W

ASYMPTOTIC FOURIER INTEGRAL OPERATOR METHODS
APPLIED TO THE INVERSE PROBLEMS OF GEOMETRIC ACOUSTICS
by

Bruce Gordon Zuver

Center for Wave Phenomena
Department of Mathematics
Colorado School of Mines
Golden, Colorado 80401
Phone: (303)273-3557

CWP-059






ASYMPTOTIC FOURIER INTEGRAL OPERATOR METHODS

APPLIED TO THE INVERSE PROBLEMS OF GEOMETRIC ACOUSTICS

A Dissertation
Presented to
the Faculty of Mathematical and Computer Sciences

University of Denver

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

by
Bruce Gordon Zuver

June 1987



© Copyright by Bruce Gordon Zuver 1987

All Rights Reserved



ASYMPTOTIC FOURIER INTEGRAL OPERATOR METHODS

APPLIED TO THE INVERSE PROBLEMS OF GEOMETRIC ACOUSTICS

An Abstract of a Dissertation
Presented to
the Faculty of Mathematical and Computer Sciences

University of Denver

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

by
Bruce Gordon Zuver

June 1987



The velocity inverse problem of geometric acoustics for an
inhomogeneous non-dispersive medium is studied. The elegant and
powerful theory of pseudodifferential operators and Fourier integral
operators is utilized to asymptotically solve a class of general
asymptotic integral equations for which the important velocity
inverse problem is a special case. It is demonstrated that explicit
inversion algorithms can be generated for the three dimensional
backscattered data configuration with constant reference velocity.
In particular, the zero order and first order inversion algorithms
are developed and extensively analyzed. It is shown that the first
order inversion algorithm annihilates the linear error terms produced
by the zero order algorithm. Consequently, a potentially valuable
improvement over existing inversion algorithms is indicated. The
results are shown to be consistent with exact closed form solutions
obtained by the Cagniard-de Hoop method for stratified media.
Furthermore, the contributions to the field are informative in
demonstrating that asymptotic Fourier integral operator methods

can be applied to the problems of geometric acoustics.
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CHAPTER 1

BACKGROUND THEORY

Over the last two decades, substantial and important progress has
been made toward the solution of a class of significant problems known
as inverse problems. Inverse problems are characterized by extensions
of partial differential equations to the more general problem of the
determination or approximation of unknown coefficient functions from
various types of boundary data. The boundary data can be either time

or spectral data.

The main topic of this dissertation concerns the velocity inverse
problem arising from geometric acoustics theory. The velocity inverse
problem is mathematically formulated in terms of determining velocity
functions in a wave equation from boundary data measurements. This is
the natural mathematical model for the seismic problem of imaging the
geophysical discontinuities in the earth through the interpretation of
reflected acoustical data generated by an impulsive wave source. In
addition, the velocity inverse problem is relevant to non-destructive
testing of materials and medical tomography. Furthermore, geometric
acoustics phenomena have analogues with the electromagnetic propagation
phenomena of geometric optics. In fact, the theory of geometric optics
and geometric acoustics are essentially identical. Consequently, there
is considerable potential for application of the inversion techniques

to electromagnetic scattering phenomena.

In this introductory chapter, the necessary background theory is
presented. A discussion of geometric acoustics methods and sound wave

propagation phenomena in inhomogeneous non-dispersive media is required
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as a basis for later theory. The velocity inverse problem is described
and formulated in terms of a fundamental integral equation for an index
of refraction perturbation. This integral equation is then solved using

Fourier integral operator techniques in subsequent chapters.

1.1 Ristorical Perspective

The velocity inverse problem was formulated as a perturbation
problem by Cohen and Bleistein [7]. These researchers demonstrated that
an index of refraction perturbation could be solved for in the case of
a 2-dimensional backscattered data configuration using a constant

reference velocity.

These techniques were later extended by Bleistein, Cohen, and
Hagin [5] to include a more general integral equation utilizing a non-
constant reference velocity. These authors pointed out the relationship
of this perturbation formulation with the Born approximation found in
theoretical physics. An algorithm was developed from the method of
stationary phase and asymptotic analysis (see, for example, Bleistein
and Handelsman [6]), Erdélyi [13], Lebedev [23], or Olver [28]). This
algorithm addressed the backscattered data problem with constant

reference velocity.

Cohen and Hagin [8] then presented an algorithm for backscattered
stacked seismic data in which the reference velocity varied with depth.
This greatly enhanced the validity of the perturbation assumptions to
more realistic inverse problems. Again, high frequency asymptotic and
stationary phase methods were utilized to solve for the unknown index
of refraction correction to the velocity. Moreover, it was noted that
the integral equation was in the form of a generalized Fourier integral

equation.

Along a parallel direction, several researchers have been using
the powerful mathematical tools of Radon transforms, pseudodifferential

operators, and Fourier integral operators. The Radon transform has
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become the fundamental tool in computerized tomography, the process of
reconstructing images from recorded projections. The sources by Deans
[11,12], Helgason [19,20], and Natterer [27] provide current treatments
on Radon transform theory. Many researchers have been investigating the
theory of pseudodifferential operators and their natural generalization
to Fourier integral operators. The books by Treves [33] and Taylor [31]
offer a modern perspective on the mathematical theory concerning these

operators.

The connection between the theory of pseudodifferential and
Fourier integral operators and the wave phenomena of geometric optics
was discussed by Guillemin and Sternberg [17]. More recently, Beylkin
[2,3] set the stage for very general inversion techniques for the
problems of geometric acoustics. Beylkin made a significant contribu-
tion by realizing that the general mathematical approaches of Randon
transforms, pseudodifferential operators and Fourier integral operators
could be applied to the Born approximation integral equation of the
velocity inverse problem. Beylkin then formulated inversion algorithms
in terms of a generalized backprojection operator analogous to the
Radon transform methods of computerized tomography. Beylkin also noted
that this general setting includes all of the practical configurations

of geophysics, tomography, and non-destructive testing.

Recently, the earlier stationary phase approaches were compared
to Beylkin's methods by Cohen, Hagin, and Bleistein [9]. It was noticed
that the problem of a developing a feasible algorithm for a particular
seismic configuration is reduced to whether a certain Jacobian is
computable. These authors then derived an expression for velocity
inversion in a full 3-dimensional setting with a general data surface.
The implementation of these algorithms into computationally feasible

schemes was discussed.



1.2 Wave Propagation in Inhomogeneous Non-Dispersive Media

The problem of interest concerns acoustical wave propagation and
the imaging of wave propagation velocity (or equivalently, index of
refraction) discontinuities in an inhomogeneous medium. In the present
section, the phenomenon of wave propagation is mathematically formu-
lated in terms of an asymptotic series satisfying the wave equation.
The method to be described follows Bleistein [4] and Lewis and Keller
[24].

The inhomogeneous medium is modeled as an infinite half-space
with wave velocity assumed to be a piecewise smooth function of only
position. In particular, it is assumed that the medium shows an absence
of significant dispersion (wave propagation velocity dependence on
frequency) over the range of frequencies of interest. A right-handed
coordinate system x = (xl,xz,x3) is introduced where xl and x_ are

2

chosen to lie along the outer surface of the medium, and where x, is

positive in the direction of depth into the medium.

We consider an impulse wave source emanating from a surface point
£ = (El,gz,O). The source wave propagates through the medium and is
reflected from internal surfaces of wave velocity discontinuity. It is
assumed that the motion of the source wave U(x,t) propagating through

regions of smooth velocity is governed by the wave equation,

2
viy 1 237U _ -6 _ 8 ,
Z(x) 3c2 (x — &) 8(t)
U(x,t) =0, t<O0, (1.1)

where V2 is the spatial Laplacian operator, § denotes the Dirac delta
function, and c(x) is the spatially dependent wave velocity function.
On surfaces of velocity discontinuity, the wave bifurcates into
reflected and transmitted waves weighted by the appropriate reflection

and transmission coefficients.



We use the following convention for the n-dimensional Fourier

transform and its inverse:

£(k) = £,[F(x)] = [ F(x) e X' % dx ,
Rl’l
F(x) = £ [£(0)] = —— [ £() e "% qk . (1.2)
(am ’"

The sign convention above is chosen to more closely reflect the form of
the forthcoming integral equations. Taking the l-dimensional Fourier
transform fl of the wave equation with respect to time results in the

inhomogeneous Helmholtz equation,

02
2(

72u(x,w) + u(x,w) = — §(x— &) , (1.3)

c?(x)

where u(x,w) is the Fourier transform of U(x,t).

For points x not at the source point &, u(x,w) satisfies the
homogeneous Helmholtz equation. We assume a formal asymptotic series
solution of the form

iwt (x)

B Alx,0) e , (1.4)

ulx,w) = w

where 1(x) denotes travel time and where the amplitude function is

formally written
Alxy) =y A=) (1.5)

Note that the exponent B in equation (l.4) can not be determined from
the homogeneous Helmholtz equation, but is determined by matching the
solution asymptotically to prescribed data. g = 0, for the problems of
interest. Substituting the asymptotic representation into the Helmholtz

equation results in



{ {._4_;3=2 (((v)2 - —1—)

c?(x)
1
+W(2VT'VAJ+A(X)V2 )+(—)-1j-}=0. (1.6)

Separately setting the coefficients equal to zero for each power
of w produces a system of equations for the travel time and amplitude
functions. Travel time t1(x) satisfies a first order nonlinear partial

differential equation known as the eikonal equation,

(vi)2 = — L1 | (1.7)

c2(x)

The first amplitude function Ao(x) satisfies the first transport

equation
2V VA + Ag(x) V21 =0 . (1.8)

The higher order amplitude functions Aj(x) satisfy the higher order

transport equations

2Vt "VA,

j+ AR V2 = - 92850 (x) , (5= 1,2,3,...) . (1.9)

The partial differential equations (1.7), (1.8), and (1.9) describe the
wave propagation completely. However, for the problems of interest, the

velocity function c¢(x) is also unknown.



1.3 Derivation of the Backscattered Data Integral Equation

In this section, the problem of velocity discontinuity imaging is
framed in the form of an integral equation. The method used follows the
papers by Cohen and Bleistein [7], Bleistein, Cohen, and Hagin [5], and
Beylkin [3]. We consider a source wave radiating from a point on the
data surface x, = 0, £ = (51,52,0). The source wave propagates through
the medium and is reflected from a point x = (xl,xz,x3) at depth. If
the point x lies on a surface of wave velocity discontinuity, the
scattered wave has a non-zero amplitude at the receiver. The observed
scattered field is measured with receivers on the data surface at the

source point g§. The wave propagation geometry is depicted in Figure 1.

A known reference velocity co(x) and an unknown index of
refraction perturbation y(x) are introduced in terms of the unknown

velocity c¢(x) by the equation

1 _ 1
c2(x) cg(x)

(1 + p(x)) . (1.10)

We extend the problem domain from the half-space X, 2 0 to the entire

space B3 by imposing the condition that y(x) = 0 for X, < 0. This has

the advantage of simplifying the notation and discussion.

The total field is denoted u(x,w,£). The total field satisfies

the Helmholtz equation with wave propagation velocity c(x),

w2

V2u(x,w,E) + N u(x,w,E) = — 8(x— &) . (1.11)

sz

The total field is decomposed into an incident field uI(x,w,E) and a

scattered field us(x,w,g). Specifically,
u(x,w,&) = uI(x,w,E) + us(x,w,g) , (1.12)

where the incident field satisfies the Helmholtz equation for an

unperturbed medium with wave propagation velocity given by the



Point at Depth

Surface of X = (xl,xz,xs)

Discontinuous

Index of Refraction
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Scattered Wave us(x,w,E) uI(x,w,E)

Data Surface x_. = 0
3 Source Point

Figure 1. Wave Propagation Geometry



reference velocity co(x),

w2

vzuI(x,w,g) +— u(x0,8) = —8lx - g, (1.13)
CO X

and where the scattered field satisfies

2
V2u (X,0,E) + — (x,0,&)
ug(x,w 3 c% - ug(x,w £
2
- _ w
= — y(x) cg(x) ( UI(x,m,g) + us(x,w,g) ) . (1.14)

Note that adding the equations (1.13) and (1.14) immediately results in
the original Helmholtz equation (1.11).

It is to be observed that the incident field uI(x,w,g) is in fact
the free-space Green's function for the unperturbed Helmholtz problem.

The incident wave takes the following asymptotic form:

0 (x,0,8) = Alxu,g) 7% (1.15)

where

Ay E) = § Am8) (1.16)

3=0 (iw)?
The phase function t(x,g) is the travel time from the source point ¢

to the point at depth x that satisfies the eikonal equation

2=_1 (1.17)
(ve) c%(x)

The first amplitude function Ao(x,g) satisfies the transport equation
200 VA + Ao(x,g) V2¢ =0 . (1.18)

The higher order amplitude functions Aj(x,g), j=1,2,3,..., satisfy

the transport equations
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201 VA5 + Aj(x,E) V2t = — V245, (§ = 1,2,3,...) . (1.19)
Consider the linear differential operator LO for the unperturbed

Helmholtz problem,

2
L =92 4+ 2
0 c%(x)

(1.20)

We utilize Green's theorem for the Helmholtz operator £0 (see Bleistein
[4] or Morse and Feshback [26]). If the two functions u(x) and v(x)
have the necessary derivatives on a compact manifold  in R3 with a

boundary 3Q, then

| ((u(=) £, v(x) — v(x) £, u(x) )} dx
Q
= [ (u@ T vx &) as, (1.21)
on on
n
where 2 denotes normal derivative and dS denotes the surface differ-

an
ential form.

In particular, for the unperturbed Helmholtz operator Loacting on

the incident and scattered field on a sphere @ of large radius R, we

obtain

I ( uI(x,w,E) £0 us(x,w,g) - us(x,w,g) LO UI(X,w,E) ) dx

Q
) )
= [ (uy(m0,8) =5 - u(xw,6) —L) ds . (1.22)
2Q an S an

Moreover, by application of the radiation condition at infinity for
R > «, the surface integral vanishes. Substituting the unperturbed
medium Helmholtz equations (1.13) and (1.14) for the incident and
scattered field into the surviving volume integral and using the

properties of the Dirac delta function leads to the integral equation
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uS(E,w,E) = w2 | J%?El.ul(x,m,g)
23 C0 (X)

N ur(x,0,8) + ug(x,u,£) ) dx . (1.23)

The above expression is a nonlinear integral equation relating
the unknown index of refraction perturbation y(x) to the measurable

data us(E,w,g) of the scattered field at the surface x. = 0. However,

3
the scattered field at depth us(x,w,E) is also unknown.

Up to this point, there have been no approximations used in the
formulation of the integral equation beyond the model of the medium and
the appropriateness of the wave equation to describe the propagation of
the wave. In this sense, the integral equation is an exact equation. We
assume that the perturbation y(x) is small. Consequently, the scattered
field is also small relative to the incident field. In particular, the
term y(x) us(x,w,E) is essentially quadratic in the small parameter
p(x), whereas the term y(x) uI(x,w,g) is linear in y(x). Hence, we are
justified in making the approximation to a linear integral equation by
dropping the product term y(x) us(x,w,g). This technique is equivalent
to the Born approximation or regular perturbation method of theoretical
physics (see Merzbacher [25], Jackson [22], or Morse and Feshback [26],

for example). Thus, the linearized integral equation is given by

D(w,E) = w? | Jkgil-uz(x,w,g) dx , (1.24)
R3 CS(X) I

where the data measurements are denoted
D(w,E) = us(g,w,g) . (1.25)

In order to solve the linear integral equation (1.24), it is
necessary to determine the incident wave explicitly. This involves
solving the eikonal and transport equations. We now discuss the method

by which these equations are solved.
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1.4 Solution to the Eikonal and Transport Equations

In this section, the eikonal equation is solved using the method
of characteristics. The method of characteristics is a general tech-
nique for solving first order nonlinear partial differential equationms.
The method is particularly suited to the eikonal equation. The solution
is given in terms of parameterized trajectories referred to as rays.
The method of characteristics originated with Cauchy. Details of the
method can be found in several sources including Hartman [18], Spivak
[29], Courant and Hilbert [10], and Garabedian [15]. Its application to

wave phenomena can be found in Bleistein [4].

One key result of the present section is the reformulation of the
eikonal equation into the ordinary differential equation (1.40) for the
rays as a function of the reference velocity. In addition, the trans-
port equations are solved through the exploitation of a ray Jacobian
invariance property. This generates ordinary differential equations
(1.48) and (1.57) for the amplitude functions along rays. These differ-
ential equations can be explicitly solved for particular reference
velocity profiles. The solutions will be required in the forthcoming

chapters.

Consider a general nonlinear first order partial differential

equation of the form
F(x,u,p) = 0 , (1.26)

where u(x) is the solution function in the variable x = (xl,x ,...,xn)

with gradient

9 ] )
axl ax2 axn

p= (2w, 2w 2y (1.27)

The differential equation is subject to the initial conditions
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u(xo(g)) = uo(g) , (1.28)

on the (n-1)-dimensional submanifold M in RM represented parametrically

by

x = xo(g) y E = (gl,gz,...,gn_l) . (1.29)
If the function F(x,u,p) is in the class C2(R2ntl) and if the

initial data is noncharacteristic on M, then there exists a unique

solution u = u(x) of class C2(RM) in a neighborhood of M. Moreover,

the solution can be parameterized in the form

u = u(x(g,0)) , (1.30)
such that
x(g,co) = xo(g) s (1.31)

and such that the system of ordinary differential equations

dx _ oF (1.32)
io A(x) 3p s
_‘12 = — A(X) (§E+ pa_F) , (1.33)
do 9x du

n
U (x) p. £, (1.34)
dO‘ j=1 J apj

are satisfied with an arbitrary non-vanishing function A(x). There is
freedom in the choice of the function A(x) that corresponds to the
freedom of choice in the parameterization 0 in the solution curves

x(0),

Now the method of characteristics is specialized to the eikonal

equation in R3 written in the form
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2
I S S
F(x,7,p) ) 2c§(x) 0, (1.35)

where p2 denotes the square of the magnitude of the gradient of travel
time T,
p2 = p'p = VrVr . (1.36)

The corresponding system of first order ordinary differential equations

in terms of the general parameterization function A(x) is given by

% _(x) p, (1.37)
do
dp _ A(x) v(—L - Ax) v( 1 ) (1.38)
do 2 c2(x) c (x) ‘e (x) )

0 0 0
dt A(x)
dr _ , (1.39)
do cg(x)

Moreover, this system of first order differential equations can be
expressed in terms of a second order differential equation for the ray

trajectory x(o),

dtodxy Am) gLy (1.40)
do A (x) do co(x) c (x)
We will be interested in curvilinear coordinate transformations

of the general form

x, = x.(q,,9,,q,)
2 = %,(q,549,,9,)
3 xs(ql,qz,q3) ) (1.41)

L
1]

w
]

where one of the transformation variables is chosen to be the ray
parameter ¢g. For our purposes, q, = o. The corresponding Jacobian of

the curvilinear transformation is denoted
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a(x. ,x_,x.) a(x, ,x.,x.)
J = det ——2-3 = ger —1 23" (1.42)
3(q;»9,,9,) 3(q,,q,,0)

Furthermore, an application of the chain rule shows that the Jacobian
satisfies the property:

ﬂ=Jv-d—x=Jv-(AvT) = J VAV + AJ V27 . (1.43)

do do

The above Jacobian property is utilized to solve the transport equation

below.

Expressing the gradient of travel time p = Vr in terms of ray
velocity by equation (1.37) and substituting the result into the first
transport equation (1.18) results in an ordinary differential equation
along the ray trajectory,

2 5 ya 9=, Ag V2t =0 . (1.44)

A 0 0 gs

The Jacobian property in equation (1.43) and the first transport
equation along rays (1.44) are used to derive a ray Jacobian invariance
property. The ray Jacobian invariance property will permit the ready
solution of the first transport differential equation for the wave
amplitude function along rays. The initial step consists of calculating
the derivative of AgJ/A with respect to the ray parameter 0. We use the

slight abuse of notation A (o) = A, (x(0)).

d ( A%(o) J(o) ) -

dx
Ao(o) J(o) VA0 R—

do A(o) A(a) do
2(g) dJ A2 d
L L (1.45)
A(o) do A2(o) do

The Jacobian property (1.43) provides an expression to substitute for

the derivative of J with respect to o.



16

a A2 J(o) 2 d
_(JM)=—A(0)J(O)VA CZZ
do A (o) Ao) O 0 do
A2(g)
+ =02 (3(o) W - Vo + Alo) I(o) V2 )
Alo)
A2(g) d
- _QSE_ I W - — (1.46)
22(0) do

A rearrangement of terms with an application of the differential

equation (1.37) results in

d A2(c) J(o) 2 dx
(Y o g A VA, - — + A2(0) V2
w ey ) T (5 @) Ty g A5 7 )
A%(
+L— J@) W - ¥t
A(o
A2(0)
~20°% 5y W - (A(o) Vi) . (1.47)
A2(a)

Recalling the form of the first transport equation (1.44) along rays,
the first term of the above expression immediately vanishes. Moreover,
the second and third terms cancel each other. Thus, the desired ray

Jacobian invariance property is obtained. Specifically,

d , A2(0) J(o)
— —ﬂu)=o. (1.48)

do (o)

It follows that A%J/A is constant along rays. Consequently, it
becomes trivial to integrate the above differential equation and solve

for the first amplitude function along rays. Thus,

A J
AGo) =4 (o | M IEY (1.49)
0 00 A(oo) J(a)

where % denotes the ray parameter value corresponding to the initial

conditions. Hence, the solution of the first transport equation has

been reduced to the calculation of a Jacobian J along rays.
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A similar method can be exploited to solve the higher order

transport equations along rays. Consider

d J(o) A;(0) J(o)
— ( A;(o) A (o) (1.50)
do ( e ) do ( Ao(o) 0°° A(o) )

Taking advantage of the ray Jacobian invariance property (1.49) results

in the following.

(o) ) J(.) 4 ](o

A(oo) do A (o)

d
— (450 ) . (1.51)
)

Equivalently, by again applying equation (1.49),

d J(o) J(o) d :(g)
— ( As(g) = A (g) Ajt0) (1.52)
do ( g ) 0° A(g) do A (o) ) -

Expanding, we obtain,

d J(o) J(e) dA; A;(g) dA
= A:(g) 1l 0y . (1.53)
o L4300 ) =/ o (e a,(0) do )

Hence, by applying the ray equatioms,

d ( )
— (4@ [ =) = 2@ 1
g

As(
(vay - v — i LLAayU vt ) . (1.54)

The transport equations (1.18) and (1.19) can be rewritten in the

form:

1
VA - Vvt =——A (¢) V27 , (1.55)
0 2 0
. 2 ! 2
VAj © Vr = =3 Aj(o) V2t =3 V2A5-y . (1.56)

These expressions are substituted for the corresponding terms in

equation (1.54). This substitution produces
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d J(o) 1
= (ayo) ) = = =N 3G veAy, . (1.57)
do ] A(o) 2 J

The above equation is a simple inhomogeneous ordinary differential

equation that can be solved recursively by direct integration.

J(o) J(o )
a50) | == - a6y [ =
A(o) 0 Ao )

1 ©
== [/ M) 3(e*) v2A5.1(0") do” (1.58)

%

Thus, the problem of solving the higher order transport equation
has been again reduced to the calculation of the Jacobian J along rays.

Hence, the amplitude is given by

/ A(o) J(c.)
A;(o) = As;(5 ) e
ite %% A(co) J(o)
1 A(g) ©
—= [ 2 p NG 3Gt V250 (") do” (1.59)
2 J(o) o,

Equations (1.40), (1.49), and (1.59) provide the fundamental equations

required to specify the wave propagation in a particular medium. We
now turn to the subject of pseudodifferential and Fourier integral

operators.
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1.5 Pseudodifferential and Fourier Integral Operators

In the forthcoming chapters, general integral operators appear
often. In this concluding section, we provide definitions of the
relevant integral operators. Specifically, we are concerned with two
types of integral operators: the pseudodifferential operators and the
Fourier integral operators. A rigorous treatment of these integral

operators can be found in the sources by Treves [33] and Taylor [31].

A pseudodifferential operator A is represented by expressions of

the following kind:

[ ei(x-y)*k a(y,k) u(x) dx dk . (1.60)

(A“)(Y) = (2m)B @

The function a(y,k) is known as the symbol of the pseudodifferential
operator A. The pseudodifferential operator (1.60) can also be

expressed in terms of the Fourier transform of equation (1.2). Hence,

1 —. [ ] ~
(Au) (y) = [ 7K ay,k) G(Kk) dk , (1.61)
n

(2m)™ "

where ﬁ(k) denotes the n-dimensional Fourier transform of the function

u(x) 9
a(k) = fn[u(x)] . (1.62)

The pseudodifferential operator (1.60) can be generalized to

operators of the form

1

(2m)8 f ] ei¢(x,y,6) a(x,y,0) u(x) dx do , (1.63)
w
ol

where the phase function ¢(x,y,8) is subject to the conditions:

(Fu) () =
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(D ¢ec(R XA XE - {0} ),
(2) ¢ is positive~homogeneous with respect to 6 of degree 1, and

(3) V¢ and Vy¢ do not vanish in R" X ®" X ®" - [o}. (1.64)

An operator ¥ satisfying (1.63) and (1.64) is called a standard Fourier

integral operator.

The standard Fourier integral operators represent a class of
operators that are easy to analyze from the point of view of functional
analysis. However, for many important applications, one typically deals
with phase functions ¢(x,y,8) that violate the restrictions (1.64).
Therefore, we define a general Fourier integral operator ¥ as an
operator of the form (1.63) but not necessarily satisfying the
restrictions (1.64). Commonly, we simplify the terminology and speak
of Fourier integral operators by dropping the word general. This

concludes the background theory needed for the forthcoming chapters.



CHAPTER 2
GENERALIZED ASYMPTOTIC INTEGRAL EQUATION INVERSION

In the previous chapter, the nature of scattering data at an
accessible surface due to reflections in inhomogeneous non-dispersive
media was investigated. An integral equation for the backscattered

data configuration was developed,

D(w,E) = w? I JkgEl-uz(x,m,g) dx , (2.1)
R3 CS(X) I

relating an unknown wave propagation index of refraction perturbation
p(x) (relative to a reference velocity co(x)) to the scattering data
D(w,&) at the surface. The incident field u%(x,w,g) is considered to
emanate from the coincident source and receiver point E and possess
the asymptotic representation

W2(x,0,8) = A2(x,0,g) e™WO(0E) (2.2)

where the amplitude has the expansion
A(x,w,€) = ) Ay(x,E) (2.3)

and where the phase is the sum of the travel time from the source to

the point at depth and back,
¢(x3§) = ZT(X,g) . (2.4)

In the present chapter, the general inversion of a collection of

integral equations is considered. The perturbation integral equation

21
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for backscattered data above can be viewed as a special case of this
class of integral equations. The method involved follows the techniques
supplied by the papers by Beylkin [2,3]. However, the method developed
in this chapter deviates slightly from the Radon transform emphasis of
Beylkin in that a purely Fourier integral operator approach is taken.
Moreover, the procedure is extended to asymptotic integral equations of
higher order from which explicit inversion algorithms are generated. A
rigorous treatment of the theory of Fourier integral operators and the
related pseudodifferential operators relevant to the techniques of the
present chapter can be found in the books by Treves [33] and Taylor

[31].
2.1 Generalized Asymptotic Integral Equation

In the present section, a class of asymptotic integral equationmns
is explored. The main objective is to eventually invert the general
class of integral equations. In particular, the inversion procedure
will lead to explicit inversion algorithms for the backscattered data
integral equation that is a special case of the more general integral

equation.

The inversion methodology consists of operating on the general
integral equation (that is similar to a Fourier transform in character)
with a candidate inversion operator (that is similar to an inverse
Fourier transform in character). The combined operator takes the form
of a Fourier integral operator, or equivalently, a generalization of a
pseudodifferential operator. It is then noted that making the Fourier
integral operator asymptotically the identity operator is equivalent to
selecting the unknown kernel functions in the inversion operator. The
present section ends with an explicit asymptotic representation for the
Fourier integral operator formulation. This representation is further

manipulated in subsequent sections.
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The general asymptotic integral equation to be considered relates

an unknown function y(x) to Fourier transformed data on a hyperplane

x=£ = (El,...,gn_l,O). The integral equation is of the form:
D(w,&) = wn-l | a(x,w,£) eim¢(x,£) v(x) dx , (2.5)
2"

where the phase function ¢(x,£) and the amplitude a(x,w,f) are C*.
Furthermore, the amplitude function is assumed to have the asymptotic

representation in the Fourier frequency variable w,

alx,w,g) = ) 2= (2.6)

§=0 (iw)d

We wish to invert the general integral equation for the unknown
function y(x). By noticing the Fourier-like nature of the integral
kernel, a reasonable asymptotic form for the integral equation inverse

operator can be conjectured:

v(y) v —2 ) | b(y,w,€) e 1wo(y,8) D(w,E) dw dg , (2.7)
n-

(2m)" gn-1 o

where the notation d§ refers to the differential (n-1)-form

g, g, ... d&n_l and where the kernel function b(y,w,£) is to be
determined. We assume that the kernel function also has an asymptotic

expansion,

bly,w,g) = § lf) (2.8)
k=0 (iw)

Consequently, it is natural to combine the integral equation and the
inverse operator to form the following Fourier integral operator F
defined in terms of the unknown amplitude kernel function b(y,w,£).

Specifically,

1
(2m)"

(F))(y) = ) || a(x,w,g) b(y,w,E)
Rn-l R R"

. eiu@(X,y,E) lP(X) wn-l dx dw dg , (2.9)
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where the phase is given by
(x,y,E) = ¢(x,8) — ¢(y,8) . (2.10)

The strategy is to choose the kernel amplitude b(y,w,£) in terms
of the integral equation amplitude a(x,w,£) and phase ¢(x,£) such that
the Fourier integral operator F is asymptotically the identity. This is
precisely equivalent to the determination of the kernel function
b(y,w,£) in the integral equation inverse operator (2.7). This is also

equivalent to inverting the original integral equation (2.5).

In order to make the Fourier integral operator F asymptotically
the identity operator, it is necessary to expand the Fourier integral
operator into a series of increasingly smooth integral operators. This
procedure leads to very complicated and intricate expansions, but will
eventually provide explicit expressions for the undetermined kernel

functions.

To assist in the detailed expansions, the multi-index notation
from the theory of partial differential operators is adopted (see
Treves [32] or Folland [14]). Specifically, for the spatial variable
X = (xl,...,xn) and multi-index q = (al,...,an) where each @y is a
nonnegative integer, the notation x* refers to the multivariable
polynomial x?lva"° xin. The notation 3: is a compact way to write

2
the partial differential operator

9 oy 3 a, d a
GG G-
1 2 n
The norm of the multi-index a = (al’az""’an)’ denoted |u|, is the
sum of the respective nonnegative integers, |a| = ap *a, + oo tal
The factorial symbol a! refers to the product al! az! ves an!.

If the Fourier integral operator F is made asymptotic to the
identity operator, then the kernel of ¥ is essentially an approximation

to the Dirac delta function, §(x — y). Such an approximating function
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to §(x — y) will act predominantly in a neighborhood of x — y = 0.
Consequently, it makes sense to expand the Fourier integral operator F
for small (x — y). This requires expanding the various functions that
define the Fourier integral operator into Taylor series. When the phase
function ¢(x,y,£) is expanded in a Taylor series for small (x — y), we

obtain the following:

¢(x,y,£) = Vy¢(y,g)-(x - y) + H(x,y,£) , (2.11)
where
0 1 ) o P} a
H(x,YaE) = X Lo 1 ( ) 1(_) n ¢(Ys€)
a1+'.'+an=2 oy a’ ayl ] n
v Y (e — o YV
(x1 yl) (xn yn) n (2.12)

or more succinctly in multi-index notation,

S 1 a a
H(x,y,£) = § —oa_ ¢(y,8) (x—y)" . (2.13)
al! Y
la|=2
The amplitude function a(x,w,£) is also expanded in a Taylor series for
small (x — y). This takes the following form in multi-index notation.
% © 1 (x—y)B
a(x,0,8) = ) y — 8% a.(y,E) — 3 - (2.14)
. _~ B! J (iw)
j=0 |g|=0
The Taylor series relate the phase perturbation H(x,y,£) and the
amplitude function a(x,y,£), that both depend on the integration
variable x, to the functions ¢(y,g) and aj(y,g), that depend on the
output variable y. This makes it possible to integrate the series
representations (2.11) and (2.14) with respect to x in forthcoming
equations. In addition, the phase perturbation and amplitude series
can be further expanded to yield the following multiple summation

formulae.
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1 n E 32¢
H(x,y,g) = — } (x—y )x—-y)
2 p=1 gq=1 aypayq P P 9 °¢q
1 n n n 33¢
+- 37 J )] — x-y)x-y )x =~ x )
6 p=1 q=1 r=1 By By ay P P 9 °¢q

b, (2.15)

0
n 32
X % (xp— y )(x =Yg )+ oo} (2.16)

The concept of a homotopy (see Hocking and Young [21]) is useful
for the purpose of expanding the Fourier integral operator F. Consider
the homotopy hy with parameterization se [0,1] of Fourier integral

operators given by

(hg(p)) (y) = L = [ o 1wVyd (y,€) * (x-y)+iwsH(x,y,£)

o a(x,w,E) b(y,w,8) v(x) o™ ' dx dw dE . (2.17)

For the parameterization value s = 0, we obtain a simplified integral

operator ho of the form

RNy = L[ [ LoV xy)
0 Rn-l R R"

a (x,€) b, (y,€)

j=0 -(,iw)J k=0 (iw)

o(x) ™! dx dw dE . (2.18)

t~18

Alternatively, for the parameterization value s = 1, we obtain the

integral operator hl

- 1 iwVgo ( ,E)'(x' )+in(ansE)
h - y¢ y y
(b, (4)) (3) ol . i“ e
® b s -
. X a;(x,8) % (y E) p(x) @ ! dx dw dg . (2.19)

§=0 (iw)? k=0 (iw)"
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Moreover, the Fourier integral operators hl and F in equations (2.19)

and (2.9), respectively, are in fact identical.
(hl(w))(y) = (F(y))(y) . (2.20)

The homotopy of Fourier integral operators hs suggests a method
for relating the Fourier integral operator F to the simplified Fourier
integral operator ho in equation (2.18) with phase functions of the
form Vy¢-(x-y). The method involves the expansion of the operator ¥
in a Taylor series of operators. This operator Taylor series is given

formally by

F= 7 L n |

n=0 m! ds

.m0 * (2.21)

The mth derivative in the above operator (2.21) is obtained from the

differentiation of equation (2.17),

. m . .
(07 b)) = g [ [ T8 otiusity, )
ds (2n ! 2 8"
- o] . ) ) «© b ( Py )
Ll zo afi:)f Xo tiZ)E 0(x) dx dw dE . (2.22)
3= k=

where H'(x,y,£) denotes the mth power of the phase perturbation

H(X,Y,E),

=3 1
H(x,y,8) = ( § — 3% ¢(y,8) (x=yp*)™. (2.23)
al! Y
la]=2
Combining the Taylor series (2.15) and (2.16) with the operator
expansion (2.21) above, the main result of this section is produced.
The result states that the Fourier integral operator F has an explicit

asymptotic operator expansion of the form:

M

1 d4.m

FaF = 7 L (" p , (2.24)
M mzo o! (ds) S ls=0
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where the truncated operator fﬁ for the nonnegative integer M is given

by the expression

M | .
R =} gy [ [ I TE ey
m=0 (27) m! 2l gt

1 n n 32¢
| 5 )] — (x - yp)(xq— yq)

Il &~18

1 n n n 83¢ m
* g § X Z 3y 3y 3y (XP_ yp)(xq— yq)(xr— yr) o }

=1 q=1 r=1 9y 0y 3
p=1l q=1 r=1 Yp Yq Y.

da
{ a, (y, ) + X —3 (xp— y.)

j=0 (iw)? p=1 ¥,
1 n n 32a
+- 1 X——J-(X—y)(x—y)*' }
2 p=1 q=1 ay By
W™ y(x) dx dw dE . (2.25)

The asymptotic Fourier integral operator representation (2.25) is not
in a form to perform an asymptotic analysis. This follows since it is
not apparent at this point how the various derivatives and polynomials

relate to frequency w. This is investigated in the subsequent section.
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2.2 Fourier Integral Operator Asymptotic Expansion

At this point in the discussion, the inversion of the general
asymptotic integral equation (2.5) has been formulated in terms of the
equivalent problem of making the Fourier integral operator (2.9) equal
to the identity operator asymptotically. Through a succession of series

expansions, an explicit asymptotic representation (2.25) is obtained.

In the present section, the manipulations of the asymptotic
representation (2.25) are continued. The numerous terms of the lengthy
expansion are collected into individual operators according to their
corresponding order of frequency (%)m. However, it is not obvious
initially that the individual operators of the decomposition possess
the stated frequency dependence. This property becomes apparent only
after the various manipulations and transformations have been made. In
particular, the transformation k = y Vy¢ due to Beylkin [3] plays a key
role. The Beylkin transformation reduces the Fourier integral operator
to essentially a combination of a Fourier transform and Fourier inverse
transform. Ultimately, explicit expressions for the first two terms of
the asymptotic expansion of the Fourier integral operator (2.9) are
developed in terms of combined Fourier transforms. The first two terms
of this expansion are provided in equations (2.34) and (2.45). We now

go through the details of this procedure.

Up to this point, the Fourier integral operator ¥ defined in
equation (2.9) has been expanded into the complicated asymptotic
operator representation given in equations (2.24) and (2.25). We now
decompose the asymptotic operator Fﬁ into operators of increasing
powers of %. It is not apparent that the operators subsequently defined
actually possess the claimed order of w. However, this result is
deferred to the following section after considerable manipulations of
the operator expressions. The result that is to be eventually explained

is that the polynomial (x — y)a in the expansions is exactly related

to the power (%)|a| for any multi-index a = (al,...,an).
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The decomposition of the truncated operator Fﬁ that is asymptotic

to the Fourier integral operator ¥ takes the following form.

FmFM=to+t1+t2+---+tM. (2.26)
The individual operators in the decomposition are explicitly obtained
by carrying out the necessary multiplications and collection of terms
in the complicated representation for F\ found in equation (2.25). This

leads to the following definitions of the operators (0, (1, and Cz.

(W) =+ =g | [ MWyt =Y
" !rg
- a (3,8 b (y,8) W y(x) dx du dg . (2.27)
(W)W =~ =g [ [ etuiyt-x¥
R

. ao(y,g) bl(y,g) w2 p(x) dx dy dg

- 7 [T o LuVyo - (x-y)
(2w) 2B

Rn-l

+a,(3,8) b (3,8) W% y(x) dx dy de

1
(2n)

mf [ e )y 3,0)
R R R

n -
z %20 (x - y) ) W () dx du dg

P
p=1 3%,
el o f¥yt (XY 5 (3,0 b (5,0 W v
R RR
. ) ) (2.28)
. (E g ) (x — Yp (xq yq ) dx dw dg . .2

p=1 q=1 3y_3y P



! iwVyd e (x-y)
y
J.n- in ¢

&) == !

'3

ca (3,0 b (5,0 "7 y(x) dx dudg

1

iwVgd e« (x-y)
(zn)n L I In olw y¢ x-y
R RR

ca (31,0 b (3,0 " () dx du dg

-+ a (3,8 bo(y,g) o7 p(x) dx dw de

- — f I etuvye(xy) b (3,8
R

v e n-2
- ( 21 ;‘1 (x=y) ) w ~ ¥(x) dx dudg
p=1 3y,

~ o L LT s
R 0

(Y L x=y) ) W () dx du dE

iwVys - (x-y)

ao(YsE) bl(y,g) W p(x)

(xp— yp)(xq— yq) ) dx du dg

Jv ei(DVY¢'(X'y) al(y’g) bo(y,g) wn-l lb(x)
R

(xp— yp)(xq— yq) ) dx dw dg

31
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st ][] eV Gy
(2m)™ gn™1 g gn
1 n n n a3¢
’ ( "N X X X ——— (x =y M x -y I x—-y) )
6 p=1 ¢=1 r=1 3yp3yq3yr p P q “q¢ r “r

* ay(y,8) by (y,8) Wt Y(x) dx dw dE

¥ (2n)n I f f eiNVY¢.(x-Y) bo(y,E) Wt P(x)
gt
1 n n 323
o % (x = v ) (x = 3,) ) dx dw dE
2 p=1 q=1 37,95
el A A A
(2m) ! 2 &
1 n n 32
- (= ¢ (xp— yp)(xq— yq) )
2 p=1 q=1 Bypayq
N 3a
() = (x = y.) ) by(y,8) o $(x) dx dw dE
p=1 %, P
1 iwVgd - (x-y) n+l
-—5 [ Y a (y,€) b (y,8) w P(x)
2(2w) 2 2" 0 0
1 n n 32¢ 2
- ( 7 Xl L 5;—3;— (o= y ) (x =y ) ) dx du dE . (2.29)

q

It is not obvious at this point what motivates the definitions of
the operators CO, tl’ and Ez given in equations (2.27), (2.28) and the
formidable (2.29) in the decomposition of F in equation (2.26). The
operator tO is defined by carrying out the multiplications in equation
(2.25) and collecting the terms that are zero order in é. Similarly,
the operators (1 and Iz are defined by collecting terms that are first
and second order in 5, respectively. In general, the operator tm is
constructed to be of order (%)m, although the complexity of the form of

the operator grows exponentially for m > 2. The main objective of the

forthcoming discussion is to show the operators have the claimed order.
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We make a change of variables following Beylkin [3] taking the

coordinates (m,gl,...,gn_l) into the coordinates (kl’kz""’kn) defined

by
k = w vy¢(y,g) . (2.30)

The transformation has the corresponding matrix given by

3y, 3yn
32¢ 32¢
W e ey —
dy, 9¢&, Iy 3¢,
(k) 3Ky sen sk ) n
Do = . (2.31)
a(w,gl,o--’gn_l) . .
324 32¢
w -, . £ W) ——
9y, 38 _, 9y 9E )

Moreover, the Beylkin change of variables can be written in terms of
differential forms,

n-1

dk = o h(y,£) dw dg , (2.32)

[}

where h(y,£) denotes the Jacobian determinant

e e
3y, 3y,
aylagl aynagl
h(y,g) = det . ) . (2.33)
aylagn-l aynagn-l
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By performing the Beylkin transformation (2.30), the operators
EB, El, 52,..., !ﬁ are converted into the more recognizable combination
of an n-dimensional Fourier transform and its inverse transform. The
operator can not be directly integrated in this form as a result of the
complicated dependence of w and £ on k. The result for the operator CO

. , , .1
is as follows. This operator is clearly of order zero in 3.

(Eo(\p))(y)
1 e ,
= A 3,(%.8) (y,8) ¢(x) dx dk . (2.34)
(2m) P h(y,g) O

The operator tl that is first order in-%, as will be established below,

takes the following form.

(€, W)
- 1 ik+(x-y) 2,(y,8) 1
== ) [ e = b (3,8) ~ y(x) dx dk
(2m) P h(y, &) w
i iko(x- (y,&) 1
cm o MG AT D () dx dk
(2m) e h(y,g) O w
1 ik+(x-y)
T an® in £n ¢ h(y,£) by(3:8) v(x)
n
() L (x-y))dxdk
i ik-(x-y) 3,(3,8)
Tt {n I e hy.g) Do'8) e v(®
R )
- ( 5 z Z (x — yp)(xq— yq) ) dx dk . (2.35

3y 2 P
1 q=1 Yp y
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The operator !2 that is second order in %-is given by the complicated

expression
(tz(lp)) (y)
1 ilkce - ( ) ) 1
== (2m)° [ elk (x-y) ia_Z_E_ b (y,&) = (x) dx dk
m) 2 g h(y,g) 2 w
1 ke (x- (y,&) 1
- i [ elk (x=y) EJ“ELEL'b (y,8) — yp(x) dx dk
(2m) 2 g h(y,g) 1 w?
1 ike (x- (y,&) 1
] MO RTEL () (e dx ak
(27) & 2 h(y,g) 0 w?
_ i ike (x-y) b 1
(2m)" in in ¢ h(y,£) l(y’g) ® v(=)
n
3 ) %% (x~y) ) dx dk
i ike (x-y) 1
— —_) ( , -
(2n)" in in ¢ h(y,g) © y>E) © v(x)
n
- (I 2 - y_ ) ) dx dk
p=1 ayp P P

1 ike (x- (y,8)
+ 51 ot (x°y) AL ALIAN (v,€) y(x)
(2n) 2 h(y,g) !

11’1 n 32¢
(-1 1 (x -y )Nx —y)) dx dk
2 p=1 gq=1 aypayq P P9 79
Lt [ [ ik a 5.8) (9.6) o (x)
(2m)" & g h(y,e) 07’ v
n n 2
(= 2 k- y)(x—y)) dx dk
; L *p 7p " q g *

=1 9y _3d
p=1 q=1 Yp Yq
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+ [ eik'(x-y) 30(7’5)
(2n)" /" g° h(y,g)
- ( < Z J § — (xp— yp)(xq— yq)(xr— yr) )

1 g=1 r=1 ay ay Iy,

. bo(y,g) w y(x) dx dk

L (x-y) b (y,6) ()
(Zﬂ)n I 1{ e o) JoE) v
1 n n 323
(= ¥ —L (x —y )(x—y ) ) dx dk
2 p=1 q=1 ay ay P P q q

[ eik'(x-y) 1
n

(Zw) gD gn h(y,&)
n
- ( 2 (x - Y, )) b (y,g) w p(x)
p=
1 n n 82¢
| 3 (xp— yp)(xq— yq) ) dx dk

lk‘(x-y) (Yag)

2
(xp— yp)(xq— yq) } dx dk . (2.36)

For obvious reasons, we consider only the operators IO and tl in
detail. However, the forthcoming techniques can be equally applied to
tz and higher order operators, despite the extreme complexity of their

expressions.

In equation (2.35) for the operator C , it is now desirable to
replace the polynomials (x — y) , where a = (al,...,an) is an arbitrary
multi-index, with derivatives ax with respect to the transformation

k =y Vy¢. This replacement is accomplished through a combination of
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integration by parts and the nature of differentiation of the Fourier
kernel. If u and v are functions belonging to the Schwartz space $(R")
(space of C® functions on . rapidly decaying at infinity, see Treves
[33] or Helgason [20]), then integration by parts can be expressed in

terms of multi-index notation by the formula

[ uwapvdk= el J v udk. (2.37)
3" "

The relevant property of the Fourier kernel is given by

3% ( eik-(x - y) ) = (x - 9% eik-(x -y ) (2.38)

jlal *

The Fourier kernel property (2.38) is applied to the expression
(2.35) for the Cl operator to replace powers of (x — y) with the
corresponding derivatives with respect to k on the exponents. We then
integrate by parts using equation (2.37) in order to remove the
derivative with respect to k from the exponents to the remaining
functions in the terms of equation (2.35). The amplitude functions
in (2.35) decay rapidly at infinity as a result of the radiation
condition. Applying the above Fourier kernel property, integration
by parts, radiation condition, and freely interchanging the order of

integration results in another relation for the tl operator.
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(tl(w))(y)
i ike (x- (y,€) 1
- — =) I etk (x-y) 227.8) bl(y,s) — y(x) dx dk
(2m)" gn pn h(y,&) w
i i . - ( 3 ) 1
- — = I ek (x-y) 2,778 bo(y,g) — y(x) dx dk
(2w) Rn Rn h(y,g) @
i (ke (x-
Tt {zn {f‘ Y

n ) da, b (y,&)
{1 (—o-b

p=1 3k, 3y h(y,£)

) } v(x) dx dk

i ike (x-
Tk =T v
R
1 » n 32 a (y,g) 3%
BT ol £) 9y 9 bo(y:8) w ) | dx dk

(2.39)

It is necessary to replace the derivatives with respect to k by
the equivalent differential operators with respect to w and £. This is
desirable since w and £ are the natural variables for the phase and
amplitude functions. In order to determine explicit expressions for the
differential operators B/ka, we calculate the inverse of the change of
variables transformation matrix of equation (2.31). Specifically, we
are interested in calculating the matrix

3(w,E 5. sk 1) 3k, ke yeek) ]

n-1 1272 n

3k, skyyennsk ) 3(ws€ sevesE 1)

(2.40)

The desired transformation matrix is obtained by matrix inversion and

the result is given by the following.



Dl(y:g)

D( ,)
TR I B
a(kl,kz, ..,kn)

Dn(Y3£)

€| =

€|

g |

EII(Y9£)

EZl(y,E)

Enl(y,E)

€|~

€[ =

€| =

E a1 (958
E (y,€)

2 n-1

E (Yag)

n n-1

=

39

(2.41)

where h(y,£) is the determinant found in equation (2.33). The cofactors

Dp(y,g), (p=1,...,n), are explicitly given by

(-1)P*!

D =
P h(y,£)

The determinants qu(y,E), (p=1,...
the following.

(2.42)

32 324 3924 329
9y, 98, 0Y,.198) V.98, 9,98,
32%¢ 324 324 929
8y13€n_1 3yp_18£n_l 3yp+13€n_1 aynagn-l
yM; @ = 1,...,n), are given by
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T 36 Y 3¢
ay1 ayp-l ayp+1 ayn
32¢ 32 329 3%¢

(—1)P*a+l 919842 9Yp-1%8q-2 3p41%8q-2 9n%q-2
qu = he ) det
y.E
32¢ 32¢ 324 32¢
3y. 3 p)
¥138, 0Y5-198q 354,98, AL
324 32¢ 32¢ 32%¢
| 99,3800 9Y5-1%84-1 3541380 9Y380-1 |

(2.43)

Thus, the nature of 8/3kP as a differential operator acting on C%®

functions is established through an application of the chain rule,

) 5 1 5 1
— =D (y,8) —+—E_(y,) — + + - + +—E (y,)
P AP SR A 3¢, o pu-1E 3 )

(2.44)

Replacing the differential operators 8/akp in equation (2.39) with the

above expression (2.44) produces the desired form for the tl operator,
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(T, (W) (»
i ike(x-y) 2 (y,€) 1
= - =f [ e L —— b (y,8) — y(x) dx dk
(2m) 2 h(y,g) ! w
. L , 1
- af elk (xy) ELSZ—EZ b (y,8) — y(x) dx dk
(2m) L h(y,g) O w
+ i nI I eik'(X‘Y)
(2m) £ 1
-1
Y T e (22Tl
p=1 q=1 Pq ng ayp h(y,&) w
i ke (x-
_ (Zﬂ)nI I 1 (x Y)
ol
1 n n n-1 3 n-1 3
R AN SR AL
p:l q=1 r=1 3& s=1 3§s
S 12 2% b (y,E) : (x) dx dk (2.45)
( h(y,£) Bypay 0 ¥,E) ) " p(x) dx . .

q

We have previously noticed that the operator to found in equation
(2.34) is explicitly of order zero in %. Furthermore, it is also clear
that the operator tl in equation (2.45) above is explicitly first order
in %u If a similar examination of the complicated expressions found in
equations (2.29) and (2.36) is performed, it can be shown that the
operator (2 is explicitly second order in %u Although this claim will

not be demonstrated, it is a result of the discussion in the following

section.

It is also worth noticing that the operators EO and ‘1 found in
equations (2.34) and (2.45) are explicitly pseudodifferential operators
of the form of equation (1.60). This follows since we can view £ = E(k)

and w = w(k) as functions of k.
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2.3 Relationship between Taylor Polynomials and Asymptotics

The key result that the operator tﬁ is of order (%)m follows as a
direct result of the construction of the operator in the decomposition
of the Fourier integral operator ¥ in equation (2.26). However, the
reasons for the collection of certain terms in the operators IO’ tl’
and 52 in equations (2.27), (2.28), and (2.29), respectively, become
apparent only after the extensive algebraic manipulations of the
previous section. In particular, it is to be noticed that the polyno-
mial (x — y)c occurring in the operators is exactly related to (%)‘al
after the lengthy calculations. This fundamental phenomenon of the

Fourier integral operator expansion is now illustrated.

The amplitude functions appearing in the Cﬁ operators are always
of the form w’ u(y,&) where B is an integer. Consider the multiplica-
tion of this amplitude function by the polynomial (x — y)a, where

a = (al,...,an) is any multi-index, in the generic integral
I=1 B ug,e) (x-p® I ET) g (2.46)
1

The integration by parts formula of equation (2.37) and Fourier kernel

property of equation (2.38) lead to the equivalent integral

a ike (x-
J = (—1)| | [ elk (x-y) 3 P u(y,8)) dk . (2.47)
n
R
Replacement of the differential operator 3; by the expression (2.44)

results in the following explicit integral.

3 = (_1)|a| I eik-(x-y)
R

a
n 3 1 n-1 3 P
cn [ D(3.8) —+- § E (5,8) — } (o® u(y,8)) dk .
p=1 P dw W g=1 Pq 3E

(2.48)
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Applying the partial differential operator appearing in equation (2.48)

to the function in parentheses produces

t 1o - 1
" wlal
n ¢ 3 3
T | HP{(B—r)D(y,£)+ Y —E_(y,8) — }
p:]_ r=1 p q=1 ] q Pq 8£q
(ap>0)
. (wB u(y,£)) dk , (2.49)

or equivalently, by lumping the functions of y and £ into a single

function T(y,£),

g ety LB ey . (2.50)
R" wlal
A comparison between equation (2.46) and (2.50) above immediately
shows that the Taylor polynomial (x — y)® is exactly related to the
frequency order (%)lal. This indicates that the assumption of small
(x — y) used in the Taylor expansions is equivalent to the assumption

of large frequency w.

Moreover, the generic integral J in equation (2.46) has been
expressed explicitly in the form of a pseudodifferential operator
(1.60) in equation (2.50). The symbol of the pseudodifferential

B—|al

operator is given by the function w T(y,£) when viewed as a

function of y and k.
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2.4 General Asymptotic Integral Equation Inversion Algorithm

We now summarize some key results of the earlier sections and
develop an explicit inversion algorithm for the general asymptotic
integral equation. The integral equation to be inverted is of the

asymptotic form

D(w,e) =™ ' [ %(L)fl L0 (X8) 0y ax | (2.51)
Rn j=0 1w

The objective of the inversion is to obtain the unknown function yp(x)
in terms of an asymptotic inverse operator acting on the hyperplane

data D(w,&) given by

1 ® b (y,8) —iwp(y,E)
) v ——= [ F Tt TR ey dw de . (2.52)
(2m) “1 p k=0 (iw)
R R
Combining the two integral equations (2.51) and (2.52) above
leads to the consideration of the Fourier integral operator ¥ with

unknown amplitude kernel functioms bk(y,g). Specifically,

1 . .
FW)p = =g [ [ el T iutEe)
2m 2l g

A(x,8) = b (y,8) -
25Xt Y E v(x) ot dx do dE . (2.53)

J

L

1
o (iw)d k=0 (iw)

Through the series of manipulations presented in the previous

discussion and based on the Béylkin transformation,
k=uw Vy¢(y,§) s (2.54)

it is concluded that the Fourier integral operator F has an asymptotic

representation,
F,\‘FM=t0+tl+...+tM’ (2-55)

m
where T is exactly of order (éa - The individual operators € in the
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Fourier integral operator decomposition are given by the expressions

(ke (= 1\m
(tm(w))(y) i I I oike (x-y) Km(y,g) (E) p(x) dx dk ,

(27)

(2.56)

where Km(y,g) are the kernel functions produced by the procedures of
the previous sections. As is seen in equation (2.34), the kernel func-
tion Ko(y,g) is explicitly calculated to be
a (y,g)
K (y,8) = AR ALIAN (78 (2.57)
0 h(y,&)
where h(y,g) is the Jacobian of equation (2.33). Similarly, by observ-
ing equation (2.45), the kernel function Kl(y,g) is found to be the

more complex expression,

K (y,g) =-—-1 —312152 b (y,g) — i ELSZlEl b (y,g)
1 h(y,g) 1 h(y,&)
n n-l 3 s3a_ b (y,8)
+ i E_ (y,&) 0 0
1 pzl qzl Pq 3€q ( 3Yp h(y,g) )
1 n n n-l
-i9 - E (y,g) —
2 pzl Z1 r=1 PF .
n-1 3
. D , E , _—
{ D (3,8 + Szl 06728 e }
(y,g) 32
(e 2 by(y,8) )} s (2.58)

h(y,£) 9
(y,8) ypayq

where the determinant functions Dp(y,E) and qu(y,E) are defined in
equations (2.42) and (2.43).

In order to solve the generalized asymptotic integral equation
(2.51), the inversion operator kernel functions bo(y,E), bl(y,E),

bK(y,E) are chosen such that the decomposition operator kernels
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Ko(y,g), Kl (y,6)5..4, I(K(y,g) satisfy the relations

%(Y)E) =1,
K (y,e) =0,
K s =0 . 2.59
K(y £) ( )

This choice of kernel functions forces the Fourier integral operator F

to be asymptotically the identity operator up to a smoothing operator
1) K+1

involving ﬁ; , specifically,

FAI+0+ - +0

1
+

ke (x- 1\K+1
o ] ot (x°y) Kep1(358) (ZB) y(x) dx dk
A o &

4 oeee (2.60)

Solving the equations (2.59) results in the desired expressions
for the inverse operator kernel functions bo(y,g), bl(y,g),..., bK(y,g)
that define the inverse algorithm of equation (2.52). The first kernel

function is obtained by solving the equation Ko(y,g) = 1. This produces

h( 3 )
b (y,g) = R A114 .

= (2.61)
0 ao(y,g)

The kernel function bl(y,g) is obtained by solving the second equation

in (2.59), Kl(y,g) = 0. Hence, it follows from equation (2.58) that
bl(y,E) is given by
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h(y, &) (y,8)
b (y,8) = Z'E) - a‘(y g)
ao y,£ a0 Yy, £
n n-1 3 1 da
+ E (y’g) L
{ pzl qzl Pq 3€q ( ao(YaE) 3yp R

n n n-1

1 3
- (-1 I I E_(y,8) —
p=1 q=1 r=1 PT 9t

N

n-1 3 52
Y Eqs(y,g) 3 }( N : ) . (2.62)
s=1 Eg Y53Yq

{ Dq(y’g) +

Thus, the order zero inversion algorithm to the generalized

asymptotic integral equation (2.51) is explicitly given by

1 h(Y:E)

.

D(w, ) e T00(FE) g 4p 2.63
(2% fn-1 g a (3,8 (w,8) e v e (2.63)

p(y) ~

The first order inversion algorithm to the generalized asymptotic

integral equation is given by

h(y, &) 1 (y,8)
(2w) ! ao(y,g) iw ao(y,g)
n n-1 3 1 3a
+ 1 1 E (5.8 ( %)
p=1 q¢=1 P4 e, 2,(3,8) 3y,
1 n n nil 3
-=3 1 E (y,g) —
2 p=1 q=1 r=1 PT €
2 n-1 2
) 9 %9
« { D (y,8) ot ) Eqs(7:8) - ( _— ) }
YP q s=1 s Yp Yq
. Dlw,g) e TWO(TE) g gp (2.63)

This concludes the discussion of the inversion of the generalized
asymptotic integral equation. We now specialize this theory to sound
wave propagation in 3-dimensions for constant reference velocity. It

will be shown for this special case that equation (2.63) simplifies

greatly.



CHAPTER 3

INVERSION FOR A CONSTANT REFERENCE VELOCITY MEDIUM

Thus far, the general Fourier integral operator techniques for
the inversion of asymptotic integral equations have been explored. In
the present chapter, the inversion techniques are specialized to the
backscattered data integral equation developed in Chapter 1. In partic-
ular, the wave propagation phenomena investigated are restricted to
3-dimensional space. In addition, the reference velocity of the medium
is chosen to be constant and hence independent of position. The result-
ing backscattered data integral equation constitutes the simplest (but
non-trivial and physically meaningful) example to which the general
theory of the previous chapter can be applied. Although it is beyond
the scope of the present discussion, it is worth mentioning that the
constant reference velocity backscattered data inversion problem also
encompasses a wide spectrum of significant applications including the
seismic imaging of geophysical discontinuities, the non-destructive

testing of materials, and medical tomography.

The present chapter starts with a review of wave propagation in
a 3-dimensional medium and how it specializes to the constant reference
velocity case. The backscattered data integral equation is then cast in
this special setting and the Fourier integral operator formulation of
the problem is made. This chapter concludes with the development of
both the zero and the first order inversion algorithms following the
elegant Fourier integral operator methodology of Chapter 2. Moreover,
it is discovered that the first order inversion algorithm given in
equation (2.63) reduces to the surprisingly simple algorithm (3.54).

This result occurs despite the apparent complexity of equation (2.63).

48
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3.1 Wave Propagation with Constant Reference Velocity

In the present section, we consider the wave propagation in a
3-dimensional medium. Hence, the theory is specialized for n=3. The
reference velocity is taken to be a constant independent of spatial
location. We then solve the eikonal and transport equations with the
constant reference velocity. The ray solutions will be shown to follow
straight line trajectories. Furthermore, by imposing a certain choice
of asymptotic initial conditions, the wave propagation amplitude can

be modeled as a spherical wave front amplitude.

For the present discussion, the reference velocity co(x) is
chosen to be a constant,

= . .1

co(x) <, (3.1)

We consider a source wave emanating from the source point g = (51,52,0)

on the data surface Xy = 0 given by the asymptotic representation

uI(x,w,E) = A(x,w,E) eLwT(x’g) s (3.2)

where T(x,E) is the travel time from the source point £ to the point at
depth x and where A(x,w,§) is the amplitude function possessing the

asymptotic expansion in frequency w given by

o A, s
Alxw,g) = ¥ _4£f_§2 . (3.3)

Travel time satisfies the eikonal equation for constant reference

velocity,
1
ViV =—, (3.4)
x x cg

We make use of the notation p for the gradient of travel time
with respect to x (sometimes referred to as the slowness vector since

its dimensions are inverse velocity),
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P = Vx-r . (3.5)

From the above, the system of ordinary differential equations generated
by the method of characteristics can be written down. The corresponding
system of first order equations for the constant reference velocity

case are given by

dx (x)

— = AX ’

do P

d A(x) 1

= - V(=) =0,

do 2 cg

dt (%)

— = 5 (3.6)
do c0

The ray parameter o corresponds to the arbitrary non-vanishing param-

eterization function A(x).

For simplicitly in the discussion, we choose the parameterization

most common to analytical purposes, specifically,
A(x) = 1. (3.7)

Other choices of parameterization functions giving arc length or travel
time could have been used equally well. With the selected parameter-
ization, the differential equations are integrated to obtain the ray
paths. In the constant reference velocity case, the rays are straight

lines emanating from the source point §,

X = gl + Kld

»
0

+
2 T byt KO

1
= e w2 L2
Xy é\// 2 KT T Ky (3.8)
0
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where K and Kk, are constants corresponding to the initial conditions
for P, and P, at ¢ = 0. Note that we can solve the system of equations
(3.8) for the parameters Kls Ky and ¢ from specified source point £
and depth point x, provided x # . Hence, there is a one-to-one corre-
spondence between points at depth x and the parameters Kis Ko and o.

We are motivated to consider the curvilinear transformation of the

coordinates (ql,qz,qs) to the coordinates (xl,xz,x3) defined by

q1='<1’ q2=|<2’ q3=0'- (3.9)

a3 0 9,

a(x],x ,xa) _ 0 q q,

q.q q,9
193 293 N/CL__ 2 — ¢
2 1 2
o

1 1

e g2 —q2 [ g2 _ g2
A//cz 9 79 h//cz G 7 9%
LY € 0

LS,

(3.10)

The determinant J of the above matrix is referred to as the conoidal

ray Jacobian,

3(x1,x7,xa) } 2

a3
0/ 2 T %
0

The conoidal ray Jacobian J(q3) = J(o) plays an important role in the

J = det (3.11)

solution of the transport equations.

It has been established in Chapter 1 that the amplitude functions
Aj(x,ﬁ) satisfy the transports equations (1.18) and (1.19). It has also

been shown that the transport equations can be reduced to the ordinary
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differential equations (1.48) and (1.57). Some initial conditions need
to be prescribed in order to solve the differential equations. However,
the amplitude functions become singular at the initial ray parameter
value ¢ = 0. Hence, initial conditions are imposed in an asymptotic
sense for ¢ - 0. This process essentially involves the determination of
the far-field wave propagation from specified near-field conditions. We
impose the condition that the impulsive source wave is asymptotically
a spherical wave in the near-field. Specifically,

A(X,w,g) "’EO- 3 (3.12)

Li¥e]
as ¢ + 0. The implications of other choices of initial conditions are

postponed to the next chapter.

For the constant reference velocity case with the choice of
parameterization (3.7), the ordinary differential equation for the
first amplitude function reduces to the ray Jacobian invariance prop-
erty (1.48). The invariance property states that the product of the
conoidal ray Jacobian J and the square of the first amplitude function

is constant along rays. That is,
d
— () A () ) =0, (3.13)
do 0

where the notation Ao(o) = Ao(x(o),g) is implied. Substituting the
conoidal ray Jacobian (3.11) into the invariance property above shows
that Ao(o) is proportional to the reciprocal of ¢g. Hence, it is then

immediately concluded that the first amplitude function is given by

A (o) = Q. (3.14)

4rg

This is precisely the wave propagation of a spherical wave front in a

homogeneous medium.

The ordinary differential equation for the higher order trans-

port equation along rays reduces to
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d 1
= ( Aj(o)A/ J(o) ) = - EnJ J(o) vaj_ (o) . (3.15)
g

1

By writing the Laplacian v2 in spherical coordinates, it is quickly
observed that the Laplacian of Ao(o) is identically zero. Consequently,
Al(o) satisfies exactly the same differential equation as Ao(c). By
examining the imposed initial conditions (3.12) and continuing the
argument inductively, it is found that all of the higher order ampli-

tude functions vanish,
Aj(c) =0, (j=1,2,3,...). (3.16)

It is to be noted that the above functions do not necessarily vanish

for other types of imposed initial conditions.
3.2 Backscattered Data Integral Equation

In this section, the backscattered data integral equation is
specialized to the constant reference velocity example. A candidate
inversion algorithm is proposed to invert the backscattered data
integral equation. The discussion concludes with many of the calcula-
tions necessary for the development of an explicit representation of
an inversion algorithm. The details of the inversion algorithm are

deferred to the following section.

In Chapter 1, an integral equation (1.24) for the backscattered
data configuration is developed relating the index of refraction
perturbation y(x) to data measurements D(w,£) at the accessible sur-
face x. = 0. For the constant reference velocity example, the integral

3
equation simplifies to

2 .
D(w,E) = 9; [ alxw,g) 058 (x) ax , (3.17)
c0 R3

where the phase is given by
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2|x — g
o(x,) = 21(x,8) = —— , (3.18)

o

and where the amplitude is found to be

Q2 Q2
a(x,w,£) = b = o . (3.19)
16252 16n2c§|x - |2

The above equation for the amplitude is a result of the form of the

integral equation (1.24) and the imposed initial conditioms (3.12).

The methods developed in the previous chapter are used to invert
the integral equation (3.17). As before, a candidate inversion operator

is proposed.

1
I [ bly,w,g) e WOTE) ey ey a4y de (3.20)

p(y) ~
(2m)3 22 »

where df denotes the differential form dgl dgz and where the unknown

kernel function b(y,w,E) has the asymptotic expansion in frequency gy,

© ( s
b(y: ’E) = X _k_Z-E— (3.21)

An integral operator F is defined by substituting the integral
equation (3.17) into the candidate inversion operator (3.20). The
resulting operator is a Fourier integral operator acting on the unknown

index of refraction perturbation ¢ (x). Specifically,

1
(Fw))(y = -—3I II b(y,w,E) 9
R R R

ein(x,y,g) w(x) dx dy dg s (3.22)

where the phase function takes the form

2

o(x,y,6) = ¢(x,6) —¢(y,8) = — (|x—¢g| — |y —¢g]) . (3.23)
c
0
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The Fourier integral operator (3.22) is made asymptotic to the identity
operator by proper choice of the kernel function bk(y,g) in accordance

with the techniques of Chapter 2.

It is first necessary to expand the Fourier integral operator
phase ¢(x,y,£) in a Taylor series for small (x — y) away from the

singular point g,

1
¢ (x,y,g) = Vy¢(y,g)-(x -y) + % — a;¢(y,£) (x — 9% . (3.24)

|(! =2 a!

We use the Beylkin change of variables,
k=uw vy¢(y,£) . (3.25)

This change of variables has the following equivalent representation in

terms of differential forms:
dk = w? h(y,g) dw dE , (3.26)

where h(y,£) is the fundamental determinant given by

39 3¢ 3¢
3y, 3y, 3y,
32 32 82
h(y,£) = det ¢ ¢ * 1. (3.27)

3y18£1 3y28£1 8y33£1

32¢ 32¢ 32¢
8y18£2 ayzagz 8y38£2

In the explicit calculations of the derivatives in the equation
above, the notation is greatly simplified by defining r to be the

distance from the source point § to the output point y.

rely -l = G E2+ (r,m £ )T+ (ym £ )2 (3.28)
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Then the phase ¢(y,£) is simply

2r
¢(y,£) = :— . (3'29)

0

Moreover, the gradient Vy¢ has the components given by

L1 2 3¢ 2 2¢
—=—(G-g), —=—1(,~¢&), —=—y,; . (3.30)
ayl cof 6y2 cyt 3y3 ot

By differentiating with respect to y, the following derivatives are

obtained.
32¢ 2
— = [(y_£)2+y2]’
2 3 2 =2 3
Byl T
32¢ 2
— = [(y,— £)2 + y2] ,
2 3 1 °1 3
ay3 cor
32¢ 2
— = [(y—¢g)2+ (y—¢t)2],
2 3 1 °1 2 =2
ay3 c,r
32 2
4 < OOy
9,9, 0
324 2
5 3 == 3 (yl_ El) Y3 ’
Y193 €o”
32 2
)y, (3.31)
RPLE ot

Similarly, derivatives with respect to £ are immediately obtained from
the expressions above since
32¢ 32¢

== . (3.32)
3ypagq aypayq

From the explicit derivatives given in equations (3.30), (3.31),
and (3.32) above, several additional quantities can be expressly
written out. In particular, the change of variables to k takes the

form

k=— (y—g) . (3.33)
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The determinant h(y,£) can be derived through a series of straightfor-

ward calculations using equations (3.30), (3.31), and (3.32).

8
h(Y:E) = _Y:L .

c8r3

(3.34)

The transformation matrix relating the variables (kl’kz’ks) to

the variables (w,gl,gz) is particularly important.

3k, k), k)

B(w,El ,EZ)

Substituting the expressions for the derivatives results

representation for the transformation matrix:

The above transformation matrix can be inverted to

¢
ayl

32¢

6 —
9y, 9¢g,

32¢

§ —
3y, 98,

L)
8y2

32¢

@ e
ayzagl

324

§ —2
9y,9¢,

3¢
3y3

32¢

§ —_—
8y38€l

3%¢

@ ——
3y38£2

i 2 2
cr (y,= &) T 8y
0
20 2 " 2w 2w
T 08 vl 5 Om EDG,mE) T
0 0 0

2w 2w 2 2 2w
c,r )= E0,m &) = ¢yt [(y)=€,0% + v3] c,r3

. (3.35)

in an explicit

(v, &) v,

(v, &,) v,

<

(3.36)

yield the

transformation matrix relating the variables 00,51,52) to the variables

(kl’kz’k3)' The inverse transformation matrix is obtained by a series

of algebraic manipulations and has the form
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i 1 1

DI(Y,E) ; Ell(y,E) ; E12(y’£)
3w, &, ,E.) 1 1
= — —

5?;-i-—iL; D,(y,6) —E,(y,8) —E, (y,8) | . (3.37)
1°72°73

1 1

D,(y,8) = E, (7,8) - E,,(¥,€)

The individual terms of the inverse matrix are given by

C
= 0 —
_ C
Dz(y:g) = 2r (Yz— EZ) ’
_ [
Ds(Y’E) — 2r Y3 ’
c.r
= — 0 =
c.r
= = — 0
c.r c r
= 0 - = 0 -
E, (5,8) 2y, (y,= &) » Eg(y,8) 2y, (y,~ £, - (3.38)

The amplitude function a(x,w,E) needs to also be expanded in a
Taylor series for small (x — y). Since the terms aj(y,E) vanish for all
j 2 1, the series takes the following form:

1
— 3

v s a,(y,€) (x — L (3.39)
=0 -

o0
a(x,w,£) = }
|8
The first amplitude function ao(x,z) in the constant reference velocity
case is given by
2 2
% o

a (y,g) = = . (3.40)
A 16n2c§|y - g|2 16ﬂzc%r2
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The gradient of the first amplitude function with respect to y is

simply
Q
= — 0 —_
vy a,(y,&) 5 (y — &) . (3.41)

Moreover, the logarithmic derivative of the first amplitude function

is calculated by combining equations (3.40) and (3.41).

2
— a (y,g) =—— (y—-8&) . (3.42)
a (y,g) ¥ 07 r2
This provides all of the preliminary calculations required for
the development of an inversion algorithm for the backscattered data
integral equation (3.17). We now turn to the formulation of an explicit

inversion algorithm from these calculations.
3.3 Backscattered Data Inversion Algorithm

We now produce the main result of the present chapter. The numer-
ous calculations of the previous section are utilized to derive the
zero and first order inversion algorithms to the backscattered data
integral equation (3.17). Explicit calculations of the complicated
inversion operator amplitude functionms bo(y,g) and bl(y,g) found in
equations (2.61) and (2.62) are performed. It is demonstrated that
after considerable algebraic manipulation that the amplitude kernel
functions bo(y,g) and bl(y,g) greatly simplify yielding the desired

inversion algorithms of equations (3.45) and (3.54).

We begin by determining the zero order kernel function bo(y,g).
The zero order kernel function can readily be calculated from the

expressions (3.34) and (3.40),

h(y,£)  128n2y_

= — (3.43)
ao(y,g) roor

bO(YaE) =

Substituting the above kernel function into the inversion operator,
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1 .

W) v — [ [ b (7,8) e 98 pey ey du ae (3.44)

gn3 22 0
R" R
leads to the zero order inversion algorithm,
. 1210
l6y e
() v [ [ ——- D(w,&) e 0" dy dg . (3.45)

2
R? g "Q%T
The inversion algorithm (3.45) obtained using the methods of Beylkin

[2,3] can be shown to agree with the inversion algorithm obtained by

stationary phase methods of Cohen, Hagin, and Bleistein [9].

The first order kernel function bl(y,g) is considerably more
difficult to compute. This function is given by the following formi-

dable expression obtained in Chapter 2:

h(y,&)
b (y,£) = iy, &)
a (y,&) 3 2 3 1 da
- BTE L ] E e - () )
ao y:€ p=1 q=1 agq aO y. & 3yp
-{- Y ¥ I E _(y,8) —
2 p=1 g=1 r=1 P 3
2 3 92¢
- {p (e)+ § E (3,8) b ( ) . (3.46)
d s=1 9° BE 3,9,

At this point, all of the individual coefficient functions Dp(y,&) and
E q(y,£) have been determined along with the partial derivatives of

P
ao(y,E) and ¢(y,E) in the previous section.

Only the second and third term contribute in equation (3.46)
since the amplitude al(y,g) vanishes for the selected asymptotic ini-
tial conditions (3.12). From equations (3.38) and (3.42), the second

term in the first order kernel function bl(y,g) is produced,
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% % E_(y,8) i ( e ) = - 2o (3.47)
p=1 q=1 Pq agq ao(y,E) 3yp r

It is to be noted that despite the complexity involved in the
inversion of the coordinate transformation and the various algebraic
manipulations in the summations, there is considerable simplification
and cancellation in the final form of equation (3.47). This cancella-
tion is a direct result of the simplicity of the constant reference
velocity wave propagation phenomena. Consequently, such simplifications

are to be expected.

The calculation of the third term in equation (3.46) is substan-
tially more difficult and tedious to perform, but the method is clear
and straightforward. A minimum of details are provided. However, the
following intermediate step is included for reference. Define a matrix

C with elements C__ by
Pq

§ 9
C = E (Ysg) —_—
Pq I, Pr 9
32 2 3 32
C Dq(y,E)ﬁ+ I B9 — (- : ) 1. (3.48)
Ypd¥q  s=1 S K

Then, it is found by a group of lengthy calculations that the matrix

elements are given by the following. We use the notation Y1 =v,- gl,

Y, =¥, &y, and ¥, =y,
[
c . =-—-0[-3v2+y2+y2][Y2+7Y2],
11 5 1 2 3 2 3
Cc
C,, .G [ - ¥} +6Y2Y2 —vd+ ¥ ],
c
= 20—y 292 4 ¢4 4+ y2y2
€y e [ - ¥} + 3y2v2 + vy + ¥2v2 1,
C
=_ S0 [ _ g 292 _ g4 4 oyl
), 25 [ - Y/ +6Y]Y; —Y + Y]],
(o4
= _ S0 y2 — 3y2 4 y2 2 4 y2
C,, s LYr = 3¢S + ¥ Il Yy + Y31,

r
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C
=_ S0 2v2 _ b 292
C,q 5 [ Y)oFYTYS - Y, + 3PS 1,
S0 g2 2 4 3y2 4 3y2 S0y2 [ 392 — y2 — y2
c,, = i ¥2 [ -2 +3v2 + 372 ] + : ¥2 [ 3v2-v2-v2],
o v2 2 2 2 S0 2 2 2 2
= — + f— —— -
c,, " ¥2 [ - ¥2 +3y2 - v2 ] .7 [ 32 ~ ¥2 +3v2 ],
[od
=_%0 ¢ y2 2 2 2 _ ¢2
033 s [ Y1 + Y2 1 3Y1 + 3Y2 Y3 ] . (3.49)

Thus, the third term in the expression (3.46) for the first order
kernel function bl(y,g) is composed essentially from the summation over
the matrix elements Cp . After a series of calculations, it is found

that the sum of the matrix elements is given by

3c
i (3.50)

o}
cC_=-
p=1 g¢=1 Pq r

Hence the third term in equation (3.46) for the first order kernel

function produces the startling result,

SRR
2 p=1 ¢=1 r=1 PT IE
2 3 32¢ 3
- {p (y,8) + ] E_ (3,8) — } ( )=Za . (3.51)
q s=1 9° 9 37,9, 2r

This surprising simplicity of the form of the end result is again a
consequence of the simplicity of the constant reference velocity wave

propagation phenomena.

Thus, the first order kernel function is produced by combining

the results of equations (3.43), (3.47), and (3.51). Hence,

1282 c
b (y,8) = —Ja (- Loy, (3.52)
Qgcor 2r

Substituting the above kernel function into the inversion operator,
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1
p(y) ~ j f (b (y,a) + - b (y,€) )

8w 3
eI E) by 4y dE (3.53)

generates the first order inversion algorithm for the backscattered
data integral equation (3.17). Specifically,
. r2rw
16y —i (=)
( —0—) D(w,) e 0" du dE . (3.54)

(
vy I I Q2 2iwr

R’ R

It is worth observing that the inversion algorithm (3.54) for the
backscattered data problem involves a % term and consequently repre-
sents a higher order version of the inversion algorithm (3.45). In
fact, by dropping the %-term, the first order inversion algorithm
(3.54) reduces to the zero order algorithm (3.45). However, at this
point, it is not clear whether the first order algorithm is an improve-
ment over the zero order algorithm. This fundamental question will be

discussed in detail in the next chapter.

In principle, higher order algorithms of arbitrary order (%)m can
be derived by application of the same Fourier integral operator tech-
niques discussed in the present chapter. However, in practice, the
complexity of the necessary calculations grows exponentially with
increasing order m 2 2. On the other hand, it is anticipated that
significant simplification and cancellation of terms will occur in the
final form of the inverse algorithm. This is a possible area for future

research.



CHAPTER 4
ANALYSIS OF THE INVERSION ALGORITHM

The discussion so far has led to the zero and first order inver-
sion algorithms for the backscattered data integral equation subject to
constant reference velocity restrictions. The first order inversion
algorithm involves an additional %-term. It is suspected that this is
an improvement over the zero order algorithm. The main objective of the
present chapter is to explore in detail the nature of the improvement
that the-% term provides.

We proceed by representing the output of the inversion algorithm
approximations in terms of Fourier integral operators. After a series
of manipulations, it is recognized that the zero order inversion
algorithm approximation generates an error term involving a-% term
that is exactly cancelled by the first order inversion algorithm. Thus,
the first order inversion algorithm is indeed an improvement over the
zero order algorithm. We conclude this chapter with some miscellaneous
topics concerning the constant reference velocity example. The correc-
tion term of the first order inversion algorithm is specialized for
stratified media where the index of refraction perturbation depends on
depth only. The correction term is shown to be a essentially a linear
ramp correction for a step discontinuity in the index of refraction
perturbation. More precisely, the first order inversion algorithm is
further verified using Cagniard-de Hoop data for a single reflector.

We end this chapter with a discussion of the extension of the first

order inversion algorithm for more general impulsive wave sources.

64
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4.1 Fourier Integral Operator Representation of the Approximationms

Recall that in the preceding chapter, the backscattered data

integral equation for constant reference velocity,

2 2 iw(le_:_gh

[ (——2— e o v(x) dx , (4.1)

D(w,g) =
2 4ﬂ|x - |

0 |E
oON

has been solved explicitly for the zero order and first order inver-

sion algorithms. The zero order inversion algorithm is given by

16yq

D(w,E) e €o dw dE , (4.2)

i iwo oly — &l
where the notation ¢o(y) is used to indicate the zero order approx-
imation to the unknown exact index of refraction perturbation y(y).
The zero order inversion algorithm has previously been described by

Cohen, Hagin, and Bleistein [9].

The first order inversion algorithm derived in the previous

chapter by Fourier integral operator techniques is given by

16yq c
1] - —a0
I I szc Iy - §| 2iw|y - £| )
—iw( )
. D(w,E) e €0 do dE . (4.3)

The inverse operator (4.3) has potential for being a significant

improvement over the inverse operator (4.2).

In order to investigate the nature in which equation (4.3) is a
refinement of equation (4.2), the action of the additional-% term
contributes to the accuracy of the inversion is explored. A Fourier
integral operator approach is again taken. We rewrite the inversion
integral in terms of Fourier integral operators by substituting the
original integral equation (4.1) into the inverse operators (4.2) and
(4.3).
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The zero order Fourier integral operator 20 obtained by this
substitution is given by the following operator acting on the unknown

index of refraction perturbation y(x).

b = (Z,)

1 w2y
== L o i
T™cor° R R ly — & |x— g
28 (x-g] - |y - €D
. e p(x) dx dw dE . (4.4)

The first order operator Zl is given by the expression

v

V) = (Z W) = (2,1) ()

1 wy
- [ 1] .
21"3°% % g gl ly — €]?|x - g]2
2 (= - - |y-¢€D
e 0 p(x) dx dw dE . (4.5)

For convenience, we denote the common phase function by ¢(x,y,&)

as before,

2
o(x,y,6) =— (|x—¢| - |y —g|) . (4.6)
c
0

Using the Beylkin change of variables,

2 —_
k=wVo = SZ___El (4.7)
x 'x

=y _ 4

co |y - ¢
and the corresponding change of differential forms found in equations
(3.26) and (3.34),

3k, ,k_,k.) 8?2
dk=—‘—L—3—dmdg=——y3—dw dg , (4.8)

3w, &) ,E,) cjly — &[?
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we can write the integral operator of equation (4.4) in terms of the

variable k. This produces

N
Vo) = (2,0) ()
NI e T T IC S R (4.9)
gn3 03 03 |x — g|2 ' '
2’ »

Similarly, the integral operator of equation (4.5) can also be convert-

ed to the variable k,

\

V9 = (W) = (W)

_ io_ J' I ly - E'Z Cy ) i
8n3 FERPY |x —g|2 " 2|y —g] 7 iw
Cp(x) 10(BTHE) g gy (4.10)

We now expand some of the terms directly into Taylor series with

small (x — y). The phase function has the expansion

iwd(x,y,8) = i(x — y)+k

+ iw % E ( Y ) 32¢
- X=y )\x -y
2 p=1 q=1 P P 4 ¢

I_ 4 e
9x dx XY
P q

(4.11)

It is also desirable to expand the following function in a Taylor

series.

ly — €| 2
|x — g|?

= el2y)
|x - g2 7=y

1+ (x- y)-Vx(

- 2(x — y)+(y — &)
ly — €] 2

(4.12)
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We use the following property of the exponential function.
A
e =e e =e (1+B+ ). (4.13)

Substituting the series (4.11) into the exponential function etu? pro-

duces one additional series based on the property (4.13).
eiw@(x,y,g)

3 3 2
Ty 20 (x =y Mx—y ) —— |4 ees
( 2 p§1 q§1 SRR IRL ox ox =y )

(4.14)

The preceding series expansions of equations (4.11), (4.12), and
(4.14) are formally substituted into the expressions (4.9) and (4.10)
for the Fourier integral operators 20 and Zl. The resulting equation

for the zero order integral operator £_ 1is given by

0
n,
wo(y) = (Zo(w)) (y)
=_1‘ff (l_z(x—y)-(y—g) 9
8n3 2° B ly — €] 2
ETE N 2% )
1+ — x-y)x—-y)— + oo
P P q q X<y
p=1 q=1 Bxpaxq
- p(x) AT 200 (4.15)

Similarly, the equation for the first order integral operator Zl is

given by
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U = W)@ = (Z,W)

1 2(x — E)+(y —
nE [ f (1- (x - &) (y2 £) )
813 23 23 ly — ]
FEREB A 2% )
1 +— (x—y Xx—y) _ .
. (—— 2| e ) — w(x) 1y k gy g . (4.16)
y —

Recall that in the previous chapter an important relationship
was established between the Taylor polynomial (x — y)a for small
(x — y) and the asymptotic order (%alal for large frequency w. These
apparently unrelated quantities represent the same order of asymptotics
in a Fourier integral operator sense. Thus, we consider the asymptotic
terms of smaller order than (%)2 in the operators Z and Z Hence,
it is observed that the integral operator Z has three s1gn1f1cant
terms (excluding (w) and higher order terms). The expansion for the

integral operator Zl involves only one additional term. Specifically,

1 i (g~vw) e
T, = (2,) () = el B ARICS S 20 S
R R

1 -9y - {(x-y)
T I 2 A UL L P
4m3 R3 R3 ly— £
i 3 3 320
+ J J o § ¥ (x- Yo )(x -y ) —
3 S o P q x=y
16w g3 g% =1 g=1 9x axq
cp(m IR Gk e (4.17)
5 = (W) 5 = (20) &)
1 1 [ (x-v)
S (— ) =g IR ey
8n 3 PER 2|y — g i

(4.18)
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4.2 Alternate Forms for the Integral Operator Terms

In the preceding section, the zero order and first order inverse
algorithm approximations to the backscattered data integral equation
were formulated in terms of the Fourier integral operators 20 and Zl.
Through a series of manipulations, equations (4.17) and (4.18) were

derived providing explicit expressions for the two integral operators.

It is to be noticed that the integral operator ZO of equation
(4.17) consists of three individual Fourier integral operators of order
less than (%)2 plus additional higher order operators. The integral
operator Zl of equation (4.18) consists of an additional operator of
order %-plus additional higher order operators. These individual terms

are investigated individually in this section.

The first term in the Fourier integral operator expression (4.17)
is easily recognized as the identity operator. This follows since the

i(x-y)-k

action of the Fourier kernel e is precisely equivalent to the

Dirac delta function §(x — y). Specifically,
1 i (x-v) o
e1(x y)-k

—_ P(x)

dx dk = - dx = y(y)
o3 £3 £3 x | v(x) §(x—y) dx = y(y

e
(4.19)

If the above operator were the only term involved in equation (4.17)
for the operator 20, then ZO would be in fact the identity operator.
Consequently, the inversion algorithm (4.2) would be exact. However,
the other terms in equation (4.17) comprise errors that degrade the

zero order inversion algorithm.

Consider the second Fourier integral operator term found in
equation (4.17). We wish to write this expression in an alternate form
by utilizing the same Fourier kernel property and integration by parts
used in Chapter 2. The Fourier kernel property (2.38) is specialized

to a 3-dimensional gradient,
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. - . l 3 - .
i(z-y)ok _ 2y ( el(x y)k ) . (4.20)

-y
(x—y)e - Yk

The integration by parts that is needed is a 3-dimensional version of

equation (2.37) and is written simply as

j3 uV vdk=- f3 vV udk . (4.21)
R R

Hence, using a combination of integration by parts (4.21) and the

Fourier kernel property (4.19), the second term of equation (4.17)

can be rewritten as follows.

1 -~ y)(y — &) i (x-v)e
-3 | I (x-y-G-¢ p(x) el(x y) -k dx dk
4m3 23 o3 ly — |2
1 i(x-y) -k (y — &)
= — )V, o (——= ) dx dk . 4.22
4m3i £3 £3 ¢ Ve Ve ( ly - £]2 ) ax (4-22)

Recall that for the constant reference velocity case, the Beylkin
transformation is given by
20 (y —- &)
k=ovel =—F >0 (4.23)
X 'X=y c Iy_gl
0
This transformation can be explicitly inverted to yield the variables

(w,El,Ez) as functions of the variables (kl’kz’k3) and take the form

c k k
o=tk L gty () s g Ty, () Gl2s)
3 3

Viewing £ as a function of k, it immediately follows that

2
y
ly — ]2 = ;% (k|2 , (4.25)

3
and also that the following holds,

(y - &) Kk

= (4.26)
|y_E|2 Y3|k|2
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From equation (4.26), the divergence of the unit vector function
(y - 5)/|y - Elz with respect to k can be obtained through a series of
straightforward calculations. The divergence is given by

(y — &) 2k
v ( y— ¢ ) = i (4.27)

ly —€l2 7 y,[k|2

Replacing the divergence in equation (4.22) by the expression (4.27)

above results in

1 (2 —y)e(y — &) -y).
-— 1.1 . y2 & pm LR G
4m3 23 @3 ly — £]
1 i (x-v) k
= [ YR gy 3 g gk (4.28)
2n3i p3 23 y,lk|?

This is the desired alternate form for the second Fourier integral

operator term in the explicit expansion (4.17) for Zo.

We now turn to the third term and most complicated term of the
expansion (4.17) of the operator ZO' Again the Fourier kernel property

(2.38) is specialized to second order partial derivatives,

ixyk 2% ixy) ek )
dk 3k
P q

- - 4.
(xp yp)(xq yq) e (4.29)

We also use the double integration by parts that reduces equation

(2.37) to the form

32 52
J v——vdk=[ v——udk. (4.30)
gd 9k 3k 3 9k 3k

P q R P q

Thus, by using the Fourier kernel property (4.29) and integration by
parts (4.30) above, the third term of the expansion (4.17) for ZO

becomes
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i 3 3 320
3 J | w } I (xp— yp)(xq— yq) ——————Ix___y
lem R3 g3 p=l ¢=1 8xp8xq

c ) IR gk
i [ 3 § 92 329

== ) | =y )

1673 23 23 p=1 q=1 Ok 3k ax 3x XY

() eFETR gy gk (4.31)

We explicitly evaluate the derivatives above in equation (4.31)
through the use of the inverse transformation between (kl’kz’k3) and
(w,gl,gz) given in equation (4.24). However, there remains an ambiguity
in the sign of w in equation (4.24) that needs to be resolved. By
examining the Beylkin transformation (4.23), it is observed that the

frequency w can be represented unambiguously by

k [
_ Sokaly — &l (4.32)
2y3

From the transformation relations (4.24) and (4.32) along with
the explicit form of the phase function ®(x,y,E) given in equation

(4.6), the following explicit derivatives can be generated.

320 c k. ly - & 2 [(y,—&,)2 + y2]
waTlle:(—u_)(c g )
2y, 0

k
=—|3|—2 (k2+k2) ’
32¢ ( c k |y I ) ( 2 [(yl— 51)2 + y%] )
w——— EH —0—3————
Bxg x=y 2y3 <, |y - £|3
k
=—|3|—2 (k2+k2) ,
L2 (coksly £| )y (2 [(y,~ €)%+ (y— ¢ )?] |
ax2 X7y 2y, <, ly - €| 3

k
_3__2(k2 RZ)’
v,k
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. 320 | ( k,|y ~ £ ) (- 2 (y-g)y,~ &) )
3x13x2 X=y 2y3 co | gl 3
o - Kkoky
y,lk|?
320 c. k.|y — E| 2 (y,— &)y
Spf3l¥ — 5E ST 5
9%, 9x |x=y ( 2 ) ( e |y - |3 )
1°%3 3 o 1Y
~ k, k2
= - =
vl k|
320 c. k. |y — E| 2 (y,—¢)y
7 = ( S0l 7 S _ S 2T 50V,
Y 9x_9dx lX:Y - ( 2 ) ( c l - E'B )
29%3 Y3 o ¥
k, k2
= — ——2—35 . (4.33)
¥4l k]

Moreover, by a series of straightforward differentiations and algebraic
manipulations utilizing the derivatives in equation (2.33), it is then

discovered that

33 32 320 6k
= —
g E " (w P |x=y ) —_TiTE . (4.34)
p=l q=l “%p%%q *p™*q 73

We are now in a position to evaluate the complicated integral
(4.31) that represents the third term in the expansion (4.17) for ZO.
The following equation is obtained by substituting the above result

(4.34) into the integral expression (4.31).

i 3 3 52 32¢
 16n3 I3 J.3 Z E ok 3k (o 9x 9% ]x=7 )
R° R° P=1l q=1 9% 9%, P q
. y(x) RS 0L
3 i(x-y)-k k
= - — [ | e p(x) ———3—5 dx dk . (4.35)
8ni RS R3 Y3|k|

Thus, we have established the desired alternate form for the third
term of the expansion (4.17) for ZO by combining equations (4.31) and

(4.35) above. Specifically,
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3 32¢

: 3
i
w z ) (xp_ yp)(xq— yq) 5;;3;;|x=y

I
3
lem R3 Rs

p=1l g=1

. y(x) ei(x-y)-k dx dk

3 i (x-y)- k
— R AL TeS) —3— dx dk . (4.36)
8woi R3 R3 y3|k|

The present section is concluded with the development of an
alternate representation for the additional operator term appearing
in the expansion (4.18) for the operator Zl. It turns out that this
operator is the simplest of the terms to convert. Combining the
relationship (4.32) for frequency w with the equation (4.25) for the
squared distance |y — £|2 results in the following.

c 1 k
(—2—) —=—73 -3 (4.37)

2y — €] 7w ik |y - g2 iy,|k|2

Thus, the desired expression for the additional operator term in

equation (4.18) is found to be

- I T ( _ %y L A 200 PN
8r3 R3 R3 2|y - g] iw
1 1 - . k
a_ ATk ) 3 4y ak . (4.38)
3 2

With the alternate forms given in the equations (4.19), (4.28), (4.36),
and (4.38) above, an understanding of the difference between the zero
order and first order inversion algorithms can be produced. We now

explore this in detail.
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4.3 Inversion Algorithm Correction Term

Thus far, the inversion algorithms developed in the preceding
chapter have been cast in terms of Fourier integral operators. These
representations have been expanded into individual operator terms up
to orders less than (&ﬂz. The individual operators were written purely
in terms of the Beylkin transformation variable k = vx¢|x=y and are

provided in equations (4.19), (4.28), (4.36), and (4.38).

In the present section, the results of the preceding sections
are summarized. Combining the alternate representations from the
previous section immediately shows the nature of the improvement of

the first order inversion algorithm over the zero order algorithm.

The zero order inversion algorithm produces the following

approximation to the index of refraction perturbation.

16y i (2T =Ll
3 D(w,&) e €o

n,
v (y) =]
0 g2 g "c,ly - g

dw dE . (4.39)

This has been shown to have the following equivalent representation.

n B _ 1 i(x-y)-k
Vo (y) = (20‘(¢))(y) aliewry 1{3 £3 p(x) e dx dk
1 — . — . - .
-— .1 (x= ) > 8 () FETE
43 o3 p3 ly — £|
i 3 3 320
+ —y x =y ) ——| _
1673 £3 £3 ? pzl q§1 g™ ¥p) (g™ v axpaxq'x-y
c () T I g g e (4.40)

In the above equation, terms involving (éaz and higher powers have not

been explicitly written.



77
In the preceding section, the individual terms of equation (4.40)
have been written in the alternate forms found in equations (4.19),
(4.28), and (4.36). Thus, the zero order inversion algorithm produces

the approximation to the index of refraction perturbation given by

T, = (2,)

f3 [, — | 7 Y V)R 4y ak

v(y) +
’i R g Y3lk

¥ (x) ei(x-y)°k dx dk + -+ . (4.41)

I, 7

ige ""2

g3

It is immediately noticed that the two integral operators can be summed

to yield
N\
voly) = (20(¢))(y)
= yly) + — I I 2 0(x) T ETE gy g b e

3 y,lk|?

(4.42)

Hence, the integral operator term above along with the higher order
expressions that are not explicitly written represent the error in the
. . Y . , .
approximation wo(x) to the exact index of refraction perturbation y(x)

in the zero order inversion algorithm.

Similarly, we examine the first order inversion algorithm given

by

16yq
g "%eoly — €
—iw (&LLEJ_)

- D(w,E) e o dw dE . (4.43)

(1-—0
2iw|y — g

I /
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The expression (4.43) has been shown to possess an equivalent represen-

tation of the form
VL = (3 ) = (W) ()

1
8n3

[ [ (—o— ) — w(x) Ly ok o d s+ -
RS R3 2’y I

(4.44)

Using the equivalent form of the above integral operator found in

equation (4.38), the above equation can be rewritten as

U = (FW) D = (Z,W)) )

I v (x) A 20 (4.45)

E i g3 g3 ]k|2

Comparing this result with equation (4.42) immediately shows

1 . ; . . .
that the 7 error term in the first order approximation is cancelled.

Specifically,
v 1(x-y)°k
wl(y) = y(y) + dx dk
8m3 R R3 Yq Ik'
P e llCY) LTI e e (4.46)
~ gn3 i3 g8 |k|

Thus, the error difference wl(y) — y(y) between the first order
inversion algorithm approximation wl(y) and the exact index of refrac-
tion perturbation y(y) is given by higher order integral operators
involving (%)m for m 2z 2. The %-error term contained in the zero order
approx1mat10n w (y) has been annihilated in the first order approxi-
mation w (y). It is precisely in this general Fourier integral operator
sense that the first order inversion algorithm (4.43) is seen to be

more accurate than the zero order inversion algorithm (4.39).
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The results of this section can be generalized to higher order
A,
inversion algorithms. The Kth order approximation wK(y) given by the

methods of the preceding chapters is of the form

Ve = (B W) = 0w + (€ ) + & ) + -+ )(3) ,
(4.47)

where the operators €K+1’ tK+2"" are defined in equation (2.56).

Thus, the error term in the Kth order inversion algorithm involves
integral operators of order (%)K+1 and higher. This becomes apparent
since by the construction of the Kth order algorithm, the Fourier
integral operator ZK that equivalently represents the Kth order
algorithm is the identity operator up to Kth order. This follows as

a result of the correction terms that the Kth order algorithm provides

to cancel the corresponding error terms of the order zero algorithm.
4.4 Correction Term for Stratified Media

We now consider the backscattered data problem with constant
reference velocity as before but with the additional restriction to
wave propagation in a stratified medium. By a stratified medium, it
is meant that the wave propagation velocity c(x) is only a function
of depth Xge If the reference velocity is taken to be the constant Cos
then the index of refraction perturbation y(x) is also only a function

of depth x that is,

3,

v(x) = p(x) . (4.48)

. . . 1
It has been demonstrated in the previous section that the 3
error term produced by the zero order inversion algorithm is given

by the £ operator and takes the form

0
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F 3 = v = (W) (p) ~ ¥y

1 K —9).
—a Ak ) dxodk e

8n3i 2 2 |k|2

(4.49)

1 . . . . .
The 7 correction term provided by the first order inversion operator
; . . 1
is precisely the opposite of the ; error term of the zero order

algorithm.

V) =¥, () = (2,W)) () — (2,) ()

" [ M3 i(xy)k v(x) dx dk + ---
TT].R

k|2
2° vslkl

(4.50)
For a stratified medium, the index of refraction perturbation

is of the form (4.48). Consequently, the correction term (4.50) can

be integrated with respect to x, and x_ to yield Dirac delta functions.

1 2
" " 1 k —iyek
b (y) =y (y) = - - - e 42 §(k ) 8(k,)
1 0 gniiy, g3 |K|2 1 2
- f elX3k3 p(x,) dx, dk + «-- . (4.51)
R

Denoting the l-dimensional Fourier transform of w(xs) by @(k3), we
have the following equivalent expression.
1 k —i

(y) = — 3 Yk sk ) s(k) $(k.) dk
7 2niy, o3 [k|2 ¢ ! 2 ¥y

+ oo (4.52)
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Carrying out the k1 and k2 integrations and noting the Dirac delta

function properties results in

1 .
v _% = - -3 ~iysks
V(9 = () Ik V(k,) e dk, + . (4.53)
However, 1/(ik3) can immediately be recognized as corresponding

to the Fourier transform of an integral. Hence,

1
"\ n y
V() =, () = — [ T3 u(yl) dyl+ e (4.54)
y. o 3 3
3
where p is a constant. Thus, the correction term in the first order
inversion algorithm in a stratified medium with constant reference

velocity is seen to be essentially an integration of the index of

refraction perturbation.

In particular, for a simple discontinuous step perturbation

arising from a single horizontal reflector at a depth p in the medium,
w(y3) = H(y3— p) , (4.55)

where H(x) denotes the Heaviside unit step function, the corresponding
correction term is essentially a linear ramp in a neighborhood of the
reflector.

a}'l(y) —:J‘;

1
o) = T (y,- p)|y3;p + e (4.56)

3

We now make these concepts more precise by comparing the correction

term to the exact solutions generated by the Cagniard-de Hoop method.
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4.5 Cagniard-de Hoop Data

In the present section, the Cagniard-de Hoop method is used to
further analyze the action of the first order inversion algorithm
(4.43) in a stratified medium with constant reference velocity. Gray,
Cohen, and Bleistein [16] showed that a closed form solution can be
obtained for the exact backscattered data in this particular situation.
This result is established from the Cagniard-de Hoop method described

by Achenbach [1].

We consider a piecewise constant velocity profile in a stratified

medium given by

c 0 < x3< h
(4.57)

il
-

c(x) = c(x,)

¢, x3> h

where ¢~ S is assumed to be a small velocity perturbation. Taking
the reference velocity co(x) to be the constant c , then the index of

refraction perturbation defined in equation (1.10) takes the form

0 0 < x3< h
(4.58)

v(x) = p(x 5
02

1 1
0(?—;:—2-) x3>h
1 0
If the impulsive wave source is normalized (Q0= 1), then the
scattered field at the data surface x3==0 is given by the Cagniard-

de Hoop formula:

1 d 2h
Ug(t,8) = — — (R(t) H(t ~—)) , (4.59)
8Th dt o

where £ is the coincident source and receiver point. The function R(t)

is given by
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1 1 t
t—(t2+4n2(—=-—=))
C2 C2
R(t) = 1‘ 3 (4.60)
t+ (e2+402(=-—=))"
c?2 2

Hence, by taking the l-dimensional Fourier transform f1 given in
equation (1.2) of the scattered field Us(t,E) in the time-domain, we

obtain the scattered field in the frequency-domain,
uglw,g) = £ {U(t,E)] . (4.61)

It turns out in the subsequent analysis that it is not necessary to

explicitly calculate us(w,g).

We now consider the zero order inversion algorithm acting on

the data us(w,g). Specifically,

]_6 1 _ Ziwr)
¥,y = —"3; f=e 07 u(w,E) du dg (4.62)
me r
o B R
where
=|ly-¢| . (4.63)

Recognizing that the integration with respect to w is essentially an
inverse Fourier transform, then it follows that
32y 2r
(y3) =2 Iz Ug( — ,&) dE . (4.64)
¢y g2 T <,
Making a change of variables to cylindrical coordinates (p,e,y3), then
the zero order inversion approximation becomes
32y 2m 1
(y3)-——3[ J —U(—,g)depdp. (4.65)
c

o Y3 0T o
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Moreover, in cylindrical coordinates we have the relation
r? = 02 + yg . (4.66)

Using the closed form expression (4.59) for the Cagniard-de Hoop
data US(t,E), the zero order inversion approximation (4.65) can be

explicitly integrated. Hence,

32y, « 2w

d 2h
V)= =] [ — (R H(t==)) [_2r dr
c0 y3 0 8thr dt c0 o
4 ® g 2 2h
-2 ] — (Rre) H( s ) ) dar . (4.67)
h Y3 dr o o
Thus,
4y 2r ©
)=—3R(— ) H(r—h
wo(y3 - ( N ) H(r ) |y3
0
4 2
F -%3 R( s ) H(y3— h) . (4.68)
R ,

0

In a neighborhood of the reflector (that is, for vy * h), the

zero order inversion approximation can be writtem in terms of a linear

Taylor polynomial.

4"
d

¥ty > )+ Yo (v~ 1) . (4.69)
dy3

Hence, by evaluating the expressions in the above Taylor polynomial,

it is discovered that

4R 2c
i - —h) — —0 -2 -
Vo(yy) > — 4R H(y,— h) - (1 , ) (v, h)|y32h s (4.70)

where R0 is recognized as the reflection coefficient,

2h c.— ¢
=R( —) = 1—0 (4.71)
0
c c.+c¢c
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and where
dR 2h c
—(—)=--L1Rr_ . (4.72)
dt ¢ h O

The factor of four multiplying the reflection coefficient in the result
(4.70) is in exact agreement with results obtained by Bleistein, Cohen,

and Hagin [5].

Now consider the first order inversion approximation given by

2iwr
16 1 c -(==
3;1(}'3) -Jagp fi(1-=0)e ©0 ug(w,€) dv dg . (4.73)
“co Rz R r Ziwr

The first order inversion approximation above involves two individual
terms. The first term has been calculated in equation (4.70) since it
is simply the zero order inversion approximation. The second term in

equation (4.73) is the correction term. Specifically,

AY = $1<y3> - $0<y3)
_(Ziwr

8 1 .
e 0 us(w,E) dw dE . (4.74)

y
TS
R

L . 1 . ,
It is important to notice that the factor — 1, In the frequency-domain

corresponds to integration in the time-domain. In particular,

1
£, (f° ug(er,e) et +c) = —— ug(0,€) , (4.75)
o0 . 1w

a
where C is an arbitrary constant. Thus, the correction term Ay in

equation (4.74) can be explicitly integrated to yield
" 1 2r
ap =16y, f — (J C0 u,(t',g) dt’ +¢C ) dE . (4.76)
34, 2 VI s

Using the Cagniard-de Hoop formula (4.59) in equation (4.76) results

in the following.
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1 2r 1 4 2h
"
Ay = 16 — €0 — — { R(t') H(t' — — dt’ + C ) dg .
Ve [ (S o (e ==} )
0
(4.77)
Carrying out the integration inside the parentheses produces
1 1 2r 2r 2h
sy =16y, | — (—R(—)H —-=)+c) dE . (4.78)
3 RZ r2 8th <, <, N

We can again make a change of variables to cylindrical coordinates and
then relate the result to integration with respect to r. The result is
given by
n, o 1 1 2r
ap =32y, [~ (——R(—) H(x~h) +C) dr . (4.79)
r

Y3 8h ¢y

Thus far, we have not identified the constant C. We now choose
A
the arbitrary constant C such that Ay = 0 at vy = h. Then for Y,y 2 h,

we discover that

o 1 2 © 1 2r
Ay = 32ny. (f R( =) dr — | R( =) dr) . (4.80)
3 y, 8Thr c h 8rhr c
3 0 0
Equivalently,
4 1 2
ap = - 2L Ys - R( = ) dr . (4.81)
h "h r <o

In a neighborhood of the reflector (y3 -+ h), we obtain a similar
approximation to that of equation (4.70).
4 2h 4R
o
&y > —=R(—) (y,~ h) =——hfl (y,~ h) . (4.82)

h c0

In the Born approximation used in the linearization of the
backscattered data integral equation (1.24), the index of refraction
perturbation is considered to be small. This is equivalent to the
assumption that c¢,— c_ is small. Hence, the ratio cl/c0 is approxi-

1 0
mately unity. In this case, we observe that equation (4.70) becomes
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>h ° (4.83)

4R
T - , -0 _
volyy) > 4R, H(y,— h) + " (v, h)ly3

Moreover, we observe that the correction term of the first order
inversion algorithm produces precisely the linear correction to
annihilate the linear error in equation (4.83). Specifically, we see

from equation (4.82) that the correction is given by
Iy Ly 4R
- = — —0 -
v (yg) =, (y)) = O h)|y3;h (4.84)

Thus, the first order inversion algorithm eliminates local linear
approximation errors that the zero order inversion algorithm generates.
However, it does not correct for the linear error derived from the
Born approximation in linearizing the backscattered data integral

equation.
4.6 Inversion Algorithm for General Initial Conditioms

In this concluding section, we generalize the first order inverse
algorithm to account for more complex impulsive source waves. It was
assumed in Chapter 3 that the source wave is asymptotically a spherical

wave in the near-field. Specifically, the amplitude is given by

A(x,0,E) + 290- , (4.85)
Tg

as 0 > 0. However, it is possible for the source wave in the near-field

to have an asymptotic expansion of the form

1
A(x,w,E) » — ( Q. + gl + e ), (4.86)
4wo 0 iw

For a constant reference velocity, the rays propagate along
straight lines as in equation (3.8). Solving the transport equations
for these more general asymptotic initial conditions by the methods

of Chapter 3 results in
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A(0) = Y G010, (4.87)

4o

where the notation Aj(o) = Aj(x(o),E) is used.

The backscattered data integral equation for constant reference

velocity again takes the form

N

D(wag) =

ool &

J, ax0,0 10 (XE) oy g (4.88)
R

where the phase is given by

2lx - EI
o(x,E) = 21(x,) = — (4.89)

)

However, the amplitude is modified for the more general imposed initial
conditions (4.86). Specifically,
2 2pn2
Q + QY
16m2g2 812021
2 2n2
= Q QY
l6m2|x — g]2  8n2|x — g 2iw

a(x,w’g)

(4.90)

The first order inversion algorithm is obtained by following the
procedure of Chapfer 3. This involves the calculation of the first
order kernel function bl(y,g) provided in equation (3.46). There is
an additional term included since al(y,g) does not vanish for the

initial conditions (4.86). The kernel function is given by

12812 a (y,£) ¢
bl(y,E) T 2 4 - L7 -4 )
rogr ao(y,g) 2r
128n¢y 2Q c
= = 3 (5% _;Q) . (4.91)
Qgcot Q, r

Thus, the first order inversion algorithm for constant reference

velocity with the extended initial conditions (4.86) has the following

form
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1
uy)mu (1——{—L+fn})
R Q0 2r
—j (2rw
c D(w,E) e S0 dy dE . (4.92)

The modified inversion algorithm (4.92) provides an additional correc-
tion term for the first order term of the asymptotic expansion of the

impulsive source wave.



CONCLUSION

The present work has addressed the velocity inverse problem of
geometric acoustics for an inhomogeneous non-dispersive medium. The
velocity inverse problem involves the imaging of surfaces of discon-
tinuous index of refraction through the analysis of the scattered
waves at an accessible surface of the medium. The velocity inverse
problem is mathematically formulated in terms of a linear integral
equation based on the perturbation approach of the Born approximation

of theoretical physics.

The elegant and powerful theory of Fourier integral operators
is utilized to generate an explicit asymptotic expansion of the gener-
alized asymptotic integral equation inversion operator. These results
are specialized to the velocity inverse problem in 3-dimensions for
constant reference velocity. Explicit zero order and first order
inversion algorithms are developed. The first order algorithm is
extensively analyzed using Fourier integral operator and Cagniard-
de Hoop methods. It is shown that the first order inversion algorithm
annihilates the linear error terms that are generated by the zero
order inversion algorithm. However, it does not eliminate the error
due to the Born approximation itself. The elimination of the Born
approximation error requires the use of higher order Born approxima-
tions. However, if the index of refraction perturbation is sufficiently
small, then the Born approximation error is negligible. Consequently,
the first order inversion algorithm developed in this work represents
a potentially valuable improvement over existing inversion algorithms.
Furthermore, the results and methods of the present work are informa-
tive in demonstrating that the general pseudodifferential operator and
Fourier integral operator theory can be applied to the problems of
geometric acoustics.

90
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It is to be noted that the Fourier integral operator methods and
results extend to the much more difficult problem of non-constant
reference velocity. The inversion algorithms developed in Chapter 2
are still valid for the non-constant reference velocity case, but the
explicit calculation of the required kernel functions is extremely
complex and remains unsolved. Stickler, Tavantzis, and Ammicht [30]
showed that for certain reference velocity profiles, the second term
of the geometric acoustics expansion can be implicitly obtained. It
remains unknown whether the detailed calculations can be performed or
whether the surprising simplifications and cancellations seen in the
constant reference velocity case will occur for non-constant reference

velocity examples.
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