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ABSTRACT

Marine vibrators are an emerging alternative technology to conventional air guns in ocean-

bottom seismic acquisition. They promise to deliver greater low-frequency information about

the subsurface while minimizing the adverse impact on marine wildlife. However, using marine

vibrators introduces challenges not found in conventional air-gun-based acquisition. Even

though marine vibrators move at a much slower velocity than the acoustic wave subsurface

speed, source motion introduces a noticeable offset and time-dependent frequency shift to

the data. Phase distortions also occur in seismic signals and are proportional to the source

velocity and moveout of seismic events. The time-varying nature of the sea surface and the

long duration of the seismic sweep present an additional set of modeling, processing, and

imaging challenges. A dynamic sea surface significantly affects the phase and amplitude of

seismic data, posing challenges for time-lapse studies, seismic deghosting, and surface-related

multiple elimination. Conventional seismic data processing assumes a horizontal sea surface

for simplification. However, characterizing the sea surface state and accurately modeling

seismic data under such conditions is important for investigating the implications of realistic

acquisition and for proper processing and imaging workflow design.

In this thesis, I develop a numerical approach to model long-emitting non-impulsive sources

in the presence of a time-varying sea surface using the tensorial acoustic wave equation. I also

derive analytical expressions to predict the frequency shifts in the seismic signal due to source

motion (Doppler effect) and predict the seismic wavefield in homogeneous media triggered

by a moving source (Green’s function), which I use to validate the developed modeling

approach. Furthermore, I use the developed tools to account for the source motion effects in

reverse-time migration, mitigating the need for pre-processing steps to remove such effects

from the seismic data. I present numerical examples that demonstrate the accuracy, stability,

and robustness of the tensorial formulation of the acoustic wave equation in modeling and
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imaging marine vibrator data, even for typically unincorporated high source velocities in field

data acquisition.
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CHAPTER 1

INTRODUCTION

Seismic data play an essential role in a wide range of applications that are not limited

to oil and gas exploration. There is an ever-growing need for robust and reliable seismic

imaging techniques for various applications, from locating and mapping aquifers to charac-

terizing the subsurface for geohazards (e.g., active faults). Seismic data are being used for

environmental monitoring (e.g., evaluating carbon storage integrity in reservoirs), making

such data critical for addressing climate change challenges. To properly use seismic data

in any of the aforementioned applications, one must (1) be able to process such data (e.g.,

seismic deghosting), (2) extract useful information from them (e.g., subsurface imaging),

and (3) understand how such data provide information about the subsurface (i.e., governing

physical laws). The work presented here addresses the challenges of modeling, processing,

and imaging marine seismic data. The theme of this thesis can be divided into two parts: (1)

deghosting seismic air-gun data, and (2) modeling and imaging marine vibrator data. This

work spans fields from differential geometry, numerical modeling, machine learning, seismic

data processing, and acquisition design.

1.1 Seismic air-gun data

Ghost reflections have been a long-standing issue in towed-streamer seismic acquisition,

especially since ghost-free data are a prerequisite for many geophysical applications. Ghost

reflections deteriorate the quality of seismic data as they introduce frequency notches into

the amplitude spectrum, limiting the usable data bandwidth (Amundsen and Zhou, 2013;

Dondurur, 2018), thus lowering the seismic resolution (Knapp, 1990), among other issues.

Furthermore, ghost reflections distort the source signature, which leads to erroneous impedance

inversion (Jovanovich et al., 1983). Various acquisition and processing solutions have been

proposed to remove ghost reflections from seismic data. However, a common issue with

1

CWP-1029



the proposed solutions is their limited ability to remove source-side ghosts because of the

sparse source sampling. To circumvent this problem, I employ a machine learning approach

to process and remove ghost reflections from streamer data. Exploring machine learning

methodologies facilitates developments of a wide range of seismic data processing and imaging

techniques based on those methodologies. In addition, machine learning has the potential to

reveal information carried by seismic data that are not easily accessible through conventional

processing and interpretations techniques.

1.2 Marine vibrator data

Environmental concerns about conventional marine impulsive sources (i.e., air-guns)

makes a transition to environmentally-friendly marine vibrators likely in the near future.

Non-impulsive marine sources (i.e., marine vibrators) are viable lower-impact alternatives

to air-guns. Marine vibrators are not just advantageous for environmental reasons, but also

have geophysics-related merits. From a seismic exploration perspective, marine vibrators

provide lower-frequency content than air-guns (Guitton et al., 2021), and enable simultaneous

acquisition by blending phase-encoded sources (Laws et al., 2019). However, processing and

imaging challenges emerge because of the motion and long duration of marine vibrator source

signals, including Doppler effects and time-dependent source-receiver offsets in the context

of ocean-bottom acquisition. Even though marine vibrators move at a much slower velocity

than the subsurface sound speed, source motion causes noticeable offset- and time-dependent

frequency shifts to the data (Dragoset, 1988; Hampson and Jakubowicz, 1995; Schultz et al.,

1989). Further, phase distortions also occur in seismic signals and are proportional to the

source velocity and moveout of seismic events. Additional complexities arise when considering

ghost reflections and dynamic sea surfaces.

Current seismic data processing and imaging techniques usually assume stationary and

impulsive sources in marine acquisition. Developing appropriate processing and imaging

algorithms for data acquired using moving sources requires accurate modeling of the associated

effects. Various methods are proposed in the literature to model marine vibrator data.
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Dellinger and Dı́az (2020) present a segmentation-deconvolution approach to model moving

sources. Duquet et al. (2021) apply a finite-difference (FD) method to model source motion

by moving and interpolating the source injection locations in space as a function of time. Such

solutions are limited to static sea surface conditions. JafarGandomi and Grion (2021) propose

an approach to model marine vibrator data, which is capable of incorporating time-varying

sea surfaces, by interpolating unaliased impulsive sources data to desired source locations

and convolving with the vibrator sweep. However, such an approach requires unaliased data

that are not easily available, and involves costly interpolations.

Accurate and stable modeling of marine vibrator acquisition under time-varying sea

surface conditions is difficult because of the complications of representing time-dependent

curved surfaces in Cartesian coordinates. Curved surfaces can be approximated in Cartesian

coordinates using smaller grid spacing at and near such surfaces, but this approach results in

unjustifiable and significant increase in numerical computations while alternative solutions

exist. A more natural approach is to employ a coordinate transformation that considers the

intrinsic nature of time-varying meshes.

A host of methods exist to generate numerical solutions for surfaces characterized by

non-Cartesian geometries. These include methods that employ coordinate transformation

and FD (Appelö and Petersson, 2009; Carcione, 1994; de la Puente et al., 2014; Hestholm,

1999; Hestholm and Ruud, 2002; Komatitsch et al., 1996), finite-element (Marfurt, 1984),

spectral-element (Komatitsch and Vilotte, 1998), and discontinuous Galerkin methods (Käser

and Dumbser, 2006). FD methods are characterized by ease of implementation, lower

computational complexities, and parallelism. However, FD methods require careful grid

construction for numerical accuracy and stability, especially at the boundary region. On

the other hand, the latter approaches provide higher accuracy even for complex and highly

irregular geometries, at the expense of a higher computational cost with complex meshing

and implementation.
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In my thesis, I develop the necessary tools to simulate marine vibrator acquisition with and

without time-varying sea surfaces. Building a robust seismic modeling framework facilitates

numerical solutions for acquisition and processing workflows, and provides the foundation

required for seismic imaging and inversion. Based on the advantages of the FD methods

discussed in Shragge (2014), Shragge and Tapley (2017), and Konuk and Shragge (2020),

I develop a tensorial formulation of the acoustic wave equation to model marine vibrator

acquisition with dynamic sea surface conditions. This approach consists of two steps through

which I develop analytical expressions for the tensorial AWE in vertically and horizontally

deformed coordinate systems. First, I formulate the tensorial AWE for moving sources

assuming a flat sea surface, by introducing a depth-dependent horizontal transformation to

mitigate the need for velocity model interpolation at every time-step. This formulation leads

to a second-order partial differential equation that incorporates source motion which I solve

using a FD approach. Second, I formulate the tensorial AWE as a first-order coupled-system

for moving sources and dynamic sea surfaces. Modeling a free-surface boundary condition for

a dynamic sea surface requires using mimetic FD to ensure numerical accuracy and stability

near the free-surface boundary (Konuk and Shragge, 2020).

Continuing this work, I utilize the developed framework to image marine vibrator acquisi-

tion, assuming a flat sea surface. The objective of this part of the thesis is to investigate

the implications of source motion on seismic processing and imaging. I investigate the

consequences of source motion under a static sea surface condition on conventional imaging

techniques, and develop an appropriate solution to address imaging distortions.

1.3 Thesis outline

This thesis is structured into four main chapters that are based on published/accepted or

submitted articles to peer-reviewed journals. In each chapter, I provide an overview of the

problem at hand, the relevant literature review, the theoretical developments of the proposed

solution, and numerical results that validate such solutions. The chapters of this thesis are

as follows:
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• Chapter 2, titled ”Seismic deghosting using convolutional neural networks,” covers

processing seismic air-gun streamer data to remove source- and receiver-side ghost

reflections in the shot gather domain using convolutional neural networks. To validate

the proposed solution, I test using synthetic and field data. This chapter was presented

at the First International Meeting for Applied Geoscience & Energy, and it is published

in Geophysics :

– Almuteri, K., and P. Sava, 2021, A convolutional neural network approach for

ghost removal: First International Meeting for Applied Geoscience & Energy, SEG,

Expanded Abstracts, 2550–2554, doi: 10.1190/segam2021-3584059.1

– ——–, 2023, Seismic deghosting using convolutional neural networks: Geophysics,

88, no. 3, V113–V125, doi: 10.1190/geo2021-0521.1

• Chapter 3, title ”Modeling the seismic wavefield of moving marine vibrator source,”

covers marine vibrator source simulation (moving sources) assuming a flat and static sea

surface using a second-order formulation of the tensorial acoustic wave equation. I also

investigate the impact of source motion on seismic data, theoretically and numerically.

Further, I formulate the Doppler formula that predicts frequency shift in heterogeneous

media and the Green’s function for a moving source in a homogeneous media. This

chapter was presented at the Second International Meeting for Applied Geoscience &

Energy, and it is accepted for publication in Geophysics :

– Almuteri, K., J. Shragge, and P. Sava, 2022b, Finite-difference modeling of marine

vibrator sources: Second International Meeting for Applied Geoscience & Energy,

SEG, Expanded Abstracts, 2561–2565, doi: 10.1190/image2022-3746278.1

– ——–, 2023, Modeling the seismic wavefield of moving marine vibrator source:

Geophysics (accepted).

• Chapter 4, titled ”Modeling acoustic wavefields from moving sources in the presence

of a time-varying free surface,” extends the work of modeling marine vibrator data
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by incorporating a time-varying free surface (i.e., sea surface) and using a first-order

formulation of the tensorial acoustic wave equation. In this chapter, I develop the

first-order tensorial approach for modeling the acoustic wavefield in time-varying meshes

for heterogeneous media, and investigate the effects of a time-varying free surface on

marine vibrator data. This chapter was presented at the Third International Meeting

for Applied Geoscience & Energy, and has been submitted to Geophysics :

– Almuteri, K., J. Shragge, and P. Sava, 2023, Modeling marine vibrator sources in

the presence of a time-varying sea surface: Presented at the Third International

Meeting for Applied Geoscience & Energy, SEG.

– ——–, 2023, Modeling acoustic wavefields from moving sources in the presence of

a time-varying free surface: Geophysics (submitted).

• Chapter 5, titled ”Reverse-time migration of mobile marine vibrator data,” exploits the

developed marine vibrator modeling tool to account for source motion effects in reverse-

time migration. In this chapter, I formulate the required forward, adjoint, and Born

approximation modeling operators. Further, investigate the consequences of ignoring

source motion effects on seismic images and demonstrate the ability of the proposed

solution to produce accurate subsurface images that matches those from stationary

acquisition and imaging. This chapter was presented at the Second International

Meeting for Applied Geoscience & Energy, and will be submitted to Geophysics :

– Almuteri, K., P. Sava, and J. Shragge, 2022a, Reverse-time migration of mobile

marine vibrator data: Second International Meeting for Applied Geoscience &

Energy, 2694–2698, doi: 10.1190/image2022-3751755.1

– ——–, 2023, Reverse-time migration of mobile marine vibrator data: Geophysics

(ready for submission).
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CHAPTER 2

SEISMIC DEGHOSTING USING CONVOLUTIONAL NEURAL NETWORKS

A paper published in Geophysics1

Khalid Almuteri2,3,4 and Paul Sava5

Ghost reflections deteriorate the quality of seismic data in towed-streamer acquisition,

and various acquisition and processing solutions have been proposed to remove them from

seismic data. A common issue with the proposed solutions is their limited ability to remove

source-side ghosts because of the sparse source sampling. Satisfactory receiver-side deghosting

solutions are facilitated by complementary measurements (e.g., particle motion data) for

wavefield separation and also can be achieved using pressure data acquired at a single

recording level only. We develop a solution based on convolutional neural networks (CNNs)

to remove source- and receiver-side ghosts in the shot domain. The solution does not require

complementary measurements, i.e., it can remove ghost reflections in conventional pressure

data measured at a single recording level. Our method requires knowledge of the acquisition

geometry to create training data that replicate the field acquisition geometry and require

the ocean floor bathymetry to be known. A CNN learns to map ghost-contaminated gathers

to corresponding ghost-free gathers through an iterative training process. We find that the

CNN-based deghosting operator can remove ghost reflections from previously unseen data

and demonstrate that the solution generalizes well when training is done on models unrelated

to the actual field geology.

1Reprinted with permission of Geophysics, 88(3), V113-V125.
2Graduate student, Center for Wave Phenomena, Department of Geophysics, Colorado School of Mines
3Saudi Aramco
4Author for correspondence
5Professor, Center for Wave Phenomena, Department of Geophysics, Colorado School of Mines
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2.1 Introduction

Ghost reflections have been a long-standing issue in towed-streamer seismic acquisition.

They introduce frequency notches into the amplitude spectrum, limiting the usable data

bandwidth (Amundsen and Zhou, 2013; Dondurur, 2018), thus lowering the seismic resolution

(Knapp, 1990). Furthermore, ghost reflections distort the source signature by altering its

phase, leading to erroneous impedance inversion (Jovanovich et al., 1983). Ghost-free data are

a prerequisite for many geophysical applications. Absent low frequencies make full-waveform

inversion more susceptible to cycle skipping (Bunks et al., 1995; Virieux and Operto, 2009).

Low frequencies help constrain and improve impedance inversion (ten Kroode et al., 2013;

Wang et al., 2017; Whitcombe and Hodgson, 2007). Moreover, low frequencies are less prone

to scattering and attenuation, making them ideal for subsalt imaging (Kapoor et al., 2005;

ten Kroode et al., 2013).

Conventionally, streamers are towed at a shallow depth to broaden the bandwidth of the

seismic signal (Wang et al., 2017). However, shallow tow attenuates low frequencies and yields

data with a low signal-to-noise ratio (He et al., 2013; Kragh et al., 2010; Wang et al., 2017).

A deep tow has reciprocal effects; it allows for the acquisition of low-frequency content and

increases the signal-to-noise ratio, especially at the lower end of the spectrum, at the expense

of a narrowband signal. There are two types of ghost reflections that coexist in marine data:

source- and receiver-side ghosts. A source-side ghost starts its propagation from a source

as an upgoing wave, whereas a receiver-side ghost ends its propagation at a receiver as a

downgoing wave. Deghosting solutions fall into two main categories: receiver- and source-side

solutions. The categories can be further classified into acquisition and processing based, as

discussed next.

2.1.1 Acquisition deghosting

Acquisition solutions for receiver-side deghosting include slanted streamers (Bearnth

and Moore, 1989; Soubaras and Dowle, 2010), over/under streamers (Moldoveanu et al.,
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2007; Posthumus, 1993; Sønneland et al., 1986), shallow-over/deep-under streamers (Kragh

et al., 2010), and dual-sensor streamers (Carlson et al., 2007; Tenghamn et al., 2007). In a

slanted-streamer acquisition, hydrophones vary in depth along the cable, which results in

ghost notch diversity (Bearnth and Moore, 1989; Soubaras and Dowle, 2010). This diversity

improves the bandwidth of poststack seismic data (Provenzano et al., 2020; Soubaras and

Dowle, 2010), making the solution unsuitable for applications that require ghost-free prestack

data or applications that require receivers to have the same frequency content. An over/under

streamer, at which pressure data are acquired at two different reference surfaces, enables

removing receiver-side ghosts through an upgoing/downgoing wavefield separation process

(Moldoveanu et al., 2007; Posthumus, 1993; Sønneland et al., 1986). However, it requires

twice as many streamers with accurate positioning of vertically aligned cables (Reilly, 2016),

which is difficult to implement in the field. Kragh et al. (2010) propose a shallow over with

a sparse deep-under acquisition configuration. Shallow streamers contribute the mid- and

high-frequency content to the seismic data, whereas deep streamers contribute to the low-

frequency content. A shallow-over/deep-under acquisition requires fewer streamers than an

over/under acquisition because deep streamers are sparse and contribute only low frequencies.

However, a shallow-over/deep-under acquisition requires accurate positioning of the cables

and a proper interpolation of the low-frequency data to compensate for the sparse acquisition.

Dual-sensor streamers (Carlson et al., 2007; Tenghamn et al., 2007) exploit the fact that

upgoing/downgoing wavefield separation is possible if pressure and particle velocity data are

measured simultaneously (Amundsen, 1993; Claerbout, 1976; Day et al., 2013; Ikelle and

Amundsen, 2018). However, particle motion sensors are sensitive to mechanical noise below

20 Hz (Carlson et al., 2007; Day et al., 2013; Tenghamn et al., 2007). To overcome this

issue, one needs to estimate particle motion data below 20 Hz from pressure data. When

sources are below the streamer, estimating such data is done by applying a simple operator

to pressure data (Amundsen, 1993; Amundsen et al., 1995). For sources shallower than the

streamer, one needs to compute the direct arrival and its ghost to estimate the particle motion
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data. Computing the direct arrival and its ghost requires knowledge of the source function.

Alternatively, Ozdemir et al. (2012) and Rentsch et al. (2013) propose noise attenuation

algorithms to enhance the low-frequency signal-to-noise ratio in the particle motion data.

Özdemir et al. (2010), Vassallo et al. (2010), and Özbek et al. (2010) develop optimization-

based algorithms to reconstruct and deghost the pressure wavefield using multicomponent

marine streamer data. Still, data acquired with different sensor types require calibration with

an unknown factor (Grobbe et al., 2016), which can be carried using a deterministic approach

(Day et al., 2013) or a statistical approach (Alexandrov et al., 2014; Cambois et al., 2009).

One can extend the acquisition solutions for receiver-side deghosting to address source-side

ghosts. Haavik and Landrø (2015) propose varying the source depth during acquisition to

diversify frequency notches in the amplitude spectra of different shot gathers. This improves

the bandwidth of the seismic signal poststack in a way similar to slanted-streamer acquisition.

An over/under source configuration, in which data are acquired twice at the same inline

location for sources at different depths (Moldoveanu, 2000), uses reciprocity to remove

source-side ghosts in common-receiver gathers (CRGs) (Egan et al., 2007; Moldoveanu et al.,

2007). However, source-side deghosting in the CRG domain requires dense shot sampling

that towed-streamer acquisition generally lacks.

2.1.2 Processing deghosting

Soubaras (2010) proposes an imaging solution to deghost and improve seismic data

poststack. The method works by jointly deconvolving two migration images: a conventional

migration image and a mirror migration image. Amundsen and Zhou (2013) derive a low-

frequency deghosting filter that can improve the data at least up to half the frequency of the

second ghost notch. The solution can be applied in the time-space domain on a trace-by-trace

basis (Amundsen and Zhou, 2013; Wang et al., 2017). However, it is only applicable to

data acquired with horizontal streamers or streamers with mild variations in depth (Wang

et al., 2017). Beasley et al. (2013a,b) propose a physics-based solution to separate 1C

measurements, e.g., pressure data acquired at a single reference surface, into upgoing and
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downgoing wavefields using the wave equation. The wavefield separation process is iterative

and uses causality but is sensitive to noise. Zhang and Weglein (2005), Weglein et al. (2013)

and Mayhan and Weglein (2013) propose wavefield separation methods based on Green’s

theorem that can accommodate streamers of arbitrary shapes (Amundsen et al., 2013).

King and Poole (2015) propose a processing workflow to remove receiver-side ghost

reflections from pressure-only data that can handle a dynamic sea surface. The method

requires an estimation of the sea-surface profile prior to deghosting. Furthermore, the

deghosting method is implemented by solving a linear Radon system of equations. Grion et al.

(2016) propose a deghosting method that works for rough sea surfaces and slanted streamers,

given that the sea-surface profile is known. The method uses phase-shift redatuming operators

to separate the up- and downgoing components of the wavefield. Processing solutions for

receiver-side deghosting are applicable to source-side ghosts in the CRG domain. However,

source-side deghosting is more challenging than receiver-side deghosting and remains mainly

an unsolved problem (Amundsen et al., 2017; Ikelle and Amundsen, 2018) because shots

are sparse. Vrolijk and Blacquière (2021) propose an approach that uses a convolutional

neural network (CNN) to remove source-side ghost reflections in CRGs for coarsly acquired

sources. Because the source deghosting process is carried in the common-receiver domain,

this solution is applicable to horizontal and slated streamers alike.

In this paper, we propose seismic deghosting using CNNs, which is a special type of

artificial neural networks (ANNs). Our solution does not require any particular acquisition

configuration but requires that its geometry and the bathymetry of the ocean floor be known.

It can remove source- and receiver-side ghosts simultaneously in the shot gather domain.

This feature offers an opportunity to deghost conventional pressure data acquired at a single

reference surface. We develop a CNN as a deghosting operator that inputs ghost-contaminated

data and outputs a ghost-free prediction. In the following sections, we provide the theoretical

foundation of CNNs, explain how they work, and discuss their benefits and pitfalls. We

demonstrate how CNNs can remove ghost reflections using examples inspired by realistic
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acquisition and using field data.

2.2 CNN-based deghosting

empty

2.2.1 Background

ANNs are machine learning (ML) models inspired by biological neurons found in the

brain (Goodfellow et al., 2016; Géron, 2019; Russell and Norvig, 2016). Neural networks

(NNs) are capable of tackling complex problems from various fields, such as natural language

processing (Sutskever et al., 2014), object recognition (Krizhevsky et al., 2017), and speech

recognition (Hinton et al., 2012) with a great degree of success (LeCun et al., 2015). The

interest in the geophysics community is not new (Van der Baan and Jutten, 2000), but

recent advances in ML have expanded their use in the field. Geophysical applications include

velocity model building (Araya-Polo et al., 2018; Wu and McMechan, 2018; Yang and Ma,

2019), normal-moveout velocity picking (Biswas et al., 2018; Ma et al., 2018), petrophysical

properties and impedance inversion (Biswas et al., 2019; Das and Mukerji, 2020; Das et al.,

2019), and seismic deblending (Sun et al., 2020).

Various types of ANNs exist, the simplest of which is fully connected NNs, which consists

of layers of neurons stacked together as shown in Figure 2.1(a). The links that connect

different neurons represent learnable parameters known as weights. One can find such weights

through an iterative data-fitting procedure called training. The weights map inputs to outputs

according to

alj = g

(
n∑
i=0

wlija
l−1
i

)
, (2.1)

where alj is the value at the jth neuron at the lth layer, wlij is the weight that connects

the ith neuron at the (l − 1)th layer with the jth neuron at the lth layer, n is the number

of neurons in the (l − 1)th layer, and g is a nonlinear activation function. Figure 2.1(b)

shows a visual representation of equation 2.1. The activation function in the NN is critical; a
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linear activation function allows only linear mapping between inputs and outputs, whereas a

nonlinear activation function enables the NN to learn nonlinear mappings.

(a)

(b)

Figure 2.1 (a) An example of a fully-connected NN with two input units, two hidden layers
with four units in each layer, and one output unit. (b) A simple model of a neuron connected
to four other neurons from a preceding layer. The neuron’s output is alj = g

(∑n
i=0w

l
ija

l−1
i

)
,

where alj is the value at the jth neuron at the lth layer, wlij is the weight that connects the
ith neuron at the (l − 1)th layer with the jth neuron at the lth layer, n is the number of
neurons in the (l − 1)th layer, and g is a nonlinear activation function.

A fully connected NN suffers from multiple issues that limit its usefulness in some

applications. One such issue is fixed input and output size (Goodfellow et al., 2016; LeCun

et al., 2015, 1998). Processing seismic data using NNs requires them to have a structure

that can intrinsically handle data with variable recording lengths and variable number of

traces. Also, the memory requirement of fully connected NNs with a large input size can

be prohibitively expensive (Goodfellow et al., 2016; Géron, 2019; LeCun et al., 1998). In

addition, as the input size to an NN increases, the number of learnable parameters increases

as well. In such cases, one needs to use more training examples to avoid overfitting (Géron,

13

CWP-1029



2019; LeCun et al., 2015, 1998). Fully connected NNs are not robust to any translation of

features (e.g., faults in a stacked section or first break in a shot gather) in the inputs. This

implies that if a fully connected NN is trained to detect faults in a stacked section, it will

only detect faults in locations where they existed in training examples. LeCun et al. (1998)

and Goodfellow et al. (2016) discuss in depth the limitations of fully connected layers and

point out the advantages of using CNNs as an alternative. In CNNs, convolutional filters

replace the weights characterizing a fully connected layer. CNNs generalize better than fully

connected NNs, i.e., they outperform fully connected NNs on previously unseen data (LeCun

et al., 2015). In addition, CNNs have fewer parameters than fully connected NNs, making

them ideal for complex and large-scale problems.

In the framework of ANNs, a supervised learning approach is the most common form of

learning (LeCun et al., 2015). The goal of supervised learning is to find the optimal weights

that minimize an objective function given a set of training examples, in which the training

examples are in input-output pairs: (xi,yi), i = 1, . . . , N . The relationship between the

input and output is given by an unknown function f such that yi = f(xi). The goal of

training is to find a function hw, which is represented by an ANN and parameterized by the

learnable weights w, which approximates the function f . In our work, the input (xi) is a

ghost-contaminated shot gather, the output (yi) is a true ghost-free gather, and hw is the

deghosting operator. We arrive at function hw by minimizing the objective function

E(w) =
1

N

N∑
i=1

‖yi − hw(xi)‖2 , (2.2)

with respect to the weights (w) of the NN. A common minimization method used is gradient

descent, which iteratively updates the weights using the gradient of the objective function

wk+1 = wk − α
∂E(wk)

∂wk

, (2.3)

where α is the learning rate selected experimentally; a small learning rate results in slow

convergence, whereas a large learning rate potentially results in divergence (Géron, 2019).
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ANNs are useful and powerful ML models. According to the universal approximation

theorem (Cybenko, 1989; Hornik, 1991; Hornik et al., 1989), ANNs are universal approximators,

i.e., ANNs with a single hidden layer can approximate any continuous function up to an

arbitrary order of accuracy. ANNs with two hidden layers, on the other hand, can approximate

any function with an arbitrarily small error (Lapedes and Farber, 1987). An exact mapping

of input-output pairs is achievable under some constraints (Huang and Huang, 1990; Sartori

and Antsaklis, 1991; Tamura and Tateishi, 1997).

The ability to approximate any continuous function arbitrarily well is not unique to ANNs.

One can approximate any continuous function up to an arbitrary order of accuracy with

polynomials (including trigonometric polynomials) as well (Carothers, 1998; Jeffreys and

Jeffreys, 1950; Stein and Shakarchi, 2011). However, the number of coefficients one needs

to solve for in polynomial regression makes it prohibitive to approximate high-dimensional

functions. The exact number of polynomial coefficients is given by

(n+ d)!

n!d!
, (2.4)

where n is the number of dimensions and d is the degree of the polynomial (Géron, 2019).

The prohibitive cost of approximating high-dimensional functions, which includes the number

of training examples one needs to avoid overfitting, is commonly known as the “curse of

dimensionality” (E, 2020; Griebel, 2005; Grohs et al., 2019; Géron, 2019; Hanka and Harte,

1997). The ability of ANNs to approximate any function, including high-dimensional nonlinear

functions, makes them useful and gives rise to a wide range of applications that would not be

possible otherwise.

The universal approximation theorem (Cybenko, 1989; Hornik, 1991; Hornik et al., 1989)

only addresses the ability of ANNs to represent continuous functions and does not consider

the learnability aspects of the problem. The existence of an ANN that can approximate

an unknown function does not imply one can find it. Furthermore, one cannot characterize

which functions can and cannot be approximated by a particular ANN structure (Russell and
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Norvig, 2016). An ANN architecture is given by a set of parameters (e.g., number of layers,

learning rate, and the type of activation functions) commonly known as hyperparameters.

One has to fine tune the hyperparameters, i.e., to experimentally search for the best set of

parameters to solve a given problem with adequate accuracy (Goodfellow et al., 2016; Géron,

2019). In the context of seismic deghosting, we make use of the ability of ANNs to exploit

any intrinsic relationship between inputs and outputs to construct a deghosting operator.

Such an ANN-based operator takes time to train, but after training it can predict ghost-free

data in a negligible amount of time. However, to construct the deghosting operator, we must

first search for the best set of parameters. The hyperparameters that define the CNN used in

our method are as follows: the number of layers, the number of filters, the size of each filter,

the learning rate, and the activation function.

2.2.2 Neural network architecture

Our CNN consists of three convolutional layers followed by a masking layer, repeated three

times for a total of 12 layers (Figure 2.2). Each convolutional layer has 16 filters. The first two

convolutional layers in the sequence use filters with a temporal length of 101 coefficients and

a spatial width of three traces in the inline and crossline directions. The third convolutional

layer in the sequence has filters with 11 temporal coefficients and identical spatial width as

the preceding two layers. We use tanh as activation function throughout our NN because it

is centered around zero and bounded between −1 and 1.

In CNNs, it is common to use filters with a small size (e.g., 3× 3) because they usually

outperform large filters and require fewer computations (Géron, 2019). Given that our

objective is to remove ghost reflections in the time domain, we use temporally long filters

of 101 samples to reconstruct the low-frequency information of the data. In our numerical

example, a filter with 101 samples covers 12 times the dominant period of the data. Smaller

filters can achieve the same goal if one uses many more layers. We use temporally short

filters for every third convolutional layer of 11 samples to reconstruct the high-frequency

information. By choosing temporally long and short filters, we give the CNN freedom to
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Figure 2.2 An illustration of the architecture of the network we use for seismic deghosting on
2D data. Each gray cuboid labeled with Conv represents a multichannel feature map
generated using N convolutional filters (N = 16). The height of each cuboid corresponds to
the number of time samples (nt = 3526) and the width corresponds to the number of traces
in the gather (nr = 564). Each yellow cuboid represents a temporal masking layer in the
network.

work at different scales. Our choices of filter sizes are experimental because a theoretically

rigorous approach to select such a parameter remains an open problem in ML. As reported

in the literature, optimizing such hyperparameters is an experimental process (Goodfellow

et al., 2016; Géron, 2019).

Deghosting can be performed on individual traces using 1D filters or can use information

from adjacent traces using 3D filters. The 3D filters should outperform 1D filters because

ghost reflections have offset dependency, which can be observed using the 3D ghost function

in the Fourier domain (Amundsen, 1993) given by

G(kz, z) = 1 + re2ikzz, (2.5)

where kz =
√
k2 − k2

x − k2
y is the vertical wavenumber; k = ω

c
; ω = 2πf is the angular

frequency; c is the water velocity; kx and ky are the horizontal wavenumbers in the inline

and crossline directions, respectively; z is the source or receiver depth, and r is the reflection

coefficient at the sea surface.

17

CWP-1029



We update the weights (w) using the Nesterov’s Accelerated Gradient (NAG) method

(Géron, 2019; Sutskever et al., 2013), which is a modified version of the gradient descent

(equation 2.3)

wk+1 = wk + mk+1, (2.6)

where

mk+1 = βmk − α
∂E(wk + βmk)

∂wk

(2.7)

is the momentum (m0 = 0), β ∈ [0, 1] is the momentum coefficient, and α is the learning rate.

The momentum coefficient (β) defines how much previous gradients contribute toward new

updates, and if the momentum coefficient is zero, the method reduces to gradient descent.

During the training we use β = 0.9, i.e., we put much weight on previous directions to

speed up the convergence rate. To further speed up convergence, the NAG method computes

the gradient of the objective function not at the current location of weights (w) but at the

location of weights with a slide in the momentum direction (w + βm). We experimentally

determine that the optimum learning rate to train the NN is α = 0.1. We use a minibatch of

size 32, and run the training for 150 epochs.

The masking layers in our CNN are essential for two reasons: (1) to eliminate noise the NN

produces before first arrivals and (2) to help the NN converge to a solution during training.

Without masking layers, training fails because the NN tries to fit the data by removing noise

the CNN generates and by removing ghost reflections. To create a masking layer, we use

the modified Coppens’s method (Sabbione and Velis, 2010) to pick the first seismic signal

of any kind (whether it is a water-bottom reflection or refraction from a subsequent layer)

along the time axis. The masking array defines the regions where a seismic signal could exist,

and it accordingly mutes irrelevant signal, i.e., not generated by the source before the first

arrival. Knowing the ocean floor bathymetry allows us to perform quality control check of

the automatic picks from the modified Coppens’s method needed to build the masking layer.
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2.3 Numerical example

In this section, we demonstrate CNN ghost removal in the shot domain on 2D data. First,

we describe the process of generating the training and testing data. Then, we illustrate the

performance of CNN-based deghosting using a synthetic example and field data.

2.3.1 Neural network training dataset

To train our CNN, we use 256 input-output pairs of ghost-free and ghost-contaminated

shot gathers simulated using Marmousi submodels (Martin et al., 2002) (Figure 2.3(a) and

Figure 2.3(b)). We add a water layer with 710 m depth to the top of models. We simulate

data using a primary source at z = 5 m and a mirror source for source-side ghost modeling at

z = −5 m. In addition, we use a source at z = −390 m and a mirror source at z = −400 m to

model the first-order surface-related multiples and their ghost reflections in data. Modeling

first-order surface-related multiples and their ghost reflections increases the ghost-free and

ghost-contaminated footprint in the training data, i.e., allows us to use fewer training pairs.

We use 564 primary receivers at z = 7 m and 564 mirror receivers for receiver-side ghost

modeling placed at z = −7 m, with a receiver spacing of 12.5 m. For all simulations, we use

the same source wavelet with a flat spectrum between 2.5− 110 Hz. We model data using

finite differences for 7 s with a sampling interval of 0.2 ms, later resampled to 2 ms. We

model 260 shots from the first training model (Figure 2.3(a)) with a shot spacing of 12.5 m,

and 160 shots from the second training model (Figure 2.3(b)) with a shot spacing of 18.5 m.

Then, we randomly extract 256 shots from the two modeled data sets for training. Before

training the CNN, we normalize the data to the range of the chosen activation function.

Our proposed CNN-based deghosting approach reconstructs the relative amplitude of the

seismic data because our procedure normalizes the data (input and output) to the range of

the chosen activation function.
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(a)

(b)

Figure 2.3 submodels from the Marmousi model, with 710 m added water layer on top, used
for training. The black line corresponds to the air-water interface.
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2.3.2 Seismic deghosting: Synthetic data example

To test our method, we extract a submodel (Figure 2.4) from the Amoco statics test model

(O’Brien, 1994). The velocity values of the testing submodel are not within the range of the

training submodels. We choose this testing model to show that with simpler training models,

one can remove ghost reflections from more complex models and lower the computational

burden of generating training data simultaneously. By complex models, we mean models

with stronger velocity contrasts and velocity values outside the range of that of the training

models. We generate two gathers, with and without ghosts, for a source at x = 2303 m

using the same source wavelet that we use to generate the training data. The source depth,

receiver depth, receiver spacing, and modeling parameters of the testing data are similar to

the training data.

Figure 2.4 submodel from the Amoco statics test model to test the CNN. The velocity values
of this model are not within the range of the velocity values of the training models. We add
a water layer with 710 m depth to the top. The black line corresponds to the air-water
interface.

Figure 2.5(a) and Figure 2.5(b) shows the true ghost-free and ghost-contaminated data

generated using the model shown in Figure 2.4, respectively. The ghost-free and ghost-

contaminated gathers have different phases, and the low frequencies in the ghost-contaminated
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gather are attenuated by ghost reflections. The average amplitude spectra of the two gathers

indicate that ghost reflections destructively interfere with the primary signal at 0 Hz and

constructively interfere at 60 Hz (Figure 2.6(a)). The destructive interference is more

significant at low frequencies than at high frequencies. The amount of energy loss at 5 Hz is

28 dB, whereas the amount of energy loss at 20 Hz is 5 dB.

Using the ghost-contaminated gather (Figure 2.5(b)) as an input to the CNN-based

deghosting operator gives the ghost-free prediction shown in Figure 2.5(c). The true and

predicted ghost-free gathers closely match in character. The average amplitude spectra

(Figure 2.6(a)) indicate that the CNN recovers the spectrum correctly within the constructive

interference frequency bands but less accurately within the destructive interference bands.

The relative `2 residual for the predicted ghost-free gather is 0.65, whereas it is 2.04 for

the ghost-contaminated gather. Figure 2.7 shows the relative `2 residual for the predicted

ghost-free data and ghost-contaminated data as a function of frequency band. The bandwidth

of each band is 3.5 Hz, and the center of each band is changing by 3.5 Hz, starting from

4.5 Hz. Figure 2.7 shows the improvement across different frequency bands as a result of ghost

removal. However, the frequency bands centered at approximately 4.5 Hz and 18.25 Hz show

higher relative error compared with other bands. The relatively high `2 for the ghost-free

prediction data is because the minimization problem is formulated to reconstruct the relative

amplitude instead of the absolute amplitude.

Figure 2.5(d-f) shows the true ghost-free, the ghost-contaminated, and the ghost-free

prediction gathers after applying a 20 Hz low-pass filter to the gathers shown in Figure 2.5(a-c),

respectively. The ghost-contaminated gather is characterized by weaker amplitudes, indicating

that ghost reflections severely reduce the signal-to-noise ratio at low frequencies (Figure 2.6(b)).

Our method can recover the low-frequency content in the data. Figure 2.8 shows the frequency-

wavenumber spectra of the gathers shown in Figure 2.5. The low frequencies (below 30 Hz) are

boosted, and the frequencies within the constructive interference band are reduced. However,

frequencies below 5.5 Hz are not recovered well, and the frequencies between 5.5 and 30 are
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(a) (b) (c)

(d) (e) (f)

Figure 2.5 Comparison among (a) true ghost-free, (b) ghost-contaminated, and (c) ghost-free
prediction shot gathers. (d-f) After applying 20 Hz high-cut filtering in Figure 2.5(a-c),
respectively.
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(a)

(b)

Figure 2.6 Comparison among the average amplitude spectra of the ghost-free data (black
line), the ghost-contaminated data (red line), and the ghost-free prediction data (blue line).
(a) Comparison between the full bandwidth data shown in Figure 2.5(a-c). (b) Comparison
between the band-limited data shown in Figure 2.5(d-f).
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Figure 2.7 Relative `2 residual between the true ghost-free gather (Figure 2.5(a)) and the
ghost-contaminated gather (Figure 2.5(b)) (red) over different frequency bands, with a
bandwidth of 3.5 Hz for each band, and between the true ghost-free gather and the
ghost-free prediction (Figure 2.5(c)) (blue).

overcompensated.

Individual traces for a receiver 3930 m away from the source (Figure 2.9(a) and Fig-

ure 2.9(b)) confirm the ability of the CNN to remove ghost reflections. The correlation

coefficient between the true ghost-free and ghost-contaminated traces is 0.31, indicating that

ghost reflections severely alter the waveform of the source signature, in terms of amplitude

(Figure 2.9(c)) and phase. However, the correlation coefficient between the true and predicted

traces is 0.91, indicating that the CNN-based deghosting operator can recover with a great

degree of accuracy both the amplitude (Figure 2.9(d)) and phase of the true ghost-free data

above 5.5 Hz. The ghost-free prediction improves when seismic events have comparable

amplitude range. Therefore, removing direct arrival and ocean-bottom reflections improves

the ghost-free prediction of reflections from subsequent layers and also improves the ghost-free

prediction of refraction data.

Low-frequency traces from the true ghost-free, the ghost-contaminated, and the ghost-free

prediction gathers for a receiver 3930 m away from the source are shown in Figure 2.10(a) and

25

CWP-1029



(a) (b) (c)

(d) (e) (f)

Figure 2.8 The frequency-wavenumber spectra of (a) Figure 2.5(a), (b) Figure 2.5(b), (c)
Figure 2.5(c), (d) Figure 2.5(d), (e) Figure 2.5(e), (f) Figure 2.5(f).
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(a) (b)

(c) (d)

Figure 2.9 Comparison between traces recorded at a receiver that is 3930 m away from the
source. (a) Comparison between ghost-free (black line) and ghost-contaminated (red line)
traces. (b) Comparison between ghost-free and ghost-free prediction (blue line) traces. (c)
and (d) Comparison between the amplitude spectra of the traces shown in Figure 2.9(a) and
Figure 2.9(b), respectively.
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Figure 2.10(b). Figure 2.10(c) and Figure 2.10(d) shows the corresponding amplitude spectra

for the ghost-contaminated and ghost-free prediction traces, respectively. The reconstructed

trace matches well the true ghost-free trace in amplitude and phase. The low-frequency

ghost-free prediction is nearly noise free, indicating that noise present in the ghost-free

prediction is mainly at high frequencies. However, such noise is not introduced by the CNN

but appears to be high-frequency residuals from the ghost-contaminated input (Figure 2.9(a)

and Figure 2.9(b)).

(a) (b)

(c) (d)

Figure 2.10 Comparison between traces recorded at a receiver that is 3930 m away from the
source after applying a 20 Hz low-pass filter. (a) Comparison between ghost-free (black line)
and ghost-contaminated (red line) traces. (b) Comparison between ghost-free and ghost-free
prediction (blue line) traces. (c) and (d) Comparison between the amplitude spectra of the
traces shown in Figure 2.10(a) and Figure 2.10(b), respectively.

The correlation coefficients between individual traces as a function of offset for the

full bandwidth and band-limited data are shown in Figure 2.11(a) and Figure 2.11(b),

respectively. The correlation coefficients indicate that ghost reflections introduce distortion

that is a function of offset and frequency. The overall correlation coefficient for the full

bandwidth traces between true and predicted ghost-free data is approximately 0.9. However,
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for traces recorded by receivers centered approximately 1939 m away from the source, there

is a drop of approximately 20 % in the correlation coefficients, which is likely caused by

events crossing (i.e., events with different moveouts). The correlation coefficients between

the band-limited traces indicate that low-frequency reconstruction is poor at offset shorter

than 1939 m.

2.3.3 Seismic deghosting: Field data example

We test our CNN deghosting method on conventional streamer data acquired offshore of

Australia. The data are acquired with a source spacing of 18.5 m and receiver spacing of

12.5 m. The source depth is 5 m, and the cable depth is 7 m. For this test, we use 608 shots

to demonstrate the deghosting result pre- and poststack. We preprocess the field data by

applying a 2.5− 110 Hz band-pass filter. Because the field data acquisition parameters match

that of the training data, we use the same trained NN from the synthetic example to predict

ghost-free data in this example.

Figure 2.12(a) and Figure 2.12(b) shows a ghost-contaminated input gather to the CNN

and the ghost-free prediction, respectively. The two gathers differ by the enhanced low-

frequency content after the CNN deghosting (Figure 2.13(a)). The phase change in the data

is not clearly visible in the full bandwidth gathers (Figure 2.12(a) and Figure 2.12(b)), but

after applying a 20 Hz low-pass filter (Figure 2.12(c) and Figure 2.12(d)) the phase change

becomes clear (e.g., at 1.4 s). The average amplitude spectra of the two band-limited gathers

(Figure 2.13(b)) illustrate the change in frequency content for low frequencies. The amplitude

spectra show that there is a 16 dB increase in amplitude in the range 2.5− 20 Hz on average,

compensating for the attenuated low frequencies due to ghost reflections.

Figure 2.14(a) and Figure 2.14(b) show the stacked data without and with CNN-based

deghosting, respectively. The arrows point to improvements due to deghosting. Horizons

are more coherent and appear continuous due to the ghost removal. The waveform in the

ghost-contaminated section has a reverberatory character that lowers the resolution of the

data, which is not observed in the ghost-free prediction section. Horizons in the deghosted
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(a)

(b)

Figure 2.11 (a) The correlation coefficient between the true ghost-free data and
ghost-contaminated data (red) and true ghost-free data and ghost-free prediction (blue) for
the full bandwidth individual traces. (b) The correlation coefficient between the true-ghost
free data and ghost-contaminated data (red) and true ghost-free data and ghost-free
prediction (blue) for the band-limited individual traces
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(a) (b)

(c) (d)

Figure 2.12 Comparison between (a) ghost-contaminated and (b) ghost-free prediction shot
gathers. Figure 2.12(c) and Figure 2.12(d) After applying 20 Hz high-cut filtering in
Figure 2.12(a) and Figure 2.12(b), respectively. The dashed red lines are for cross referencing.
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(a)

(b)

Figure 2.13 Comparison between the average amplitude spectra of the ghost-contaminated
data (red line) and the ghost-free prediction data (blue line). (a) Comparison between the
full bandwidth data shown in Figure 2.12(a) and Figure 2.12(b). (b) Comparison between
the band limited data shown in Figure 2.12(c) and Figure 2.12(d).
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sections are more compact and clearer, making the interpretation easier. Figure 2.15(a) shows

the average amplitude spectra of the two stacked sections. Although the amplitude spectra

are almost identical, the stacked sections are different in terms of horizons continuity and

compactness. Part of the processing sequence we use to generate the stacked sections, is

predictive deconvolution. As a consequence, the average amplitude spectra of the ghost-

contaminated and ghost-free prediction are very similar. Nonetheless, the stacked sections are

very different, with a clear improvement to the continuity of horizons after deghosting. Using

the recorded source signature to deconvolve the deghosted data is not an option, because the

source signature has the source ghost. Using the recorded source signature to deconvolve the

deghosted data requires that we train the CNN to remove receiver-side ghost reflections only.

Given the importance of low-frequency information in seismic data, we apply a 20 Hz low-

pass filter to the stacked sections shown in Figure 2.14(a) and Figure 2.14(b) (Figure 2.14(c)

and Figure 2.14(d)). For such low frequencies, the continuity and coherency of seismic events

after CNN-based ghost removal become more evident. Figure 2.15(b) compares the average

amplitude spectra of the stacked sections after a 20 Hz low-pass filter. The average amplitude

spectra of the ghost-contaminated and ghost-free prediction are very similar, demonstrating

the importance of phase correction in the ghost removal process. Further, the band limited

sections show that ghost reflections alter the source signature more significantly at the lower

end of the spectrum than at the higher end. This alteration is more significant at low

frequencies because the phase of the source-side and receiver-side ghosts coincide at 0 Hz.

Since our training data are noise-free, the field example shows that CNN deghosting is robust

to random noise because the presence of such noise in field data is inevitable.

2.4 Discussion

The numerical example demonstrates the ability of CNNs to remove source- and receiver-

side ghosts from conventional pressure data acquired at a single reference surface in the shot

gather domain. The advantage of using our approach is that source and receiver deghosting can

be performed as a preprocessing step in the field by constructing the CNN-based deghosting
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(a) (b)

(c) (d)

Figure 2.14 Comparison between (a) ghost-contaminated and (b) ghost-free prediction
stacked sections. (c) and (d) Comparison between the sections shown in Figure 2.14(a) and
Figure 2.14(b), respectively, after applying a 20 Hz low-pass filter.
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(a)

(b)

Figure 2.15 Comparison between the average amplitude spectra of the ghost-contaminated
(red line) and ghost-free prediction stacked sections. (a) Comparison between the full
bandwidth sections shown in Figure 2.14(a) and Figure 2.14(b). (b) Comparison between the
band-limited sections shown in Figure 2.14(c) and Figure 2.14(d).
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operator prior to acquisition. This solution does not make assumptions about the acquisition

geometry but requires it to be known to create training data that match the actual field

acquisition geometry. We assume that data are acquired under a flat sea surface, which is

not always a feature of marine acquisitions. Cecconello et al. (2018), Blacquière and Sertlek

(2019), and Konuk and Shragge (2020) show that a dynamic sea surface affects the phase

and amplitude of seismic data. However, the field example indicates that a flat sea surface

assumption is still valid for ghost removal using a deep learning approach. More research is

needed to assess the sea state conditions under which our proposed method is applicable. Our

field example uses receivers at depth between 6.2 m and 7.7 m, with a nominal streamer depth

of 7 m, showing that our method can tolerate depth variations. Changing the acquisition

geometry does not require rebuilding the CNN-based deghosting operator, and one can use

transfer learning to retrain the NN for use in other field acquisition setups. In our work,

we assume a horizontal streamer acquisition with no variation in geometry in the crossline

direction. Thus, investigating 3D effects (e.g., feathering) under a 2D acquisition assumption

would be needed and remains a subject for future work.

Although the ghost reflections are independent of the source function, they are dependent

on the bandwidth of the seismic signal, as shown in equation 2.5. However, given that our

solution is based on a data-fitting procedure, its applicability to field data depends on its

ability to tolerate source wavelet uncertainties (i.e., depends on the ability of the CNN to

learn to remove ghost reflections for arbitrary source functions). Our field data example shows

that the proposed approach improves the data quality even though the source wavelet that we

use to create the training data is different from the source wavelet of the field data. Moreover,

our field data results use a purely statistical source signature deconvolution approach instead

of a deterministic approach, thus demonstrating the improvement in the waveform character

even when using a statistical deconvolution technique due to ghost removal.

The synthetic example shows that the NN is less capable of reconstructing frequencies

below 5.5 Hz, indicating a need to increase the size of the convolutional filters, i.e., increase
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the number of trainable parameters in the NN. Prior publications by Sun and Demanet (2020),

for low-frequency extrapolation, and by Almuteri and Sava (2021), for seismic deghosting,

show that the ability to reconstruct data with a certain bandwidth is proportional to the

capacity of the NN (i.e., the number of trainable parameters). Incorporating additional

information (e.g., particle motion data) into our method could improve deghosting. Our

formulation of the CNN reconstructs the relative amplitude of the seismic data rather than

the absolute amplitude because of our choice of a bounded activation function, to whose

range we normalize the input and output training data. We leave extending our approach to

recover the absolute amplitude for future work. Using the method described in this paper, we

can remove source-side ghost reflections in the shot domain without a need to transform the

data to the common-receiver domain and without a need for shot interpolation because (1)

the imprints of the source-side ghosts are present in shot gathers; otherwise, a mere domain

transformation (to a common-receiver gather) would not unveil the source-side ghost, and (2)

input-output pairs of ghost-contaminated and ghost-free data are the only way for the NN to

learn through supervised learning how to map between the two, thus reducing the problem

to amplitude and phase correction. Self-supervised learning is an alternative approach to

supervised learning that removes the burden of generating input-output pairs of training data.

It is applied in geophysics for noise suppression (Birnie et al., 2021; Liu et al., 2022a,b) and

low-frequency extrapolation (Hu et al., 2020; Wang et al., 2020), and it is showing promising

results. Self-supervised learning is applicable to seismic deghosting within a physics-guided

NN framework.

2.5 Conclusion

We propose a method to remove source- and receiver-side ghosts in the shot domain.

The solution works for pressure data acquired at a single recording level and uses a CNN

with a supervised learning approach to map ghost-contaminated data to ghost-free data.

Our solution alleviates acquisition and processing complexities associated with acquisition

systems that use complementary measurements. Because our solution is based on learning
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through data fitting, the acquisition geometry and the bathymetry of the ocean floor must

be known to create training data that closely mimic field data acquisition conditions. We

demonstrate with a synthetic example and field data that CNNs can predict ghost-free data

with a reasonable accuracy. Recovering the low frequencies remains a challenge because of the

limited capacity of the CNN, i.e., its effectiveness increases proportionally with the number

of trainable parameters. Still, we show that the solution is robust to data generated using a

model with strong velocity contrasts and velocity values beyond that of the models used to

generate the training data. We also show that the method is robust to inputs with random

noise, i.e., field data, even though the training data are noise free. Finally, we show that a

simple amplitude correction is not sufficient to recover the ghost-free data and highlight the

importance of phase correction in the ghost removal process.
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CHAPTER 3

MODELING THE SEISMIC WAVEFIELD OF MOVING MARINE VIBRATOR SOURCE

A paper accepted in Geophysics1.

Khalid Almuteri2,3,4, Jeffrey Shragge5, and Paul Sava5

Marine vibrators are an emerging alternative to conventional air guns in ocean-bottom

acquisition due to their ability to generate low-frequency waves and limited adverse impact

on marine wildlife. However, using marine vibrators introduces challenges not found in

conventional air-gun-based acquisition where receivers are placed on the ocean bottom,

including handling the phenomena associated with the Doppler effect and time-dependent

source-receiver offsets due to the source motion. Standard seismic data processing solutions

assume stationary sources and receivers for the duration of any seismic experiment (e.g.,

a shot); however, accurately accounting for source motion effects in processing is critical

for optimal subsurface imaging. To address these challenges, we develop a finite-difference

approach for modeling the full acoustic wavefield in a generalized coordinate system that

tracks a moving source. Synthetic examples demonstrate that this technique both accurately

and stably models high-velocity moving sources and accurately accounts for the wavefield

distortion predicted by the Doppler effect. This approach is not limited to modeling wavefield

propagation for a moving source and can be used to develop advanced imaging and inversion

techniques (e.g., reverse-time migration and full waveform inversion) for data acquired using

marine vibrators. Additionally, the developed approach is not limited to modeling mobile

sources, but can also model conventional towed-streamer data.

1Reprinted with permission of Geophysics.
2Graduate student, Center for Wave Phenomena, Department of Geophysics, Colorado School of Mines
3Saudi Aramco
4Author for correspondence
5Professor, Center for Wave Phenomena, Department of Geophysics, Colorado School of Mines.
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3.1 Introduction

Concerns over conventional seismic air guns make a transition to less environmentally

adverse marine vibrators desirable. Although marine vibrators have been around since

the 1960s (Smith and Jenkerson, 1998), the lack of low frequencies and the perceived

unreliability of marine vibrators have historically prevented further development and interest

by the exploration industry in the technology (Teyssandier and Sallas, 2019). However,

recent technological advancements renewed the interest in marine vibrators not only for

environmental reasons but also for their geophysics-related merits. From a seismic exploration

perspective, marine vibrators can provide richer low-frequency content than air guns (Dellinger

et al., 2016; Guitton et al., 2021), and enable versatile control over the source signature (Laws

et al., 2019). Unlike air guns, where phase can only be modified through time delays, the phase

in marine vibrators can be independently specified for each frequency. The precise control

over phase in marine vibrators allows for the use of advanced acquisition techniques such as

phase sequencing, creating source-side wavefield gradients, and simultaneous acquisition, as

discussed below:

• Phase sequencing in cascaded sweep acquisition helps attenuate residual source noise,

allowing for denser shot acquisition in the inline direction (Laws et al., 2019). In

air-gun-based acquisition, a sufficient time period must pass between acquiring two

consecutive shots for the shot-generated noise from a shot to be at an acceptable level

when acquiring the subsequent shot (Landrø, 2008). This trade-off between source-time

interval and the level of residual source noise results in sub-optimal and sparser shot

acquisition than desirable. Varying the source phase from one source point to the next

can resolve the sparsity of source points in marine data inline. In practice, such changes

are hard to execute using seismic air guns, but easily attainable using marine vibrator

sources.
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• Crossline sampling in marine acquisition is often sparse, resulting in aliased wavefields.

One method for reconstructing the non-aliased seismic wavefield uses the multichannel

sampling theorem, which extends Shannon’s sampling theorem by incorporating the

spatial derivative of the seismic wavefield in the reconstruction process (Pawelec et al.,

2022; Robertsson et al., 2008; Vassallo et al., 2010). This method reduces the necessary

spatial sampling and enables the recovery of non-aliased data from aliased input,

allowing for data to be acquired twice as coarsely as when not using the spatial

derivative data along the crossline direction (Laws et al., 2019). Thus, acquiring the

source-side spatial gradient of the pressure wavefield facilitated by marine vibrator

sources can effectively address the issue of spatial aliasing in the crossline direction.

Such data can be acquired using two marine vibrators, placed with some offset along

the crossline direction, sweeping with opposite polarities. The corresponding airgun

acquisition would require sailing each inline twice or acquiring secondary data in the

vicinity of primary source points, employing an approach similar to over/under sources

(e.g., Egan et al., 2007) to estimate the source-side wavefield gradient in the crossline

direction.

• Another advantage of using marine vibrators is acquiring seismic data in a shorter

time compared to air-gun-based acquisition when using multiple phase-encoded sources

simultaneously. Although simultaneous acquisition is achievable using seismic air

guns (e.g., Amundsen et al., 2018; Mueller et al., 2015; Robertsson et al., 2016),

the limited phase control in seismic air guns limits the full potential of simultaneous

acquisition (Halliday and Moore, 2018; Laws et al., 2019). Laws et al. (2019) numerically

demonstrate that employing the aforementioned techniques can reduce acquisition time

by one-third compared to conventional air-gun acquisition without compromising the

quality of the seismic images.

Processing and imaging challenges emerge due to the source motion and long duration of

the marine vibrator sweep, including the Doppler effect and time-dependent source-receiver
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offsets in ocean-bottom acquisition. Even though marine vibrators move at a much slower

velocity than the wave propagation speed, source motion introduces a noticeable offset- and

time-dependent frequency shift to the data (Dragoset, 1988; Hampson and Jakubowicz, 1995;

Schultz et al., 1989). Further, phase distortion also occurs in the seismic signal, which is

proportional to the source velocity and time slope of seismic events, because of the source

motion.

Current seismic data processing and imaging in marine acquisition assume stationary

geometry for the duration of a seismic experiment. Appropriate processing and imaging

of data acquired using moving sources requires accurate modeling of the associated effects.

Numerical wave-equation solutions are necessary for understanding wave propagation under

realistic acquisition conditions (e.g., dynamic sea surfaces and/or moving sources), and form

the basis of many geophysical applications such as imaging and inversion. Accurate modeling

of seismic wavefields is key in advanced seismic imaging and inversion techniques, such as

reverse-time migration (RTM) (e.g., Almuteri et al., 2022a) and full-waveform inversion (FWI)

(e.g., Kurzmann et al., 2013; Zhang et al., 2023; Zhou et al., 2018). Various methods are

proposed in the literature to model marine vibrator data. Dellinger and Dı́az (2020) present

a sweep segmentation approach to model mobile sources that splits the source function

into different segments that can be injected at fixed source positions along the source path.

The advantage of this approach is its simplicity and ease of implementation. However, it

may require applying a correction filter to the modeled data (Duquet et al., 2021) because

it assumes the source jumps to discrete locations along the source path instead of being

continuously in motion. JafarGandomi and Grion (2021) propose a method of modeling marine

vibrator data by interpolating unaliased impulsive sources data to desired source locations

and convolving with segments of the vibrator sweep. This method is similar to the former

approach as it employs a source-segmentation technique. However, this method requires

densely sampled sources and data interpolation, which can be computationally expensive for

irregularly sampled sources. Cartesian-based modeling methods are susceptible to numerical
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instabilities and modeling inaccuracies when introducing irregular or dynamic computational

geometries such as time-varying sea surfaces (Konuk and Shragge, 2020). Further challenges

arise when implementing free-surface boundary conditions for such irregular geometries in a

Cartesian coordinate system.

This paper presents a finite-difference approach to model the full acoustic wavefield

triggered by a mobile source in a generalized coordinate system that effectively embeds source

motion into the coefficients of the governing tensorial acoustic wave equation. Shragge (2014)

and Shragge and Tapley (2017) present a time-invariant tensorial representation of the acoustic

wave equation (AWE) in a generalized coordinate system. This approach facilitates coordinate

transformation to map the irregular physical domain to a regular computational domain,

enabling FD modeling. Konuk and Shragge (2020) extend this technique to address the

challenge of dynamic sea surfaces by specifying a time-variant 4D coordinate transformation.

This extension leads to a time-varying mesh grid in physical Cartesian coordinates, but a

stationary mesh grid in a generalized computational coordinate system.

Here, we present a solution to the AWE for a time-varying mesh without the need for

repeated velocity model interpolation, eliminating the added computational complexity and

accuracy issues associated with this operation. In this framework, the time-varying physical

Cartesian domain horizontally shears conformally with the source motion. However, the

computational domain is fixed in time, with time- and space-dependent partial differential

operator coefficients. The developed approach is not limited to modeling moving sources

with ocean-bottom receivers and is also applicable to conventional towed-streamer scenarios.

Additionally, we investigate source motion effects on seismic data, including ghost reflections,

acquired under a quiescent sea surface condition.

3.2 Theory

empty
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3.2.1 Tensorial acoustic wave equation

The 4D tensorial AWE in a generalized coordinate system defined by the variables

ξ = [ξ0, ξ1, ξ2, ξ3] is (Konuk and Shragge, 2020)

�ξPξ = Fξ, (3.1)

where �ξ is the generalized d’Alembert operator, Pξ is the pressure field, and Fξ is the

source function. The ξ0 coordinate is time-like (time axis scaled by the acoustic velocity)

and ξ1, ξ2, ξ3 are space-like components. The generalized d’Alembert operator is

�ξ =
−1√
|g|

∂

∂ξµ

(√
|g|gµν ∂

∂ξν

)
, µ, ν = 0, · · · , 3, (3.2)

where [gµν ] is a symmetric rank-two contravariant metric tensor, |g| is the determinant of

the covariant metric tensor [gµν ], and [gµν ] = [gµν ]
−1. Here, we use superscript indices for

components with a contravariant representation and subscript indices for components with

a covariant representation. The covariant metric tensor relates the generalized coordinate

geometry to an equivalent Cartesian coordinate system representation with elements given by

gµν =
∂xi

∂ξµ
∂xi

∂ξν
for i, µ, ν = 0, · · · , 3, (3.3)

where repeated indices imply summation. The columns of the contravariant and covariant

metric tensors form dual bases (i.e., the dot product 〈gi , gj〉 = δij). In Cartesian coordinates

with variables x = [x0, x1, x2, x3] = [ct, x, y, z], the d’Alembert operator (equation 3.2) reduces

to

� =
−1

c2

∂2

∂t2
+∇2, (3.4)

where c = c(x) is the Cartesian medium velocity, and ∇2 is the 3D Cartesian Laplacian

operator.

To simulate wavefields triggered by a moving source, we set the generalized AWE in

arbitrary coordinates and then choose a coordinate transformation that maps a horizontally

deformed physical domain to a regular computational domain. To simplify the 4D coordinate
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transformation, we make a set of plausible assumptions: (1) no stretching of the time

coordinate occurs, i.e., x0 = ξ0 (or t = τ); (2) the horizontal source movement is along

the ξ1-axis only, leaving the ξ2-axis unchanged (i.e., x2 = ξ2); (3) the source moves at a

fixed depth level (i.e., there is no vertical motion and thus x3 = ξ3); (4) the source moves

at a constant velocity (i.e., ∂v
∂ξ0

= 0); and (5) the source moves in a homogeneous fluid

medium. The first four assumptions allow us to express the horizontal mesh deformation

x1 = T (ξ0, ξ1, ξ2, ξ3), where T is any arbitrary horizontal deformation function that depends

on all variables (ξ0, ξ1, ξ2, ξ3). Recognizing that ξ0 ≡ cτ and ∂
∂ξ0

= 1
c
∂
∂τ

, the generalized

d’Alembert operator (equation 3.2) for an arbitrarily deformed mesh along the ξ1-axis reduces

to the second-order AWE

1

T1

∂

∂τ

(
T1

c2

∂Pξ
∂τ

)
︸ ︷︷ ︸
Newtonian acceleration

=
1

T1

[
∂

∂ξ1

(
T0

c

∂Pξ
∂τ

)
+

∂

∂τ

(
T0

c

∂Pξ
∂ξ1

)]
︸ ︷︷ ︸

Fluid advection

+
1

T1

∂

∂ξi

(
T1g

ij ∂Pξ
∂ξj

)
︸ ︷︷ ︸

Restoring force

+Fξ, (3.5)

where Tk = ∂T
∂ξk

, and i, j = 1, 2, 3 are spatial indices. The assumptions stated above allow us

to express the relationship between the ξ- and x-coordinate systems as
x0

x1

x2

x3

 =


ξ0

T (ξ0, ξ1, ξ2, ξ3)
ξ2

ξ3

 =


ξ0

ξ1 + vτeγ(sz−ξ3)

ξ2

ξ3

 , (3.6)

where v is the constant source velocity, γ is a user-defined decay factor that controls the

amount of horizontal deformation as a function of depth, and sz is the source depth. We

confine the time-varying mesh deformation to the homogeneous water layer by introducing

a depth-dependent horizontal deformation. This coordinate transformation enables the

modeling of a moving source without the need for velocity model interpolation at each

time step. Further, it allows one to compute the wavefield at and below the receivers level

in ocean-bottom acquisition without the need to interpolate the wavefield to Cartesian

coordinates. Figure 3.1 show a deformed physical domain in Cartesian coordinates and the

fixed computational domain in a generalized coordinate system, respectively. At the initial

45

CWP-1029



time, the computational and physical domains are identical (i.e., x1 = ξ1). Extending this

approach to include a moving source with a time-dependent velocity, i.e., v → v(ξ0), is

straightforward.

(a)

(b)

Figure 3.1 Graphical representation of (a) physical and (b) computational domains. The red
dot indicates the source location. The blue mesh represents a homogeneous region, whereas
the black mesh represents a variable velocity region.
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The contravariant metric tensor associated with the depth-dependent horizontally shearing

coordinate transformation (equation 3.6) is

[gµν ] =
1

c2


−1 vα 0 0
vα v2α2 [β2 − 1] + c2 0 cβvα
0 0 c2 0
0 cβvα 0 c2

 , (3.7)

where α = eγ(sz−ξ3) and β = cγτ . Thus, equation 3.5 reduces to

1

c2

∂

∂τ

(
∂Pξ
∂τ

)
=

2vα

c2

∂

∂ξ1

(
∂Pξ
∂τ

)
+

[
γ2τ 2v2α2 − v2α2

c2

]
∂

∂ξ1

(
∂Pξ
∂ξ1

)
− γ2τvα

∂Pξ
∂ξ1

+ 2γτvα
∂

∂ξ1

(
∂Pξ
∂ξ3

)
+∇2

ξPξ + Fξ,

(3.8)

where ∇2
ξ = ∂

∂ξ1

(
∂
∂ξ1

)
+ ∂

∂ξ2

(
∂
∂ξ2

)
+ ∂

∂ξ3

(
∂
∂ξ3

)
and where we assume the medium velocity is

slowly varying (i.e., ∂c
∂ξi
≈ 0 for i = 1, 2, 3).

3.2.2 Numerical implementation

We use a finite-difference approach to solve the second-order AWE (equation 3.8) by

approximating the partial differential operators with Taylor-expansion coefficients. The

numerical scheme uses approximations of order O(∆ξ4) for spatial derivatives and O(∆τ 2) for

temporal derivatives. The fluid advection term in equation 3.8 is a first-order mixed derivative

that presents a challenge in numerical implementation, as it requires the spatial derivative

of the pressure field at a future time step that is unavailable, when using a second-order

approximation centered in time. To overcome this problem, we can use either a first-order

approximation backward in time or predict the future time step assuming no source motion

(e.g., Konuk and Shragge, 2020; Van Renterghem and Botteldooren, 2007). Although the

first approach can still use a fourth-order approximation for the first-order spatial partial

differential operator, it reduces the accuracy of the numerical scheme by using a first-order

approximation for the first-order temporal partial differential operator backward in time.

The second approach allows for maintaining a second-order approximation for all temporal

differential operators in the AWE by predicting a future pressure wavefield, assuming a
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stationary source. Such an assumption is valid because the horizontal mesh deformation

is represented by a smooth continuous function with a small contribution to the pressure

wavefield (i.e., v � c) (Konuk and Shragge, 2020). Implementing the second-order AWE

permits modeling moving sources using a standard Cartesian-based modeling method with

relatively minor modifications. In our numerical implementation, we use Clayton-Enquist

absorbing boundary condition6 (Clayton and Engquist, 1977) for its simplicity and ease

of implementation when solving the second-order AWE. Synthetic examples show that the

numerical scheme is stable and sufficiently accurate.

3.2.3 Doppler effect

In a constant velocity medium, the source motion causes time-dependent frequency shifts

in the data given by

f(t) =
c

c− S ·P(t)
f◦(t), (3.9)

where f(t) is the time-dependent observed frequency, c is the medium wave propagation

speed, S is the source velocity vector, P(t) is the time-dependant unit vector that points to

the receiver or a scatterer point from the source location (Figure 3.2(a)), and f◦(t) is the

time-dependent input frequency.

For heterogeneous media, the ray paths from a source to a scattering point play a role in

the amount of frequency shift. To derive an expression for the frequency change due to source

motion in heterogeneous media, we follow the formulation of Kolano (1978). We consider a

moving source with velocity v and a stationary point in the subsurface (Figure 3.2(b)). We

assume that the source at time t = 0 s is at S1 and after a time interval ∆t it is at S2. If the

source emits two pulses, one at each location, the time delay between emitting these pulses

will be ∆t. The ray paths the two pulses take to arrive at the same location R are P1 and

P2, with the associated traveltimes T1 and T2, respectively. The time delay between the two

6In Appendix A, we discuss the details of the boundary condition we use in the numerical implementation of
this chapter.
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(a)

(b)

Figure 3.2 Schematic plot of (a) source motion direction (S) relative to a stationary receiver
or a scatterer point location (R) in a constant velocity medium, and (b) a source moving
from S1 to S2 with ray paths from source locations S1 and S2 to a point R in the subsurface
given by P1 and P2, respectively, in a variable velocity medium.
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pulses at R is

∆τ = ∆t+ T2 − T1 = ∆t−∆T. (3.10)

Considering a source emitting continuously when moving from S1 to S2, and because the

total number of emitted cycles matches the total number of observed cycles, we have

f◦∆t = f∆τ, (3.11)

where f◦ and f are the emitted and observed frequencies, respectively. Thus, the frequency

shift is

∆f =
∆T

∆τ
f◦ =

∆T

∆t−∆T
f◦, (3.12)

which reduces to

∆f ≈ ∆T

∆t
f◦ (3.13)

for ∆T
∆t
� 1 (i.e., the source velocity is much slower than the wave propagation speed). As

∆t approaches zero,

∆f = lim
∆t→0

T2 − T1

∆t
f◦ = lim

∆t→0

−∆T

∆t
f◦ = −dT

dt
f◦. (3.14)

Equation 3.14 shows that the Doppler effect in heterogeneous media is related to the material

property along the ray path from the source to any point of interest in the subsurface. A

more detailed treatment of the Doppler effect in complex media (e.g., anisotropic media) is

commonly found in the physics literature concerning radio waves propagating through the

ionosphere (e.g., Bennett, 1968; Davies, 1965; Weekes, 1958).

3.3 Numerical Examples

In this section, we present numerical examples to demonstrate the effect of source motion

on seismic data in homogeneous media, and on ghost reflections using a single-reflector

model. We also investigate the impact of medium heterogeneity on the Doppler effect, and

numerically validate our modeling approach by comparing the observed frequencies from our

simulations to those predicted by the Doppler theory. Lastly, we examine the effects of source
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and receiver motion in complex media.

3.3.1 Modeling in homogeneous media

In horizontally invariant media, one can set γ = 0 in equation 3.6, reducing the mesh

deformation to a pure horizontal translation along the source motion direction. A positive

(negative) velocity translates the mesh along the positive (negative) ξ1 axis. To demonstrate

the robustness of the developed approach and highlight the consequences of source motion

on seismic data, we use an unrealistically fast source velocity of 0.3 km/s in a homogeneous

medium. We simulate a 2D acoustic wavefield in a constant velocity medium of 1.5 km/s

using a 30 Hz monochromatic wave. The source is located at x1 = 2.0 km (i.e., ξ1 = 2.0 km)

at time t = 0 s. In the mobile source case, we compute the acoustic wavefield using our

approach and interpolate it to the Cartesian coordinate system at every time step. Figure 3.3

show snapshots at t = 0.68 s modeled using stationary and mobile sources, respectively.

In the stationary source scenario, the wavefield is symmetric and the amplitudes along a

wavefront are uniform. In the mobile source scenario, the right-going waves (along the source

movement direction) are compressed, whereas the waves traveling in the opposite direction

are dilated, according to the Doppler effect. The amount of compression or dilation is a

function of the source velocity, the acoustic wave propagation speed in the medium, the

source motion direction, the propagation direction, and the input frequency.

Figure 3.4 show shot gathers acquired using a stationary and mobile source, respectively,

recorded using stationary receivers placed 25 m below the source. For the stationary source

case (Figure 3.4(a)), the direct arrivals are symmetric around the source location. For the

mobile source case (Figure 3.4(b)), the apices of the direct arrivals are shifted because of

the source motion, and the lateral shift increases with time. Traces recorded to the left of

the source are shifted to a lower frequency, while the traces recorded to the right of the

source are shifted to a higher frequency. Figure 3.5 show two traces for stationary receivers at

x1 = 1.75 km and x1 = 2.75 km, respectively, placed at the same depth level as the source,

computed numerically and analytically (we derive the analytical solution in Appendix 3.8).
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(a)

(b)

Figure 3.3 Wavefield snapshot in a homogeneous medium using (a) stationary and (b) mobile
source.
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Although the input source (Figure 3.4(a)) is a 30 Hz monochromatic wave (Figure 3.6(a)),

the trace to the left of the source is dilated compared to that to the right of the source. The

corresponding amplitude spectra (Figure 3.6(b) and Figure 3.6(c)) indicate that the observed

frequency at the left receiver is 25 Hz, whereas the observed frequency at the right receiver is

37.5 Hz. Our numerical results match the theoretical observed frequencies using the Doppler

(1842) formula and closely match the analytical results, thereby demonstrating the accuracy

and stability of the developed modeling approach outlined above.

(a) (b)

Figure 3.4 Shot gathers acquired in a homogeneous medium using (a) stationary and (b)
mobile sources.

3.3.2 Modeling in a single-reflector model

To demonstrate the effects of source motion on ghost reflections, we simulate stationary

and mobile source data with ghost reflections in a single-reflector model (Figure 3.7) using a
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(a)

(b)

(c)

Figure 3.5 Pressure amplitude of (a) 30 Hz monochromatic wave (source function), and
seismic data measured by receivers located (b) behind (x1 = 1.75 km) and (c) ahead
(x1 = 2.75 km) of the source. The dashed line is the analytical solution, which overlay the
numerical solution shown in solid line.
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(a)

(b)

(c)

Figure 3.6 (a-c) Amplitude spectra of traces shown in Figure 3.5(a-c), respectively. The
dashed line is the analytical solution, which overlay the numerical solution shown in solid
line.
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source function with a linear sweep between 25 Hz and 45 Hz placed at x3 = 0.05 km (i.e.,

ξ1 = 0.05 km) at time t = 0 s and stationary receivers placed 25 m below the source. To

model mobile source data, we use a fast source velocity of 0.3 km/s. The ghost reflections

in the stationary source data (Figure 3.8(a)) are symmetric around the source location,

whereas they are slanted in time in the mobile source data (Figure 3.8(b)). However, the

frequency-wavenumber spectra of the stationary source data (Figure 3.9(a)) and the mobile

source data (Figure 3.9(b)) show that the constructive and destructive interference caused by

ghost reflections are unaffected by the source motion because such interference in the Fourier

domain are determined solely by the time delay between the primary signal and its ghost,

which remains unchanged between stationary and mobile source modeling.

(a)

Figure 3.7 Single-reflector velocity model (quantity c in equation 3.8) with the source
position at time t = 0 s (red) and stationary receivers locations (white).

3.3.3 Modeling in a velocity gradient medium

To understand the consequences of velocity variation on the Doppler effect, we simulate

mobile source data in homogeneous (Figure 3.10(a)) and constant vertical velocity gradient
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(a) (b)

Figure 3.8 Shot gathers acquired in a single-reflector model using (a) stationary and (b)
mobile sources with ghost reflections.
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(a) (b)

Figure 3.9 Frequency-wavenumber spectra of shot gathers shown in (a) Figure 3.8(a) and (b)
Figure 3.8(b). The red and white arrows indicate constructive and destructive interference,
respectively.
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(Figure 3.10(b)) models using an unrealistically fast source velocity of 0.3 km/s. For the

homogeneous model, the medium velocity is 2.0 km/s. For the constant vertical velocity

gradient model, the medium velocity is given by the function c(ξ3) = 1.0 + 0.5 ξ3 m/s, with a

maximum depth of 4.0 km. We simulate both data types using a 40 Hz monochromatic wave

placed at [x1, x3] = [2.0, 2.0] km (i.e., [ξ1, ξ3] = [2.0, 2.0] km) at time t = 0 s and stationary

vertical receivers placed at x1 = 3.0 km. Figure 3.11 shows traces recorded by receivers

placed at x3 = 1.25 km and x3 = 2.75 km, their amplitude spectra, and the theoretical

observed frequencies as a function of depth for the homogeneous velocity model. Because the

velocity model is constant, and because the two receivers are symmetric around the source

depth location, the two traces have the same observed frequency. Further, the theoretical

observed frequencies as a function of depth, computed using equation 3.12, show that the

observed frequency profile is also symmetric around the source locations, i.e., the Doppler

effect depends on the angle between the source and receiver. Figure 3.12 shows traces recorded

by receivers placed at x3 = 1.25 km and x3 = 2.75 km, their amplitude spectra, and the

theoretical observed frequencies as a function of depth for the constant vertical velocity

gradient model. In this case, the source is moving in a constant layer, but the two traces

have different observed frequencies even though the two receivers are symmetric around the

source depth position. The theoretical observed frequency profile is asymmetric, highlighting

the significance of traveltime changes due to velocity variations in the Doppler effect.

3.3.4 Modeling in heterogeneous media

To investigate the impact of source motion on seismic data acquisition in heterogeneous

media, we simulate the acoustic wavefield using the Marmousi II model (Martin et al.,

2002). We use a source placed at [ξ1, ξ3] = [8.5, 0.0125] km and 3601 receivers positioned at

ξ3 = x3 = 0.45 km, with a 2.5 m uniform spacing. We use a source velocity of 5 m/s, which

exceeds the typical acquisition source speed of 2 − 3 m/s, to emphasize the discrepancies

between stationary and mobile source acquisition. Figure 3.13(a) shows the velocity model

with the source position at time t = 0 s and stationary receivers locations. The source
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(a)

(b)

Figure 3.10 (a) Homogeneous and (b) constant vertical velocity gradient models (quantity c
in equation 3.8) with the source position at time t = 0 s (red) and stationary receivers
locations (white).
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(a)

Figure 3.11 Mobile source in a homogeneous medium. Top: seismic data measured by
receivers located at x3 = 1.25 km (blue) and x3 = 2.75 km (red). Middle: corresponding
amplitude spectra of traces shown in the top panel. Bottom: theoretical observed frequencies
as a function of depth.
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(a)

Figure 3.12 Mobile source in a velocity gradient medium. Top: seismic data measured by
receivers located at x3 = 1.25 km (blue) and x3 = 2.75 km (red). Middle: corresponding
amplitude spectra of traces shown in the top panel. Bottom: theoretical observed frequencies
as a function of depth.
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function is a linear sweep from 15 Hz to 43 Hz. Figure 3.14(a) and Figure 3.14(b) show the

shot gathers acquired using a stationary and mobile source, respectively. While the shot

gathers may appear similar at first glance, the difference between the two demonstrates

that source motion has a discernible effect on the seismic data in both amplitude and phase

(Figure 3.14(c)). Figure 3.15 shows traces recorded by a receiver located at x1 = 4.5 km for

the stationary (black) and mobile (red) source acquisition, demonstrating the amplitude and

phase discrepancies between the two acquisitions. It is important to note that, while the

discrepancies may be insignificant for low frequencies and slow source velocities, the motion

of the source can introduce artifacts if not properly addressed in the processing workflow at

high frequencies or when source velocities are high (Guitton et al., 2021).

Guitton et al. (2021) and Almuteri et al. (2022a) show that ignoring source motion effects

in RTM introduces phase shift and mispositioning of imaged structures. Because of the long

sweep duration and continuous source motion, the wavefield is altered due to the source

changing its position while emitting energy (Hampson and Jakubowicz, 1995), i.e., the earth

is illuminated differently when using a moving source than when using a stationary source. To

show the effects of source motion on RTM results, we use a Marmousi II submodel to simulate

two datasets with and without moving sources. We use 93 sources placed at ξ3 = 0.0125 km

with a 25 m source-initiation interval spacing, and we use 199 receivers at ξ3 = 0.375 km

with a 12.5 m receiver spacing. We model data for a 2.5 s record length at a 0.5 ms temporal

sampling interval. For the moving source acquisition, we use a high source velocity of 10 m/s

to highlight the significance of source motion on seismic imaging. The source function is

a linear sweep from 20 Hz to 40 Hz. The RTM image of the stationary acquisition and

imaging (Figure 3.16(a)) and the mobile acquisition and stationary imaging (Figure 3.16b)

look similar; however, the difference between the two (Figure 3.16(c)) shows a phase change

and mispositioning of imaged structures, demonstrating the importance of accounting for

source motion effects in processing or imaging.
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(a)

(b)

Figure 3.13 Marmousi II velocity model (quantity c in equation 3.8) with the source position
(red) and receiver locations (white) at time t = 0 s for (a) moving source and stationary
receivers (ocean bottom) acquisition and (b) stationary source and moving receivers
(streamer) acquisition. Figure is not displayed with the true aspect ratio.
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(a) (b)

(c)

Figure 3.14 Shot gathers acquired using the Marmousi II model for (a) a stationary source
and (b) mobile source. (c) difference between Figure 3.14(a) and Figure 3.14(b).
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(a)

Figure 3.15 Seismic data measured by a receiver located at x1 = 4.5 km for a stationary
source (black) and mobile source (red).

To investigate the impact of receiver motion on seismic data, we simulate the acoustic

wavefield using a Ricker wavelet with a 40 Hz dominant frequency to mimic a marine impulsive

source. We use a source placed at [ξ1, ξ3] = [3.5, 0.0125] km and receivers positioned at the

same depth as the source. We use 3601 receivers with a 2.5 m uniform spacing with the first

and last receivers at the initial time placed at ξ1 = 4.0 km and ξ1 = 13.0 km, respectively,

being towed at a 5 m/s velocity. Figure 3.13(b) shows the velocity model with the stationary

source position and receivers locations at time t = 0 s. Figure 3.17(a) and Figure 3.17(b)

show the shot gathers acquired using stationary and mobile receivers, respectively. Similar to

the mobile source example, the receiver motion changes both amplitude and phase compared

to the stationary receiver acquisition (Figure 3.17(c)). Figure 3.18 shows traces recorded by a

receiver located at x1 = 9 km at time t = 0 s (trace number 2000) for the stationary (black)

and mobile (red) receiver acquisition, which clearly show the discrepancies between the two

acquisitions. The receiver motion does not alter the seismic wavefield, as opposed to a mobile

source experiment, but rather samples the wavefield along a slanted trajectory in time and

space, which can normally be ignored as discussed by Hampson and Jakubowicz (1995). The

source motion in marine vibrator acquisition, however, cannot be ignored because of the long

duration of the source and its continuous motion.
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(a)

(b)

(c)

Figure 3.16 RTM image for (a) stationary acquisition and imaging and (b) mobile acquisition
and stationary imaging. (c) Difference between Figure 3.16(a) and Figure 3.16(b).
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(a) (b)

(c)

Figure 3.17 Shot gathers acquired using the Marmousi II model for (a) stationary and (b)
mobile receivers. (c) Difference between Figure 3.17(a) and Figure 3.17(b).
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(a)

Figure 3.18 Seismic data measured by a receiver located at x1 = 9 km at time t = 0 s (trace
number 2000) for a stationary receiver (black) and mobile receiver (red).

3.4 Discussion

Source motion introduces frequency shifts that are proportional to the source velocity,

acoustic wave velocity in the medium, propagation direction, and input frequency. The

frequency shifts in the modeled seismic data are more pronounced at high frequencies, even

with a slow source velocity. More importantly, medium heterogeneity between the source

and receiver, or any point in the subsurface, plays a role in the Doppler shift. Neglecting

frequency shifts and the time-dependent source-receiver offset in seismic data processing and

imaging introduces artifacts in the processed data and ensuing imaging and/or inversion

workflows. Although source motion causes noticeable frequency shifts in data, a change

in source position when emitting is expected to have a more significant impact on seismic

processing and imaging.

Under quiescent sea-surface conditions, ghost reflections interfere with the primary signal

in mobile and stationary acquisition in a similar manner. However, in stationary acquisition,

source-side ghost reflections are described by an effective static sea surface (Blacquière and

Sertlek, 2019), i.e., they occur instantaneously. But for moving and long-emitting sources,

source-side ghost reflections are explained using a dynamic sea surface model. Understanding

the effects of ghost reflections on marine vibrator data under realistic time-varying sea

surface conditions is critical for developing robust seismic deghosting solutions for this type
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of acquisition. Therefore, future work involves incorporating a dynamic sea surface to mimic

more realistic marine vibrator acquisition scenarios.

Our numerical results show that solving the second-order acoustic wave equation using a

finite-difference approach with Taylor-expansion coefficients is accurate and stable. Adopting

such an approach enables obtaining reliable subsurface images and reduces interpretation

uncertainties. Although time-dependent meshes require repeated and expensive interpolation

of the physical properties of the subsurface, the proposed work mitigates the need for such

interpolations by using a judicious coordinate transformation to confine the mesh deformation

to the homogeneous water layer. Additionally, the proposed methodology helps improve

marine acquisition design and processing by providing reliable and robust tools for numerical

experimentation. The developed approach can also be used in RTM to image marine vibrator

data because of its intrinsic ability to account for source motion effects when computing

required source and receiver wavefields, which we leave for future work.

3.5 Conclusions

We present a finite-difference approach for solving the acoustic wave equation to simulate

marine vibrator data. The developed method employs a geometric coordinate transformation

to compute the full acoustic wavefield on a uniformly spaced and time-invariant mesh grid.

Although our implementation assumes constant source motion, incorporating a variable

velocity moving source into this framework is straightforward. The proposed numerical

approach can accurately and stably model seismic wavefields, even at unrealistically high

velocities of the moving source. Furthermore, this work is not limited to modeling marine

vibrators, but can also be used to model towed-streamer data using impulsive sources.
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3.8 APPENDIX: Analytical solution to the acoustic wave equation for a moving
source

The Green’s function for the acoustic wave equation (AWE) for a moving source is given

by (Ahrens and Spors, 2011; Jackson, 1999)

G(x, t; xs(ts), ts) =
δ
(
t− ts − |x−xs(ts)|c

)
|x− xs(ts)|

, (3.15)

where x = [x, y, z] is the 3D space variable, t is the time variable, ts is the source emission

time, xs(ts) = [xs(ts), ys(ts), zs(ts)] is the source position as a function of emission time, and c

is the constant medium velocity. Thus, the wavefield P (x, t) for an arbitrary source function

f(ts) is

P (x, t) =

∫ ∞
−∞

f(ts)G(x, t; xs(ts), ts) dts

=

∫ ∞
−∞

f(ts)
δ
(
t− ts − |x−xs(ts)|c

)
|x− xs(ts)|

dts

=

∫ ∞
−∞

f(ts)
δ (t− ts − τ)

cτ
dts, (3.16)

where τ(x, ts) = |x−xs(ts)|
c

. To evaluate equation 3.16, we introduce a new variable u =

ts + τ(x, ts), resulting in
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P (x, t) =

∫ ∞
−∞

f(u− τ)
δ (t− u)

cτ
du

=
f(t− τ)

cτ
, (3.17)

where we use the sifting property of the delta function. Now, considering a source moving

along a straight path with a velocity v = [vx, vy, vz], we can express the source position as a

function of emission time as a Galilean transformation

xs(ts) = xs(0) + vts, (3.18)

where xs(0) is the source position at time zero. We can rewrite equation 3.18 in terms of

an arbitrary recording time t by introducing a new variable R such that ts = t− R
c
, where

R = |R| and R = x− xs(ts), as

xs(t) = xs(0) + v

(
t− R

c

)
. (3.19)

Therefore, we can find the source position for any emitted signal (when emitted) as function

of recording time t and receiver position R, needed to evaluate equation 3.17. To derive the

analytical solution to the AWE for a moving source, we follow the formulation of Morse and

Ingard (1986) to find R. Because R = |x− xs(ts)|, we have

R2 = (x− xs(ts))2 + (y − ys(ts))2 + (z − zs(ts))2

= (x− xs(0)− vxts)2 + (y − ys(0)− vyts)2 + (z − zs(0)− vzts)2

=

(
x− xs(0)− vx

(
t− R

c

))2

+

(
y − ys(0)− vy

(
t− R

c

))2

+

(
z − zs(0)− vz

(
t− R

c

))2

= (x− xs(0)− vxt+MxR)2 + (y − ys(0)− vyt+MyR)2

+ (z − zs(0)− vzt+MzR)2

= (x̃+MxR)2 + (ỹ +MyR)2 + (z̃ +MzR)2 , (3.20)

72

CWP-1029



where x̃ = x− xs(0)− vxt, ỹ = y− ys(0)− vyt, z̃ = z− zs(0)− vzt, and M = [Mx,My,Mz] =

[vx
c
, vy
c
, vz
c

]. We solve for R in equation 3.20, using the quadratic formula, to obtain

R =
M · x̃±

√
(1−M ·M) (x̃ · x̃) + (M · x̃)2

1−M ·M
, (3.21)

where x̃ = [x̃, ỹ, z̃]. Assuming M ·M < 1, i.e., the source velocity is slower than the wave

propagation speed, R is strictly positive only for (Morse and Ingard, 1986)

R =
M · x̃ +

√
(1−M ·M) (x̃ · x̃) + (M · x̃)2

1−M ·M
. (3.22)

As a result, the analytical solution to the AWE for a moving source is

P (x, t) =
f
(
t− R

c

)
R

, (3.23)

where R is given by equation 3.22. We use equation 3.23 to compute the analytical solution

of the AWE for a moving source in a homogeneous medium and validate our numerical

approach.
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CHAPTER 4

MODELING ACOUSTIC WAVEFIELDS FROM MOVING SOURCES IN THE

PRESENCE OF A TIME-VARYING FREE-SURFACE

A paper submitted to Geophysics1.

Khalid Almuteri2,3,4, Jeffrey Shragge5, and Paul Sava5

Marine vibrators are increasingly being recognized as a viable alternative to seismic airguns

for ocean-bottom acquisition due to their ability to generate more low-frequency content

and their less adverse impact on marine wildlife. However, their use introduces processing

challenges, such as the Doppler effect and time-dependent source-receiver offsets, which are

negligible in conventional airgun acquisition. In addition, the time-varying nature of the sea

surface during the multi-second acquisition time introduces further challenges for processing

and inversion. To accurately account for source motion and time-varying sea surface effects

in seismic data processing, we develop a reliable and robust numerical modeling tool. We

use a mimetic finite-difference method in a generalized coordinate system to model the full

acoustic wavefield triggered by a moving source in the presence of a time-varying sea surface.

Our approach uses a time- and space-dependent coordinate transformation, which tracks the

source movement and conforms to the irregular time-varying sea surface, to map an irregular

physical domain in Cartesian coordinates to a regular computational domain in generalized

coordinates. We formulate this coordinate transformation such that both coordinate systems

conformally match below the ocean-bottom level. Numerical examples demonstrate that

this approach is accurate and stable, even for an unrealistically exaggerated sea state. This

1Reprinted with permission of Geophysics.
2Graduate student, Center for Wave Phenomena, Department of Geophysics, Colorado School of Mines
3Saudi Aramco
4Author for correspondence
5Professor, Center for Wave Phenomena, Department of Geophysics, Colorado School of Mines.
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computational tool is not limited to modeling, but could also be used to develop advanced

processing techniques for marine vibrator data, such as imaging and inversion.

4.1 Introduction

Conventional ocean-bottom data processing assumes stationary sources with a short

excitation duration. Consequently, source-side ghost reflections can be modeled and explained

using an effective static rough sea surface, whereas receiver-side ghost reflections require

using a time-varying sea surface to account for the long acquisition time. In marine vibrator

acquisition, where sources are continuously moving and sweeping for a considerable period

(e.g., 5 s), the stationary source-side sea-surface assumption is no longer true as the source

motion introduces offset- and time-dependent frequency shifts to the data (Dragoset, 1988;

Hampson and Jakubowicz, 1995; Schultz et al., 1989), and source-receiver offsets change as

a function of time. The long duration of the source function and the rate at which the sea

surface changes during the acquisition sweep require using a time-varying sea-surface model

to accurately predict and model source-side ghost reflections. Therefore, simultaneously

accounting for moving sources and time-varying sea surfaces in seismic data processing is

necessary to avoid introducing artifacts in the marine vibrator processed data.

Marine vibrators are advantageous over conventional seismic airguns for environmental

and geophysical reasons. First, marine vibrators have a limited impact on marine wildlife life

compared to conventional seismic airguns (Smith and Jenkerson, 1998). In addition, marine

vibrators can provide richer low-frequency content (Dellinger et al., 2016; Guitton et al., 2021)

and enable a versatile control over the source signature, where the phase can be specified

independently for each output frequency (Laws et al., 2019). In contrast, the phase can only

be modified through time delays when using airgun arrays. Phase control precision in marine

vibrators facilitates the use of advanced acquisition techniques such as phase sequencing,

source-side wavefield gradients, and simultaneous acquisition. Laws et al. (2019) discuss in

detail the advantages of marine vibrators over conventional seismic airguns and demonstrate

numerically that the aforementioned acquisition techniques can reduce acquisition time by
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one-third compared to conventional airgun acquisition.

The implications of a rough sea surface on seismic data are extensively studied in the

literature. Laws and Kragh (2002) investigate the impact of rough sea surfaces on time-

lapse experiments, showing that false structures can appear in time-lapse difference sections.

Egorov et al. (2018) study the consequences of rough sea surfaces on seismic deghosting of

single-component data, demonstrating that deghosting can introduce noise in the processed

data when the sea surface is assumed to be flat and static. Cecconello et al. (2018) show that

a time-varying sea surface introduces a Doppler shift into the recorded data. Blacquière and

Sertlek (2019) and Konuk and Shragge (2020) show that rough sea surfaces scatter the ghost

wavefield, introducing amplitude and phase distortions of the ghost reflections. A common

element between these studies is the use of stationary sources to understand the impact of

the sea surface on seismic data.

Various methods for modeling the effects of rough sea surfaces on seismic data were

proposed in the literature, Kirchhoff-based methods (KMs) being the most common (e.g.,

Blacquière and Sertlek, 2019; Egorov et al., 2018; Laws and Kragh, 2002; Orji et al., 2012).

Alternatively, Cecconello et al. (2018) exploit Rayleigh’s reciprocity theorem to include

ghost reflections generated from time-varying sea surfaces to ghost-free data. Konuk and

Shragge (2020) model the effects of time-varying sea surfaces on the full acoustic wavefield in

curvilinear coordinates using the generalized tensorial acoustic wave equation (AWE). Liu

(2023) employs the chain rule to model rough sea surfaces and rough bathymetry effects in

curvilinear coordinates. Robertsson et al. (2006) compare the ability of finite-differences

(FDM), spectral-elements (SEM), and Kirchhoff modeling to simulate the impact of rough

sea surface on seismic data. Their work shows that FDM and SEM produce similar results,

whereas KM produces results that differ from the former ones, mainly in amplitude. We refer

to Konuk and Shragge (2020) for an overview of the different modeling methods to generate

numerical solutions for surfaces characterized by non-Cartesian geometries.
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To model marine vibrator data, Dellinger and Dı́az (2020) propose splitting the sweep

into different segments that can be injected at fixed source positions along the source path.

JafarGandomi and Grion (2021) propose modeling marine vibrator data by interpolating

unaliased impulsive sources data to desired source locations and convolving with the corre-

sponding segments of the marine vibrator sweep. Alternatively, one can move and interpolate

the source injection locations in space as a function of time to model marine vibrator sources.

However, numerical instabilities and inaccuracies may arise when introducing irregular or

dynamic computational geometries in Cartesian-based modeling methods, especially when

implementing free-surface boundary conditions for such irregular geometries (de la Puente

et al., 2014; Konuk and Shragge, 2020).

Accurate and stable modeling of marine vibrator data under time-varying sea surface

conditions is challenging because of the complications of representing time-dependent curved

surfaces in Cartesian coordinates. Approximating partial differential operators with Taylor-

expansion coefficients in FDMs is a common choice when modeling seismic data because they

are straightforward and easy to implement. However, accurately accounting for free surface

(FS) effects is difficult using such operators because they require grid points above the FS.

Alternatively, one can model FS effects by using low-order accuracy coefficients (de la Puente

et al., 2014) or global high-order accuracy finite-element method (FEM) (Komatitsch and

Vilotte, 1998). Using FEMs places additional restrictions compared to FDMs because they

require: (1) time-varying meshing when considering time-varying sea surfaces; (2) meshing

that conforms to all irregular internal boundaries; and (3) honoring the spatio-temporal

numerical stability conditions for a time-varying mesh. Using mimetic finite-difference (MFD)

operators (Castillo et al., 2001; Castillo and Miranda, 2013; Corbino and Castillo, 2020;

de la Puente et al., 2014; Konuk and Shragge, 2020; Shragge and Tapley, 2017) is a viable

alternative, promising a global high-order accuracy without a need for a time-dependent

meshing. Thus, the MFD approach is suitable for modeling marine vibrator data in the

presence of a time-varying sea surface.
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In this paper, we use FDM to model the full acoustic wavefield triggered by a moving

source in the presence of a time-varying sea surface. We formulate the AWE in a generalized

coordinate system that effectively accounts for the source motion and time-varying free

surface into the coefficients of the governing tensorial AWE. Our approach is formulated to

avoid repeated velocity model interpolations or a need to interpolate the seismic wavefield

below the ocean bottom to Cartesian coordinates, eliminating the added computational

complexity and accuracy issues associated with this process. To test the stability of our

approach, we numerically simulate marine vibrator data for an exaggerated sea state, and

then use a realistic sea state to investigate the impact of rough sea surface on marine vibrator

data in the common-shot and common-receiver domains.

4.2 Theory

Although curved surfaces can be approximated in Cartesian coordinates using fine grid

spacing, this approach results in an unjustifiable and significant increase in numerical

computations, while alternative solutions that intrinsically take the non-Cartesian nature of

such surfaces exist. These alternatives include methods that employ coordinate transformation

within a finite-difference framework (Appelö and Petersson, 2009; Carcione, 1994; de la Puente

et al., 2014; Hestholm, 1999; Hestholm and Ruud, 2002; Komatitsch et al., 1996; Konuk

and Shragge, 2020; Shragge, 2014; Shragge and Tapley, 2017), finite-element (Marfurt,

1984), spectral-element (Komatitsch and Vilotte, 1998), and discontinuous Galerkin methods

(Käser and Dumbser, 2006). FDMs are characterized by ease of implementation with

lower computational complexity, compared to other methods, in addition to being easily

parallelizable. Thus, a natural approach is to employ a coordinate transformation that

considers the intrinsic nature of moving sources and time-varying sea surfaces when modeling

seismic data under such conditions.

In this section, we derive a generalized 3D AWE that can model the natural response of a

moving source while simultaneously accounting for a time-varying free-surface boundary due

to, e.g., a complex sea state. We follow a tensorial approach to encode the geometry of these
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two features directly into the generalized coordinate system to model the AWE response to a

simulated marine vibrator source. We employ the tensorial method to transform the physical

Cartesian coordinate system x into a static generalized coordinate system ξξξ that represents a

uniform computational mesh. By transforming the problem in this way, we must account for

the associated time- and space-varying coefficients of the governing tensorial AWE introduced

by the coordinate transformation using the generalized gradient and divergence operators as

discussed below.

4.2.1 Tensorial AWE

The tensorial formulation of the 3D AWE on a static computational mesh may be

represented by

�ξPξ = Fξ, (4.1)

where �ξ is the d’Alembertian operator, subscript ξξξ indicates a quantity in a generalized

coordinate system ξξξ = [ξ0, ξ1, ξ2, ξ3], Pξ is the scalar pressure field, and Fξ is the source

term. Following Konuk and Shragge (2020) we assume that ξξξ is a four-vector where ξ0 and

[ξ1, ξ2, ξ3] respectively represent time- and space-like coordinate variables. We further assume

that ξ1 and ξ2 are the inline and crossline acquisition directions and that ξ3 represents the

depth axis.

Accounting for a moving source with a geometry transformation means adopting a

Lagrangian description centered on the moving source, which requires a mesh that accounts

for its translation. We represent the geometry of the source, assumed to be moving in the ξ1

direction with an arbitrary function S(ξ0, ξ1, ξ2, ξ3) (which is independent of the crossline

acquisition direction). We also assume that the sea-surface topology and associated vertical

coordinate can be modeled by a generalized function T (ξ0, ξ1, ξ2, ξ3). These specifications

allow us to write a generalized transformation connecting the physical generalized observation
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coordinates x with the static computational coordinates ξξξ according to
x0

x1

x2

x3

 =


iξ0

S(ξ0, ξ1, ξ2, ξ3)
ξ2

T (ξ0, ξ1, ξ2, ξ3)

 , (4.2)

where the introduction of the imaginary unit i is explained below.

Using the unique mapping between the ξξξ- and x-coordinate systems, we define the

corresponding covariant metric tensor gµν , which is a symmetric 4 × 4 matrix that captures

the spatially and temporally varying geometry (i.e., how the mesh compresses, rarefies, and

shears as a function of space and time) of this 4D coordinate transformation, such that

gµν =
∂xα

∂ξµ
∂xα

∂ξν
, α, µ, ν = 0, 1, 2, 3. (4.3)

The introduction of the imaginary unit i follows the Minkowski space definition, which

combines time (imaginary axis) and the 3D Euclidean space (real axes) into a 4D manifold.

An immediate consequence of Minkowski space definition is that seismic events are causally

connected (e.g., seismic waves reflect when an incident wavefield interacts with reflectors).

The tensorial AWE requires a contravariant representation of the metric tensor gµν

(Shragge, 2014), which may be calculated as a point-wise matrix inverse of the covariant

metric tensor gµν . Using the general form of 4D coordinate mapping given in equation 4.2

results in the following analytic metric tensor inverse:

gµν =


−1 g01 0 g03

g01 g11 g12 g13

0 g12 1 g23

g03 g13 g23 g33

 (4.4)

=


−1 a03

a13
0 −a01

a13
a03
a13

a232−a032+S3
2+T3

2

a132
−a23
a13

a01a03−a21a23−S1S3−T1T3
a132

0 −a23
a13

1 −a12
a13

−a01
a13

a01a03−a21a23−S1S3−T1T3
a132

−a12
a13

a212−a012+S1
2+T1

2

a132

 , (4.5)

where Si ≡ ∂S
∂ξi

, Ti ≡ ∂T
∂ξi

, and aij ≡ SiTj − TiSj. In addition,
√
|g| = |a13|, which is required

in the tensorial AWE formulation, where g is the determinant of the covariant metric tensor.
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4.2.2 Coupled first-order acoustic PDE system

The dynamics of the first-order coupled acoustic PDE system are governed by two

operators. The first is the generalized gradient operator Gµ that acts on a rank-zero tensor

field U

Gµ[U ] = gµν
∂U

∂ξν
. (4.6)

The second is the generalized divergence operator Dµ that acts on a tensor object χν

Dµ[χν ] =
1√
|g|

∂

∂ξµ

(√
|g|χν

)
. (4.7)

The acoustic operator in equation 4.1 can be written as

�ξPξ = −DµGµPξ = Fξ (4.8)

or equivalently as (Konuk and Shragge, 2020)

− 1√
|g|

∂

∂ξµ

(√
|g|gµν ∂

∂ξν

)
Pξ = Fξ. (4.9)

In Cartesian coordinates with variables x = [x0, x1, x2, x3] = [ct, x, y, z], the generalized

acoustic wave equation (equation 4.9) reduces to(
−1

c2

∂2

∂t2
+∇2

)
P = F, (4.10)

where c = c(x) is the Cartesian medium velocity, ∇2 is the 3D Cartesian Laplacian operator,

P is the scalar pressure field in Cartesian coordinates, and F is the source term. Using these

operators, the coupled first-order acoustic PDE system can be written as the generalized

linearized continuity equation (LCE):

−G0 [Pξ] = ρξcξDi[uiξ] + Fξ, (4.11)

and the vector generalized linearized Euler equation (LEE) (i.e., Newtonian force):

ρξcξD0

[
uiξ
]

= Gi[Pξ], (4.12)
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where i = 1, 2, 3 is an index over the spatial variable coordinates and uiξ is the ith component

of the particle velocity. Thus, we may rewrite the LCE in equation 4.11 as

−g0ν ∂Pξ
∂ξν

=
ρξcξ√
|g|

∂

∂ξi

(√
|g|ui

)
+ Fξ, (4.13)

and the vector LEE in equation 4.12 as

ρξcξ√
|g|

∂

∂ξ0

(√
|g|uiξ

)
= giν

∂Pξ
∂ξν

. (4.14)

4.2.3 3D moving source with time-varying sea surface

We can write the equations when including the moving source, assumed to be moving

laterally in the ξ1 direction, and a time-varying sea surface. The specific LCE equation for

this coordinate transformation is

∂Pξ
∂ξ0
− g01∂Pξ

∂ξ1
− g03∂Pξ

∂ξ3
=

ρξcξ√
|g|

[
∂

∂ξ1

(√
|g|u1

)
+

∂

∂ξ2

(√
|g|u2

)
+

∂

∂ξ3

(√
|g|u3

)]
+ Fξ, (4.15)

which using ∂
∂ξ0
≡ 1

cξ

∂
∂τ

can be rewritten

1

cξ

∂Pξ
∂τ
− a03

a13

∂Pξ
∂ξ1
− a01

a31

∂Pξ
∂ξ3

=

ρξcξ
|a13|

[
∂

∂ξ1

(
|a13|u1

)
+

∂

∂ξ2

(
|a13|u2

)
+

∂

∂ξ3

(
|a13|u3

)]
+ Fξ, (4.16)

where τ ≡ t is the time axis. Similarly, the vector LEE equation can be rewritten as

ρξ
|a13|

∂

∂τ

(
|a13|u1

ξ

)
=

g01

cξ

∂Pξ
∂τ

+ g11∂Pξ
∂ξ1

+ g12∂Pξ
∂ξ2

+ g13∂Pξ
∂ξ3

, (4.17)

ρξ
|a13|

∂

∂τ

(
|a13|u2

ξ

)
= g12∂Pξ

∂ξ1
+
∂Pξ
∂ξ2

+ g23∂Pξ
∂ξ3

, (4.18)

ρξ
|a13|

∂

∂τ

(
|a13|u3

ξ

)
=

g03

cξ

∂Pξ
∂τ

+ g13∂Pξ
∂ξ1

+ g23∂Pξ
∂ξ2

+ g33∂Pξ
∂ξ3

. (4.19)
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4.2.4 Coordinate transformation

To model a moving source in the presence of a time-varying sea surface, we make a set of

plausible assumptions: (1) no stretching of the time axis occurs (e.g., t ≡ τ); (2) the source

moves along the ξ1-axis; (3) the source moves at a fixed depth level below the immediate

sea surface above; (4) the source moves at a constant velocity; and (5) the source moves

in a homogeneous fluid medium. Assumptions (3) and (5) allow us to define a coordinate

transformation that confines the physical mesh deformation to the assumed homogeneous

fluid medium. Given the set of assumptions, we can define a depth-dependent coordinate

transformation that tracks the source movement such that

S(ξ0 ≡ cτ, ξ1, ξ2 = x2, ξ3) = ξ1 + vτeγ(zs−ξ3), (4.20)

and a depth-dependent coordinate transformation that accounts for the time-varying sea

surface such that

T (ξ0 ≡ cτ, ξ1, ξ2, ξ3) = ξ3 +W
(
ξ1, ξ2, τ

)(
1− ξ3

ξ3
m

)
eλξ

3

, (4.21)

where v is the vessel velocity, zs is the source depth, W is the time-varying sea-surface

function, ξ3
m = x3

m is the maximum model depth, and γ and λ are user-defined decay factors

that control the amount of horizontal and vertical deformations as a function of depth,

respectively. A judicious choice of γ and λ confines the mesh deformation to the homogeneous

water layer, mitigating the need for a repeated and expensive interpolation of subsurface

physical properties (i.e., cξ = cx) and seismic wavefield associated with time-varying meshes

below the ocean bottom. To compute ∂S
∂ξ0

and ∂T
∂ξ0

, as required for the metric tensor, we use

∂τ
∂ξ0

= 1
cξ

such that

∂S

∂ξ0
=

v

cξ
eγ(zs−ξ3) (4.22)

and

∂T

∂ξ0
=

1

cξ

∂W

∂τ

(
1− ξ3

ξ3
m

)
eλξ

3

. (4.23)
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Figure 4.1(a) and Figure 4.1(b) shows graphical representations of a deformed physical domain

in Cartesian coordinates and the fixed computational domain in a generalized coordinate

system, respectively.

4.2.5 Time-varying sea surface

We use a modified Pierson and Moskowitz (1964) power spectrum that includes a directivity

term to model time-varying sea surfaces (Laws and Kragh, 2002). The modified power

spectrum is defined as

W̃ (kx, kz, τ) =
αN

2k4
exp

(
−β2g2

k2U4

)
cos2s

(
θ

2

)
+G (kx, kz, τ) , (4.24)

where α = 0.0081 and β = 0.74 are dimensionless constants; N is a normalization factor,

such that
∫
θ
N cos2s

(
θ
2

)
dθ = 1; k =

√
k2
x + k2

z is the wavenumber in radians per unit length;

g is the gravitational acceleration constant; U is the wind speed measured 19 m above the sea

surface; θ is azimuthal angle relative to the wind direction; s is an empirical spreading factor;

and G is a time-varying random Gaussian number to model a 2D time-varying sea surface.

4.3 Numerical approach

The goal of this section is to provide a practical approach to numerically solve the coupled

first-order system. We use a fully-staggered grid (FSG) scheme with MFD operators to ensure

numerical stability and accuracy when solving the tensorial AWE in generalized coordinates.

We also use a prediction step staggered-in-time (PSIT) scheme to compute the fluid advection

terms in the LCE equation.

4.3.1 Fully staggered grid

Modeling wave propagation in Cartesian coordinates using a first-order coupled system

allows using a standard staggered grid (SSG) scheme (Figure 4.2(a)), improving the overall

accuracy and stability of the numerical solution (e.g., Virieux, 1986). Furthermore, im-
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(a)

(b)

Figure 4.1 2D graphical representation of (a) physical and (b) computational domains.
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plementing robust absorbing boundary conditions6, e.g., perfectly matched layers, is more

straightforward in first-order systems than in second-order formulations of the AWE. However,

facilitating Cartesian-to-generalized coordinate transformation to model a moving source

with a time-varying sea surface introduces mixed derivatives and advection terms into the

governing tensorial AWE; otherwise, these terms would vanish in standard Cartesian-based

implementations characterized by flat surfaces and stationary sources. Solving the generalized

first-order system requires evaluating mixed partial derivatives at locations where the seismic

wavefield is not readily available when using an SSG scheme. One solution is to use a

high-order interpolation of the wavefield for all time steps, which is computationally expensive

and inefficient. A more natural choice is to use a fully staggered grid (FSG) scheme with

complementary grid locations (Lisitsa and Vishnevskiy, 2010) that provides all the required

wavefield samples, constructed using four SSG schemes set spatially with a diagonal offset

(Figure 4.2(b)).

4.3.2 Mimetic finite-difference operators

Approximating partial differential operators using Taylor-based coefficients is appealing

for their simplicity and ease of implementation when solving the AWE. A drawback of such

operators is the reduced accuracy at the boundaries of the modeling domain, which can

introduce numerical instability when modeling free-surface effects of curved surfaces, and

even more so when considering time-varying free surfaces. Alternatively, MFD operators

provide a uniform throughout the modeling domain, including the boundary region (Castillo

and Miranda, 2013; de la Puente et al., 2014; Konuk and Shragge, 2020; Shragge and Tapley,

2017). These operators are analogs to their continuum gradient and divergence counterparts

that mimic the mathematical and physical relations that govern the seismic wavefield and

satisfy fundamental properties such as conservation laws, symmetry, and duality of differential

operators (Lipnikov et al., 2014).

6In Appendix A, we discuss the details of the boundary condition we use in the numerical implementation of
this chapter.
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To facilitate MFD operators within the boundary region, additional complementary

pressure and particle velocity overlapping grid points are required (Figure 4.2(c)). Corbino

and Castillo (2020) formulate the numerical operators that act on quantities defined at

half-integer (Lh) and full-integer (Lf) grid points, which they name the gradient (G) and

divergence (D) operators, respectively. However, it is important to note that the numerical

operators are defined based on the grid layout within the numerical scheme [i.e., the numerical

gradient (G = Lh) and divergence (D = Lf) operators are applied on fields defined on

half- and full-integer grids, respectively]. These operators have different coefficients within

the boundary region than Taylor-based coefficients, but identical coefficients of the same

approximation order away from the boundary region. We differentiate between fields defined

on full-integer (f) and half-integer (h) grids.

In an MFD formulation, the pressure and particle velocity fields are defined at four

complementary staggering grid locations as given by Table 4.1. Figure 4.3(a) and Figure 4.3(b)

shows a 2D graphical representation of pressure field defined at [ξ1, ξ2, ξ3] = [f , f , f ] and

[ξ1, ξ2, ξ3] = [h, f ,h], respectively; and Figure 4.3(c) and Figure 4.3(d) shows a 2D graphical

representation of particle velocity field defined at [ξ1, ξ2, ξ3] = [f , f ,h] and [ξ1, ξ2, ξ3] = [h, f , f ],

respectively. To approximate Di[uiξ] and Gi[Pξ] in equations 4.11 and 4.12, we apply the

numerical operators as shown in Table 4.2 and Table 4.3.

4.3.3 Prediction step staggered-in-time

The advection terms in equation 4.16 present two implementation challenges: (1) the

partial derivatives are not centered at required pressure grid points, and (2) they are required

to be at half-integer time steps when using a leap-frog scheme (the pressure and particle

velocity wavefields are advanced alternately for practical memory management). One can use

an unstaggered-in-time approach when advancing the pressure and particle velocity wavefields

to solve the time-stepping problem. However, this approach requires storing wavefields at

different time steps, effectively doubling the memory requirement (Konuk and Shragge, 2020).

An alternative approach is to implement a prediction step staggered-in-time (PSIT) scheme
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(a) (b)

(c)

Figure 4.2 2D graphical representation of (a) SSG, (b) FSG, and (c) MFD staggered grid
computational domains.
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(a) (b)

(c) (d)

Figure 4.3 2D graphical representation of pressure field defined at (a) [ξ1, ξ3] = [f , f ] and (b)
[ξ1, ξ3] = [h,h] grid points, and particle velocity field defined at (c) [ξ1, ξ3] = [f ,h] and (d)
[ξ1, ξ3] = [h, f ] grid points (ξ2 = f in all 2D graphical representations).
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Table 4.1 Pressure and particle velocity grid locations in 3D. Within an MFD scheme, the
pressure and particle velocity wavefields are computed at four complementary staggered
grids.

Field type Grid location Denoted by

[f , f , f ] Pξ[f , f , f ]
[f ,h,h] Pξ[f ,h,h]
[h, f ,h] Pξ[h, f ,h]
[h,h, f ] Pξ[h,h, f ]

[h, f , f ] uiξ[h, f , f ]
[f ,h, f ] uiξ[f ,h, f ]
[f , f ,h] uiξ[f , f ,h]
[h,h,h] uiξ[h,h,h]

p
ar

ti
cl

e
ve

lo
ci

ty
p
re

ss
u
re

while (reasonably) assuming the mesh moves much slower than the wave propagation speed

(Konuk and Shragge, 2020; Van Renterghem and Botteldooren, 2007). In the PSIT scheme,

we advance the pressure wavefield for full- and half-time steps, neglecting the advection terms

in equation 4.16. Then, we compute and add the spatial derivatives of the pressure wavefield

at the half-time step to the pressure wavefield at the full-time step. Because the advection

terms must be centered at pressure grid points, we approximate them using Taylor-based

coefficients given in Appendix 4.9.

4.4 Numerical Examples

This section demonstrates the effects of time-varying sea surfaces on marine vibrator data

in the common-shot and common-receiver domains using 2D numerical examples. In the first

example, we use an unrealistically exaggerated sea state with a significant wave height (SWH)

of ±14 m with an apparent lateral velocity of 175 m/s to (1) validate the stability of the

numerical scheme and (2) emphasize the effects of a time-varying sea surface on seismic data.

In the second example, we use a more realistic SWH of ±5 m with the same apparent lateral
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Table 4.2 Differential operators as applied to particle velocity fields to updated pressure field
within an MFD scheme.

Differential operator Numerical operator To update

D1

[
u1
ξ

[
h, f , f

]]
L 1
h u

1
ξ

[
h, f , f

]
Pξ
[
f , f , f

]
D2

[
u2
ξ

[
f ,h, f

]]
L 2
h u

2
ξ

[
f ,h, f

]
Pξ
[
f , f , f

]
D3

[
u3
ξ

[
f , f ,h

]]
L 3
h u

3
ξ

[
f , f ,h

]
Pξ
[
f , f , f

]
D1

[
u1
ξ

[
h,h,h

]]
L 1
h u

1
ξ

[
h,h,h

]
Pξ
[
f ,h,h

]
D2

[
u2
ξ

[
f , f ,h

]]
L 2
f u

2
ξ

[
f , f ,h

]
Pξ
[
f ,h,h

]
D3

[
u3
ξ

[
f ,h, f

]]
L 3
f u

3
ξ

[
f ,h, f

]
Pξ
[
f ,h,h

]
D1

[
u1
ξ

[
f , f ,h

]]
L 1
f u

1
ξ

[
f , f ,h

]
Pξ
[
h, f ,h

]
D2

[
u2
ξ

[
h,h,h

]]
L 2
h u

2
ξ

[
h,h,h

]
Pξ
[
h, f ,h

]
D3

[
u3
ξ

[
h, f , f

]]
L 3
f u

3
ξ

[
h, f , f

]
Pξ
[
h, f ,h

]
D1

[
u1
ξ

[
f ,h, f

]]
L 1
f u

1
ξ

[
f ,h, f

]
Pξ
[
h,h, f

]
D2

[
u2
ξ

[
h, f , f

]]
L 2
f u

2
ξ

[
h, f , f

]
Pξ
[
h,h, f

]
D3

[
u3
ξ

[
h,h,h

]]
L 3
h u

3
ξ

[
h,h,h

]
Pξ
[
h,h, f

]
velocity as in the first example to highlight the significance of time-varying sea surfaces on

seismic data in the common-receiver domain.

4.4.1 Exaggerated sea state

In this example, we simulate the acoustic wavefield using a Marmousi II sub-model (Martin

et al., 2002), resampled at 1.5 m. We use a source placed at [ξ1, ξ3] = [900, 30] m that moves

at 5 m/s, and 1201 stationary receivers positioned at ξ3 = x3 = 250 m with a 1.5 m uniform

spacing. The source function is a linear sweep from 20 to 60 Hz of 0.5 s duration. Figure 4.4(a)

and Figure 4.4(b) shows snapshots of the seismic wavefield triggered by a moving source

assuming flat and rough sea surfaces, respectively. The time-varying sea-surface scenario is

characterized by amplitude and phase distortions because of the scattering effects on the

wavefield introduced by the rough sea surface, whereas the flat sea-surface case exhibits a
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Table 4.3 Differential operators as applied to pressure field to update uiξ within an MFD
scheme, where i = 1, 2, 3.

Differential operator Numerical operator To update

G1

[
Pξ
[
f , f , f

]]
L 1
f Pξ

[
f , f , f

]
uiξ
[
h, f , f

]
G2

[
Pξ
[
h,h, f

]]
L 2
hPξ

[
h,h, f

]
uiξ
[
h, f , f

]
G3

[
Pξ
[
h, f ,h

]]
L 3
hPξ

[
h, f ,h

]
uiξ
[
h, f , f

]
G1

[
Pξ
[
h,h, f

]]
L 1
hPξ

[
h,h, f

]
uiξ
[
f ,h, f

]
G2

[
Pξ
[
f , f , f

]]
L 2
f Pξ

[
f , f , f

]
uiξ
[
f ,h, f

]
G3

[
Pξ
[
f ,h,h

]]
L 3
hPξ

[
f ,h,h

]
uiξ
[
f ,h, f

]
G1

[
Pξ
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simpler radiation pattern for ghost reflections. We note that the source-side ghost reflections

are easily visible because of the significant source depth and long duration of the sweep.

Figure 4.5(a) and Figure 4.5(b) shows the corresponding shot gathers of the two simulations

in Figure 4.4(a) and Figure 4.4(b), respectively. The ghost reflections in the time-varying

sea-surface shot gather exhibit amplitude and phase distortions, making them less predictable

compared to the flat sea-surface shot-gather scenario (Figure 4.6). Because the wavefield

interacts with a time-varying sea surface, the ghost reflections vary in space and time. Further,

the ghost notches are dispersed and blurred. To see the profound effects of a time-varying sea

surface on reflection data, we repeat the numerical simulations for a stationary source, keeping

all other parameters unchanged. Figure 4.7(a) and Figure 4.7(b) shows a time-windowed

shot gathers after correlating with the stationary sweep. We can see that the continuity
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(a) (b)

Figure 4.4 Wavefield snapshots simulated using (a) flat and (b) rough sea surface with
±14 m SWH, showing distortions in ghost reflections because of the rough sea surface.

and amplitude of the seismic events are severely affected when the wavefield interacts with

a time-varying sea surface. Such effects make data processing challenging and reduce the

repeatability of seismic data.

4.4.2 Realistic sea state

In this example, we investigate the impact of time-varying sea surfaces on seismic data in

the common-receiver domain, especially since ocean-bottom data are commonly processed in

such a domain due to the sparse receiver sampling. We use the same simulation parameters

as in the previous example, but model 301 sources with a 6 m source spacing. Figure 4.8(a)

and Figure 4.8(b) shows shot gathers simulated with a flat and time-varying sea surface,

respectively. Under a realistic sea-state acquisition condition, the effects of a time-varying sea

surface, although present, are hardly visible because of the long duration of the sweep; the

ghost wavefield is scattered and dispersed and is thus easily masked by the wavefield generated

by later parts of the sweep. In fact, the two gathers are indistinguishable, making an inference

about the sea state from shot gathers challenging. Figure 4.8(c) and Figure 4.8(d) shows
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(a) (b)

Figure 4.5 Shot gathers for (a) flat and (b) rough sea surface with ±14 m SWH, showing
distortions in ghost reflections because of the rough sea surface.
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(a) (b)

Figure 4.6 Frequency-wavenumber spectra of shot gathers shown in (a) Figure 4.5(a) and (b)
Figure 4.5(b). The ghost notches in the flat sea surface case are symmetric and clearly
visible, whereas they are dispersed and blurred in the rough sea surface case.

(a) (b)

Figure 4.7 Time window of correlated shot gathers simulated using a stationary source with
(a) flat and (b) rough sea surface with ±14 m SWH. Events are easily trackable in the flat
sea surface case, unlike in the rough sea surface case.

95

CWP-1029



common-receiver gathers simulated with a flat and time-varying sea surface, respectively. In

the common-receiver domain, the effects of time-varying sea surfaces are easily noticeable

because different traces are simulated with different source positions and time-varying sea

surfaces, creating trace-to-trace jitter as also reported by Blacquière and Sertlek (2019).

Typical marine sources use a buoy to control their depth during acquisition (Laws and Kragh,

2002); accordingly, the depth of a marine source is measured relative to the sea surface

directly above the source. Thus, the incident wavefield that has not interacted with the sea

surface is also affected by the time-varying sea surface because of the variable source depth

(we inherently account for the variable source depth due to the rough sea surface in our

coordinate transformation). Therefore, the variable source depth also creates a trace-to-trace

jitter in the common-receiver domain (Figure 4.9. In a shot gather, however, the effect of a

variable-depth source manifests as time-dependent frequency shifts (i.e., Doppler effect) for

long sweeps.

4.5 Discussion

The time-varying nature of the sea surface poses a processing challenge, especially for

time-lapse (4D) studies, because false structures can appear in 4D difference sections even

for fairly calm sea states (Laws and Kragh, 2002). Further repeatability challenges arise

when considering moving and long-emitting sources, such as source/receiver positioning and

the interaction of long sweeps with the time-varying sea surface. Accurately accounting for

source motion and time-varying sea surface in modeling is essential for understanding the

effects of realistic acquisition conditions on seismic data. More importantly, modeling such

effects provides an opportunity to validate 4D seismic data processing workflows.

Modeling marine vibrator data in the presence of a time-varying sea surface requires

an MFD approach to ensure accuracy and numerical stability when the seismic wavefield

interacts with the time-varying free surface. MFD operators, as opposed to Taylor-based

coefficients, provide a uniform high-order accuracy throughout the modeling domain. Inac-

curate implementation of the FSBC introduces numerical artifacts, making the numerical
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(a) (b)

(c) (d)

Figure 4.8 Shot gathers for (a) flat and (b) rough sea surface with ±5 m SWH, and receiver
gathers for (c) flat and (d) rough sea surface with ±5 m SWH. The effects of a realistic rough
sea surface is more noticeable in the common-gather domain than the common-shot domain.
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(a) (b)

Figure 4.9 Time window of common-receiver gathers simulated using a moving source with
(a) flat and (b) rough sea surface with ±5 m SWH. A rough sea surface introduces
trace-to-trace jitter in the common-receiver domain because of the variable source depth
from one source point to the next.

scheme unstable (Konuk and Shragge, 2020). In addition, using an MFD scheme provides

required wavefield samples to compute cross-derivative terms; otherwise, it would require

expensive high-order wavefield interpolation when using an SSG scheme.

Modeling the time-dependent tensorial AWE in a generalized coordinate system requires

repeated interpolation of the subsurface physical properties (defined in Cartesian coordinates)

to conform to the time-varying mesh grid. To preclude that requirement, we introduce

depth-dependent decaying factors to confine the mesh deformation to the homogeneous

water layer, making the two coordinate systems identical below the ocean-bottom level. An

advantage of such an approach is that the wavefield can be sampled at and below the receivers

level without a need to interpolate it back to Cartesian coordinates.

4.6 Conclusions

We present a finite-difference approach to model the full acoustic wavefield triggered by a

moving source in the presence of a time-varying sea surface. The developed approach employs

a time-dependent coordinate transformation to solve the tensorial acoustic wave equation
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on a uniformly spaced and time-invariant computational domain. Although we assume the

source moves at a constant velocity and depth level, incorporating a variable source velocity

and depth is straightforward. This work is not limited to modeling marine vibrator data, but

can also model towed-streamer data.

The numerical examples demonstrate that the effects of a time-varying sea surface can be

clearly observed in the shot domain for an exaggerated sea state. However, the effects of a

realistic time-varying sea surface on seismic data are hardly visible in the shot domain, but

clearly visible in the common-receiver domain. The sea-surface effects can have consequences

on seismic data processing and imaging, and on subsequent seismic data interpretation and

attribute analyses. The developed approach provides a tool to validate marine vibrator data

processing and understand the consequences of a moving source and time-varying sea surface

on seismic imaging and inversion.
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4.9 APPENDIX: Taylor-based coefficients to approximate advection terms

The 1D Taylor-based differential operators we use to approximate the advection terms in

equation 4.16 are

1

840



−1750 3360 −2520 1120 −210 0 · · · · · · · · ·
−210 −700 1260 −420 70 0 · · · · · · · · ·

70 −560 0 560 −70 0 · · · · · · · · ·
0 70 −560 0 560 −70 0 · · · · · ·
...

. . . . . . . . . . . . . . . . . . . . .
...

· · · · · · 0 70 −560 0 560 −70 0
· · · · · · · · · 0 70 −560 0 560 −70
· · · · · · · · · 0 −70 420 −1260 700 210
· · · · · · · · · 0 210 −1120 2520 −3360 1750


and

1

840



−2816 3675 −1225 441 −75 0 · · · · · · · · ·
−768 140 840 −252 40 0 · · · · · · · · ·
256 −840 140 504 −60 0 · · · · · · · · ·
0 70 −560 0 560 −70 0 · · · · · ·
...

. . . . . . . . . . . . . . . . . . . . .
...

· · · · · · 0 70 −560 0 560 −70 0
· · · · · · · · · 0 60 −504 −140 840 −256
· · · · · · · · · 0 −40 252 −840 −140 768
· · · · · · · · · 0 75 −441 1225 −3675 2816


,

which we use to update the pressure wavefield at full- and half-integer grids, respectively.

The coefficients of the differential operators are computed for a five-point stencil using the

method developed by Fornberg (1988).
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CHAPTER 5

REVERSE-TIME MIGRATION OF MARINE VIBRATOR DATA

A paper submitted to Geophysics1.

Khalid Almuteri2,3,4, Paul Sava5, and Jeffrey Shragge5

Marine vibrators are viable alternatives to seismic air guns in ocean-bottom acquisition

due to their less adverse impact on the environment, their ability to generate more lower

frequency content, and their suitability for simultaneous acquisition. However, mobile marine

vibrators introduce a unique set of processing and imaging challenges for ocean-bottom

acquisition, the main examples of which are the Doppler effect and the time-dependent

source-receiver offsets, which are not features of conventional marine acquisition. Standard

seismic data processing and imaging techniques assume stationary sources and are not fully

suitable for mobile marine vibrator data without modification. Not accounting for source

motion in seismic imaging introduces phase change and mispositioning of imaged structures.

Further, ignoring source motion effects in imaging workflow may lead to the estimation

of inaccurate migration velocity models or imply the use of incorrect migration velocity,

e.g., in seismic-to-well ties. We develop a reverse-time migration (RTM) approach that

accounts for the source-motion effects and is capable of producing accurate subsurface images,

closely matching stationary acquisition and imaging results. Synthetic examples illustrate

the ability of the proposed method to construct accurate subsurface RTM images even for

source velocities higher than are commonly used in typical marine acquisition. Our approach

is not limited to imaging mobile marine vibrator data in ocean-bottom acquisition, but is

also applicable to mobile streamer data using marine vibrators or seismic air-gun sources.

1Reprinted with permission of Geophysics.
2Graduate student, Center for Wave Phenomena, Department of Geophysics, Colorado School of Mines
3Saudi Aramco
4Author for correspondence
5Professor, Center for Wave Phenomena, Department of Geophysics, Colorado School of Mines.
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5.1 Introduction

Conventional marine impulsive sources (i.e., air guns) raise concerns over their impact on

marine ecosystems, renewing an interest in environmentally less adverse marine vibrators as

viable alternatives (Laws et al., 2019). However, marine vibrators are not only attractive

for their low environmental impact, but also advantageous from an exploration point of

view because they provide data with lower frequencies compared to those acquired using air

guns (Guitton et al., 2021). Further, by blending phase-encoded sources, marine vibrators

facilitate simultaneous acquisition (Laws et al., 2019), reducing acquisition time, which is

more challenging to achieve using conventional air guns (e.g., Wason and Herrmann, 2013).

However, because marine vibrators are in continuous motion and have a long sweep duration,

they introduce Doppler and time-dependent source-receiver offset effects in ocean-bottom

acquisition. Therefore, source motion creates new processing and imaging challenges unique

to such acquisition scenarios.

Conventional seismic imaging techniques assume stationary sources or negligible source

motion. One such technique is reverse-time migration (RTM) (Baysal et al., 1983; McMechan,

1983; Whitmore, 1983). The concept of RTM follows the Claerbout (1971) imaging principle:

a reflector exists at a point (x, y, z) in space where a forward-propagating source wavefield and

a backward-propagating receiver wavefield coincide in time. RTM requires the simultaneous

availability of source and receiver wavefields to perform wavefield matching through an

imaging condition. Neglecting source-motion effects in RTM can introduce artifacts in the

final image or inaccuracies in phase and position of imaged structure (Guitton et al., 2021).

In this paper, we present a solution to account for source-motion effects in seismic

wavefields. We compute the wavefields required by RTM using the acoustic wave equation

(AWE) in a generalized coordinate system that takes into account source motion effects. Our

approach uses coordinate transformations to map the physical domain tracking the moving

source, to a regular fixed computational domain, enabling modeling wavefields triggered by

moving sources. We demonstrate that such an approach produces accurate subsurface images
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as if the acquisition were conducted using stationary sources. This computational strategy

thus enables the widespread use of marine vibrator sources for high-end techniques like RTM

and full-waveform inversion.

5.2 Theory

In this section, we derive the generalized second-order AWE that can model the seismic

wavefield triggered by a moving source. We do this by employing a tensorial approach to

transform the time-varying physical Cartesian coordinate system x into a static generalized

coordinate system ξξξ that represents a uniform computational mesh. We also formulate

the RTM imaging approach, including the imaging condition. We formulate the associated

forward and adjoint operators of the derived AWE in a generalized coordinate system in

Appendix 5.9.1 and derive the Born modeling source term in Appendix 5.9.2.

5.2.1 Tensorial AWE

The AWE in a generalized coordinate system defined by the variables ξ = [ξ0, ξ1, ξ2, ξ3]

(Konuk and Shragge, 2020) is

�ξPξ = Fξ, (5.1)

where �ξ is the generalized d’Alembert operator, Pξ is the pressure field, and Fξ is the

source function. The ξ0 coordinate is a time-like axis (time scaled by medium velocity) and

(ξ1, ξ2, ξ3) are space-like components. The generalized coordinate system ξ is related to a

Cartesian physical domain defined by x = [x0, x1, x2, x3] = [ct, x, y, z] through one-to-one

mappings x = x(ξ) and ξ = ξ(x). The generalized d’Alembert operator is

�ξ =
−1√
|g|

∂

∂ξµ

(√
|g|gµν ∂

∂ξν

)
, µ, ν = 0, 1, 2, 3, (5.2)

where [gµν ] is a contravariant metric tensor defined as the inverse of a covariant metric tensor

[gµν ] whose elements are

gµν =
∂xi

∂ξµ
∂xi

∂ξν
for i, µ, ν = 0, 1, 2, 3, (5.3)
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and |g| is the determinant of [gµν ]. Note that repeated indices in equation 3.3 imply summation.

In a Cartesian coordinate system the generalized d’Alembert operator (equation 5.2) reduces

to

� =
−1

c2

∂2

∂t2
+∇2, (5.4)

where c(x, y, z) is the Cartesian medium velocity and ∇2 is the Cartesian Laplacian operator.

To model wavefields excited by a moving source, we define a coordinate transformation

that maps a horizontally deformed physical domain to a regular computational domain. The

deformation in the physical domain is introduced to track the source movement and defined

to be depth dependent; thus, the deformation is space and time dependent. To define such a

coordinate transformation, we make assumptions (i.e., the source moves along the x1-axis

at a constant depth and velocity in a homogeneous medium), which allow us to express the

relationship between the ξ- and x-coordinate systems as
x0

x1

x2

x3

 =


ξ0

ξ1 + v
c
ξ0eγ(sz−ξ3)

ξ2

ξ3

 =


cτ

ξ1 + vτeγ(sz−ξ3)

ξ2

ξ3

 , (5.5)

where v is the source velocity, γ is a user-defined decay factor that controls the amount of

horizontal deformation as a function of depth (to confine the deformation to the homogeneous

water layer), sz is the source depth, and ξ0 = cτ where τ = t. Note that t and τ are the

time axis in the Cartesian and generalized coordinate systems, respectively. Therefore, the

second-order AWE for a deformed source-tracking mesh is

1

c2

∂

∂τ

(
∂Pξ
∂τ

)
=

2vα

c2

∂

∂ξ1

(
∂Pξ
∂τ

)
+

[
γ2τ 2v2α2 − v2α2

c2

]
∂

∂ξ1

(
∂Pξ
∂ξ1

)
− γ2τvα

∂Pξ
∂ξ1

+ 2γτvα
∂

∂ξ1

(
∂Pξ
∂ξ3

)
+∇2

ξPξ + Fξ,

(5.6)

where α = eγ(sz−ξ3) and ∇2
ξ = ∂

∂ξi

(
∂
∂ξi

)
, and where we assume the medium velocity is slowly

varying (i.e., ∂c
∂ξi
≈ 0 for i = 1, 2, 3).
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To avoid artificial reflections from the boundary region, we add a sponge layer with a

damping term (Kosloff and Kosloff, 1986; Sochacki et al., 1987) to equation 5.6 such that

1

c2

∂

∂τ

(
∂Pξ
∂τ

)
=

2vα

c2

∂

∂ξ1

(
∂Pξ
∂τ

)
+

[
γ2τ 2v2α2 − v2α2

c2

]
∂

∂ξ1

(
∂Pξ
∂ξ1

)
− γ2τvα

∂Pξ
∂ξ1

+ 2γτvα
∂

∂ξ1

(
∂Pξ
∂ξ3

)
+∇2

ξPξ − η
∂Pξ
∂τ

+ Fξ,

(5.7)

where η is a damping factor that is zero inside the modeling domain and increasing away

from it.

5.2.2 Reverse-time migration

We can define seismic data modeled in generalized coordinates due to a moving source dx

as

dx = DSxLξm, (5.8)

where m is an image (or estimated reflectivity) of the subsurface, Lξ is the generalized

demigration operator, Sx is a mapping operator from the generalized to the Cartesian

coordinate system, and D is the data acquisition (or extractor) operator. For ocean-bottom

acquisition and a judicious choice of the parameter γ, DSx ≈ D and no interpolation

to Cartesian coordinates is required because the second term on the right-hand side of

equation 5.5 will be negligible. One can reconstruct a subsurface image using the adjoint

operators L†ξ and D† such that

m = L†ξD
†dx, (5.9)

where D† is an injector operator, and L†ξ is the migration operator. The migration operator

L†ξ backpropagates (processed) recorded data dx, computes the receiver wavefield Ur, and

applies an imaging condition that involves the source wavefield Us given by

Us = SxLξm. (5.10)
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Assuming ocean-bottom acquisition where receivers are stationary, one can compute the

receiver wavefield using a Cartesian finite-difference AWE solver. In the case of ocean-bottom

acquisition, and again with a judicious choice of γ, many terms in the generalized AWE

will be negligible (i.e., produces no significant wavefield contribution). Ignoring these terms

reduces equation 5.6 to the Cartesian-based AWE; thus, one only needs to solve the AWE in

a generalized coordinate system to compute the source wavefield in RTM.

To construct a subsurface image, one needs to use an imaging condition to compare the

source and receiver wavefields. A common imaging condition is the zero-lag cross-correlation,

which is suitable for data acquired using impulsive sources (e.g., air guns). However, for

long-duration sources (e.g., marine vibrators), the zero-lag cross-correlation imaging condition

produces images with strong artifacts. Alternatively, the deconvolution imaging condition

improves seismic resolution (Poole et al., 2010), making it a more suitable imaging condition

for long-duration sweeps. A frequency-domain deconvolution imaging condition is

m(x, y, z) = <

[∑
e

∑
ω

UsUr

UsUs + ε

]
, (5.11)

where Us(x, y, z, ω) is the complex conjugate of Us(x, y, z, ω), ε is a stabilization factor to

avoid division by zero, and summation is over different frequencies (ω) and experiments (e).

5.3 Numerical Example

In this section, we present numerical examples to demonstrate the effectiveness of our

imaging approach and investigate the magnitude of mispositioning of imaged structures when

source motion effects are ignored in RTM. In our investigation, we consider the consequences

of source motion direction, sweep duration, and the image structure on the magnitude of

mispositioning.

5.4 Marmousi model

To illustrate the effectiveness of our imaging approach, we run a test using a subset of

the Marmousi II model (Figure 5.1). We simulate stationary and mobile datasets using the
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acquisition parameters given in Table Table 5.1. For moving source acquisition, we use a

source boat velocity of 15 m/s, which is faster than typical 2− 3 m/s of conventional marine

acquisition. This is done to highlight the significance of source motion on seismic imaging as

well as the ability of our method to accurately image the subsurface under an unrealistically

high source velocity.

(a)

Figure 5.1 Marmousi II velocity submodel (quantity c in equation 5.7) used to validate the
developed RTM imaging framework.

Figure 5.2 shows the RTM image generated using stationary acquisition and imaging,

which we consider as the reference case. Figure 5.3(a) shows the RTM image of moving-source

acquisition and stationary imaging, ignoring source motion effects. At first glance the RTM

results look similar; however, the difference between (1) stationary acquisition and imaging

and moving sources acquisition and (2) stationary imaging (Figure 5.3(b)) shows a phase

change and mispositioning of imaged structures. These observations are consistent with

those reported in Guitton et al. (2021). Taking vertical profiles from the two RTM results

at x1 = 1.25 km (Figure 5.4), clearly shows that ignoring source-motion effects in imaging
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Table 5.1 Moving source acquisition parameters for the Marmousi example.

parameter value

sweep duration 1 s

listening time 2 s

total time 3 s

sweep type linear

minimum frequency 20 Hz

maximum frequency 40 Hz

source depth 12.5 m

source xmin 50 m

source xmax 2450

source interval 25 m

source velocity 15 m/s

receiver depth 600 m

receiver xmin 25 m

receiver xmax 2475 m

receiver spacing 2.5 m

also affects the amplitude of imaged structures. Such issues could falsely imply an erroneous

velocity model, inaccurate source and/or receiver coordinate positioning, or a combination of

both.

Taking source motion into consideration when computing the source wavefield (i.e., using

a moving imaging procedure) produces an image (Figure 5.5(a)) that closely matches that

obtained from the stationary acquisition and imaging, with negligible discrepancies between

the two results (Figure 5.5(b)). However, the two images are not identical for two potential

reasons. First, the source wavefield in the moving source acquisition is influenced by the

Doppler effect due to the source motion, whereas the source wavefield in the stationary source

acquisition case is free of such effect; thus, the frequency bandwidth changed between the two

acquisition scenarios (Figure 5.6), in principle changing the seismic resolution. However, given
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(a)

Figure 5.2 Reference RTM image for stationary acquisition and imaging.

the relatively slow source velocity compared the acoustic medium velocity (two-to-three orders

of magnitude for our choice of acquisition parameters), the Doppler effect is an irrelevant

reason and should not contribute significantly to the discrepancies between the two RTM

images. Second, the subsurface is illuminated differently in the two acquisitions, which makes

the recorded data different between the two acquisition geometries (e.g., different amplitude-

versus-angle for different frequencies). Therefore, different portions of the wavefield are

recorded by the two acquisitions, which we assert is the primary reason for the discrepancies

between the two RTM images. Figure 5.7 shows vertical profiles at x1 = 1.25 km from (1)

stationary acquisition and imaging and (2) mobile acquisition and imaging. The two profiles

closely match in amplitude and phase, demonstrating the robustness of our approach to

imaging marine vibrator data, even for data acquired using a high source velocity.

To quantify the magnitude of image mispositioning, we use optical flow estimation (Pérez

et al., 2013; Wedel et al., 2009; Zach et al., 2007) to determine the displacement vector field of

each point in the subsurface between the RTM image generated using stationary acquisition

and imaging (Figure 5.2) and the RTM image of moving-source acquisition and stationary
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(a)

(b)

Figure 5.3 (a) RTM image for mobile acquisition and stationary imaging. (b) Difference
image between Figure 5.2 and Figure 5.3(a). The difference image shows phase change and
mispositioning of imaged structures ignoring source-motion effects in imaging.
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(a)

Figure 5.4 Vertical profiles at x1 = 1.25 km (solid curve) from stationary acquisition and
imaging (Figure 5.2), and (dashed curve) from mobile acquisition and stationary imaging
(Figure 5.3(a)). The vertical profiles clearly illustrate the changes in phase and amplitude as
a result of ignoring source-motion effects in imaging.

imaging (Figure 5.3(a)). This vector field can be used in image warping (e.g., Glasbey

and Mardia, 1998) to kinematically correct the RTM image of moving-source acquisition

and stationary imaging to structurally match the RTM image generated using stationary

acquisition and imaging. Figure 5.8(a) shows the kinematic correction vector field overlaying

the RTM image of moving-source acquisition and stationary imaging (Figure 5.3(a). To

correct for source motion in the image domain, we would need to shift the imaged structures

in the source motion direction. Figure 5.8(b) shows the magnitude of correction for each

point in the RTM image. In this example, the shift magnitude is 3.1 m on average. Changing

the source motion direction from right-going to left-going (from 15 m/s to −15 m/s) confirms

that source motion direction plays a role in the imaged structures mispositioning in RTM.

For a left-going source, we would need to shift the imaged structures by approximately 3.4 m

to the left to correct for source motion effects in the RTM image (Figure 5.9).

5.5 Dipping reflectors model

To investigate the effects of sweep duration and imaged structure dip on the magnitude of

mispositioning, we use a constant velocity of 1.5 km/s with four different-dipping reflectors

(Figure 5.10). We simulate stationary and mobile datasets using the acquisition parameters
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(a)

(b)

Figure 5.5 (a) RTM image for mobile acquisition and imaging. (b) Difference image between
Figure 5.2 and Figure 5.5(a). The difference image shows that the developed approach can
correctly account for source-motion effects and imaged structures are correctly positioned.

112

CWP-1029



(a)

Figure 5.6 Magnitude spectra extracted from the source wavefield at (x1, x3) = (1.25, 1.3) km
(solid) from stationary acquisition and (dashed) from mobile acquisition. The frequency
bandwidth change between the two acquisitions, although observable, is negligible.

(a)

Figure 5.7 Vertical profiles at x1 = 1.25 km (solid curve) from stationary acquisition and
imaging (Figure 5.2), and (dashed curve) from mobile acquisition and imaging
(Figure 5.5(a)). The vertical profiles from the two acquisition and imaging scenarios closely
match, demonstrating the robustness of the developed approach to account for source motion
effects in imaging.
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(a)

(b)

Figure 5.8 (a) Kinematic correction vector field overlaying the RTM image for mobile
acquisition and stationary imaging for a right-going source. (b) Kinematic correction vector
field overlaying the magnitude of the vector field. The kinematic correction vector field
points toward the source motion direction.
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(a)

(b)

Figure 5.9 (a) Kinematic correction vector field overlaying the RTM image for mobile
acquisition and stationary imaging for a left-going source. (b) Kinematic correction vector
field overlaying the magnitude of the vector field. The kinematic correction vector field
points toward the source motion direction.
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given in Table Table 5.2. In the mobile acquisition scenario, we simulate moving-source data

using a short- and long-duration sweep for 1 s and 6 s, respectively, and a 2 s listening time

for both simulations. In the short-duration sweep, the source velocity is 15 m/s, i.e., the

source moves 15 m while sweeping. However, in the long-duration sweep, the source velocity

is 5 m/s, i.e., the source moves 30 m while sweeping.

Table 5.2 Moving source acquisition parameters for the dipping reflectors example.

parameter value (short sweep) value (long sweep)

sweep duration 1 s 6 s

listening time 2 s 2 s

total time 3 s 8 s

sweep type linear linear

minimum frequency 20 Hz 20 Hz

maximum frequency 40 Hz 40 Hz

source depth 12.5 m 12.5 m

source xmin 50 m 50 m

source xmax 2450 2450

source interval 25 m 25 m

source velocity 15 m/s 5 m/s

receiver depth 600 m 600 m

receiver xmin 25 m 25 m

receiver xmax 2475 m 2475 m

receiver spacing 2.5 m 2.5 m

Figure 5.11(a) shows the kinematic correction vector field when using a short-duration

sweep. Similar to the Marmousi example (Figure 5.8 and Figure 5.9), the vector field points

toward the source motion direction. In this case, the average amount of shifts required to

correct the RTM image is 1.9 m (Figure 5.11(b)). However, for the long-duration sweep

(Figure 5.12(a)), the average amount of shifts increases to 2.6 m (Figure 5.12(b)) because

the source sweeps over a longer distance. In both cases, the horizontal reflector is the least
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affected when ignoring source motion in imaging. The shift magnitude is more significant

for shallow targets than deep targets. In addition, whereas the dip angle increases, the shift

required to account for source motion in the image domain also increases. However, for

the steeply dipping reflector (45◦), the shift magnitude decreases, which is a result of poor

illumination of the steeply dipping reflector.

(a)

Figure 5.10 Dipping reflectors model used to investigate the effects of sweep duration and
dipping angle on imaging marine vibrator data.

5.6 Discussion

As may be expected, neglecting the time-dependent source-receiver offsets in RTM

produces erroneous subsurface images. For low source velocities, the Doppler effect is

negligible, as predicted by Doppler (1842) theory, and the time-dependent source-receiver

offsets is the primary reason for such erroneous imaging. Further, source motion during a

non-impulsive source activation complicates velocity model building because neglecting source
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(a)

(b)

Figure 5.11 (a) Kinematic correction vector field overlaying the RTM image for mobile
acquisition and stationary imaging for a short-duration sweep acquisition. (b) Kinematic
correction vector field overlaying the magnitude of the vector field.
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(a)

(b)

Figure 5.12 (a) Kinematic correction vector field overlaying the RTM image for mobile
acquisition and stationary imaging for a long-duration sweep acquisition. (b) Kinematic
correction vector field overlaying the magnitude of the vector field.
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motion effects causes the velocity model building process to incorporate errors (e.g., from

the incorrect source estimation). In this work, we present an RTM approach for subsurface

imaging using marine vibrator data that accounts for the moving source. The developed

approach uses a coordinate transformation to compute the required source and receiver

wavefields used to evaluate the deconvolution imaging condition. Further, for a judicious

choice of grid parameters in ocean-bottom acquisition, one can compute the receiver wavefield

using a Cartesian finite-difference AWE solver.

Our examples show that source motion direction, depth of target, and structural dip

play a role in the mispositioning direction and magnitude. The magnitude of correction

required to kinematically account for source motion effects is proportional to sweep duration.

Further investigation is needed to understand the effects of ignoring source motion on RTM

results (e.g., emergence angle, sweep bandwidth, and offset-depth ratio). There are other

RTM-related issues (e.g., Guitton et al., 2007; Poole et al., 2010; Schleicher et al., 2008) to

consider when imaging marine vibrator data, e.g., stability of deconvolution imaging condition

and cross-talk, which we leave for future work.

The numerical results demonstrate that our proposed method can accurately image

complex subsurface structures even with unrealistically high motion of the mobile marine

vibrator source, which typically not incorporated in conventional field data acquisition. In

conventional streamer data acquisition, even though air guns are (relatively) instantaneous,

streamers are in continuous motion, which introduces the Doppler effect to the data. Therefore,

our proposed method is not limited to marine vibrator data, but can also be used to improve

imaging techniques in any scenario with mobile streamers. Future work involves incorporating

a dynamic sea surface to mimic more realistic marine vibrator acquisition scenarios and using

our approach on field data, including conventional streamer data.

5.7 Conclusions

This work presents an RTM imaging solution for mobile marine acquisition that does

not require a specialized preprocessing workflow to account for the source motion effects in
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data prior to RTM imaging. The approach inherently accounts for source-motion effects by a

judicious choice of coordinate transformation that uses the source vessel velocity. There is

an added computational cost to account for the source motion effects in the AWE, but it

also increases the accuracy and robustness of the results when modeling and imaging marine

vibrator data. The numerical results show that ignoring source motion effects incorrectly

image structures by changing the phase and amplitude of the recorded waveforms compared to

stationary acquisition and imaging. This result demonstrates the robustness of the proposed

approach, even for a unreasonably fast source motion that is typically not used in field

acquisition.
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5.9.1 APPENDIX: Adjoint modeling operator

To formulate the adjoint AWE to equation 5.7, we rewrite it in terms of differential

operator such that
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∂2Pξ
∂τ 2

= R
∂Pξ
∂τ

+ M1Pξ −M2Pξ −HPξ + TPξ + NPξ −Q
∂Pξ
∂τ

+ Fξ, (5.12)

= R
∂Pξ
∂τ

+ APξ −Q
∂Pξ
∂τ

+ Fξ, (5.13)

where A = M −H + T + N and M = M1 −M2, and the differential forward operators

are given in Table 5.3. Discretizing equation 5.13 with respect to time using a first- and

second-order approximations for the first- and second-order derivatives, respectively, results

in

P+
ξ − 2P 0

ξ + P−ξ
∆τ 2

=
1

∆τ
R
(
P 0
ξ − P−ξ

)
+ AP 0

ξ −
1

2∆τ
Q
(
P+
ξ − P

−
ξ

)
+ F 0

ξ , (5.14)

where P+
ξ , P 0

ξ , and P−ξ indicate the wavefield at a future, current, and a previous time-step,

respectively. Re-ordering equation 5.14 to group wavefields at same time steps gives

(
1

∆τ 2
+

1

∆τ
R− 1

2∆τ
Q

)
P−ξ −

(
2

∆τ 2
+

1

∆τ
R + A

)
P 0
ξ

+

(
1

∆τ 2
+

1

2∆τ
Q

)
P+
ξ = F 0

ξ .

(5.15)

In matrix-vector notation, we can write equation 5.14 as



−
(

2
∆τ2

+ 1
∆τ

R + A
) (

1
∆τ2

+ 1
2∆τ

Q
)

0 . . .(
1

∆τ2
+ 1

∆τ
R− 1

2∆τ
Q
)
−
(

2
∆τ2

+ 1
∆τ

R + A
) (

1
∆τ2

+ 1
2∆τ

Q
)

. . .

0
(

1
∆τ2

+ 1
∆τ

R− 1
2∆τ

Q
)
−
(

2
∆τ2

+ 1
∆τ

R + A
)

. . .
...

...
...

. . .





P 0
ξ

P 1
ξ

P 2
ξ
...


=



F 0
ξ

F 1
ξ

F 2
ξ
...


(5.16)

which we can write in a compact form as

WPξ = Fξ. (5.17)

Therefore, the adjoint equation has the equivalent matrix form

W†Fξ = Pξ, (5.18)
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which expands to



−
(

2
∆τ2

+ 1
∆τ

R† + A†
) (

1
∆τ2

+ 1
∆τ

R† − 1
2∆τ

Q†
)

0 . . .(
1

∆τ2
+ 1

2∆τ
Q†
)

−
(

2
∆τ2

+ 1
∆τ

R† + A†
) (

1
∆τ2

+ 1
∆τ

R† − 1
2∆τ

Q†
)

. . .

0
(

1
∆τ2

+ 1
2∆τ

Q†
)

−
(

2
∆τ2

+ 1
∆τ

R† + A†
)

. . .
...

...
...

. . .





F 0
ξ

F 1
ξ

F 2
ξ
...


=



P 0
ξ

P 1
ξ

P 2
ξ
...


(5.19)

where A† = M† −H† + T† + N† and M† = M†
1 −M†

2, and the differential adjoint operators

are given in Table 5.3. equation 5.19 can be re-written in a similar format to equation 5.15 as

(
1

∆τ 2
+

1

2∆τ
Q†
)
F−ξ −

(
2

∆τ 2
+

1

∆τ
R† + A†

)
F 0
ξ +

(
1

∆τ 2
+

1

∆τ
R† − 1

2∆τ
Q†
)
F+
ξ = P 0

ξ .

(5.20)

We can respectively write equations 5.15 and 5.20 in a time recursion representation as

(
1 +

∆τ

2
Q

)
P+
ξ = 2P 0

ξ + ∆τR
(
P 0
ξ − P−ξ −

)
+ ∆τ 2

(
AP 0

ξ + F 0
ξ

)
+

∆τ

2
QP−ξ − P

−
ξ (5.21)

and

(
1 +

∆τ

2
Q†
)
F−ξ = 2F 0

ξ + ∆τR†
(
F 0
ξ − F+

ξ

)
+ ∆τ 2

(
A†F 0

ξ + P 0
ξ

)
+

∆τ

2
Q†F+

ξ − F
+
ξ (5.22)

The forward and adjoint time recursion equations (equations 5.21 and 5.22) show that the

receiver wavefield computed by a simple time reversal is not equivalent to the adjoint wavefield,

although the time-stepping solutions are similar for the forward and adjoint operation

formulated forward and backward in time, respectively. In ocean-bottom acquisition, one can

compute the receiver wavefield using the Cartesian AWE adjoint for simplification because

receivers are stationary, although using equation 5.22 is the appropriate approach. This

simplification is not applicable when using our imaging procedure on streamer data because

receivers are in continuous motion.
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Table 5.3 Forward and adjoint operators within the AWE for a moving source.

forward operator adjoint operator

R = 2vα ∂
∂ξ1

R† = 2vα ∂
∂ξ1

(self-adjoint)

M1 = γ2τ 2v2α2c2 ∂
∂ξ1

(
∂
∂ξ1

)
M†

1 = ∂
∂ξ1

(
∂
∂ξ1

)
γ2τ 2v2α2c2

M2 = v2α2 ∂
∂ξ1

(
∂
∂ξ1

)
M†

2 = v2α2 ∂
∂ξ1

(
∂
∂ξ1

)
(self-adjoint)

H = γ2τvαc2 ∂
∂ξ1

H† = ∂
∂ξ1
γ2τvαc2

T = 2γτvαc2 ∂
∂ξ1

(
∂
∂ξ3

)
T† = ∂

∂ξ1

(
∂
∂ξ3

)
2γτvαc2

N = c2∇2 N† = ∇2c2

Q = c2η Q† = c2η (self-adjoint)

5.9.2 APPENDIX: Born modeling (single scattering)

To derive the Born modeling source term, we start by splitting the seismic wavefield into

a background or incident wavefield (P◦) and a perturbation or scattered wavefield (δP ), such

that the total wavefield is P = P◦ + δP (omitting the subscript ξ for clarity). Also, we split

the acoustic medium velocity into a background velocity (c◦) and perturbation velocity (δc),

such that the total medium velocity is c = c◦ + δc. Next, we define a generic functional

B(P, c) of P and c such that

B(P, c) :=

[
1

c2

(
∂2

∂τ 2
− R̃

∂

∂τ
+ M̃2

)
− M̃1 + H̃− T̃− Ñ + Q̃

∂

∂τ

]
P − F, (5.23)

where B(P, c) = 0 and the tilde over the differential operators imply χ̃ ≡ 1
c2
χ. Given a

background velocity (c◦) and a source function (F ), the background wavefield (P◦) is given by

B(P, c)|p◦,c◦ = 0 (5.24)

or in expanded form is[
1

c2
◦

(
∂2

∂τ 2
− R̃

∂

∂τ
+ M̃2

)
− M̃1 + H̃− T̃− Ñ + Q̃

∂

∂τ

]
P◦ − F = 0, (5.25)

which can be rewritten as

∂2P◦
∂τ 2

=

[
R
∂

∂τ
+ A−Q

∂

∂τ

]
P◦ + F. (5.26)
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Now, Given the background velocity (c◦); background wavefield (p◦); and perturbation velocity

(δc), we compute wavefield perturbation (δp) by linearizing B relative to the background

wavefield (P◦) and background velocity model (c◦) such that

dB|P◦,c◦
=
∂B

∂P

∣∣∣∣
P◦,c◦

δP +
∂B

∂c

∣∣∣∣
P◦,c◦

δc, (5.27)

where

∂B

∂P

∣∣∣∣
P◦,c◦

δP =

[
1

c2
◦

(
∂2

∂τ 2
− R̃

∂

∂τ
+ M̃2

)
− M̃1 + H̃− T̃− Ñ + Q̃

∂

∂τ

]
δP (5.28)

and

∂B

∂c

∣∣∣∣
P◦,c◦

δc =
−2δc

c3
◦

(
∂2

∂τ 2
− R̃

∂

∂τ
+ M̃2

)
P◦. (5.29)

Using equations 5.27-5.29, the perturbation wavefield can be written as

∂2δP

∂τ 2
=

[
R
∂

∂τ
+ A−Q

∂

∂τ

]
δP +

2δc

c◦

(
∂2

∂τ 2
− R̃

∂

∂τ
+ M̃2

)
P◦. (5.30)

The advantage of using Born modeling (equations 5.26 and 5.30) is that seismic data can be

modeled under the assumption of single scattering and without including unwanted signal

(e.g., direct arrivals, refractions, multiples), which is useful for validating imaging algorithms

(e.g., RTM) especially given that most such algorithms assume single scattering (Sava and

Hill, 2009).
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CHAPTER 6

CONCLUSIONS

In this thesis, I propose various approaches to modeling, processing, and imaging relevant

to marine seismic data. In Chapter 2, I develop a convolutional neural network (CNN)

solution to remove source- and receiver-side ghost reflections for pressure data acquired

using horizontal streamers. I review the theory of ghost reflections and proposed solutions

in the literature and review the principles of CNNs highlighting features that make this

approach feasible for deghosting. I generate pairs of ghost-free and ghost-contaminated data

for training of the neural network using modeling with an absorbing air-water interface. To

model ghost reflections, I use virtual sources and receivers above the air-water interface. I

also experimentally build and train a neural network to map ghost-contaminated gathers to

corresponding ghost-free gathers using supervised learning. To demonstrate the effectiveness

of the solution, I test the developed CNN-based deghosting operator using synthetic and

field data. In all numerical results, I train the NN with noise-free data; thus, showing the

developed deghsoting approach is robust to random noise in field data.

In Chapter 3, I develop the theory and numerical approach for modeling moving and

long-emitting sources, i.e., marine vibrators. To model marine vibrator data under quiescent

sea-surface conditions, I use a coordinate transformation to map an irregular and time-

varying physical domain that horizontally shears to track the source movement to a regular

computational domain that is regularly spaced and fixed in time. The time-varying physical

mesh grid is formulated in Cartesian coordinates, whereas the computational domain is defined

in a generalized coordinate system. I use a second-order formulation of the tensorial acoustic

wave equation to model moving source data. I demonstrate the robustness of the developed

approach using synthetic examples with unrealistically high source velocities. Additionally, I

formulate an analytical expression to predict frequency shifts (Doppler effect) due to source
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motion in heterogeneous media and derive an analytical expression of the Green’s function

that predicts the seismic wavefield triggered by a moving source in 3D homogeneous media.

I use the formulated analytical expression to validate the correctness and accuracy of the

developed theory and modeling approach. Furthermore, I investigate the effects of source

motion on recorded seismic data and ghost reflections, as well as the implications of velocity

model heterogeneity on frequency shifts due to source motion.

In Chapter 4, I extend the work done in Chapter 3 to incorporate a time-varying free-

surface boundary condition (i.e., time-varying sea-surface effects) into seismic modeling. The

modeling approach I adopt is similar to that in Chapter 3. However, I use a first-order

coupled-system tensorial formulation of the acoustic wave equation (that accounts for velocity

model heterogeneity). A common element between Chapters 3 and 4 is the introduction of

user-defined parameters that confine the physical mesh deformation to the homogeneous water

layer, thus avoiding the need for a repeated and computationally expensive interpolation of

the velocity model from Cartesian coordinates to a generalized coordinate system or of the

seismic wavefield from a generalized coordinate system to Cartesian coordinates. I examine

the accuracy and stability of the developed modeling approach using complex velocity models

with realistic and unrealistic time-varying sea surfaces. Additionally, I investigate the effects

source movement and a dynamic sea surface have on ocean-bottom data.

In Chapter 5, I exploit the developed methodology in Chapter 3 to image marine vibrator

data, taking into consideration source motion effects. Within this chapter, I formulate

the theoretical framework for imaging that includes: (1) forward modeling operator, (2)

adjoint modeling operator, and (3) Born approximation modeling operator. I numerically

demonstrate that the developed imaging approach can accurately account for source motion

effects and produce RTM images that closely match RTM images from stationary acquisition

and imaging, even with an unrealistically high source velocity that is typically not used in

marine acquisition. The work developed in Chapters 3-5 is not limited to marine vibrator

data in ocean-bottom acquisition, but is also applicable to streamer data acquisition using
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conventional seismic air-gun sources and marine vibrators.

This thesis spans fields from differential geometry, numerical modeling, machine learning,

seismic data processing, and acquisition design. The development of robust and reliable

processing and imaging solutions aims to reduce seismic interpretation uncertainties and

improve the quality of subsurface images in complex and heterogeneous media. Additionally,

exploring machine learning methodologies facilitates the development of a wide range of

seismic data processing and imaging techniques. These techniques are not limited to ghost

removal but extend beyond that, including velocity picking and model building, among other

applications. By developing modeling tools to simulate moving sources, we can utilize the

Doppler effect to push the low-frequency limit for full-waveform inversion in a cost-effective

way and improve seismic resolution. Employing machine learning methodologies and using

numerical solutions could lead to new acquisition designs that overcome the limitations

of standard processing and imaging technology. Finally, the developed approaches are not

limited to the work presented in this thesis but are also applicable to other fields and problems

(e.g., modeling radar data from a moving satellite).
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465–482.

Dragoset, W. H., 1988, Marine vibrators and the Doppler effect: Geophysics, 53, no. 11,
1388–1398, doi: 10.1190/1.1442418.

132

CWP-1029



Duquet, B., A. Guitton, S. Secker, A. Feltham, and J.-P. Mascomere, 2021, Impact of
non-impulsive moving source correction for structural and 4D imaging: First international
meeting for applied geoscience & energy, SEG, Expanded Abstracts, 31–35, doi: 10.1190/
segam2021-3594448.1.

E, W., 2020, Machine learning and computational mathematics: Communications in Compu-
tational Physics, 28, no. 5, 1639–1670, doi: 10.4208/cicp.OA-2020-0185.

Egan, M., K. G. El-Kasseh, and N. Moldoveanu, 2007, Full deghosting of OBC data with
over/under source acquisition: 77th Annual International Meeting, SEG, Expanded Ab-
stracts, 31–35, doi: 10.1190/1.2792376.
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APPENDIX A

ABSORBING BOUNDARY CONDITIONS

In this Appendix, I formulate the absorbing boundary conditions I use in Chapters 3 and

4.

A.1 Clayton-Enquist boundary condition

In Chapter 3, I use Clayton-Enquist boundary condition (BC) to simulate marine vibrator

data for a quiescent sea surface. The BC is applied to all sides of the modeling domain, i.e., I

do not implement a free surface BC. Clayton-Enquist BC assumes the incident wavefield is

a plane wave, which is not necessarily true even in simple models. However, our numerical

examples show that such assumption is adequate to suppress most artificial reflections from

the boundary region. To implement such absorbing BCs, I assume the source is stationary

in the governing boundary condition PDEs (i.e., I use the boundary condition PDEs as

derived in Clayton and Engquist (1977) without any modification that would account for the

source motion). Such an assumption is reasonable for low-velocity moving sources because

the mesh deformation at the top boundary of the modeling domain is negligible, thus the

plane wave assumption in Clayton-Enquist BC is still applicable. However, for fast moving

sources, the Clayton-Enquist BC is not applicable. In fact, our numerical tests show that the

numerical solution become unstable for all types of implemented absorbing BCs (Clayton-

Enquist, Perfectly matched layer (PML), and sponge layer) for fast moving sources. The

Clayton-Enquist BC, however, is more stable and can handle source velocities higher than

PML and sponge layer BC.

The detailed derivation of the Clayton-Enquist BC can be found in Clayton and Engquist

(1977). Here, I simply state the boundary condition PDEs. For the surface defined at
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ξ3 = ξ3
min (top boundary), the governing PDE is

∂2Pξ
∂τ∂ξ3

− 1

cξ

∂2Pξ
∂τ 2

+
cξ
2

(
∂2Pξ
∂ξ1∂ξ1

+
∂2Pξ
∂ξ2∂ξ2

)
= 0, (A.1)

where Pξ is the pressure wave field and cξ is the acoustic wavefield in the generalized coordinate

system. Given a judicious choice of coordinate transformation, we have cξ = c, where c is

the Cartesian medium velocity. For the surface defined at ξ3 = ξ3
max (bottom boundary), the

governing PDE is

∂2Pξ
∂τ∂ξ3

+
1

cξ

∂2Pξ
∂τ 2

− cξ
2

(
∂2Pξ
∂ξ1∂ξ1

+
∂2Pξ
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= 0. (A.2)

For surface defined at ξ2 = ξ2
min, the governing PDE is given by

∂2Pξ
∂τ∂ξ2

− 1
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∂2Pξ
∂τ 2

+
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2

(
∂2Pξ
∂ξ1∂ξ1

+
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= 0. (A.3)

For surface defined at ξ2 = ξ2
max, the governing PDE is
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∂τ∂ξ2
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1

cξ

∂2Pξ
∂τ 2

− cξ
2

(
∂2Pξ
∂ξ1∂ξ1

+
∂2Pξ
∂ξ3∂ξ3
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= 0. (A.4)

For surface defined at ξ1 = ξ1
min (left boundary), the governing PDE
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− 1
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∂2Pξ
∂τ 2

+
cξ
2

(
∂2Pξ
∂ξ2∂ξ2

+
∂2Pξ
∂ξ3∂ξ3

)
= 0, (A.5)

and for surface defined at ξ1 = ξ1
max (right boundary), the governing PDE is

∂2Pξ
∂τ∂ξ1

+
1

cξ

∂2Pξ
∂τ 2

− cξ
2

(
∂2Pξ
∂ξ2∂ξ2

+
∂2Pξ
∂ξ3∂ξ3

)
= 0. (A.6)

A.2 Perfectly matched layer boundary condition

In Chapter 4, I use PML boundary condition to simulate marine vibrator data in the

presence of a time-varying sea surface. The BC is applied to all sides of the modeling

domain, except for the top boundary, where I use a free-surface BC to model the effects of a

time-varying sea surface. The PML boundary condition is implemented by expanding the

modeling domain to add a layer that attenuates the seismic wavefield in the PML boundary

region. The linearized continuity equation (4.11) with added PML attenuating term is given
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by

−g0ν ∂Pξ
∂ξν

+ d(ξj)Pξ =
ρξcξ√
|g|

∂

∂ξi

(√
|g|ui

)
+ Fξ, (A.7)

with d(ξj) given by

d(ξj) =
−3cξ
2L

ln (R)

(
ξj

L

)2

, (A.8)

where ξj is the jth axis in the boundary region (distance from the internal boundary region

of the modeling domain), cξ is the generalized medium velocity, L is the thickness of the

PML boundary region, and R is a constant that is typically chosen between 10−3 and 10−6.

Similarly, the linearized Euler equation (4.12) with added PML attenuating term is

ρξcξ√
|g|

∂

∂ξ0

(√
|g|uiξ

)
+ d(ξj)uiξ = giν

∂Pξ
∂ξν

, (A.9)

For the top boundary, I implement the free-surface boundary condition given by

Pξ = 0 (A.10)

for the pressure wavefield, and



∂u1
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= −
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∂u2
ξ

∂ξ3
= −

∂u3
ξ

∂ξ2

∂u3
ξ

∂ξ3
= −

(
∂u1

ξ

∂ξ1
+
∂u2

ξ

∂ξ2

) (A.11)

for the particle velocity wavefield.
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APPENDIX B

COPYRIGHT PERMISSION

This appendix details the permission to reproduce papers published in Geophysics in the

dissertation. On their website (https://library.seg.org/page/policies/open-access) they state

Authors may reuse all or part of their papers published with SEG in a thesis

or dissertation that authors write and are required to submit to satisfy criteria

of degree-granting institutions, which is annotated with a red box in Figure B.1.
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Figure B.1 Permission from Geophysics.
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