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Abstract

Multiple scattering of elastic waves in disordered media offers a complexity of the
wave field that is challenging to unravel. The subsurface is an example of a medium with
disordered inhomogeneity at all scales. However, because waves that bounce around for
a long time and/or distance sample the Earth well, they potentially offer great insight
into the structure of the subsurface.

A surface wave scattering model is presented to aid the understanding of multiple
scattering. Advantages of this model include accessibility of the wave field within the
scattering medium, tunable scattering strength, availability of phase and amplitude
information, and the relative longevity of surface waves. Accompanied by a state-of-
the-art non-contacting data acquisition scheme, this system proved ideal for unveiling
the effects of multiple scattering.

When a pulse is launched in a strongly scattering medium, it travels ballisti-
cally at first, but turns diffusive as multiply scattered waves interfere with the incident
pulse. Radiative transfer has proven to describe both the transmission of the coherent
pulse through the scattering media, as well as the diffusive energy that is dominant
at later times. Advances in the the understanding of radiative transfer theory both
experimentally, as well as theoretically, make it possible to quantify bulk properties
of this scattering medium, including independent estimates of scattering attenuation
and intrinsic absorption and energy velocity. Preliminary studies in full-waveform sonic
logging show potential of such an analysis in terms of radiative transfer.

Small amplitude variations caused by scattering were also observed and confirmed
by spectral-element numerical simulations. These included body-wave precursors to the
dominant surface waves and flexural resonance of the scatterers.

As an application of this work, a model is presented that proved to be a successful
test in applying a wave-equation based method to image, predict and subtract scattered
waves, when the interest is in other events than the scattered field.




iii

I'm pickin’ up good vibrations
B. Wilson and M. Love
SMILE, 1966
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Chapter 1

Introduction

In geophysics many studies have been devoted to the topic of scattering from inho-
mogeneities in the Earth. Of course, we heavily rely on impedance contrasts in the Earth
to reflect seismic energy back to the surface, but heterogeneity on a scale smaller than the
dominant wavelength is known to influence the characteristics of the seismic signal. For
instance, O’Doherty & Anstey (1971) show that reflections within thin layers alter the fre-
quency content of the transmitted pulse, while Backus (1962) found that thin layering, or
any preferred orientation of scatterers, makes the seismic velocities angle-dependent (i.e.,
anisotropic). In Kennett (1984), scattering from heterogeneity in the Earth’s crust is shown
to transfer energy from the vertical component to the horizontal components. Could this
be an early report on a now well-known characteristic of multiple scattering called equipar-
tition (Hennino et al., 2001)? In addition, the scattering of energy due to inhomogeneities
in the subsurface is known to attenuate the coherent signal (often referred to as the first
arrival or ballistic peak). This mechanism for attenuation is coupled to intrinsic absorption.
Attempts to decouple these for earthquake measurements by Wu (1985), Wu & Aki (1985)
and Wu & Aki (1988) were noble and maybe ahead of their time, but hindered by limited
data, both in bandwidth, as well as coverage.

This thesis is a study of multiple scattering of surface waves. While multiple scat-
tering of elastic waves in the Earth is a growing topic of research (e.g., Margerin et al.,
1999; Hennino et al., 2001; Wegler & Liihr, 2001; Campillo & Paul, 2003), much of its char-
acteristics are still ill defined. The goal is to show that understanding multiply scattered
energy can aid our understanding of the disordered systems like the Earth. In practice,
however, exploiting multiply scattered waves to make inferences about a medium can be far
more complicated than using single-scattering theory such as the Born approximation. In
geophysics, nearly all data processing algorithms are based on single scattering theory (Aki
& Richards, 1980), but a highly heterogeneous near-surface (Campman et al., 2003), crust
(Campillo et al., 1999), and the boundary between core and mantle (Earle & Shearer, 1997;
Margerin et al., 1999) provide coherent and diffuse signal. In contrast, human tissue is such
a strong scatterer of light that only diffuse (i.e. multiply scattered) light can be measured
(Boas et al., 1995).

A solid block of aluminum contains a number of surface wave models. Each face of the
block represents a model with a certain level of complexity in surface wave propagation. In
a way, this block is a mini-laboratory for the study of surface waves. Overall, each face of
the block is large compared to the dominant wavelength, while surface scatterers are smaller
than a wavelength. The smooth face of the block is used to determine the material and
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the model is on length scales beyond a mean free path, and the microscopic scale is much
smaller than that, the mesoscopic regime covers the length scale around one mean free path.
Energy propagation in this regime is described by the theory of radiative transfer of energy.

1.1 Wave propagation in (grooved) aluminum

Chapter 2 concerns the theory of Rayleigh waves in a homogeneous elastic half-space
and experiments in a (finite) aluminum block with and without a single groove. Both the
end of the block and the groove diffract surface waves to body waves, but the finite depth
of the groove makes reflection and transmission of the Rayleigh wave frequency dependent.
In addition, the non-contacting data acquisition is introduced. Much experimental surface
wave research is done in non-destructive testing, where one looks for small cracks in materials
(see Hess, 2002, for an overview), but also in geophysics where surface waves are used in
tomographic inversion for the structure of the Earth (Dahlen & Tromp, 1998), the influence
of topography on seismic waves is tested (e.g., Komatitsch et al., 1999) and dispersion
curves of ground-roll are used to invert for layered models in near-surface geophysics (e.g.,
Xia et al., 1999).

1.2 Multiple scattering at the macroscopic scale

To understand the different regimes of multiple scattering, describing the propaga-
tion of energy and their transitions, it is extremely useful to have a medium in which the
scattering properties can be easily adjusted. For example, with phonon scattering one can
control the mean free path via the temperature (Wolfe, 1998). If the mean free path is
greater or equal to the size of the sample, then the phonons propagate ballistically. The
more scattering between source and detector, the more diffusive the propagation. Chap-
ter 3, based on Scales & van Wijk (1999, 2001), introduces such a surface model in our
mini-laboratory. Here we use a face of the block with many grooves per wavelength. Waves
propagating parallel to the grooves propagate nearly attenuation and dispersion free, but
waves propagating normal to the grooves are dispersed and exponentially attenuated with
distance as waves bounce between the grooves. This means that energy is transferred from
the direct pulse to later times. This tail of energy is called the multiple-scattering coda. We
measure this attenuation length and show that there is, in addition, a scattering induced
anisotropy in the group and phase velocity.

By varying the source-receiver orientation with respect to the grooves and the dis-
tance between source and receiver, we are able to map out the transition from ballistic to
diffusive energy propagation and measure the angle-dependent macroscopic properties of
the medium, such as the group velocity, and the scattering mean free path. Finally, the
observations around a mean free path are fit in the macroscopic description of diffusion.
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Chapter 2

Surface waves in theory and experiment

2.1 Summary

An aluminum block serves as a mini-laboratory for surface wave studies. It is large
compared to the dominant wavelength and the aluminum behaves nominally elastic for our
purposes. Grooves, which are small compared to the source wavelength, reflect, transmit
and even convert the incoming surface wave energy to body waves. However, before we
look at complicated interference of surface waves scattered on the face with a multitude of
grooves, let us examine the theory of Rayleigh waves, their characteristics on a smooth face
of the aluminum laboratory, and finally, on the face with a single groove.

2.2 Introduction

Quantifying the results of surface-wave scattering from lateral variations is of direct
interest in geophysics. Scattering caused by topographic variations introduces dispersion
of the early arriving energy, which competes with dispersion related to horizontally layered
structures. In addition, in global seismology, surface topography or sedimentary basins
can trap seismic energy (e.g., Komatitsch et al., 1999), posing seismic hazard, while in
exploration geophysics topography needs to be accounted for in terms of static corrections
(e.g., Campman et al., 2003).

The aluminum surface wave laboratory is 28 cm X 23 em x 21.5 cm. A transducer
mounted on the surface of an aluminum block excites surface waves. For a detailed analysis
of the source characteristics, I refer you to Appendix A. The scattered wave field is recorded
with a laser Doppler vibrometer. This entire setup is positioned on a vibration isolation
table. This type of non-contacting data acquisition is used on a regular basis in non-
destructive testing (see Hess, 2002, for an overview of the literature).

2.3 Rayleigh waves in an elastic and isotropic half-space

Navier’s equation, the homogeneous equation of motion in a homogeneous elastic half-
space, follows from a balance of forces (e.g., Aki & Richards, 1980):

A+ 1) V (V- u) + pV?u = pil, (2.1)
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where ¢% = k? — k2, s2 = k? — k2 and (A, B) are arbitrary constants. With the conditions
that at the boundary of the elastic half-space the stresses are zero: o,, and o, = 0, we can
write B in terms of A, and find the characteristic relation between the k, s and ¢ to be

ak2qs — (K2 +s%)* = 0. (2.10)

In terms of velocities, this is

2\ 2 2 2
(2—6—2> —a,1- 5415, (2.11)
V2 v2 v?

where ¢ = w/k. This equation is known as the Rayleigh equation, named after J. W.
Strutt, Lord Rayleigh, who first published this in 1885 (Strutt, 1885). Mathematically,
this equation has six roots for ¢, but as the Poisson’s ratio lies between 0 and 0.5, and we
know that the surface wave has to decay with depth, each elastic isotropic medium has
one Rayleigh wave with a velocity cr that ranges between 0.87 to 0.96 times the shear
wave velocity, depending on the Poisson’s ratio of the medium. Once cg is known, we can
determine individually the inhomogeneous longitudinal and shear wave components from
equation (2.9) that are in a Rayleigh wave:

¢ = —Aexp(i(kx —wt) —qz) and P = iAkT2_k;_q? exp(i(kz — wt) — s2). (2.12)

If we know v, and v, the variables s,q are now known and A is a scaling term. From
these equations one can see that the shear component is 90 degrees out of phase with the
compressional component, due to the factor i. This causes the famous elliptical polarization
of the Rayleigh wave. Worth pointing out is that even though the assumed model here is
2D, the out-of-plane shear-component of the vector potential turns out to be zero in a 3D
analysis. Finally, equation (2.12) shows that the polarizations decay exponentially with
depth, governed by ¢ and s, respectively. Because s and ¢ are proportional to frequency,
low frequency Rayleigh-wave components sample the medium to a greater depth than high
frequency components.

2.4 Source and receiver in the laboratory

This Section discusses in general terms the excitation and detection of Rayleigh waves
in aluminum in the laboratory, but a much more detailed analysis of the source properties
is laid out in Appendix A.

2.4.1 The Rayleigh wave source

In the laboratory, waves are exited with a piezo-electric crystal that has the ability
to convert a voltage to a mechanical force. This crystal is mounted on a Lucite wedge
and this wedge is mounted on the aluminum model. The angle of the wedge is such,
that the horizontal component of the P-wave speed in Lucite matches the Rayleigh wave
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Figure 2.1. Top-view of the experimental configuration (left) on the smooth face of alu-
minum. The shaded box represents the source and the circles represent 20 equi-spaced
detector locations. The wave field for each detector is shown on the right. The spot-size
of the interferometer beam has a diameter of 1 mm, the source is 42 mm wide, and the
dominant wave-length is on the order of 1 cm.

the direct wave, because energy is diffracted to body waves at the edge of the block. Since
the amplitudes of the direct arrival (or of the reflection) vary insignificantly with source-
detector distance, we consider the aluminum block to behave elastically and thus neglect
intrinsic absorption.

The phase velocity of the Rayleigh wave on the smooth face of aluminum is experi-
mentally determined from the move-out of a particular phase of the wave field, as a func-
tion of distance. Figure 2.2 shows the picks of the maximum energy in each trace and
the regression through the picks. This measured phase velocity of the Rayleigh wave is
vp = 2870 = 5 m/s. Even though the documented material properties vary from one alu-
minum to the next (Anderson, 1989), with the knowledge of v, and vs from transmission
measurements, equation (2.11) predicts the Rayleigh wave speed to be vg ~ 2864 m/s.

2.6 When a surface wave meets a groove

A computer controlled milling machine etched a single 1-mm wide and 2.75-mm deep
groove on one face of the aluminum block. When a Rayleigh wave encounters this groove,
part of its energy is reflected and part is transmitted. However, just like the edge of the
block, the groove diffracts energy to body waves as well. The magnitude of these parts is
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Figure 2.3. Top-view of the experimental configuration. The circles represent detector
locations. The spot-size of the interferometer beam has a diameter of 1 mm, the source is
42 mm wide, and the dominant wave-length is on the order of 1 cm. The recorded wave
field at these detectors is depicted in Figure 2.4.
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Figure 2.4. Reflection (left) and transmission (right) for a single groove. The primary peaks
are the direct arrival. In the left panel, the secondary peak is a reflection from the groove,
while in the right panel this secondary peak is the reflection from the end of the block.
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Chapter 3

Multiple scattering at the macroscopic scale

3.1 Summary

This Chapter describes wave propagation on a face of our aluminum laboratory with
many grooves. Waves traveling parallel to the grooves do not encounter the scatterers, but as
I rotate the angle between the direction of propagation and the groove orientation, scattering
gets stronger, causing attenuation, dispersion and a decrease in seismic velocities. Ensemble
measurements of wave propagation perpendicular to the grooves are used to determine the
scattering mean free path. Energy propagation at source-detector distances of a mean free
path or beyond should — by definition — start to show diffusive behavior. The macroscopic
description of diffusion of energy is confirmed by fitting the data to the Green’s function
for the 1D diffusion equation.

3.2 Introduction

The influence of multiple scattering in wave propagation measurements can be seen
in many ways. There are subtle, Jong-wavelength effects such as anisotropy (if the scat-
terers are aligned) and attenuation (as energy is shifted from the ballistic pulse into the
multiple-scattering coda) (Groenenboom & Snieder, 1995). These effects are well known
in seismology (e.g., Backus, 1962; Aki & Chouet, 1975; O’Doherty & Anstey, 1971) and
have been used to interpret effective material properties from macroscopic measurements.
However, in most cases the same phenomenon can be looked at from different points of view
(such as ballistic propagation, diffusion or radiative transfer) depending, for example, on
the wavelength of the probing beam relative to the size of the disorder and on the distance
propagated. To understand these different regimes, a surface wave model is presented in
which the scattering properties are easily adjusted.

3.3 The grooved aluminum model

On one face of the aluminum block, a computer-controlled milling machine etched a
Fibonacci sequence! of aligned linear grooves (Figure 3.1). These sequences are frequently

'From Liber Abbaci, 1202 but revised in 1228. meaning The Book of the Abacus (or The Book of
Calculating). One of the problems in this book was about reproducing rabbits, which introduced the series
1,1,2, 3,5, 8, ... . It was much later (around 1870) that Lucas named this series of numbers after Fibonacci.
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Figure 3.2. Top-view of the experimental configuration that measures the wave field at
10 source-detector offsets for 10 angles between the source-detector line and the grooves,
ranging from 0 to 90 degrees.

3.4 A tunable multiple-scattering system

The basic measurement consists of the vertical component of particle velocity measured
at 1-cm increments or offsets, along a line extending perpendicularly from the transducer
front to a maximum offset of 10 cm. Such a measurement is called a constant-angle section.
The line along which the measurements are made defines an angle relative to the orientation
of the grooves. Constant-angle sections range from 0 to 90 degrees, with 10-degree spacing;
0 degrees being parallel to the grooves. Thus there are a total of 100 traces (10 angles and
10 offsets). The experimental configuration is sketched in Figure 3.2.

Figure 3.3 contains the wave fields for propagation parallel to the grooves. It shows that
propagation at zero degrees with the grooves is essentially identical to propagation on the
smooth surface of aluminum in Figure 2.1; both are nominally attenuation- and dispersion-
free. An exception is the last trace, where the detector was positioned on the edge of the
surface. There, a complicated super-position of the surface wave and the diffraction at the
corner alter the measured wave field. However, as the angle of the propagation increases,
scattering becomes significant. Figure 3.4 the source-detector line at 50 degrees with the
grooves: an intermediate scattering strength. In this constant-angle section one can see
dispersion and attenuation of the early arrivals, and multiple-scattered energy arriving at
later times. Figure 3.5 shows the transition from ballistic propagation to strong multiple-
scattering as the angle between surface wave propagation and the grooves is increased.
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Figure 3.5. A constant-offset section (5 cm); that is, variable angles for a fixed
source-receiver distance.

In the absence of scattering, the dominant frequency is that of the source wavelet;
around 400 kHz. However, scattering reduces the high frequency power in the data in two
ways. First, because the 2.75 mm-deep grooves scatter the shallower traveling high frequen-
cies more effectively, they are poorly transmitted. Second, the interference of multiples in
a cyclic system (aluminum/air) is known to reduce the frequency of the transmitted pulse.
Basically, the multiples trailing in the forward direction have the same polarity, because
they have changed sign twice at a boundary between aluminum and air (e.g., O’Doherty
& Anstey, 1971; Mateeva, 2001). This means pulses of the same polarity arrive within a
dominant wavelength, broadening the cumulative wavelet.

3.4.1 Group velocity vs. scattering strength

The longer effective path lengths of the multiply-scattered waves result in a significant
slowing of the energy propagation. To estimate this group velocity as a function of angle,
the data is sorted into constant-angle sections and the energy envelopes of each trace are
computed. The peaks of these envelopes were picked automatically and the times taken to
be the arrival times of the pulse. This gives an arrival time for each offset, the set of which
were fit with a straight line to arrive at the group velocity (Figure 3.6). The error bars are
98% coverage intervals from the regression. Destructive interference or mode-conversion
causes intensities from 60-80 degrees to be weaker, making the error bars in the group
velocity estimate larger. The group velocity in the strongest scattering case (90 degrees) is
discussed in Appendix C.
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Figure 3.7. The wave field recorded on the grooved aluminum surface on each of the first
42 non-grooves.

3.5 Strongest scattering

Figure 3.7 contains the records of wave propagation normal to the grooves. The source
is located before the groove sequence and the detectors are between the first 42 grooves.
This area of aluminum is called a non-groove. Signal for the first traces in Figure 3.7 are
clipped in amplitude, so that the traces with a larger source-detector separation show ample
signal. This illustrates the strong attenuation of the first arrival, caused by scattering from
the grooves; not only is energy diffracted to body waves, it is also delayed by bouncing
around between grooves. This energy at late times is often called the coda.

The left panel of Figure 3.8 shows the peak amplitude of the first pulse as a function
of distance from the source. The decay is well fit by an exponential. The decay length
will vary according to the properties and distribution of the scatterers; in this particular
case the 1/e decay length is about 25 mm. For a quasi-1D system such as this, this decay
length can be taken to be the localization length (Scales & van Vleck, 1997). The right
panel of Figure 3.8 shows the arrival time of a particular surface wave phase as a function
of the source-receiver offset. The slope of the best fitting straight line gives an estimate
of the phase velocity. For propagation on the smooth face, or for propagation parallel to
the grooves, regression yields a phase velocity of 2870 + 5 m/s, whereas for propagation
normal to the grooves the phase velocity is 2801 & 14 m/s. Since the depth of the medium
is many wavelengths and the medium itself is homogeneous, except for the grooves (which
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Figure 3.9. Top-view of the experimental configuration to measure the wave field at 38
locations at a fixed source-detector offset of 5 cm on the block.

medium filled with random scatterers, the total and coherent intensities are expected to
decay exponentially as (see Ishimaru, 1997), section 14-3): I(z) = Ipexp(—z/¢,) and
I.(z) = Ipexp(—z/£a) exp(—x/¢s), where £, and £, are the absorption and scattering mean
free paths, respectively. Therefore, the ratio of these two intensities decays exponentially,
depending only on the scattering mean free path (De Rosny & Roux, 2001):

%(_:1:) = exp(—z/4s) = exp(—vt/Ls) = exp(—t/7s), (3.2)
t(z)
where v is the group velocity and 75 is the scattering mean free time.

Numerically, the coherent intensity I. is the intensity of the average trace, while the
total intensity I; is the average of the intensities of the individual traces. The ratio of I.
to I, is shown in Figure 3.11. Fitting an exponential to the portion of the curve after the
coherent arrival (about 30 ps), the mean free time 7, = 24 ps. Since this measurement
is for propagation at 90 degrees with respect to the grooves, the group velocity is around
2 mm/ us, which gives a mean free path of just under 5 cm. Thus we are in a regime in which
the wavelength is large compared to the size of an individual scatterer, but small compared
to the mean free path; while we have measurements with source-detector offsets as large as
92 mean free paths. In this sense one observes here the transition from ballistic to diffusive
propagation. With this estimate of the scattering mean free path, the coherent intensity
decays exponentially with an absorption length £, ~ 50 mm. This absorption describes the
Joss of energy from diffractions off the bottom of the grooves.
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Figure 3.11. Ratio of coherent to total intensities averaged over the ensemble of realizations.
The curve decays after the coherent arrival. This decay is fit with an exponential the decay
constant of which is the mean free time; in this case, 24 ps.

To get some idea of whether the total intensity behaves diffusively at 5 cm offset,
as is suggested by our estimate of the mean free path, we fit the ensemble-averaged total
intensities with an analytic model associated with propagation in a homogeneous diffusive,
absorbing medium. We included absorption to account for diffraction losses off the grooves.
The Green’s function for this model is given by

2
Ii(z,t) = (4nDt) " exp <—Z%¥ - Dnzt), (3.3)

where & = 1/£, is the absorption coefficient, D is the diffusion constant and z is the
propagation distance. This solution is derived in Appendix B.6. A fit to the data is shown
in Figure 3.12.

3.6.1 Discussion

This fitting to the diffusion equation alone, cannot determine D, explicitly; the propa-
gation distance is not well-defined since in the real experiment the waves propagate ballisti-
cally for some distance, whereas the model is for a homogeneous diffusive medium. However,
we can get a rough estimate of the diffusion constant as follows. First D = vl /d where
v is the transport velocity, £ is the transport mean free path and d the dimension of the
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Chapter 4

Multiple scattering at the mesoscopic scale

4.1 Summary

Here we show detailed measurements of wave propagation in a 1D strongly scattering
medium that fit the theory of radiative transfer for both early times (ballistic propagation)
and late times (diffusive propagation). Using the radiative transfer model we are able to
estimate the energy velocity and both the scattering and absorption mean free paths.

4.2 Introduction

When waves propagate through a medium they encode information about the prop-
erties of that medium. The information from multiply scattered waves has a very different
character than that associated with directly propagating or singly-scattering waves. Con-
sider two examples. A normal mode or standing wave can be thought of as the superposition
of traveling waves that repeatedly sample a finite medium (by reflection from or propagation
around boundaries). Thus small changes in the size or properties of the medium are ampli-
fied by each pass of the traveling waves; this amplification leads to the exquisite precision of
spectroscopy, allowing one to infer properties that would be completely undetectable with
directly propagating waves (Zadler et al., 2003). On the other hand, suppose a wave passes
through a cloud of similar scatterers; if some property of the scatterers changes, then this
effect is repeatedly imparted on the multiply-scattered wave, making it potentially observ-
able even when the perturbation of a single scatterer is unresolvable (Snieder et al., 2002;
Lemieux et al., 1998; Cowan et al., 2002).

Propagation of strongly scattering surface waves is analyzed in this Chapter using
model of radiative transfer. Radiative transfer has its origins in the kinetic theory of gases
and is sometimes referred to as the Boltzmann transport equation in honor of its earliest
proponent. In the earth sciences, it first appeared within the context of light propagation
through the atmosphere (Schuster, 1905). Recently, geophysicists have begun to address the
applicability of radiative transfer to multiply-scattered seismic waves (e.g., Hennino et al.,
2001; Campillo & Paul, 2003; van Wijk et al., 2003b; Wegler & Liihr, 2001; Wu & Aki,
1988).

By squaring a wave field and averaging over many realizations of random disorder, the
phase information of the underlying wave field is lost. What remains is the average intensity.
Radiative transfer is a phenomenological theory for the spatial and temporal evolution of a
wave field’s average intensity. The theory’s strengths lie in the ability to provide statistical
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Figure 4.2. Side-view of paths for energy in grooved aluminum. Scattering of the incident
surface wave causes loss of the transmitted field (left), but energy can be gained by being
re-reflected in the direction of propagation (right).

the characteristic 1/e decay distance, called the extinction mean free path £*. The difference
from the loss to body wave diffraction is that the scattered energy stays in our 1D surface
model. In fact, when the reflected surface wave encounters another groove, it can reflect
once more, and travel — delayed and weakened by two reflection events, but still — in the
original direction of the incident field (Figure 4.2. This means that scattering is both a loss
and a gain term when we make up the energy balance. Note the analogy to body wave
propagation in thin layers, where O’Doherty & Anstey (1971) show that the transmitted
wave is shaped by peg-leg multiples; waves that scattered an even number of times in layers
thinner than the dominant wavelength (Banik et al., 1985; Shapiro & Zien, 1993). Finally,
note that scattering and absorption enter the energy balance in fundamentally different
ways. This leads to the ability to separate these effects in the laboratory, later in the
Chapter.

Radiative transfer takes the energy balance described above for a medium with a
random distribution of scatterers, and states that the average intensity as a function of
time and place, takes the following form:

(& + v - V) intensity = source — loss + gain. (4.1)

The left-hand side of equation (4.1) is the total time derivative of the intensity. On the
right-hand side, loss and gain mechanisms in addition to sources determine the dynamic
behavior. In the absence of loss or gain, this equation becomes the advection, or one-way
wave, equation.. Using the same form as equation (4.1), the scalar (no mode conversions at
the scatterers) radiative transfer equation valid for any dimension is

DI 01) 4 ) VI(r,0,8) = S(r, 1) — 15, 0,0) — T, 20) +
ot Ts Ta
1 1 803 / 7
1 /1 4.2
Ts Og 6Q/I(r’ Q ’t) dQd ’ ( )

where I(r,§2,t) is the intensity, or average squared wave field, at position r propagating
in direction €, v is the group velocity of the average (coherent) wave field, 7 is the unit
vector in the direction of propagation, and S(r,,t) is the angle-resolved source function.
The differential scattering cross section, 9o, /9§Y, describes the exchange of energy traveling
from direction € into direction €. The characteristic time between these exchanges is T,
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Note that a thin bed consists of two interfaces, and hence R; and T} are not simple reflection
and transmission coefficients. The quantities R; and T; can be related to a geometric
summation of the interface reflection and transmission coefficients via generalized rays (Aki
& Richards, 1980).

Inserting equation (4.7) into equation (4.2), we obtain that

ol(x,0t) . OI(z,2t) 1 1
pr + v () 52 = S(z,Q,t) — p I(z,Q,t) — TaI(m,Q,t) +
Tl [FS(Y — Q) + BS( — @ — 180°)] I(x, 1) dfY =
-71_31(3;, Q-+ 180°,1) — f-f(x, Q,t) - Tif(m, Q1) + S(z, 9, 1), (4.9)

where we have used the fact that B+ F' = 1. Equation (4.9) can be evaluated for the two
possible directions in 1D, £ = 0° or 180°. Here, these directions are referred to as right
and left, respectively. For simplicity, the total intensity propagating in direction 2 = 0°,
I(r,0°,t), is represented by I, I(r,180°,¢) is I;, and the source function is split into S;
and S;. The coordinate system is defined such that 7(0°) = 1 and 7#(180°) = —1. The two
equations that describe the propagation of right-going and left-going intensities are

oI, oI, B I,
o T Vr :r:(Iz -I) - py + S, (4.10)
o, oI, B I
—a? - 'U‘a—x = T (Ir - Il) - T + S[. (411)

This system of partial differential equations comprises radiative transfer in 1D and has
been derived by other methods (Goedecke, 1977). In Appendix B.3, the system of partial
differential equations is solved for both I, and I;. For now, we solve for the total intensity,
I, = I, + I, since this is commonly measured in practice.

Two new quantities emerge from adding and subtracting equations (4.10) and (4.11).
In addition to the total intensity, I, the net right-going intensity, I, = I. — I;, appears.
Similarly, the source function can be expressed as its total and net right-going components:
S; =S, + Sy and S, = S, — S;. The result of adding equations (4.10) and (4.11) is
ol oI, I

tald Zn Tt 4.1
ot v oz Ta + 5t (4.12)

Subtracting equations (4.10) and (4.11) yields:

oL, oI, 2B I
—at_ + 1)5— = "ZIn - T_a + Sn. (4'13)

From these two equations, we derive a single partial differential equation in terms of what
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This effective source can be constructed from the knowledge of the Green’s function, P of
the homogeneous form of equation (4.16):

e _ 1o [ 200P 1B 1
dr2 2 Ot?

o, ;)Z; ot + Z z. + Z] P —6(x)d(2). (4.20)
Note that P is not the Green’s function for the total intensity. This equation is a variation of
the telegraph equation, there being a zeroth order derivative appearing due to the presence of
attenuation. Morse & Feshbach (1953) solve the Green’s function of the telegraph equation
via a spatial Fourier transform and a Laplace transform over time. Applying the same
technique, the Green’s function of equation (4.20) can be readily obtained by generalizing
their solution:

B

P(z,t) = gexp (—But/ls — vt/Ls) Jo (Z_ V2 — v2t2) u(vt — |zl), (4.21)
S

where u(vt — |x|) is the unit step-function, guaranteeing causality. This Green’s function

only differs from the one for the telegraph equation by the exponential damping factor due

to attenuation. The Green’s function for the total intensity, denoted I;, can be expressed

in terms of the above Green’s function through equation (4.19):

—_— 4+ — - = .22
vl v, (4.22)

2B 1 10P cOP
It_[ ]P v 8t vox

Taking the necessary derivatives of P, we obtain for B € [0,1] and ¢ € [-1,1]:
1
Li(z,t) = 3 exp(—But/ls — vt/€,) [(1 — c)d(vt + ) + (1 + c)d(vt — ) +

B B vt + cx B
- — - 242 _ o2 - - 242 _ 12
esu(vt |z]) [Io (es Vit —z ) + e $2I1 (es Vvitt —zx )H , (4.23)

where Iy and I; are the modified Bessel functions of the zeroth and first orders. These
should not be confused with the symbols used for the various intensities (I, Ir, 11, and I,).
A previous result by Hemmer (1961) is obtained from equation (4.23) for the case of an
isotropic source (¢ = 0) and isotropic scattering, B = 0.5.

The Green’s function for the total intensity can be broken up into two parts. The
term with the §-function propagates like a wave and is called the coherent intensity. The
rest of the total intensity is referred to as the incoherent intensity. It does not propagate
ballistically, and Appendix B.4 shows that at late times it propagates diffusively. Also,
Appendix B.3 shows that each Bessel function represents a different direction of propagation
for the incoherent energy. The decay of coherent intensity due to scattering, described by
the first exponential term in equation (4.23), goes with distance by the factor ¢;/B and
not ¢s. This new length scale, determining the decay of the coherent energy, is called the
extinction mean free path, £*. The fact that £* # £, is unique to 1D (Paasschens, 1997).
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Figure 4.4. Particle velocity at 50 mm source-detector offset for 22 locations of the
source-detector pair within the groove sequence.
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Figure 4.5. Data at 50 mm source-detector offset. The left panel is the average particle
velocity for the 22 realizations, and the right panel the natural logarithm of the total and F‘

coherent intensity.
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The solid lines in Figure 4.6 are the modeled envelopes of the coherent intensity for o =
R/ls+1/¢, = 17.8 m~! and velocity v = 1818 +123 m/s. In our case the coherent velocity
equals the transport velocity, even though especially for resonant scattering the velocity of
the coherent signal can be significantly higher than the group (transport) velocity (e.g., Page
et al., 1996; Kuga et al., 1993; van Albada et al., 1991). The energy of the coherent signal
travels dispersively. We therefore model the energy velocity to be a function of frequency:
as lower frequency surface waves penetrate the model deeper, they travel for a larger part
undisturbed by the scatterers, while higher frequencies are slowed by stronger scattering
due to the grooves (Appendix C). The smaller, secondary peak in the coherent intensity is
not modeled. This peak is most likely a part of the source wavelet, not accounted for in the
model.

Incoherent intensity The incoherent intensity is the coherent intensity subtracted
from the total intensity. The data are the solid lines in Figure 4.7. The dashed lines are
the result of modeling the incoherent part I(z,t) of equation (4.24):

I(z,t) < exp(—avt) (Io(n) + Zz i_ ZII (77)) . (4.26)

Using the energy velocity of 1818 m/s and oo = 17.8 m~!, the resulting fits in Figure 4.7
are for R/f; = 11.1 m~!. We only fit the incoherent signal at intermediate times. At short
times the incoherent data are incomplete, and at late times energy comes back into the
system from reflections off the back of the model, but in the intermediate time window, the
fit describes the average measured incoherent intensity. Note that the incoherent intensity
for all three offsets is of equal amplitude in this intermediate window.

Fitting parameters With R//s + 1/f, = 17.8 m~! and R/¢, = 11.1 m™!, the
absorption length is £, = 0.15 m. If R = 0.5, the mean of the range of possible values, the
scattering mean free path is £, = 0.05 m. Data at source-detector offsets around ¢;, put us
in the transitional regime from ballistic to diffusive energy propagation.

Formally, these parameters in the radiative transfer are functions of frequency, since
our scatterers have a finite depth, while surface wave frequencies sample different depths of
the model. However, the data fit is obtained with an average value of the scattering and
absorption parameters. To account for dispersion in the coherent signal, only the energy
velocity was treated as a function of frequency.

A direct application in geophysics of radiative transfer modeling is presented in Ap-
pendix D: independent estimates of scattering and intrinsic attenuation (Q), are known to
double as direct indicators of fluid content in the rock. Partial saturation of the rock has
little effect on the scattering properties, but the bulk motion of the fluid attenuates the
seismic energy.
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Chapter 5

Multiple scattering at the microscopic scale

5.1 Summary

Spectral-element simulations of surface wave propagation in our surface wave labora-
tory provide us with a powerful tool for understanding the complex dynamics of diffraction
and scattering. For example, we see in both the experiment and simulation diffracted body
waves which are weak precursors to the dominant surface waves; these events may be analo-
gous to diffractions from the Earth’s core-mantle boundary. In addition, the numerical code
confirms flexural modes of the thin areas of aluminum between grooves and the influence
of the source wedge itself on the wave field.

5.2 Introduction

Bulk properties of the propagation, including attenuation and dispersion, were studied
to describe the scattering model on the macroscopic scale in Chapter 3, while Chapter 4
shows results of modeling multiple scattered data in the mesoscopic regime, separating
scattering attenuation from absorption. This Chapter describes two-dimensional (2D) nu-
merical simulations of the physical system, using the spectral-element method (SEM) (e.g.,
Komatitsch & Tromp, 1999) to model the ultrasonic experiment with sharp topographic
features, and investigate subtle details in the laboratory data on the scale of the individual
scatterer (i.e. the microscopic scale).

A 2D version of the spectral-element method (SEM), mostly used and validated in
seismology (e.g., Priolo et al., 1994; Faccioli et al., 1997; Komatitsch & Vilotte, 1998; Ko-
matitsch & Tromp, 1999, 2002a; Komatitsch et al., 2002), is used to simulate wave propaga-
tion at ultrasonic frequencies in a model that contains a large number of sharp grooves. The
SEM is ideal for this purpose because of its flexibility to mesh the grooved structure based
on a geometrically non-conforming mesh and also because it has been shown to be accurate
to model surface waves (Komatitsch & Tromp, 1999). The simulations can be compared
to measurements at every surface location, because the optical detector can record at any
location on the surface of the block. The source in the simulations is the analytic solution to
a Rayleigh wave (e.g., Komatitsch et al., 1999) and detectors are located in a line directly
in front of the source. Attenuation is so weak in aluminum that elastic simulations are
meaningful.

Henceforth, I refer to the vertical component of the particle velocity measured in
laboratory experiments as data and to the numerical results as simulations.
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5.5 Comparing data and simulations

Let us compare data and simulations at 20 detector locations at 5-mm increments on
the smooth side of the model, and on the first 42 non-grooves along a line perpendicular to
the grooves (strong scattering). In both experiments, the source-detector offset for the first
trace is 2 mm.

The data and simulations on the smooth aluminum surface are shown in Figure 5.3.
Both panels show a large direct surface-wave arrival, followed by a reflection from the far
end of the aluminum block. The wavelet in the data has some energy after the main pulse
caused by ringing in the transducer. This energy is not included in the source term of the
simulations. The data show little attenuation and no evidence of reflections from the sides
of the block, which means that the source energy emitted has little geometrical spreading,
justifying 2D elastic simulations.

Figure 5.4 shows the data (top) and simulations (bottom) for waveforms in the strong
scattering case. At each groove, energy is partially reflected, causing the direct arrival to
be attenuated, and the group velocity to be lowered compared to the un-scattered wave
propagation, which has been shown to lead to a diffusive character of energy propagation
(Scales & van Wijk, 2001). The strongest events are interfering surface waves, which look
qualitatively similar in the two panels. These strong events show coherence in the sense
that a single phase can be tracked from one detector location to the next, whereas for late
times, scattering causes arrivals to be incoherent from trace to trace. In general, detailed
differences between the numerical mesh and the grooved block are amplified at later times
as a result of multiple scattering, much as in coda wave interferometry (Snieder et al.,
2002): waves bouncing back-and-forth numerous times between scatterers highlight errors
in the numerical representation. The later events especially show greater discrepancy in
amplitude, because the path-lengths for the multiply scattered events are longer than the
early arrivals, so that neglecting attenuation in aluminum becomes a significant source for
the difference between data and simulations.

The amplitude of the maximum correlation between data and simulations directly
reflects the accuracy of the simulations: correlation of unity means that data and simulations
are identical. It is our experience that discrepancies between the physical and numerical
models on the order of a fraction of the size of a single scatterer have a noticeable influence
on the accuracy of the simulations.

The maximum cross-correlation for the case of strong scattering is overall lower than
for the experiment on the smooth side (Figure 5.5). Especially for source-detector distances
greater than 90 mm from the source, small discrepancies between the physical model and
numerical representation get amplified. However, the simulations are of such precision that
data and simulations on a non-groove with the size on the order of 1 mm show considerably
more energy at later times than traces on the thicker non-grooves. An example of this is
detector 12, compared to detector 4 (Figures 5.6 and 5.7, respectively): the relatively thin
ridge of aluminum under detector 12 is excited in a 300-kHz resonance (Figure 5.8). While
this mode is too low in frequency to represent a trapping of energy in the non-groove, it is
possible that this resonance is a flexural mode of the thin non-groove (Rossing & Fletcher,
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Figure 5.4. Data (top) and simulations (bottom) for wave fields on the grooved side of
small-amplitude, faster events are body-waves diffracted at the grooves.
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Figure 5.6. Comparison between data and simulations for detector 4 on the grooved side
of the model. This detector is located on a thick non-groove.
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Figure 5.7. Comparison between data and simulations for detector 12 on the grooved side
of the model. This detector is located on a thin non-groove. Note the relatively stronger
amplitudes at later times than for detector 4.
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Figure 5.10. Left: experimental configuration, where the source is perpendicular to a single
groove on the top of the block, while the detector scans the side. Right: snap-shot of
particle motion in the scanned region after the incident field scattered off a single groove.

with a P-wave velocity cannot be seen until the 6th or 7th trace at t= 0.01 ms, but is
confirmed by the simulations. These events are spherical body-wave fronts diffracted at
the individual grooves, which arrive before the Rayleigh waves, and may be analogous
to precursors to the seismic phase PKKP in global seismology, believed to be caused by
scattering at the rough boundary between the Earth’s outer-core and mantle (Earle &
Shearer, 1997).

To support the existence of body-wave precursors to the surface-wave energy, a second
experiment was conducted, where the source is mounted on the side of the aluminum model
with a single groove, while the detector scans the side of the model (see the left panel of
Figure 5.10). The right panel of Figure 5.10 shows a snap-shot of particle motion, measured
shortly after the incident wave interacted with the single groove. The side of the aluminum
block breaks the symmetry of the Rayleigh-wave motion purely in the z- and z-direction,
creating particle motion in the y—direction. In the top-left corner, one can see energy due
to ringing of the source, and the incident field is the (close to) linear event. The circular
events are body-waves scattered off the single groove. Scattering to body waves is stronger
in the backward direction, but significant P-wave energy travels ahead of the surface wave,
causing the precursors observed in Figure 5.4.

5.7 Conclusions

Relatively small-amplitude features from individual scatterers are confirmed by spectral-
element simulations. For example, body-wave precursors to the main surface-wave energy
are caused by diffraction from the scatterers, which may be analogous to PKKP precursors,
believed to be caused by scattering at the core-mantle boundary. Also, flexural resonance
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Chapter 6

Measuring, imaging and suppressing scattered
surface waves

6.1 Summary

Near-surface scattering can contaminate the arrival of energy from target reflectors. We
developed a 3D wave-theoretical method to reduce the presence of near-surface scattering
on the records, as a multi-channel alternative for short-wavelength static corrections. The
method was successfully tested on laboratory data, excited and monitored with a computer
controlled, non-contacting system.

6.2 Introduction

When a wave front travels through a complex overburden, it is disturbed by scattering
from heterogeneities. For a detailed structural image of the deeper subsurface it is impor-
tant to minimize these disturbances in arrival time and amplitude of upcoming reflections.
Currently, residual static correction methods correct for rapid variations in arrival times of
a reflector, but these techniques are based on a model that assigns the same uniform time
shift to each trace from a distinct surface location (e.g., Wiggins et al., 1976), assuming
vertical ray paths through the overburden. Such corrections are usually referred to as time-
and surface-consistent corrections (Taner et al., 1974). Although statics techniques are
based on this simple (transmission) model of the subsurface, they can be effective in many
cases. However, in a strongly heterogeneous shallow subsurface, this statics model breaks
down (e.g., Combee, 1994). Neglecting (multiply) scattered waves, as in the static assump-
tion, can degrade the high-frequency content of the data, due to destructive interference of
rapidly varying traces during stacking.

We estimate a surface impedance distribution of the region directly under the receivers
from one particular event and subsequently predict and subtract the scattered energy for
the entire record, improving resolution of the target reflectors. This method is based on an
integral-equation formulation of the scattering process near the surface, developed by Delft
University of Technology (Blonk & Herman, 1994; Ernst et al., 2002; Campman et al., 2003).
We present examples based on laboratory models, where we excite and measure wave fields
that are scattered at the near surface. With our non-contacting data acquisition, receiver
intervals are less than the dominant wavelength, allowing us to filter in the wavenumber
domain, as with the dense receiver arrays that are currently being tested in exploration
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the scattered energy (i.e. a multi-channel operation).
First, we select an event:

o(x,t) = d(x, ) + r(x, t), (6.3)

where v are the data, d is the selected event and r denotes the rest of the data. Selecting d
can be done by time windowing. The window should be long enough to include scattering
tails but it should not include other events. Next, we decompose the strong event d(x,t),
in a similar way as in equation (6.1):

d(x,t) = d°(x, t) + d'(x, t). (6.4)

Here, d° is the field in the near surface that would exists without scattering and d! is the
scattered field, excited by the incident field being scattered from heterogeneities in the near-
surface. The impedance model is obtained from back-propagating the near-surface scattered
energy with the Green’s function derived in Campman et al. (2003). The impedance distri-
bution is determined by minimizing an L?-norm, using conjugate gradient. To set up the
minimization scheme, we write equation (6.2) for a single event, in the form

d' = Ko, (6.5)

where o is the surface impedance distribution and the operator K is defined as
{Ko}(xi,20,w) = / ul (%1 — %}, Az, w)o(x], 21, w)d(x], 21, w)dx]. (6.6)
X €D

We then minimize the squared difference between the observed scattered field and the
reconstructed scattered field, regularized by the norm of the distribution of scatterers:

14! — Kol|?

F =
1412

+ Allol?, (6.7)
where the size of A determines the penalty on the norm of the distribution of scatterers.
By assumption, the scatterers are close to the surface so that in equation (6.6), we can
substitute the field at depth z; with the field at zq, leaving ¢ the only unknown. In contrast
to Born-type imaging methods, this method accounts for multiply scattered waves.

6.5 Experiment 1: a surface wave test

We measure the wave field on the surface of an aluminum block, excited by a pulsed
infrared laser (e.g., Scruby & Drain, 1990). We focused the laser beam on a line to create a
line surface wave source. This wave front is scattered by a cylindrical cavity with a diameter
of 2 mm and a depth of 3 mm, which is roughly the size of the dominant wavelength.
The wave field is detected using a scanning laser interferometer that measures the vertical
component of the particle velocity on the surface of the model via the Doppler shift (Scales

e
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Figure 6.2. Top: part of the direct Rayleigh wave (event d in the text). This event is used

to derive the scattered energy d'. Middle: separated scattered energy, using a wavenumber
frequency domain filter. Bottom: image of the cavity along the same line.
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Figure 6.6. Top: the first upcoming event from the data. (event d in the text). This event is
used to derive the scattered energy. Middle: separated scattered energy, d!, using a narrow
wavenumber frequency domain filter. Bottom: image of the cavity along the same receiver

line.
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Figure 6.8. Left: part of the rest of the record. Middle: same as in the left panel but
after dip-filtering to attenuate surface waves. Right: rest of the record after subtracting
near-surface scattered energy and after dip-filtering.

6.7 Conclusions

We present a robust prediction-and-removal algorithm to attenuate strong near-surface
scattering from seismic data. Using data from a laboratory-scale scattering experiments,
we are able to estimate the surface impedance distribution using a single event. This
impedance distribution is then used to predict and remove the scattered field from other
events, restoring the continuity of target reflectors. A similar test on a more challenging
multiple scattering experiment also gives promising results. The success of the algorithm is
aided by dense 3D data acquisition, allowing filtering in the wavenumber domain.
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Chapter 7

Concluding remarks

The study of our surface wave laboratory proved ideal to understand, and then exploit,
wave propagation in disordered media. Tunability of the scattering strength, easy access,
fast and dense acquisition in the lab and the longevity of surface waves provide a unique
view inside the scattering medium.

Scattering induced attenuation and the decay of seismic velocities are caused by energy
being transferred into the coda. These multiply scattered waves extract energy from the
coherent pulse. This is why the coherent field decays exponentially due to absorption and
scattering. It is the coherent wave that historically has been the only energy of interest
in global and exploration geophysics. In medical imaging, scattering of light in biological
tissue is so strong that the only recorded signal is incoherent. Their main #maging tool is a
diffusion model. Being in the intermediate regime, where we have coherent and incoherent
signal, allows a more robust medium parameter estimation. The tool of choice is radia-
tive transfer, which describes both the coherent and the incoherent energy propagation in
scattering media. Treating the scattering medium as a whole (macroscopically), medium
parameters like the diffusion constant and energy velocity were revealed in scattered energy.
However, in the intermediate regime, the mesoscopic scale, the treatment of the observa-
tions in terms of averaged intensity led to separate estimation of scattering attenuation and
intrinsic absorption.

In higher dimensions, the radiative transfer equation becomes considerably more dif-
ficult since there are an infinite number of directions to scatter into, as compared to two
directions in 1D (Paasschens, 1997). However, even in 1D, the rich character of radiative
transfer is evident. Exponential decay is experienced by the direct wave due to scattering
and absorption. Aspects of both wave and diffusive behavior emerge in the average total
intensity, and, in the presence of both, a mesoscopic picture of the scattering medium can
be formed.

The theory of radiative transfer has its limitations. The most severe is that it does
not include wave interference. As a result of this, there exists a distance between source
and receiver, known as the localization length, past which radiative transfer is incorrect.
Sheng (1995) estimates that in 1D the localization length is approximately four mean free
paths. This offers the possibility of an intermediate range (one to four mean free paths)
where radiative transfer holds. Future work should attempt to find good bounds on this
range in practice.

A direct application in geophysics of radiative transfer modeling is presented in Ap-
pendix D. Under many assumptions that need to be tested in future research, we obtain
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Appendix A

The angle-beam transducer source

To analyze the observations of multiply scattered waves, it is of vital importance to
know the characteristics of the source. In this case, a piezo-electric crystal converts a voltage
to mechanical energy, causing a compressional wave (P-wave) in a Lucite wedge, to which
it is attached (see the left panel of Figure A.1). The transducer wedge has a footprint of
7 cm (in the forward direction) by 4.2 cm and is cut at an angle of 68 degrees, so that
the horizontal component of the P-wave in Lucite matches the surface wave velocity in
aluminum, causing the source wavelet to be predominantly a surface wave. This surface
wave is otherwise known as the Rayleigh wave, named after Lord Rayleigh (J. Strutt) who
showed theoretically in Strutt (1885) that waves can propagate over the plane boundary of
an elastic half-space over vacuum or a gas like air. These waves have elliptical polarization,
comparable to surf in the ocean. Also, their amplitude decays exponentially with depth,
where the exponent is inversely proportional to its wavelength. This property of the surface
wave is often exploited in near-surface characterization and global Earth seismology (Aki
& Richards, 1980), where a spectral analysis assigns material properties according to the
depths of penetration of the Rayleigh waves.

A.1 The source on homogeneous aluminum

The right panel of Figure A.1l shows the areas of the three areas of data acquisition.
A scan of the surface of the block, where the source is located (so-called top), measures
the vertical particle velocity of the source wavelet. The scan-area labeled side, provides the
out-of-plane horizontal component of the source wavelet. Finally, the experiment scanning
the front of the block, measures the out-of-plane component of the source wavelet. The
source wedge is drawn on the edge of the aluminum for all three experiments, for visual
purposes. This was only the location of the source, when scanning the side of the block for
reasons that will become apparent in the following text. In the other two experiments, the
source is away from all sides to exclude side-reflections.

Even though we have the capability to excite energy in the model in a non-contacting
matter with a pulsed Nd:YAG laser (Scruby & Drain, 1990), most data are recorded with
this 500-kHz Panametrics angle-beam transducer. We chose this source, because the laser
source excites predominantly such short wavelengths, that the groove sequence obstructs
transmission of significant energy, past a few grooves.
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Figure A.2. Vertical component of the source wavelet, measured on the top of the block.
The left panel is a single trace in front of the center of the wedge and its power spectrum
is plotted on the right.
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Figure A.3. Left: Experimental configuration to measure the vertical component of the
source wavelet across the width of the source wedge. The right panel is a snap-shot of
the experiment. Black represents large positive amplitude and white is strong, negative
amplitude. The energy between the source and the main energy is ringing of the source.
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Figure A.5. Left: experimental configuration of the measurement of the in-line horizontal
component of the source wavelet, measured on the end of the block, on a line of receivers
down the center of the source-wedge. Right: The curved front is the direct arrival of the
source wavelet, whereas the linear events are diffractions from the edge, traveling down the
block.

last groove, 40 mm from the edge (Figure A.6). This last measurement can only provide
a short time-window of the source wavelet on the grooves, because reflected energy off the
end of the block re-enters the system. However, when we compare the source wavelet on
the grooved side to a 300 kHz low-pass version of the wavelet on the smooth side of the
aluminum, we see similarity that is mostly disturbed by the reflection off the back of the
block later in the trace (Figure A.7). Therefore, we use the low-pass filtered source wavelet
from the smooth side of the aluminum to model the ensemble measurements.
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Appendix B

Insights in the radiative transfer equation

In the geophysical community, the theory of radiative transfer is relatively novel. This
Appendix is an attempt to relate our results in this analysis of energy propagation to more
familiar results used in exploration and global seismology.

B.1 The coherent intensity and the O’Doherty-Anstey formula

We derive results from radiative transfer that agree with results from mean field the-
ory, namely the O’Doherty-Anstey formula. Such an equivalence suggests that radiative
transfer is a proper extension of mean field theory (a “variance field” theory) for the fluctu-
ating, multiply-scattered waves. In the field of exploration geophysics, a well known result
for waves multiply scattered by a 1D layering is that obtained by O’Doherty & Anstey
(1971). The O’Doherty-Anstey formula has subsequently been derived from mean field
theory (Banik et al., 1985). One outcome of O’Doherty-Anstey is that the amplitude of a
wave transmitted through a stack of layers decays exponentially with distance as (Shapiro
& Zien, 1993): )

|T'| ~ exp(—R(k)z), (B.1)

where R(k) represents the power spectrum of the average reflection coefficient series nor-
malized by two-way travel distance (Banik et al., 1985). From the solution for the total
intensity obtained in the last section, equation (4.23), radiative transfer also predicts an
exponential decay for the transmitted, or coherent, wave with distance:

IT| ~ exp(~Bz/2t,), (B2)

where the distance = has replaced vt in equation (4.23) since the d-function is only non-zero
at x = vt. The factor of 1/2 in the exponent of this equation shows up since radiative
transfer predicts decay of the transmitted intensity - the square of the true transmission
coefficient. We investigate the equivalence of these two theories for the transmission of
normally incident waves through assemblages of weak 1D point scatterers (thin beds). The
two theories are equivalent if:

R(k) = B/2¢,. (B.3)

Depicted in Figure B.1 is the random medium we will consider: a series of thin layers of
varying strength are embedded in a constant velocity background medium. In the parlance
of O’Doherty-Anstey, this would be called a “cyclic” sequence. It happens to be the type




Kasper van Wijk / Multiple scattering of surface waves 77

For thin layers, kh < 1 and a first order Taylor series expansion in h leads to 1—exp(2tkh) =
—9ikh. Pulling it out of the summation yields

N

2
R(k) = = | Rjexp (2ikd;)| (B.7)
i=1

We now use a standard argument from the theory of multiple scattering: if d;, the spacing
of the thin beds, is a random variable, the cross terms in the square of the summation in
equation (B.7) cancel in the average and the squaring can be brought inside the summation:

_ 2,2 N
R(k) = 2""Lh > IR exp (2ikd;)|? . (B.8)

j=1

Now, inside the summation, the exponential does not contribute to the magnitude and we
are left with

N
N 1 1
R(k) = E4k2h2 > IR? = Z21c2h2N(|Rj|2), (B.9)
j=1

where (|R;|?) is the mean-square of the interface reflection coefficients.

Returning to equation (B.3), to prove that radiative transfer and the O’Doherty-Anstey
formula predict the same exponential decay for the transmitted wave, we set equation (B.9)
to:

B 1
= = Z2k?R2N(|R;|%). B.10
o = pARIEN(RP) (B.10)
For (Rayleigh) point scatterers in 1D, the radiation is isotropic. Hence, B = 0.5. Rearrang-
ing equation (B.10):
1
8K2R2(|R,%) T

The quantity N/L is simply the number density of the thin beds, p. In the limit of weak
scatterers (such that R; < 1) 8k2h%(|R;|?) = o, the scattering cross section (see Sec-
tion B.2). The presence of weak reflection coefficients is an underlying assumption in the
O’Doherty-Anstey result (Banik et al., 1985), so that equation (B.11) can now be rewritten
in a familiar form:

2 (B.11)

1
pos’
This is recognized as equation (4.4), the independent scattering approximation. Equa-
tion (B.12) demonstrates that, for this model, the exponential decay of the transmitted
wave from O’Doherty-Anstey, or mean-field theory, is equivalent to that predicted by ra-
diative transfer. A conceptual diagram of this equivalence is shown in Figure B.2. From
mean field theory, both the phase and the amplitude of the transmitted wave can be ob-
tained; however, the incoherent energy, for which the mean is zero, falls out. Similarly, 1D
radiative transfer can address the amplitude of the transmitted wave and the behavior of

2, = (B.12)
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a small parameter. This is the case of a small reflection coefficient. For an assemblage of
thin beds with varying velocities, o represents the RMS perturbation from the background
velocity. Substituting this relation for ¢ into equation (B.13):

oa(k) = %k2h2(1 ~ 1+ a2 (B.15)
Keeping the lowest order term in a:

os(k) = 2k2h%c?. (B.16)

To satisfy equation (B.3), we need to show that the scattering cross section in the weak
scattering limit, equation (B.16), is equal to 8k2h2R2. From equation (B.14), we know that

2
8k?h2R? = 8k2h? (5—&) . (B.17)
c+cp

Substituting ¢ = co(1 + ) into equation (B.17) gives

2

8k2h2R? = 8k2h? ( < ) . (B.18)
2+«

Again, keeping the lowest order term in «, we obtain that the right-hand side of equa-

tion (B.18) equals 9k2h20a2, identical to equation (B.16). Hence, in the weak scattering

limit for thin beds, 8k2h?R? = 0.

B.3 The Green’s function for the directional intensity

Expressions (4.10) and (4.11) show that the 1D radiative transfer equation can be
split into a system of PDEs in terms of the left and right-going intensities. So far, only the
reduced PDE governing the total intensity has been studied. This is due to the fact that
measuring either the left or right-going intensity entails splitting the wave field into left
and right-going waves. Such a decomposition requires dense spatial sampling to perform
the type of filtering routinely done in Vertical Seismic Profiling: separating up from down-
going waves. Here, we show that knowledge of the individual left and right-going energies
can give us more detailed insight into the incoherent energy.

Assuming that the wave field has been decomposed into left and right-going waves,
we now solve the system of 2 partial differential equations that comprise the full radiative
transfer equation. To begin, we write equations (4.10) and (4.11) in matrix form:

o1 ol
+

= — = B.19
5 g NI+S, ( )
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To get the directional intensities in the spatial domain, we must inverse Fourier transform
equations (B.24) and (B.25). Two identities are needed for this inversion:

i / F(k) exp(—ika)dk = / ‘9;(:) exp(—ikz)dk, (B.26)

and from the theory of Bessel functions (Hemmer, 1961):

7cos(kac) - (t : i %) dk = %Io [ZE Vvt — :c2] u(vt — |zi). (B.27)

2
k21}2 _ _?3_ s

—00

After inverting the Fourier transform, we obtain for the right-going intensity:
1 B
I.(z,t) = 76XP (—But/¢s) exp (—vt/€a) [2(1 + c)é(vt — x) + e—u(vt — |z])x
8

[(1 — o)y (?W) +

S

(1+¢) vt + :L‘Il (E, /022 — z2>H , (B.28)

vt — T I

and for the left-going intensity:
1 B
I(z,t) = 7 5XP (—But/ts) exp (—vt/la) |2(1 — c)é(vt +x) + E—u(vt —|z]) x

[(1 +¢)lo (gm) +

(1-c) \/ﬁ I (? V242 — x2>” , (B.29)

These equations for the two intensities show that the two Bessel functions that make up
the incoherent intensity are sensitive to different aspects of the source radiation pattern.
For instance, if the source were unidirectional, ¢ = —1 or ¢ = 1 and the zero order Bessel
function would come from one direction and the first order Bessel from the other. It can also
be verified that adding equations (B.28) and (B.29) gives the total intensity, equation (4.23).
In the absence of phase information, perhaps the directional intensities can yield important
information about spatial variations in the material properties.

B.4 The diffusion approximation in infinite 1D media

At late times, we demonstrate that radiative transfer can be simplified even further by
approximating its behavior as the solution to a diffusion equation. Results of finite-difference
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It is common to relate £, to {5 via:

£s

br = 1 — {cosb)’

(B.34)

where (cosf) represents the average scattered energy in all directions weighted by the cosine
of that direction. For isotropic scattering, (cosf) = 0 and the two mean free paths are
identical. However, using the general relation (cost) = F — B (Hendrich et al., 1994) and
the fact that F' + B = 1, equation (B.34) can be rewritten as

s I

“=1"F+B 2B’

(B.35)

which is exactly the relationship we have derived from the diffusion approximation.

B.5 The diffusion approximation in finite 1D media

The above derivation of the diffusion approximation showed how the solution of the
radiative transfer equation approaches that of the diffusion equation at late times. In this
section, we prove that the underlying governing equation for the total intensity at late
times also becomes the diffusion equation. While the radiative transfer equation cannot be
analytically solved for in a finite geometry, its late time equivalent — the diffusion equation
_ can be solved with boundary conditions.

Neglecting absorption (£q — 00), We can rearrange equation (4.13) as

oI, 2B 9L
E + —'T:In = —v a:l? . (B36)

In the diffusive regime, we assume that (Morse & Feshbach, 1953):

2B oI,
In >>

’;s_ _67, (B.37)

meaning that the time rate of change of the right and left-going intensities is relatively
small. Under this condition, equation (B.36) becomes

_I,=-v—. ' (B.38)
Substituting equation (B.38) into equation (4.12) for I, yields

(B.39)

el T

8It 0 Ts'l)aIt -0
2B 8z |

Under the assumption that v and 7, do not depend on position, equation (B.39) takes the
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Figure B.3. The geometry of the 1D numerical scattering experiments. The source was
at the center of a region with thin random layers and a receiver was positioned above the
layers for each experiment. The size L of the scattering region varied between experiments
with the values 80 m, 120 m, 160 m, 200 m, and 240 m.

B.6 GCreen’s function for diffusion in an infinite 1D medium

To find the Green’s function, I solve the 1D diffusion equation with attenuation using
a delta function source:
ol %1 2
where D is the diffusion constant, (z)d(t) the source term, and  an absorption coefficient,
caused by diffraction from the bottom of the grooves. In the (w, k) domain, it follows that:
1

Tw, k) = D(k? + k2) — iw’ (B.48)

so the intensity as a function of space and time is

1 0 X axp(—ikz)exp(—iwt)dkdw
I(t,) = W/_w/_m p(—ikz) exp(—iwt)
2

D(k2 + K2) — iw
T

= exp <_21—D_t ~ D/-czt) (4nDt)~1/2. (B.49)

We first integrate over frequency:

/ eXP(—i) 1) — o exp(—at), (B.50)
foo O W
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Appendix C

Wave speeds in scattering media

When considering wave propagation in a scattering medium, we can define the phase,
group and energy (or transport) velocity, but how do these relate to the speeds of the
coherent and incoherent signal from ensemble measurements? Factors are the size (van
Albada et al., 1991) and density (Cowan et al., 1998) of the scatterers, compared to the
wavelength of the signal, for instance. Here we try to unravel the different speeds, to avoid
mistakes in modeling observations in the lab.

In the radiative transfer equation, there is a single velocity parameter. This is generally
called the energy or transport velocity. Is it:

1. the group velocity,

9. the move-out of the envelope of the wave field with increasing source-detector offset,
or

3. the move-out of the coherent signal with increasing source-detector offset?

Note that the last two are only different in the sense that the coherent signal is the ensemble
average of 2.

C.1 Group velocity

By definition, the group velocity is

dw(k
w =20 (©1)
There is an obvious relation between the group and the phase velocity c:
d
vy = kgl% + e(k), (C.2)

from which it can be determined what we already knew: in the absence of dispersion (c
is frequency independent), the group velocity is the phase velocity. Note also, that for
negative dispersion, the group velocity can be greater than the phase velocity.

The velocity of the energy package can be described by following the envelope of the
trace as it moves out with increasing source-detector offset. In seismology, it is common
practice to determine the group velocity in this manner. More detailed information about
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Figure C.1. Picks for a single phase and for the peak of the envelope of each surface-wave
field. The straight lines are their respective regressions.
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Figure C.2. Regression on the move-out of the peak of the coherent energy. The regression
estimates v, = 1818 + 123 m/s.
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Appendix D

scattering attenuation and absorption in sonic
logging

Intrinsic absorption in geophysical data is of great interest to the geophysical com-
munity, because it is generally considered a direct fluid indicator. However, geophysical
data is attenuated by absorption and scattering (Scales & van Wijk, 1999). Unraveling this
combination of parameters is not easy, but radiative transfer models suggest opportunities
to accomplish just that. In a full-waveform sonic log, the radiative transfer model (van
Wijk et al., 2003b) leads to estimates of scattering attenuation and absorption, separately.
This study is done on a data set of unknown location, just to show the feasibility of the
method. Tying the results to geology is left to future studies.

D.1 Observations

The sonic tool has a pressure source and 8 hydrophones at 8-inch spacing (Smith et al.,
1991). There are 100 shot locations, 3 inches apart. Figure D.2 shows one common-shot
(left) and one common-receiver record (right). On the common-shot record one can identify,
from early times to late:

1. the trigger (no move-out),

2. the P-wave propagating at 4373 m/s,

3. the S-wave propagating at 2133 m/s, shortly followed by

4. the Stoneley wave, and

5. multiples between these coherent events and after the Stoneley wave.

The (multiples of) Stoneley waves can also be viewed as some normal modes of the bore-
hole, or they can be treated as waves bouncing around in the vertical direction. Either way,
they sample a mix of the content of the bore-hole and surrounding medium (Figure D.1).

D.2 Radiative transfer

The ensemble average of the intensities satisfies the model of radiative transfer. With
only one realization of the medium at hands (Earth), we assume ergodicity in the geology
and treat the stack of common-receiver sections as our ensemble average: the total intensity
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Figure D.2. Slices of the data volume. The left plot is a common-shot record and the right
is a common-receiver record. Note that the recorded energy at 0.006 s is still significantly

above the background noise level.
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Figure D.4. The dashed line is the incoherent intensity for receiver 4. The solid line is
the estimate of the incoherent intensity obtained with radiative transfer, for scattering

attenuation Q, = 250 and intrinsic absorption Q. = 10.

with a 5 percent variance in the estimate. From fitting the incoherent intensity, we find

that
ls/R=10m and [, =04 m,

where the variance in the estimate of the scattering mean free path is 2 percent. Especially
the estimate of the absorption is very sensitive to small changes, suggesting it is well resolved.
Estimates with the other 7 receivers give the same numbers, but are left out to not clutter
this study.

D.3.1 Relating to Q

Relating the mean free paths to the quality factor Q, which is defined as a decay-rate

per cycle, we find that
o=t (D.1)
v

This means that Q. = 10 and Qs = 250, which are not un-physical values, but need further
studies to determine the validity. However, the variance in these estimates is less than 5
percent, suggesting the estimate is stable. The bias in these estimates are left for future
studies: How bad is the 1D assumption? What part of the energy travels only through the
borehole, instead of the formation?

Note that the incoherent P-wave energy displays a similar decay, so maybe the same
analysis as presented here for the S-waves can be performed on it.
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Appendix E

The angle-beam transducer source

Recent research has shown that the view of ray paths propagating through anomalies
in the Earth are the ones most influenced by this anomaly, is not correct. In fact, these rays
return to their unperturbed stage after several wavelengths, while the rays off to the side
of the anomaly are perturbed most. This has potentially large implications in ray-based
imaging. Laboratory data supports this view and provides a tool to further analyze this
behavior called wave-front healing (Nolet & Dahlen, 2000).

A plane surface wave hits a scatterer roughly the size of the dominant wavelength
(Figure E.1). We have 81-by-81 receivers in the 20-by-20 mm? shaded region, but shown
in Figure E.2 are two cross-lines of data. Line 1 is close to the scatterer, while line 2 is
roughly three wavelengths past the scatterer. Disturbances on the plane wave are visible on
line 2, but the wavefront has healed directly behind the scatterer. We have 40 lines of data
between lines 1 and 2, so we can track the healing process, to see if the wavefront behaves
as predicted in the theory of Nolet & Dahlen (2000).
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