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INTRODUCTION

In the last decade, the inverse problem in the ocean has received considerable
attention from the ocean acoustics and oceanographic scientific communities. In 1979,
Munk and Wunsch proposed a inverse method that is now known as ocean acoustic
tomography. This technique consists of measuring ray travel times between source-
receiver pairs and inverting these to determine perturbations to an assumed
background profile. Many experiments have been conducted proving the validity and
usefulness of the technique as well as its limitations (for some of the earliest results see
Spiesberger, Spindel and Metzger 1980; Brown et al. 1980; Munk and Wunsch 1982;
Spiesberger 1983; Munk and Wunsch 1983). Because the travel time equations are
linearized, the background or guess profile must be known to within ~2 m/s of the true
profile. The inversion methodology is in the class known as indirect inversion
techniques; a background profile is chosen, the forward model is run repeatedly and the
results compared to the experimental data. In other words, the technique is based on
iteration of a forward model.

In this thesis, we attempt a different approach and formulate a direct inversion
algorithm. Using first order perturbation expansions, the scattered field data as a
function of frequency and the profile perturbation as a function of the phase can be
directly related as a Fourier transform pair. However, because the inversion is based on
the forward model we first must investigate the range of validity of the perturbative
solutions in the ocean waveguide. The theoretical analysis of the forward model is done
in chapter 2 and numerical examples are presented in chapters 3 and 4.

We study two perturbative solutions; the Born amplitude expansion (Born 1926)
and the Rytov phase expansion (Rytov 1937; Chernov 1960). The background field, on
which the perturbative solutions are based, is chosen to be the proper mode solution;
the discrete part of the normal mode solution. The normal mode representation, which
contains both the discrete and continuous spectrum, is exact under certain restrictions
(see chapter 1). In the far field, the continuous spectrum can be neglected and the
proper or propagating modes are the main contribution to the solution.

In order to obtain simple error estimates for a waveguide geometry, we first
investigate the perturbative solutions in a constant background environment. When
the background is chosen to be a constant, the solutions are known simply as the Born
and the Rytov approximations.

Although the maximum deviation in the sound speed in the deep ocean is only
about 10% over the entire waveguide, the background velocity structure in the ocean
cannot be assumed constant. Therefore, we must choose a depth-dependent
background sound speed structure to obtain valid zeroth order solutions in the
refractive ocean waveguide. In this case, the perturbative approximations are called
the distorted-wave Born (DWB) and the distorted-wave Rytov (DWR) to distinguish
the solutions from those based on a homogeneous background.




1. MODELING THE SOUND FIELD IN THE OCEAN WAVEGUIDE

1.1 Introduction

The underwater sound channel or SOFAR (Sound Fixing And Ranging) channel,
discovered in the early 1940’s by M. Ewing and J.L. Worzel (1948), is the most
characteristic feature of the deep ocean at moderate and equatorial latitudes. This
acoustic channel is formed by temperature, pressure and salinity variations in the
ocean. The temperature and salinity decrease below the ocean surface causing a
corresponding decrease in the sound speed. At approximately 1 kilometer (km) below
the surface, a leveling off of the temperature decrease and steadily increasing pressure
causes a nearly linear increase in the sound speed as the depth is further increased.
Thus, an acoustic waveguide is created in which sound can propagate, through
refraction, for hundreds of kilometers.

Although the ocean has both regular and random inhomogeneities, this thesis will
only deal with regular or deterministic effects; in particular, propagation in the
underwater sound channel. The sound field is modeled using the acoustic wave
equation assuming a pressure release surface and either a rigid bottom or an infinite
half space below the waveguide bottom. We will use a point cylindrical monochromatic
source representation and assume the medium is cylindrically symmetric. In general,
the sound speed is a function of both depth and range.

In the next section, we briefly discuss the attributes of several numerical
propagation models in use today (for a summary of numerical propagation loss models,
see DiNapoli and Deavenport 1979); in particular, the choice of a background model on
which the perturbative solutions are based. The last section of this chapter illustrates
the variation of the sound field as a function of source depth and frequency for several
sound speed profiles. These plots are generated from the proper or discrete mode
solution; the background model used throughout this thesis.

1.2 Numerical Models

A variety of propagation codes have been developed to model the sound field in
the ocean. Each is valid within a certain range of chosen medium parameters.
Including even a condensed discussion of all the computer codes currently in use is
impossible. Instead, we first briefly describe two propagation loss models; the classical
ray method and the parabolic approximation to the Helmholtz equation. Next, we
focus on a third, the discrete mode solution, which is the background model used in this
thesis. The rationale for basing the perturbative solutions on this particular model will
be made clear in the remainder of this section.

The classical ray equations and the parabolic approximation are derived based on
assumptions about the propagation environment. The ray equations are formed from a
high frequency assumption and by neglecting diffraction effects (Born and Wolf 1965).
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1.3 Examples of Waveguide Propagation

In this section, several examples of waveguide propagation are illustrated with the
use of color pixel maps. The field strength in the waveguide is represented by the
transmission loss in decibels (dB). The transmission loss is defined by
—201logyo | P/P ref|, where P is the pressure field and P, is the field strength at 1
meter (m) from the source.

In order to illustrate the focusing effect that the SOFAR channel has on sound
propagation, we compare the propagation loss in a constant velocity waveguide to that
of a bilinear profile with a sound speed minimum at 1 km depth. Effects of source
placement in depth and changes in the source frequency are also compared. Before
illustrating the acoustic field behavior for different waveguide geometries, we first
briefly discuss the discrete modal solution.

Recall that we are solving the Helmholtz equation. If the sound speed in the
waveguide is constant or at most depends on depth, the homogeneous form of the
equation is separable. The range solution is an outgoing wave Hankel function. The
vertical wave function, 1, satisfies the equation

[:722 + [k§n2(z) - 62]]¢ =

with boundary conditions at the surface and bottom of the ocean. The index of
refraction, n(z), is given by ¢,/c(z) and the reference wavenumber is k , = 27f/¢ ; ¢,
is the reference sound speed, usually chosen as the minimum value in the waveguide,
¢(z) is the depth-dependent sound speed and f is the source frequency. Because we are
solving a boundary value problem, there are non-trivial solutions, 3, only for a discrete
set of values of the parameter, £,. Therefore, the 1, are the eigenfunctions and the &,
are the eigenvalues of the problem. As will be illustrated, the number of eigenvalues
contributing to the solution depends on the boundary conditions, the source frequency
and the sound speed structure in the waveguide.

Figures 1 and 2 illustrate the transmission loss in a constant velocity waveguide
for source frequencies of 25 and 100 Hertz (Hz), respectively. (The maximum allowable
phase velocity is chosen to be 1600 m/s.) The source is placed at a depth of 500 m.
We have a pressure release surface (P = 0 at the ocean surface) and a hard bottom (
P, = 0, where the subscript denotes the depth derivative).

Because the velocity is constant over the full waveguide, there is no refraction; the
energy propagates through surface and bottom reflections. We have total internal
reflection due to the bottom boundary condition; in general, the angular aperture
extends from 0 to +90° measured from the horizontal at the source position. As is
evident from the isolated bright spots, the energy focuses only locally.

The different structure in Figures 1 and 2 is due solely to the change in source
frequency. At 25 Hz, there are 50 modes contributing to the field, while at 100 Hz, we
have 4 times as many. A higher source frequency does not imply higher angles but
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In subsequent chapters, we will investigate the behavior of two perturbative
solutions to the total acoustic field in which the background solution is chosen to be the
discrete part of the normal mode representation. Although the solutions and their
errors are initially analyzed in several constant velocity waveguides, we stress that a
constant background solution is not a valid zeroth order solution in a refractive ocean
waveguide. The analysis is done simply to better understand and predict the validity
of the solutions in the inhomogeneous ocean environment.




wish to approximate, V? is the cylindrical Laplacian, n(r,z) = ¢,/ ¢(r,2) is the
normalized sound speed in a depth and range dependent environment, and k, = w/¢c,
is the reference wavenumber. The source is located at a range r = r, and a depth
z = z,. We consider the general case of r, + 0 in order to construct the scattered field.

The choice of the reference sound speed, ¢,, is arbitrary. Because the Helmholtz
equation is independent of ¢,, so are its solutions. From this it follows that any
approximate solution must depend only weakly on the choice of the reference sound
speed in order to be a valid representation of the total field.

The distorted-wave perturbative solutions are derived with the assumption that
information regarding the gross (i.e. purely depth-dependent) sound speed structure of
the ocean waveguide is known. Using this knowledge, a background field,
P,(k,,r,79,2,2,), which satisfies

8(r—r,)6(z—2,)

271r

[Vz + k%n%(Z):IPo(ko,r,fo,Z,Zo) = - ’ (2)

can be calculated. Since n,(z) is known, the P, field can be thought of as an incident
field in this inhomogeneous environment. Because the oceanic sound speed structure
has an inherent depth variability, but depends weakly on range, the background, n,(z),
is chosen to be strictly depth-dependent, but is ’close’ (in a sense specified below) to
the true index of refraction, n(r,z), for all ranges and depths. By perturbing around
the incident field solution, approximate solutions to the total field can be formed.

2.3 The Distorted-Wave Born (DWB) Solution

The DWB solution is formed by expanding the total field, P(k,,r,r,,2,2,), and the
index of refraction, nz(r,z), in powers of a small parameter, . The total field, which
satisfies Eq. (1), is written as

P(ko,r,ro,Z,Zo) = Po -+ ePl 4+ . (3)

and the square of the index of refraction as

n®(r,z) = nj(z) + eny(r,2) + - - (4)

Substituting Egs. (3) and (4) into Eq. (1), equating powers of € and retaining
terms only up to O(e) results in two equations. The O(€’) equation is Eq. (2). and
the O(¢) equation is

[Vz + k';",n?,(z)] Py (kyyryr0r2,2,) = —kiny(r,2) P, . (5)

Because Eq. (5) is the Helmholtz equation with a source term, and our Green’s
function is the incident field, P,, the solution to Eq. (5) is formed by integrating over
all source points. The field solution is independent of theta due to cylindrical
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where ¢, = P,/P , is the first term in a formal phase expansion,

D= + g+ - (12)

and ¢, is O(e), ¢ is O(e?), etc. The full DWR field is derived in Appendix C.

Because we are mainly interested in the behavior of the first order
approximations, the terms DWB and DWR will denote the first order approximations
unless otherwise indicated.

2.5 Discussion of Errors

As is evident from Egs. (7) and (11) and the derivation of the DWR from the
DWAB, the first order solutions are closely related. However, as derived by Keller (1969)
for the constant background solutions, and by Belykin (1985) for the distorted-wave
solutions, the first order relative error in the two approximations is quite different. By
relating terms in the series in Egs. (3) and (12), Beylkin establishes the relative DWB
error

P — P{P) 1
—5—=0 [fﬁz - 4’|, (13)
while the relative DWR error is
P — P{®)
2 ofu). g

Although both expressions are order €2, the DWB error has an extra term, ¢,>.
Since (as we shall see later) both ¢, and ¢, depend on range to the first power, the
DWRB error term is O(e?r?), while the DWR is O(e®r). Because of this, the amplitude
of the DWB field will grow like r as we propagate in range. The DWR is expected to
give a better approximation to the transmitted field.

We must keep in mind, however, that these are only first order errors and, in
addition, they are based on the assumption that the scattered field is much less than
the incident field. As previously discussed, the DWB requires that | P,/P, | <1 in
order for the approximation to be valid. But, although the DWR was derived from the
DWB using this assumption, the latter is not a necessary condition for the validity of
the DWR.

However, the DWR approximation has additional terms which are not evident in
the simple derivation of the DWR from the DWB. In Appendix C, where the full
DWR approximation is derived, the assumption is made that the integral of [V<I>]2,
where & is the full DWR phase, is of lower order. This term will be of O(e?) only if the
phase gradient is small; we can have no sharp discontinuities in the complex phase
term. This makes the behavior of the DWR difficult to predict because the above error
estimate is locally inaccurate if the ratio P,/P , is changing rapidly.
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If &, = &, in Eq. (17), then we write the solution symbolically as
PQB) (ko,r,oazazo) = P, + P,,.

P,,, the scattered field term for &, = &, is given by
ik2r

8

Pan(koar’ro,z,zo) = -

h
f 21/)(2',6,.)1/)(2, €n)n1(z')

HP) (&,7)

dz’ .
€n

: 1/’(3' ) fn)"p(zoa En)

where H{? (§,r) is the first order Hankel function. If £, + £, then
PP (ky,7,0,2,2,) = Py + Pynm

and the scattered field defined as P,,,, is
ik?
4

Psnm(ko,ra roazazo) =

h
f E¢(z"£n)¢(z, fn) nl(z')

HY (éqr)

dz'.
Emz - Enz

Y (2" Em) ¥ (205 €m)

The DWR, formed from the DWB as previously described, is

P
Pik) (koaraoazazo) = P,exp =
P,
if £, = &,. Similarly, for ¢, + ¢,, we obtain
P
Pik) (ko,r,O,z,zo) = P,exp ;ﬂm
0

(18.a)

(18.b)

(18.c)

(18.4)

(19.b)

In the next chapter, the above equations will be evaluated for several constant
velocity profiles (i.e. the depth dependent solutions are found explicitly) and the
behavior of the Born and Rytov in these simple cases is investigated. Although not
representative of the velocity structure in an ocean waveguide, analyzing these cases
gives an indication of how the DWB and DWR approximations will behave in a

complex environment.
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wavenumbers are the A,. The sine eigenfunctions arise from a particular choice of
boundary conditions. The pressure field is chosen to be zero at the surface and the z-
derivative (since we have a flat bottom) to be zero at the ocean bottom. The factor
(2/h) Y/? is the normalization constant for this set of orthonormal eigenfunctions.

The initial guess field, for the constant velocity waveguide with index of refraction,
n, is given by

P,(k,,1,0,2,2,) = Z —sinA z,,sm/\,,zH( (&p1), (21)

where the horizontal wavenumber eigenvalues for the background solution are given by
the ¢, which are defined by ¢,%2 = k2n2 — \,%. As is evident from Eqs. (20) and (21),
the eigenfunctions are identical. In a constant velocity waveguide, the only difference
in the two solutions are the values of the horizontal wavenumbers.

From Eq. (17), the Born solution in a constant velocity medium is given by

P{®B) (k,,r,0,2,2,) = k2:;7rf f Esm/\ zsindpz’ HO (&,7)J,(€nr")

E sin),, 2z’ sin),, 2, HS,Z) (Epr)r'dr'dz’

knlﬂf fZSln/\ zsind,z” HP) (€,r)To(€nr)

2h2

Z sin),,z” sinA,z, Hi) (§ur’)r'dr'dz’

m

(22)

where n;, the constant velocity perturbation, is the difference, n2 — n, in the squares

of the true and background refractive indices.

Because the perturbation is constant, both the range and depth integrals can be
evaluated explicitly. Evaluating the range integrals (see Appendix D) and following
the notation of Egs. (18), the Born scattered field for €, = &, is

ikinr 9 HV) (€nr) .’
oh? f Esm)\ zsin®A, 2" sind 2, ——— c. . (23.a)

Psn(ko,r,roaz,zo

For &, + &,,, we obtain

P.mm(ko,ra roazazo)
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single mode only, P,(k,,r,0,2,2,) can be written explicitly as

Py1(kp,r,0,2,2,) = —-sindy zsindy 7, HY) (617) (27)

where P,,(k,,r,0,2,2z,) denotes the field expression for the first mode, A; is the
corresponding vertical wavenumber while &; is the corresponding horizontal
wavenumber. This notation will be used throughout in deriving the subsequent single
mode expressions.

Using Eq. (27), the first phase term can now be written
Kinyr  HP (&)

k,,r,0,2,2,) = 28
b11 (ko o) 2 HD (¢,7) 3 (28)
Using the asymptotic forms of the Hankel functions
V2 _ier -1
H2) _ |2 T
0 (El r) TELr €
1/2 ) 3r
2 —i(&r — =)
HP (¢r) = lwﬁr} ¢ 4 (29)
and canceling terms, ¢;;(k,,r,0,2,2,) is given by
ikingr
B11(ko,7,0,2,2)) = — == (30)
26
so the gradient of ¢;; is just
ikin,
V¢u (koar, O’Z’zo) = r. (31)
2¢,

Substituting Eq. (31) into Eq. (26) and evaluating the range integral for a single mode,
¢91 becomes

h
f sin?X\ 2z  dz” . (32)

0

¢21(k0’r’ Oazazo) =

kK2nyr HP(67) [Kkiny |?
H{oz)(ﬁf) E1h 2§,

Performing the depth integration and canceling like factors, the second phase term
becomes

irkin?
3
81

¢21(k0,r,0,z,z0) = - (33)
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section 3.2.2 are valid for any profile perturbation, the Rytov error estimate is correct
only if the scattered field is small with respect to the incident field.

In the next section, the numerical results for a constant velocity wavegmde are
presented and the analytical results of this section will be verified.

3.3 Constant Velocity Waveguide Example

The parameters for the constant velocity waveguide example are given in Table 1.
The true and background profiles are illustrated in Figure 7. The transmission loss
curves for the profiles are illustrated in Figure 8. The transmission loss is defined as

—20log( ), where P is the complex field and P,,; is the field at 1 meter from the

I Prefl
source.

Because the perturbation is small and the eigenfunctions are identical in the
constant velocity case, the true and background curves nearly overlay each other,
except perhaps at the “nulls” where the modes have interfered destructively creating a
minimum amplitude. The amplitude behavior of the Born and Rytov solutions can be
qualitatively predicted by studying Figure 9; the ratios | P,/P,| vs. range. The ratios
match until approximately 5 km; this is the regime in which

Table 1. Input Parameters: Test Case 1

INPUT PARAMETERS: TEST CASE 1
Range 1.-50. km
Source Depth 500. m
Receiver Depth 500. m
Source Frequency 25. Hz
Depth (m) Sound Speed (m/s)
True profile 0. 1500.
1500. 1500.
Guess profile 0. 1501.
1500. 1501.
Maximum Perturbation 1. m/s
Perturbation Width 1500. m
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recalculated Born and Rytov coefficients.

The real part of the Born coefficients are used to recalculate the Born
transmission loss. The resultant curve, labeled “MDB” is illustrated in Figure 17 along
with the true transmission loss and the original Born solution. As expected, the growth
of the Born solution with range has disappeared. To recalculate the Rytov solution, we
use the amplitude of the mode coefficients. The result, illustrated in Figure 18, and
labeled “MDR"” exhibits little change from the original Rytov solution.

In reviewing the results of this section, we conclude that although the amplitude of
the Born approximation is strongly affected by a shift in the sound speed over the full
waveguide, the Rytov approximation is insensitive to a perturbation of this magnitude
and extent. In the next section, we study several two-layer waveguides in order to
determine the magnitude and extent of perturbations recoverable about a known
background profile.

3.4 Two-Layer Waveguide

3.4.1 Derivation of the Solutions

The two-layer model used in this section is illustrated in Figure 19. The sound
speed in the upper layer is defined to be ¢,, while the sound speed in the lower layer is
defined to be ¢,, to match the constant velocity case. The reference wavenumbers are
ki and k,, respectively. The depth of the layer is z;. The total field for this geometry
is

P(k,r,0,z,2,)

sinA;,z H® (¢ar) 0<z<z

) cosAgp(h—2z,)cosA,, (h—21)
E " SinAanl

P(k,r,0,z,2,)

- iz Ay cosd,,(h—z,)cosX,, (h—2) HZ) (¢n7) zy<z<h (38)
n

where A,, is given by

An = 2)\1n/\onsin2/\1nz1

. {/\o,,coszx\o,,(h—zl) [zl)\l,, — sinA(,2) cos/\lnzl]
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3.4.2 Error Analysis

Following the analysis in section (3.2.2), we will derive the first order errors for the
case of a single mode. From Eq. (40.a), the first phase term in a two-layer waveguide
is

Je? 2) z ,
T sin(ﬂ)sin o m (&) f sinz(—wz )dz". (41)
2h%P,

¢11(ko’r,0’zazo) = 2% ( oh ) 61 2h

Using P, from Eq. (21), the asymptotic form of the Hankel functions (Eq. (29)), and

evaluating the integral, we obtain
2y

ik, | 2, Sin(T)
¢11 (koarao’zyzo) - 261 T - —7r— . (42)
The gradient of ¢,; is just
2 sin(ﬂ)
V¢11(ko,r,0,2,20) = ﬂc_o’ll— 'ﬂ_ - '—h ;a (43)
261 h ™
so, from Eq. (26), ¢,; simply becomes
. 2y 2
ik, rn? | 2, sxn(T)
¢21 (ko’raosz,zo) = - 8613 T - _ﬂ_— . (44)

From Egs. (42) and (44), the first order relative Born error is given by

. T2y 2
P—PiB) 0 tkytrn? k,Ar2n? z1 sin( h )
P70 T e | T (49)
8¢ 8¢ m

and the first order relative Rytov error is

. 2] 2
p—p{E) _ol - ik, rn} 2o sin( h ) 46
P - 8613 h T : ( )

The behavior of the first order relative errors in range thus depends critically on the
width of the layer in depth. If z; is small compared to h, the sine can be expanded
around z,/h = 0 and the errors now look like
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Superficially, the modal decompositions seem to suggest the same type of behavior
as the first order errors. However, as will be seen in the next section, the quantity A
plays a significant role in determining the validity of the solutions.

3.5 Two-Layer Waveguide Examples

In this section, we discuss two velocity models; the first has a 100 m layer and the
second a 400 m layer. The parameters for the first model are given in Table 2.

The true and background profiles are illustrated in Figure 20 and the transmission
loss curves in Figure 21. Again, the guess overlays the true profile almost exactly due
to the smallness of the perturbation and also its minimal extent.

We will first qualitatively predict the behavior of the Born and Rytov solutions by
studying the ratio | P,/P ,| vs. range in Figure 22. Both of the

Table 2. Input Parameters: Test Case 2

INPUT PARAMETERS: TEST CASE 2
Range 1.-50. km
Source Depth 500. m
Receiver Depth 500. m
Source Frequency 25. Hz
Depth (m) Sound Speed (m/s)
True profile 0. 1500.
100. 1500.
100. 1501.
1500. 1501.
Guess profile 0. 1501.
1500. 1501.
Maximum Perturbation 1. m/s
Perturbation Width 100. m

ratios are less than 1/4 (except at the spikes) and they match in amplitude except at
the spikes which occur at the nulls in the amplitude of the incident field. This is a case
where we are in the range of validity of both solutions; the ratio of the scattered to the
incident field is small. Therefore, the solutions are expected to generate similar results.
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To estimate the percentage change in the mode functions, we look at the change
in the mode coefficient over the waveguide as the layer width is systematically
increased. From Figure 29, we can estimate that a 400 meter layer with a 1 m/s
change in the sound speed, results in approximately a 14% change in the mode
coefficient as compared to the constant velocity case. It is evident, then, that a small
change in the sound speed over 28% of the waveguide causes a large change in the
value of the eigenfunctions and a corresponding change in the true and background
transmission loss curves.

To predict the behavior of the Born and Rytov solutions, we again study the ratio
of the scattered to the incident field for both approximations. From Figure 30 and a
closeup in Figure 31, we see that the ratio in both cases has exceeded 1/4 by a range of
approximately 13 km. Therefore, the Born solution is expected to grow for ranges
greater than 13 km. The behavior of the Rytov solution is difficult to predict.
Although the Rytov ratio also exceeds 1/4, we saw in the constant velocity case that a
large ratio did not affect the validity of the Rytov solution.

The Born and true transmission loss plots are illustrated in Figure 32 and the
Rytov and true in Figure 33. As expected, there is a slight growth in the Born
solution. The Rytov solution is somewhat more accurate (see the relative error versus
range in Figure 34), but again does not match the true solution; in addition, a spike in
the solution appears at about 5 km in the same location as one of the spikes in the
| P,/ P ,| of Figure 30.

We now see the effect that a 14% change in the true and background
eigenfunctions has on the accuracy of the Born and Rytov solutions. We also see the
failure of the error predictions to account for this type of change. Only the factor A in
the modal decompositions gives an indication that the solutions will become invalid for
layer widths less than the full waveguide.

Although difficult to analyze quantitatively, the significance of A can be explained
in terms of the constant velocity versus the two-layer solution. From Eq. (21), we
know the true and background solutions in a constant velocity waveguide are
constructed from an identical set of eigenfunctions; only the eigenvalues differ. In the
two-layer waveguide, the eigenfunctions of the true solution vary (see Eq. (38))
depending on the receiver location in the waveguide with respect to the layer. The
former case has a simple normalization factor of v/ (2/h), while from Eq. (39) the latter
has the expression, A;,. From the modal decomposition of the Born and Rytov
approximations (Appendix E), the term A occurs which contains, in addition to the
factor /A , other terms resulting from the projection of the coefficients over a depth 0
to z; where the constant velocity eigenfunctions are not orthogonal. Therefore, for the
Born and Rytov solutions to be valid representations of the true field, the term A must
give the right mode shapes for the two-layer waveguide. This is impossible because A
is constant for a given layer depth and there still remains only a single set of
eigenfunctions predicting the true behavior over the entire waveguide. As a result, the
Born and Rytov solutions are unable to approximate the true solution if the true and
guess eigenfunctions differ by more than about 7%.
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4. DEPTH-DEPENDENT BACKGROUND TEST CASES

4.1 Introduction

Although a constant background solution provides useful error estimates, it is not
viable zeroth order solution in the deep ocean. For this reason, we now turn to the
distorted-wave perturbative approximations in which the background profile depends
on depth. Several depth-dependent velocity profiles are studied and the results
compared to those predicted from the constant velocity analysis. In all cases, the trend
of the sound speed profile is assumed to be known exactly; we look at the behavior of
the DWB and DWR solutions when a perturbation is placed upon the background
solution. Unlike the previous chapter, the results in this chapter cannot be derived
explicitly even for a single mode. The reason is that the eigenfunctions are known only
numerically. The DWB and DWR representations of the total field are obtained from
Egs. (7) and (10), respectively. .

The background profile in the first two examples is the weakly refractive NORDA
2A test case (NORDA Parabolic Workshop 1984). Two different size perturbations
(referred to as test cases 4 and 5) are placed on this profile and we study the ability of
the DW approximations to construct the true solution.

In the second set of examples, the profile is strongly refractive. Two different test
cases (referred to as test cases 6 and 7) are presented. The perturbation is the same is
both cases but the source position and, therefore, the illumination in the waveguide is
varied.

4.2 NORDA 2A Examples

The parameters used in test case 4 are given in Table 4.
Table 4. Input Parameters: Test Case 4

INPUT PARAMETERS: TEST CASE 4
Range 1.-50. km
Source Depth 500. m
Receiver Depth 500. m
Source Frequency 25. Hz
Depth (m) Sound Speed (m/s)
True profile 0. 1500.0
300. 1506.0
400. 1507.5
500. 1510.0
1000. 1520.0
1500. 1563.0
Guess profile 0. 1500.0
1000. 1520.0
1500. 1563.0
Maximum Perturbation 0.5 m/s
Perturbation Width 200.0 m




Table 5. Input Parameters: Test Case 5

INPUT PARAMETERS: TEST CASE 5
Range 1.-50. km
Source Depth 500. m
Receiver Depth 500. m
Source Frequency 25. Hz
Depth (m) Sound Speed (m/s)
True profile 0. 1500.
300. 1506.
400. 1507.
500. 1510.
1000. 1520.
1500. 1563.
Guess profile 0. 1500.
1000. 1520.
1500. 1563.
Maximum Perturbation 1. m/s
Perturbation Width 200. m

This is exactly the behavior predicted from the two-layer case in section 3.5. As
the change in the true and background mode functions increases, the ability of the
DWB and DWR to construct the true solution decreases.

We now turn to some deep ocean examples in which the sound energy propagates
mainly through refraction.

4.3 SOFAR Channel Examples

As discussed in Chapter 1, the velocity structure of the SOFAR channel is
characterized by a sound speed minimum (known as the channel axis) at about 1 km
with the sound speed increasing both above and below the axis. In this section, we
study the behavior of the DWB and DWR solutions when the perturbations are placed
about a bilinear background sound speed profile. In particular, we investigate the
effect of varying the source position with respect to the channel axis.
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the perturbative solutions are expected to yield accurate results.

The DWB and DWR transmission loss curves are illustrated in Figures 55 and 56.
The vertical scales on both plots have been expanded to include the spike occurring
near 29 km. The DWB and DWR solutions are nearly identical as predicted by the
small |P,/P ,| ratios. Both solutions match the true solution in the regions of high
intensity, but fail to give the correct values in the shadow zone and in fact exhibit a
greater error than the guess near the deep null. A plot of the relative errors (Figure
57) in the two solutions substantiates this conclusion. Although qualitative predictions
suggest that both solutions are within their range of validity, this test case indicates
that the DWB and DWR are invalid over broad regions of low intensity as well as at
the isolated nulls in the field.

In the last example, the parameters are the same as in test case 6 except the
source and receiver are placed on the channel axis at 1 km. The true and guess
transmission loss plots are illustrated in Figure 58. The shadow zone has disappeared
as expected and the background solution nearly overlays the true.

As illustrated in Figure 59, the DWB and DWR scattered to incident field ratios
are nearly identical. A closeup of the plots in Figure 60 demonstrates the ratio of the
trends to be less than 1/4. Although the spike at approximately 42 km indicates the
possibility of a local error, the DWB and DWR solutions are predicted to give an
accurate representation of the true transmission loss. This is confirmed by the
transmission loss curves in Figures 61 and 62, and the relative errors in Figure 63.

The results of this chapter verify that the behavior of the DWB and DWR
solutions can be qualitatively predicted from the quantitative single mode results of
chapter 3. If the eigenfunctions do not change by more than approximately 7% and
the receiver is well-illuminated, the perturbative solutions will give an accurate
representation of the true field in the ocean waveguide to a range of 50 km.
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22
Pa(ko,r,O,z,zo) — f B(ko’r,z’zO,Z,)eia(ko,rystmz )nl(zl) dz/ ,

2

(53)

where 2, and z, define the limits of the perturbation in depth. The amplitude of the
modal sum is defined as B, and the phase as §. Be® is defined as the transformation
kernel relating the scattered field to the profile perturbation.

To construct the transform pair

Py(ky) <=> ny(6(")), (54

we generate the scattered data as a function of wavenumber using either DWB or
DWR approximations. We then assume that the amplitude wavenumber dependence
is known and can be absorbed into the scattered data and replace B(k,,r, 2,24,2") with
its wavenumber independent equivalent, B(r,z,2,,2z'); the modified scattered field is
written as P;,. Next, we multiply both sides of Eq. (53) by the phase function,

—i0(k,, r,22,,2° . .
PCLEES ), and integrate over wavenumber to obtain

m —
f Pa(ko,r:O,Z,zo)e—ia(kmr,Z,Zmz )dko

—00

2 © , . =
— f nl(Z,)B(r,Z,Zo,Z')f 630(11,,?,2,1‘,,2 ) - ‘0(1‘0”’3’20’2 )dko dz’ . (55)
2

—00

Assuming that the phase, §, depends linearly on wavenumber, 8 = k,0 where 9 is
independent of k, (or if not a transformation has been made to account for the
dependence), and the phase is monotonic in z’, then the k,—space integral is identically
equal to a delta function. The argument of the &function is the difference of our k,-
independent phase terms, 6(z°) and 6(z"). Because the delta function is in terms of the
phase instead of depth, we make a transformation obtaining the integrand as a function
of the phase. As a result, the transform variables are k, and 6(z"). Therefore, we write
Eq. (55) as

o0 . _ bz, 8(z"))B(6(z")) 276 |8(z" —j;— .
f-mM{MMmzfolu))u))[() ) 5
; |db/dz "] =7

—00 0Z|

where dé/ dz " is the Jacobian of the transformation. For simplicity, we have excluded
the parameter dependence in the expression; we retain only the transform variables
8(z") and k, explicitly. Evaluation of the phase integral gives

> dB/dz " |7 % =~ _aiT
nl(g(z, _ I /~ Z~ |z— f P,(ko)e k"o("’)dk,,. (57)
2B(0(') oo

-35-




instance, at the deep turning points of the amplitude, the phase derivative is zero; i.e.
the propagation is horizontal. Many other zero crossings are evident in the figure and
each corresponds to k, = 0.

Recalling that the phase needs to be monotonic for a valid inverse, we see that at
least globally this criterion cannot be met. However, if we can find a region where the
phase is locally monotonic, and the rest of the inversion criteria are met, then we can
attempt a perturbation reconstruction over a limited range in depth.

The next step is to check the frequency dependence of the amplitude and phase
derivative or equivalently, the phase, at a fixed range (the phase is constructed from
the phase derivative to avoid phase unwrapping). The amplitude was found to have a
1/k , approximate dependence and so are multiplied by k,. The phase derivative, on
the other hand goes approximately like k,, and accordingly, is divided by k,. The
resultant amplitude and phase derivative curves are illustrated in Figures 67 and 68,
respectively, for 10 frequency values ranging from 5 to 50 Hz. Although the curves in
each plot are of the same order of magnitude, they are not identical. Therefore, only
frequency-averaged versions of these functions are available for use in the inversion
algorithm. In addition, because the phase is numerically constructed from its
derivative, the spikes in the latter must be selectively removed using a local mean
amplitude comparison in order for the algorithm to be stable. We also note that the
zero crossings in Figure 68 occur at different depths for different frequencies; therefore,
for this profile, the phase monotinicity is a function of frequency. The averaged (over
depth and frequency) curves for the amplitude and phase derivative are illustrated in
Figures 69 and 70, respectively. Note that it is these averaged functions that will be
used in an inversion.

Earlier in the discussion, we postulated that a reconstruction could be attempted
over a compact region in depth if the phase were locally monotonic. However, we first
need to consider how band-limiting, in particular the absence of zero frequency, affects
the recovery of a given perturbation. Also of importance in the reconstruction process
is the effect of using numerically constructed averaged quantities. For these reasons,
we next investigate the effects of phase averaging and band-limiting on the Fourier
reconstruction of two different perturbations.

We first look at our ability to reconstruct a simple triangular perturbation (see
Figure 71, the true perturbation has a maximum value of 1 at 100 m). The
perturbation is centered at 100 m and its extent is 200 meters. The entire region over
which the inversion is performed is assumed to be 700 meters. Because the
perturbation is a real positive function, we know from Fourier analysis that zero
frequency is required to fully reconstruct the amplitude of the perturbation. However,
very low frequencies are unavailable in an actual inversion, and so first we illustrate the
effect that systematically removing the lowest frequency values has on the perturbation
recovery. If the sampling interval is taken to be .684 m (1024 samples), then the
sampling interval in frequency (where ¢, is 1500 m/s) is ~1.0s~!. If we generate the
Fourier transform of the triangular function, zero the low frequency components of the
transform one sample at a time, and then inverse transform, we obtain the curves in
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neighborhood (of unknown extent) about the stationary phase point in which the
inversion formulation is invalid.

Although we are unable to recover a perturbation using this inversion technique,
we nonetheless investigate the behavior of the Born kernel for the deep ocean profiles
(examples 6 and 7, chapter 4) in order to gain additional insight. Illustrated in Figures
75, 76 and 77 are the transmission loss of the field and the amplitude and phase
derivative of the Born kernel, respectively, constructed using the parameters of test
case 6. Because this is a strongly refractive profile, the structure in the three figures is
sharply defined. The energy is almost purely refractive. The amplitude and phase
derivative curves for 10 frequencies (5 to 50 Hz) at a range of 30 km are illustrated in
Figures 78 and 79 with their respective averages in Figures 80 and 81. As compared to
the Figures 67 and 68, these curves are nearly identical, except at the localized spikes
and low frequencies. In this case, the stationary points consistently occur within a
small region at a depth of 2 km. However, at a range of 30 km and a receiver depth of
500 m, we are in a shadow zone. From the modeling results of chapter 4, we recall that
the DWB and DWR solutions were unable to give a valid approximation to the true
solution. Unfortunately, if we move farther out in range the amplitude and phase
derivative behavior again varies with wavenumber. Therefore, although the DWB
kernel is stable (in the sense that the Fourier inversion is valid) over the upper region
of the waveguide, the lack of field structure in this region makes a perturbation
reconstruction impossible.

In the last example, we investigate the DWB kernel when the waveguide is
strongly refractive and well-illuminated; test case 7. The transmission loss and the
amplitude and phase derivative of the DWB kernel are illustrated in Figures 82, 83 and
84. Although the structure is regular as compared to the NORDA 2A test case, we see
from the phase derivative that there are many zero crossings over the depth of the
waveguide. As illustrated by the amplitude and phase derivative curves versus
wavenumber, (Figures 85 and 86) and their averages (Figures 87 and 88), the behavior
of the DWB kernel varies with wavenumber. In Figure 88, we observe two stationary
points and, in addition, a higher order stationary point in the vicinity of the source.
Therefore, for this source geometry, we have a well-illuminated waveguide, but the
points of stationarity render the inversion algorithm invalid.

5.4 Summary of the Inverse Problem

The refractive nature of propagation in the ocean waveguide makes a wide-band
Fourier-like inversion for a single source-receiver, invalid. In regions where the
waveguide is well-illuminated, there are multiple turning points (where the Jacobian
goes through a zero) and the transformation relating the scattered field data and a
depth-dependent perturbation is no longer 1 to 1. If the energy is trapped within a
narrow beam due to source placement, then the regions in which the phase is
monotonic coincide with shadow zones in the waveguide; in these regions, the DWB
and DWR approximations yield inaccurate results.
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CONCLUSIONS

The Born and Rytov approximations to the transmitted field, in which the
direction of propagation is in range and the perturbation is in depth, behave in much
the same way as the solutions in a layered earth. In a constant velocity earth, the
depth-dependent wave functions are have the same functional form for the true and
background fields; therefore, the errors are simple to derive and interpret. In fact, the
Born and Rytov mode coefficients can be projected from the solutions to give the exact
error in the approximations for a single mode. As verified by the constant velocity
example, the validity of the Born solution depends on the size and extent of the
perturbation; the scattered field must be less than the incident field in order to obtain
an accurate approximation. The Rytov solution, however, is insensitive to the distance
traveled in the perturbed medium. The accuracy of the approximation instead depends
on the gradient of the ratio of the scattered to incident fields.

The behavior of the solutions in a layered waveguide is a bit more difficult to
quantize. The true and background eigenfunctions no longer have the same form and
the projected mode coefficients are difficult to interpret. However, through numerical
examples, we found the mode functions can differ by up to 7%; at this limit, accurate
representations of the true field will be obtained for ranges less than 25 km.

The information obtained from the two-layer test cases is used to estimate the
magnitude and extent of perturbations permissible when the background sound speed
depends on depth. The accuracy of the approximations depends both on the profile and
the source-receiver configuration. If the receiver is in a shadow zone, the correct field
structure is not well approximated. In general, however, if the receiver is well-
illuminated, the behavior of the DWB and DWR fields (for a depth-dependent
perturbation) follows that predicted in the two layer case. Accordingly, the extent to
which the background profile can deviate from the true profile in an inhomogeneous
environment can be estimated; therefore indicating the size and extent of profile
perturbations which can be recovered in an inverse problem using either the DWB and
DWR approximations to the scattered field.

The inverse algorithm was formulated as a Fourier inversion assuming the phase of
the DWB kernel and the wavenumber to be Fourier transform variables. Because the
kernel is written as a modal sum, no explicit expressions for the amplitude and phase
were available; therefore, the analysis was completely numerical. Although the gross
wavenumber dependence was determined and numerically removed from the amplitude
and phase, the functions were necessarily averaged over wavenumber to smooth any
local dependence. When the averaging process is applied to the phase, the information
content of the Fourier constituents is distorted; in effect the phase function is no longer
contins the correct information on the perturbation. In addition, the phase was not
monotonic in regions in which the waveguide was well-illuminated and so in these
regions the inverse algorithm was no longer valid. As a result of these limitations (plus
band-limiting), no perturbations were recovered using either the DWB or DWR
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APPENDIX A:
Derivation of the Normal Mode Representation of the Field

The integral representation of the sound field of a point source contains the
normal modes (discrete spectrum) as well as the continuous spectrum. The discrete
spectrum constitutes the main contribution since the normal modes are only weakly
attenuated, whereas the continuous spectrum rapidly attenuates with range. If we are
in the far field of the source, then, to a good approximation, only the normal modes
contribute significantly to the pressure field. In this appendix, the modal field
representation is derived for a specific set of boundary conditions.

We begin with the inhomogeneous Helmholtz equation

[V2 + k?,n?,(z)} P,(kyyrs70,2,2,) = — 8(r=ro) 62 ~2) (A.1)

27r

in cylindrical coordinates for an arbitrary source point, (r,,2z,). The boundary
conditions are chosen to be
0

_a:Po(koararoazazo) | z=h =0

Po(ko’r:roaz’zo) | =0 = 0,

where h is the width of the ocean waveguide.

The homogeneous form of Eq. (A.1) is separable and the pressure field of a wave
outgoing from a source located at r, can be written as

Po(kyyryr0,2,20) = Cl20, &) HE (£7)J,(€70)0(2,6) r>r, (A.2.a)

Py(koyty70s2,25) = Clz9, &) H (£7,),(E7)9(2,€) r<r, (A.2.b)

The time dependence was chosen to be exp(iwt). In the first equation H{f)(ﬁr)
constitutes a right-traveling wave. The second equation contains both right and left-
traveling components, but at large r the right-going wave is only seen in its effect due
to the coupling with Eq. (A.2.a). The range-dependent solution, which I will call
G(¢r|ér,) for simplicity, is derived in Appendix B. The depth dependent solution,
¥P(z,€), satisfies

L4 (Bnd(z) - )| (56 =0 (A.3)

with boundary conditions
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EC(Zo’fn)"/’(z’En) = %5(3—%) . (A.9)

Multiplying by (z,£,,), integrating over the depth of the waveguide and using
orthogonality of the normal modes gives

i ¢(zoa§n)
4 h ) (A.10)
J R CTAMICEAL:

C(Zoasn) =

Normalizing the ¢’s in such a way that the integral is equal to 1, C(2,,&,) is equal to

izp(zo,fn), and the final solution is written as

Po(koararoazvzo) = iz G(&nr | énr0)¢(z,€n)¢(zoafn) . (All)

n

Substituting the G(&,r | €,r,) from Appendix B, the incident field modal solution is

Pollosrsrorsze) = 3 B (6o (are) (a6 0(0skn) 157,

Po(koararoazazo) = iz H(oz)(gnro)']o(fnr)'/)(zaEn)¢(zoa§n) r<r,. (A.12)
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i - HY (k) HY) (k,r,) k, dk, (B.6)
2m —00 kz - fn

If we now change the integration along the real line into a contour integral by making
k, complex, the evaluation of these integrals is accomplished using the residue theorem.
If the time dependence is chosen to be e, then the form of an outgoing wave is e T,
Using the asymptotic form of the Hankel functions, these integrals can be rewritten as

ik, (r+r,)
G n nto)™ o l/ r
(6ar | = 5 (m) ™ [ a
tk,(r—r,)
Aoy [T
— = (rro) j;k? Y dk, . (B.7)

The asymptotic forms are used simply to make the pole evaluation more transparent.
In the first integral of Eq. (B.7), r + r, is always greater than 0; therefore, if k, is
positive imaginary, we have convergence in the upper half plane. We have two poles at
which to evaluate the integrand. Evaluation at the positive pole results in an incoming
wave and so this solution is discarded. Evaluation at the negative pole gives the
outgoing wave contribution. Asymptotically, the first integral becomes

(rro)—l/Z e—ifn(" + ro) , (B.8)

?
Ty
and therefore, the solution is

S P (Ear) B (6ar) (B.9)

The phase of the second integral looks like k.(r — r,) and must be evaluated depending
on whether r is greater than or less than r,. For r>r,, we have convergence in the
upper half plane. Evaluation at k, = —&, gives the outgoing wave and the solution is

%Hf,l)(snr,,)H(f) (). (B.10)

For r<r,, we have convergence in the lower half plane. Evaluation at the positive pole
gives the outgoing wave solution

%HS,‘*) (Enrs) HW (€,7) . (B.11)

Summing Egs. (B.9) and (B.10) and using Eq. (B.4), we obtain the solution for r
greater r,.
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APPENDIX C:
Derivation of the Full DWR Solution

The DWR approximation is derived by first assuming the total field solution can
be written as

P(kyy1,70,2,20) = Polko,tyor2y2,) € 02 3%) (C.1)

where P,(ky,7,70,2,2,) is a known incident field and ®(k,,r,r,,2,2,) is a complex phase
function. Substituting Eq. (C.1) into the Helmholtz equation, (1), and performing the
differentiation gives

[v2 + [v2<1> + (V) + k?,nz(r,z)”P,, +2VP,Vd

- 5(r_r‘;):£z_z") e~®.  (C2)

From Chapter 2, we know the incident field satisfies

[v2 + k?,n?,(z)]P,, _ Srzrailzza) (C.3)

27r

Therefore, by evaluating e~? at the source (® is zero at the source because the

scattered field is zero), Eq. (C.2) can be reduced to
P,V:® 4 2VP,V® = —P, (V®)? — ki(n?(r,2) — n(2))P,. (C.4)

We would like to write Eq. (C.4) in the form of a Helmholtz equation and solve for ®
using our Green’s function, P,. Away from the source, we can set

P,V:® + 2VP, Vb = [v2 + k%,n?,(z)] (P,®) (C.5)

so using Eq. (C.5) our differential equation, (C.4), becomes
[V2 + k%n%(z)] (P,®) = —P, (V®)? — ki(n?(r,2) — nj(2)) P, . (C.6)

Therefore, the complex phase function, @, is given by the non-linear integral equation
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APPENDIX D:

Evaluation of the Range-Dependent Solution

As defined in chapter 2, the range-dependent solution for a point source located at
ro = 0 is given by

I(n,m) = HP(€ar) [ Jo(Ear ) BD (Emr)r"dr’

0

+ Jo(fn")f Hg)(fn")H?)(fmr')r'dr' . (D.1)

For clarity in the evaluation, the first integral is defined to be I; and the second to be
I,. The integrals are evaluated differently depending on whether &, = &, or £,+¢,,.

For {,#{;,, the integrals are evaluated as follows. We know J,(£,r) and
Hf,z)(f,,,r) satisfy Bessel’s equation. Choosing z(r) and y(r) to represent any Bessel
functions, we write

Z”+lz'+£n23=0
r
and

re 1 ’
¥ty + &nly =0.

Multiplying the first equation by r y, the second by r z, subtracting the two equations
and combining terms gives

r[yz” - zy"} +z'y—y =& - &l)rzy

or

’

[r(z y — y:c')] = {5,,2 - £m2]r:r:y.

To evaluate the first integral in Eq. (D.1), we set J,(¢,r) = 2, HZ (£,r) =y and
integrate from 0 to r to obtain

r

f Jo(Ear YHD (Er’)r dr’ =

[" €mJo(nr”) HPY (6ar’) — 1 &, Jl(enr')H?’(fn")] . (D.2)

Enz - Emz

The solution of the second integral is obtained in a similar manner. Multiplying
the terms by their respective constants, I, and I, become
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integrals become

Ve py pbor
r= B () E ()

i y) HP (y)ydy . (D.9)

Again, we define the first integral as I; and the second as I, and integrate by parts.
To evaluate I, we write

= LWEPW)  du ==L @) + 1 ED ()] dy

2
dv = yd =L
v = ydy v 5
to obtain
HY) (éa1)
I, = —
€n
. [_yz_"o(y)Hﬁz)(y) -~ f () HP (v) + J1(v) HD (v)] dy| . (D.10)
0 [/]
Evaluating the first term at {,r, (the expression is zero at y = 0), we obtain
rzH(z)(Enr)
"——02——'.]0(6,,?)[1(02)(6"1’) . (D'll)

To evaluate the remaining integral, I;;, in Eq. (D.10), we substitute Eqs. (D.5) for
Jo(y) and J;(y) and combine terms. The result is

HP (,7)
£,

Iy = -

éar

0

Defining the first term as I;; and using Bessel’s Equation
y? HY (y) = — yH,P (y) — y*H, D (y) (D.13)

we obtain
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L dCLL nin| +

HP (£,r)r?
4 4

[¥i(en)|’ (D.20)

Writing Hf,z)(f,,r) = J,(&é,r) — tY,(&,r) in the second term and recombining terms
gives

I= —M[HP) ur)| M[ﬂ?’ (&) (B (&ar))"] (D2)

where * denotes complex conjugate. Now, [ml)(fnr) = H{? (f,,‘r), so for real

eigenvalues

HY (6,1)r HO (¢,0)r? [
1= - B0 Ty e, 4 22T T e (ear)] (02

or recognizing the Wronskian

H{) (€,7) HP (€ar) — HY (6ar) B (£07) = ——2 (D.23)

wépr

we obtain the solution when £, = &, as

= -— _:_r_ﬂj)_(é_'n_")_ (D.24)

m €n

Therefore, evaluation of the range integral for a depth-dependent profile results in the
solutions

2t ng)(fm’)
T €m2 - £n2 .
ir H.P) (Gnr)

i bn=En . (D.25.b)

£n + Em (D.25.a)

It is interesting to note that Eq. (D.25.b) also follows by applying I"'Hopital’s rule to Eq.
(D.25.a), in which case the result is not confined to real eigenvalues.
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the expressions will now be evaluated for a single mode for the test cases discussed in
Chapter 3.

The first example is of a constant velocity waveguide in which the perturbation
spans the entire waveguide. Egs. (E.1.b) and (E.2.b) do not contribute because the
perturbation is constant. In addition, we are finding solutions for only 1 mode. From
Eq. (26), the eigenfunctions are sines; replacing the 1’s with sines (see also Eq. (18.b))
in Eq. (E.1.a) and combining terms, the single mode Born expression becomes

1/2 _h )
2 .
n j; Pu(B)(Ico,r,O,z,zo)sm)\lz dz = -ng2)(§1r)
3/2 h . 12
2 MZy nZ irkon ) TZ TZ
. = . —_ 3 Phaladl _ 3 fhddad) . ddiad) E.3
[h] sin( oA )j; [sm(Zh) 26, sm(zh)]sm(zh)dz (E.3)

where A; has been replaced by —27Lh . Integrating the right hand side yields

2 v fhPu(B)(k r,0,2,2 )sin(ﬂ) dz
h . (/2 R Bt Rat Rad /] 2h

1/2 w2z irkin
HR (g7) [%] sin(—=) [1 _ irkony } (E.4)

i
4 2h 2¢,

iH{,f) (é17), the resulting Born mode
coefficient, Cp, in a constant velocity waveguide is given by

1/2 - 49
) T2, trkon
Cip= |+ i 1
15 [h] sin( 2h)[ T o

Dividing through by the range solution,

(E.5)

Because the Rytov solution is essentially an exponentiated Born, to avoid the simple
analysis, we will simply state the result. The Rytov mode coefficient, C,p is

2 1/2 . T2, irk%nl
Cip = n sin( oh )exp 28,

(E.6)

The second example for which the first mode coefficient is derived is a two-layer
waveguide. The velocity is constant in each layer and the background profile a
constant over the entire waveguide. Again, Egs. (E.1.b) and (E.2.b) are not evaluated
because we are interested in single mode analytic solutions.

In this case, the mode functions are not the same for the true and background
profiles. The true mode functions are given in Eq. (38) and the background modes are
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TRANSMISSION LOSS IN THE CCEAN
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Figure 1. Transmission loss in a constant velocity waveguide. The source
frequency is 25 Hz.
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TRANSMISSION LOSS IN THE CCEAN
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Figure 2. Transmission loss in a constant velocity waveguide. The source
frequency is 100 Hz.
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Figure 3.

SOUND SPEED vs. DEPTH
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Sound speed profile used in generating the results in Figures 4, 5 and 6.
We assume an infinite half-space below the waveguide in which the sound
speed is constant and matches the sound speed at the bottom of the

waveguide.
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TRANSMISSION: LOSS IN THE OCEAN
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Figure 4. Transmission loss in a refractive medium generated using the profile in
Figure 3. The source is placed on the channel axis at 1 km and the
source frequency is 25 Hz.
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Figure 5.

TRANSMISSION LOSS IN THE OCEAN

T8 (e

Transmission loss in a refractive medium generated using the profile in
Figure 3. The source is placed on the channel axis at 1 km and the
source frequency is 100 Hz.
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TRANSMISSION LOSS IN THE QCEAN

PANGE (km)

Figure 6. Transmission loss in a refractive medium generated using the profile in
Figure 3. The source is placed at a depth of 3 km and the source
frequency is 100 Hz.
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SOUND SPEED vs. DEPTH
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Figure 7. Constant velocity profiles. The true sound speed is 1500 m/s. The guess

sound speed in 1501 m/s.

TRANSMISSION LOSS vs. RANGE
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Figure 8. True and background transmission loss curves for test case 1. The curves

are generated using the profiles in Figure 7. Because the eigenfunctions
have the same functional form, the curves are indistinguishable.
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PS /PO vs. RANGE

o I
Born L,‘

P
wi
o
O
Z
~N o
S % 0
a
Wy
= Rytov
P
O
w

ed

Pey L]

LK) 253 500
RANGE (km)
Figure 9. Ratio of the scattered field to the incident field for the Born and Rytov

solutions for test case 1. The solutions are generated using the
background profile in Figure 7.

TRANSMISSION LOSS vs. RANGE

o
e}
{ 1
§ Born
n
0
o
-}
zZ O
o 9
w)
w0
= True
[72]
Z
<
o
—
Q
"' T
1.0 25.5 S0.0
RANGE (km)
Figure 10. True and Born transmission loss curves for test case 1. The growth of

the Born solution with range is clearly seen.
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TRANSMISSION LOSS vs. RANGE
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Figure 11, True and Rytov transmission loss curves for test case 1. Unlike the Born

solution, the Rytov is unaffected by the extent of the perturbation.
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Figure 12. Relative error in the background, Born and Rytov transmission loss

curves for test case 1. The Born error is approximately 17% at 50 km.
The error in the Rytov solution is approximately zero over the entire
range of propagation.
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Relative error in the amplitude and real part of the Born mode

coefficient for a single mode in test case 1. The real part of the Born
coefficient is identically equal to the true coefficient.
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Relative error in the amplitude and real part of the Rytov mode

coefficient for a single mode in test case 1. The amplitude of the Rytov
coefficient is identically equal to the true coefficient.
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RELATIVE ERROR: BORN COEFFICIENTS
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Figure 15. Relative error in the amplitude and real part of the Born mode

coefficient for the first seven modes in test case 1.

RELATIVE ERROR: RYTOV COEFFICIENTS

<
3
- [
"\7 Reol Part
P Amplitude
o
@
x o
Wi o 7
(77 ]
>
—
3
Wi
«
o
3
T v
1.0 10.5 200
RANGE (km)
Figure 16. Relative error in the amplitude and real part of the Rytov mode

coefficient for the first seven modes in test case 1.
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Figure 17.

Figure 18.

TRANSMISSION LOSS vs. RANGE
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True, Born and the reconstructed Born transmission loss curves
generated using the first seven modes in test case 1. The reconstructed
Born solution is calculated using the real part of the projected mode
coefficients.
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True, Rytov and the reconstructed Rytov transmission loss curves
generated using the first seven modes in test case 1. The reconstructed
Rytov solution is calculated using the amplitude of the projected mode
coefficients.
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TWO—-LAYER WAVEGUIDE GEOMETRY
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Figure 19. Two-layer geometry used in test cases 2 and 3.
SOUND SPEED vs. DEPTH
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Figure 20. The true and background sound speed profiles used in test case 2. The
background profile is constant over the entire waveguide at 1501 m/s.
The true profile has a 100 meter layer in which the sound speed is 1500
m/s. Below the layer, the true and background sound speeds are
identical.
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TRANSMISSION LOSS vs. RANGE
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Figure 21. The true and background transmission loss curves for test case 2.

Because the perturbation is small (1 m/s) and extends only 100 meters in
depth, the two curves are nearly identical.
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Figure 22. Ratio of the scattered field to the incident field for the Born and Rytov
solutions in the two-layer waveguide of test case 2. Because the trend of
the ratio is less than 1/4 over the range of propagation, both solutions are
expected to yield accurate results.
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TRANSMISSION LOSS vs. RANGE
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Figure 23. The true and Born transmission loss curves for test case 2. The Born

solution matches the true except at the nulls in the field.
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Figure 24. The true and Rytov transmission loss curves for test case 2. The Rytov

solution matches the true except at the nulls in the field.
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RELATIVE ERROR vs. RANGE
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Figure 25. Relative error in the background, Born and Rytov transmission loss
curves for test case 2. The error in the the solutions is always less than
10%.
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Figure 26. The true and background sound speed profiles used in test case 3. The
background profile is constant over the entire waveguide at 1501 m/s.
The true profile has a 400 meter layer in which the sound speed is 1500
m/s. Below the layer, the true and background sound speeds are

identical.
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TRANSMISSION LOSS vs. RANGE
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Figure 27. The true and background transmission loss curves for test case 3.

Although the perturbation is small (1 m/s), it extends over 28% of the
waveguide; therefore the guess transmission loss differs from the true.

MODE SHAPE vs. LAYER WIDTH
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Figure 28. Illustrated is the variation of the lowest order mode in test case 3 as a

function of layer depth. The curve on the far left represents the mode
shape in a constant velocity waveguide and the second curve from the

left is the mode shape when a 200 m layer is present, etc. The curve on
the far right is the shape of the lowest order mode when a 1.4 km layer is
present. When the layer extends to 1.5 km, the shape returns to that in

a constant velocity waveguide.
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Figure 29.

Figure 30.

MODE COEFFICIENT vs. LAYER WIDTH
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The change in the mode coefficient for the lowest-order mode as a
function of the layer width. In a constant velocity waveguide, the
numerical value is ~0.018. The value of the coefficient decreases to
~.005 at 1 km, and at 1.5 km returns to the original value of 0.018.
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Ratio of the scattered field to the incident field for the Born and Rytov
solutions for the two-layer waveguide of test case 3. Because large
localized spikes are present in the ratios, the solutions are also expected
to have large local errors.
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PS/PO vs. RANGE
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Figure 31. Expanded version of Figure 30. Note the trend of the ratio of both
coefficients exceeds 1/4 by ~13 km; as a result a growth in the Born

solution is predicted.
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Figure 32. The true and Born transmission loss curves for test case 3. Although the

Born reconstructs the general shape of the curve, the growth of the
solution is apparent for ranges greater than ~13 km.
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Figure 33.

Figure 34.
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The true and Rytov transmission loss curves for test case 3. Although
the Rytov approximates the true solution better than the Born,
amplitude errors are apparent in both the nulls and peaks in the field.
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Relative error in the background, Born and Rytov transmission loss
curves for test case 3. Although the Rytov has the least error, neither of
the perturbative solutions were able to duplicate the true transmission

loss curve.
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SOUND SPEED vs. DEPTH
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Figure 35.
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Figure 36. The profile perturbation used in test case 4. The perturbation extends

from 300 to 500 m in depth and the maximum variation from the
background is .5 m/s. In the remainder of the waveguide, the true sound

speed matches the background.
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TRANSMISSION LOSS vs. RANGE
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Figure 37. True and background transmission loss curves for test case 4. Although

the maximum difference in sound speed is only 0.5 m/s, the perturbation
extent is ~13% of the waveguide; therefore the curves differ as we

propagate in range.
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Figure 38. Ratio of the scattered field to the incident field for the DWB and DWR
solutions for test case 4. The spike at ~40 km suggests the possibility of
a local error in the solutions.
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Figure 39. Expanded version of Figure 38. The trend of the ratios is less than 1/4
and the DWB and DWR are predicted to give accurate results.
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Figure 40. True and DWB transmission loss curves for test case 4. As predicted, the

DWRB is a good approximation to the true solution.
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TRANSMISSION LOSS vs. RANGE
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Figure 41. True and DWR transmission loss curves for test case 4. As predicted,
the DWR is a good approximation to the true solution except at the null
near 40 km.
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Figure 42. Relative error in the background, Born and Rytov transmission loss

curves for test case 4.
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SOUND SPEED vs. DEPTH
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Figure 43. Profile perturbation for test case 5. The maximum variation from the

background is now 1 m/s and the extent is ~13% of the waveguide.
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Figure 44. True and background transmission loss curves for test case 5. Note the

difference in the two curves as compared to Figure 37.
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Figure 45. Ratio of the scattered field to the incident field for the DWB and DWR,
solutions for test case 5. As in Figure 38, the spike at ~40 km suggests
the possibility of a local error the solutions.
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Figure 46. Expanded version of Figure 45. The DWB solution is expected to be in
error past 25 km when the ratio exceeds 1/4.
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TRANSMISSION LOSS vs. RANGE
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Figure 47. True and DWB transmission loss curves for test case 5. Although the

shape of the curve is correct, the growth in the DWB solution for ranges
greater than 25 km is evident.
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Figure 48. True and DWR transmission loss curves for test case 5. The error in the

DWR solution near ~40 km has increased (compare Figure 41) and there
are errors in the amplitude. In addition, the DWR fails to correctly

position the nulls of the solution.
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RELATIVE ERROR vs. RANGE
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Relative error in the background, DWB and DWR transmission loss

Figure 49.
The vertical scale has been expanded to

curves for test case 5.
differentiate the errors.
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Figure 50. Background profile used in test cases 6 and 7.
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Figure 51. Profile perturbation for test cases 6 and 7. The maximum variation from
the background is 1 m/s and the extent is ~5% of the waveguide.
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Figure 52. True and background transmission loss curves for test case 6. Note the

broad region of low intensity.

-91-




PS /P0 vs. RANGE

0.6
o

SCATTERED/INCIDENT
0.3

ows
/-/\/\/\f/\oLR\N
o
o Y
1.0 25.5 S0.0

RANGE (km)

Figure 53. Ratio of the scattered field to the incident field for the DWB and DWR
solutions for test case 6.
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Figure 54. Expanded version of Figure 53. Note the maximum error occurs in the

region of low intensity.
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Figure 55. True and DWB transmission loss curves for test case 6. The vertical

scale has been expanded to include the spike near 29 km.
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Figure 56. True and DWR transmission loss curves for test case 6. The vertical

scale has been expanded to include the spike near 29 km.
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RELATIVE ERROR vs. RANGE
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Figure 57. Relative error in the background, DWB and DWR transmission loss
curves for test case 6.
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Figure 58. True and background transmission loss curves for test case 7. Because

the source is placed on the channel axis, the shadow zone has

disappeared.
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Figure 59. Ratio of the scattered field to the incident field for the DWB and DWR
solutions for test case 7.
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Figure 60. Expanded version of Figure 59. The ratio is always less than 1/4 and the
DWB and DWR are expected to give accurate results.
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Figure 61. True and DWB transmission loss curves for test case 7. Because the

waveguide is well-illuminated and the perturbation is small, the DWB
gives a good approximation to the true solution.
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Figure 62. True and DWR transmission loss curves for test case 7. Because the

waveguide is well-illuminated and the perturbation is small, the DWR
gives a good approximation to the true solution.
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RELATIVE ERROR vs. RANGE
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Figure 63. Relative error in the background, DWB and DWR transmission loss
curves for test case 7.
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Figure 64.

TRANSMISSION LOSS IN THE QCEAN
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Transmission loss for the NORDA 2A profile illustrated in Figure 35.
The source is placed at a depth of .5 km and the source frequency is 50
Hz.
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AMPLITUDE OF BCORN KERNEL
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Figure 65. Amplitude of the DWB kernel for the NORDA 2A profile. The source is
placed at a depth of .5 km and the source frequency is 50 Hz. Note the
position of the lower turning points as compared to Figure 64.
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Figure 66.
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Derivative of the phase with respect to depth for the NORDA 2A profile.
The source is placed at a depth of .5 km and the source frequency is 50
Hz. The complicated pattern of zero crossings is due to the interference
of reflected and refracted energy.
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AMPLITUDE vs. DEPTH
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Figure 67. Amplitude of DWB kernel for 10 source frequencies generated using the
NORDA 2A profile. The source depth is .5 km and the range is 30 km.
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Figure 68. Derivative of the phase with respect to depth for 10 source frequencies

generated using the NORDA 2A profile. The source depth is .5 km and
the range is 30 km.
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AVERAGE AMPLITUDE vs. DEPTH
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Figure 69. Frequency-averaged amplitude of DWB kernel generated using the
NORDA 2A profile. The source depth is .5 km and the range is 30 km.
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Figure 70. Frequency and depth-averaged derivative of the phase with respect to
depth generated using the NORDA 2A profile. The source depth is .5

km and the range is 30 km.
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LOW—CUT FILTERED PERTURBATION
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Figure 71. Effect of low-cut filtering on the Fourier reconstruction of a positive

triangular perturbation.
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Figure 72.

triangular perturbation.




LOW—CUT FILTERED PERTURBATION
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Figure 73. Effect of low-cut filtering on the Fourier reconstruction of a symmetric

(about zero) perturbation.
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Figure 74.

Effect of phase-averaging on the Fourier reconstruction of a symmetric

perturbation.
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Figure 75.
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Transmission loss calculated using the profile and source-receiver
geometry of test case 6. The source frequency is 50 Hz.
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Figure 76. Amplitude of the DWB kernel calculated using the profile and source-
receiver geometry of test case 6. Note the trapping of energy in narrow

bands due to the source placement.
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Figure 77.
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Derivative of the phase with respect to depth calculated using the profile
and source-receiver geometry of test case 6. As compared to Figure 66,
there are broad regions in depth for which the phase is monotonic.
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AMPLITUDE vs. DEPTH
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Figure 78. Amplitude of DWB kernel for 10 source frequencies generated using the
profile and source-receiver geometry of test case 6. The range is 30 km.
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Figure 79. Derivative of the phase with respect to depth for 10 source frequencies

generated using the profile and source-receiver geometry of test case 6.
The range is 30 km.
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AVERAGE AMPLITUDE vs. DEPTH

<
) o~
(@]
I
o
x
w
(@]
2 o |
S -
a
3
A
")
Q
<
a
Z o

(o] R

0.0 290 4.0

DEPTH (km)

Figure 80. Frequency-averaged amplitude of DWB kernel generated using the
profile and source-receiver geometry of test case 6. The range is 30 km.
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Figure 81. Frequency and depth-averaged derivative of the phase with respect to
depth generated using the profile and source-receiver geometry of test
case 6. The range is 30 km.
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TRANSMISSION LOSS IN THE OCEAN
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Figure 82. Transmission loss generated wusing the profile and source-receiver
geometry of test case 7. The source frequency is 50 Hz.
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Figure 83. Amplitude of the DWB kernel generated using the profile and source-

receiver geometry of test case 7. Note the trapping of energy near the
channel axis.
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Figure 84.
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Derivative of the phase with respect to depth generated using the profile
and source-receiver geometry of test case 7. As in Figure 66, there are

many zero crossings. In this case the turning points are due to refraction
within the waveguide.
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AMPLITUDE vs. DEPTH
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Figure 85. Amplitude of DWB kernel for 10 source frequencies generated using the
profile and source-receiver geometry of test case 7. The range is 30 km.
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Figure 86. Derivative of the phase with respect to depth for 10 source frequencies

generated using the profile and source-receiver geometry of test case 7.
The range is 30 km.
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AMPLITUDE vs. DEPTH
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Figure 87. Frequency-averaged amplitude of DWB kernel generated using the
profile and source-receiver geometry of test case 7. The range is 30 km.
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Figure 88. Frequency and depth-averaged derivative of the phase with respect to
depth generated using the profile and source-receiver geometry of test

case 7. The range is 30 km.
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