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Abstract

Multicomponent seismic is an effective technology for risk reduction in exploration and
development. In an exploration setting multicomponent measurements offer improved imag-
ing, direct hydrocarbon and lithology indication, and multiple attenuation over conventional
P-wave seismic. Processing of converted (PS) waves currently adopted by the exploration
industry is essentially based on resorting PS data into common-conversion-point (CCP)
gathers and using them for velocity analysis. Here, I show that PS-waves can be recompiled
into the so-called pseudo-shear (¥S) waves by integrating specially designed convolutions
of PP and PS traces (the so-called PP+PS=SS method). Conventional velocity analysis
applied to the constructed ¥S data results in an effective SS-wave velocity model because
¥ S-waves possess the kinematics of pure shear-wave primaries. This method helps to avoid
such complexities of converted waves as moveout asymmetry, reflection-point dispersal, and
polarity reversal.

While the replacement of converted waves with pure-mode SS reflections is convenient
for processing purposes, it removes the PS-wave moveout asymmetry that may carry useful
information for parameter estimation. Therefore, I modified the PP+PS=SS method by
supplementing the output SS traces with the moveout asymmetry attributes of PS-waves.
The importance of including the PS-wave asymmetry attributes in anisotropic velocity anal-
ysis is demonstrated for two typical transversely isotropic models with a tilted symmetry
axis (TTI). The first model is a horizontal TTI layer, and the second is a dipping TI
layer with the symmetry axis orthogonal to the bedding. The inversion algorithm com-
bines the asymmetry attributes of the PSV-wave with the pure-mode attributes (NMO
velocities, zero-offset traveltimes, and reflection slopes) to estimate the model parameters.
The numerical and physical-modeling examples show that 2D measurements of the PS-wave
asymmetry attributes can help to reconstruct the TTI model in depth using only surface re-
flection data. The proposed algorithm is also extended to a multilayered model by devising
a layer-stripping technique for PS-waves.
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Chapter 1

Introduction

Conventional surface seismic surveys record only compressional, or P-waves. Multicom-
ponent seismic surveys record both P-waves and converted (PS) waves, which is achieved by
recording all components of the returning wavefield. P-waves are detected primarily by the
vertical Z-component geophone and the hydrophone in marine settings, while PS-waves are
detected primarily by the horizontal X- and Y-component geophones. Due to the relatively
high cost and often poor quality of SS-wave data excited on land and the absence of shear
sources for marine surveys, converted waves are often used to infer shear-wave velocities in
the subsurface.

Multicomponent seismic technology can be applied to many seismic and geological
challenges, including:

e Strong P-wave multiples: The combination of the signals recorded by the hydrophone
and the Z-component geophone can help to reduce water-borne multiple contamina-
tion.

e Fracture density and orientation: As a result of S-wave anisotropy S-waves usually
split into two waves, a fast and a slow mode, these split S-waves are very sensitive to
fractures and can provide information about fracture density (fracture porosity) and
orientation (directions of preferred permeability).

e Gas seepages: P-wave reflections may be disturbed by gas leakage in the subsurface.
S-waves can be used to help clarify the subsurface image because they are unaffected
by pore fluids, an important attribute that can improve seismic imaging and high-
light information valuable for reservoir characterization, reservoir monitoring, and
well planning.

e Direct hydrocarbon and lithology indication: S-waves can provide valuable insights
into the nature of subsurface lithologies and pore-saturating fluids, highlighting reser-
voirs not previously visible using only P-waves.

Processing of reflection PS data, however, is not straightforward. Here, I discuss some
complications involving processing of mode-converted waves and the so-called “PP+PS=SS"
method (Grechka & Tsvankin, 2002b) designed to replace PS-waves with pure-mode SS
reflections.
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Figure 1.1. CMP gather of PS-waves in a laterally homogeneous, horizontal T'TT layer.

1.1 Problem in processing of PS-waves

The main obstacle that precludes applying conventional velocity-analysis techniques
to converted waves is the asymmetry of PS-wave reflection moveout on common-midpoint
(CMP) gathers (e.g., Thomsen, 1999). If the medium is either laterally heterogeneous or ani-
sotropic without a horizontal symmetry plane, the traveltime of PS-waves does not remain
the same when the source and receiver are interchanged (Pelissier et al., 1991; Thomsen,
1999; Tsvankin & Grechka, 2000). For example, PS-wave moveout becomes asymmetric
in a laterally homogeneous, horizontal TTI layer (Figure 1.1). As a consequence, neither
a hyperbolic nor nonhyperbolic moveout equation routinely used for moveout correction
of P-waves generally will flatten PS data. Therefore, any technique designed for velocity
estimation from reflected PS-waves should take into account the presence of odd terms in
offset in the moveout equations. This invariably complicates the moveout-estimation pro-
cedure for converted waves compared to that for pure modes and decreases its robustness
in the presence of noise. PS-wave processing is further compounded by polarity reversal
(Figure 1.1) and reflection (or conversion) point dispersal — phenomena that are far less
common for conventional P-waves.

1.2 PP+PS=SS method: A possible solution

Grechka & Tsvankin (2002b) proposed a solution to the above problems. Their
“PP+PS=SS" method uses traveltime picks of reflected PP and PS primaries from se-
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lected horizons to reconstruct the traveltimes of the corresponding pure shear (S.S) waves.
Since the obtained SS-wave moveout is symmetric on CMP gathers, conventional velocity
analysis can be applied to them. Implementation of the original, kinematic version of the
method has two key elements: identifying PP and PS events reflected from the same inter-
faces (which requires only indirect velocity information) and picking traveltimes from PP
and PS prestack data.

In Chapter 2, I show that the PP+PS=SS method can be implemented without time
picking. Although the interpretive step of establishing the correspondence of PP and PS
events cannot be avoided, traveltime picking can be replaced with a specially designed
convolution of the original PP and PS traces. The resulting data, which I call pseudo-
shear (US) wave, have the kinematics of pure SS-wave primaries and, therefore, represent
an appropriate input for conventional velocity analysis. The proposed technique allows one
to generate ¥ S-waves from reflection PP and PS data in an automatic fashion and apply
the existing velocity-analysis tools devised for pure modes.

After formulating this procedure, I examine its performance on synthetic and field data.
In particular, I demonstrate that the method is robust in the presence of random noise.
Application of this technique to a 2D multicomponent line acquired in the Gulf of Mexico
indicates the presence of anisotropy, thus requiring building of at least a VTI (transversely
isotropic with a vertical symmetry axis) velocity model. Although the narrow-azimuth
nature of the data and the absence of substantial dip leads to a family of kinematically
equivalent subsurface models (Grechka et al., 2002a,b), none of them can be isotropic.

1.3 Asymmetry of PS-waves and its application for parameter estimation

While replacing PS-waves with pure SS reflections is advantageous from the processing
viewpoint, the PP4+PS=SS method does not preserve the information about the asymme-
try of PS moveout. This moveout asymmetry of PS reflections was shown by Tsvankin &
Grechka (2000, 2002) to provide critically important attributes for parameter estimation in
a VTI media. In the PP+PS=SS method (Grechka & Tsvankin, 2002b), however, the trav-
eltime of the constructed SS arrival for each source-receiver pair is obtained from the sum
of the “reciprocal” PS-wave times corresponding to same reflection point. (By “reciprocal”
times I mean the times of the PS-waves that have the same absolute value but opposite
signs of the projection of the slowness vector onto the reflector.) As a result, the difference
between the reciprocal times, which quantifies the moveout asymmetry, does not contribute
to the computed SS data and cannot be used in the subsequent velocity analysis.

In Chapter 3, I demonstrate that supplementing the output of the PP+PS=SS method
(i.e., PP and SS data) with the moveout asymmetry attributes of PS-wave data can help
to build an anisotropic velocity field in the depth domain without a priori information.
I consider the model of a horizontal transversely isotropic layer with a tilted symmetry
axis (TTT), which describes, for example, obliquely dipping, rotationally invariant fractures
embedded in isotropic host rock. Other examples of subsurface TTI formations include
progradational clastic or carbonate sequences (e.g., Sarg & Schuelke, 2003) and dipping
shale layers in fold-and-thrust belts (e.g., in the Canadian Foothills) and near salt domes.

Another possible reason for the PS-wave moveout asymmetry is lateral heterogeneity
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in the form of lateral velocity variations or dipping reflectors. For example, PS move-
out becomes asymmetric even in an isotropic or VTI layer above a plane dipping reflector
(Tsvankin & Grechka, 2000, 2002). In active tectonic areas, originally horizontal TI layers
are often rotated such that the symmetry axis remains orthogonal to the layer boundaries.
Dipping shale layers of this type are commonly observed in the fold-and-thrust region of
the Canadian Foothills (e.g., Isaac & Lawton, 1999) and near salt domes (Tsvankin, 2001).
Ignoring anisotropy in dipping T'TI beds can cause significant mispositioning of reflection
events in both vertical and horizontal directions (Isaac & Lawton, 1999; Vestrum et al.,
1999; Lawton et al., 2001). Although migration algorithms can be readily extended to
TTI media, accurate estimation of the required anisotropic parameters for imaging pur-
poses remains a difficult problem. In Chapter 4, I extend the methodology introduced in
Chapter 3 to the inversion of multicomponent (PP and PSV) data acquired above a TTI
layer with the symmetry axis orthogonal to the layer’s bottom. Chapter 4 discusses simple
analytic approximations for the asymmetry factors of the PSV-wave and demonstrates that
independent information for the inversion is contained in higher-order terms in offset.

1.4 Physical modeling and layer stripping

In order to verify the parameter-estimation algorithm introduced in Chapter 3, I con-
duct a physical modeling experiment. The material used to simulate the TTI medium is
XX-paper-based phenolic. Chapter 5 demonstrates on a physical model that PP and PS
data indeed constrain all the model parameters in a horizontal TTI layer. The inverted
model is validated by comparison with the results of a transmission experiment.

In Chapter 6, I show that the interval asymmetry attributes of PS-wave can be obtained
from the effective ones for a layer-cake model and for a model with a dipping interface
beneath a stack of laterally homogeneous layers. The proposed layer-stripping technique
works with the traveltimes rather than NMO velocities and is exact for all offsets. It
can also be used to extract interval traveltime and offset for pure modes. I also obtain the
small-offset approximation for the time asymmetry in heterogeneous, arbitrarily anisotropic
media and derive a constraint on pure-mode attributes (zero-offset traveltimes and reflection
slopes) for a homogeneous layer above a planar reflector (the incidence plane is assumed to
coincide with a vertical symmetry plane of the model). These theoretical results will become
important for extending the proposed parameter-estimation algorithm to lower-symmetry
anisotropic media.
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Chapter 2

Full-waveform version of the PP+PS=SS method

2.1 Overview of the PP+PS=SS method

A natural starting point for my development is the kinematic formulation of the
PP+PS=SS method (Grechka & Tsvankin, 2002b). Figure 2.1 shows PP and PS ray trajec-
tories identified by the method from 2D split-spread PP and PS reflection data. Three rays
(zMRz®, zMWR2®) and (2 Rz(*) have exactly the same reflection point R when the PP
and PS reflection slopes coincide at the P-wave source and receiver locations z(1) and z(®.
Since the slope p(a:(s),z(r)) measured at the source location z{*) on the common-receiver
gather located at z(") is

Bt(z®), o)

(8) My =
for any reflection mode, the requirement of equal PP and PS slopes yields
dtpp(a,5®) _ dtps(z®,s9) ’s
oz " oz (22)
and
atPP($(2)7$(1)) _ atPS(a:(z)az(‘l)) (2 3)

oz(2) - 0z(2)

Here tpp and tpg are the traveltimes of PP- and PS-waves, z(9) (j = 1, 2, 3, 4) denote the
source and receiver coordinates, and

tPP(iL'(l),iE(z)) — tPP($(2),$(1))

due to reciprocity. The construction in Figure 2.1 produces the traveltime of the pure-S
reflected ray, z® Rz(®),

tss(z®,20) = tps(aV,2®) + tps(z?,z) — tpp(z®, z?). (2.4)

Clearly, one needs to pick prestack reflection traveltimes tpg and tpp along a selected
horizon to calculate tgs from equations (2.2)—(2.4). Although this is feasible and was shown
to work on field data (Grechka et al., 2002b), prestack traveltime picking is tedious, labor-
intensive, and noise and error prone. Below, I describe a technique that makes traveltime
picking unnecessary and produces seismograms that resemble pure shear-wave reflection
data for all horizons.
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Figure 2.1. Ray diagram of the PP + PS = SS method in 2D (after Grechka & Tsvankin,
2002b).

2.2 Theoretical aspects of generating US data

The traveltime of pure SS-wave data can be reconstructed by combining the traveltime
of P-wave data with the mode-converted waves.

2.2.1 General integral expression

Seismogram of ¥ S-waves that have the kinematics of SS-wave primaries can be com-
puted from the integral (AppendixA),

wq:s(t,z(s),:z:(4)) = // [is(t, :1:(1),:1:(3)) * wpp(—t, :1:(1),:1:(2)) *
wps(t,$(2),$(4))] dz() dz® . (2.5)

Here wpp and wpg are the PP and PS traces, ¢ is time, and asterisks denote convolutions
in time. The PP traces are taken in reverse time because the P-wave time gets subtracted
in equation (2.4) to produce the pure-shear time. Integration is performed over the P-wave
source and receiver coordinates z{1) and z(?). The result of integration (2.5) is the S trace
for the source and receiver located at z(3) and £(¥.

Evaluation of integral (2.5) using the stationary phase method (Appendix A) shows
that if the traces wpp and wpg consist of PP and PS primaries corresponding to a selected
reflector, the trace wyg contains the pure S-wave primary from the same reflector. The fact
that the proof in Appendix A is valid only for an isolated interface indicates the necessity for
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windowing the input wpp and wpg traces around events of interest. This, in turn, requires
establishing the correspondence of PP and PS events prior to evaluating integral (2.5).

2.2.2 Amplitudes of ¥S-waves

Although integral (2.5) produces ¥S data that should have traveltimes of pure S-waves,
their amplitudes do not correspond to those of shear-wave primaries. This is immediately
clear from equation (2.5). Indeed, the ¥ S-wave amplitudes are directly inferred from those
of the PP and PS events and are functions of the PP- and PS-wave amplitudes [see equa-
tion (2.6)] rather than the pure SS-wave amplitudes. This is not surprising because, as
follows from the reciprocity theorem, PP and PS data generally do not contain enough
information for reconstructing the true S-wave amplitudes.

This last statement can be illustrated by considering zero-offset PP and PS reflections
from a single, sufficiently thick horizontal layer. The amplitude of the reflected P-wave in
this model is proportional to the P-wave impedance contrast at the interface, while the
amplitude of the converted wave is zero. Clearly, no information about the shear-wave
impedance contrast, which governs the amplitude of the pure SS-wave, can be extracted
from the zero-offset PP and PS traces.

On the other hand, ¥ S-wave amplitudes are obtained in a deterministic way from those
of PP and PS reflections. The benefits of using ¥S-waves instead of PS-waves include the
simplicity of their moveouts and usually higher signal-to-noise ratio than that of the original
PP and PS data (see Figure 2.8 as an example). The amplitude of ¥S-wave can be obtained
by evaluating the asymptotic expression for the integral (A.4) due to the contribution of
the stationary points (z¢):

27

Tw \/ |)\1 /\2|

Aps(z™, e®) App(a), 2?)) Aps(a?, z™),  (2.6)

Wos(w,z®,20) ~ Fpg(w) Fpp(w) X

where w is radial frequency, App and Apg represent the amplitudes of reflected PP- and
PS-waves due to the propagation effect, Fpp and Fpgs denote the spectra of their source
wavelets, star denotes complex conjugate, and A; and Aq are the eigenvalues of the matrix,

o%r

®;; = —ax@') 220 w=w0,

2.7)

evaluated at the stationary points. Under the assumption that the PP and PS data are
corrected for geometrical spreading, the simplified expression for the ¥S-wave amplitudes
can be represented as

Rws(w(3),x(4)) o Rps(.’r(l), $(3))R;,P(x(1), x(2)) RPs(w(2), $(4))’ (2.8)

where Rpp and Rpg are the reflection coefficients of the P- and PS-waves from a common
reflection point R (Figure 2.1). Note that equation (2.8) is valid for large offsets, where the
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reflection coefficients can become complex.

In order to understand the amplitudes of ¥ S-waves, I analyze the weak-contrast, small-
offset approximation for the ¥S-wave amplitudes in a homogeneous isotropic half-space
(Appendix B). Since the output is in SS-wave offset, it is convenient to express the PP- and
PS-wave reflection coefficients in terms of S-wave incidence angle, which yields (Appendix B)

1/ Ap _AGN\* AZ| . ,.
~ — —_— —_— —_— 2.
Rys [8 (g F +2 G ) 7 ] sin” j (2.9)

A A
+ —Z—?- Toe sin4j + ?G Tss3 sin® Js

where Z, GG, and p are the values of the P-wave impedance, shear modulus, and density,
respectively. The bar and ‘A’ refer to mean value and difference between the properties of
the two halfspaces, respectively. The ratio of P-wave velocity to S-wave velocity is denoted
by g. Since the higher-order terms in equation (2.9) are proportional to the jump in the
shear modulus (AG), the amplitudes of ¥S-wave will be linear in sin? j for a small contrast
in G.

To test the accuracy of equation (2.9), I obtained the exact (solid lines) PP- and PS-
wave reflection coefficients (Aki & Richards, 1980) in a two-layer model with the parameters
given in the caption of Figure 2.2. The approximate (dashed lines in Figure 2.2a) PP- and
PS- wave reflection coefficients [equations (B.3) and (B.4)] are accurate for small offsets.
The ¥S-wave amplitudes (Figure 2.2b), obtained by multiplying the exact PP- and PS-
wave reflection coefficients [equation (2.8)] and from the approximation [equation (2.9)]
are in good agreement. For anisotropic models, the amplitudes of ¥S-wave become more
complicated and difficult to interpret.

2.2.3 Extension to 3D

Similarly to the original PP + PS = SS method of Grechka & Tsvankin (2002b),
integral (2.5) can be extended to 3D multiazimuth reflection data. If the sources and
receivers are allowed to cover a certain area, their coordinates € = [z, 2] become two-
dimensional vectors. The ¥ S traces are formally given by the same equation (2.5)

w\IIS(tvw(3)7w(4)) = //// [ ’is(t,:l:(l),(B(a)) *wpp(—t,m(l),$(2)) *
wps(t,:z:(2),a:(4))] dz) dz® | (2.10)

where all ) ( =1, 2, 3, 4) become 2D vectors and, therefore, the integration becomes
four-fold.
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Figure 2.2. Reflection coefficients for an isotropic half-space as a function of the S-wave
incidence angle (7). The P-wave velocity, S-wave velocity, and density are 4 km/s, 2 km/s,
2.40 gm/cm? for the first layer and 5 km/s, 2.8 km/s, 2.5 gm/cm? for the second layer: (a)
PP- and PS-wave exact (solid lines) and approximate (dashed lines) reflection coefficients,
(b) ¥S-wave exact (solid line) and approximate (dashed line) amplitudes.

2.3 Synthetic examples

Here I present numerical tests that illustrate the above outlined theory for generating
¥S data in 2D. I begin with examining the time function 7 [equation (A.5)] whose extrema
determine the kinematics of US-waves, then compute integral (2.5) to study features of
¥ S-data, and finally analyze the performance of the algorithm in the presence of random
noise.

2.3.1 Time function 7

As follows from Appendix A, the ability of integral (2.5) to represent the kinematics of
SS-waves depends upon the existence of the roots (1) and z(?) of equations (A.6). Clearly,
the PP and PS data are supposed to be physically recorded at the source and receiver
locations () and (3 to contribute to the integral. Since the number of roots z(!) and z(?)
and their very existence are unknown in advance, I present two examples that demonstrate
how the procedure might work in practice.

Defining the P-wave half-offset hpp and the midpoint ypp as

$(2) — x(l) $(2) + :L-(l)
hpp = o and ypp = — 9

I plot the time functions 7(hpp, ypp) for a plane homogeneous isotropic layer (Figure 2.3).
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Figure 2.3. Time functions 7 in a horizontal homogeneous isotropic layer that has thickness
D =1 km and velocities Vp = 2 km/s and Vs = 1 km/s. The solid line corresponds to ¥.S-
wave half-offset hyg = 0, dashed line to Aygs = 0.25 km, and dotted line to hgg = 0.5 km.
Large dots indicate the stationary values of 7.

The PP- and ¥S-wave midpoints, ypp and

23 1 z®
Yyus = Ta

coincide because the layer is horizontal. As a consequence, the curves in Figure 2.3 were
computed for the correct, i.e., stationary values ypp = yws. Figure 2.3 displays two clear
maxima' of 7(hpp) for ¥S half-offsets hys = (z(® — z(¥)/2 = 0 and hys = 0.25 km (solid
and dashed lines), and a poorly defined one for hgys = 0.5 km (dotted line). Those maxima,
marked with large dots, produce stationary points that yield pure shear-wave reflection
traveltimes. This statement can easily be verified by computing the S-wave moveout in this
model (the parameters are given in the caption of Figure 2.3).

Note that the curves in Figure 2.3 flatten out at large P-wave half-offsets hpp suggest-
ing that the time function 7 has extrema at hpp — *+oo. Although these extrema might
seem irrelevant for the problem at hand because data are never acquired at infinite offsets,
we will see that both the flatness of the time function 7 and the finite frequency bandwidth
of seismic data lead, unfortunately, to noticeable contributions associated with those distant
extrema even at relatively moderate hpp.

The extrema at hpp — +oo relate to the critical offsets of shear waves (Figure 2.4).
The P-wave incident and S-wave reflection angles, fp and fg, respectively, satisfy Snell’s

!They are actually saddle points. To show this, one needs to plot 7(hpp, ypp) in the [hpp, ypp] coor-
dinates as done in Figure 2.5 below.
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where Vp and Vs are the P- and S-wave velocities. Therefore, the maximum reflection angle
of shear waves is 05" = sin~!(Vs/Vp). This yields the critical half-offset

hSH = D tan [sin_1 (%) ] (2.11)

for the simple model in Figure 2.4; D is the layer thickness. Since the P-wave half-offset
corresponding to AZY is infinite, equation (2.11) establishes a physical limit of the maximum
¥ S offset that can be obtained from PP and PS reflection data regardless of the original
offsets. Clearly, a low Vs/Vp velocity ratio results in a small spread of the ¥S data, thus
increasing the uncertainty of shear-wave velocity analysis. The method introduced here
reveals the dependence of the accuracy of the estimated shear-wave velocities on the Vg/Vp
ratio, an issue that does not directly follow from direct analysis of converted waves.

Figure 2.3 indicates that waves corresponding to the contributions of the flat areas of
the time function 7(hpp) at hpp — +oo propagate with the P-wave rather than shear-wave
velocity because 85 — 0§"“ = constant for large hpp. For this reason, they can be called
the U P-waves. Figure 2.3 also shows that the extrema of 7(hpp) corresponding to the ¥S-
and ¥ P-waves approach each other in a continuous fashion and become indistinguishable
for hgs — A$Y (dotted line). Since the ¥.S and VP arrivals have different kinematics,
mixing them together (under the improper name ¥S) will invariably lead to errors in the
estimated S-wave velocities. The only remedy against that is to restrict the integration
in (2.5) to half-offsets hys < hSH.

Figure 2.5 gives an example of the time function 7(hpp, ypp) for a dipping layer. The
stationary (saddle) point corresponding to the WS arrival is located at App = 0.5 km and
ypp = —0.1 km (the cross in Figure 2.5); the midpoints yys and ypp are different because
of the reflector dip. The flattening of the time function in the bottom corners of Figure 2.5
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0
h”, (km)

Figure 2.5. Time function 7(hpp, ypp) (in s) for a dipping isotropic layer that has vertical
thickness D = 1 km (under the coordinate origin hpp = ypp = 0), dip ¥ = 30° and the
same velocities as those in Figure 2.3. The ¥S-wave midpoint and half-offset are ygs = 0
and hgg = 0.2 km, respectively.

indicates the extrema associated with ¥ P-waves.

2.3.2 Common-midpoint (CMP) gathers of US-waves

Because of the flattening, the integration limits in equation (2.5) need to be chosen
properly to avoid mutual contamination of ¥'S and VP data and the convolutions have
to be performed within time gates that enforce accurate correlation of PP and PS events.
Next, I proceed with actual computation of ¥S seismograms.

Figures 2.6a and 2.6b show the input PP and PS traces of synthetic CMP gathers for
a model of three homogeneous, isotropic dipping layer. Figure 2.6c demonstrates the result
— a computed S CMP gather. The PP and PS data have the following features:

e PP and PS wavelets differ in both the shape and frequency content; the ratio of the
dominant frequencies of the PP- and PS-waves is 1.5.

e The polarity of the reflected PS-waves flips at zero offset.

e The converted-wave moveouts corresponding to dipping reflectors are asymmetric with
respect to the source and receiver positions (Figure 2.6b). This phenomenon, as
discussed above, precludes application of conventional velocity analysis to PS data.

Figure 2.6¢ illustrates that the above features, which are usually troublesome for con-
ventional converted-wave processing, do not prevent us from reconstructing useful ¥S data.
The observation of primary importance in Figure 2.6¢ is that the reconstructed US events
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Figure 2.6. Input (a) PP, (b) PS, and (c) generated ¥S CMP gathers. The model is
homogeneous and isotropic with Vp = 4 km/s and Vs = 2 km/s. Three planar reflectors
have the depths D = 0.7, 1.2, and 1.8 km beneath the CMP; their dips are 0°, 10°, and
20°. The dots indicate the correct SS-wave reflection traveltimes.

follow the correct (i.e., those computed by ray tracing) SS-wave moveouts. Some other
features of ¥S are as follows:

o As expected from the nature of convolution in equation (2.5), the ¥.S wavelets are
longer and have more lobes than do those of either PP- or PS- waves. Their dominant
frequency lies between those of the PP- and PS-waves.

e The ¥'S CMP gather does not have polarity reversals. This follows from formula-
tion (2.5), which uses PS data twice so that the sign of the PS wavelet cancels out.

e Weak amplitudes of U S-waves reconstructed at small offsets relate to the correspond-
ingly weak PS signals. In particular, the PS amplitude is zero at z(!) = z(2) = 0. Since
this is the stationary point for the output offset Xyg = 2hgs = 23 — 29 = 0, the
zero-order term of the stationary phase method predicts a vanishing ¥S-wave ampli-
tude. The weak, but finite, ¥'S arrivals observed at hys = 0 in Figure 2.6c correspond
to the contributions of higher-order terms in the stationary-phase expansion.

e The absence of U S-waves at large offsets is a result of limiting integration (2.5) to pre-
critical offsets only. Specifically, the algorithm checks the value of hys and evaluates
integral (2.5) only if hys < h$¥; otherwise it fills the output ¥S trace with zeros.
The termination points for the two shallow reflections in Figure 2.6c suggest that

U S-waves can be reconstructed only for offset-to-depth ratios smaller than Xgg/D =
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Figure 2.7. CMP gather of ¥ P-waves generated from PP and PS data in Figure 2.6. The
dots indicate the linear moveout of P-wave.

1. This observation is in agreement with the theoretical result (2.11), which yields
Xgit/D = 2 /D = 1.15.

Following the above discussion, one might wonder what happens if the same computa-
tion is performed at half-offsets hys > hfl,’gt. Figure 2.7 shows that in this case the algorithm
produces events whose moveouts are approximately linear with the slopes dt/dhgs =~ 2/Vp
or dt/dXygs =~ 1/Vp. Clearly, their kinematics has nothing to do with that of reflected
SS-waves. This explains why these arrivals can be called ¥ P-waves. Only the changes in
the lengths of the P-wave segments of the converted-wave ray trajectories contribute to the
moveouts in Figure 2.7 because the S-wave segments remain constant for any half-offset
hys > hfl,rgvt.

Since the ¥ P-wave traveltimes are smaller than those associated with ¥S-waves (com-
pare Figures 2.6c and 2.7), mixing the two events together and performing conventional
velocity analysis may bias the estimated S-wave velocities towards higher values. As was
already mentioned, this bias can be removed by restricting the integration in equation (2.5)
to half-offsets hys < hSH.

2.3.3 Influence of random noise

Since the discussed procedure is designed for field data, it is important to examine its
robustness with respect to noise. Figures 2.8a and 2.8b show PP and PS traces similar to
those in Figures 2.6a and 2.6b but contaminated with Gaussian noise that has standard
deviation equal to the maximum amplitude in the data. Even though the PP and PS reflec-
tions are barely recognizable in Figures 2.8a and 2.8b, Figure 2.8c displays remarkably clean
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Figure 2.8. Same as Figure 2.6 but for PP and PS data contaminated with Gaussian noise
that has signal-to-noise ratio equal to 1. Dots indicate correct S-wave reflection traveltimes.

U S traces. This result is a direct consequence of applying convolutions, which efficiently
attenuate random noise.

2.4 Gulf of Mexico case study

The methodology was applied to a multicomponent (hydrophone, vertical geophone,
and inline horizontal geophone) 2D line acquired in the Gulf of Mexico. First, the PP-to-PS
event correspondence was established. This gave us the relationship between the PP and
PS zero-offset times, tppy and tpgg, which were used to compute the shear-wave traveltimes
tsso and the ratios gy as

tppo tppo (2.12)

o(tpPpPo = .
90( ) tsso 2tpso — tppo

Because of mild lateral heterogeneity of the subsurface, both functions tsso(tppg,Y) and
go(tppo,Y) [Figure 2.9] have a relatively weak dependence on the CMP coordinate Y.

An important observation that can be made from Figure 2.9b is that the ratio go is
quite small (about 0.15) at shallow depths. Ignoring the possible presence of anisotropy,
reflector dip, and lateral heterogeneity, and using the value of go = V5/Vp = 0.15 to
estimate the critical ¥ S-wave offset-to-depth ratio from equation (2.11), I find X§¥/D =
2hgY¥ /D ~ 0.3. Clearly, shear-wave stacking velocities cannot be picked accurately from
such short-spread moveouts. The ratio gg, however, rapidly increases with depth, reaching
the value of go = 0.35 at tppp = 5.5 s. This yields the ratio X§&/D = 0.75 which makes
the results of US-wave velocity analysis substantially more reliable despite the influence
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Figure 2.9. Event correlation displayed through (a) the function tsso(tppo,Y) and (b) the
ratio go(tppo,Y). Here, tsso and tppo are the S- and P-wave two-way zero-offset times
(in s), respectively, and Y is the distance (in km) along the line (or the CMP coordinate).
The color bars refer to the values of g5 (a) and go (b).

of growing shear-wave velocity Vs(tsso), which tends to reduce the accuracy of velocity
picking.

Figure 2.10, which displays the generated ¥S data, confirms a rapid increase of the
maximum ¥S-wave offset with time tgg9. Velocity analysis performed on ¥S-wave CMP
gathers such as those in Figure 2.10 produces poorly resolved semblance maxima at shear
times tggo smaller than about 5-6 s (not shown). This, however, is a consequence of low
Vs/Vp ratios in the shallow layers rather than a deficiency of the applied procedure. The
semblance maxima of ¥S-waves become better focused as tggy exceeds 6-7 s, which corre-
sponds to P-wave times tppy between 2 and 3 s. The results of velocity analysis on PP-
and ¥S-wave CMP gathers (Figure 2.11) are used below to estimate interval velocities.

2.4.1 Evidence for effective anisotropy

Prior to estimating the interval-velocity model, one needs to select its type. Ideally,
such a choice should be made based on understanding of which subsurface features are
constrained by the available data. Here, I show that the event correlation (Figure 2.9) and
the picked normal-moveout (NMO) velocities (Figure 2.11) unambiguously indicate non-
negligible anisotropy for the Gulf of Mexico data. To draw such a conclusion, we can use
the fact that the subsurface structure, being characterized by weak lateral heterogeneity
and mild dips (see Figure 2.14 below), is approximately one-dimensional.

Following Grechka et al. (2002b), let us examine two velocity ratios: go, which is equal
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Figure 2.10. Representative CMP gathers of ¥S-waves.
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Figure 2.11. Picked (a) PP-wave and (b) ¥S-wave NMO velocities (in km/s).
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Figure 2.12. Ratio gpmo of the picked ¥S- and P-wave NMO velocities. For comparison,
the color scale in this figure is the same as that in Figure 2.9b.

to the ratio of the vertical velocities Vsg and Vpg for horizontally layered media,

tppo  Vso
= tpro_ Vso 2.13
"= tsso  Vro (2.13)
and v
S,nmo
== 2.14
gnmo VP’nmo ( )

The ratio gg, derived from the PP and PS event correlation, is shown in Figure 2.9b, while
the ratio of ¥S- and P-wave NMO velocities is given in Figure 2.12. Comparison shows
that gnmo is consistently greater than gyo. For the P-wave times tppg > 2.5 s, where the
¥ S-wave NMO velocities are sufficiently accurate, gy =~ 0.3, whereas gnmo =~ 0.4.

In isotropic layered media, gnmo can be greater than go only because of larger vertical
variability of S-wave velocities compared to that of the P-wave ones. According to Grechka
et al. (2002b), relative vertical changes of Vo would have to be orders of magnitude greater
than those of Vpy to explain the observed values of gg and gnmo for isotropic media. Since
such a high vertical variation of shear-wave velocities is not supported by the data, only
the presence of anisotropy can give a plausible explanation for the difference between the
two velocity ratios. Therefore, the estimated subsurface model has to be anisotropic.

Next, we need to choose the type (symmetry) of anisotropy. This choice is essentially
constrained by our ability to estimate relevant anisotropic parameters from the 2D narrow-
azimuth data acquired over a relatively simple (close to 1-D) subsurface structure. Taking
into account that the study area is located in a sedimentary basin, transversely isotropic
model with a vertical symmetry axis (VTI) is a reasonable choice. Also, the constructed
¥S data should represent SV-waves, as appear to SH-waves, because the input converted
waves were recorded on the inline horizontal component.

The ratios go and gnmo defined by equations (2.13) and (2.14) can be directly linked
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Figure 2.13. Effective x defined by equation (2.15).

to the anisotropic coefficients § (Thomsen, 1986) and o (Tsvankin & Thomsen, 1994) in

a single plane VTI layer. Since Vpnme = Vpov1+ 20 and Vsnme = Vsov1 + 20, the
combination

1 grzxmo o—14
- |7 -1)= = 2.15

2 ( g8 1+246 X ( )
depends solely on § and o and, therefore, quantifies the effective anisotropy that can be un-
ambiguously estimated from the vertical traveltimes and NMO velocities of P- and SV-waves
in a plane homogeneous VTI layer. Because gy > gnmo, the parameter x > 0 (Figure 2.13),
which supports the conclusion that the subsurface is effectively anisotropic.

2.4.2 Estimation of interval parameters

The feasibility of estimating anisotropy from reflection seismic data is governed by the
extent of angular coverage that can be used in the inversion. Both acquisition design and
the presence or absence of dipping structures influence the range of angles of the reflected
waves. While 3D, wide-azimuth, long-spread data generally constrain anisotropic parame-
ters better than do 2D, narrow-azimuth, conventional-offset data, all pertinent quantities
still cannot be estimated uniquely from PP- and PS-waves in horizontally layered VTI me-
dia unless check shots or well logs are available (Grechka & Tsvankin, 2002a; Grechka et
al., 2002b). Therefore, it is important to examine whether or not the data contain enough
dip information for the inversion.

Figure 2.14 addresses this issue. It shows a histogram of more than one thousand dips
1 automatically picked from the stacked PP data. Even though the dips in Figure 2.14
were estimated using the equation

dippo
dY

¥ = tan"! [ 5

VP,nmo ]
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Figure 2.14. Distribution of dips picked from the P-wave zero-offset time section.

which ignores anisotropy and heterogeneity, the message in Figure 2.14 is clear. The subsur-
face can be treated as horizontally layered for the purpose of anisotropic inversion because
the mean absolute dip is about 2.5° and 50% of the picks fall below 1.7°.

As shown by Grechka & Tsvankin (2002a), the true depths in horizontally layered VTI
media cannot be estimated from reflected PP- and PS-waves even when long-spread data
are available. Therefore, one option is to set either anisotropic coefficient § or ¢ to any
chosen constant value or any predetermined function and proceed with anisotropic stacking
velocity tomography as was done by Grechka et al. (2002a). The arbitrary choice of § or o
will produce a family of kinematically equivalent VTI depth models. Alternatively, one can
perform parameter estimation in the time domain to evaluate the interval NMO velocities
VPamo and Vs nmo and the quantity x treated as functions of the P-wave vertical time tppg.
This yields a unique VTI time model, with the above mentioned ambiguity hidden in the
time-to-depth conversion. I select the second option here.

Figures 2.15a and 2.15b show the interval Vpyme and Vg nmoe that were obtained by
performing conventional Dix (1955) differentiation of the NMO velocities displayed in Fig-
ure 2.11. The interval anisotropy x in Figure 2.15¢c was computed from the interval ratios
gnmo and the event correspondence (Figure 2.9). Even though the higher x values for
tppo < 2.5 s may be related to inaccuracies in shear-wave velocity picking, the magnitude
of anisotropy is substantial.

Note that the inversion produces similar dipping features in the middle of the Vpymo,
Vsnmo, and x sections. Such general similarity is expected because the three fields corre-
spond to the same area of the subsurface. The sections of Vpmo, Vs,umo, and x, however,
differ in many details. This also could have been predicted because they represent dif-
ferent physical properties obtained from different components of seismic data, which went
through different processing sequences. Still, the three sections in Figure 2.15 complement
each other, thus providing information that cannot be extracted from P-wave data alone.

Even though Figure 2.15 displays the final output, it hides a significant depth ambi-
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guity of the estimated anisotropic model. Neither anisotropic coefficient (6§ or o) needed
to perform time-to-depth conversion can be estimated from the data. Instead, one can
constrain only their combination x = (o — §)/(1 + 26), which does not allow us to resolve
0 and ¢ individually. One might notice an analogy between this conclusion and the re-
sults of nonhyperbolic velocity analysis of P-waves, where the estimated Vpymo and the
Alkhalifah-Tsvankin (1995) anellipticity coefficient 7 also do not constrain the depth.

2.5 Summary

In this chapter, I described a processing flow designed for velocity analysis of converted
waves. Under the assumptions that (i) both PP and PS reflection data are available and
(ii) the PP and PS event correspondence is established, I developed an automatic procedure
for generating the ¥S data that are supposed to have the kinematics of pure shear-wave
primaries. As a result, conventional velocity analysis performed on ¥.S CMP gathers yields
S-wave NMO velocities. These velocities, along with those of the P-waves and the cor-
responding reflection time slopes, can be used for building elastic (usually anisotropic)
interval-velocity models.

The methodology was tested on both synthetic and field data. The synthetic examples
helped us to establish some data requirements and characteristics (e.g., PP and PS wavelets
do not have to be the same, and random noise is not a problem). The presented case study
confirmed that this processing flow can yield useful information about the subsurface that
cannot be obtained from P-wave data alone.

A modified version of this chapter is already published in Geophysics (Grechka &
Dewangan, 2003).
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Chapter 3

Parameter estimation using PS-wave moveout
asymmetry: Horizontal T'TI layer

As discussed above, if the medium is anisotropic without a horizontal symmetry plane,
the moveout of PS-waves becomes asymmetric. Applying the PP+PS=SS method to such
PS-waves will not preserve the information about the asymmetry of PS moveout. Here, I
modify the PP+PS=SS method introduced in Chapter 2 to obtain the asymmetry attributes
in addition to the ¥S-wave gathers. Then I present an analytic study of the PSV-wave
moveout asymmetry in a horizontal transversely isotropic layer with a tilted symmetry
axis (TTI medium) and develop an inversion algorithm that operates with both pure and
converted reflection modes. The TTI medium is parameterized here by the velocities of P-
and S-waves in the symmetry direction (Vpg and Vg, respectively), the tilt of the symmetry
axis from the vertical (v) and Thomsen’s (1986) anisotropic coefficients €, d, and « defined
in the coordinate system associated with the symmetry axis (Tsvankin, 2001).

In principle, the symmetry-axis orientation and the parameters Vpy, €, and § of a hor-
izontal TTI layer can be estimated from P-wave data alone, but this inversion requires the
normal-moveout (NMO) ellipses (i.e., wide-azimuth P-wave reflections) from a horizontal
and a dipping interface, and both the tilt » and reflector dip should be no less than 30-40°
(Grechka & Tsvankin, 2000). Although the addition of the NMO ellipses of pure SV-waves
to those of P-waves makes it possible to invert for the T'TI parameters using the reflections
from a single interface, the parameter estimation is still ambiguous for a range of small
tilts and reflector dips (Grechka & Tsvankin, 2000; Grechka et al., 2002a). Therefore, even
wide-azimuth traveltimes of pure reflection modes (P and SV) from subhorizontal interfaces
are insufficient for reconstructing the TTI model.

3.1 Modification of the PP4+PS=SS method

As discussed in Chapter 2, the construction of SS-waves with the correct kinematics
(but not amplitudes) does not require explicit information about the velocity field, but it is
necessary to correlate PP and PS arrivals and identify the events reflected from the same
interface. Application of equation (2.4) produces reflection SS data with the traveltimes of
SS primaries but generally distorted amplitudes. The moveout of the constructed SS-waves
in common-midpoint (CMP) geometry is always symmetric, as is the case for any pure
reflection mode. Conventional-spread SS traveltimes are described by the NMO velocity (in
2D) and NMO ellipse (in 3D), which can be obtained using algorithms developed for PP-
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wave data. The NMO velocities or ellipses of the PP- and SS-waves can then be combined
in velocity analysis using, for example, stacking-velocity tomography, which proved to be
particularly efficient for anisotropic media (Grechka et al., 2002a).

Still, for many anisotropic models including a horizontal TTI layer, pure reflection
modes are insufficient for estimating the vertical velocities and anisotropic coefficients
(Grechka & Tsvankin, 2000; Grechka et al., 2002a). In such a case, an important ques-
tion is whether or not including asymmetry attributes of the recorded PS-waves in the
inversion algorithm can help in recovering the medium parameters. From equation (2.4),
information about the moveout asymmetry of PS arrivals is not preserved in the computed
SS traveltime, which depends on only the sum of the traveltimes of the PS-waves converted
at point R (Figure 2.1). Below, I add certain measures of the PS-wave moveout asymmetry
to the traveltimes of the PP-waves and the constructed SS-waves in the inversion for the
parameters of TTI media.

A generalized version of the PP+PS=SS method based on equation (2.4) was intro-
duced in Chapter 2. Instead of operating with prestack PP and PS traveltimes, I applied
a particular convolution of PP and PS traces to produce seismograms of the corresponding
¥ S-waves [equation (2.5)]. The main contribution to the integral comes from the stationary
point that yields the traveltime of the constructed ¥.S-wave given by equation (2.4):

min
Tss(z(s)’$(4)) = iL‘(l) :L'(2) T(x(l)vw(Q)a$(3)’x(4)) (31)

@D, 22, 5@ 7®)

tPS (x(l)’ x(3)) + tPS (x(2), $(4)) — tPP (m(l),x(2))’

where 7 is the traveltime function defined in Appendix A. The stationary points are ob-
tained by equating the first derivative of 7 with respect to (1) and z(? to zero. Therefore,
the points 2(1) and z(2) must correspond to any extremum of the time function. To prove,
that it will be a minimum, let us consider the second derivative of 7,

o*r _ 0 (tPs (z(j), 33(j+2)) ~lpp (15(1)7 1'(2)))
8 (z)? 8 (z(0)?

,J=12. (3.2)

Since the curvature of the PS-wave traveltime will be larger than that of the P-wave trav-
eltime, the second derivative of the time function will be positive. Hence, the stationary
points will always correspond to a minimum of the time function. Note that in Figure 2.3,
the stationary points are indicated by the maximum value of the time function because it
is a 1D plot expressed as a function of the P-wave half-offset rather than () or z(®. The
above property is valid only for VTI media while equation (3.1) remains valid for arbitrarily
anisotropic media.

To preserve information about the moveout asymmetry of the recorded PS-wave, 1
suggest to generate an asymmetry gather in addition to the ¥S data. When using the
PP+PS=SS method, it is natural to define the asymmetry through the difference between
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the two PS traveltimes corresponding to the same reflection point (Figure 2.1):
Atpg ($(3)’ $(4)) = tps (w(l)ax(:;)) —tps ($(2)7 $(4)) . (3.3)

I modified the algorithm of Chapter 2 to estimate the stationary points given by equa-
tion (3.1). Then the difference between the PS traveltimes (picked on the original data)
corresponding to each stationary point could be used to compute the time asymmetry factor
from equation (3.3).

If the reflector is horizontal and the overburden is laterally homogeneous as is the case
for horizontal T'TT layer, the two reciprocal PS-waves in Figure 2.1 have the same magnitude
but opposite signs of the ray parameter (horizontal slowness), which corresponds to that for
the PP reflection from z() to (). Hence, equation (3.3) defines the asymmetry of the PS
moveout in the slowness domain. Analytic expressions that describe the asymmetry factor
At,, are given in the next section.

Similar to the original PP+PS=SS method, which can be extended to 3D multiazimuth
reflection data, the modified PP+PS=SS method can also be extended to 3D. The stationary
points given by equation (3.1) then would correspond to a minimum in the 4D space.

3.2 Asymmetric moveout of PS-waves in TTI media

If the medium is anisotropic without a horizontal symmetry plane or laterally hetero-
geneous, the moveout of PS-waves becomes asymmetric.

3.2.1 Parametric moveout equations

Consider a PS-wave formed by mode conversion at an interface underlying an arbi-
trarily anisotropic, homogeneous layer. In general, an incident P-wave in such a model
excites two reflected shear modes (PS; and PSz). The traveltime of either PS-wave can be
represented in parametric form as (Tsvankin & Grechka, 2002)

tps =tp+ts = 2.(qp —Pip G1p —PapQsp T ds — P15 915 — Pas q,zs), (3.4)

where t, and t, are the traveltimes along the P- and S-legs, respectively, z is the depth of the
reflection (conversion) point, p, and p, are the horizontal components of the slowness vector
(the subscripts “P” and “S” indicate the wave type), ¢ = p, is the vertical slowness, and
q; = 0q/0p; (i = 1,2) (Figure C.1). Following Tsvankin & Grechka (2002), the slownesses
are computed under the convention that the z3-axis points up, and both legs of the PS ray
represent upgoing waves (i.e., the corresponding group-velocity vectors point toward the
earth’s surface).

Here, I study a horizontal layer, in which the projections of the slowness vectors of the
P- and S-legs onto the horizontal plane have to be identical to comply with Snell’s law:

Pip =Py = —Pisi Pep = Py = —Pos - (3'5)
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Equation (3.4) then simplifies to

tps = 2.[0p + 95 — P, (q,lP - q,1s) — P, (Q,zP - q,zs)] . (3.6)

The corresponding source-receiver vector & of PS-waves in an anisotropic, homoge-
neous layer can be also expressed through the slowness components (Tsvankin & Grechka,
2002):

ZTps = {71, T2} = z-{(Q,lp - q,lS)’ (q,2P - q,zs)}; (3.7

I ==z. (Q,lp - q,lS) ’
T2 ==2. (Q,zp - q,zs) .

Equation (3.7) yields the source-receiver offset z and the azimuth « of the source-receiver
line with respect to the z;-axis:

Tpg = |Zpg| = V .’L‘% +$%’ (3-8)

a = tan! (ﬂ) (3.9)

3.2.2 Moveout asymmetry in the slowness domain

For laterally homogeneous models, such as a horizontal TTI layer, the moveout of con-
verted waves becomes asymmetric only if the medium does not have a horizontal symmetry
plane (e.g., Tsvankin, 2001). Conventionally, the moveout asymmetry is estimated in the
offset domain by interchanging the source and receiver positions. Here, however, I define
the traveltime asymmetry factor in the slowness domain:

AtPS = tPS (pl 7p2) - tps (_pu _pz) = Atp + Ats, (310)

where At, and At represent the contributions to At from the P- and S-legs of the PS
ray, respectively. Equation (3.10) describes the difference between the traveltimes of the
PS arrivals excited by incident P-waves that have the same magnitude but opposite signs
for the horizontal projection of the slowness vector.

If the moveout of PS-waves is symmetric, then changing the sign of the horizontal
slowness reverses the direction of the source-receiver vector  [equation (3.7)] with no change
in the absolute value of offset. Hence, the measure of asymmetry for  can be defined in
the following way:

Az, = $ps(p1,p2) + mps(_pn_pz)- (3.11)

The main advantage of treating the asymmetry in the slowness domain is that, for a laterally
homogeneous medium, both At,; and Az, can be obtained directly from the PP+PS=SS
method [see equation (3.3) and Figure 2.1].

Equations (3.6), (3.10), (3.7), and (3.11) give an exact representation of the moveout
asymmetry of PS-waves for any horizontal anisotropic layer. Next, I apply this formulation
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to study the dependence of At,  on the parameters of TI media with an arbitrary tilt of
the symmetry axis. The factor Az,  is discussed later on, after the introduction of the
offset, Zmin, of the PS-wave moveout minimum in CMP geometry.

Since the contributions of the symmetry-axis orientation and anisotropic parameters
to the time asymmetry factor At,  are hidden in the components of the slowness vector,
in Appendix C I estimate those contributions by linearizing equation (3.10) with respect to
€ and § under the assumption of weak anisotropy (|¢| < 1 and |6] < 1). The derivation is
carried out for the PS mode that is polarized in the plane formed by the slowness vector
and the symmetry axis. Note that although I will denote this wave “PSV,” its polarization
vector lies in the vertical incidence plane only if that plane contains the symmetry axis.

The coordinate system is chosen in such a way that the symmetry axis is confined to
the [z1,z3]-plane, which represents the only vertical symmetry plane of the model and will
be called here the symmetry-azis plane (Figure C.1). The sign of the time difference in
equation (3.10) is specified by assuming that the symmetry axis is dipping in the positive
z1-direction.

Substituting equations (C.5) and (C.6) into equation (3.10), I obtain a linearized ex-
pression for the moveout asymmetry factor of the PSV-wave:

At,, = —8nzVi p, [pg + (pr +p§) cos 2v| sin 2v, (3.12)

where n = (e — 6)/(1 + 20) = € — § is the “anellipticity” coefficient responsible for time
processing of P-wave data in VTI media (Alkhalifah & Tsvankin, 1995). In the symmetry-
axis plane [z1,z3], the slowness component p, vanishes, and equation (3.12) simplifies to

At (p, =22 =0) = —8n2z V3, pf sin4v . (3.13)

Based on equations (3.12) and (3.13), the main properties of the PSV-wave time asym-
metry in the slowness domain can be summarized as follows:

e The asymmetry factor A¢,  vanishes for VII (v = 0°) and HTI (v = 90°) media
because these two models have a horizontal symmetry plane. In the symmetry-axis
plane, the linearized expression for At, [equation (3.13)] also goes to zero for v = 45°.
The higher-order terms in € and §, however, do not vanish, which makes the moveout
weakly asymmetric.

e The contributions to the asymmetry factor from the P-leg [equation (C.5)] and S-leg
[equation (C.6)] of the converted wave are identical. Although this result was proved
here in the weak-anisotropy approximation, numerical tests show that it remains valid
for arbitrary strength of the anisotropy.

e The asymmetry in the slowness domain depends only on the difference n = e— 4, and
therefore vanishes if the anisotropy is elliptical (¢ = ). Since for elliptical media there
is no SV-wave velocity anisotropy, the S-leg of the converted wave does not produce
any moveout asymmetry. This means that the P-leg cannot cause the asymmetry
either (see the previous item).
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Figure 3.1. Exact asymmetry factor At,g in the slowness domain for the PSV-wave in a
horizontal T'TT layer. At is normalized by the zero-offset traveltime ¢ of the PSV-wave.
The asymmetry for negative slowness p, is not shown because At ¢ (p,, —p,) = Atpg(p;,P,)-
The medium parameters are Vpg = 4 km/s, Vgo = 2 km/s, e = 0.1, § = —0.1, v = 70°, and
z=1km.

e The magnitude of the asymmetry factor in the symmetry-axis plane [equation (3.13)]
reaches its maximum for the tilts v = 22.5° and v = 67.5°. Therefore, At,, is
quite sensitive to the deviation of the symmetry axis from the vertical and horizontal
directions.

The azimuthally-varying asymmetry factor At,, computed for a typical TTI model
from exact equations (3.6) and (3.10) is displayed in Figure 3.1. There is a substantial
variation of At,¢ with the slowness component p, (e.g., in the z;-direction where p, = 0),
while the influence of p, is much weaker. Therefore, Figure 3.1 indicates that most of the
3D (wide-azimuth) moveout asymmetry information can be obtained in the symmetry-axis
plane [z1,z3].

Note that the line p, = 0 in Figure 3.1 where At,, = 0 does not correspond to
acquisition in the [z2, z3]-plane. Since [z2,z3] is not a symmetry plane, downgoing P rays
with p, = 0 deviate from the vertical incidence plane [z2,z3], and the source-receiver
direction of the reflected PS-wave is not parallel to the zs-axis.

Figure 3.2 shows, in more details, the function At,¢(p,) in the symmetry-axis plane.
Both the PP+PS=SS method and parametric equation (3.10) should to produce exact values
of At,, which is confirmed by my numerical results. The magnitude of the asymmetry
factor is quite substantial — it exceeds 40% of the zero-offset time before rapidly decreasing
for large values of p,.

The accuracy of the weak-anisotropy approximation (3.13) in Figure 3.2 is quite sat-
isfactory considering that it incorporates the contribution of the S-leg of the converted
wave. Typically, the weak-anisotropy approximation is much less accurate for SV-waves
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Figure 3.2. Asymmetry factor from Figure 3.1 in the [z1,z3]-plane (p, = 0). The solid
line is obtained from the exact parametric equation (3.10); the dashed line is the weak-
anisotropy approximation (3.13); the stars mark the output of the PP+PS=SS method.
The maximum offset-to-depth ratio of the PP and PS data is close to two.

than it is for P-waves because of the large magnitude of the anisotropic parameter o =
(VE,/VZ) (e — 6) (Tsvankin & Thomsen, 1994; Tsvankin, 2001). For the type of computa-
tion here, however, the anisotropy-related asymmetry factors for the P- and S-legs are equal
to each other (see the second item), and the error of the weak-anisotropy approximation is
the same for both P- and S-waves.

3.2.3 Moveout asymmetry in the offset domain

Most existing results on the moveout asymmetry of PS-waves are obtained in the
offset domain (Thomsen, 1999; Tsvankin & Grechka, 2000, 2002). If the source and receiver
positions are interchanged, the traveltime of the converted wave does not remain the same
unless the reflector is horizontal and the medium above it is laterally homogeneous and has
a horizontal symmetry plane. For PS data collected in a CMP gather centered at the origin
of the coordinate system, the asymmetry factor in the offset domain is defined as

Atps =tpg (mps) —tpg (_zPS) ’ (3.14)

where x,; is the offset vector of the PS-wave given by equation (3.7).

Azimuthally varying minimum-time offset =i, .- If reflection moveout is
asymmetric, the minimum of the traveltime curve in a common-midpoint gather is shifted
from the CMP location. The offset corresponding to the traveltime minimum (I denote it
by Zmin) is a convenient measure of the asymmetry that depends on the reflector orientation
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and anisotropic parameters. Analytic expressions for zni, in a VTI layer above a dipping
reflector are given by Tsvankin & Grechka (2000, 2002) and Tsvankin (2001). In a horizon-
tal TTI layer, Ty, carries useful information about the tilt of the symmetry axis and the
anisotropic parameters.

In Appendix D, I use equations (3.7)—(3.9) for the offset & in terms of the ray parameter
to obtain the following simple expression for the azimuthal variation of zm;n:

Tmin(@) = T cosa, (3.15)

where z9 = Zmin(@ = 0°) is the offset of the traveltime minimum in the symmetry-axis
plane [z1, z3], given in equation (D.5):

2
Zo = Tmin(@ =0°) = —2 [e sin2v — I (1 + VL;O) sin4v] . (3.16)
2 Vo
According to equation (3.15), Zmin(e) reaches its maximum in the symmetry-axis plane
and vanishes in the orthogonal direction. If z.;, is plotted as the radius vector for each
azimuth «, it traces out a circle with radius zo/2 and center (z¢/2,0) on the z;-axis. While
equation (3.16) for zg is valid only in the weak-anisotropy limit, the azimuthal dependence
of Tpin is described by equation (3.15) for any strength of the anisotropy (Figure 3.3; similar
results were obtained for much larger magnitudes of € and §). Hence, the azimuthal variation
of Zpin can help to estimate the symmetry-axis azimuth from converted-wave data, but it
does not provide additional information about the anisotropic coefficients.

The offset znyi, is not only responsible for the shape of the PS-wave moveout in CMP
geometry, it also largely controls the asymmetry measure Az, [equation (3.11)] defined

in the slowness domain. In the symmetry-axis plane, Az,  can be written as

Az,s = Tp5(p,,0) + Tp5(—py,0). (3.17)

Linearizing equation (3.17) in the anisotropic coefficients using equation (3.7) yields the
projection of the vector Az, onto the z;-axis in the form

(Az,g), = 230 + 1202 V3, p? sindv, (3.18)

where z is given by equation (3.16). According to equation (3.18), the quantity |Az |
can be approximated by a hyperbolic function of the slowness p, with the value at the
apex determined by 2z(. Indeed, when p, = 0, the PS-rays corresponding to both p, and
—p, coincide and have the same offset zo (Figure 3.4). If the PS moveout were symmetric,
the offsets for p, and —p, (circles and diamonds, respectively, in Figure 3.4) would have
identical absolute values but opposite signs, and the zero-offset PS-ray would have the
slowness p, = 0. Figure 3.4 also confirms that the linearized equation (3.18) is sufficiently
accurate for weak and moderate anisotropy.

Therefore, an alternative way of estimating zg is to fit a hyperbolic function to the
slowness-dependent factor (Az,g), and find its intercept for p, = 0. It is interesting
that the coefficient of the quadratic term of the hyperbola (3.18) is formed by the same
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Figure 3.3. Polar plot of the offset zmin(c) for the model from Figure 3.1. The stars mark
values obtained from anisotropic ray tracing of PS-waves and the solid line is computed
from equation (3.15) with the exact value of z.
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Figure 3.4. Slowness-domain factor (Az,s), and PS-wave offsets in the symmetry-axis
plane of a TTI layer with the same parameters as those in Figure 3.1. The solid line marks
exact values of (Az,g),, from equation (3.17), and the dashed line is the weak-anisotropy
approximation (3.18). Exact PS-wave offsets for positive slownesse