1 c2¢2 ( )
amg —q2
kR F.19
Oz ps3 (F.19)

where we have again used the stationarity condition (F.4) in the numerator of (F.18).
Substituting (F.18) and (F.19) into (F.16) reduces the Jacobian matrix to

T laP Ip [pl
1 1

* P

lal  Ipl’

é+aik p2+pik: 0
‘ Ciriaiat s (F.20)

where the % represents a term that we do not need to compute as it is multiplied by 0 in
the Jacobian. Thus we have for the Jacobian

w'2( 1 1 pi+kip ( 1 a + kg 1 2

=% (e e ot )~ e (o )+ )

2 \Ip]* |q? Ip[? lpl  lal laf? lpl  Idl lallp|
(F.21

After some algebra, it can be shown that

Pt kip ( 1 ) 1 Pq
S +— )+ = , (F.22)
Ip[? lp| g lallp|  |plPlal
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where z; and z, are underlined as they are now functions of (n},7n,). It can be shown
that the amplitude of this operator is the reciprocal of that of Miller et al. (1987) equation
(27), upon changing variables in that equation from £ to y, using the Jacobian given in
de Hoop et al. (1999). This amplitude construction can be used to correctly account for
the amplitudes in offset continuation. For that case, one would simply fix both the output
offset, h = 53F, and the input offset, h’ = slgr' and follow the same procedure as for the
case h =h'.
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Appendix G

A Comparison of the Lippmann-Schwinger and
Bremmer Series

The reason that internal multiples cause artifacts in imaging is that they violate the
single scattering assumption, also known as the Born approximation. Two series to move
beyond this assumption have been proposed in the literature, the Bremmer series (Bremmer,
1951) and the Lippmann-Schwinger series (Lippmann, 1956). Both of these series are de-
signed to approximate the Green’s function or Green’s operator solving the wave equation.
The wave equation is given by

e(x)202u(x, t) — D2u(x,t) — 8§u(x, t) — 2u(x,t) = f(x,1), (G.1)

where c is the velocity, x = (z, v, 2) is a spatial position vector and f is the source of waves.
The Green’s function, g, solves the wave equation in the sense that

e(x)"20%g(x,t —t', %) — B2g(x,t —t',x') — (‘?Sg(x, t—t',x) - 0g(x,t —t',x)
=6(x-x)5(t—t), (G.2)

where ¢ is the dirac-delta function. Equation (G.1) can also be written in operator form,

defining the wave operator, L, as
Lu=f. (G.3)

This allows the definition of the Green’s operator, G, via
LG =1, (G.4)

where I is the identity operator. The Green’s function is the kernel of the Green’s operator
SO

(Gol(x,t) = / dx’ /dt’g(x,t ), 1), (G.5)

where ¢ is the test function on which the operator acts. Thus the Green’s operator propa-
gates the wavefield, ¢, from the position (x’,t) to the position (x,t), which is why it is also
referred to as a propagator. From the result that

g* f=u, (G.6)
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Lippmann-Schwinger series

G= <Z(—G0V)n) Go=Go—GogVGy+ GogVGoVGy — ... . (G.13)

n=0

To my knowledge there are no references that investigate the choice of background model to
ascertain whether or not |GoV|| < 1, meaning that this series is not, in general, convergent.

An advantage of the Lippmann-Schwinger series is that, unlike the Bremmer series,
it has a corresponding inverse series that expresses difference operator, V', in terms of the
Green’s operator, which is directly related to the data. To express the medium contrast in
terms of the data, assume the medium contrast can be decomposed into a series,

(oo}
V=>V;, (G.14)
j=1

where Vj is of order j in the data. So, while the forward series expresses the Green’s operator
as a series with each term being of higher order in the medium contrast, the inverse series
expresses the medium contrast in terms of a series in which each term is of higher order in
the data.

This assumption is then substituted into (G.13), and terms of equal order in the data
are equated, giving the following relations:

d = G—Gy=-GoViGo (G.15)
0 = —GoWVaGy+ GoV1GoV1Go (G.].G)
0 = —GoV3Go + GoViGoVaGo + GoVaGoViGo — GoViGoViGoViGo  (G.17)

etc. .

Equation (G.15) serves to define the data (or the scattered field as in Weglein et al. (1997)).
This difference is directly related to seismic data because the difference between G and G
is in the reflections from differences between the true and reference media. The terms in
(G.15) are first-order in the data, those in (G.16) are second-order in the data, and so on.
By substituting (G.16) into (G.17) and continuing to higher order in the series it is found
that

GoV;Go = GoV1GoV1 -+~ GoVy Gy - (G.18)

j times

Since the Green’s operators, Gy, are in the background medium, they are known and V
can be estimated in this manner.

To estimate V; from equation (G.18) requires an operator to estimate V; from GoV;Go,
but this is the only inverse operator needed to estimate all of the V. The single-scattering
case,

d = —-GyV1Gy (G.19)
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Figure G.1. Illustration of the reciprocity relation given in (G.26).

source constituents.
The Bremmer series is derived by considering the following derivative
0.(¢°U) = 0,(¢*)U + ¢°0,U , (G.23)
using the notation
o= (gi 0 ) (G.24)
g 0 ¢ )

for the matrix of adjoint Green’s functions. The adjoint Green’s functions are defined by
taking the adjoint of the diagonalized wave equation

18,9% + ¢°BT = 6(x — x0)0(z — 20); (G.25)

where I is the identity operator. In this section x = (z,y) because the z dependence has
been separated due to the up-down decomposition of the wavefield. The adjoint Green’s
function is related to the Green’s function by

g*(z, 2,2, 2) = —g(2', 2, x,2). (G.26)

Recall that G is the down-going propagator and G_ is the up-going propagator (with g
and g_ as their associated kernels). The adjoint operator propagates backward in time.
Thus, G4 propagates waves upward and G downward. The minus sign in (G.26) follows
from reciprocity as in Remark 4.4.2. This is illustrated in Figure G.1.

Equation (G.23) can be expanded, by substituting (G.25) for the first term and (G.22)
for the second, to
d,(g°U) = (8(x —x0)8(z — 20) + ¢*BTU + ¢*(X — Q(2)0,Q(z)"'U — BU)
= §(x —x0)d(z — 20)U + ¢°X — ¢°Q(2)9.Q(2)"'U, (G.27)

recalling that BT = B because the B, = —B_ in the flux normalization. Defining G¢ as
the matrix of Green’s operators associated with the matrix, g%, of Green’s functions and
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Figure G.2. llustration of the first two terms of the Bremmer series.

G.3 The Hybrid Series

Chapter 4 describes a hybrid series between the Lippmann-Schwinger and Bremmer
series. This is done in an attempt to capture the advantages of both series. The Lippmann-
Schwinger series has the advantage that its form admits both a forward and inverse series.
The advantage of the Bremmer series is that it is convergent and the splitting of the wave-
field into its up- and down-going constituents fits naturally in a downward continuation or
wavefield extrapolation migration. The hybrid series first separates the wavefield into its
up- and down-going constituents as in the Bremmer series. This is done in a known back-
ground model. The diagonalization operators computed in the known background are then
applied to the wavefield in the true medium, whose difference from the background medium
is unknown, creating two equations in two different media, as in the Lippmann-Schwinger
series.

Perhaps the most fundamental difference is in the writing of the series as a set of
matrix equations rather than scalar operator equations. The Lippmann-Schwinger series
is a series of operators applied to a single wavefield; each term of the series is of higher
order in the contrast between the true and reference media, parameterized by the operator
V. The hybrid series is a series of matrix operators applied to two wavefields; the up- and
down-going constituents of the wavefield on which the operators of the Lippmann-Schwinger
series acts. Fach term of the series is of higher-order in the difference operator, which is now
a matrix, and each term of the series also contains higher order scattering than does the
previous term. The reflection and transmission operators of the hybrid series are different
from those of the Bremmer series because the reflection operators in the Bremmer series are
vertical derivatives of the medium whereas in the hybrid series these operators are based
on differences between the true and background media.

The inverse hybrid series is constructed in exact parallel to the Lippmann-Schwinger
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Appendix H

A comparison of different boundary conditions and
edge effects in migration

The goal of this appendix is to show that boundary effects can be a source of significant
artifacts in imaging. An understanding of the basics of wave-equation migration algorithms
is assumed, although brief descriptions are given of the most important points.

Estimating multiples in the image space requires a better estimate of the image than
is required for ordinary imaging. The reason for this is twofold. First, multiples have
smaller amplitude than do primaries because they have reflected three times rather than
once. Second, the process of migration focusses energy from primaires in time at ¢ = 0 and
in offset at h = 0, but energy from multiples is not correctly focussed, and thus does not
make as strong a contribution to the image. The purpose of this appendix is to illustrate,
primarily through examples, some of the imaging problems that need to be taken into
account when imaging with multiples that may not be as important for standard imaging.

The migration algorithm used in Chapter 5 works by extrapolating the wavefield,
sampled in midpoint, offset and time, in depth using a propagator provided by Total.
The propagator begins with a standard Stolt phase shift (Stolt, 1978), followed by a lens
correction to correct for lateral velocity variations and a wide angle correction using a
tridiagonal matrix solve. The precise details of the propagator are not important. The
essential point is that the propagator estimates the data at depth z + Az from the data at
depth 2. The zero time, zero offset imaging condition is then applied resulting in the final
image. (The energy recorded at h = 0 and ¢t = 0 is the reflected energy from a reflector
at the current depth.) The entire algorithm works in the temporal frequency domain. The
phase shift is applied in the spatial frequency or wavenumber domain. Each propagation
step therefore requires Fourier transforms in both offset and wavenumber. To use the prime
factor Fast Fourier Transform (FFT) the input data are padded with zeros to a length that
is a product of the factors available to the FFT routine. (In this case, these factors are:
2,3,4,5,7,89,11,13 and 16.)

The model used throughout this appendix consists of a homogeneous velocity of 6 km/s
with a low-velocity layer from 1.5 to 2.5 km depth with velocity 2 km/s. The model
is sampled every 10 m, with 40 km lateral extent and 12 km depth. This model was
chosen because the strong velocity contrast results in a strong internal multiple. Data were
. generated for this model using standard explicit second-order finite differences, using the
program sufdmod2. A single shot at the center of the model was simulated with receivers
spaced every 10 m; the source and receivers were at 300 m depth in the model. Four seconds
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A Robin boundary condition is a mix of a Neumann and Dirichlet boundary condition;
van Stralen (1997) found this particular boundary condition to be accurate in wave propa-
gation problems. Because of the structure of the propagator used here, I chose to implement
this boundary condition by propagating the wavefield from one depth to the next and then
replacing the boundary elements of the wavefield with the solution of the boundary condi-
tion equations. The affects of the boundary conditions are shown in Figure H.5.

Finally, I came to the conclusion that tapering and boundary conditions is simply not
sufficient and I simply padded the wavefield with zeros to approximately two and a half
times its original size. This seems to attenuate the artifacts to the point where the image is
sufficiently clean to analyze the contribution to the image from internal multiples. Padding
in different variables is shown in Figures H.9,H.10 and H.11.
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Figure H.5. Corner frequencies of bandpass
filter: 1,3,20,30; padding of 25 points in both
offset and midpoint; padding of 2079 points
in time; no tapering; boundary conditions
applied in both midpoint and offset.
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Figure H.6. Corner frequencies of bandpass
filter: 1,3,20,30; padding of 25 points in both
offset and midpoint; padding of 2079 points
in time; taper in offset; no boundary condi-
tions.
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Figure H.7. Corner frequencies of bandpass
filter: 1,3,20,30; padding of 25 points in both
offset and midpoint; padding of 2079 points
in time; taper in midpoint; no boundary con-
ditions.

midpoint (km)
05 1.0

24 113

depth (km)
»

©

Figure H.8. Corner frequencies of bandpass
filter: 1,3,20,30; padding of 25 points in both
offset and midpoint; padding of 2079 points
in time; taper in both midpoint and offset;
no boundary conditions.
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Appendix I

Amplitude correction factors used in imaging

Chapter 4 gives a theory for predicting artifacts caused by internal multiples in imaging.
In order to estimate these artifacts accurately, the various amplitude factors discussed must
be implemented and applied to the data. In this appendix, I discuss the implementation
of these factors and illustrate their application to two synthetic data sets. I describe their
application as part of the standard imaging procedure rather than in the context of multiple
estimation because this is the simplest application of these operators.

I.1 Algorithm

The goal of this appendix is to bridge the gap between the theory described by Stolk &
de Hoop (2004a) for amplitude preserved wave-equation migration and the implementation
of these ideas. I thus begin directly with Stolk & de Hoop (2004a, proposition 3.2), in which
the following expression for the wave-equation angle transform is given,

(Awgd)(z,z,p) = j“leé_lQ_,s(z)_lQ_,,«(z)_lH*(z,O)
Q—,So(0)_1Q—,70(0)_1D£—2d(307TOvt) . (I'l)

In the above expression, d is the data, as a function of the source position, sg, receiver posi-
tion, 79 and time, t. The @ operators are the elements of generalized operator eigenvectors
which arise in the diagonalization of the wave-equation written as a first order system of
differential equations (see Section 4.3 for more details). The propagator H is the down-
ward continuation operator which is the Green operator of the double-square-root (DSR)
equation (the DSR equation was introduced by Claerbout (1985)). The pseudo-differential
operator Z = K*K is the normal operator, where

K = LE,, (L.2)
Ey 1 b(z,7r,8) — 6(t)b(2,7,8), (I.3)

and P
Lg = /0 H(0,2)g(z,-,-,-)dz. (1.4)

The restriction operator Rs is the beam-forming operator which gives the wavefield as a
function of angle. The j~! operator is a jacobian applied to the final image gather.
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equation in (I.8) gives

2 1
<2i7r> /dpo/dw drf)/dt'(c(O,r6)_2w2 —pA)

FiH w2d(s0,70,w)](50,7h, ') et Fipo(ro=ro) (] g)

where the subscript ¢t to F to indicates that it is a Fourier transform only in time. This is
equivalent to

2 1. / iw
(35) oo o faretonry 2 = giyhemieo-siree o (110)

ft_l[w_%\(so, 0, w)] (50,70, t’)e—iwt’
2 T . o
B (517—7) /dpo/dw/dr(](c((), r5) "2w? — pd)dw2d(s0, o, w)eio oo HWE

There are several ways to approximate the above form, although its direct application is
quite costly. One possible approximation scheme is discussed in the following section.

Screen approximation In (I1.10) the forward and inverse Fourier transforms in the
(ro, po) variables cannot be separated because ¢ depends on both variables. Because it is
more efficient to apply the operator if this can be done, I approximate the symbol of @ by a
phase screen. The idea of a phase screen is to approximate the symbol of an operator by a
product of two symbols, one depending only on g and the other only on pg. Further details
on screens and generalized screens can be found in de Hoop et al. (2003b). The slowness
contrast is
u(z,z) = c(x,2) "2 — co(2) 72, (I.11)

where c¢g is the laterally invariant reference velocity. Using this define

1
2 1
q0(z, p,w) = ((ﬁ) —p2> : (L12)

as the symbol of @ in a background velocity model. Substituting this into the expression
above for ¢ gives

Wzpw) = (0(zp,0) +u(z2) (113)
1
o u(zz) \i
= o (10 5 T)

Performing a first order Taylor expansion about u = 0 of the term in brackets gives

Q(Z’pvw) ~ QO(Z7P>"‘)) (1 + iﬁ%) . (1'14)
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The symbol of H also depends on both the space and phase variables, making its application
computationally expensive. There are many methods of approximating this operator, a few
of which are given in de Hoop et al. (2003b) and references therein. This completes the
data propagatation to depth z, denoted in the following by d,(z, s, r,t).

1.1.3 Imaging condition

To generate a CIG at depth z, the second set of amplitude corrections and the restric-
tion operator Rg are applied to the data. The first two operators that must be applied to
the data are again Q! operators whose approximate symbols are given in (I.16). Thus,
they are applied via

2
_ <i> Fo e F G ao(z, p,w)a0(2,0,w)

27
FrFs [(1 + %co(z)zu(z,r))(l + ico(z)gu(z, s))é;,(z, s, T, w)]] (z,s,r,t). (L.18)
Next = must be applied to the data. It’s symbol is given by
1 1
e(2,8) 2 (elz8) 2 — w202 T e(a,r) Relnr) P —w A2 (L19)

the phase screen approximation of this symbol, computed as in section 1.1.1, is

co(2)"2(co(2)"2 — w202) 2 (1 + u(s, 2)co

—~

22)(1 - heol=)?uls, 2))

(1 + u(r, 2)eo(2)?)(1 — %co(z)2u(r, z)). (1.20)

D=

+o(2) 2 (eo(z) 2 —w2p?)”
To simplify notation define

&p(z,w, ) = co(2) Heo(2) 2 —w2a?) 3
and
&s(z,z) = (14 u(z, z)co(z)z)(l — %co(z)2u(:c, z)).
The application of Z to the data can then be written as
do(z,5,7,0) = F 1 [Fo1 (20,00 F 602 9)diz,5,m,0) |
+.7:r_1 [‘fp(z,w,p)}} [ﬁs(z,r)c@(z,s,r, w)]” , (L21)

which gives the final corrected data at depth z. The CIG is now formed through the
restriction operator Rg,

a(z2,p) = /R dofz, — B 2+ & ph)x (2,2, h) dh, (122)
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depth (km)
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n
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Figure I.1. Velocity model for the simple lens example. The low-velocity lens is described
by c(z, z) = 1—0.4e- 9= +@=1%; the velocity increases from 1 km/s to 1.15 km/s at a depth
of 2 km to create a reflector.

receiver location (km)
-1 0 1

Figure 1.2. Shot record from x = —500m for the simple lens model.
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depth (km)

Figure 1.5. Image in the simple lens model with @) operators applied.

angle (degrees)
0 20 40 60

2.0 uﬁ##ﬁ'

depth (km)

Figure 1.6. Common image gather at x = 0 in the simple lens model with () operators
applied.
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1.2.2 Valhall toy lens model

This gas-lens model, shown in Figure 1.9 consists of a vertical velocity gradient (0.45s~1)
beginning at 1600 m/s, with a low-velocity circular lens with Gaussian parameter varia-
tions (maximum velocity contrast 800 m/s) located at lateral position 4600 m, and depth
600 m, with a diameter (Gaussian standard deviation) of 600 m. This model, introduced
by Brandsberg-Dahl et al. (2003a), is based on a feature in the BP Valhall field; it is the
same model used in Chapter 3. A typical shot record is shown in Figure I.10.

An image in this model is shown in Figure I.11 with no Q) or = operators applied. There
are some imaging artifacts in this image, caused by edge reflections in the propagation (these
show up as smiles near the edges). The dipping portion of the reflector is also spatially
aliased. An image gather is shown in Figure 1.12, at a position beneath the lens. As
expected this image gather is flat with contributions only from the correct depth location.

Figures I.13 and 1.14 show the image and CIG respectively with the ) operators applied
both at the surface and the image point. The CIG in particular is sharper than without
the @ operators, although once again high frequency noise is introduced. Figures I.15 and
1.16 show the results of applying the = operator. Again = seems to have a small influence
on the relative amplitudes, although the amplitudes at large angles are somewhat stronger.
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cdp (km)
0 35 40 45 50 55

A n“_m?T
{ 1

Figure 1.11. Image in the Valhall model with no @ or = operators applied.

angle (degrees)
10 0 20 40 60

depth (km)
i

i

2.0

Figure 1.12. Common image gather at x = 4689 m in the Valhall model with no @ or =
operators applied.
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Figure 1.15. Image in the Valhall model with both @ and = operators applied.

angle (degrees)
0 20 40 60

1.0-4 :
i

4 )
))

€

£ 151 ) &L&}}

3

2.0 )

Figure 1.16. Common image gather at x = 4689 m in the Valhall model with both @ and
= operators applied.
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Appendix J

Proof of Theorem 4.7.11

The proof rest on the semi-group property (4.23), discussed previously. The idea is
to use this property to extend the two Green functions in (4.81 meeting at (z1,ms, m;)
to the surface (see Figure J.1). The resulting operators are then rearranged to pair the
G_ operators to substitute the double-square-root Green function, H. We go through this
procedure twice, once for du; _ and once for the other elements of (4.81).

We start by applying the procedure outlined above to du _, beginning with the semi-
group property applied to (4.77),

o0
du—_ 1(z1,my, 14,0, s0) =—%Dt2Q*_,so(0)/ dzy /d32 /drg/dto/dt'/dm;/dtm/r
21 R R R

Gi(zla My, tm.’,‘a 0, m;)G—- (07 m;" ta + tm,’,. —t' - to, 22, T?)
G_(0, 50,1, 29, 52) Q- r,(22)Q— s5(22)(E2E1a)(22, s2,72,t0), (J.1)

where t, + t,,/ is the time required to travel from the source at so to the pseudo-receiver
at m,,, as illustrated in Figure J.2. We now begin to rearrange the terms in preparation for
the H substitution.

Since t' is independent of the other variables we bring this integration to the inside to
replace the two G_ operators by the H operator

Su_ 1(z1, My, t4,0,80) = —%DiQi’sO(0)/dm’,/r§itmert(z1, Myt ,0,m.)

/ dzy /d82 /dr2/dt0H(0, 50, Moy ta + by — to, 22, 52,72) Q- 1y (22)Q— 5, (22)
21 R
(EoEqa) (22, s2,72,t0) . (J.2)

This completes the manipulations of duq .

!This appendix has been accepted, along with Chapter 4 and Appendix K, to Inverse Problems as:
Malcolm, A. E. and de Hoop, M. V. A method for inverse scattering based on the generalized Bremmer
coupling series.
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Next, we apply the same procedure to the second Green function in (4.81),

d3(50,7‘0,t4 ———Dt/d23 /d83/d7’3/dt30/dta/dzl /dms /dmr/dté
R

Q* o (0)G_ (0,7, tg —tq —t3 t30,23,7"3)Q_,T3(Z3)
Q*_,ms (zl)/dm;/]lstm'sG*_ (21, ms, tmy, 0, mi)G_(0,my, t5 + tmy> 23, 53)

Q- ,s5(23) (B2 E10)(23, 83,73, t30) (E1a) (21, ms, my ) QL (21)
(511,_’1(21, My, tq, 0, 80) R (J.3)

where t,,,, is defined by analogy to t,, (see Figure J.2). We now begin to rearrange terms
in (J.3) in preparation of the H substitution.

Since G* and the propagator proceeding it do not have variables in common, we
interchange their order. We also change variables from t5 to t3 = t3 + tpy, interchanging
the t3 and t,,, integrations. This results in

ds(so,70,ts) =

Dt / dzg /d83 /drg/dt30/dta /dz1 /dms /dmr/dta/dm/s/dtmrs/dtg
R R R

Q ,(0)Q% ., (21)G* (21, Mg, tpy,,0,m)G_ (0,70, t4 — tq — t3 + tpy — t30,23,73)
—,TS(Z?’) —(O,ms,tg,23,83)Q_,33(Z3)
(EQE]G)(Zg, 83,73, t30)(E1a) (217 msg, m’I‘)Q*—,mT (zl)éu—,l (Zl, My, ta, 07 50) . (J4)

We now substitute H from (4.75) for the time convolution of the two G_ operators above,
interchanging the order of integration, to obtain

ds(so,T0,t4) = ——Dﬁl T 7"0 / dzg /d21 /dms /dmr/néita/dm;/]l;itm/s

Qi,ms (Zl)Gi(Zl, mg, tm; 5 O') m.ls) /d83 /d’f'?,/dtg()
R

H(03 mlsv To, t4 - ta + tm’g - t307 z23,S83, T3)Q—183 (23)Q~,T3(Z3)(Ela)(zla mg, mr)
(EoEra)(23,53,73,t30)Q" ,, (21)0u_ 1(21,ms,t4,0,50). (J.5)

We have now extended both Green operators to the surface, what remains is the combining
of the G* operators in (J.5) and (J.2) into an H* operator.

To do this, we substitute (J.2) into (J.5). We then interchange operators to combine
the two G* terms, as well as changing the order of integration to move the t, integral inside
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translation invariant) and changing time variables from ¢, to t, = t, + t;,; We arrive at a
structure into which the distribution W defined in the theorem statement can be inserted.
This W distribution is a new field constituent generated through the convolution of the two
data sets on which the two Green functions in (J.8) act. The d; data constituents cannot be
extracted directly from the data unless ten Kroode’s traveltime monotonicity assumption
is satisfied. If this assumption is not satisfied one could generate d; as d; — D(a), where

(D)) (21, 50,70, ) = ~1D?Q* (0)Q" ,(0) /0 daz /ds /dr /R dto
H(0, sg,r0,t — to,2,8,7)Q— r(2)Q= s(2)(E2E1(a))(z,s,r,to), (J.9)

is the data modeled from an estimate, (a), of the medium contrast down to the depth z;.

Two changes are required to insert the W distribution into (J.8). First, the lower
bound on the ¢, integral is extended to 0, rather than ¢, because t, > t, by definition.
Second, to overlay the distribution W with the expression in braces in (J.8) we need only
make the identification t = t4 + tyms + tyr.

In the definition of W, we identify a new time variable ¢,,s = t;,7 +1,,, in the expression
for ¢t. To introduce this variable we change variables from ¢, to t,, substituting the
expression for W from (4.83) into (J.8)

o0
ds(so,70,t4) = D? / dz /dms /dmr / dtpm,
0 R

tm
Q*—,ms (21)(E2E1a) (21, ms, Mo, tmo)Qi,mr (zl)‘/Cl’rTLIs/d’rl’l,;,/Rdtm/\/0 dtm’s
Gt(Zh ms, tmg’ 0, m;)Gt (Zly My, by — tmg — tmo, 0, m;')
QL (0)_162:",/s (0)"YW (215 50, ML, ta + ty, ms, 70) . (J.10)

The two G* operators in (J.10) along with the integration in ¢,,, are nearly in the form of
the H operator.

The integration in t,, is extended to co as t,,; > tp, results in a negative time in
the second G* making it 0 by the anti-causality of G* (Remark 4.4.1). This allows us to
introduce the H operator, which gives the result.
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Appendix K

Comparison with the Weglein/ten Kroode
approach’

If no caustics form in the background medium, and the traveltime monotonicity of
ten Kroode is satisfied, our results can be brought into correspondance with those of Weglein
et al. (1997), and ten Kroode (2002). To facilitate this comparison, we will write (4.84) in
terms of the data only.

We begin by recalling from the discussion following Theorem 4.7.1, that the inte-
gration in (m;,ms,ty) is an inner product in these variables. We then identify Q% ,,, (21)
QL m,(21)(H(21,0))* as  an  operator acting on Q. (0)_1Qi,m’s (0)~1
W (z1; s0,ml., tg + t,,,m}, ro); this makes up the second entry in the inner product. The
first entry in this inner product is (EoE1a)(21,Ms, My, tmy). An equivalent form of (4.84) is
then

(oe]
ds(so,ro,t4) = Df/ dz; </dm’s/dm;/dtm/ {/dms /dmr/dtm0
0 R R

H(07 m,lga m;, tt — tmg, 21, M, mr)Q—,mr (ZI)Q—,ms (zl)
(E2Ela‘)(zl7 Mg, My, tmo)} Q*—,m{,(O)AIQ*—,m’S(0)_1W(zl; So,m:,, ty + t;m mg,ro)) ) (Kl)
where H (0, m),, m., tpy — tmg, 21, Ms, My)Q— m, (21)Q— m, (21) now acts on (EyFja) and the

inner product is in the (m}, m.,t. ) variables. We define (for the expression in braces in
(K.1)

d; (Zla s, t) = _D?Qi,s(O)Qt,r(0)/d31/dT1/dtO
R
H(()) S, T, t— tOv 21, 81, TI)Q—,Sl (ZI)Q—,'I‘l (Zl)(EQEla’)(Zl) S1,T1, tO) ) (K2)

The quantity d; is not one that can be measured directly from the data. To compute d;, the
expression in (4.92) must be substituted for a to write it in terms of what can be measured,

d.

!This appendix has been accepted, along with Chapter 4 and Appendix J, to Inverse Problems as:
Malcolm, A. E. and de Hoop, M. V. A method for inverse scattering based on the generalized Bremmer
coupling series.
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to the position of each of the scattering points. From this he finds that the ray from (in
the notation used here) r9 to m!). (s3 to m}) must follow the same path as that from 73 to
my (83 to ms). In the formulation described here this condition is automatically applied
through the relation (4.23) used to extend the modeled data from the scattering point at
z1 to the surface.
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