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ABSTRACT

Finite-difference acoustic- and elastic-wave modeling and reverse-time depth migra-
tion based on the full wave equation are general approaches that can take into account
arbitary variations in velocity, density and elastic coefficients, and can handle turning
waves as well. However, conventional finite-difference methods for solving the acoustic-
and elastic-wave equations suffer from numerical dispersion when too few samples per
wavelength are used.

To reduce the numerical dispersion in finite-difference wavefield continuation, I have
developed two “flux-corrected transport” (FCT) algorithms (which apply diffusion and
anti-diffusion corrections to the solutions obtained by conventional methods), one based
on the original second-order wave equation and the other based on a system of first-order
wave equations derived from the second-order one. The key underlying assumption of
the FCT method is that all local extrema are caused by numerical dispersion. Using this
assumption, the FCT method first applies the diffusion correction everywhere, and then
applies the anti-diffusion correction selectively, based on locations where the algorithm
judges numerical dispersion to be present. In an alternative approach based on the same
assumption, I have optimized the FCT approach by using only localized diffusion, with
no anti-diffusion correction, at a 40 percent saving in computational cost (of the correc-
tion step) compared with that of the full FCT diffusion and anti-diffusion correction. I
find that incorporating the FCT technique in conventional finite-difference modeling or
reverse-time migration ensures finite-difference solutions with no numerical dispersion,
even for impulsive sources.

The FCT correction, which can be applied to finite differences of any order in space
and time, is an efficient alternative to use of finite-difference approximations of increasing
order. For 2-D problems, the computational speed of the full FCT-corrected fourth-order
finite-differencing for the second-order acoustic wave equation is about 7.7, 1.5 and 1.3
times that of the second-order, fourth-order and tenth-order conventional finite-difference
methods, respectively; for 3-D problems, the increase in the speed of FCT-corrected
computations is even greater. Moreover, the FCT approach applied to the fourth-order
method for 3-D problems requires only about 3.8, 30 and 73 percent of the memory used
by the second-order, fourth-order and tenth-order finite-difference methods, respectively.
For the optimized FCT approach applied to the fourth-order method, the increase in
computational speed is even greater; however, the memory usage is the same as that for
the full FCT approach.

I have tested the FCT algorithms on modeling and migration for both acoustic
media and elastic transversely isotropic media with vertical axis of symmetry. Moreover,
I have applied the FCT correction to modeling for transversely isotropic media with
tilted symmetry axis. Demonstrations of modeling and migration show benefits as well
as the inability to fully recover the resolution lost when the spatial sampling becomes
too coarse.
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Chapter 1

INTRODUCTION

Finite-difference methods, following the approaches of Claerbout (1985), have been
widely implemented for wave extrapolation in modeling and migration. Those approaches
employ a one-way wave equation that allows energy to propagate either downward or up-
ward, but not both. Although successful in many situations, such methods are limited
by assumptions made in deriving the one-way wave equation. Moreover, finite-difference
schemes based on the one-way wave equation contain a limit on the maximum dip angle
of the reflector. To overcome this limitation, Whitmore (1983) developed an iterative
depth migration by backward time propagation based on the full acoustic wave equation.
Loewenthal and Mufti (1983), and Kosloff and Baysal (1983) developed a two-dimensional
migration scheme in the frequency and space domain based on 2 direct integration in
depth of the acoustic wave equation, and McMechan (1983) used finite-difference model-
ing to study finite-offset and multiple-offset vertical seismic profile (VSP) data in laterally
varying two-dimensional (2-D) media.

In seismic applications, the assumption that the medium is acoustic is not always
applicable. Modeling of amplitude-versus-offset (AVO) behavior requires treatment of
wave propagation in elastic media. Likewise, acoustic-wave modeling cannot yield any
information about P- to S-wave mode conversion. Moreover, since isotropy is not a valid
assumption for much of the Earth’s subsurface, general seismic modeling and imaging
techniques for anisotropic media needs to be developed. Virieux (1986), based on the
first-order system of equations, applied conventional finite-differencing on a staggered
grid to simulate P- and SV-wave propagation in elastic isotropic media. Faria and
Stoffa (1994), also using the first-order system, performed finite-difference modeling in
transversely isotropic media (with a vertical axis of symmetry) by a conventional fourth-
order method.

Since finite-difference modeling and migration based on the full wave equation have
none of the assumptions that limit solutions based on the one-way wave equation, the
finite-difference method potentially can treat many issues accurately, such as arbitrary
velocity variation, turning waves, and multiply reflected waves. This method, however,
is costly when typical sampling intervals are used, placing heavy demands on computer
memory and input/output devices (Reshef and Kessler, 1989; Blacquiere et al., 1989;
Hale and Witte, 1992).

Unfortunately, conventional finite-difference schemes for numerically solving the
wave equation suffer from undesirable ripples, so-called “grid dispersion” or “numeri-
cal dispersion,” near large gradients in wavefields or when too coarse 2 computation grid
is used. In their study of the numerical dispersion that arises in finite-difference methods,
Alford et al. (1974) and Kelly et al. (1976) concluded that to eliminate the numerical
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imposes no limitation on the range of reflector dips that can be accurately imaged.
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the second-order acoustic wave equation (2.1) is reduced to the new first-order partial
differential equation, 5 5 5 5

2_2(¥\ o (¥\ 9 (¥
ot Oz (p)+8y(p)+8z(p)+f' (26)

Three additional first-order partial differential equations are derived from definitions (2.2)
through (2.5); they are
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As in the hydrodynamics problem, the FCT correction can then be applied to these
first-order equations. After applying the FCT to the first-order system, I found out that
the FCT correction could readily be applied to the second-order wave equation, as well.
Each of these two formulations has its particular merits.

2.2 Elastic media

For elastic media, the three general equations of motion are

02u,- 6 .
p?a—ta- = f; + E (O’;j) 1=1,2,3, (2.10)

where z;, z2 and z; are the three Cartesian coordinates (later labeled z, y and z). u; is
displacement vector, p is density, Ji is the source function, and 0;; are the components of
the stress tensor. By Hooke's law, the stress and strain tensors satisfy oi; = Cijpg€pe, Where
Cijpg are the elastic coefficients. The most general inhomogeneous anisotropic medium
is defined by 21 independent components in Cijpg, €ach of which can vary independently
OVer space. ep, are the components of the strain tensor

_1/0u, 3uq)

Since the strain tensor is symmetric, it has six independent components: e;;, e, €33,
€12. €13 and €23.
With new dependent variables defined as

msp%§ i=1,2,3, (2.12)

and considering the six independent components of strain tensor €y as the other six
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012 = 2Cese12, (2.18)

where Ci1, Cs3, Cyq, Ci5 and Ces are the five independent elastic coefficients that describe
a general transversely isotropic (TI) medium, with axis of symmetry in the vertical
(z3) direction. With these strain and stress relations, the three equations of motion for
transversely isotropic media, with vertical axis of symmetry, can be written as

ov 0
% =f + a—xl[cneu + (C11 — 2Ces) €90 + 013833]

d 0
+ 5‘;2‘[2066312] + 53?_3 [2044613] , (2.19)

Ovs 0 [

a
Fr 2056612} + a—xz[(cu —2C¢s)e11 + Crrepp + 013633}

7]
+ 51.—3 {2044623} ) (2.20)

6’03 0

0
73—{ = f3 - %?[2044613} + 5'2:'-2{20'44323]

0
+ 5—[013611 + Crzexn + C336’33} . (2.21)
z3

Transversely isotropic media can be parametrized in any number of ways. Thomsen
(1986) has developed a parametrization that is particular handy for understanding wave
propagation in TI media. Using Thomsen parameters for T1 media, the relations between
the above elastic coefficients and Thomsen parameters are as follow,

(2.22)

where oy is P-wave velocity parallel to the symmetry axis, Bo is S-wave velocity parallel
to that axis, and ¢, v and § are three dimensionless anisotropy parameters. With these
relations, we can convert between the two sets of parameters.

Three first-order equations, (2.19) through (2.21), and six others, equations (2.14),
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5 = -a-.%;-[sm02p + oz, cos€2p , (2.30)
deys 0 [ v3 . vl] 7] { . 3 vl]
T8 = 9 Jeoso 2+ 2| —sing B al. .
5 o5, c0562p - s1n(92p + 5% sin 5 + cos92p (2.31)

With equations (2.24) through (2.31), wave extrapolation in a TI medium with a
tilted axis of symmetry can then be performed by the FCT finite-difference technique.
As with the acoustic case, the FCT technique is not just limited to the first-order

system equations for elastic media, it can be applied to the second-order elastic wave
equations (2.10) as well.




the Fourier modes (Potter, 1973)

1
n+4= PPt En s A -
uj 2 _ un-rzeszAz’ (3’0)

gl = grHietits, (3.6)

Inserting these modes in equations (3.3) and (3.4), we get

4ttr = g3 + €;2¢sin (-;-kAx) q", (3.7)
anl an .. 1 P §
G =G" + €2isin (EkAx) a7z, (3.8)
From equations (3.7) and (3.8), we obtain the matrix equation
at ] 1 2ie, sin (:i,-kAx) a3 (3.9)
g | 7 | 2iensin (%kAx) 1 — 4€ €9 sin? (%kA:::) e | -

The amplification matrix for this equation is

1 2ier sin (kA
G=|. . sin (3kaz) T (3.10)
2162 sin (5’6&.’5) 1-— 4€1€o sin (ikA.’L‘)
for which the eigenvalues g satisfy
2 21
g —2 [1 — 2¢sin (§kAx>] g+1=0, (3.11)
where € = (S-A;*-)z This equation gives two eigenvalues
. of1 . o (1 . o (1
g12 =1~ 2esin (gkAa:) +2 [esm (EkAx) - 1} esin (§kAx). (3.12)

If the above eigenvalues were real, then the magnitude |g| of one eigenvalue would be
greater than one; hence, the solution would be unstable. However, when the eigenvalues
91,2 are complex, the magnitude |g| of each eigenvalue is identically equal to unity. That
is

gl =1 iff lesin2 (%kAz)[ <1. (3.13)

Thus if € < 1, solutions will be always stable. Hence, the stability condition for the

leapfrog scheme is

A
At < —cf (3.14)

The dispersion relation for the finite-difference scheme defined by equations (3.3)
and (3.4) can be obtained by relating the frequency w of the Fourier mode on the grid
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where, again, € = ¢?(At/Az)?. This dispersion relation equals the dispersion relation
(3.18) for the differential equation only at low frequency, differing progressively more
with increasing frequency.

By writing w = Q + iy (y > 0), and equating the real and imaginary parts of
the dispersion relation, we can analyze damping associated with individual frequency
components (assuming k to be real), and get

(e”A‘ - e"A‘) sin(QA) = 0, (3.24)
YAt | —yAt =92 fﬁ)z i 2(.1. ) 3
(e +e ) cos(QAL) = 2 4( ~, ) S zkAx . (3.23)

From equations (3.24) and (3.25), we can first analyze the existence of numeri-
cal diffusion (or damping) in the finite-difference scheme. For frequencies satisfying
sin(QAt) # 0 [or cos(QA¢) # =+1], from equation (3.24) y must be zero, which means no
diffusion (or damping) on the grid occurs for these frequencies. For frequencies satisfying
sin(QAt) = 0, i.e., @ = nx/At (n is an integer), there are two possibilities: (a) n is an
even number, and (b) » is an odd number.

If n is even [i.e., cos(QAt) = 1], equation (3.25) can then be rewritten as

cosh(yAt) = 1 — 2esin? (%kAx) . (3.26)

Since cosh(YAt) > 1 [cosh(yAt) = 1, iff ¥ = 0] and the right hand side can be no
greater than unity, this relation holds only for v = 0 and for wavenumbers that satisfy
k =2mz/Az (m is an integer). So, in this case, no diffusion occurs.

If n is odd [i.e., cos(QAt) = —1], equation (3.25) can be rewritten as

cosh(yAt) + 1 = 2esin? @km) , (3.27)
and, again, this relation holds only for 7 = 0, and for certain wavenumbers and sampling
choice (e = 1).

The above discussion suggests that the leapfrog is a2 non-diffusive finite-difference
scheme, which has v = 0 for each Fourier component. However, in the examples shown
in Chapter 6, the leapfrog scheme does generate solutions with amplitude decay when
a coarse grid is used. Clearly, the above analysis fails to characterize the damping that
may exist for a given finite-difference scheme. The missing ingredient is the superposition
of Fourier components having different phase speeds (the discussion of phase speed is in
section 3 of this chapter). The amplitude of each Fourier component is unchanged during
its propagation, and if the phase velocities for all the components are the same as the
wave speed (i.e., no dispersion), the superposition does not cause any amplitude decay
in the solution. This is the case for low-frequency wave propagation or when € = 1.
However, if ¢ # 1 and the propagating wave is not dominated by the low frequencies, due
to the dispersion, the phase speeds for the various Fourier components differ from the
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the same as for the leapfrog scheme.
Inserting equations (3.29) and (3.30), into (3.31) and (3.32), yields

. . 1/cAt\2/ _ n

T g () +5(5) (Ba-rmean). e
pEAt n 1/cAt\2/ 7. om =

u}‘“ = u;' e -———-2 . (q;-‘_H —_ qj_1> -+ 5(-—5) (uj-i-l - 2uj T Uj_ ) (3'30)

If we rewrite this difference form in the differential form to second-order accuracy, we

obtain
O 10u  J2Atd%y

8t~ por * 2 922’ (3.36)
Su dqg ANt d%u N
a = pc2-a—g -+ -—-—2 5;2- (331)

Note, in both equations (3.36) and (3.37), the second term on the right-hand side
is the diffusion term introduced by the two-step Lax-Wendroff scheme. The diffusion
coefficients in both are equal to 2At/2.

To obtain the dispersion relation for this Lax-Wendroff scheme, we substitute Fourier
modes (3.16) and (3.17) into equations (3.34) and (3.35), giving

ge™ = § — ie i sin(kAz) + €jlcos(kAz) — 1], (3.38)
ae™% = i — ieygsin(kAz) + etfcos(kAz) — 1]. (3.39)

From the determinant of these two equations, we obtain the dispersion relation
€% = 1 + ¢lcos(kAz) — 1] + iy/esin(kAz). (3.40)

By writing w = Q + iv, we again equate the real and imaginary parts of the dispersion
relation,

_ Vesin(kAx)
tan(QA?) = 1+ efcos(kAz) — 1]’ (341)
e =1 — (1 —¢)1 - cos(kAz)]?, (3.42)
where v > 0.
In the special case where € = 1, v is zero, and equation (3.41) becomes
Q= ck, (3.43)

which is in precise agreement with the dispersion relation of the differential system.

In the low frequency limit, relation (3.41) becomes (3.43), and since we also have
v = 0 from (3.42), neither diffusion nor dispersion occurs. More generally, however, v > 0
so that diffusion on the grid occurs (even without invoking superposition); furthermore,
the phase velocity is a function of the wavenumber (again, this will be discussed in Section
3 of this chapter) so that dispersion occurs. Here, however, the presence of diffusion in
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(3.37). Moreover, equation (3.50) has an added term in the third-order spatial derivative
(higher-order diffusion). Because the diffusion coefficient in the pseudo Lax-Wendroff
scheme is so much larger than that in the two-step Lax-Wendroff scheme and higher-
order diffusion is introduced in solving u, I shall call the pseudo Lax-Wendroff scheme
strongly diffusive.

To analyze the stability condition for the pseudo Lax-Wendroff scheme, we again
use the Fourier modes

u;-"“ = gnHleihiaz (3.31)

q;‘“ = grtleitine (3.52)

insert these modes in equations (3.47) and (3.46) to give
g+ = [1 — 2esin? (%kAx)} & + €, 2isin (-;—kA:::) an, (3.33)

. .. (1 . -
@t = 4™ + €524 sin (§kAx) gt (3.54)

Substituting §"*! into equation (3.54), we obtain

sl 1 — 2esin? (ﬁé—) 2ie; sin (L'A—” §° B
[ ar+t } a { 2iesin (552) [1 —2€Zin2 (382)] 1-4esin? (Qk_ga) [ ar } (3.5)

The amplification matrix for this equation is

1 — 2esin? (%kAx) 2i€; sin (%kAz) 3
G —1 . . 1 =2 1 2 1 N (3'06)
2169 sin (EkAx) [1 — 2¢sin (§kAx)} 1 — 4esin <§kAx)
Its eigenvalues g satisfy
P =2 [1 — 3esin? <%k/_\.x)] g+1—2esin? (%km) =0, (3.57)

which gives two eigenvalues

g2 = 1—3esin® (é—kAx)

2
+ ¢ [1—3esin2 (%k&)] —[1—2esin2 (%km)}

= 1-3esin? (%kAz) + \/esin2 (%kA:r) [Qesinz (%km) - 4]. (3.58)

If the eigenvalues are complex [i.e., esin? (%kAz) < 3], the magnitude of each eigenvalue
satisfies,

g2 = 1 — 2esin? (%km) <1 (3.59)
17




Since € < %, this relation shows that wave-amplitude attenuation (v > 0) always

exists, even for the low-frequency limit. Moreover, since the dispersion relation of the
pseudo Lax-Wendroff scheme differs from that of the differential equation, the phase
velocity also differs from the true wave velocity, so numerical dispersion arises. Just
as for the diffusive two-step Lax-Wendroff scheme, the added artificial diffusion in the
pseudo Lax-Wendroff scheme is intended to help suppress the dispersive ripples.

3.2 Second-order system

Consider, now, the second-order acoustic wave equation in a one-dimensional homo-
geneous medium, which can be written as,

9%pP %P .
6—2{ = 0251.—2-. (3 (0)

Equation (3.70) can then be approximated by the conventional finite-difference scheme,
which has the form,

PP = 2P — P 4 (P, — 2P) + PL), (3.71)

where, again, € = %{;ﬁ, and the stability condition for this 1-D finite-difference scheme
is again (Golub and Ortega, 1992)

At < — (3.72)
For a Fourier mode in time and space,
P(z,t) = Peilwi—*kz) (3.73)

as before the dispersion relation for wave equation (3.70) is
w? = k2. (3.74)

Again, as for the first-order differential equations, no damping of any mode occurs and
all wavenumbers have the same velocity, so no dispersion occurs.

Applying the same Fourier mode (3.73) to the finite-difference scheme (3.71), and
cancelling the common factors in the equation, yields

sin2(%wAt) = esin? (%kAx). (3.75)

This relation is the same as that for the leapfrog scheme, so that the discussion about
the dispersion and diffusion is unchanged from that for the leapfrog scheme.
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FIG. 3.1. Relative phase speed versus normalized wavenumber for spatial differencing in
the leapfrog scheme.

arrival of true waves.

In the above analysis, we considered only the influence of spatial finite-differencing
on the phase speed. Now, let us consider the influence of time differencing. Applying
the finite-differencing to the time derivative only (as used in the leapfrog scheme) in
equations (3.1) and (3.2), we have

n+;z; n—-3 _ 8q
Ui = uj+§ = Atpc 3. (3.83)
At Ju
n+l L — —_— .

Substitution of the Fourier modes (3.16) and (3.17) into the equations (3.83) and (3.84)
gives

4 {e%i“"‘ - e“%i"A’] = —iAtpc’kq, (3.85)
1. 1. At
@ [ertnt — gmiwat] - ~i—ki. (3.86)

Combining the above two equations, we obtain
4sin? (LwAt
2 -
—A%——) = k2. (3.87)
With the phase speed defined in equation (3.81), we obtain the relative phase speed for
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Lax-Wendroff scheme in the differential form

dg _ At (. 1/cAt\2/ .
5 =g (5 =)+ 5(5) (-2 4an). s
Ou _ plAty | n 1 /cAt\2, . m
7 = o (= 4) +5(5) (-2 i) G0
Substituting the Fourier modes (3.16) and (3.17) into these equations, yields
o1 . At .
wq§ = Az [—%sin (kAz)] G + a2) [cos(kAz) —1] 4, (3.91)
P T . At A 11
wi = e [~isin (kAz)] § 4 ao) [cos(kAz) — 1] 4. (3.92)
Eliminating @ and § from these equations, we obtain
. 3At 2 &,
{ w— B2) [cos(kAz) — 1]} = e sin® (kAz) , (3.93)
or
c . . CAt
w = ——sin (kAz) — zm [cos(kAz) —1]. (3.94)

With the phase speed defined in equation (3.81), we obtain the relative phase speed for
spatial differencing in the Lax-Wendroff scheme

g _sin(kAz) | cAt cos(kAz) — 1], (3.95)

T T(kdz)  R(agE!

a complex quantity reflecting the presence of diffusion. Thus, we have

¢
c

)2 [cos(kAz) — 1]%. (3.96)

_ | sin®(kAz) + 1 (cAt
“\ Az T (kan)z \ Az

Figure 3.3 shows relative phase speed versus normalized wavenumber for spatial
differencing in the two-step Lax-Wendroff scheme. For this plot, I use a typical value

of 0.64 for the parameter (%22. As for the leapfrog scheme, wave speed is accurately
computed for low frequencies, but decreases at an increasing rate as frequency increases.
Comparing Figures 3.1 and 3.3, however, we see that the relative phase speed for the two-
step Lax-Wendroff scheme changes more rapidly than does that of the leapfrog scheme, so
the dispersion error of the two-step Lax-Wendroff scheme can be expected to be greater
than that of the leapfrog scheme. However, in the two-step Lax-Wendroff scheme the
artificial diffusion that is introduced helps to suppress some dispersion error.

To obtain the phase speed due to time differencing in the Lax-Wendroff scheme, we
can follow procedures similar to those used in the analysis in the leapfrog scheme.
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time differencing in the Lax-Wendroff scheme
WAt
ewhl _ ]
wlAte~3iwdt
2sin ( -é-wAt)
wAt

1 1
= — _ lcos —wAt) —sin (—wAt)] . 3.103
2sin (JwAt) [ <2 2 .

[+ KoY

Thus, we have
wAt

" 2sin (%wAt) .
Surprisingly, here, unlike the result for differencing in space, the relative phase speed
for time differencing in the Lax-Wendroff scheme is identical to that of the leapfrog scheme

[equation (3.88)]. Hence, the numerical dispersion caused by time discretization leads the
true signal exactly as it did for the leapfrog scheme.

¢

: (3.104)

3.3.3 Pseudo Lax-Wendroff scheme

For the pseudo Lax-Wendroff scheme, we may rewrite equations (3.49) and (3.50),

replacing the time differencing by a time derivative, so as to analyze the phase speed
caused by spatial differencing. That is

09 _ 1 ( n . 1 32At L ]
3t~ pAz ("J'H/2 - “i—l/:e) T A (qm —2¢7 + q,--l), (3.105)
au pcz n n C2At n n n
o ~ Az (qj'” B qj) * (Az)? (ui+3/2 — 2+ uj—1/2)
P [cAt\?2 n . . .
N 2Az (7_\.?) (qj+2 = 3451 +3¢7 - qj—l)' (3.106)

With the Fourier modes (3.16) and (3.17), we obtain

. -2 . (1 . 28At 4 /1 . .
wq = msm (ikAx)u— (B2)? sin (§kAx) 4, (3.107)
o =2ipd 1 S_4PAt 1
wt = A, Sin (2LAx>q—(Ax)2 sin <2LA:c>u
4ip rcAt\2 1, .
+ e (E) sin (QkAx) g. (3.108)




that in the two-step Lax-Wendroff scheme) will reduce some of the dispersive ripple.
Therefore, the pseudo Lax-Wendroff scheme should perform better than the two-step
Lax-Wendroff scheme in suppressing numerical dispersion.

For the pseudo Lax-Wendroff scheme, as with the leapfrog and Lax-Wendroff schemes,
the time differencing also influences the phase speed. We could follow the same proce-
dures for the Lax-Wendroff scheme to analyze the phase speed due to time differencing in
the pseudo Lax-Wendroff scheme. However, since time differencing in the Lax-Wendroff
and pseudo Lax-Wendroff schemes are both computed from data at time steps n and
n + 1, the influence of time differencing on the phase speed should be the same, and I
find that to be the case.

3.3.4 Second-order conventional scheme

If we apply second-order finite-differencing to the spatial derivative in equation
(3.70), the finite-difference scheme has the form
PP 2

57 = Z;E(P}‘H — 2P} + P1)). (3.116)

Substitution of the Fourier mode (3.73) into equation (3.116) gives

2¢?
- = K;?-[cos(kAx) - 1L (3.117)
Using the definition of the phase speed, equation (3.81), we obtain the relative phase
speed
& 2sin (3kAz
- _(_z____) (3.118)
c (kAz)

Not surprising, this expression is identical to that for the leapfrog scheme applied
to the system of first-order equations. Again, however, this approach lacks the artificial
diffusion of the pseudo Lax-Wendroff scheme and thus has no ability to suppress the
dispersion.

Now, consider time-differencing alone. Applying the second-order finite-differencing
to the time derivative only, in equation (3.70), we have

, %P

Pit—2Pr+ PP l=c R (3.119)

Substitution of the Fourier mode (3.73) into equation (3.119) yields

2[cos(wAt) —1]
Ag? B

—c’k2. (3.120)




Chapter 4

ANALYSIS OF FLUX-CORRECTED TRANSPORT

In this chapter, I give a detailed discussion about the flux-corrected transport tech-
nique, and show how the artificial diffusion and anti-diffusion in the FCT method work.
I also discuss how the use of diffusion and anti-diffusion in the FCT algorithm alters the
dispersion relationship for the first-order system. A comparable argument applies to the
second-order system.

Broadly, the FCT technique consists of two major stages — a conventional finite-
difference stage (Stage I), followed by a correction stage (Stage II) which consists of diffu-
sionand anti-diffusion steps applied throughout the evolution of the computed wavefield.
In the correction stage the computed wavefield is modified so as to suppress the artificial
ripples caused by the numerical dispersion. The idea of modifying the calculations to
improve the solution is not new. In the Lax-Wendroff scheme (Lax and Wendroff, 1960) a
certain degree of diffusion is introduced into the finite-difference equations to suppress the
grid dispersion. Solutions of the wave equations obtained by the Lax-Wendroff method,
unfortunately, suffer smoothing and a loss of resolution throughout, primarily because
the diffusion is too heavy-handed an approach to curing the dispersion problem, and,
moreover, a certain amount of dispersion remains. As the numerical dispersion does not
arise everywhere on the computational grid at every time step, it would be desirable if
application of the smoothing procedure could be limited to just where and when it is
need.

This idea is the essence of philosophy underlying the FCT technique. Appendices
B and C give recipes for the FCT correction procedure associated with solution of the
first-order and second-order systems of wave equations for 3-D media. In practice, there
is no a priori information about where the dispersion actually exists. Therefore, the
FCT method first applies the diffusion everywhere at each time step (steps 2 and 4 in
Appendices B and C). Once the solution is diffused for the given time step, an opposing
anti-diffusion is introduced at that time step to counteract the diffusion wherever it seems
not to be needed (steps 3, 5 and 6 in Appendices B and C). Because it is applied selectively
to various portions of the data, this anti-diffusion step 1s a non-linear procedure.

Before I give a detailed discussion of the FCT algorithm, let us briefly review the
FCT correction procedure for the simple 1-D problem. The FCT method for the first-
order system for acoustic wave extrapolation proceeds as follows:

1. Advance the solutions by a standard finite-difference method, say the leapfrog
method, for example.

2. Compute diffusive fluzes at time level n, then use these fluxes in step 4 to diffuse
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As we shall see, the nonlinear step, equation (4.6), involves decision-making to assess
where numerical diffusion seems not to have occurred in the original finite-differencing.

The algorithm listed above involves three major operations, conventional finite-
difference (i.e. transport), diffusion and anti-diffusion, which can be symbolically repre-
sented as T, D and A, respectively. Also, let I represent the identity operator. Operators
T and D are linear. However, because it operates only locally, based on a search for local
extrema, operator A is nonlinear. The old values of {?} G=1,2,---,J) and {u;‘_fll //22 }
UG=12,---,J—- 1) in the leapfrog scheme are carried by I and T, respectively, into new
values {g] }, and then are subsequently diffused to become {¢TP}. After anti-diffusion,
{g7'P} produces the corrected values {¢7*'} at the new time step. Symbolically, the FCT
sequence can be represented as

¢’ =q" + Tu™s, (4.7)
¢'? =¢" + D¢, (4.8)
qn+1 —_ qTD + A{qT’ TD}. (4.9)

Here, equation (4.7) is based on equation (3.4), and equation (4.8) on equation (4.3).
Specifically, for the leapfrog scheme the operators T and D have the matrix forms

- o -
—€2 €9 0
—€2 €2
T/*V=1 , (4.10)
] —€ €
B
i a5 ]
m o —2m g 0
mo =2m
DJxJ - : . s (411)
0 m —=2m m
L B2 ap |

where, €&, = A/pAr, and a, B, a1, B1, oy and 3, are coefficients related to the boundary
conditions.

The order of the operations that carry ¢” into ¢"*! is important; the operations do
not commute in general.
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then the result of this anti-diffusion would be

g?*  (1+2n)¢P —n(d2, +4¢2)
G g
= {1-2ncos(kAz) — 1]}{1 + 2n[cos(kAz) — 1]}
= 1-—4n’lcos(kAz) -1 < 1. (4.17)

Here, {1 — 2nfcos(kAz) — 1]} > 1 is an amplifying factor introduced by anti-diffusion.
The net action of diffusion and anti-diffusion, as indicated in equation (4.17), however,
is a residual diffusion (amplitude ratio is < 1). Thus, the net result is some amplitude
loss. To minimize this amplitude loss, we might like the anti-diffusive flux to be defined
other than by equation (4.16).

If the anti-diffusive flux instead were given by

fisrp = (gl — ab), (4.18)

rather than in terms of the diffused values ¢?, anti-diffusion would cancel the diffusion
exactly, and would give back the original undiffused solution; that is,

G = o =~ frp+fiap=d. (4.19)

To soften the loss of amplitude, we would therefore like the anti-diffusion to have an
action given either by equation (4.16) or by equation (4.18), but only for the area where
anti-diffusion is needed. For the true wavefield (i.e., with no numerical dispersion), we
would want the anti-diffusive flux to be defined as (4.18), so it can cancel the diffusion
exactly. In contrast, for the approximate, computed wavefield (which has some minor
numerical dispersion), the anti-diffusive flux defined in (4.16) might be a good choice,
since the amount of residual diffusion (net effect of the diffusion and anti-diffusion steps)
might be sufficient to suppress the minor dispersion error.
When T is not vanishing, we might define the anti-diffusive flux, f; b such that fJ_,_

reduces to equation (4.18) when T vanishes. With such a definition, the FCT-corrected
solution [equation (4.9)] becomes

Gt = ¢P- firrsz + fi-1e, (4.20)

where qJTD 1s obtained from equations (4.7) and (4.8), and the anti-diffusive flux is given
by

.fj+1/2 = O(QJ'TH - Qf) (4.21)
For non-vanishing operation T, the Fourier mode of u in time and space is
u = gel@i—ka) (4.22)

From the definitions of ¢ [equation (2.2)] and u [equation (2.3)], and relation (4.14), the
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4.2 Selectively applied anti-diffusive fluxes

Consider the situation depicted in Figure 4.1, which shows, schematically, a wavefield
snapshot generated by conventional finite-differencing in a coarsely sampled 1-D medium.
The wave is propagating to the right with a constant velocity ¢. During propagation,
restricted regions of the computed wavefield are presumed to suffer from high-frequency
numerical dispersion and other regions not, as indicated in the figure. In this simplistic
depiction, the lower-frequency portion of the computed wavefield corresponds the true
data, while the near-Nyquist-frequency portion corresponds to the numerical dispersion
attributable to coarse sampling. The FCT correction, ideally, would keep the true signal
(non-dispersive portion of the wavefield) unchanged while it suppresses the numerical
dispersion.

C
__"'>Q
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\&/ \&/

|« dispersion »|<— non-dispersion —|

FIG. 4.1. Schematic snapshot of 1-D wavefield depicting regions of dispersive ripples
and non-dispersive true wavefield.

In the FCT approach, the key assumption in deciding where the anti-diffusion is
needed is that all local extrema (in the unsmoothed solution) are caused by numerical
dispersion. Based on this assumption, the anti-diffusion is applied only over portions
where there are no local extrema. That is, the anti-diffusive flux, computed at every half
grid point j + 1/2 in equation (4.26), should act at adjacent points j and j + 1 only if
no local extrema exist at these two positions. Figure 4.2 illustrates four situations where
the data amplitudes either do or do not show local extrema at spatial positions j or j+1,
for the situation of a positive slope between the two positions. For case (a) in Figure 4.2,
there is no local extremum at either j or j + 1; however, for cases (b), (c) and (d), local
extrema are present at either j or j + 1, or at both.
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the algorithm is based on the simplistic and incorrect premise that local extrema are
indicative of numerical dispersion, no anti-diffusion will be applied at these three points
after the diffusion step. Therefore, any amplitude loss introduced by the diffusion stage
will not be compensated during the current time step at these points. After the FCT
correction at the current time step, however, the points adjacent to P, Q and R might
become the new local extrema, hence, the anti-diffusion might be applied to P, Q and
R points at the next time step. The net action after many recursions is that the real
features are not reduced as much as is the numerical dispersion. As we shall see in the
data examples, below, this is indeed the case.

4.3 Anti-diffusion for a strongly diffusive, finite-difference scheme

In the conventional stage (i.e., first stage) of the FCT method, one might use a
strongly diffusive finite-difference scheme (such as pseudo Lax-Wendroff) to advance the
solution in order to reduce numerical dispersion, at the price of some amplitude and
resolution losses. In this situation, we would not need the smoothing (or diffusion)
procedure in the FCT method, and need apply only the anti-diffusion correction to the
solution in order to compensate the amplitude and resolution losses introduced in the
conventional finite-differencing stage.

Alternatively, if we follow the leapfrog scheme [equations (3.3) and (3.4)] with just
the diffusion stage [equation (4.3)] in the FCT method, we would have

GH=q+ oAz (“?-r-z/z - “?—-1/2) +m (Q?H —2¢; + q;‘_l). (4.30)

Comparing this equation witk the pseudo Lax-Wendroff scheme for solving variable ¢
[equation (3.47)], we see that a difference between the two is that in the pseudo Lax-
Wendroff scheme [equation (3.47)], the diffusion coefficient is fixed at m = (cAt/Az)?/2,
whereas in the FCT diffusion step, 71 can be chosen differently. Another difference
between the leapfrog approach with the FCT diffusion step and the pseudo Lax-Wendroff
method is in the computation of the variable u [compare equations (3.3) and (3.48)].
From this analysis, we expect similarities between the actions of a strongly diffusive
finite-difference scheme, such as the pseudo Lax-Wendroff, and the leapfrog scheme with
the FCT diffusion correction. Therefore, as mentioned above when combining the FCT
technique with a strongly diffusive finite-difference scheme, the diffusion-correction stage
is not necessary. To compensate the resolution and amplitude losses that are introduced
by the strongly diffusive finite-difference scheme, we need only use the anti-diffusion
correction. We can do this by simply choosing 7; to be zero and 7, to be nonzero.
However, this is not an efficient approach, since the diffusion correction (with zero values)
would unnecessarily be applied throughout. An efficient approach, which ignores the
diffusion correction and applies only the anti-diffusion correction, is given in Chapter 5.
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4. Modify (i.e. diffuse locally) the solution ¢ using the localized diffusive fluxes f¢
and obtain the corrected solution; this process smooths the solution only where
numerical dispersion is thought to exist:

gt = g+ (Fa1/2 = FS5o1/0)- (3.3)

Generalization of the optimized FCT localized diffusion correction procedures to
the three-dimensional problem based on the first-order system equations and the original
second-order wave equation is given in Appendices D and E, respectively. Since the
optimized FCT correction involves only the localized diffusion, it saves about 40 percent
computational cost compared with that of the correction portion of the FCT procedure
discussed in Chapter 4.

If, in the conventional stage, a strongly diffusive scheme, such as the pseudo Lax-
Wendroff scheme, is used, the diffusion stage in the full FCT procedure becomes unnec-
essary. We can optimize the FCT procedure for the strongly diffusive scheme as well.
The anti-diffusion correction for the first-order system proceeds as follows:

1. Advance the solutions by a strongly diffusive finite-difference method.

2. Compute anti-diffusive fluzes at time level n:

Fiv172 =n(g} — ¢5), (5.6)

where 7 is an anti-diffusion coefficient (depending on the diffusion coefficient in
the strongly diffusive finite-difference stage), which can be chosen much as for Mo
in equation (4.2). Typically, the value can be a few percent larger than the fixed
value of the diffusion coefficient in the strongly diffusive finite-difference scheme.

3. Compute the corrected anti-diffusive fluxes:
1 . . - -
fimpp= sfivye [SIgn(fj+l/2fj—l/2) + Slgn(fj+1/2fj+3/2)] : (5.7)

4. Modify (i.e. anti-diffuse locally) the solution g using the localized anti-diffusive
fluxes f¢ to obtain the corrected solution:

G o= G = (e — Fop). (58)

This optimized anti-diffusion correction can be generalized to three-dimensional
problems for both the first-order and second-order system equations, just as can the
full FCT procedure. Similar to the optimized FCT localized diffusion, this optimized
FCT anti-diffusion correction also promises about 40 percent saving compared with the
computational effort of the full FCT correction procedure (disregarding the cost of the
conventional finite-differencing).

In the next chapter, we shall see the action of these various approaches to suppressing
numerical dispersion, study the dependence of solutions on values for 7 and 7, (or 7)
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Chapter 6

APPLICATION TO ACOUSTIC MEDIA

I have tested the FCT correction on one-dimensional forward problems, two-dimensional
modeling and reverse-time depth migration, and three-dimensional modeling. The reverse-
time depth migration, which is basically the same as forward modeling, simply runs time
backwards.

For the one-dimensional case, the wave is propagating along the z-axis, so 5"’; = 5%
= 0. Forward modeling tests involve a wavelet that is an isolated full-cycle of a sinusoid,
0.5 cos(27 ft)+0.5. Tests are also carried out for isolated rectangular pulses. The medium
is homogeneous in these tests, and the FCT algorithms used are based on the first-order
partial differential equations.

For the two-dimensional case where 5‘9— = 0, I present tests of both modeling and
migration with FCT correction based on both the first-order partial differential equations
and the second-order wave equation.

The three-dimensional modeling tests are performed in a homogeneous medium, and
the FCT correction is based on the second-order wave equation.

6.1 First-order system

In this section, I present results of FCT-corrected 1-D modeling, 2-D migration
impulse response results, and migration imaging for a reflector model. Here, the FCT
correction is based on the first-order acoustic wave equations.

6.1.1 One-dimensional modeling tests

In the one-dimensional modeling tests, I consider transmitted waves only, and the
medium has a constant density and a constant velocity of 2 km /s In each of the modeling
tests, I specify a time sequence at the surface and examine a snapshot of the generated
wavefield in depth. We shall see how choices of the diffusion coefficients 7 and 7 in the
full FCT approach and 7 in the optimized approach govern the quality of the modeling
results.

Rectangular pulses —  Figure 6.1 shows the snapshots at time ¢ =1 s for three
isolated rectangle-function pulses at the surface 0.333 s apart. The spatial step is 0.01
km, and the number of grid points per pulse width is eight. This test is extreme in that
the waveform is discontinuous in time and therefore in space.

Ideally, the waveform would not change during its propagation down through the
homogeneous earth; that is, as shown in Figure 6.1a, the waveform would remain as 2 se-
quence of rectangular pulses. When using the leapfrog finite-difference method, however,
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FIG. 6.1. Snapshot from a one-dimensional modeling test for isolated rectangular pulses
(eight samples per pulse width), for a constant velocity of 2 km /s and a constant density.
(2) Ideal wavefield. (b) Wavefield obtained by the leapfrog finite-difference scheme. (c)
Wavefield obtained by the two-step Lax-Wendroff finite-difference scheme. (d) Wavefield

obtained by the pseudo Lax-Wendroff finite-difference scheme. (e) Wavefield obtained by
the leapfrog scheme with the FCT diffusion correction only.
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larger than those used to obtain Figure 6.2a. Even though solution shows removal of
the numerical dispersion, the waveforms, are more distorted than those in Figure 6.2a.
Despite the distortions in Figures 6.3a and 6.3b, the solutions for this wide range of m;
and 7, values are considerably superior to those generated by conventional (i.e., no FCT
correction) schemes.

Amplitude Amplitude
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S S L O N
§,1'0"""' ISR SOUIOS S g«;_o- ...........................
£ R S——— £ B——
oy T3 EUON S SO SO 154 b
Q Q

204 % RO :? ......
25 25

(a) ’ (b)

F1G. 6.3. More snapshots from the one-dimensional modeling test with rectangular
pulses. (a) Wavefield obtained by the leapfrog scheme with the full FCT diffusion and
anti-diffusion corrections (n; = 0.026; 7, = 0.027). (b) Wavefield obtained by the leapfrog
scheme with the full FCT diffusion and anti-diffusion corrections (m = 0.042; n» = 0.046)

With the optimized FCT correction, Figure 6.4 shows wavefield snapshots for two
different values of : 7 = 0.09 in Figure 6.4a, and n = 0.15 in Figure 6.4b, 25 percent
less than and larger than that used in Figure 6.2c, respectively. Although none of the
solutions with the optimized approach are as crisp as the best result for the full FCT
approach, they nevertheless are quite good. Use of too low a value of n leaves a precursor
in the pulses, while use of too large a value causes too much smoothing.

From these examples with different choices of parameters 7;, 70 and 7, we see that
while the values of 7;, 7, and 7 do influence the quality of the solutions, the choices need
not be precise.

Sinusoid pulses —  Figures 6.5 through 6.7 show snapshots at time ¢t = 1 s,
generated by three isolated sinusoids (dominant frequency of 10 Hz) 0.333 s apart at the
surface. The spatial steps are 0.01 km (twenty samples per dominant wavelength), 0.025
km (eight samples per dominant wavelength) and 0.04 km (five samples per dominant
wavelength), respectively.
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FIG. 6.53. One-dimensional test for isolated wavelets, each of which is a full-cycle of a
sinusoid with a frequency of 10 Hz, for a constant velocity of 2 km/s and a constant
density. The spatial step is Az = 0.01 km (twenty samples per dominant wavelength).
(a) Ideal wavefield. (b) Wavefield obtained by the standard leapfrog finite-difference
method. (c) Wavefield obtained with the full FCT correction.

Amplitude Amplitude Amplitude
60.5 0 05 1.0 15 60.5 0 0;5 1.0 1.5 éo.s 9 0;5 1.0 1.5

0.5+

?

£
= L
3 o

el
¢

.............................

(a) ' (b) (c)

F1G. 6.6. Same as Figure 6.5, except Az = 0.025 km (eight samples per dominant
wavelength).
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F1G. 6.8. Comparison of the wavefield snapshot generated by the leapfrog method with
the FCT correction for a fixed diffusion coefficient (7; = 0.042) and differing 7, on a vary
coarse grid (Az = 0.04 km, five samples per dominant wavelength). (a) 7, = 0.052, (b)
ne = 0.072, and (¢) n, = 0.092.

has a velocity of 2.0 km/s and a constant density. For the step sizes, Az = Az = 0.02
km, the number of grid points per upper half-power wavelength (Gyp) is about 3.5 (a
coarse grid). The time step used in the tests here is 4 ms.

Figures 6.9 and 6.10 show the finite-difference solutions by the leapfrog scheme
without and with the FCT correction. Without the full FCT correction, the leapfrog
solution for the coarse grid shows strong numerical dispersion, as well as progressive loss
of resolution with increasing depth of scatters (Figure 6.9). With the full FCT diffusion
and anti-diffusion correction (m; = 0.05; 7, = 0.05; Figure 6.10), the numerical dispersion
has been suppressed and the resolution loss has been largely restored.

Similar to the 1-D examples, the optimized FCT approach applied to the leapfrog
solution (1 = 0.08) also yields a solution without numerical dispersion and restores much
of the lost resolution (Figure 6.11), but not so completely as in Figure 6.10.

To see the dependence of the quality of the solutions on the parameters 7; and 7,
for the full FCT correction, I, again, choose values that are either 25 percent less or 25
percent larger than those values used in Figure 6.10.

First, I show examples in which 7; and 7, change together. In Figure 6.12, with
m = 0.038 and 7, = 0.038 (about 25 percent less than those used in Figure 6.10),
the leapfrog scheme with the full FCT correction produces a solution with most of the
dispersive ripples removed. Moreover, the solution appears as though it has undergone
a phase change. This appearance is, in fact, due to a residual precursor that is not fully
removed by the FCT diffusion, since the artificial diffusion introduced here is less than
that in Figure 6.10. Parameters of 7, = 0.062 and 7, = 0.062 (Figure 6.13) result in
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F1G. 6.10. Migration impulse responses by the leapfrog finite-difference method with
the full FCT correction (n; = 0.03; 7, = 0.03).
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FIG. 6.11. Migration impulse responses by the leapfrog finite-difference method with
the optimized FCT (localized diffusion) correction (n = 0.08).
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F1G. 6.14. Migration impulse responses by the leapfrog finite-difference method with
the full FCT correction (n; = 0.05; 7 = 0.038).

Distance (km)
0 1 2 3 4 5 6

Depth (km)

F1G. 6.15. Migration impulse responses by the leapfrog finite-difference method with
the full FCT correction (7 = 0.05; 7, = 0.062).
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F1G. 6.17. Migration impulse responses by the leapfrog finite-difference method with
the optimized FCT approach (n = 0.1).
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F1c. 6.18. Migration impulse responses by the pseudo Lax-Wendroff finite-difference
method without the FCT correction.
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F1G. 6.20. Reflector model used to generate synthetic data for the tests described in
Figures 6.22 through 6.24.

(Figure 6.21b). Due to the lateral variation in velocity, wavelets for the horizontal events
broaden to the right.

6.2 Second-order system

This section again shows FCT-corrected modeling and migration results, but this
time based on the second-order acoustic wave equation (2.1).

6.2.1 Modeling for a wedge model

Figure 6.25 shows a two-dimensional model in which the velocity in a rectangular
area is set at zero, while outside that area the velocity is a constant 2.438 km/s. The
modeled area in the tests is 5.266 x 5.266 km? with the upper left corner of the rectangular
region at (2.194 km, 3.510 km) and a line source located at (2.633 km, 3.072 km). The
time variation of the source function is —(t—0.1)e=*¢~01)? where ¢ > 0 is time, measured
in's, and @=700s~2. This source function has an upper half-power frequency of 10 Hz, and
the corresponding half-power wavelength is about 0.244 km for velocity v=2.438 km/s.
Here, three different grid sizes, fine (Az=0.02194 km; G, ~ 11}, medium (Az=0.04388
km; Go = 5.5) and coarse (Az=0.08776 km; Gy =~ 2.7), have been tested.

Figure 6.26a shows the snapshot at 1.026 s for the wavefield computed by the second-
order (in space and time) conventional finite-difference method over the fine grid, and
Figure 6.26b shows the snapshot at the same time for the FCT-corrected wavefield. For
this fine sampling, both the conventional finite-difference result and the FCT-corrected
result are accurate and show no numerical dispersion.

On the medium grid, for which Gy =~ 5.5, the wavefield obtained by the conventional
finite-difference approach becomes dispersive (Figure 6.26c). The FCT correction, how-
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F16. 6.23. Migrated section for velocity model ¢(z) = 1.6 + 0.6z km/s, and constant
density by the leapfrog scheme with the full FCT correction.
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F1G. 6.24. Migrated section for velocity model ¢(z, 2) = 1.5+ 0.2z + 0.35z km/s, and
constant density by the leapfrog scheme with the full FCT correction.
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F1G. 6.26. Wavefield snapshots for different grid coarseness. (a) and (b) are for a fine
grid (Go ~ 11); (c) and (d) are for a medium-coarseness grid (Gy =~ 5.5); and (e) and
(f) are for a coarse grid (Go = 2.7). (a), (c) and (e) are solutions by the conventional
finite-difference method, and (b), (d) and (f) are solution with the full FCT correction.
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F1G. 6.28. Cross section of a three-dimensional wavefield snapshot for an impulse in both

time and space. (a) Solution by the fourth-order conventional finite-difference method.
(b) Solution with the FCT correction.
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F1G. 6.30. Wavefield snapshot at ¢t = 2.175 s in the thin-layered model shown in Figure
6.30, generated by the fourth-order finite-difference method (Go = 4.4 at 2=0 km)

numerical dispersion, while at the same time it restores much of the (lower-frequency)
true wave, including multiple reflections, at each time step.

When applying the optimized FCT correction to the conventional finite-difference
solution, we obtain the same desirable result, the elimination of numerical dispersion
and preservation of the true wavefield oscillations, as seen in Figure 6.32. In Chapter 8,
the relative costs of the full FCT correction and optimized FCT correction in the entire
finite-difference method are discussed.

6.2.4 Modeling in media with a localized low-velocity zone

Figure 6.33 shows a model consisting of two homogeneous layers. In the first layer
(from surface to 1.5 km depth), the velocity is 1.8 km/s, while in the second layer (below
1.5 km depth), the medium has a relatively high velocity of 3.6 km/s. The spatial step
used in the modeling tests is 0.02 km in both horizontal and vertical directions. The line
source, a 15-Hz Ricker wavelet, is located at (3 km, 1.5 km). The corresponding number
of grid points per upper half-power wavelength is about 3.7 in the low-velocity layer and
7.4 in the high-velocity layer. ’

For this grid size, the fourth-order conventional finite-difference method can generate
numerical dispersion in the low-velocity layer; however, in the high-velocity layer there
Is no numerical dispersion, as seen in Figure 6.34. With the full FCT correction applied
to the entire modeled area, the solution shows no numerical dispersion (Figure 6.35).
However, since the numerical dispersion is generated in just the low-velocity layer, we
can gain savings in computational effort by restricting the FCT correction to just that
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F1G. 6.33. Velocity model used to generate wavefield snapshots given in Figures 6.34

through 6.36. Darker shading indicates high velocity, and the asterisk denotes the source
location.
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FIG. 6.34. Wavefield snapshot at ¢t = 0.75 s in the two-lavered model shown in Figure
6.33, generated by the fourth-order finite-difference method without the FCT correction.




layer. In this manner, only one-third as much effort is required for the FCT correction,
yet the solution shows no indication of numerical dispersion (as seen in Figure 6.36).
The optimized FCT can similarly be applied to only the low-velocity zone, reducing the
computation effort of the FCT correction further. That solution (not shown here) shows
no numerical dispersion as well.

The savings in the FCT computation depends on the relative size of the low velocity
zone. Clearly, for homogeneous media, for example, the FCT correction gains no such
berefit; the FCT correction needs to be applied throughout the modeled area.

6.2.5 Migration of data from a salt-dome structure model

Figure 6.37 shows a reflector structure modeling the boundary of an overhanging salt
dome, with dip as large as 125 degrees. The input zero-offset time section for velocity
linearly increasing with depth [e(z) = 1.5 + 0.9z km/s] was obtained by a Kirchhoff
modeling program. The wavelet used in the modeling was a symmetric Ricker wavelet
with dominant frequency of 30 Hz. Figures 6.38 through 6.42 show the reverse-time
depth-migration results by the second-order and the fourth-order conventional finite-
difference methods, without and with the FCT correction.

0
<
Q.
a8 27
3 3 i 1 |

©o 1 2 3 4 & &
Distance (km)

FIG. 6.37. Reflector model used to generate synthetic data for the tests described in
Figures 6.38 through 6.42.

For Figure 6.38 (a migration image by second-order conventional finite-difference
method), the number of grid points per upper half-power wavelength at depth 2=0 km,
where velocity is lowest (1.5 km /s), is about 3.7 (very coarse grid). Since the grid remains

69




Distance (km)
0 0 1 2 3 4 5 6

w—t

N

Depth (km)

3

F1G. 6.39. Fourth-order conventional finite-difference migration for the same grid as
that for Figure 6.38.
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FIG. 6.40. Second-order finite-difference migration with the full FCT correction for the
same grid as that for Figure 6.38.
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F1G. 6.43. Fourth-order finite-difference migration with the optimized FCT correction
for the same grid size as that for Figure 6.38.

yields the desired resolution (compare with Figures 6.38 through 6.40), plus the compu-
tational savings over the fourth-order method on the medium grid. The optimized FCT
correction applied to the fourth-order method on the coarse grid (Figure 6.43) also yields
the desired solution.

6.2.6 Migration of field data

Figure 6.44 shows a stacked section, after application of dip-moveout (DMO) cor-
rection, from the Gulf of Mexico. For these data, the dominant frequency at 2 s is about
35 Hz, and the background velocity varies from 1.5 to 3.3 km /s. The spatial step size
in both horizontal and vertical directions is 6 m, so the lowest number of sample points
per upper half-power wavelength here is about 3.7. To satisfy the stability condition for
this 2-D problem [the stability condition for 1-D problems, equation (3.72), is changed
to At < % for the 2-D problem], the time step is 1.1 ms. The migrated section by
the fourth-order conventional finite-difference method is shown in Figure 6.45, and the
part of the image inside the dashed box is enlarged in Figure 6.46. For comparison, Fig-
ure 6.47 shows a closeup view of a comparable portion of the unmigrated DMO-stacked
section. The arrows in Figures 6.46 and 6.47 point to equivalent positions on the two
sections, where reflections have little slope and therefore should not be changed much by
the migration. One might suspect, then, that the added reflection events at the arrow in
Figure 6.46 are artifacts of numerical dispersion. With the FCT correction (Figure 6.48),
the suspect events are removed. Applying the less costly, optimized FCT correction vields
a result (Figure 6.49) with the added events removed as well.
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FIG. 6.46. Enlarged portion of migration result by the fourth-order conventional
finite-difference method.
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F1G. 6.47. Detail of DMO and stacked section from Gulf of Mexico.
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Chapter 7

APPLICATION TO ELASTIC MEDIA

In this chapter, I show examples of the FCT algorithm in two-dimensional for-
ward modeling for homogeneous and inhomogeneous elastic isotropic media, transversely
isotropic media, and a layered TI medium. For each medium, P- and S V-waves, as well
as SH-waves, are computed. In each of the tests, the spatial steps Az and Az are 0.02
km, and the time step At is chosen to satisfy the stability condition, At < Az/+\/o? + 532
(Kelly et al., 1976; c is the P-wave velocity and 3 is the S-wave velocity). I also present
examples of three-dimensional forward modeling and two-dimensional reverse-time mi-
gration for TI media.

Test results show that, for elastic media, as for acoustic media, the FCT method
on a coarse grid produces accurate wavefield snapshots and migration images without
numerical dispersion.

7.1 Snapshots in two-dimensional isotropic media

Figures 7.1 through 7.3 show snapshots at 0.64 s for two elastic isotropic media
with constant density. The line source, with a 20-Hz Ricker wavelet assigned to force
components f;, f2 and f3, is located at (2.5 km, 2.5 km). Force components f; and f;
generate the P- and SV-waves, while the force component f, generates the SH-wave.
The directions of the force are indicated in Figures 7.1 and 7.2 .

Distance (km) Distance (km) Distance (km)
01234012{31}91234

n

Depth (km)

5

X - component z - component SH - wave

FIG. 7.1. Snapshots for a homogeneous elastic, isotropic medium with a P-wave
velocity of 3.0 km/s and an S-wave velocity of 1.8 km/s.
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FI1G. 7.3. Snapshots for an elastic isotropic medium with linear velocity variation. P-
wave velocity is & = 1.5+ 0.1z + 0.5z km/s, and S-wave velocity is 8 = 1.0+ 0.1z + 0.4z.

) Bo £ 6 ¥ p
Material (km/s) | (km/s) | (g/cm?)
Sandstone-shale 3.009 | 1.654 |0.013 |-0.001 | 0.0035| 234
Mesaverde-shale 3.749 | 2.621 [0.128 | 0.078 0.1 2.92
Cotton Valley shale 4.721 2.89 |0.135} 0.205 | 0.18 2.64
Limestone-shale 3.306 | 1.819 [0.134] 0.0 0.156 244 *
Taylor sandstone 3.368 | 1.829 | 0.11 |-0.035] 0.255 2.5 —
Anisotropic-shale 2.745 | 1.508 |0.103 [ -0.001 | 0.345 2.34
Anisotropic* 2.0 0.894 0.0 |-0241 04 2.4
Mesaverde clayshale 3.928 | 2.055 [0.334| 0.73 | 0.575 2.539
Gypsum-weathered material | 1.911 | 0.795 | 1.161 -0.14 | 2.781 2.35

Table 7.1. Thomsen parameters for several materials (Thomsen, 1986). *Medium with
Thomsen parameters designed here to test wavefront behavior for e=0 and relatively
large 6 and +.
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F1G. 7.4. Wavefield snapshots for “mildly” anisotropic media: (a) sandstone-shale: (b)
Mesaverde shale; and (c¢) Cotton Valley shale.
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F1G. 7.6. Wavefield snapshots for media that are considered strongly anisotropic. (a)
medium with a(=2.0 km/s, 5,=0.894 km/s, £=0.0, v=0.4, 6=-0.241 and p=2.4 g/cm?;
(b) Mesaverde clayshale; and (c) gypsum-weathered shale.
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F1G. 7.8. Snapshots of 2-, y-, and z-components at 0,48 s for the layered medium in
Figure 7.7.




Lateral Position (km)

(wx) yidaqg

T

component

X

ion (km)

Lateral Posit

o - N (3]
(wy) yideq

component

Lateral P

4

ion (km)

osit

(wx) yideq

m i

ure 7.7.
87

o
(=4

i

F1G. 7.10. Snapshots of z-, y-, and z-components at 0.84 s for the layered med
F



(km)

2 3 4 5 6 7

iver position

Recei

1

0

|

i

N
)

Eonrd () e

(a)

—~ <t
&
X
m. ™
()
g
o N
2
)
O
)
oC
O T T
o - (qV]
(s) swny

)

b

(

motion seismograms for a vertical displacement source in
gure 7.11. (a) Surface seismic reflection seismogram. (b) VSP

F1G. 7.12. In-line horizontal-

the layered model of Fi

seismogram.

89



Receiver position (km)
9 1 2 3

|

R
3l i
| ¢ i E % ;i:
! LT il iy

(a)

Receiver depth (km)

0 1 2 3 4

/
R ———.
X

Time (s)
i

i

; i
i i ” T
H } { { H i FANY 1

i i i (LS
li i T
it JHHHH ity SNSRI

F1G. 7.14. SH-wave seismograms for the layered model of Figure 7.11. (a) Surface
seismic reflection seismogram. (b) VSP seismogram.
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F1G. 7.15. Wavefield snapshots, at time t=0.27 s, in Mesaverde clayshale, generated by
the fourth-order conventional finite-differencing. (a) z-component in the zz-plane
in-line vertical plane), (b) y-component in the yz-plane (i.e. cross-line vertical plane
z-component in the zy-plane (i.e. horizontal plane), and (d)

(i.e. in-line vertical plane).
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F1G6. 7.17. Wavefield snapshots, at time ¢=0.27 s, in Mesaverde clayshale, generated by
fourth-order finite-differencing with the FCT correction. (a) z-component in the zz-plane
(i.e. in-line vertical plane), and (b) y-component in the yz-plane (i.e. cross-line vertical
plane).

7.6 Migration in two-dimensional TI media

Figure 7.19 shows a depth section modeling a fault structure with two horizontal
segments and one 45-degree dipping segment. Zero-offset time sections were generated
for the T1I shale of Jones and Wang (1981) (cg = 3.048 km/s, 5, = 1.490 km/s, 6 =-0.03,
€ = 0.255 and v = 0.48) by using the finite-difference method with the FCT correction.
To obtain the zero-offset time sections, I place the sources on the reflectors and record
the wavefield at the surface. Figures 7.202 and 7.20b give the z- and z-component of
the data with vertical sources, while Figure 7.20c gives the SH-wave component with
the source in the y-direction. The time variation of the source function is a symmetric
Ricker wavelet with a dominant frequency of 15 Hz, and the number of grid points per
upper half-power wavelength is coarse (G, ~ 6.2) for the P-waves, and coarser (G, ~ 3)
for the S-waves along the symmetry-axis direction.

In Figure 7.20a, showing the z-component of the displacement (i.e., in-line compo-
nent), P- and SV-waves from only the dipping reflector have been recorded, while, due
to the symmetry for the vertical source, the signal from the horizontal reflector has no
component in the in-line horizontal direction. In contrast, the z-component (vertical),
shows signals from both the horizontal and dipping reflectors. Since the SH-wave is
decoupled from the P- and SV-waves, Figure 7.20c gives only the SH-wave.

Migrated images from the synthetic data (Figure 7.20) are shown in Figures 7.21
and 7.22. In Figure 7.21a, which shows the image from the z-component, the horizontal
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F1G. 7.19. Dip-direction (z-z plane) section showing a reflector model used to generate
the synthetic data in Figures 7.20 for the tests described in Figures 7.21 and 7.22.

portions of the reflector cannot be imaged because those portions produced no informa-
tion in the z-component. The dipping reflector, however, is well imaged. Figure 7.21b
gives the image from the z-component, which shows both the horizontal and dipping
reflectors in the correct position. The dipping reflector, however, appears weak since the
corresponding image is generated from both P- and SV-components, and minor phase
error can introduce significant amplitude error. The image shown here is obtained by
migrating the full data set (both horizontal and vertical components), which contains
both the P- and SV-wave components. Perhaps a better approach would have been to
separate the P- and S-waves before migration.

The migration image based on the SH-wave data is shown in Figure 7.22. Again,
the imaged reflector is correctly positioned and well imaged.

7.7 Modeling in two-dimensional TI media with a tilted axis of symmetry

Figures 7.23 and 7.24 each shows a set of nine wavefield snapshots (at time ¢ =0.45

s) in a homogeneous Mesaverde clayshale (Thomsen, 1986; oy =3.928 km/s, 3y =2.055

km/s, € = 0.334, § = 0.73, v = 0.575) with various orientations of the symmetry axis for

this TI medium. The variable that determines the orientation of the symmetry axis is

6 (the angle between the vertical direction and the symmetry axis direction). In Figure

7.23b, the double sided dashed arrow in the SH-wave component indicates an example
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F1G. 7.21. Migrated section for shale of Jones and Wan

g (1981) from both P- and
SV-wave. (a) image from the z-component, and (b)

image from the z-component.
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F1G. 7.23. Wavefield snapshots in Mesaverde clayshale with a tilted axis of symmetry.
(2) 6 = 0°, (b) 6= 30°, and (c) § = 45°.
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F1G. 7.25. Source and receiver-borehole locations.

P2 — reflected P from the surface
P3 — reflected P from the left side boundary
S1 — direct SV arrival

52 — converted P-SV generated at the surface.

It is easier to identify the various events — direct SH arrival, reflected SH from the
surface, and reflected SH from the left side boundary — on the more simple SH-wave
data set.

From Figures 7.26 through 7.29, we see that for media that are otherwise the same,
but have differing orientations of symmetry axis, the synthetic selsmograms vary signif-
icantly. When the orientation of the symmetry axis differs from vertical, the recorded
seismograms lose their symmetry characteristic. Clearly, then, where the symmetry axis
for TI media is tilted, migration algorithms must take that tilt into account in order to
order to yield proper positioning of imaged reflectors.

In 2-D problems, the orientation of the symmetry axis is defined by only one pa-
rameter §. However, for 3-D problems, the symmetry axis can be oriented in arbitrary
azimuth directions; hence, an extra parameter (the azimuth angle ¢) must be introduced.
This additional variable would significantly increase the complexity of the wave equations
and, therefore, of the finite-differencing. However, the FCT correction procedures are the
same, and could be applied successfully to 3-D TI media with arbitrary orientation of
the symmetry-axis.
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second-order method. But, then again, applying the FCT correction to the fourth-order
method results in both an increase in speed and less memory usage compared to the
fourth-order conventional method. So, where does this trade-off between ever-increasing
order of finite-differencing versus application of FCT (to higher-order solutions) lead?
As suggested by the comparison between the FCT-corrected fourth-order method and
the conventional tenth-order finite-difference method in Table 8.1, use of ever-higher
order finite-differencing eventually encounters diminishing returns. The speed of the full
fourth-order FCT approach is about 28 percent faster, and the memory usage of about
20 percent less than the tenth-order conventional finite-difference method.

Moreover, the optimized FCT method, applied to either the first-order or the second-
order differential equation systems, reduces the computational cost of the correction stage
of the FCT correction by 40 percent. Hence, the speed of the FCT technique is even
greater (Table 8.1).

As seen in Table 8.1, in terms of both computation speed and memory usage, solution
of the second-order wave equation is more efficiently accomplished (whether or not the
FCT technique is used) than is that of the first-order equations. Instead of solving for one
variable in the second-order system [equation (2.1)], three variables for 2-D problems (or
four variables for 3-D problems) need to be solved for the first-order system. Therefore,
the computational cost and memory usage in the conventional finite-differencing stage
(for the first-order equation system) are both increased. Comparing the second-order full
FCT and optimized FCT approaches for the two different equation systems, the speed
is about 45 percent faster and the memory usage is three times less for the second-order
equation system than for the first-order equation system. This argument holds for any
order of finite-differencing with the FCT correction.

Although finite-differencing with the FCT correction is more efficient for the second-
order equation system than for the first-order equation system, the FCT corrections are
easier to code for the first-order system. Moreover, in applications involving elastic media,
the conventional finite-differencing itself is easier to code for the first-order system.

For 3-D problems, since the same number of grid points per wavelength (as with the
2-D problems) is required, the efficiency and speed of the FCT method should increase.
As seen in Table 8.2, which differs from Table 8.1 only in that it applies to 3-D problems,
the speed of the second-order finite-difference method for the second-order equation sys-
tem increases by a factor of 7.6 when the optimized FCT approach is applied. Application
of the optimized FCT correction to the fourth-order method shows particularly strong
performance. Moreover, for the second-order equation system, the FCT approach applied
to the fourth-order method only requires about 3.8, 30 and 73 percent of the memory
used by the second-order, fourth-order and tenth-order finite-difference methods, respec-
tively. Comparing the FCT approach applied to both equation systems, again, as for the
2-D problem, in terms of both speed and memory usage the differencing is best done on
the second-order differential equation. Moreover, since the FCT-corrected fourth-order
method is more efficient and requires less memory than even the tenth-order conven-
tional finite-difference method, the FCT method therefore is recommended for solving
the second-order acoustic wave equation.
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Original second-order wave equation (2.1)

Computational cost Points per Relative
Method proportional to wavelength (Gy) | speed | Memory
O(At?, Az?) kN4 11 1 1
O(At?, Az%) 1.6kN* 5.5 10 0.125
o(At*, Az'Y) 3.6kN* 4.1 16 0.052
O(At?, Az?)
with FCT 2.8kN* 5.5 5.8 0.125
O(At?, Ax?)
with FCT 3.4kN* 3.7 22 0.038
O(At?, Ar?) with
optimized FCT 2.1kN* 5.5 7.6 0.125
O(At?, Az?) with
optimized FCT 2.7kN* 387 28 0.038 |
Derived first-order wave equations (2.6) through (2.9) T
Computational cost Points per Relative
Method proportional to wavelength (Gy) | speed | Memory
O(At?, Ax?) 1.6kN* 11 0.63 4
O(At?, Az?)
with FCT 4kN*4 5.5 4.0 0.5
O(At?, Az?) with
optimized FCT 3.1kN* 5.5 5.2 0.5

Table 8.2. Same as Table 8.1, but for 3-D acoustic problems.
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Full FCT diffusion and anti-diffusion correction
cost ratio between
acoustic medium | elastic medium elastic medium
and acoustic medium
transport stage 1 3.6 3.6
full FCT

corrective stage 1.5 4.5 3

total 2.5 8.1 3.2

ratio of total over
transport stage 2.5 2.3 -
Optimized FCT correction
cost ratio between
acoustic medium | elastic medium elastic medium
and acoustic medium

{ransport stage 1 3.6 3.6
optimized FCT
corrective stage 0.9 2.7 3

total 1.9 6.3 3.3

ratio of total over

transport stage 1.9 1.8

Table 8.3. Comparison of the relative cost of the FCT method applied to the first-
order differential equation system for acoustic and elastic media. The grid size is held
constant throughout. Here, the computation effort for solving the first-order acoustic
wave equations is taken as unity, for reference.
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Full FCT diffusion and anti-diffusion correction

acoustic medium

elastic medium

cost ratio between
elastic medium
and acoustic medium

Optimized FCT correction

transport stage 1 3.6 3.6
full FCT
corrective stage 1.8 5.4 3
total 2.8 9.0 3.2
ratio of total over
transport stage 2.8 2.5

acoustic medium

elastic medium

cost ratio between
elastic medium
and acoustic medium

transport stage 1 3.6 3.6
optimized FCT
corrective stage 1.1 3.3 3
total 2.1 6.9 3.3
ratio of total over
transport stage 2.1 1.9

Table 8.4. Comparison of the relative cost of the FCT method applied to the second-
order differential equation system for acoustic and elastic media. Here, the computation
effort for solving the second-order acoustic wave equation is taken as unity, for reference.




in the elastic-wave equations is greater than that for the acoustic-wave equation. In
contrast, the FCT computational effort for each variable is the same as that for the
acoustic wave equation. Therefore the efficiency gains for the FCT method are larger for
elastic media than for acoustic media.

When using higher-order methods in the finite-differencing step, the relative com-
putational cost of the FCT method is reduced since the FCT correction is independent
of the order of finite-differencing. Moreover, because the use of finite-differencing of ever
increasing order encounters diminishing returns, application of the FCT correction to
the fourth-order finite-difference method, for example, offers greater computation and
memory savings than does the conventional tenth-order method.

Despite the benefits of the FCT corrections, the computation effort of reverse-time
depth migration is still about three to ten times (depending on the velocity model) that
of the Kirchhoff integral method for 2-D migration. For 3-D migration and modeling, the
computational effort of any finite-difference method (the FCT method in particular) is
proportional to N*, while that of the Kirchhoff integral method or Gaussian beam method
is proportional to N3, suggesting that, for 3-D problems, the finite-difference method with
the FCT correction might become cost-competitive with the Kirchhoff integral method
or Gaussian beam method.

The computer codes related to this work are located at the Center for Wave Phe-
nomena, Colorado School of Mines. For application in acoustic media, four codes are
available, while for applications in elastic media, one code is available. These codes and
their application areas are listed below.

1. fctmod.c — finite-difference modeling for 2-D acoustic media with the full FCT
correction.

2. fctmig.c — finite-difference migration for 2-D acoustic media with the full FCT
correction.

3. fctmodopt.c — finite-difference modeling for 2-D acoustic media with the opti-
mized FCT correction.

4. fctmigopt.c — finite-difference migration for 2-D acoustic media with the opti-
mized FCT correction.

Ot

. fctanis.c — finite-difference modeling for 2-D elastic and transversely isotropic
media with the full FCT correction. The code can also be used for migration.

In this work, I have only briefly studied the dependence of the solutions on the
diffusion and anti-diffusion coefficients 7;, 7, and 7. I suggest further detailed study
of these parameters, either theoretical or empirical. A developed relationship between
the optimum values of these coefficients and the coarseness of the grid (i.e., number of
grid points per upper half-power wavelength) and the order of finite-differencing would be
helpful. Also, in this work, the FCT technique has been applied to only one field data set.
The advantages of the FCT method would best be demonstrated through testing with
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Appendix A

ASYMPTOTIC ANALYSIS OF THE LEAPFROG SCHEME

In this appendix, I use z2-transforms and asymptotic analysis for large time to analyze
damping in the leapfrog scheme. This method, which provides an analytical check on
the finite-difference schemes, was proposed by Bleistein (1974). Also, in this appendix, I
give a direct comparison of the asymptotic solution and the leapfrog solution.

Let’s consider a solution continuous in time, discrete in space, where the essence of
the leapfrog scheme resides. Thus, I rewrite equations (3.3) and (3.4) as

Ou.
—%1—/3 = €1(gj+1 — ¢;), (A.1)

) : (A.2)

where €; = pc?/Azx, e = 1 /pAz, and Az is the spatial step. In the examples shown
later, I use a constant velocity of 2 km /s.

The finite-difference equations will be solved by the z-transform (Oppenheim, et al.,
1983). To do so (Bleistein, 1994), I introduce

da:
-gqtg- = €2 (UJ_!,% - 'U,j_

[

Uz) = iu;z", (A.3)
Q) = Yo gss*. ()

Multiplying both side of equations (A.1) and (A.2) by 2%+2 and 2%, respectively, I
obtain 3

L2742\ __ L27+2 2j+2 =
- (uj_*_%x, 7+ ) =€ (q.'i+1‘° ST g;z 4 ) y (.A.O)

ot
9 23 ~2] ~27
5 (qu ) = €2(ujp12Y —u;_ 127 ). (A.6)
Taking the summation of these equations over the index j, produces

0

3 (zZuj_i_%z?j“) =¢ (qu+1zzj+2 - zQquzz’) , (A7)
J J J

. 1 . -
2 2 2

®|

121




formulas (Carrier et al., 1983):

Uiy

(M8

1 U,
== }{C | e, (A.18)

where C’ is a unit circle.
Using solution (A.17), we then have,

(1
u j{ 223_2 -tz exp [:}:et (

Il
&
I

i+3

N’

8]

™ |

N——’

| NSS—— | W—
Q. Q,
™ e

1
= Z Z——fl z2J-r1 = +1)exp [i ( (A.19)
Thus, integration by parts yields
1 (25+1)Ax 1
'ZLJ+% = 47rz——c-t__ z: ‘%Cl" 2742 €Xp {if’t (4 - ;)] . (.A.20)

Since 1/2%*1 = exp[—(2j + 1) log 2], the above integral can then be rewritten as

_ 1 25+ 1)Az dz 1 4.0
ST g T s ) (A-21)
where ) ]
¢2(2) = =20 + 3)logz & et (; - z). (A.22)
Since € = ¢/Az, equation (A.22) can be rewritten as
. _ z 1 ct
oo (-lE am

where z = (j + 1)Az.
Equation (A 23) can be further rewritten as

¢i(2’) = Awi(z, 8), (A24)
where A = ct/Az, 6 = z/ct and

wx(z,0) = —20log 2+ Gf - z) . (A.25)
The integral (A.21) can then be expressed as
Ujs) = 5 Z?f' —exp [Aws(z,6)], (A.26)

This is the form to which we can apply asymptotic analysis by the method of steepest
123




(a) (b)

F1G. A.1. Contour plots showing the saddle points and the steepest descent paths for
6 =0.5. (a) is for wy(z,6), and (b) is for w_(z,6).
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\"4___. - T
(a) (b)

F1G. A.2. Schematic plots showing the saddle points and the steepest descent paths for
6 =0.5. (a) is for wy(z,6), and (b) is for w-(z,0).
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of them are located outside the unit circle while the other two are located inside the unit
circle. Figures A.4a and A.4b give the contour plots of the imaginary parts of w.. (z,6)
and w_(z,0), respectively, for the case § = 2. Moreover, both figures show the saddle
points and the steepest descent paths. Similar to the discussion for § < 1, the contour
integral (A.26) can also be replaced by integrating over the steepest descent contours.
However, in this case, only the saddle points 27 and 2z contribute to the integration.

(a) (b)

F1G. A.4. Contour plots showing the saddle points and the steepest descent paths for
8 = 2. (a) is for w.(z), and (b) is for w_(z).

After replacing the contour C’ by the steepest descent contours, the new integral

becomes
= sl [y e E -, Jewmfl

Therefore, as for the case § = 0.5, the asymptotic expansion of this integral (A.37) can
be explicitly expressed as a function of A and 6,

exp [~2X (6log |6 + VBT — 1| — VB2 = 1)]. (A.38)

UJ'_;_

™

8 T
A W/ 7=

From expression (A.38), we see that the amplitude decays exponentially as A increases.
Figure A.5 gives the solution u;.1/2 as a function of A (for # = 2). The result shows
that as A increases, the wavefield amplitude has an exponential decay forward of the
wavefront.
Now, let us consider the situation at the wavefront, i.e., for the case of § = 1.0.
Again, as for the previous two cases, Figure A.6 shows the saddle points and the steepest
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Re

(a) (b)

F1G. A.6. Contour plots showing the saddle points and the steepest descent paths for
6 = 1. (a) is for w.(2,6), and (b) is for w_(z,8).

been converted to the same distance scale as used in the leapfrog solution. The figure
shows that both the asymptotic approach and the leapfrog method produce about the
same peak amplitude and both decay with distance. Also, from Figure A.8, we see that
the asymptotic solution can better predict the peak amplitude for the first event than for
the two later events, since the later events are interfering with the oscillation tails from
the events ahead.

A direct comparison of the wavefield snapshot obtained by the asymptotic approach
and the leapfrog method is shown in Figures A.9 and A.10. For both methods, the same
impulsive source is used. Comparing Figures A.9 and A.10, we see that the asymptotic
solution is similar to the solution obtained by the leapfrog method.

The above examples and discussion demonstrate that for a broad band solution
containing frequencies up to Nyquist frequency, the asymptotic approach and the leapfrog
finite-difference method produce similar results. Now, a logical question is whether or
not the finite-difference method and the asymptotic approach produce similar results for
low-frequency (relative to the Nyquist frequency) wave propagation.

To examine the asymptotic approach and the finite-difference method for low-frequency
wave propagation, I adapt the previous results for high-frequency wave propagation. Fil-
tering the impulsive initial condition with a 5-Hz, low-pass filter, gives the low-frequency
initial condition shown in Figure A.11 (the maximum frequency of the low-pass filter is
ten percent of the Nyquist frequency, 1/2A%,.., in the leapfrog scheme; here, At,q, is
the maximum time step allowed in the finite-difference scheme). The asymptotic solution
for this low-frequency initial condition can be obtained by filtering the solution for the
impulsive source (Figure A.9). Here, the filter should be the same as that used in filtering
the initial condition. Figure A.12 gives the wavefield snapshot at 1 s (A = 100 >> 1)
obtained by the asymptotic approach. The solution shows no dispersive error. More-
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F1G. A.8. Wavefield snapshot produced by the leapfrog scheme (Az = 0.02 km) for three
isolated impulses. The dashed line indicates the wavefield amplitude obtained by the

asymptotic approach.
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F1G. A.9. Wavefield snapshot generated by the asymptotic approach for an impulsive
source.
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1.0 1.5 2.0 25 3.0
Distance (km)

F1G. A.12. Wavefield snapshot (¢t = 1s) generated by the asymptotic approach for the
low-frequency initial condition given in Figure A.11.

1.0 1.5 2.0 25 3.0
Distance (km)

F1G. A.13. Wavefield snapshot (¢ = 1s) produced by the leapfrog scheme for the
low-frequency initial condition given in Figure A.11. The spatial step is Az = 0.02 km.
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where 0 < 7p < 1. The values of 7, may differ from those of ;. Since the amplitude
and resolution losses are introduced in two ways; from the conventional finite-
differencing and from artificial added diffusion, we would like the anti-diffusion
to compensate not only the artificial diffusion but also the amplitude loss in the
conventional finite-differencing. Therefore, we generally use 7, about 10 to 15
percent larger than 7.

. Modify (i.e. diffuse) the solution ¢ using Q,, Qy and @Q.; this process smooths the
solution (also causes an undesirable loss of amplitude) and eliminates the ripples
caused by grid dispersion:

THh=aGe + (Qeifon— 2 1/2,5k)
+ (QZ‘I:,J-I j2k— Quiily /2
+ ( ~1,J k+1/2 :?,;Ii—lﬂ)‘ (B3)

. Take the differences of the diffused § :
Xiv1/25k = QZTI,,, @i
Y:,]-l-l/2 k= Qz,]+l,k (Z:;:}
Zzg,k+1/2 QI,] k+1 g:_:l (B4)

. Anti-diffuse the solution as follows, and obtain the corrected solution for g :
1
qf‘;" : ‘7?,: - (Xf+1/2,j,k = Xi 1254 — Ysrjox — Y124
- (Z igk+1/2 = Zijp-1/2)s (B.3)

where

X256 = Se max{0, min[S, X;-1/2,5k, a'bs(Qz::.ll/z,j,k)» S:Xir3/2,50]}s
Yiit1/24 = Symax{0, min[S,Y; ;_1 /2, abs(éy?;jlﬂ W) Sy¥isearenl}y
Z{;k+172 = S: max{0, min[S. Z,,,,k-1/2,abS(Q.m k—-1/2) S:Zij+3/2]}s
S = Slgn{in.;.l/z,j,k},

Sy = Sign{éy?;:1 J2.}s

= 51on{Q~z,) k+1/2}

For elastic media, the same general FCT correction procedures can be applied to the

first-order system of elastic wave equations. Similar to the acoustic case, such correction
procedures need only be applied to the variables v;, v» and v3. Once vy, v, and v; are
corrected, e,, can be computed directly from equation (2.14).
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5. Compute diffusive fluxes with the diffused P+ and P":

Pr+1 7= pr+l B
Xi+1/2,j,k = ( z‘?ﬁ,j,k - i’lu,k) - (H’,},}.— - P, z'?j,k)

- - ~ 1 =
y;‘,1‘4-1/2’# = (Pi?;-ll,k - })i’:j-i-l,k) - (R’;Tk - P, z":j,k)

Zfd,k+1/2 = (R?;kl-i-l - :'7:7',Ic+1> - ( :;T;j - i?j.k)‘ (0-4)

6. Anti-diffuse the solution as follows, and obtain the corrected solution for P :

1 pn+l
Pe =P — ( i+1/25k ~ Xicyy250) = (V106 — Y124
(Zz'c,j,k-;-l/:» - Zf,j,k-x/z)7 (C.5)
where X7, 1000 Yie1/2, @nd Zf; 1., /o are given in step 6 of Appendix B.

Similar to the first-order system, the above FCT correction procedures can be applied
to elastic wave equation (2.10).
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caused by grid dispersion:

+1 _ n+l
Gk = Gge + (QF Hajojn— Qs i—1/2,5.%)

cn cn
+ ¥ ij+1/2k Wy i,j—1/2,k)
+ Q% Dikerye — Q5 Tinm1/2)- (D.3)

Similar to the FCT diffusion and anti-diffusion corrections given in Appendix B for

the first-order system equations, the optimized FCT procedures can be applied to the
first-order elastic wave equations as well.
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caused by grid dispersion:

1_ 1
e’,’fk = Pz‘?j-f-k + (QF ferjoju— Q2 —1/2.50)
cn cn
+ Y ij+1/2k 9y i,j—1/2,lc)
+ (QF Fiarye — @5 Linm1/2)- (E.3)

Similar to the full FCT correction steps listed in Appendix C, the optimized FCT
procedures for the second-order system can be applied to the elastic wave equation (2.10)
as well.
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