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INTRODUCTION

"This book is a review of the research program at the Center for Wave Phenomena
(CWP) for the 1992-93 academic year. The scope of research at CWP broadened
dramatically this year with the addition to the faculty of two outstanding young
scientists, John A. Scales and Ilya D. Tsvankin. Both John and Ilya come to CWP
from Amoco where John was a research scientist and Ilya served as a consultant to
the Geophysical Research Department.

John gives CWP strength in the “other” kind of inversion—inversion as a kind
of constrained optimization problem—that complements the asymptotic inversion
theories of the founding members of CWP, Norman Bleistein and Jack Cohen. John's
special interests are in developing a sound statistical underpinning for the inversion
problem and incorporating detailed geological and other prior information into the
calculations. His influence in CWP is seen in this volume in his co-authored paper
with Boyi Ou on inverse problems and in the paper by Wenceslau Gouveia on genetic
algorithms. John’s expertise in diverse areas of the geosciences brings him many
visitors both inside and outside CWP. In this, his first semester at Colorado School
of Mines, John also authored a comprehensive set of notes for his seismic migration
course.

In last year’s Project Review, Ken Larner presented several papers on the prob-
lem of appraising the importance of errors in seismic imaging caused by neglect of
anisotropy. With the addition of Ilya Tsvankin’s penetrating research in the area
of anisotropy, CWP becomes a substantial player in the investigation of this impor-
tant area of exploration geophysics. Ilya is represented in this volume by two papers
devoted to the influence of anisotropy on dip moveout and amplitude-versus-offset
analysis. Analytic and numerical developments in these papers lead to a methodol-
ogy for doing DMO and analysis of issues in AVO in such media. Both Ilya’s and
Ken’s work are further seen in the papers by Tariq Alkhalifah on migration error,
modeling, and migration in inhomogeneous, transversely isotropic media.

Michael Zhdanov, on leave from the Institute of the Physics of the Earth, Moscow,
continues his two-year visit to CWP. A renowned researcher in electromagnetic meth-
ods, Michael’s work is represented in this Project Review by his paper with Timo
Tjan on their “analytic continuation” migration method, which accounts for down-
ward traveling energy for imaging of multiples. Also included in this book is Michael’s
abstract for a tutorial on regularization in inversion theory. With their keen interest
in applying techniques in the field, it is natural that both Ilya and Michael have also
established close contacts with Tom Davis’s field study consortium at CSM.

John Anderson, of Mobil, is on campus for two years as Mobil’s Visiting Scientist.
John has devoted a substantial block of his time to interacting with CWP faculty and
students, enhancing our efforts with his formidable experience with “real world” data

1We acknowledge John Scales, Craig Artley, and our publications specialist Barbara McLenon,
for their contributions to the production of this book’s new format.



processing techniques. He is represented by a short paper on a state-of-the-art code
for doing discrete radon transforms, which he wrote while simultaneously learning the
NeXT operating system, the C language, the CWP library routines, and IATEX.

Our students continue to produce high-quality work, and CWP is exceptionally
proud of them. Members of our faculty and students made a strong showing in their
presentations at the 1992 SEG meeting in New Orleans, and we anticipate a favorable
response to the nine talks planned for the upcoming 1993 meeting in Washington,
D.C. (The collected expanded abstracts submitted for that meeting are available from
the CWP office.)

During the past year sponscrs have received a number of published research re-
ports, as well as the following proprietary computer codes:

¢ U186, Docherty, P., CWELL: 2.5 dimensional crosswell modeling program. Pro-
prietary: 8/24/95.

e U17, Hale, D., SUMIGGBZO: A zero offset migration code using Gaussian
beams. Proprietary: 5/26/95.

e U19, Artley, C., SUDMOVZ: Depth-variable velocity DMO programs SUD-
MOVZ and DMOIR. Proprietary: 1/25/86.

In addition, three CWP students are scheduled to complete their thesis work in
the near future: Tariq Alkhalifah, M.Sc., Migration error in transversely isotropic
media; Andreas Rileger, M.Sc., Application of dynamic ray tracing in triangulated
subsurface models; and Mohammed Alfaraj, Ph.D., Transformation to zero offset for
mode-converted waves.

We believe that the breadth and quality of research within CWP, represented in
this book, is currently at the highest point of its nine-year history.
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Transformation to zero offset for mode-converted
waves by Fourier transform

Mohammed Alfaraj

ABSTRACT

A frequency-wavenumber (f-k) method for doing transformation to zero-offset
(TZO) for mode-converted waves is thoroughly investigated here. The method requires
only slight modification to the existing Hale’s TZO method for ordinary p-waves, To
modify Hale’s TZO method to mode conversion, one needs to know only the velocity
ratio. The TZO operator here differs from the elliptical p-wave operator in two aspects.
First, the operator is a pseudo-ellipse; its deviation from being an ellipse is controlled
solely by the velocity ratio which squeezes one side of the operator and stretches the
other, depending on the mode of conversion. Second, the operator is laterally shifted,
and in a time-varying manner, so that it closely resembles the behavior of the theoret-
ical operator for mode-converted waves, Using a modified version of Hale and Artley’s
squeezing trick, the method is readily extendible to approximately handle velocity vari-
ations with depth.

Tests on synthetic data show that the method is capable, to a great extent, of trans-
forming mode-converted data to zero offset. Although not too sensitive to the choice of
velocity ratio, the TZO process must account for mode conversion when dealing with
mode-converted data. Not enly can the mode-converted TZO method correct reflec-
tions from dipping reflectors, but also from horizontal ones, in which case reflections
are simply shifted laterally to their appropriate, zero-offset locations. As for dipping
reflectors, reflections are properly TZO-corrected regardless of the sign of dip.

Finally, I have tested the method on two field (p-s8v) data sets acquired in the
same area, but shot in opposite directions. Because of poor signal quality, the results
obtained after applying mode-converted TZO were not as dramatic as those seen in the
synthetic data. Nevertheless, the stacking velocity, obtained after mode-converted TZO
has been applied, is dip-independent—a result both conventional processing (no TZO)
and conventional TZO (ignoring mode conversion) have failed to achieve. Furthermore,
I show that the method may be used to qualitatively infer information about the velocity
ratio from field data. I also derive an expression for quantitatively estimating the
velocity ratio from the two mode-converted data sets; the expression makes use of the
relative shift between the stacks from each set, among other things.
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INTRODUCTION

A formulation for the transformation to zero-offset (TZO) for mode-converted
waves in the t—z domain (Kirchhoff implementation) was introduced by Harrison
(1990). Den Rooijen (1991) applied the formulation to mode-converted seismic data;
his synthetic tests showed that the TZO operator yielded aliased results, though not
too severely. Alfaraj and Larner (1992) and Alfaraj (1992) described a method for
doing mode-converted TZO in a nonphysical domain; this method is, in principle,
exact for constant-velocity media, and requires knowledge of only the velocity ratio.
Unfortunately, Alfaraj and Larner’s method, due to intrinsic problems, fell short of
achieving its TZO goal; it can be used only for obtaining dip-independent velocity
functions. ' '

Here, I describe and implement a practical, frequency-wavenumber (f-k) TZO
method that deals with mode-converted waves. The method is practical because it
requires only slight modification to the existing Hale’s (1984) TZO method developed
for ordinary p-waves. The modification, in turn, requires only knowledge of the
velocity ratio. Furthermore, the mode-converted f—k TZO method, as with Hale's
method, is readily extendible to approximately handle the more practical situation
wherein the velocity varies with depth.

I test the method on both synthetic and field mode-converted (p-sv) data. Re-
sults from synthetic data reveal that the method is capable, to a great extent, of
transforming mode-converted data to zero offset. The method corrects data from
both dipping reflectors regardless of the sign of dip, and from horizontal reflectors
by laterally shifting reflections to their appropriate zero-offset locations. Although
the method is not too sensitive to the choice of velocity ratio, tests show that it is
cssential to to take mode conversion into account when dealing with mode-converted
waves.

Results from two field data sets show that the dip influence on stacking velocity
has significantly decreased after application of mode-converted TZO, a result that
conventional TZO (ignoring mode conversion) has failed to produce. Additionally, I
show that the method can be used to infer information about the velocity ratio from
seismic data. Also, with the availability of two data sets shot in opposite direction
(as the field example here), one can make use of the relative lateral shift between
their stacks to estimate a velocity ratio.

TZO FOR CONVERTED WAVES BY FOURIER TRANSFORM

Review

Following is a review of the formulation for the mode-converted f—k TZO method.
For a detailed analysis, see Alfaraj (1993).

Assuming a constant-velocity medium, the f—k zero-offset seismogram for mode-
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converted waves is given in terms of the NMO-corrected seismogram p, as

Fy (w’ k, h) = fdtn A1 glwhtn oiBk fdy e~ Pn (tm Y, h)’ (1)
where A is given by ,
_dty 4vh2k2?
A=dt0—41+(1_+ma, (2)
the quantity B is a constant given by
7—1
B=-——_h,
7+1 @)

In the above relations, h is half-offset between source and receiver, ¢, and t, are
NMO-corrected and zero-offset times, respectively, y denotes midpoint, and - is the
velocity ratio. The fact that B is a constant (for a constant offset 2A) implies a
linear spatial phase shift, i.e. eZ*, in the Fourier domain. This linear phase shift, in
turn, corresponds to a constant lateral shift in the space domain. Specifically, this
constant shift is the asymptotic approximation (offset small compared with depth) for
the spatial location of the conversion point for a horizontal reflector (Sword, 1984).

Finally, 2-D inverse transformation of equation (1) yields the desired TZO data,
i.e., po(tn, y, h), as follows

1 . 3
polte, y, h) = Wfdw g Wwio fdk e'tv Py(w, k, h).

The impulse response

The corresponding TZO operator in the ¢t~y domain is obtained by finding the
inverse Fourier transform of Py(w, , h) when p,(ta,y,h) is an impulse. This is ac-
complished by applying the method of stationary phase to equation (1) (see, for
example, Bleistein, 1984; and Liner, 1988). The TZO operator in the t—y domain is
found to be an ellipse, given by

2+ (®)

= =] =1. 4
(t,, \#@) =1 )
The quantity H is a scaled version of half-offset h, given by

H=2T (5)
1+«
Equation (5) implies that the TZO impulse response for mode-converted waves is a
squeezed version of that for ordinary p-waves. The quantity Y; is the location of the
output zero-offset trace; it is shifted from the output location for ordinary p-waves,
, and is given by

1—
Yo=yo—1+:;h- (6)
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When 7 = 1 (no mode conversion), equation (4) reduces to the well-known dip-
moveout (DMO) ellipse for ordinary p-waves.

The offset scaling as implied by (5), and the shift in the output zero-offset trace as
suggested by (6), are equivalent to the transformation introduced by Sword (1984).
Sword suggested that each prestack seismic trace, in the time-space domain, be given
a new midpoint location and a new offset, consistent with equations (5) and (6), prior
to any processing. The TZO approach introduced here, on the other hand, accounts
for the location of the new midpoints, as suggested by Sword, without having to deal
with trace interpolation in the time-space domain; each trace is simply shifted to the
desired location by introducing a spatial phase shift in the f—k domain, as suggested
by the transform in equation (1). .

The above f—k TZO formulation was based on a truncated power series for the
traveltime for mode-converted waves (Alfaraj, 1993). One result of the truncation
of the power series was that the phase shift obtained in (1) was constant and time-
invariant. The actual spatial shift of the conversion point for a horizontal reflector,
however, is known to vary with reflection depth, or time (Tessmer and Behle, 1988).
Figure (1) shows the theoretical impulse response (solid), along with the derived,

4.0

4d00 800 400 O 400 ‘800 1200
Distance from midpoint (m)

Fic. 1. Theoretical (solid) and approximate (dotted) TZO impulse responses for four
input impulses (1.75, 2.4, 3.2, and 4.0 s) at midpoint 0. The approximate operator
has a constant (time-invariant) lateral shift, as opposed to the time-variant shift for
the theoretical 'TZO operator. The offset is 2000 m. The downgoing and upgoing
velocities are 2000 and 1000 m/s, respectively.

approximate impulse response assuming four input impulses. The lateral shifts of the
apexes of the theoretical operators are clearly time-variant; the apexes correspond to

8
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horizontal reflections, i.e., zero dip. From the figure, it is also clear that the lateral,
constant shift of the derived TZO operator needs to be adjusted (increased in this
case), in a, time-varying manner, so as to obtain a better match of the two operators
near the vicinity of their apexes.

IMPROVING THE TZO OPERATOR

In this section, we attempt to improve the derived, approximate TZO operator in
two different ways. First, the constant, spatial shift of the operator will be modified
to better resemble the behavior of the conversion point for a horizontal reflector,
This modification is achieved by altering the phase of the TZO transform to be time
variant. Second, a squeeze/stretch technique is applied to the operator to make it
better match the theoretical one.

Time-variant phase shift

It is easy to embed time-variance of the conversion point into the phase-shift term
of the transform in (1), and thus partially alleviate errors arising from truncating
the series. Let us call the latera] position of the conversion point b, relative to the
midpoint. With D denoting the depth of a horizonta] reflector, the relationship
between D and & (Alfaraj, 1993) is given by

2_ ( h2 — b2)2
T R+ 2ehb[B+ 82’
where o and g are constants depencjing only on the velocity ratio 7. In terms of
normalized quantities D = D/h and b = b/h, equation (7) can be written as
B el
14+ 2ab/B+02’

(7)

(8)

showing that the relation between D and b is totally determined if the velocity ratio y
is known. Naturally, we would prefer to find b as a function of D using equation (7);
this, however, requires solving a quartic equation in . Rather, we directly calculate
D as a function of § using equation (8), thus building a table of [D, b(D)] pairs for any
given velocity ratio. Making use of a table constructed in this way aids the efficiency
of the TZO process since such a table needs to be calculated only once (the only
required parameter is the velocity ratio). Figure 2 shows an example of normalized
b as a function of normalized depth for different velocity ratios. In the TZO process
itself, both D and & are translated, respectively, into NMO-corrected time t, and
actual lateral shift b, using velocity and half-offset information. In other words, the
pairs [D, b(D)] in the original table are trivially converted into Pairs [t,, b(t,)]. Then,
we use this time-variant b(t,) in the phase shift of the transform given by (1), instead
of the time-invariant B given by equation (3). Figure 3 shows impulses and TZO
impulse responses for TZO constructed in this way.

9
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0
A1
1 -
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c
a 2_ ........................
PV JUUUN OO WU Fous 1o O o8 B8 3 55 51 CFF 56 IS8 A B
4 '; ;
-1.0 -0.5 0 0.5 1.0

b/h

Fic. 2. Behavior of the conversion point in a homogeneous medium, as dictated by
equation (8). Here, for different velocity ratios, normalized depth (D/h) of the con-
version point is plotted against the normalized, lateral position (b/h) for a horizontal
reflector. The numbers shown on the plots are values of . Note that plots for v and
1/~ are symmetric about the vertical line b/h = 0.

10
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Figure 3a shows ten impulses on a common-offset (2h = 5000 m) section.
Assuming a p—sv mode conversion with velocity ratio y = 0.5, the response of the

Midpoint Midpoint
40

20 40 60 60 80

a b
F1G. 3. Ten impulses in a constant-offset section (a) used to test the response of the
TZO operator for mode-converted waves (b). The offset here, 5000 m, is chosen large

to emphasize the time-variant lateral shifts seen in the impulse responses in (b). The
midpoint spacing is 100 m.

modified TZO operator to those impulses is as shown in Figure 3b. Each impulse re-
sponse is an ellipse that has now been squeezed, relative to that for ordinary p-waves,
in the sense that its horizontal axis, when extended to the surface, spans a distance
2H (see equation [5]) that is smaller than offset 2A. Furthermore, each squeezed
ellipse has been laterally shifted, in a time-varying manner, in such a way that the
apex now corresponds to the conversion point for a horizontal reflector.

Squeezing and stretching the TZO operator

While proper, time-variant shift has been introduced, the elliptical shape of the
TZO operator, as Figure 1 clearly shows, is still wrong. Squeezing (or stretching)
the operator is a practical way to modifying its response to a nonelliptical shape
that is closer to the correct one. Hale and Artley (1991) introduced a squeeze fac-
tor that would squeeze the elliptical DMO response for ordinary p-waves. Although
their squeeze factor was used primarily to tune the elliptical DMO response to better
handle steep reflections for depth-variable velocity, the same squeeze concept may
also be used even when velocity is constant. Specifically, Hale and Artley have em-
pirically found that a squeeze factor of 0.62 is sufficient to improve the accuracy of
constant-velocity DMO if the Fourier-transform approximation introduced by Not-
fors and Godfrey (1987) is used. I find that this squeeze concept is also beneficial in

11
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improving the f-k TZQ process for mode-converted waves. I adopt Hale and Art-
ley’s squeeze idea here to distort the shape of the approximate, mode-converted TZO
operator. As we will see, TZO based on the resulting shape, which is closer to the
correct one than that without distortion, yields better alignment of reflections in CRP
gathers.

Figure 4a shows the shapes of four impulse responses of TZO (dashed), where only

DR VTSI NS R PP AR SRR VNN R

1300 800 400 & 400 800 1200 4300 800 400 0 400 800 1200
Distance from midpoint {m}) Distance from midpoint (m)

FIG. 4. Shapes of approximate TZO response (dashed) to four impulses, along with
those of the correct responses (solid lines). Proper, time-variant lateral shifts have
been applied in (33l The result in (a) after squeezing/stretching is shown in (b); the
squeeze and stretch factors are, respectively, 0.05 and 5.0. A p-sv mode conversion
§ /= 0.5) is assumed here. Offset is 2000 m. Input impulses are the same as those
or Figure 1.

proper, time-variant Jateral shifts have been applied. For comparison, the correct
responses (solid) are also shown in the figure. Negative zero-offset slopes correspond
to the right segments of each curve, whereas positive zero-offset slopes correspond
to the left segments. As Figure 4a suggests, to achieve a response that is closer
to the correct one, negative slopes need to be squeezed, and positive slopes need
to be stretched. In other words, for the p—sv mode conversion shown in Figure 4a,
the sign of the slope, alone, determines whether stretching or squeezing should be
applied. Figure 4b exhibits a squeezed /stretched version of the responses shown in
Figure 4a. Figure 5 shows the response of an actual TZO algorithm without and with
stretching/squeezing applied, for six input impulses.

The empirical process of squeezing or stretching would have little practical value
if it were dependent on either dip or time. Moreover, the stretch and squeeze factors
must not depend too sensitively on 7. Although the stretched /squeezed curves could
be made to fit the correct ones if the stretch/squeeze factors were allowed to vary
with time and dip, I choose stretch and squeeze factors here that depend only on the

12
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F1G. 5. Response of a TZO algorithm to six impulses, on(f with the correct responses
(solid lines). (a) No squeezing/stretching, (b) Stretch an squeeze factors of 5.0 and

0.05, respectively, have been applied. The responses in (b) are closer to the correct
shapes, A p-sv mode conversion (y = 0.5) is assumed here, Offset is 2000 m. Input
impulses were originally at midpoint 0.

velocity ratio, v, and yield Hale and Artley’s squeeze factor when 7 = 1. Because
the stretch/squeeze factors here depend on the velocity ratio only, the match between
a stretched/squeezed curve and its theoretical counterpart is imperfect, but, as we
shall see, yields quite acceptable moveout correction. The TZO operator is thus either
Squeezed or stretched, depending on the sign of the zero-offset slope as well as on the
mode of conversion (p—sv or sv—p). I empirically determine this factor by comparing
squeezed /stretched TZO impulse responses, using different velocity ratios, to correct
theoretical impulse responses (Alfaraj, 1993).

For convenience, let us define §1 as a parameter that achieves ejther squeezing
or stretching and apply it to the positive zero-offset slopes, i.e. the left segment
of the TZO operator, regardless of the mode of conversion (p-sv or sv—p). By the
same token, we define $2 as a parameter differing from S1 in that (1) 52 is always
associated with the negative zero-offset slopes, and (2) 52 performs the opposite
action of S1 (e.g., if the action of S1 is squeezing, then that of $2 is stretching),
With this convention, and assuming p—sv mode conversion, the stretch and squeeze
factors, S1 and 52, respectively, may be approximated using the following relations

3
S1 = 0.620+0.633 [(’%) - 1] ,

13
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1 T
— 0.620+0. — -
§2 = 0.620+0.615 [(2_7) 1], (9)

which were empirically determined using a least-square fit on experimentél data.
For sv—p mode conversion, the empirical squeeze and stretch factors, S1 and 52,

respectively, are given by
1 7
0.620+0.615 {| — =] —
+0 O[(2-—1/7) 1],

52 = 0.620+0.633(y*—1). (10)

S1

In general, any of these four expressions achieves squeezing when its value is less than
1, stretching if the value exceeds 1, and does nothing to the TZO operator when it is
equal to 1.

Neither relation for S1 and 52, however, yields a value of unity when the velocity
ratio is 1; they both give a value of 0.62 which implies squeezing of both positive
and negative slopes. As shown by Liner (1990), the Fourier-transform approximation
(Notfors and Godfrey, 1987), which we assume is used here, results in a stretched
impulse response that is wider than the theoretical constant-velocity DMO ellipse.
The squeeze factor 0.62 compensates for this stretching (Hale and Artley, 1991).

1 shall refer to the improved method (with time-varying shift and stretch/squeeze)
as the mode-converted TZO method and use it for the remainder of this paper.

DEPTH-VARIABLE VELOCITY

The mode-converted TZO method is able, to a great extent, to correct mode-
converted seismic data when the medium velocity is assumed constant (results not
shown). We now investigate the situation when the velocity function varies with
depth. We begin by showing that the proposed, constant-velocity TZO method can
be modified, in a simple and a practical way, to handle velocity variations with
depth. The modification here is simply achieved by further squeezing the derived
(stretched/ squeezed) TZO operator. We then apply the modified TZO method to
synthetic, mode-converted seismic data, assuming a velocity function that varies lin-
early with depth.

TZO operator for depth-variable velocity

To approximately handle velocity variations with depth for ordinary p-waves, Hale
and Artley (1991) proposed the concept of squeezed DMO, an efficient method that
yields reasonably accurate results. We have already made use of their squeeze concept
in the previous section. There, the TZO operator for mode-converted waves was
squeezed/ stretched to better resemble the theoretical operator in a constant-velocity .
medium. Here, we use Hale and Artley’s squeeze concept, once more, but the aim now

14
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is to allow the constant-velocity TZO operator for mode-converted waves to better
handle velocity variations with depth.

To study TZO when velocity varies with depth, I empirically analyze synthetic,
mode-converted seismic data, assuming a linear velocity function with depth, given
by

v(z) =w+ Gz,
where v ig the downgoing velocity as a function of depth z, v is the downgoing velocity
at the surface, and G = Av/ Az denotes the downgoing-velocity gradient with respect
to depth. I then apply a slightly modified versjon of Hale and Artley’s squeeze idea
to the data. The modification is solely that I choose a different squeeze factor than
theirs, keeping in mind that this squeezing action is in addition to the modifications
(squeezing/stretching) already incorporated into the TZO operator developed in the

of only the velocity ratio, is just to make the constant-velocity TZO operator better
cope with situations when velocities vary with depth.

where we recall from the Previous section that § = 0.62 is 5 squeeze factor Hale and
Artley applied even when velocity is a constant. For mode-converted waves in homo-
geneous media, however, we needed two factors, 51 and $2 in equations (9) and (10),
to tailor the TZO operator to better resemble the theoretical ope. Consequently,
we deal with two overall factors, S1 and §2, when velocity changes with depth for
mode-converted waves.

Numerical results of tests with different velocity ratios and different velocity gradi-
ents show that the required overal] factors for mode-converted waves can be estimated
from the following relations

S1 = y4831,
52 = yAS?, (11)

where A = 0.6 is the additional squeeze factor given by Hale and Artley (1991) for
ordinary p-waves (y = 1) when velocity varies with depth. From equation (11),

Figure 6 shows four examples of common-reflection-point (CRP) gathers processed
using overall stretch /squeeze factors calculated from equation (1 1), assuming different
velocity gradients (0.4, 0.5, 0.6, and 0.8 s~1). Each CRP gather contains reflections
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The good alignment in the results of Figure 6 suggests that the squeezed TZO
approach for mode-converted waves provides a natural and efficient method of TZO
correction for depth-variable velocity. The empirical relation for the squeeze factor

Depth-variable velocity: synthetic examples

v(2) =v+ G2, (12)

where the downgoing velocity at the surface Yo = 2500 m/s, and the gradient of the
downgoing velocity G = 0.7 s~1, We assume p-sv mode conversion, with a velocity

The CMP gather corresponding to the test point of the model is shown in Fig-
ure 8a. As with the constant-velocity case (results not shown), the moveout curves
are nonhyperbolic, and their apexes are not located at zero-offset. The CMP gather
exhibits reverse moveout for dipping reflections, as in the constant-velocity case.

To perform the NMO correction for this depth-variable velocity, we use a root-
mean-square (RMS) velocity, V;,.,, which is ap extension of v, given by Alfaraj
(1993} for the constant-velocity case. We replace the constant downgoing velocity v
by the corresponding RMS velocity, v,,,,, since the medium velocity is no longer a
constant. That is, for depth-variable velocity the NMO velocity for mode-converted
waves, V,m,, is given by

Vo = 702, (13)
where the RMS velocity v,,,, is calculated based on the downgoing velocity function
v(z) given in equation (12).

The NMO-corrected gather corresponding to Figure 8a is shown in Figure 8b. In

that figure, only the horizontal reflectjons (sha.llowest) are correctly aligned. In addj-
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FiG. 7. Zero-offset model used to generate synthetic p—8V data. The model shows
zero-offset reflections from five reflectors in a medium where velocity varies linearly
with depth. The downgoing velocity at the surface and the gradient of the downgoing
velocity are 2500 m /s and 0.7s7t, respectively, and the sv—p velocity ratio is 0.5. The
shallowest reflector is horizontal, the deepest reflector dips at 80 degrees, and the dip
increment is 20 degrees.

tion, dipping reflections are now severely overcorrected. Obviously, NMO correction
alone is not enough to produce a good stack since reflections from dipping reflectors
are present.

Let us emphasize the negative consequence of erroneously TZO-processing the
mode-converted data by ignoring mode conversion. Figure 92 shows a CRP gather
corresponding to the NMO-corrected gather of Figure 8b, resulting from application
of Hale’s f—% TZO method. TZO applied erroneously by ignoring mode conversion
fails to correct the data. CRP gathers processed in this way, therefore, will produce
a poor stack.

Figure 9b shows the same CRP gather, but processed now using the mode-
cgnverted TZO method. For this CRP gather, the overall stretch and squeeze factors,
§1 = 1.50 and §2 = 0.01, were calculated using equation (11). Alignments of refiec-
tions are much improved.

Stacks of the processed data from both the conventional and the mode-converted
TZO methods are shown in Figure 10. While dipping events are almost completely
wiped out in the stack of the conventional-TZO data, the mode-converted TZO
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F1G. 9. CRP gathers corresponding to the NMO-corrected gather of Figure 8b. (a)
is obtained by processing the mode-converted data with a conventional TZO algo-

rithm that ignores mode conversion. Only the horizontal reflection (shallowest) is

progerly aligned. (b) is the same gather obtained by applying the mode-converted
TZ methocgil.l
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F1c. 10. Stacks of CRP gathers. The data in (a) were processed by ignoring mode
conversion; those in (b) were processed using the mode-converted TZO method. Re-
flections from only the horizontal reflector (shallowest) stack properly when mode
conversion is ignored (a). The mode-converted TZO method produces a stack that
has the same structure as that of the zero-offset model depicted in Figure 7.

method was able to produce the same structure as that of the zero-offset model (Fig-
ure 7). The weak amplitude at lower midpoints in Figure 10b is due to the tendency
of the mode-converted TZO operator to move energy toward the right (receivers are
situated to right of source, with p—sv mode conversion).

Finally, I note that the mode-converted TZO method is not highly sensitive to
the choice of the overall stretch/squeeze factors (results not shown).

APPLICATION TO FIELD DATA

Introduction

Here, we discuss results of processing two field data sets consisting of mode-
converted (p-sv) reflections. The data, acquired in the southern San Joaquin Valley
of California, are courtesy of Chevron Oil Field Research Company. The two data
sets were recorded over the same area, but shot in different directions. I shall refer
to the data set whose receivers are located on the right of the source a8 Line 1, and
to the other set (receivers on the left of source) as Line 2.

For comparison, 1 process the data in different ways: (1) processing with no
regard to TZO; that is, the data are stacked using conventional stacking velocity;
(2) processing with conventional TZO that does not honor mode conversion; and (3)
processing with mode-converted TZO. I compare stacking velocities for all cases.

To apply mode-converted TZO, start by estimating a velocity ratio that would be
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suitable for processing the entire data. I achieve this by conducting both qualitative
and quantitative analyses on the data. Based on both approaches, as we shall see,
any velocity ratio 4 in the range 0.4-0.5 (corresponding to Poisson’s ratios op = 0.4~
0.3) is a reasonable estimate for the data here. I choose to use 7 = 0.4 in applying
mode-converted TZO to the two lines.

Field geometry and preprocessing

Each data set consists of 188 shot gathers, each gather has 60 receivers, covering a
total surface distance of about 26000 ft. Within each shot gather, the nearest receiver
is located 1080-ft from the source, and the receiver spacing is 120 ft, thus yielding a
maximum source-receiver offset of 8160 ft. The recorded time is 6 s. -

The source is a vertical-motion vibrator; the horizontal-component geophones are
oriented so as to detect radial (horizontal, in-line) particle motion. Thus, we assume
that the recorded reflections are dominated by mode-converted (p-sv) waves.

Preprocessing consists of applying residual-statics correction (provided by
Chevron), muting of early times, gain, and filtering. Two forms of gain were ap-
plied to the data, trace balancing and automatic gain control (AGC). The AGC time
window was 0.5 s. The filter is trapezoidal bandpass, with corner frequencies of 5,
10, 30, and 50 Hz.

The preprocessed data were sorted into 444 common-midpoint (CMP) gathers for
each data set. These CMP gathers are used as inputs to the subsequent processing.

Conventional processing

In this section, I discuss data processed with no regard to TZO. I first perform ve-
locity analysis on the preprocessed CMP gathers, and then use the velocity functions
so-obtained to NMO-correct the data. The stacks of the NMO-corrected gathers for
both Lire 1 and 2 are shown in Figures 11 and 12, respectively.

The receivers are situated to the right of the source for Line 1, and to the left of
the source for Line 2. With this, and since we are dealing with p-sv mode conversion,
we expect to see events in Line 2 shift to the right relative to those in Line 1. A close
examination of the two stacks reveals that the events are indeed shifted in accordance
with the above assertion. Take, for example, the portion of the anticline at 4 s in
Lire 1, just to the left of the broad horizontal region (about midpoint 245). Now,
the same feature in Line 2 intersects 4 s at about midpoint 215, resulting in a total
relative shift to the right of 245 — 215 = 30 midpoints. Allowing +5 midpoints for
error tolerance, and recalling that the midpoint spacing is 60 ft, the total relative
shift is thus (30 + 5) - 60 = 1800 + 300 ft, a quantity I will later use to estimate the
velocity ratio.

In Line 1 (Figure 11), note that the signal-to-noise ratio is poor on the right
portion of the section, particularly after 2 s; Line 2 (Figure 12) has a better data
quality in the same region, though still poor. In other regions, the data quality of
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Fie. 11. Conventional stack of Line 1 with no TZO. In the acquisition of the data
here, the receivers are situated to the right of the source.
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F1G. 12. Conventional stack of Line 2 with no TZO. In the acquisition of the data
here, the receivers are situated to the left of the source.
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Line 1 is, in general, better than that of Line 2. Compare, for example, the sloping
reflections on the left of both sections, between 1 and 3 s. Also, it is obvious from the
two stacks that there are no conflicting dips present in the subsurface (e.g., fault-plane
reflections). Conflicting dips would have further aided in the assessment of results
after applying mode-converted TZO to the two data sets, Below, I compare these
sections to their counterparts when mode-converted TZO is performed.

The maximum reflection slope in the data is about 0.2 ms/ft, seen in Figure 11
at about 2 s and midpoint 350. This corresponds to a maximum dip angle of about
25 degrees (Alfaraj, 1993). This is a modest dip value when attempting to assess the
value of TZO); therefore we should not expect TZO to have a dramatic influence on
the imaging of the data in these lines.

Estimation of velocity ratio

Qualitative analysis.—Here, I compare TZO-corrected data resulting from use
of different velocity ratios. I have tested eight ratios, from 0.3 to 1.0, in increments
of 0.1. We first look at unstacked gathers from Line 1, at midpoints 100 and 275.
To compare CRP (TZO-corrected) gathers with CMP gathers, I have removed the
NMO correction from the CRP gathers. The gathers shown in Figure 13 pertain to

Figures 13c, 13d, and 13e show CRP gathers after applying mode-converted TZ0O
assuming velocity ratios of 0.6, 0.5, and 0.4, respectively. In the unstacked gathers of
the two mode-converted data sets, the signal-to-noise ratio is Ppoor compared to that
of conventional p-wave data from the same area (not shown).

In terms of reflection continuity, I judge CRP gather 13e, with v = 0.4, to be the
best among the CRP gathers shown, including 13b which assumes conventional TZQ.
Compare, for example, the shallow event at 1.2 8, and the events just below 2 s i
all gathers. Midpoint 100 is, of course, in the poor-signal portion of the section. The
unstacked gathers for midpoint 275, over a better-signal part of the line, is shown in
Figure 14. Again in terms of reflection continuity, the CRP gather with v = 0.4 or 0.5
appear to be best among other gathers, although the reflections quality is far from
ideal in any of the panels. Any of the choices, v = 0.4-0.6, gives better reflection
continuity than that in either the original data or the TZO-corrected data withy = 1,
However, as we recall from the study of the conversion point (Figure 2), the choice
of velocity ratio also controls the time-varying lateral shift of reflections imposed by

the actual one. The conclusion here, that v =0.4-0.5 for the data, was also supported
by results from analyzing constant-velocity stacks (results not shown).
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Fig. 13. Unstacked gathers corresponding to midpoint 100 of Line 1. The CMP
gather with only preprocessing applied is shown in (a). CRP gathers, after undoing
the NMO correction, are shown in (b), (c), (d), and (), with velocity ratios 1.0, 0.6,
0.5, and 0.4, respectively.

Pleasing as it is to see the best continuity in the gathers produced by mode-
converted TZO, one could ask whether that result is to be expected. From the
synthetic data in Figure 9, we saw that mode-converted TZO altered moveouts, but
it did not actually change reflection continuity.

Quantitative analysis.—To further support the qualitative assertion made
above, that a velocity ratioy = 04-0.518 a reasonable choice, here [ estimate the
ratio based on measurements from the data.

Alfaraj (1993) gives an expression for zero-offset time for mode-converted waves.
We start by splitting that relation into two parts, namely

2
a
- 14
ahipb (14)
and ) )
on [ 9 3
a='t_2_{h2_b2+(l-: ] 15)

Quantities o, @, and 3 depend on only the velocity ratio. The reason for the above
splitting, as equation (15) implies, is to express ¢ in terms of quantities that can be
measured from seismic data (including the lateral shift b). With quantities b and @
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FIG. 14. Unstacked gathers corresponding to midpoint 275 of Line 1. The CMP
gather with only preprocessing applied is siown in (a). CRP gathers, after undoing
the NMO correction, are shown in (b), (), (d), and (¢), with velocity ratios 1.0, 0.8,
0.5, and 0.4, respectively,

known, we can then solve for y from equation (14). Solving for 7 from that equation,

and simplifying, we get
alh—8)—1
) (h—9) . (16)
1—/2ah — a2(p2 = b2)

For simplicity here, we shall take Vs as the stacking velocity Y, and ¢ can be
simply found from the expression

2 2
t =t0+'_2—-
8

Also for simplicity, we shall assume near-horizontal reflectors, implying b = 0 for
conventional p-waves,

The quantity b can be estimated from two stacked sections shot in two different
directions, €.g., Lines 1 and 2 discusged earlier. We recall that the relative shift
between the two sections at 4 s wag 1800 -+ 300 ft, corresponding to b = 900 4+
150 ft (half the relative shift between the two sections). Since we are dealing with
stacked data, the question now is: what value of half-offset A shall we use in the

h = 2040 ft—an average value that, ] believe, is fairly representative of all half-
offsets. As for velocity at 4 s between midpoints 248 and 215 (the vicinity of the shift
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under investigation), I choose a value of 4500 ft/s, a reasonable value as we ghall see
when I analyze velocities.

With the above assumptions, relation (15) yields the range & = 0.00113—
0.00132 fi~*. Equation (16) then gives the corresponding range of velocity ratio
q = 0.41-0.52. A similar calculation at 2 s (peak of anticline at midpoint 180 in
Line 1 shifts to midpoint 140 in Line 2) gives @ = 0.00126-0.00159 -1, and 7 = 0.40-
0.53. Both ranges of velocity ratio are consistent with that (v= 0.4-0.5) from the
qualitative analysis.

From the above analysis, and since TZO is not too sensitive to the choice of
velocity ratio, 1 choose ¥ = 0.4 in the TZO processing of the two data sets.

Application of TZO

1 now apply TZO to both data sets assuming vy = 0.4- For comparison, 1 also
show the same data processed with conventional TZO. The processing sequence for
the stacked sections to come is as follows

1. NMO-correct preprocessed CMP gathers;
2. sort into common-offset gathers;
. apply TZO;

_ sort into CMP gathers;

3
4
5. remove NMO correction (applied in Step 1) from data in Step 4;
6. perform velocity analysis;

7.

use velocity function from Step 6 to NMO-correct and stack the data in Step 5.

Next, I show results of velocity analysis (Step 6), and compare them to their coun-
terparts when TZO is not performed.

Figures 13 and 16 show stacks of TZO-corrected data for Lines 1 and 2, respec-
tively, assuming ¥ = 0.4. Ideally, the two sections should display the same subsurface
image, with no lateral shift of reflections. Let us compare these two sections to one
another, and then compare each one to its counterpart when conventional processing
(no TZO) is performed.

At first glance, it seems as though there is a prominent lateral shift of reflections
between the two stacks on the left of the sections (midpoint 400) between 2 and 3 s
(Figures 15 and 16). However, 2 closer look shows that this is not the case; instead
the major difference here is that amplitudes of events ol the left end of Line 1 are
weaker than those in Line 2. This can be attributed to the fact that the two lines
were shot in opposite directions, resulting in each line having a different (shifted)
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F1G. 15. Stack of TZO-corrected data, of Line 1, assuming v = (.4,

F1a. 16. Stack of TZO-corrected datg, of Line 2, assuming v = 0.4,
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qubsurface coverage at the left and right ends of the section. This also explains the
weakened amplitudes seen on the right end of Line 2.

I have asked several colleagues to cOmMPpare the two stacks on 2 workstation. Not
knowing my personal bias, and not knowing how the data were processed, most
of them confirmed that the major difference between the two sections was in their
amplitudes, and not in their chifts. Elsewhere in the two sections, locations of events
generally match each other, although differences between the two sections are present
(due to data quality and independently chosen stacking velocities). Take, for example,
the anticline that intersects 4 8; i0 both sections, the intersection takes place at about
midpoint 230 Another example is the anticline intersecting 2 s at midpoint 235 in
both stacks.

We now compare the TZ0-corrected stacks with conventional stacks for both
lines. For Line 1, we note an improvement (ﬂattening) of the dipping shallow reflector
(Figure 15, midpoint 100, 1.2 5), a8 compared with its counterpart when conventional
stack was used (Figure 11). Also, among other differences between the two stacks
of Line 1, notice how the reflector at midpoint 179 and 3sis smoother in the TZO-
corrected section. In addition, dipping reflections below 5 g at midpoint 350 are
present only in the TZO-corrected section. Note, also, that the reflections here have
been shifted to the right; this is most prominent up shallow (compare, for example,

the dipping reflections around 2 8 between midpoints 350 and 400).

As expected for Line 2, the relative shift of events between the conventional stack
(Figure 12) and the TZO-corrected stack (Figure 16) is opposite to that seen in the
stacks of Line 1. That is, events in the TZO-corrected section are now shifted to the
left, relative to those in the conventional stack. This opinion is shared, again, by
colleagues with no knowledge as to how the data were processed. As for data quality,
reflector continuity has improved on the left of the TZ0-corrected section (between
midpoints 350-400, 1.5-3 8). Meanwhile, data in the shallow part of the conventional
stack have better quality than those in the T7Z0-corrected section.

For comparison, 1 show the same lines but now processed with conventional TZ0
(y = 1). Figure 17 shows the stack of Line 1, and Figure 18 shows that of Line 2. The
stack with conventional TZO for Line 1 (Figure 17) shows poorer reflectors continuity
than when v = 0.4 (Figure 15). For instance, compare the continuity of the reflector
at midpoint 350 and 4.6 s in Figures 15 and 17. As for Line 2, the continuity of
reflectors on the right of the section seems better in the stack with conventional TZO
(Figure 18) than that with mode-converted TZ0 (Figure 16)- However, data quality
on the left of Line 9 is far superior with mode-converted TZO.

Tnfortunately, but unsurprisingly, the data comparisons here are much less dra-
matic demonstrations of the effectiveness of mode-converted TZO than were the syn-
thetic data examples. Given the sensitivity of any stack section to the choice of
velocities for NMO correction, 2 look at the velocities used and the influence of ve-
locity on these stacks may further help in aseessment of the results.
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F1G. 17. Stack of TZO-corrected data of Line 1 assuming ¥ = 1 (no mode
conversjon).

Midpoint
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F1G. 18. Stack of TZO-

corrected data of Line 2 assuming v = 1 (no mode
conversjon).
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‘Velocity analysis

We now look at stacking velocities for both lines, obtained before and after TZO
has been applied. For data after TZO correction, I show stacking velocities for both

mode—converted TZO and conventional TZO.

For Line 1, contours of stacking velocities, s, 81¢ shown in Figure 19. The con-
ventional stacking velocities {no TZO) are shown in Figure 19a. Note the general
decrease in velocity from left to right. This velocity trend is consistent with ob-
cervations discussed by Alfaraj (1993)—that not only does the stacking velocity for
mode-converted waves depend on dip, but also on the sign of dip. More gpecifically,
the stacking velocity increases when the shooting is updip from source to receivers;
the increase is relative to when the reflector is horizontal. On the other hand, when
the shooting is downdip, the stacking velocity decreases. (The stacking velocity for

ordinary p-waves always increases with dip, regardless of the sign of dip.)

Recall that the shooting in Line 1 was from left to right. Given the anticlinal
features present in the subsurface for this case, the shooting from left (midpoint 400)
to right {midpoint 200) is then seen in the updip direction from source to receivers.
Hence, the stacking velocity in this region (Figure 19a) is, as expected, relatively
higher than that on the right portion of the section (midpoints 50-200) where shooting
is now downdip.

The velocity contours for Line 1 after applying mode-converted TZO are shown in
Figure 19b. Note that the velocities are consistent across the section, and are generally
structure-independent. This indicates that mode-converted TZO has removed the
influence of dip on stacking velocity, as one would hope.

For comparison, 1 show velocity contours for the same data but now processed with
conventional TZO (Figure 19¢). The general trend here is similar to that with no TZO
(Figure 19a), implying that conventional TZO did not remove the dip influence from
stacking velocity; this is not surprising. Since we are dealing with mode conversion,
we should not expect conventional TZO (ignoring mode conversion) to correct mode-

converted data as effectively as does mode-converted TZO.

As for Line 2, results of velocity contours are shown in Figure 20. The shooting
geometry here is the reverse of that for Line 1. Hence, what was updip shooting for
Line 1 is now downdip shooting here, and visa versa. As a result, the velocity trend in
the conventional stack (Figure 20a) is now the reverse of that from Line 1 (Figure 19a).
The velocities after mode-converted TZO has been applied are shown in Figure 20b.
Clearly by comparing Figures 90a and 20D, mode-converted TZO has significantly
lessened the dip influence on stacking velocity. Velocities from conventional TZO are
shown in Figure 20c; again, the trend here is similar to that with no TZO shown in
Figure 20a.

The differences in stacking velocity seen in Figures 19 and 20 are significant in
terms of their influence on the quality of the stacked data. To see this, Figure 21

shows a stack of conventional CMP gathers (Line 1), but the velocity function used
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F1G. 20. Contours of stacking velocities for Line 2. (2) processing with no TZO; (b)
mode-converted TZO: (c) conventional TZO.
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F1G. 21. Stack of conventional CMP gathers éLine 1), but using NMO velocity
obtained after mode-converted TZO has been applied.

The central point in the “improper” stacks in Figures 21 and 22 is that the stack
quality deteriorated when the rather stable, dip-independent NMO-correction veloci-
ties, as opposed to the dip-corrected velocities, were applied to the data. The conven-
tional stacks were ajded by the option to pick dip-dependent stacking velocity. Thag
option would not have been available if the unmigrated data had contained crossing
reflections having widely differing dips. We should not be surprised, therefore, that

results, (results that are most consistent on the two reversed lines), and did so with
stacking velocities that were essentially independent of dip.
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Fig. 22. Stack of conventional CMP gathers (Line 2), but using NMO velocity
obtained after mode-converted T O has been applied.

CONCLUSION

The f-k TZO approach for mode-converted waves, though approximate, is
straightforward and easy to implement. Its implementation requires only slight mod-
ification to an existing a.lgorithm—-the Hale's f-k TZO algorithm used in processing
ordinary p-waves. The mode-converted TZO operator differs from the well-known,
elliptical p-wave operator in two aspects. First, its non-elliptical shape is controlled
solely by the velocity ratio which, depending on the mode of conversion, squeezes

one side of the operator and stretches the other. Second, the operator 18 laterally
ghifted, and in a time-varying manner. Furthermore, when the velocity ratio is unity
(no mode conversion) the mode-converted TZO operator reduces to the conventional
operator. As with conventional TZO, Hale and Artley’s squeezing trick is readily
extended to mode conversion so that mode-converted TZO can approxima,tely handle

velocity variations with depth.

Although the method is not too gensitive to the choice of velocity ratio, tests on
synthetic data show that it is essential to take mode conversion into account when
applying TZ0. Application of this mode-converted f-k TZO method to synthetic
seismic data reveals that the method is capable, to a great extent, of transforming
data to zero offset. The method corrects data from both dipping reflectors regardless
of the sign of dip, and from horizontal reflectors by laterally shifting reflections to
their appropriate zero-offset locations.

Results from two field data sets show that the dip infiuence on stacking velocity
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ized anisotropic inhomogeneous by perturbing the FTT traveltimes, following the
perturbation ideas of Cerveny and Filho (1991). For the type of velocity models
treated, the program js much more efficient (at least an order of magnitude faster)
than finite-difference and general ray-trace modeling techniques,

INTRODUCTION

rithms for varioug Processing needs such ag dip-moveout and migration. For generat-
ing zero-offset synthetic seismogra.ms, ray-tracing approaches generally offer substap-
tially better Performance than do finite-difference methods when the model is assumed
to have simple velocity structure, such as constant velocity or constapt velocity gradi-
ent. In 1991, Dave Hale developed 2 particularly efficient Kirchhoﬂ'—summation—based
approach that exploited analytic expressions for raypaths and traveltimes in isotropic
media with constant velocity gradient.

For modeling data from generally inhomogeneous, transversely isotropic (TI) me-
dia, ray tracing is computationally costly, so, again, some simplification of the veloc-
ity structure js needed to bring about desired computationg] efficiency. Although the
tidy analytic expressions that arise for Isotropic media, with constant velocity gradi-
ent are no longer availabje for TI media, [ find Hale's isotropic algorithm to be an
ideal starting point for extending to efficient synthetic—seismogram computation for
inhomogeneous T media.
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1 first establish a ray-tracing algorithm for computing time and amplitude in a
factorized T1 (FTI) medium (ie., TI medium in which all ratios among the elastic
coefficients for T1 media are independent of position). The constant-velocity- gradient
restriction i8 essential in establishing analytic solutions for raypaths. Then, 1 use
the time-perturbation equations developed by Cerveny and Filho (1991) to extend
from FTI to general, inhomogeneous TI media with tilted symmetry axis. After
developing the perturbation approach, show sample synthetic data and demonstrate
the efficiency of the approach.

RAY-TRACING EQUATIONS

1 consider only 2-D wave propagation; that is, raypaths are confined to the ver-
tical plane containing the axis of symmetry and the velocity gradient vector. The
ray tracing is for a P-wave traveling in FTI media with linear velocity variation in
space. With these assumptions, raypaths and amplitudes can be obtained by analytic

solution.

Raypath and traveltime

The eigenvalues that describe the raypath (eikonal equation) and the eigenvectors
that describe the amplitudes of the various waves in inhomogeneous media are based
on a high-frequency approximation. The eigenvalues are calculated from the following
relation {Cerveny, 1972)
Det(ij - Gmﬁjk) =0,
where ['j; are components of a 3 x 3 matrix T’ given by the relation

Ti{Ts:Ps) = a;it(Ts)PiPr:

where 1 am using the summation convention for repeated subscripts,
ps = OT[0%s: Gijld = cijet] P>

T is the traveltime along the ray,
p is the density,
Ts is the position, g=1,2,3, and

Cijkl are the elastic coefficients; In general, functions of Zs.

The G, are the three eigenvalues representing the eikonal equation for the quasi P-
wave when m=1, for the quasi SV-wave when m=2, and for the quasi SH-wave when
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m=3. For P-waves (I shall drop the ” quasj” modifier in the following),
Gl (-‘L',,P.) = 1' (1)

For isotropic media, G; = o®(z,)p;p;, where a(z,) is the P-wave velocity,
In a factorized anisotropic inhomogeneous (FAI) medium

@ik (x,) = f 2(%):4;5;.-1,

where Aijpy = fa-;ai——;g:% are position-independentratios of the density-norma.lized elastic

coefficient, and flz,) = [a3333(3:,)]5' is the velocity in the direction paralle] to the
Symmetry axis at positjon Z,. Equation (1) then becomes

G, (-Ta,p_,) = fz(.’t,)Gf(p,) =1, (2)

where G2(p;) is P-wave eigenvalue expression (1) with the @i11(x,) replaced by the
i5kl -
For a constant velocity gradient,

f(x.s) = Aa-z'ay (3)

where A, is the gradient in the z, direction. For such inhomogeneity, Shearer and
Chapman (1988) showed the following simple relation between the slowness vector

and the position vector.
piz; = 0. 4)

For 2-D, substituting equations (3) and (4) into equation (2) results in the raypath
equation for a generally anisotropic medium with constant velocity gradients in the

z; and x4 directions,
(Asp1 — A1p3)2G2 (g, ~z1) = 1. (5)

Note that, for media with constant velocity gradient, the factor Asp1 — Aips is inde-
pendent of position along a ray,

For the specia) case of a transversely isotropic medium, the position-independent
eigenvalue for the P-wave is given by (White, 1983)

G1(p1p3) = 0.5{(a+1)p? + (e+Dpd + {[(a—1)p? - (c=Dp3* +4(f +1)%p2p2) 31, (6)
where g = Ann, c= Asazs, f = A1133, and [ = Ajzis.

For axis of symmetry in the z, (vertical) direction, equation (6), along with equa-
tion (4), gives (Larner, 1993)

Gi(za, —z) = 0.5{(a+:)x§+(c+t)z¥+{[(a—z)w§—(c—z)xf12+4(f+z)2w§xf}%}. (7)
Now, equation (4) gives

xy
p3(p) = -1y,
T3

41



Efficient synthetic seismograims for TI media Alkhalifah

which, for later purposes, I use in defining the distance
ro = ralpr(€0)] = :
o = rolp1(€0)] = 75 (&) — Awpalp (&)

where £ is a running parameter that monotonically increases along the ray, with £ = &o
at the starting point of the ray (see Figure 1). Specifically,

(8)

1
dﬁ = de

The value of the ray parameter (&) at &o defines the particular raypath. Then,
distance 7o, defined in terms of the ray parameter at the starting point, P1 (&), 18
shown in Figure 1.

In an isotropic medium with constant velocity gradient, all raypaths are circles.
Consider an isotropic medium with velocity f(z:) identical to the vertical velocity in
the constant-gradient FTI medium. Then, 7o, 88 defined in equation (8),1s the radius
of the circular raypath whose center is at the origin (x1=0,23 = 0) and goes through
point b, in Figure 1, associated with the raypath for the TI medium. Substituting
equation (8) into equation (5) gives

G2 (33, —21) =100
which, along with (7), results in the quadratic raypath equation for the TT medium
ax‘{ + ﬁ('rO?x%)l% + "f(:"o,.’l:%) =0,

for z1[za, o] Here the coefficient o is 2 function of only the elasticity coefficients,
and the coefficients 3 and o have the additional dependencies shown.

Following Cerveny (1989), for constant velocity gradient [equation (3,

flz1,23) = Ayzy + AsTs,
n&) = piléo) — A€ — &),
ps(€) = pa(éo) — Asl€ — éo)-

Then, traveltime along the ray is given by
£
() = rle) + [ 1Pl Ve

Geometric gpreading

Although geometric gpreading in an isotropic medium with constant velocity gra-
dient can be expressed analytically, the gituation is not that simple for FTI media,
which require dealing with the distinction between group and phase velocities. 1 use
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FiG. 1. Raypaths in constant-gradient, transversely isotropic medium and in its
isotropic counterpart. The velocity f(z,) in the isotropic medium is identical to the
vertical velocity in the FTI mediym’

and Figure 3 shows the two rays for itg isotropic counterpart. Note, in Figure 3, that
although the paraxial ray, like the central ray, is circular, the distance p from the
center of the centrgl ray to the paraxia) raypath depends on the angle from horizonta],

In an Isotropic, constant-gradient medium, equation (9) becomes

7= rozy/ A} + A3, (10)

where ry = (22 4 z3)? is the same To given in equation (8), and z is the distance,
measured along the norma] to the gradient direction, between the ray takeoff point
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—— Central ray for FT1 medium
paraxial ray for FT1 medium | X4

e —————

paraxial ray for a transversely isotropic medium.

Fic. 2. A central ray and nearby

X

the isotropic medium

reeeeneeses Contrai ray for
¢ medium

o Paraxial ray for the isotropl

by paraxial ray for the isotropic counterpart of the

FiG. 3. A central ray and near
medium in Figure 2.
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and the point along the ray where ¢ is measured. We now seek a comparably simple,
approximate expression for the geometric spreading function gq; for FTI media.

The keys to estimating q; are scaling relationships, the first of which is that un-
derlying the similarity between the ray equation (5) and the slowness equation (2)
for FTI media. That similarity is shown graphically in a comparison of the ray-
paths shown in Figure 1 and the slowness curves in Figure 4. The raypaths for both
the FTI and isotropic media are scaled, 90-degree rotated versions of the slowness
curves. Now, define the distance from the origin to a point ¢ along the raypath as

\/ z3[£(9)] + 23[€(8)], where @ is the angle between the line connecting these
two pomts and the horizontal axis, as shown in Figure 1. Also, as shown in Figure 4,
define the slowness of the ray at that same point £ as p(f) = \/pf[ﬁ @)+ pg[f(ﬂ)],
where the angle & is now seen to be the angle of the slowness vector with the vertical
slowness axis (axis of symmetry, here). Consider ry = z;{£) where z3(¢) = 0, and
Po = p3(€) where p;(£) = 0, as reference values for position and slowness, respectively.
From the similarity of the FTI curves in Figures 1 and 4,

r(8) = (") (1)

But r¢ and py are just the radii of the c1rcula.r raypath and slowness curve for the
isotropic counterpart of the FTI medium, shown in Figures 1 and 4. Therefore,
equation (11) is a scaling relationship between the distance r;(#) and ry for the two

media.

Exploiting this scaling relationship, I can establish an equation for the geometrical
spreading function ¢; in FTI media. The scaling relationship given by equation (11)
pertains to the central ray. For the paraxial rays this relationship is only approximate
because I am using the origin for the central rays in describing the paraxial rays. I
assert that the following approrimate relationship holds for paraxial rays of the TI
and isotropic media.

. p(8)
p(0) = FTP(GL (12)
where
Tp is the distance from the origin to the paraxial ray for the isotropic
medium, and
Tip is the distance from the origin to the paraxial ray for the FTI medium.

This approximate relationship holds the difference in takeoff angle for the central ray
and the paraxial ray is small (see Figures 2 and 3). From equation (9),

g = ki, (13)

where [; is the distance between the central ray and a paraxial ray for the FTI medium.

But, from Figure 5
1,(0) = [rip(0) — 7:(0)] cos @, (14)
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where ¢, the angle between the group-velocity direction and the phase-velocity direc-
tion, is given by

¢ = tan~'[p(6) 2> "“’)1

The cos ¢ factor in equation (14) is necessary because the raypath in the FTI medium,
unlike that in the isotropic medium, is not perpendicular to the line from the origin.

Inserting equation (14) into equation (13) and using equations (11) and (12), we
get

g = k[ry(8) — ro] 1(70) cos ¢. (13)
But for the isotropic medium
q = kl = klrp(8) — o],
so equation (15) becomes

6
gt = pl() )qc08¢

6
( )qcos¢> (16)
The second equality here follows from equation (11).

Substituting equation (10) into equation (16) gives the geometric spreading func-

tion in the FTI medium,
g = rizy/ A} + Ajcos .

Ray tracing between two points

I now use the scaling technique once again, this time to iteratively find the angle
8y for the ray originating at source position [z1(£o), 23(£)] and ending at diffractor
position [z (£1), 23(&1)] in an FT1 medium with general velocity gradient direction.

The non-vertical, constant-velocity gradient has magnitude
=y A% + Ag?

A

—1 411
p=tan ~—.
P a As

As shown in Figure 6, the distance from the origin to the reference position (starting
point), measured along the gradient direction, is

and angle from vertical
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p(6)
) Py
Po
slowness for isotropic medium
4 slowness for FTI medium
P3

FIG. 4. The slowness curve for an FTI medium and its isotropic counterpart.

—— Central ray for FTl medium +™3

e Central ray for isotropic medium
——— Paraxal ray for FTIl medium
—.— [Paraxial ray for isotrople medium

FIG. 5. The scaling relations that exists between a ray traveling in a
constant-gradient FTI medium and its isotropic counterpart.
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where vy is the velocity in the vertical direction at the starting point. I use

As
COSYP = ———e
\/A% + A3

Ay

and
RN

to rotate the coordinates z; and 3 to new coordinates z] and z, where 3 is along
Consider the distance in the 2] direction between

the gradient vector direction.
position [z;(&), z3(£6)] and position [21(£1), z3(&1)]

3 = 173 (&1) — 73 (&),

which I use to define
z = Az + z,

as the distance in the 27 direction from the origin to position[z;(£1), z3(&1)]-
Using scaling relationship (11) once for angle 6 at £ and again for angle 6, at &

along the ray (see Figure 6), gives

, _ pl&)
rt(al) - P(GO) Ti(oﬂ)' (17)
From Figure 6,
Tt(el) = Slll”#l (18)
and 5
rt(e()) e g. ] (19)
sin g

where ¥ and ¥, are angles from the z] axis to lines connecting the origin with &

and fl,.respectively. Also from Figure 6,
Yo=6— ¢

and
Y1 =0 —p.

Substituting equations (18) and (19) into equation (17) gives
z pl¥1+9) 2
- = ——, (20)
singy  p(¥o + ) sinthy
equation (20) has two unknowns, ¥ and . The known value of Az; satisfies

T T
AT = 2T (6) — e = B 5 LE),
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which gives
z3 (&) tan ¢y (21)
23 (bo) + Az{ tan g’

Combining equations (20) and (21) yields a single transcendental equation for g,
the takeoff phase-velocity angle from z7T for the two-point ray-tracing problem. A
root-finding algorithm (e.g., the Newton-Raphson method or the secant method) is
used to solve for 10.

¥ () = tan™"

The scaling approach is an alternative to the general raypath equation for two-
point ray tracing. It gives a simpler way of treating rotation in the gradient direction;
rotation of the raypath equation is relatively complicated.

For arbitrary orientation of symmetry axis, a rotation of the coordinate axes is
done in the program such that z3 is always in the direction of the axis of symmetry
for the FTI medium. This rotation is simpler than the rotation used in the two-point
ray-tracing because it involves a rotation of the whole problem.

*3(5g)

X3

F1G. 6. Parameters that correspond to the case of non-vertical velocity gradient.

From FTI to general anisotropy

The anisotropy condition can be generalized without jeopardizing the analytic
solutions through perturbation of the traveltimes and geometric spreading for the

FTT medium.

Consider two media, a background medium (unperturbed), possibly anisotropic
and inhomogeneous, in which we do our general ray tracing, and a perturbed medium,
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that may also be anisotropic and inhomogeneous, in which we wish to calculate trav-
eltime and amplitude. The traveltime in the perturbed medium T'(e,b) along a ray
traveling from point a to point b is calculated from the traveltime in the background
medium T%(a,b) traveling between the same two points. I seek an efficient scheme for
computing the time perturbation 67'(a,b), given T%(a,b) and relationships between
the parameters of the background and perturbed media.

T{a,b) = T%(a,b) + 6T(a,b). (22)

Differences between the density-normalized elastic parameters in the background
medium a;;; and those in the perturbed medium a;;x define the degree of perturba-
tion a;;x as follows

@ik = Ay + aiga.

Following Cerveny and Filho {1991), for a generally anisotropic inhomogeneous
background,

1 rb
6Tp(a,b) = —3 f SasupipimmudT, (23)

where m; are the components of the eigenvector m (the direction of the particle
motion), here for the P-wave. The integration in equation (23) is performed along a
ray Lo computed in the background medium, and quantities p;, p;, m;, me and dT°
pertain to the background medium.

Take the integrand in equation (23) as the anisotropy perturbation factor F for
the homogeneous, isotropic segment,

1
F = —Eﬁaijupiplmjmk-

Consider the geometric spreading function ¢ along the ray in the background medium
(e.g.. in a homogeneous isotropic medium, ¢ = o?T°). Then, the first-order pertur-
bation of the geometrical spreading for the raypath between point ¢ and point b
(Alkhalifah, 1993), is given by

b
6‘](‘11 b) =L _Fd‘Qs

where F and dq pertain to the background medium, and F < 1.

UPGRADING SUSYNLV

SUSYNLV— SYNthetic seismogram for Linear Velocity model— is a Seismic Unix
(SU) program, authored by Dave Hale in 1991, that generates synthetic seismograms
for a linear velocity function in an isotropic medium. I use the ray-tracing equa-
tions derived in the previous sections to modify Hale's program to generate synthetic
seismograms for constant-gradient TI media.
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The modification includes adding a subroutine that calculates traveltimes, ray
angles, and geometrical spreading for a linear velocity function in an FTI medium. In
a second modification, I use the necessary time-perturbation equation to generalize
the FTI application to work for a general TI medium. The modified program thus
now has options for both isotropic and TI media.

Computation of seismograms in this program is based on Huygen'’s principle, in
which every segment along a reflector acts as a diffractor, sending rays in all directions.
The net result of the superposition of the arrivals from the scatterers along an interface
is the seismogram synthesized at each geophone location. In a transversely isotropic
medium, where the calculation of reflection angles is relatively complicated (i.e., it
requires iteration), Huygen’s principle is a useful tool that obviates the need for
explicit computation of reflection angles.

For arbitrary orientation of the symmetry axis, a rotation of the coordinate axes
is done in the program such that 23 is always in the direction of the symmetry axis
for the FTI medium.

The program as developed by Hale generates synthetic seismograms for a smoothly
or linearly interpolated reflector shape beneath a homogeneous or constant-gradient
medium. The data may be nonzero-offset, and options exist for various source def-
inition (e.g., exploding reflectors). These features remain in the modified program,
now for computation of synthetic seismograms for general TI media with constant
velocity gradient.

SYNTHETIC DATA EXAMPLES

I will use a single TI medium to show synthetic data generated by this modelling
program. The Wills Point shale with Thomsen’s anisotropy parameters § = 0.315
and € = 0.215 (Thomsen, 1986) is considered to be a relatively strongly anisotropic
medium. Positive angle between the symmetry axis and the vertical, 1, corresponds
to symmetry axis rotated clockwise from the vertical, where negative ¢ is just the
opposite.

Figure 7 shows synthetic seismograms resulting from modeling two point scatters
located at midpoint 2.5 km, and depths 1 and 3 km. The vertical velocities for all
the models v(z3)=2.04+0.6 z3 km/s. Figure 7a shows the diffraction curves for an
isotropic medium; 7b for a Wills Point shale FTI medium with a vertical axis of
symmetry (1 = 0); 7c for the same FTI medium with 3 = 30 degrees; and 7d for the
same FTT medium with lateral as well as vertical velocity variation, v(z;, z3)=2.04+0.6
z3+ 0.1 z; km/s, and with ¢ = —40 degrees. Note that for Figure 7a and 7b the
diffraction curves, as expected, are symmetric; however, in Figure 7c and 7d they
are non-symmetric and laterally shifted. In 7c, nonsymmetry and shift are due solely
to the tilt of the symmetry axis. In 7d, both the lateral velocity variations and
the nonvertical symmetry axis contribute (oppositely, here) to the nonsymmetry and
shift.
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Time (s)

Time (s)

F1G. 7. Zero-offset synthetic seismograms of two diffractor points for (a) an isotropic
medium, (b) Wills Point shale FTI medium with vertical axis of symmetry (¥ = 0),
{c) the same FTI medium with ¢ = 30 degrees, and (d) the same FTI medium with
¥ = —40 degrees and velocity v(z;,£3)=2.0+0.6 z3+ 0.1 z; km/s. The velocity in
(a). (b) and (c) is v(z3)=2.04+0.6 =3 km/s.
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Reflector Model

Depth (km)

&

3 4 5 & 7 8
Midpoint (km)

Fi1c. 8. Reflector model.

The lateral shift in Figure 7c implies that migration that ignores the tilted sym-
metry axis, such as conventional isotropic migration, will yield lateral mispositioning
of reflectors, even horizontal ones, just as happens in media with lateral varying
overburden, even though the medium here has no lateral variation.

Figure 8 shows an undulating reflector model, and Figure 9 shows synthetic seis-
mograms corresponding to that model. The vertical velocity this time is held at
v(x3)=3.0+0.5 z3 km/s. Figure 9a corresponds to an isotropic medium; 9b to the
Wills Point shale FTI medium with 1 = 0 degrees; 9¢ to the same FTI medium with
% = —30 degrees; and 9d to the same FTI medium with lateral and vertical velocity
variation, v(z1, 23)=3.04+0.5 z3+ 0.5 z; km/s, with 1 = —40 degrees. Nonsymme-
try and shift, such as that mentioned above, is observed here, as well. The reflector
shown in Figure 8 is just a summation of scattering points, and the reflector response
in Figure 9 is a superposition of diffraction curves such as those in Figure 7.

Figure 10 shows more synthetic seismograms generated for the reflector model in
Figure 8. This time, the velocity structure »(z3) = 4.0—0.1 z3 km/s, corresponding to
a decrease in the vertical velocity with depth, a situation not generally encountered
in practice. Figure 10a corresponds to the Wills Point shale with ¢ = 0 degrees,
and 10b with ¢ = —30 degrees. Clearly, the program is not restricted to modeling
velocities that only increase with depth.

Next, I lift the restriction that the medium be factorized anisotropic. Figure 11
shows synthetic seismograms for (a) the same two diffractors used in generating Fig-
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Time (s)
Time (s}

Time (s)
Time (s)

F1G. 9. Zero-offset synthetic seismograms corresponding the reflector model in Fig-
ure 8 for (a) an isotropic medium, (b) Wills Point shale FTI medium with vertical

axis of symmetry (¥ = 0 degrees), (c) the same FTI medium with ¢ = 30 degrees,
and (d) the same FTI medium with ¢ = —40 degrees and velocity v(z;, z3)=3.0+0.5
23+0.5 z; km/s. The velocity in (a), (b) and (c) is v(z3)=3.0+0.5 z3 km/s.
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Time (s)

F1G. 10. Zero-offset synthetic seismograms corresponding the reflector model in Fig-
ure 8 for (a) the Wills Point shale FTT medium with vertical axis of symmetry (3 = 0),

and (b) the same FTI medium with ¢ = —30 degrees. The velocity structure here is
v(z3) = 4.0 — 0.1z3 km/s.
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ure 7, and (b) the reflector model in Figure 8, but these seismograms were generated
for a T1 medium using the time-perturbation feature. The time perturbation is from
the FTI Wills Point shale, to another anisotropic medium, a general TI medium, in
which é and € change with depth. Specifically, the perturbation includes the follow-
ing changes of elastic coefficients: d—i’— = (.05 and -‘;% = 0.1, where ! and a are the
coeflicient ratios given in equation (6), and § = 0.315 and ¢ = 0.215 at the surface.
Comparing Figure 11a with Figures 7a and 7b, note that 11a suggests more extreme
anisotropy than does 7b; that is, the diffraction curves in 11a show more departure
from those for the isotropic medium than do the curves in Figure 7b, despite the fact
that all models have the same vertical root-mean-square velocity, I attribute this
behavior to the increase in size of the anisotropy parameters with depth.

Midpoint (km) Midpoint (km)
4 6 1 2 3 4 5 8
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(a)

FiG. 11. Zero-offset synthetic seismograms corresponding to (a) the two diffraction
points used in Figure 7, and (b) the reflector model used in Figure 9b. Here, time

perturbation is used with % = 0.05 and fj‘; = 0.1 for both plots. The symmetry
axis is vertical.
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EFFICIENCY

The primary objective of constructing the original isotropic modeling program
was efficiency in generating synthetic data. Similarly my goal was to preserve that
essential efficiency while extending to inhomogeneous TI media. Previously, gener-
ating synthetic data for such media has usually been slow and costly (using either
finite-difference or general ray tracing). For ray tracing approaches, speed has been
slowed down primarily by the time needed to perform ray tracing between two points
using numerical integration to compute the raypath in every iteration.

The synthetic data generated for Figure 7 and Figure 11b contain 201 common
midpoints at an interval of 0.05 km, and 401 time samples with a time interval of
0.01 s. The peak frequency used is 15 Hz. Table 1 shows CPU times, on the IBM
RS/6000 Model 520 workstation, needed to generate these synthetic seismograms.
For the FTI time shown in Table 1, I chose the largest of the times for the three FTI
cagses in Figure 7. The technique labeled “FD” in Table 1 and 2 pertains to a generic
finite-difference method using the full elastic-wave equation for transversely isotropic
media with vertical symmetry axis. The CPU time for FD was not based on any
specific test, but I believe it to be a considerable underestimate.

I Technique | CPU time (s) |
Isotropic (Figure 7) 0.6
FTI (Figure 7) 1.5
general T1 (Figure 11a) 2.1
FD > 1800

Table 1. Compute times for various two-diffractor tests.

The synthetic data generated in Figure 9 and Figure 11b contain 201 common
midpoints at an interval of 0.05 km, and 501 time samples at 0.01-s time interval.
The peak frequency is again 15 Hz. Table 2 shows the CPU times needed to generate
those data.

Technique | CPU time (s) |
Isotropic (Figure 9) 5.6
FII (Figuze 9) 36.9
general TI (Figure 11b) 52.0
FD > 1800

Table 2. Compute times for various tests with the reflector model in Figure 8.

The ray-trace times in Table 2 are much larger than those in Table 1 because seis-
mogram computation for the model in Figure 8 required summation of contributions
from 246 diffraction points along the reflector, whereas only two diffractors were used
for the tests in Figure 7 and 11a. While, the time needed for FD is not influenced by
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the complexity of the reflector shape, it is dependent on the dominant wavelength in
the data. For the class of models allowed in this program, the efficiency demonstrated
here far exceeds that of either general ray tracing (Cerveny, 1989) or FD techniques.

CONCLUSION

The modeling program for FTI and general TI media should be useful for ap-
plications such as algorithm testing in TI inhomogeneous media, migration and dip-
moveout studies, and amplitude-versus-offset (AVO) studies. Alkhalifah (1993), for
example, used synthetic data generated by this program in tests of Gaussian beam
migration for FTT media. Whereas, for FTI media, the ray-trace solutions here are
nearly exact, when applying time perturbation to generalize the anisotropy condition,
errors arise that depend on the amount of perturbation. Alkhalifah (1993), however,
shows that the errors are negligible when the perturbation is less than about 20
percent.

The key characteristic of this program is the efficiency with which it generates
seismograms. This efficiency is brought about by the analytical equation for geo-
metrical spreading, derived here. This geometrical spreading equation for FTI media
could have other applications such as in study of AVO dependency on TI parameters
in inhomogeneous media.
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Migration error in transversely isotropic media

Tariqg Alkhalifah and Ken Larner

ABSTRACT

Most migration algorithms today are based on the assumption that the Earth
is isotropic, an approximation that is often not valid and thus can lead to position
errors on migrated images. Here, we compute curves of such position error as a
function of reflector dip for transversely isotropic (TI}) media characterized by
Thomsen’s anisotropy parameters § and e. Depending on whether the migration
velocity is derived from stacking velocity or vertical root-mean-square (rms) veloc-
ity, we find quite contrary sensitivities of the error behavior to the values of § and
€. Likewise error-versus-dip behavior depends in a complicated way on vertical
velocity gradient and vertical time, as well as orientation of the symmetry axis.
Moreover, error behavior is quite dependent on just how § and € vary with depth.
In addition to presenting such error curves, we show migrations of synthetic data
that exemplify the mispositioning that results from ignoring anisotropy.

When the stacking velocity is used in migration and when medium velocity
increases with depth at rates typically encountered in practice, é alone is sufficient
to describe the position error. This is fortunate since the value of §, unlike €, can
be obtained from VSP and surface seismic data. In contrast, when the migration
velocity is obtained from the vertical rms velocity, the position errors depend
highly on €, suggesting the importance of having an accurate estimate of € when
using an anisotropic migration algorithm.

INTRODUCTION

Invariably, the Earth’s crust is anisotropic. The degree of anisotropy varies from
weak, having hardly any effect on seismic wave propagation, to strong, causing major
influence on raypaths and on reflection times and amplitudes.

Through the years, processing of seismic data has seldom taken anisotropy into
consideration. Conventional processing seemed to work well; taking anisotropy into
consideration was thought to be complicated, slow, and costly. It is likely, however,
that ignoring anisotropy probably has lead to errors that have been either unrecog-
nized or attributed to acquisition and processing problems. Such errors are usually
left unmeasured and untreated.
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Larner and Cohen (1993) have studied the mispositioning of imaged reflectors
that results when, as is typically done in practice, data from transversely isotropic
(TT) media are migrated with an algorithm that ignores anisotropy. The media they
studied had linear variation with depth, had vertical symmetry axis for the transverse
isotropy, and were factorized anisotropic inhomogeneous (FAI; Cerveny, 1989). That
is, all ratios among the various elasticity parameters were independent of position.
Moreover, they limited their study to the four examples of TI media studied by Levin
(1990). They found highly variable dependence of the behavior of lateral position
error versus reflector dip upon the velocity gradient and vertical reflection time.

While their curves were interesting and might qualitatively explain apparent ac-
curacy of migration in practice, those results have no ready explanation in terms of
current knowledge about anisotropy. Moreover, while more general than those studied
in the past, the model used by Larner and Cohen had a number of limitations that
we lift in our follow-up study, here. While retaining the restriction that the medium
be TI, here we allow the symmetry axis to be tilted from vertical, and we consider
departures from FAI media. Also, rather than limit study to four specific media,
we characterize the anisotropy of the media more generally in terms of the Thomsen
(1986) parameters & and ¢ (see equations [1] and [2], below), and -“—;:-, where V,, and V,
are the P-wave and S-wave velocity along the symmetry-axis direction. We find that
errors are quite insensitive to %, even for media not considered weakly anisotropic.
With this parameterization, we can gain understanding of the results for the four
media studied by Larner and Cohen in terms of the § and e values for those media.
Also, with this parameterization, we can efficiently study media having a wide range
of anisotropy.

Following the general study of error-versus-dip curves, we generate synthetic data
for T1 models with steep reflectors, and see the action of isotropic time migration on
those data. Such sample migration tests highlight the dependence of position error on
symmetry-axis direction, as well as difficulties in assessing migration error in practice.

Paralleling Larner and Cohen (1993), we first generate two-way traveltimes cor-
responding to zero-offset P-wave data from point scatterers, by ray tracing in a TI
medium with constant velocity gradient (Alkhalifah, 1993). Larner and Cohen con-
sidered only FAI, TI media with constant velocity gradient so as to take advantage
of the analytic solution of Shearer and Chapman (1988) for ray tracing in such me-
dia. We generalize to TI media that are not factorized anisotropic inhomogeneous by
perturbing the FAI traveltimes {Alkhalifah, 1993), patterned after the perturbation
ideas of Cerveny and Filho (1991). Once we have generated the diffraction curves,
we then simulate migration of points along these diffraction curves with an algorithm
that computes diffraction times for an isotropic medium with velocity variation equal
to that for the vertical velocity in the TI medium. The only source of error in the
simulated migration should be the failure to honor anisotropy in the migration.

Following Larner and Cohen (1993), we study the dimensionless lateral distance
Afj between the incorrectly imaged reflector position and the true position of the
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reflector,
Ay
Af ===,
y= Sk
where Ay is the error in horizontal distance, and A4 is the horizontal wavelength
1
Ag=—
fap’

with f; a selected “dominant” frequency, and p the slope of the unmigrated reflection.
Positive position errors imply undermigration, and negative position errors imply
overmigration. The reference dominant frequency used throughout, here, is 30 Hz.

Repeating, here we consider only a velocity gradient in the vertical direction, and
only 2-D propagation in the vertical plane perpendicular to strike, but allow general
orientation ¥ of the symmetry axis within the propagation plane. The velocity gra-
dient used in most tests is 0.6 s~1, which we judge to be sufficiently representative
value for the subsurface, considering that the constant gradient is itself a simplifi-
cation. Also, in most of the tests, the depth D of the reflection point is 3000 m,
and the vertical root-mean-square (rms) velocity V., to that point at 3000 m/s;
thus the vertical (migrated) time to the reflection point is t,, = ng = 2 8. Except
for the vertical time, these are values generally used by Larner and Cohen (1993)
in their study of migration error for vertical axis of symmetry. In all cases where
migration velocity is based on the stacking velocity, the T2 — X2 analysis is done
over a spreadlength X equal depth D to an assumed horizontal reflector. We also
consider, at first, just factorized transversely isotropic (FTI) media; that is media in
which all ratios among the elastic coefficients for TI media (therefore, -‘V;,;-, 6, and ¢)

are independent of position. Later, we lift this restriction.

Medium | %:- F3 | £ |
Shale-limestone 0551 0.0 |[0.134
Cotton Valley shale | 0.61 | 0.205 | 0.135
Berea sandstone | 0.63 [ 0.02 | 0.002
Pierre shale 044 ( 0.06 | 0.015
Taylor sandstone | 0.54 | -0.035 | 0.110

Table 3. Thomsen s parameters § and ¢, along with the S-wave velocity to P-wave
velocity ratlo , for five TI media. The top four media listed are the same as those

studied by Levm (1990); the Taylor sandstone was studied by Thomsen (1986).
VELOCITY

Migration velocity

Commonly, the interval velocities required to migrate field data are derived from
stacking velocity. In isotropic media, the stacking velocity usually approximates the

65



Migration error Alkhalifah and Larner

vertical rms velocity with acceptable accuracy. This is not so, however, for anisotropic
media. The velocity variation as a function of direction causes the best-fit stacking
velocity obtained from conventional velocity analysis to differ from the vertical rms
velocity. These differences are highlighted by Thomsen (1986) for homogeneous TI
media, and by Larner and Cohen (1993) for TI media with a vertical axis symmetry
and constant vertical velocity gradient. Larnmer and Cohen showed that position
errors are smaller whenstacking velocity, as opposed to vertical rms velocity, is used
to obtain velocities for isotropic time migration, as is typically done in practice.

Position error (WL at 30 Hz)

Position error (WL at 30 Hz)

Dip (deg)

F1G. 1. Lateral position error as a function of reflector dip. ¥ denotes the angle that
the symmetry axis makes with the vertical. Black lines are for shale-limestone, and
gray ones are for Cotton Valley shale (see Table 1). The solid lines show the error
when migration velocity is based on the vertical rms velocity, and the dashed lines
show the error when it is based on the best-fit stacking velocity. Vertical velocity
gradient= 0.6 s~ here and throughout the paper, unless otherwise stated.

Figure 1 shows the dip-dependence of the lateral position error for four angles ¢
of the symmetry axis with the vertical, using for the migration either the vertical rms
velocity (solid lines) and the stacking velocity (dashed lines). Positive 1 corresponds
to axis of symmetry tilted toward the normal to the dipping reflector, and negative
means that it is tilted away from the normal. Here, for both shale-limestone (black
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lines) and Cotton Valley shale (gray lines), migration errors for 1 = 30 degrees were
smaller when migration velocity was derived from vertical rms velocity than when
it was derived from the stacking velocity. We attribute this to the asymmetric and
laterally shifted diffraction curves when the symmetry axis departs from vertical.
In an isotropic medium, lateral velocity variation is needed in order for diffraction
curves to be asymmetric and shifted. However, where velocity varies with depth
only, moveout in common-midpoint (CMP) gathers is symmetric for any anisotropic
medium, and no change from one gather to another will be detected. Thus, we cannot
expect a good fit of the diffraction curve for isotropic medium to that of a TI medium
with tilted symmetry axis, so we have no reason to expect stacking velocity to be a
better source of migration-velocity information than is vertical rms velocity.

Velocity Analysis

To obtain stacking velocity, we usually attempt either to apply velocity analysis to
CMP gathers that contain horizontal reflectors or to account for the dipping reflectors
(by either including an appropriate “dip-correction” factor or performing velocity
analysis on dip-moveout-processed data). Thomsen’s (1986) relationship for the ratio
of small-offset stacking velocity to vertical rms velocity pertains to so-called weak
anisotropy in a homogeneous TI medium with vertical axis of symmetry. Larner
and Cohen (1993) computed such ratios for constant vertical velocity gradient in
four TI media using different spreadlength-to-depth ratios (£). They showed that as
spreadlength-to-depth ratio goes to zero, the stacking velocities for the homogeneous
medium and a vertically inhomogeneous medium are the same when both media have
the same vertical rms velocity.

Medium - (0) | Yphack (0) ptack (10) | Jack (20) | Jgsask (30) | Iptack (45)
Shale-limestone 1.00 1.07 1.08 1.09 1.10 107 |
Cotton Valley shale | 1.19 1.17 1.15 1.11 1.06 0.99
Berea sandstone 1.02 1.02 1.02 1.01 1.01 1.00
Pierre shale 1.06 1.05 1.04 1.03 1.01 (.99
Taylor sandstone 0.96 1.04 1.05 1.08 1.10 1.08

Table 4. Dependence of the ratio of the stacking to vertical rms velocity on the
orlentatlon of the symmetry axis for TI media. The spreadlength-to-depth ratio

= 1.0. Vi is the stacking velocﬁ:y corresponding to a k = 0.6 s~! velocity
gradlent the values for the ra.tlo, V 722-(0), pertaining to homogeneous media, are

those of Thomsen (1986) for £ — 0; ‘and the number in parentheses denotes the
angle between the vertical axis and the axis of symmetry.

Table 2 contains the ratio of the stacking velocity to the vertical rms velocity
(—‘W*-) for the same TI media shown in Table 1, but here the axis of symmetry is
not limited to the vertical. Given the symmetnes associated with CMP gathers, the
sign of the angle of the symmetry axis is immaterial. Note, in Table 2, that the
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angle-dependence of this ratio is greatest for the Cotton Valley shale, whereas it is
quite small for the shale-limestone. These differences are related to a large value
of the Thomsen parameter &, for the Cotton Valley shale, whereas it is zero for the
shale-limestone (see Table 1).

MIGRATION ERRORS

Rather than study errors for specific media (i.e., Cotton Valley shale) as Larner
and Cohen (1993) did, hereafter we use Thomsen’s (1986) parameters to identify the
TI media. As we shall see, error behavior is well characterized by certain of these
parameters. The two key Thomsen parameters for P-waves are 6, which describes
near-vertical velocity variation, and ¢, which involves just the ratio of the horizontal
to vertical velocity. In terms of the elastic coefficients ¢;ju, these two dimensionless
parameters are

5= (c1133 + ¢1313)2 — (caass — 01313)2 )
2c3333(Casss — C1313) ;
C1111 — C3333
= = Ao 2
¢ 2¢3333 @)

where the subscript 3 refers to the symmetry-axis direction, and 1 to the normal to
that direction, within the propagation plane. These parameters, along with the P-
wave velocity V, and S-wave velocity V, in the symmetry-axis direction are sufficient
to describe anisotropic behavior in a TI medium. Negative § implies that the velocity
will initially decrease away from the symmetry direction. In contrast, negative €
describes a medium where velocity in the symmetry direction exceeds that in the
normal direction, a rare occurrence.

Dependence on anisotropy

Figure 2 shows lateral position error as a function of reflector dip keeping 6 = .1,
¢ = .2 for the left plot, and § = .1, ¢ = 1.5 for the right plot, and using the same
V,(2) for all the curves, where z is depth. The only parameter changed from one
curve to another within each plot is the S-wave velocity, V;, such that T‘;: ranges from
0.3 to 0.7, a wide range that covers all cases of practical interest. Differences among
the curves are insignificant up to about 80-degree reflector dip. Rays must pass
the turning point before any differences of significance are realized for even strongly
anisotropic media (e.g., € = 1.5). For relatively moderate anisotropy (e.g., € = 0.2)
the position errors are relatively small (less than four wavelengths at 120-degree dip),
and differences among the curves are insignificant up to 120 degrees. Similar behavior
holds for the range of practical choices for § (not shown here). Therefore, for P-waves,
the two parameters, § and ¢, are sufficient to characterize most TI media (Tsvankin
and Thomsen [1993] found the same behavior for homogeneous media). Also, here,
as elsewhere Thomsen’s parameters are a convenient set for characterizing even TI
media that are not necessarily “weakly anisotropic.”
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F1G. 2. Lateral position error as a function of reflector dip for two pairs of values for
§ and e. The vertical P-wave velocity function is the same for all the curves, but the

velocity ratio ‘T;: ranges from 0.3 to 0.7 in each figure.The symmetry axis is vertical

(i.e., ¥ =0).

Figure 3 shows lateral position error as a function of reflector dip for a wide
range of TI media represented by different combinations of & and ¢, with vertical
velocity gradient 0.6 s~! and vertical axis of symmetry. The reflector depth D and
vertical rms velocity V.m, are chosen so that the reflection point is at a migrated
time ¢,, = %“D-_- = 2 3. Here, following Larner and Cohen (1993), we use the stacking
velocity to derive migration velocity. As a result, the position errors are not zero
when § = € = 0 (isotropic medium). Recall that the stacking velocity for horizontal
reflectors in a vertically inhomogeneous medium is only an approximation to the
vertical rms velocity. It cannot exactly characterize moveout.

Figure 3 shows that when using the stacking velocity in the migration process,
the influence of § on the position error is insignificant for dip less than 50 degrees,
but is considerably greater than that of €, for steep reflectors. This is evident in the
closeness of curves within each of the left-column plots of Figure 3, as opposed to the
branching out of curves in the right column of Figure 3. When stacking velocity, as
opposed to rms velocity, is used to derive velocity for migration in a TI medium, we
expect that we have corrected for the influence that § (which controls near-vertical
propagation velocities) has on the traveltime. This expectation seems to be satisfied
for dip less than 50 degrees.

Also, as Figure 3 suggests, when using stacking velocity in migrating seismic
data, & controls the sign of the position error for steep reflectors. For negative 6,
steep reflectors will generally be undermigrated; for positive §, they will generally be
overmigrated. This observation, however, cannot be generalized to vertical migrated
time other than ¢, = 2 s (see Figure 6). This sensitivity of error to § implies that
6 largely governs the expected position error for steep reflectors. This is fortunate
since the value §, unlike ¢, can be obtained with relatively good accuracy from seismic
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reflection point is positioned at vertical migrated time ¢,, = 2 s.
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Fic. 4. Lateral position error as a function of reflector dip and e for different values
of vertical velocity gradient, k. Here § = 0.05, and the symmetry axis is vertical.
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F1G. 7. Position error as a function of reflector dip and 4, for different orientations
i of symmetry axis. Throughout, ¢ = 0.1. In anticipation of Figure 11, the arrows
point to approximately the position error for a reflector dip of 90 degrees in Taylor
sandstone (6 = —0.035 and € = 0.11).
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F1G. 8. Position errors as a function of reflector dip for a medium where € and § vary
with depth. At the surface the medium is isotropic, § = € = 0; at the reflector the
medium is TT with € = 0.1 for the left plot, € = 0.2 for the right plot, and & has the
same vah}es shown in Figure 6. Here, ¢ = 0, and the gradient in vertical velocity is
k=0.6 s~1.
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FIG. 9. Same as Figure 8, but this time the medium varies from being TI at the
surface to isotropic at the reflector. Again k=0.6 s—1.
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Again, differences in the behavior of the error curves in Figures 8 and 9 are
controlled largely by the size vertical velocity gradient (k=0.6 s~} in these figures).
For smaller gradient the two figures would show smaller difference.

SYNTHETIC DATA EXAMPLES

To this point, we have been showing curves of position error for a wide variety of
situations. Let us now see how these errors are manifested in the imaging of synthetic
data. We use here the time-wavenumber (t-k) migration algorithm of Hale (1991).
This isotropic time migration algorithm was chosen largely because it preserves the
amplitudes of the vertical reflectors in isotropic media.

0
~ 1- 200 /
E 450
-
S 2 60°
el v
) 90°
0 3-
4 | ! | ! ! {
2 3 4 5 6 7 8

Midpoint (km)

FiG. 10. Model consisting of horizontal reflectors with segments having dips ranging
from 30 to 90 degrees on both sides.

Figure 10 shows a model containing horizontal reflectors with dipping segments
having dips ranging from 30 to 90 degrees on both sides. The medium has the
properties of Taylor sandstone (§ = —0.035 and € = 0.11) with a vertical velocity
v(z)=2000+0.6z m/s. Figure 11 shows three sections, all migrated using the isotropic
t-k algorithm of Hale, with velocities calculated from the stacking velocity. In (a) the
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Taylor sandstone and 0.1 in Figure 7) are insignificant since, as seen above, ¢ has
little influence on Position error when stacking velocity is used. At migrated time
tm = 2 8 in Figure 11, the horizontal position errors reflect, in general, the results

consistent with expectation from the modeling results in Alkhalifah (1993).
Figure 11 is representative of fault-like structures, where the dip changes abruptly

reflectors have continuously varying dip similar to that in bedding upturned against
a steep salt-dome flank, as depicted in Figure 12, Figure 12 shows migrated sections
for TI media with (8) § = 0.1, € = 0.15 and Y =0,and (b) § = ~0.1, ¢ = 0.1 and

ignored, the migrated images look plausible in both cases (i.e., little or no crossing of
reflections), yet both are incorrect and differ substantially from one another.

on stacking velocity will be erroneous. ‘This error, which distorts depths throughout
the section, results in vertical shifts

estimate of § for the medjum, Then, the vertical rms velocity can be calculated from
the limiting stacking velocity as X0 (Thomsen, 1986). In a v(2), medium depth
migration is equivalent to time migration followed by a time-to-depth conversion.

migration would have the same lateral position errors described in the curves.) The
depth-shift problem is similar to that described by Verwest (1989) for migration in
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Fic. 11. Isotropic time migration of the model in Figure 10. (a): isotropic medium.
(b) and (c): Taylor sandstone medium, with § = —0.035 and € = 0.11. In (b) the
symmetry axis is vertical, and in (c) it is 30 degrees from the vertical. The vertical

velocity v(z)=2000+0.62 m/s.
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F1G. 12. Isotropic time migration of a simulated case of sedimentary beds upturned
against the flank of a salt dome, where the medium is TT with (a) 6 =0.1, e =0.15
and ¥ = (, and (b) 6 =—0.1, e = 0.1 and ¥ = 0. Both media have vertical velocity

v(2)=2000+0.62 m/s. The correct reflector Positions are represented by the dotted
ne.
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Figure 13 shows a migrated image using an isotropic depth-migration algorithm
for the model in Figure 10. The medium is Taylor sandstone, and the vertical velocity
is v(z)=2000+0.6 z m/s. Because the velocity used in the migration process is the
gtacking velocity, all reflectors, but most obviously the horizontal ones, are imaged
too deep (compare with Figure 10). In field data, these depth errors might not be
recognized without some assessment of the anisotropy of the medium.

CONCLUSION

For the ranges of 6 and € studied here, we believe that an isotropic time migration
using the stacking velocity would result in acceptable images for reflector dip less
than 50 degrees in laterally homogeneous media.

Depending on whether the migration velocity is derived from stacking velocity or
vertical rms velocity, we find quite contrary sensitivities of the error behavior to the
values of § and €. In media with typical vertical velocity gradient (0.5 s~ or greater)
and ¢ = 0, the value of 6 largely governs the position errors for steep reflectors
(dips greater than 50 degrees) when using the stacking velocity in migration. This is
convenient, since § is the anisotropy parameter most readily obtainable from seismic
data. In addition, most of the errors associated with T1 media, when stacking velocity
is used for the migration, are associated with steep reflectors.

Interestingly, when the vertical rms velocity, which is independent of values of &
and ¢, is used in the migration process, the value of € largely governs the position
errors, especially for steep reflectors and velocity gradient 0.5 s~1 or greater. Given
the large sensitivity of position error to € when the vertical rms velocity is used in
isotropic migration, we infer that one should not go to the effort of using a migration
algorithm that honors anisotropy unless € is properly estimated. This contention
further suggests that the practice of equating € to & and doing migration based on
elliptical anisotropy;, as is often done when the actual value of € is unknown, might
lead to erroneous migration, especially for reflector dip greater than about 50 degrees.
For vertical velocity gradients of 0.5 s—! or more, if the value of ¢ is not well known,
we believe it is better to use the stacking velocity in isotropic migration and use
the value of § to estimate the errors than to do migration based on an anisotropic
algorithm.

The above conclusions pertain to media with vertical symmetry axis. Tilting of the
axis adds yet more complication to migration-error behavior. Tilt in the orientation
of the symmetry axis results in lateral shifts of imaged horizontal reflectors from
their true positions, much as happens when time migration is used where overburden
velocity varies laterally.

Clearly, models with constant velocity gradient and FTI are simplifications of the
true subsurface. The limitation to constant velocity gradient could readily be relaxed
by a perturbation method similar to that used in going from FTI to general TI media.
Despite the limitations of the models used here, analysis of position errors for these
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models should aid in understanding accuracy limitations in anisotropic media.

Unless we are imaging a fault or structure with sharp edges, many eIrors due
to anisotropy pass by unnoticed, particularly given the latitude often exercised in
choosing migration velocity, in practice. Clearly, the key to success in migration in
the presence of anisotropy is the use of an algorithm that not only honors anisotropy,
but also uses good estimates of the anisotropy parameters, § and e.
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ABSTRACT

Gaussian beam migration (GBM), as it is implemented today, efficiently han-
dles isotropic inhomogeneous media. The approach is based on the solution of
the wave equation in ray-centered coordinates (s,n). However, for anisotropic
media, the wave equation in (s,n) coordinates is complicated and cumbersome
to work with. An alternative that circumvents the complexity is to perturb the
traveltimes in the GBM method, from those for a background isotropic medium
to those for the desired anisotropic medium. Although the perturbation tech-
nique is exemplified here for GBM, it just as well could be implemented for either
Kirchhoff or slant stack migration. However, it is particularly cost efficient to
use it for GBM; anisotropic GBM is slower than its isotropic counterpart by only
10%. The performance of this method is demonstrated on synthetic examples
that show successful migration for reflector dips up to and beyond 90 degrees.

INTRODUCTION

Although modern migration aigorithms now can treat 3-D data from areas of rel-
atively complex structure, and can accommodate turning waves associated with dip
beyond 90 degrees, only recently has anisotropy been taken into account. Anisotropy
may cause considerable departure of traveltime curves from those expected in compa-
rable isotropic media. Such departures will influence the accuracy of both migration
and velocity analysis. For some transversely isotropic {TI) media, for example, large
position errors could arise for steep reflectors when anisotropy is ignored in poststack
migration.

Migration algorithms for special cases of anisotropy have been developed in the
past few years. Verwest {1989) developed a seismic migration algorithm for elliptically
anisotropic media; however, this type of anisotropy is usually a poor approximation for
P-waves. Uren, Gardner and McDonald (1990) found a migrator equation for aniso-
tropic homogeneous media that works in the frequency-wavenumber (f-k) domain.
However, that approach requires that analytical expressions for the phase velocity
to be solved for angle of the plane wave propagation direction; such expressions for
anisotropic media are rather complicated.
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Gaussian beam migration (GBM) has emerged in the past few years as a desirable
method for subsurface imaging. Among its features are computational efficiency,
robustness with respect to ray caustics and shadows, the ability to image reflector
dips greater than 90 degrees with turning waves, and straightforward extensions for
migration of nonzero-offset sections and 3-D data (Hale, 1992).

Here, I use time-perturbation equations developed by Cerveny and Firbas (1982)
for general anisotropic media, and by Cerveny and Filho (1991) for factorized
anisotropic inhomogeneous (FAI) media, along with newly developed perturbation-
corrected parameters for amplitude and velocity, to modify GBM to treat generally
anisotropic media.

THE FIRST-ORDER TIME PERTURBATION

Ray equations

The eigenvalues that describe the raypath (eikonal equation) and the eigenvectors
that describe the amplitudes of the various waves in inhomogeneous media are based
on a high-frequency approximation. The eigenvalues are calculated from the following
relation (Cerveny, 1972):

Det(l"jk - Gmajk) = 0,
where [';;, are components of a 3 x 3 matrix I' given by the relation

Cik(Zs, i) = Qijii(Ze)0;D1,

with
_or
pi - 3:1.‘.-’
@ikl = cijkl/ P

and

T is the traveltime along the ray,

p is bulk density,

T, are the cartesian coordinates for position along the ray, s=1,2,3, and

ciju are elastic coefficients; in general, functions of x,.

The G, are the three eigenvalues representing the eikonal equation for the quasi
P-wave when m=1, for the quasi SV-waves when m=2, and for the quasi SH-waves
when m=3. For P-waves (I shall drop the ”quasi” modifier in the following},

G1(IL'3,P3) =1. (1)
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For isotropic media, Gy = o?(z,)p;p;, where a(z,) is the P-wave velocity.

In a factorized anisotropic inhomogeneous (FAI) medium
@iu(2s) = F2(2,) Asjnt, (2)

where Aiju = aiju(2,)/asass(z,) are the position-independent density-normalized elas-
tic coefficient ratios, and f(z,) = \/03333(:1:,) represents the velocity in the depth
direction z3 at a position z,. Equation (1)} then becomes

Gl(wa;pa) = fz(xs)G']J.(pa) =1, (3)

where G3(p;) is the position-independent eigenvalue of the P-wave.

Perturbation parameters

Consider two media, a background medium (unperturbed), possibly anisotropic
and inhomogeneous, in which we do our general ray tracing, and a perturbed medium,
which may also be anisotropic and inhomogeneous, in which we wish to calculate
traveltime and amplitude. The traveltime T'(a,b) in the perturbed medium of the ray
traveling from point a to point b is calculated from the traveltime in the background
medium T%a,b) of the ray traveling between the same two points. Specifically, we
seek an efficient scheme for computing the time perturbation 67(a,b), given T%(a, b)
and relationships between the parameters of the background and perturbed media.

T(a,b) = T(a,b) + 6T(a, b). (4)

Differences between the density-normalized elastic parameters in the background
medium a?jk, and those in the perturbed medium a;;u define the degree of perturba-

tion 60.,'_,‘],1.
0
Gijki = Gijpg + Oaijki.

In an FAI medium, the vertical velocity f%(z;) in the background medium and f(z;)
in the perturbed medium are related as follows

flas) = 7°(x:) + 6f (). (5)
Likewise for the ratios of elastic coefficients,
Aijit = Ay + 0Aiju. (6)

Time perturbation

Following Cerveny and Firbas (1982), for a generally anisotropic inhomogeneous
background,

1 b
6T(a,b) = -3 / 8a;ipimg;igedT, (7}
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where g; are the components of the eigenvector g (the direction of particle motion),
here for the P-wave. The integration in equation (7) is performed along ray Ly
computed in the background medium, and quantities p;, pi, g;, g and dT" correspond
to the background medium. Hanyga (1982) showed that the relation between §T'(a, b)
and éa;jp is linearized.

For an isotropic background medium, g = N, the normal to the wavefront for the
isotropic background, and p = N/a. Equation (7) then yields

b
6T(a,b) = —-;—f Ea.-,-HN.-MNija'sz, (8)

where @ = f%z;) is the velocity of the P-wave in the background medium, and
dT = ds/a, with s the arclength along the ray Ly.

_ For FAI media, using equations (2), (3), and (6) in equation (7) yields
(Cerveny and Filho, 1991)

b5f(z:)
a o)
where the first integral corresponds to structural perturbations and the second integral

corresponds to anisotropy perturbations. For an isotropic background, equation (9)
becomes (Cerveny and Filho, 1991)

ﬁT(ﬂ,b) = — ———=dT' - = 6A|Jkl/ f wt p:plgjgde (9)

§T(a,b) = — f ZIC 564z f NiNiN; NydT. (10)

a(a:,)

Amplitude and velocity perturbations

Amplitude decay due to geometrical spreading in the perturbed medium can be
estimated from the background medium by a similar perturbation approach. Consider
g. the geometrical spreading function for velocity variation with depth, given by

g= [ A(r)dr, (1)

where v(7) is the velocity and 7 = [ -2 ~(y is the time along the ray. I now define the
amplitude perturbation éq as
g=¢" +6q,

where g° is the geometrical spreading in the background medium, and q is the geo-
metrical spreading in perturbed medium.

Consider a segment of the raypath that is so short that velocity can be taken as
constant. Then, from equation (11) the geometrical spreading in this segment from
point ag to point by (I = |ag — by| << 1) is

12

— .2T
¢ =v To"
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For a ray traveling in the perturbed media between the same two points, the approx-
imate geometrical spreading is
2
°+6g = .
CHN= 5 5T
Take the integrand in equation (8) as the anisotropy perturbation factor F for the
homogeneous, isotropic segment,

1
F = —Eéa.-jng,-N,N,-Nka‘z

and
6T = FT°.
Then 2 "
° 4 bg = -
TN RaT R T+ F
S0

A summation of these segments will provide the first-order perturbation of the
geometrical spreading for the raypath between point @ and point b,

b
bqa,b) = [ ~Fdg,

where F' and dg correspond to the background medium and F << 1.
Based on a similar argument, the perturbation of the ray velocity is given by

§v(a, b) = f: 1:_F v =2 f ' _Fav,

I use the amplitude and velocity perturbations, along with the time perturbation of
equation (10) to modify Hale’s GBM program (which previously could be considered
to have been operating in the background medium) to work for a generally anisotropic
medium. These perturbations could be implemented in either Kirchhoff or slant stack
migration, just as well in GBM.

Traveltime calculation along the beam

Up to this point, all the perturbations mentioned above deal with the central ray.
However, in GBM another parameter must be considered— the distance n along the
normal to the ray. The traveltime as a function of position in (s, n) coordinates in an
isotropic medium can be estimated by Taylor series expansion (Cerveny and P3enéik,
1984).

G*T(s) n?

oz (12)

T%(s,n) 2 T%s) 4+ 0.5——=
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where T?(s) is the time along the central ray in the isotropic background medium,
and the %ﬂ term in this Taylor’s series expansion equals zero because the wavefront
is normal to the raypath in an isotropic media. The perturbed time, as shown before,
is

T(s,n) = T%s,n) + 6T'(s,n),

where the expansion of the perturbation time along n is

6T (s, n) = 6T(s) + Mu +0 5@511—(3)-1;2

on ~ on? ’ (13)

and 6T(s) is the perturbation time along the central ray. Considering only the first
term of the expansion and ignoring the rest, such as where the time perturbation
is rather small relative to the actual time, might be thought to be an acceptable
approximation for most anisotropy

§T(s,n) = 6T(s). (14)

This approximation gives accurate results when a large initial beam width is used.
A large initial beam width implies that the traveltime Taylor series expansion is
applied primarily for plane waves, where the other terms in the expansion go to zero.
However, this expansion will yield an erroneous loss of amplitude for spherical waves.
This amplitude loss results from the out-of-phase superposition of the spherical beams
that contribute to a point in the depth section.

Hale (1992) showed that GBM is a weighted combination of Kirchhoff (spherical-
wave) and slant stack (planar-wave) migrations. The weighting is controlled some-
what by the initial beam width. A large initial beam width implies that most of
the expansion in equation (14) will be applied along plane waves. For perturbation
to an anisotropic medium, this choice gives the most accurate expansion. From my
‘tests, I find good results for initial beam width that exceeds the width predicted by
Hill (1991) by about 30 percent. Choosing the appropriate value for the initial beam
width is largely a judgement call. Hill (1991) showed the shortcomings of using too
large an initial beam width; he also showed that considerable latitude is allowed in
the choice of beam width. The approximation in equation (14) primarily influences
amplitudes, with small influence on traveltimes.

An alternative is to attempt the expansion in equation (13). This choice would
somewhat slow the program; however, it should correct for the out-of-phase superpo-
sition problem. Evaluating the derivatives in equation 13,

96T (s)  d6T(s) 89
on ~  dé An’

and

6%T(s)  d6T(s) 08
on2 ~  df? ‘On

2 4 4T(0) %0

dd  on?’
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where 6 is the ray angle with the vertical in the isotropic background medium, and n is
mdependent of s. The above two equations are evaluated in the background medmm,
where the &2 a7 g term can be neglected. This term requires higher-order solutions of
the traveltime equation in the ray-centered coordinates, terms that can be neglected.

Given
p sindd 1df
-—= A —r—
q vq vdn
Then,
08 pv
on  q’

where p and g correspond to the background medium, and satisfy the following equa-
tions (Cerveny, 1981)

dq .2 dp Unn

it~ VP dt v ©
Given, for 2-D that is NV; = sin# and N3 = cos¥,

dN, dN;

=5 Vs — = =N,

80

d6T b ’
# = _26A1111fa N13N3dT - 2(6A1133 ‘G 6A1313)fa (1\"r11v:l3 - NfN:i)ﬂ-'

b b b
—6(6A1113 + 8 Az313) f N2N2dT + 25A115 j NAdT — 26Agms / N2dT.

d?6T(s) /.'.1!02 could be derived in a similar way. Inserting these values in equation (13)
would give the more accurate expansion for the perturbed TI media. However, I have
not yet implemented this expansion.

"This expansion could also be used as a paraxial expansion along the ray for aniso-
tropic media considering an isotropic ray path. Actual expansions for anisotropic
media would have been rather complicated, and probably unsolvable.

GAUSSIAN BEAM MIGRATION

Gaussian beam migration (GBM) is an efficient way of doing migration in a gener-
ally inhomogeneous, isotropic medium. Here, I describe how the above perturbation
approach can be applied to modify GBM to work for general anisotropic media. For
simplicity, I will demonstrate this for 2-D migration in an FAI medium.

Consider an inhomogeneous, isotropic background and an FAI medium with ver-
tical velocity function equal to the velocity function of the isotropic background.
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Then 6 f(z;) = 0; and 6Ass33 = 0. Equation (10) becomes
1 b 4 b2 2
6T(a,b) = —56Aun j NHT)dT — (§Anss + 6A1313) f Ni(T)N3(T)dT

—26A1113 fa ' N (T)N3(T)dT — 26Aana fa ’ Ny(T)N3(T)dT, (15)

where Nj, N3 and dT correspond to the background medium.
As a result, the GBM algorithm of Hale (1992) becomes

Gaussian beam migration for anisotropic medium:

for all points (z1,z3) {
9’(-’171,373) =0
}

for all z1; = jA (all beam center locations ) {

compute f;(t,z1) by shifting and tapering data f (t,x1)

compute filtered slant stack b;(7,p1) of f;(t,z1)

for all p; (all reflection slopes) {

for all points (z1,z3) within beam {

compute complez-valued 7;(py1, Ty, 23) + “6T(py, x1,%3)"
compute complez-valued “A;(py,z1,T3,¢° + 6g)”
accumulate contribution to g(z1,x3) of bi(7,p1)

where

g{z1,x3) is the subsurface image,

f(t,z1) is the recorded seismic data,

b(r,p1) is the filtered slant stack,

AT are the amplitude and traveltime of the seismic wave,

and the only changes to the algorithm are enclosed in quotes. Both 4T and 4q, as
given above, have real values.

These changes do not limit GBM in any way. Specifically, it is still extendable
to 3-D and its efficiency is unchanged; relative to the cost of the migration, the cost
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‘of computing 6T and éq is insignificant. The GBM is particularly suited for this
perturbation approach because it already calculates traveltimes and amplitudes in an
isotropic inhomogeneous media, the background medium.

Midpoint (km) Midpolnt (km)
2 1 3

Depth (km)

(b)

F1G. 1. GBM impulse responses for (a) isotropic, and (b) shale-limestone with vertical
axis of symmetry. Both media have the same vertical velocity v(x3) = 3306 + 0.5 z3

m/s.

Figure 1 shows the response of GBM to impulses at depths 1, 2, and 3 km for
vertical velocity variation v(x3) = 3306 + 0.5z3 m/s in (a) an isotropic medium and
(b) a thin-bedded system of horizontal layers of shale and limestone (factorized trans-
versely isotropic inhomogeneous [FTI] medium with vertical axis of symmetry). The
shale-limestone FTI medium has the following anisotropy parameters at the surface
(Thomsen, 1986)

VC/p = 3306 m/s, /A/p = 3721 m/s,
E/F/P = 2076 m/s, y/L/p = 1819 m/s,
=0

.0, e=0.134,
where A, C, F, and L are the elastic coefficients used by White (1983) to describe
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a TT medium, and 6 and € are Thomsen’s anisotropy parameters (see equations [18]
and [19], below). The essential difference between the two results in Figure 2 is that
the impulse responses for the TI case are wider due to the higher ray velocities away
from the vertical direction.

0 %)

k> 459
e’ 2 60°
£ |C
o 90°
0 3-
4 | | | !
0o 1 2 3 4

Midpoint (km)

Fic. 2. Model of reflectors with dips of 0, 30, 45, 60, 75, 90 degrees. Note that the
vertical reflector is at 1,2-km midpoint position.

Now, consider the reflector model shown in Figure 2. It consists of five reflec-
tors, each of which has a horizontal segment and a dipping one. Figure 3 shows
the synthetic zero-offset seismograms for this model in (a) the isotropic medium (b)
the shale-limestone TI medium, described above. Figure 3a was generated using a
Kirchhoff modeling program for an isotropic medium with a linear velocity increase.
Figure 3b was generated using a modified version of that modeling program that treats
FTI media (Alkhalifah, 1993). Figure 4 shows migrations of the data in Figure 3b
using (a) standard, isotropic GBM and (b) GBM modified for anisotropic media. The
velocity used to derive medium velocities for standard GBM is the best-fit stacking
velocity for horizontal reflectors. Clearly the image in 4b is superior to that in 4a.
The image from migration that ignores anisotropy, 4a, not only is undermigrated, it
is placed at too great a depth because stacking velocity exceeds the vertical rms ve-
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locity. In contrast, the reflector locations have been correctly imaged by the modified
GBM, 4b, but the amplitudes for the near-vertical reflectors are low, as a result of
the superposition problems for the traveltime calculations along the beams, discussed
above.
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F1G. 3. Synthetic zero-offset seismograms for the structural model in Figure 2, for (a)
an isotropic medium, and (b) a shale-limestone, transversely-isotropic medium. Both
media have vertical velocity v(z3) = 3306 4 0.5 £3 m/s and reflector dips ranging from
0 to 90 degrees.

Figure 5 shows isotropic GBM and perturbed, anisotropic GBM for the Cotton
Valley shale FTI medium of Levin (1993), with anisotropy parameters

‘/C% = 4721 m/s, m = 3095 m/s,
3/1% = 5320 m/s, {/L/p = 2890 m/s,
=0

205, € = 0.135,
and v(z3) = 4721 + 0.5x3 m/s. Following Larner and Cohen (1992), I used the

best-fit stacking velocity (for horizontal reflectors) to minimize the position errors.
The isotropic GBM not only yielded a considerably overmigrated image, it also re-
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sulted in large vertical shifts in the reflector position. The depth error is cansed by
using the wrong velocity, namely stacking velocity in a TI medium, for the vertical
traveltime-to-depth conversion. In contrast, the modified GBM gave the much more
accurate image, with only a small overmigration of the vertical reflector.

Midpoint (km) Midpoint (km)
0 n n 2 4 1 " L r 2 2 : 2

3 4 o 1 3 4

Depth (km)
n

[ ]
e
5

(b)

Fi1c. 4. Migration of the data in Figure 4b using (a) the isotropic GBM algorithm
(b) perturbed GBM, for the shale-limestone T1 medium.

For both anisotropic media — shale-limestone and Cotton Valley shale — the

anisotropic GBM gave a substantially better image of the reflector position than did
the GBM that ignores anisotropy.

Figure 6 shows a migration for the Mesaverde shale FTI medium (§ = 0.078,
¢ = 0.128) where turning waves were needed to migrate the model at the top of the
figure. Mesaverde shale has parameters shown in Table 1, given by Thomsen (1986).

VELOCITY AND MOVEOUT EQUATIONS

Accurate estimation of velocities is essential to obtaining accurate migrations.
Whereas isotropic time migration works best with the use of stacking, as opposed to
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F1c. 5. Miira,tion of data from the structural model shown in Figure 3 for Cot-
ton Valley shale with v(z3) = 4721 + 0.5z3 m/s, using (a) isotropic GBM and (b)
anisotropic GBM.
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F1G. 6. Top: Model containing reflector with dip as large as 120 degrees. Bottom:
Anisotropic GBM of data from the above structural model for Mesaverde shale, with
v(z3) = 3749+ 1.0z3 m/s.
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rms, velocity (Larner and Cohen, 1993), the modified GBM uses vertical rms velocity,
based on the velocity of the background medium. (In all the tests, the vertical velocity
of the TI medium is identical to the velocity of the isotropic background medium.}
In practice, the vertical velocity could be obtained from various methods, such as
vertical seismic profiling or check-shot velocity surveying.

For perturbation away from traveltime in an isotropic, homogeneous background,
equation (10) becomes

1
6T (a,b) = [—EéAmle—(6A1133+6A1313)NfN§—2A1113N13N3—2A3313N§N1]T° (a,b),

in which T9%(a,b) = \/15 + 4h2/v? is the hyperbolic moveout (diffraction pattern) for
a homogeneous, isotropic medium, and

2hfv
Vg +4h2[v? ,

to

Ny = ———ux—.
Vg + 4h2/v?

Ny, N3 and T®(a, b) again correspond to the background medium, & is the half-offset
between source and receiver, # is the two-way vertical traveltime, and v is the rms
velocity in the isotropic background medium, which equals the vertical rms velocity
in the TI medium. The normal-moveout equation, based on the time-perturbation

method, is given by
A2
tpert(h) = \/tg +i+ 8T (a,b), (16)

Tsvankin and Thomsen (1992) derived the exact coefficients for the expansion
of the moveout equation up to fourth order for a TI medium with vertical axis of
symmetry (TI expansion).

N1=

and

A4$4

T+ G/ 4

t2

exp

(B) = £2 + 4442 +

where 1

Az= v2(1 + 26)°

and 26

2 -8 1+ =z
B (1+26)7
v, i8 the shear-wave velocity, and 6 and ¢ are given by Thomsen (1986)

Ag=—

(A113s + A1313)% — (Az33z — Arz13)? , (18)

6=
2A3333(Aszaz — A1a1a)
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Aj111 — Aszssz
LR p———— e 19
' 2A3333 (19)

Figure 7 compares moveouts tper+ and tezp with the numerically calculated, exact
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F1c. 7. Moveout curves for the same vertical rms velocity vrms = 3766 m/s, and
reflector depth of 1883 m.

moveout and the best-fit hyperbolic moveouts for offset-depth ratios (£) of 0.1 and
1.0. The medium is the shale-limestone FTI medium with vertical velocity v(zg) =
3306+0.5 z3 m/s. Note that the moveouts of the time perturbation and TT expansion
compare favorably with the exact moveout out to large offset X (for Figure 7, up to
7000 m).

DEGREE OF ANISOTROPY

Commonly, the degree of anisotropy of a specific medium is described by the ratio
of the horizontal to vertical velocity, concentrating on two elastic coeflicients a1111
and aagss, ignoring the rest. Thomsen (1986) showed that traveltimes for P-waves
are largely dependent on three parameters, —the vertical P-wave velocity (1/@sss3), ¢
and . These three parameters are sufficient to evaluate the anisotropy of a medium
and give a good understanding of the variation of velocity with direction. § describes
the velocities near the vertical axis, whereas € describes the relation between ajin
and asss3. The condition § = € = 0 implies that the medium is isotropic, and § = € in
general for elliptically anisotropic media. However, these parameters do not indicate
the overall sensitivity of the traveltime to a particular anisotropy. For example both
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parameters § and ¢ may have large values and yet represent a weak anisotropy (see
Table 1).

Alternatively, time-perturbation equation (15) gives a direct expression for the
sensitivity of the traveltime to the various elastic coefficients. Consider an isotropic

background medium
Ay = Afazg = A3 + 24%;

where Ag333 = A3333, and
0 _ 40
A1113 - A3313 =0.

To keep the perturbations small, A9,;; and A%, are chosen such that

0
Aliaz . Anas
Alys ~ Ajas

From equation (15), ignoring angle dependency (i.e., the integrals in equation [15]),
I define the percentage anisotropy D as

1
D= (5 | 6A1111 | + | 6A1ias | + | 6Awais | 42 | 6A11a3 | +2 | 6Assia |} x 100.

Although it ignores angle dependencies, this measure of anisotropy seems to serve
acceptably as a single-parameter measure of the extent to which anisotropy influ-
ences traveltime. Therefore, it can be a useful tool in evaluating the performance of
anisotropic GBM.

Table 1 lists the percentage anisotropy D and the three measures of anisotropy,
described above, for the four media used by Levin (1990), as well as the Taylor
sandstone and Mesaverde shale studied by Thomsen (1986).

[ Medwm V@) [ V@) [ 6 | = [Va/Ve [DUR)]
Shale-limestone 3306 1819 0.0 [0.134] 1.126 | 14 |
Cotton Valley shale | 4721 2890 | 0.205 | 0.135 | 1.127 25
Berea sandstone 4206 2664 0.02 | 0.002{ 1.001 14
Pierre shale 2202 969 0.06 | 0.015] 1.015 5.4
Taylor sandstone 3368 1829 -0.035 ] 0.110 | 1.105 29
Mesaverde shale 3749 2621 0.078 | 0.128 | 1.121 17

Table 5. Different measures of anisotropy: Thomsen’s parameters (6 and ¢), the

horizontal-to-vertical velocity ratio (V,4/V¢), and the percentage anisotropy D. V,
and V¢ are the velocities of the P-wave in the horizontal and vertical direction, re-
spectively. V;, and V, are the vertical velocities for the P-wave and S-wave. (Ve =V,.)

The percentage anisotropy, D, seems to be a reliable indicator of how well aniso-
tropic GBM will perform in various anisotropic media. For example, as seen in Figure
5b and 6b, anisotropic GBM for shale-limestone TI media (D=14%) resulted in more
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accurate reflector imaging than did that for Cotton Valley shale (D=25%). Aniso-
tropic GBM produces accurate reflector positions for all dips in media with D less
than 20%. It produces relatively good positioning for anisotropy with D less than
30%. Even when using the modified GBM for percentage anisotropy D higher than
30% (not shown here), the migration errors in general are considerably less than when
using the standard GBM.

The errors that result from using time-perturbation equations are directly depen-
dent on the amount of perturbation from the background to the desired medium. For
a;;. = 0 (isotropic medium), for example, the error should be zero.

CONCLUSION

Because of the sensitivity of migration to velocity, anisotropy could have a large
influence on the accuracy of migrated images. Use of the modified GBM with correct
velocity information can substantially reduce errors that arise when anisotropy is
ignored and thus provide improved images. Modified GBM, like standard GBM, can
be extended to 3-D by simply using the 3-D version of the time-perturbation equation.

The anisotropic GBM, although designed for weak anisotropy, can handle a wide
range of anisotropy. The percentage of anisotropy, D, seems to be a reliable indicator
of how well the anisotropic GBM will perform in different anisotropic media. It also
could be used generally to describe the anisotropy level in a particular medium.
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generalized radon transform
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ABSTRACT

The parabolic and linear 7-p transforms can be cast as a least-squares prob-
lem in the frequency-space domain and solved using a complex form of Levinson
recursion.

This paper briefly documents the algorithms coded in routines suradon and
suiradon.

INTRODUCTION

There is a rich lore of papers invoking slant stack and velocity stack methods
(Thorson, 1984). The mathematical foundation for the discrete Radon transform ap-
pears in Beylkin (1987). Dan Hampson (1986) won the Canadian SEG Best Paper
award based on his work using the parabolic Radon transform for multiple elimina-
tion. Hampson’s method removes multiples from the near-offset traces on a common
midpoint gather more effectively and with fewer edge-effect artifacts than does the tra-
ditional F-K filtering approach. Traditional F-K filtering works well on intermediate-
offset and long-offset traces where Hampson’s method may encounter aliasing prob-
lems. Kostov (1989) presented his work as part of the Stanford Exploration Project
demonstrating that the Radon transform inversions could be computed using a com-
plex form of Levinson recursion. Several companies had discovered this independently
(Anderson, 1988; Bednar, 1988) but delayed publishing their results. In 1990, many
papers were presented at the SEG meeting covering variations on this topic as corpo-
rations released their internal work in anticipation of Kostov’s paper. Those authors
include Darche (1990), Foster and Mosher (1990), Gulunay(1990), Johnston (1990},
Kostov (1990), and Sullivan, Schneider, and Shurtleff (1990).

Traditional 2-D 7-p methods discretize equations derived using continuous func-
tion theory (Chapman, 1981). Finite aperture, finite sampling, and aliasing distort
the numerical solution obtained. The discrete Radon transform approach works effec-
tively for transforms based on temporally shift-invariant operators. Operators that
fit the discrete Radon transform theory well include those for the parabolic and linear
7-p transforms since the shapes of their characteristic curves do not change with time.
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NMO operators do not fit the theory well since the shapes of NMO curves do vary
with time. In the first step for a discrete Radon transform, data are transformed to
the frequency domain. Radon transforms are defined in terms of forward and inverse
matrix operators to be applied to the data for each frequency component. Least-
squares inverses are used when an exact inverse does not exist. The least-squares
inverse is often different from the discretized version of the continuous inverse func-
tion. The least-squares approach takes note of the aperture and sampling of the data
and does a least-squares correction to minimize their influence. Aliasing remains a
problem that shows up in the form of instabilities in the least-squares inverse.

The approach taken here is to first define a transform that takes data from the
“slowness” domain for linear 7-p back to the r domain. The transform of the original
data to the slowness domain will be accomplished using the least-squares inverse to
that transform. This allows one to model the data as a sum of slowness components.
One can use this high-resolution slowness model for any purpose requiring a linear
2-D 7-p transform. In particular, based on this model, one can interpolate the original
data or subtract slowness components identified as noise. The least-squares algorithm
ensures that amplitudes estimated for the model are properly balanced relative to
the original data. The algorithm for the parabolic transform will be defined and
used in an analogous manner except that a new parameter defining parabola shape
should be substituted for slowness. Typically, multiple removal is accomplished by
subtracting from normal-move-out corrected common-midpoint gathers any model
parabolas identified by a seismic processor as multiples.

In this paper, I derive the least-squares equations for the discrete Radon trans-
form and show that under certain fairly general assumptions they form a Hermitian
Toeplitz system solvable by a complex form of Levinson recursion. Levinson recursion
requires a computational effort proportional to n? and thus is far more computation-
ally efficient than is standard matrix inversion which requires an effort proportional
to n3. The derivation will apply to either the parabolic transform, as described by
Hampson, or to 2-D linear 7-p methods. This derivation adds no new knowledge on
the topic beyond that in the literature. It does provide a concise overview and an
introduction to the algorithm in the routine suradon.

DEFINING THE TRANSFORM IN TERMS OF THE
LEAST-SQUARES EQUATIONS

Consider a transform of the form

np—1

flz,w) = 3 Flpg,w)e s,

k=0

This can be rewritten in the matrix form BF = f, where the transformation matrix
B is defined as By = e“P:9(®), The vector f(x,w) is provided from the input data.
‘The goal is to find a least-squares representation of F(p,w).
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The general least-squares solution can be written in the form of the normal equa-
tions as (B'B)~!(B'B)F = (B'B)~!B!f which reduces to F = (B'B)~'Blf. Here
the { symbol is used to denote the adjoint or complex conjugate transpose.

Now, restrict the generalized slowness parameter p to be of the form
P=Pmintk-bp

Under that restriction, the matrix Bt B is Hermitian Toeplitz. To see this, first note
that for any matrix B, B'B is Hermitian. That is, (B'B)! = B'B. Now, study the
matrix C = Bt B for our choice of B. The components of C are

nz—1

Cot= Y. Bl By
=0
nz—1 nz—1
Cok = Z e~ wpmg(z1) giwpralzi) _ E g% (Pr—pm)g(=i)

Note that the quantity pr — p,, = (k — m) - p. Therefore,

nz—1

Couk = Z ew(k—m)bpg(zi)
1=0

Note also that Cpz = Ri_m, 80 C is Toeplitz in form, with the same elements going
down each diagonal. This fact allows us to use Levinson recursion to solve the systems
CF = B'f for each frequency component. This derivation did not require regular
spacing in z or even a particular form for g(z). We set g{z) equal to z for 2-D linear
7-p transforms or equal to 3% for parabolic transforms. Foster and Mosher (1992)
set g(z) equal to 1/z2 + 22; — 2. in attempt to more closely fit multiple events to
hyperbolas rather than to parabolas.

STABILITY

A good overview of the stability issues is given by Gulunay (1990). For some
frequency components such as 0 Hz, or at frequencies where aliasing artifacts oc-
cur, the matrix inversion cannot successfully determine F, as the problem is clearly
underdetermined. At 0 Hz, all values of the Toeplitz matrix have the same ampli-
tude so the matrix is clearly not diagonally dominant or invertible. A similar matrix
form can occur at higher frequencies when there is a spatial aliasing problem. For
these frequencies, a large white-noise parameter is required to stabilize the result.
The limiting case, where an infinitely large white-noise parameter is used, completely
diagonalizes the matrix C and provides a solution identical to that obtained with
a classical 7-p inversion based only on the conjugate operator Bf. More accurate
inverses are computed using small values of white noise. Ideally, the white-noise pa-
rameter would vary frequency-by-frequency and be set at the smallest level required
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to ensure stability. Suradon applies a single white-noise factor to all frequencies. As
the white-noise level is increased, the advantage of the matrix inversion is lost and the
solution moves toward that of traditional conjugate operator methods. Conversely,

as the white-noise level is decreased, a point is reached beyond which results become
unstable.

Gulunay also points out that in the limit as the aperture becomes large and the
trace spacing becomes small, the solution approaches that obtained for continuous
functions and once again the matrix C' becomes diagonal. The goal of the matrix
inversion is to minimize the errors due to finite aperture and finite sampling.

SUMMARY OF THE ALGORITHM IN SURADON

Loop over gathers:

Loop over r within each gather:

e get an input trace,

e  extract z information for computing g(z) from trace header,
e do forward temporal FFT (sign in transform is +1),

e  store result in memory.

Loop over w from wyiy t0 Wimax:
e gather all £ components for a given w,
e solve system BF = f for F using a complex form of Levinson recursion.

Loop over p:

o gather all w for a given p,

o do inverse temporal FFT (sign in transform is -1},
¢ put p information in trace header,

s output trace in 7-p domain.

Suiradon has a similar 3 loop structure with the following changes. The loop
bringing in the 7-p data and doing the forward temporal Fourier transform is over
p instead of z. The information for p is extracted from the trace headers. The
information for g(z) must be supplied by the user. In the second loop, the system
BF = f is solved for f by straightforward matrix multiplication. The final loop doing
the inverse temporal FFT would be over z instead of p. The output data is in the
(time,space) domain.

ADDITIONAL CONSIDERATIONS

The least-squares formalism derived here assumes that n, < n,. Ideally, when
n, > ng, the least-squares inverse should be computed as F = Bt (BBY)~1f. For
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this formulation, the option to use Levinson recursion is lost. However, one can use
standard matrix techniques to do the inversion. Once the decision is made to go
to the cost of using standard matrix inversion methods, it is possible to expand the
theory, for either n, < n, or n, > n,, to include operators with spatial weights. For
example, spatial aperture weights could be included in a more complicated defini-
tion of the transform. Spatially variant anti-alias filters could be used. The theory
also expands to cover other transforms such as Fourier-Bessel transforms. Anderson
(1988) studied this broader class of transforms and compared inversions computed by
Gauss-Jordan elimination, singular value decomposition, and, for applicable Toeplitz
systems, Levinson recursion with Simpson’s sideways recursion. Singular value de-
composition provided the most accurate and consistently stable result, but at the
greatest expense, Because, the inverse matrices are independent of the data, they can
be computed once, stored, and reused, whenever a regular geometry can be assumed.
However, the disk space required to store an inverse matrix for each frequency can be
large, and the corresponding input/output effort is significant. The regular-geometry
assumption can be very limiting because even when the acquisition geometry is regu-
lar, the editing of noisy traces and variations in the mute zone can make the geometry
appear irregular to this algorithm. It far preferable to use irregular geometry than to
fit artificially dead data when computing the model data in the transform domain.

In practice, one can use the Levinson recursion approach with n, > n. and
prewhiten the inversion step to ensure stability. It is generally better to ensure that
the basis functions of the model in transform space span all of the events in the data,
with minimal aliasing, than to work with too small a value for n,.

CONCLUSION

For regular increments in generalized slowness p (i.e., p = Pmin+kp), transforms
of the form f(z,w) = T3 F(pe,w)e“P:9®) can be solved using a complex form of
Levinson recursion. This general form allows the function g(z) to be z for 2-D linear
7-p transforms or z? for parabolic transforms. Without giving up the Hermitian
Toeplitz form required for rapid solution, g{(z) could be defined as a more general
function of spatial position if a geophysical application demanded it.
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APPENDIX A: LEVINSON RECURSION WITH HERMITIAN
TOEPLITZ SYSTEMS

Solve the system RA = B where R is a Hermitian Toeplitz matrix, B is a known
complex vector, and A is the complex solution vector to be determined.

As a part of the solution effort, we will find the solution to RF = S, where F is
a complex spiking filter and S is a vector with a unit spike in location 0 and zeros
everywhere else.

Levinson recursion for Toeplitz systems is discussed by Claerbout (1985). The
critical differences worth noting in this derivation are which terms become complex
conjugates for a Hermitian Toeplitz system.

Iteration 0:
Initialize v: v =1
Solve for the spiking filter: fo = vy/ro
Solve for the shaping filter: ag = by/ry

Higher Iterations:

Each successive iteration is built up using the solution from the previous iteration.
For example, here we will build the 3 x 3 spiking filter for iteration 2 assuming that
the 2 x 2 results from iteration 1 are available as listed below.

2 nlA]=15]

[ slal=[]

Note that subscript on v corresponds to the iteration number. Solve for ¢ such

that
Tg 1 T2 fo 0 Vo
rnoTg T Al-clfilp=1]0
T, r; To 0 fl; 0

Because we are working with a basis made up of spiking filters, we obtain a simple
form after performing the matrix multiplication by R. The only terms that need to
be computed are those for the top row and the bottom row.

LE] (3]}
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where

Niter—1
€= E T}ilel_kfk
k=0

For this computation, the output value of v, is not important as long as it does
not equal 0. If v, equals 0, then our system has become unstable and the recursion
should stop. We only need to concentrate on the bottom row to estimate a value for
c. Based on the computed value of ¢, one can compute new values for the spiking
filter f and v,.

* —
€ — C'UN“"_I =0

e

c= —

v-’- iter—1

(Fi) Nirer = (fie = CF Ny —it) Mo —1

— e
vivitel‘ - vNitel-l —ce

At the end of this iteration we have the 3 x 3 spiking filter solution for

rg 1 T2l | Jfo v

r; o l|lA]l=1]0
* .

rg 11 1o} Lfe 0

Now, update the shaping filter A for this iteration by solving

T T1 T2 ao ] bo
Tl To M a| —¢C fl = b1
H ™ *

Tg T3 To 0 fo b2

Once again, we are taking advantage of the fact that F is a spiking filter so that
we only need to pay attention to the bottom row of R for this computation.

Niter -1

* * _
kz% 'r-Nitel'_ka"B - chiter - bN“GI‘

After computing ¢, we can update A and move on to the next iteration.

(ak)Niler = (ak)Niter_l - chriter_k

After the last iteration, the vector F should be normalized based on the current
value of v. This ensures that RF = S, if F is a desired output from this computation.
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APPENDIX B: A SIMPLE PARABOLIC 7-P TRANSFORM
EXAMPLE

A very simple example of the parabolic 7-p transform demonstrates the util-
ity of the least-squares approach. Figure B-1 displays a CMP gather that has a
small-amplitude primary event properly flattened by NMO. A larger-amplitude mul-
tiple event still contaminates the data. An ideal parabolic transform would reveal
that these data are the sum of only two parabolic events. Figure B-2 displays the
parabolic transform obtained by using the conjugate operator. Note that the events
are smeared together. Figure B-3 shows the discrete Radon transform result obtained
using suradon. The least-squares approach does a better job of separating the two
events in transform space.

A production-oriented processing code for parabolic filtering would operate some-
what differently than using suradon, followed by a parabolic 7-p mute, and
suiradon. In practice, the desired result is a section with no multiples, created
by an algorithm that is easy to use. A seismic processor would probably prefer to
supply the maximum and minimum move-out error in ms at a reference offset rather
than the parabolic shape factors used in suradon. The move-out timing error of a
parabola, at a reference offset can be readily picked from CMP gather displays. A
parabolic filtering module would take care to not fit dead traces or muted regions dur-
ing design of the model parabolas. Such care typically requires separate transforms
for multiple time windows within the mute zone. Suradon operates on all of the
data in only one time window, does not check for dead traces, and does not preserve
all of the trace header information. A production-oriented module would operate in
reject-filter mode, doing the forward transform, inverse transforming the estimated
multiples, and subtracting the estimated multiples from the input data. Generally, it
is preferable to apply a reject filter in order to preserve as much of the original data
character as possible than to depend on the quality of a forward and inverse parabolic
7-p transform for every aspect of the data. The one-module, reject-filter approach
also makes it easy to avoid stability problems by using only a limited range of fre-
quencies for the reject filter without explicitly band-pass filtering the data. Because
the data are input and output in the same domain, with the same number of traces
per gather, it is easy to preserve all of the trace header information. Suradon and
suiradon serve as general-purpose tutorial codes illustrating the method.
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F1c. B-1. CMP gather with an aligned primary event (amplitude 1, parabola shape
0) and a multiple event (amplitude —2, parabola shape 641072 (s/m)?) both at the
same ( offset intercept time of 0.25 s. A zero-phase band-pass filter 5/10 80/100 Hz
has been applied to the data.
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Parabolic shape

-100 0 100
0

Intercept time (s)

0.4

Fic. B-2. The conjugate method for computing the parabolic 7-p transform would
compute F' = Ika" f. The scaling of the display covers up the fact that the overall
gain of this result is incorrect. Compare the resolution of this result with that of
the least-squares method. The horizontal axis labeled * parabolic shape” displays the
parabolic p values, scaled by 10, in units of (s/m)2.
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Parabolic shape
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F1G. B-3. Using the least-squares approach for computing the transform provides
better separation between the events in the parabolic 7-p domain. A perfect result
would have a filtered amplitude of ~2 at parabola shape 64 - 10~ (s/m)2), a filtered
amplitude of 1 at parabola shape 0 for intercept time 0.25 s, and zero values every-
where else. The horizontal axis labeled ” parabolic shape”, displays the parabolic p
values, scaled by 10°, in units of (s/m)2.
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Three-dimensional dip moveout for
depth-variable velocity*

Craig Artley, Pairick Blondell
Alexzander M. Popovicit, and Matthias Schwab

INTRODUCTION

Artley (1992) proposed a method for computing the 2-D dip-moveout (DMO)
correction for media where the velocity is a function of depth (termed v(z) media).
The method first traces rays through the medium and then solves a system of equa-
tions that must be satisfied by the zero-offset ray and the two rays that make up the
nonzero-offset path. Once these rays have been found, the time along the zero-offset
ray and its emergence point are immediately known.

Here we extend the method to 3-D. In 2-D, rays were tabulated as three functions
of the ray parameter p and the two-way time ¢ along the ray. The functions computed
by ray tracing were the horizontal distance £ traveled by the ray, the two-way vertical
time 7 (stretched depth coordinate), and the propagation angle §, measured with
respect to the vertical. Since the velocity varies only with depth, exactly the same
ray tables can be used for 3-D DMO. The ray parameter p is actually the magnitude
of the vector formed by the z- and y-components of the slowness vector p at any
point along the ray. Since the medium varies only with depth, p = /p2 +p2 is
constant along the ray, just as in 2-D. Also, the azimuth angle that the horizontal
component of p makes with the z-axis, ¢ = tan—!(p,/p.), is constant. At a given
point along the ray, the z-component of p can be computed from the eikonal equation,
1/v2 =p + pg + p2, where v is the velocity of the medium at that point.

RAYPATH GEOMETRY

Figure 1 shows the source, geophone, and zero-offset rays in 3-D. As in 2-D, the
rays must meet at the reflection point (z,, 3., z,), but now the rays do not necessarily
all lie in the same vertical plane. The total time t,, along the nonzero-offset path is
known, as are the source and receiver positions, and, thus, the source-receiver offset
2h. Each ray is completely determined by its ray parameter, the azimuth angle the
ray makes with the z-axis, and the time along the ray.

* Another version of this work appears in Stanford Explaration Project report SEP-T7.
Stanford Exploration Project, Stanford University, Stanford, California 94305
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FIG. 1. Raypath geometry in 3-D. The source ray leaves the surface from (-5, 0,0),
while the geophone ray leaves from (h, 0, 0). The zero-offset ray leaves from zero-offset
location (xp,¥o,0). All three rays terminate at the reflection point (Tpy Yry 25).

The ray parameter p of the zero-offset ray as well as the azimuth angle ¢ {formed
by the projection of the zero-offset ray onto the z-y plane and the z-axis) are taken
to be known. The problem is then to find the ray parameter, p,, azimuth angle, Os,
and two-way time, t,, for the source ray, as well as the corresponding quantities that
determine the geophone ray (p,, ¢,, and t;). Additionally, the time £ along the zero-
offset ray and the coordinates (zo,yo) must also be determined. Figure 2 is a map
view of Figure 1, showing the definition of the azimuth angles. Note that, because
the velocity of the medium varies only with depth, each ray is confined to a vertical
plane.

SYSTEM OF EQUATIONS

The three rays (termed a trio) must satisfy several conditions. The first is that
all three rays must terminate at the reflection point (Ty,Yr, 2-). Therefore, the tips
of all three rays have the same z-coordinate,

T, = f(p.nts) cos ¢s - h (1)
= &(pg,tg)cosdy +h (2)
= E(Pﬂ? to) cos ¢0 + Zo, (3)

where, as seen in Figure 2, £(p,,t,) is the projection onto the horizontal plane of
the ray from the source to the reflection point, and so on for § (pg,tg) and &(po,to).
Likewise, the rays have the same y-coordinate,

U = E(ps;ta) sin é.; (4)
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F1G. 2. Projection of the raypaths of Figure 1 onto the z-y plane.

= &(pg, tg)sing, (5)
= &(po, to) sin ¢y + w0o- (6)

Since they also have the same z-coordinate, the two-way vertical time for the three
rays is the same:

Tr = T(ps,1s) (7)
= T(pg:ty) (8)
= 7(po,%0)- (9)

At the reflector, the zero-offset ray lies in the plane formed by the source and
geophone rays. The zero-offset ray must also bisect the angle formed by these two
rays, as shown in Figure 3. Since py, p,, and p, all have magnitude 1/v, where v is
the velocity at the reflection point, py is simply proportional to the vector sum of the
slowness vectors of the source and geophone rays,

Po=A (Ps + pg) ) (10)
with " "
Po
=, 11
Ips + Pyl a

Considering the z-component of equation (10) gives
Po: = A (Psz +sz) . (12)
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7/

LI

F1G. 3. Slowness vectors (tangents) at the reflection point. At the reflector, the
zero-offset ray lies in the plane formed by the source and geophone rays.

Since pg, = cos[f(po, tp)]/v, and similarly for p,, and pg., this equation is equivalent

to
- cos [6(pg, to)]

o8 [8(ps, t.)] + cos [B(py, )]’
where 8(py, to) is the propagation angle of the zero-offset ray, (and likewise for 6(p,, ,)
and 8(pg,t,)). (Recall that 8(p,t), like £(p,t) and 7(p,t), is a tabulated function
known from ray tracing.) We now use this expression for A in the z-component of
equation (10), giving

(13)

_ cos [#(po, to)] ,
Pz = o [6(p,,t.)] + 00: [0(pg, t5)] (Poc + o) (14)

Similarly, the y-component of equation {10) yields

B cos [6{pg, to)] .
Doy = 05 [0(7s,15)] +(:302[9(Pg,t9)] (Dsy + Pay) - (15)

Finally, the nonzero-offset recording time t,4 is equal to one-half the sum of the
two-way times along the source and geophone rays,

1
tag = 3 (& +14). (16)

Eliminating the reflection point coordinates (z,, y,, and 7,.) from the preceding
equations leaves a system of nine equations in nine unknowns,

0 = £&(pg,t,)cosdg — E(po,to) cos o — o+ h (17)
0 = &(pg,ty)sineg, — E(po, o) sindo — Yo (18)
0 = &(pg,ty)cosdy — E(ps,ts) cos g, + 2R (19)
0 = &{pgt,)sing, — &(p,,ts)sin o, (20)
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= 7(po,t0) — 7(Ps,1s) (21)

7(po, ta) — T(pg.1g) (22)
Poz {cos [0(p,, 1,)} + cos [6(pg, t)]} — (Paz + Pyz) co8[6(po, 20)]  (23)
Poy {cos[0(p., t.)] + cos [0(py, 24)]} — (Pay + Pyy) co8 [6(po, to)] (24)
= U,p—(t,+1,). (25)

c o0 oo
I

The known parameters of the system are t,4, h, po, and ¢, and the unknowns to be
determined are Ps, Pg» ¢u ¢'g$ ts, tgs to, Zo, and Yo-

Note that x4 and yo appear (separately) in only the first two equations. Therefore,
these equations can be removed from the system, and zp and g can be computed after
solving the remaining system. Furthermore, the last equation can be used to replace
t, by 2t,, —1t, in the remaining equations. These simplifications reduce the system to
six equations and six unknowns (where ¢, is retained for notational simplicity):

0 = &(py,ty)cosdy — £(ps,ts) cos gy + 2k (26)
0 = &(pg,t,)sing, — &(ps,ts)sing, 27)
0 = 7(po,t0) — 7(ps,1) (28)
0 = 7(po,to) ~ 7(Pg,tq) (29)
0 = poc{cos[0(p,,2,)] + o8 [8(pg,2g)]} — (Pse + Pyc) cO8[0(po,t)]  (30)
0 = poy{cos[8(p,,ts)] + cos [6(pg, g)]} — (Pay + Pgy) co8[8(po, to)]. (31)

This system, like its 2-D counterpart, can be solved using Newton-Raphson iter-
ation (e.g., Press et al., 1986). With the solution in hand, equations (17) and (18)
are used to compute zg and yg, the emergence point of the zero-offset ray. Then the
3-D DMO correction (zg, ¥,%p) corresponding to the specified value of py and ¢y is
saved. The complete DMO operator is constructed by repeatedly solving the system
for different values of py and ¢y.

IMPLEMENTATION

We solve the system repeatedly while varying py and ¢, each time saving the
kinematic DMO operator, (2o, %). Since the method requires an initial guess to
the solution at each step, we work radially outward by computing the operator for
all po while holding ¢y constant, then moving to the next azimuth and repeating the
process. At each new azimuth and py = 0, we compute the initial guess by assuming
constant velocity. After the solution is refined via Newton-Raphson iteration, we
move to the next pp and repeat, using the solution at the previous py as the trial
solution. The algorithm is outlined below for fixed normal moveout (NMO) time £,
and source-receiver offset 2h. va(t) is the rms velocity function of the medium.
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Computation of the DMO mapping:

Compute ray tables £(p,t), T(p,t), 8(p,t)
Compute recording time via t2, = t2 + 4h%[v3(t,)
For all azimuths ¢y of zero-offset slope {
Compute trial solution to system for pp =0,
assuming v = const = va(t,)
For all magnitudes py of zero-offset slope {
Refine trial solution to system using
Newton-Raphson iteration
Save the DMO mapping to(Zo, Yo)
Use final solution for this py as
trial solution for next py

Rather than use p, and ¢, as unknowns in the system, we choose instead to work
directly with the components p,, and p,, and compute p, = /p3, + pl,, cos¢, =
Psz/Ps, and sin g, = p,y/p,. We use analogous expressions for py and .

Figure 4 shows the DMO operator computed with this method for a medium
with velocity v(z) = 1.5 + 0.6 zkm/s, 1.5km offset, and NMO time of 1.75s. As
shown by Perkins and French (1990), the crossline component “frowns”, while the
inline “smiles”. The operator has been truncated to a maximum reflector dip of
approximately 40 degrees for display purposes. The lower sheet of the complete
operator described by Dietrich and Cohen (1992) would greatly complicate the figure.

CONCLUSION

We have extended Artley’s (1992) method for computing the v(z) DMO operator
to work in 3-D. The 4 x 4 system in 2-D grows to 6 X 6 to describe the out-of-plane
component of the operator. Simple tests with a constant velocity gradient show the
scheme is feasible, and that the results are consistent with the analytical formulation
of Dietrich and Cohen (1992).
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inline (km)

11.74

zero-offset time (s)

11.76

‘ogrossline (km)

F1Gc. 4. DMO operator for 1.5 km offset and NMO time of 1.75s for a medium with
velocity v(z) = 1.5+ 0.6 zkm/s. The lower sheet is not seen because the operator has
been truncated for display purposes.
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Expanded Abstract:
Fundamentals of the discrete wavelet transform
for seismic data processing

Jack K. Cohen and Tong Chen

INTRODUCTION

The discrete wavelet transform has been an exciting topic of mathematical research
for about 10 years now. Some of the early wavelet research had seismic applications
explicitly in mind, but fields as diverse as quantum physics and voice coding have
also provided insights leading to the development of the modern theory. Qur purpose
is to explain and illustrate what the wavelet transform can do to seismic data, thus
providing the information necessary for researchers to assess its possible use in their
areas of data processing.

This paper gives an application-oriented introduction to the one- and two-
dimensional discrete wavelet transforms, including examples of wavelets, wavelet fil-
ters and their properties. We will make some suggestions about applications, but the
main thrust of the paper is to provide the information necessary to assess the potential
for use of wavelet methods in targeted areas of seismic processing. To set the stage for
seismic applications, we give a detailed analysis of the effect of the wavelet transform
on sloping reflections with a signal of given frequency band. This analysis reveals
a semi-quantitative explanation of the well-known division of the two-dimensional
wavelet transform into horizontal, vertical and diagonal emphasis panels. The result
is simple and probably has been noted by other researchers, but we haven’t found
a prior reference for it. In any case, it provides an important insight for use of the
two-dimensional wavelet transform in seismic processing.

Since the term “wavelet” is already used in seismology, there is potential for con-
fusion with its differing use in the theory of the wavelet transform. In connection with
the wavelet transform, this terminology is only loosely suggestive of seismic wavelets
such as source signatures and propagating waveforms. The mathematical wavelets
and the seismic wavelets do share some properties, notably the time-frequency local-
ization discussed in the next paragraph. However, in the mathematical theory, the
term wavelet is used in a technical sense. In particular, some of the mathematical
wavelets don’t look much like source signatures and the seismic wavelets commonly
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used for modeling sources do not meet the technical criteria set down for the math-
ematical wavelets. Below, “wavelet” will always refer to the mathematical wavelets,
not the seismic wavelets.

A seismic trace gives the time history of a geophone response. Its Fourier trans-
form reveals the frequency content of this response. Often, what is really desired is
the time evolution of the frequency response. For instance, a dominant feature of
most seismic traces is the loss of high frequencies at later time. The wavelet trans-
form of a trace provides a simultaneous display of its time-frequency content—therein
lies a principal reason for its study. The short-time or windowed Fourier transform
made popular by the work of Denis Gabor also localizes simultaneously in time and
frequency, using a uniform time window for all frequencies. In contrast, the wavelet
transform adapts the window according high frequencies the fine resolution they re-
quire and high frequencies the long windows needed to encompass them.

THE ONE-DIMENSIONAL DISCRETE WAVELET TRANSFORM

To get a feel for what happens to data under the discrete one-dimensional wavelet
transform, consider the effect on a single data vector z of length N = 2" and sampling
interval Af. At the first stage, the wavelet transform splits this data into two sub-
vectors al, d! each of length N/2 and sample interval 2A¢. (Just how the sub-vectors
are defined is immaterial for the moment.) The vector d! is retained as the first
portion of the wavelet transform of z, while the splitting process is repeated on a!
to produce a? and d2. This process can be repeated until the n* stage, when d"
and a® each consist of a single point and the data vector x is replaced by the vectors
d', &2, ..., d* and a (see Figure 1). At each stage, the sum of lengths of the two

x°=a°

d! al

Fic. 1. 1D wavelet decomposition.

sub-vectors is the same as the length of the parent vector, thus the sum of the lengths
of the d vectors plus the final single point a" is the same as the length V of the
original data. Since the z’s play the role of the a’s at the first stage, it is sometimes
convenient to set = a? as shown in Figure 1. In practice, the wavelet decomposition
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is often carried out to fewer than n levels so that the final d and a contain more than
a single datum.

As in Figure 1, denote the transformation from the parent a to the child a by A
and the transformation from the parent a to the child d by D. The most important
fact about the transformations A and D is that they are orthogonal. Thus, the
decomposition of the data is a change of basis to an orthogonal basis—the wavelet
basis. The A phase of the decomposition is essentially a “blurring” or averaging of the
data at the previous stage. In frequency domain, this is equivalent to a low pass filter
on the previous stage. The D phase of the decomposition is essentially the difference
of the data at the previous stage and the averaged data at the current stage. In
frequency domain, this is equivalent to a high pass filter on the previous stage. As
we will see, the A and D operations are not “merely” averaging and differencing of
adjacent data points, but these notions direct the intuition appropriately.

Since the A and D transformations are orthogonal, the inverse or reconstruction
algorithm is well conditioned. It consists of applying transposed matrices to the
current @ and d vectors to climb the ladder in Figure 1 reconstructing the (previously
discarded) parent a.

Wavelets and scaling functions

The function ¢(t) underlying the A transformation is called the scaling function,
and the function (t) underlying the D transformation is called the “mother” or
“analyzing” wavelet. Scaling functions and analyzing wavelets occur in linked pairs.
The mathematical theory constructs the wavelet (¢} from a given scaling function
¢(t). As already mentioned, the scaling functions ¢(t) and analyzing wavelets (t)
are localized in both time and frequency. While it is impossible for a given func-
tion s(t) and its Fourier transform 3(f) to simultaneously have finite (or “compact”)
support, it is not impossible for both of them to have negligible amplitude outside
finite intervals in their respective domains (i.e., time ¢ and frequency f). Scaling
functions and analyzing wavelets used in practice have faster decay than 1/t in time
and simultaneously have faster decay than 1/f in frequency.

The discrete wavelet transform provides a systematic mechanism for analysing
data at different scales (octave by octave). Indeed, since the translation step 27 is
linked to the level (or octave), the high frequency events (j near 0) are treated with
relatively small translation steps, so they get the fine resolution they require; while
low frequency events (j >> 0) get the larger time windows needed to encompass them.
See Figure 2 for a schematic of the equal area tiling of the time-frequency plane by a
wavelet basis.

Since the components of the wavelet transform are indexed by j—which gives the
scale or frequency level and &—which gives the location, it follows that the wavelet
transform simultaneously displays data in time-frequency domain. It also means that
a one-dimensional array is, in a sense, transformed to two dimensions. This type
of transformation should be compared and contrasted with the Gabor or short time
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FIG. 2. Schematic equal area tiling of the time-frequency plane by wavelets.

Fourier transform. There again, time is transformed to time-frequency domain by
windowing the time domain and Fourier transforming each window. But the Gabor
transform does not adapt the frequency band to the temporal band as does the wavelet
transform.

Recall that although the FFT is used algorithmically to compute the coefficients
s, of a function s(t) in the Fourier basis, these coefficients are more fundamentally
defined by the integration,

1 T .
N == t 21rmt/Td.
g T]o s(t)e ¢

Analogously the coefficients ¢;; of a function in the wavelet basis are algorithmically
computed by the FWT outlined above, but are fundamentally defined by integrating
the product of the function and the wavelet, as

e = [ s(Eys(t) de. (1)

Filters associated with scaling functions and analyzing wavelets

As has already been mentioned, the A operation is a low-pass filtering operation.
This can be given concrete expression in terms of a filter mg associated with each
scaling function ¢(t) according to the fundamental relation,

(&) = mo(€/2)9(£/2). (2)

As before, the notation, , is used for the Fourier transform of ¢. Figure 3 shows
the mg filter for a Meyer wavelet with fourth order smoothness (see appendix ) for
an explanation of the order n of a Meyer wavelet). Similarly, the D operation is a
high-pass filter m; satisfying

B(€) = mi(£/2)0(£/2). (3)
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Figure 4 shows the amplitude of the m; filter for the same Meyer wavelet. Notice that
the scaling function is present on the right side of both equation (2) and equation (3).
This is consistent with the previous averaged segment giving rise to both the next
wavelet segment d’ and the next averaged segment o’ in Figure 1.

A remarkable feature of the low- and high-pass filters is their symmetry of their
amplitudes in the quarter-period point as shown in Figure 5. For this reason, these
filters are called “mirror filters” in the literature. These mirror filters also satisfy

F1G. 3. Meyer my low-pass filter with 4th order smoothness.

1

0.8

0.6

0.4

T 0.3
’ 0.2 0.4

-0.4 -0.2

F1G. 4. Meyer m, high-pass filter with 4th order smoothness.

-0.4 -0.2

F1G. 5. Meyer mgy and m, as mirror filters.

the “power conservation” law,
Imo(€)| + |m1 (&) = 1,

an equation that plays a crucial role in the mathematical development.

As in the example shown (Figure 5), the wavelet low/high-pass filters always
overlap—they are not strictly low and high pass! The overlap means that bandpass
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interpretations of wavelet filtering must always allow for an intrinsic amount of fuzzi-
ness near the boundary. The overlap can be lessened by the choice of wavelets, but

it can’t be totally eliminated.

Figures 6 and 7, respectively, show several members of the Daubechies, and Meyer
families. In each case, the figure at the upper right may be regarded as the “typical”
member of the family.

 Meyer MU,MTin=2

i A
0.8 i 0.8
0.6 ] 0.6
8.4 i 0.4
0.2 ,:': 0.2t
! i
4] 0.1 D.2 0.3 0.4 0.5 )]
Meyer MO, MT:n=8

]
i

I

0.6 0.6
i
0.4 § 0.4
i
0.2 0.2
i /
0 .1 0.2 0.3 0.4 0.5 L 0 0.1 p.2 3 0.4 0.5

Fig. 7. Meyer m0, m1 filters.
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Filtering with wavelets

Observe that after the high-pass operation D, the resulting data have the same
doubled sampling interval as the averaged or blurred segment. How can its high
frequencies be present with a halved Nyquist frequency? The answer is that the
frequencies are “folded” over, just as if the data were aliased—see Figure 8. However,
gince only (well, almost only) the high frequencies are present in the D half-size
segment, there is no confounding of information—that is, there is no true aliasing
(well, almost none).

Before After

| [ 1|
0 | Fy 0 |F'I2

I | 1 i

0 i Fy 0 F2

F1c. 8. Representation of frequencies in D.

The parenthetical comments in the previous sentence are again an acknowledge-
ment of the inherent fuzziness of wavelet filtering operations. That is, the frequency
overlap in the wavelet transform implies a degree of aliasing in the decomposition
step. If the reconstruction algorithm is applied, then this aliasing is properly taken
into account and the reconstruction is perfect. However, most applications will in-
volve another operation interposed between decomposition and reconstruction (e.g.
compression or migration). In such a case, the aliasing is not perfectly removed
during reconstruction. With proper choice of wavelet, the aliasing distortion will be
negligible for most applications.

Applications most suited to wavelet transform analysis are those that effectively
use the simultaneous localization in time and frequency. The coefficients c;, defined
in equation (1) give a direct method for bringing this tool to bear on seismic data.

In the theoretical form,
s(t) = X cinthie(t),
ik
of the wavelet transform decomposition, the effect of such an application could be
summarized:
1. Localize in time and frequency by choosing a subset of the j’s and &’s.
2. Alter the c;’s in the chosen subset.

There are applications, notably data compression and filter design, where an oc-
tave is too gross a unit. One methodology for obtaining finer control in frequency
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domain (at the expense of decreased temporal resolution) is to repeat the decompo-
sition algorithm on one or more of the d vectors. This procedure is called forming
wavelet packets, see Wickerhauser {1992), Daubechies {1992). Another methodology
for overcoming the octave limitation is the use of the continuous wavelet transform,
again, a good introduction is included in Daubechies (1992).

Finally, observe that everything said in this section applies without change to the
case of spatial variations z and, indeed, there are sure to be interesting applications
of the one-dimensional wavelet transform applied to the offset or midpoint variable
of a seismic section. And, perhaps, the most interesting applications will involve
more than one dimension, so turn now to a discussion of the two-dimensional wavelet
transform. .

THE TWO-DIMENSIONAL DISCRETE WAVELET TRANSFORM

The simplest way to obtain a wavelet basis for a two-dimensional space, say, ¢ and
z, is to multiply the one-dimensional bases:

Vi (8, 2) = Yie(t) i (2)- (4)

This is analogous to replacing the one-dimensional Fourier kernel e** with e“!e~=
and does, indeed, provide a two-dimensional complete orthonormal basis in the wave-
let case just as it does for Fourier transform. The disadvantage of this basis is the
mixing of the scales j and j'. It turns out that it is possible to construct a basis using
only a single scale j at the expense of having three wavelets (basis functions) at each
j level. These three functions are

Vi (t,2) = pl(t)dw (),

Ve (1,7) = o) (2), (3)
Vi (t,2) = U(t)viw(2).

The averaging function at level j is

Girw (t,2) = djrl(t)Pje ().

This is the basis used in the remainder of this paper and also in many of the existing
applications of the two-dimensional wavelet transform.

It is convenient to think of the result of the wavelet transform with this basis as
being displayed in four panels as in Figure 9. The A symbol for the averaged (in
each direction) panel is the analog of the averaged portion occurring at each stage of
the one dimensional transform. As indicated in this figure, the superscript symbols
on the three wavelet portions of the basis stand for: H-horizontal emphasis panel,
V-vertical emphasis panel and D-diagonal emphasis panel. The V panel is created by
“averaging” in t and “differencing” in z. Hence a horizontal reflector would tend to
be eliminated from the V panels. From such extreme examples, one can understand
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Fi1c. 9. 2D data decomposition.

the observation that V panel does emphasize steeper dip events, and analogously for
the other panels.

A more precise analysis of the contents of the four panels in terms of dip angle is
contained in the next section.

Just as in the one dimensional wavelet transform, “folding” occurs in'the frequen-
cies contained in each of the H, V and D panels. Specifically, the temporal frequencies
are folded in H; the spatial frequencies are folded in V and both are folded in D.
Again, this folding does not confound data (except for the filter overlaps), so should
not be considered as true aliasing.

Analysis of sloping reflections

We give a detailed analysis of the effect of the discrete wavelet transform on
sloping reflection planes with a signal of given frequency band. This leads to a
semi-quantitative explanation of the known division of the two-dimensional wavelet
transform into horizontal, vertical and diagonal emphasis panels and provides insight
into the use of the two-dimensional wavelet transform in seismic processing. As an
example of seismic processing using the wavelet transform, some simple examples of
de-aliasing spatially aliased data are discussed.
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'x
F1G. 10. A plane of time dip # in space-time and in Fourier domain.

Consider the decomposition of the reflection data from a single dipping segment.
Letting # denote the time dip (or epparent dip or slope), the situation is shown in
Figure 10. The plane is characterized by the equation t = #p + zrtan in space-time
and by the equation

fo= fitan® (6)

in Fourier domain. The latter result is established by taking the two-dimensional
Fourier transform of §(t — ¢, — z tan§) using 27 f; as the conjugate variable to ¢ and
—2n f, as the conjugate variable to z.

Seismic data are characterized by their frequency band in addition to their lo-
cation in time-space. To include this vital aspect in the model, assume that the
sampling interval in time is At, with associated Nyquist limit F; = 1/2A¢, and sim-
ilarly introduce Az and F, = 1/2Ax in space. Suppose that the seismic signature
along the sloping reflection has temporal band [f~, f*]. Equation (6) shows that the
corresponding spatial band is [f~tan#, f* tan ).

Figure 11 indicates that the use of the three-function wavelet basis of equation (5)
divides the j** octave in half in each direction, thus providing additional frequency
localization. Even more important, the subdivision induced by this basis provides a
degree of dip localization. As Figure 12 indicates, the angle.

gy & arctan (%) = arctan (%) ; (7)
approximately separates dips that appear in H from those that appear in V. This
condition is independent of the signal band limits and is also independent of the level
4. This result gives analytic meaning to the notion that the H/ panels emphasize the
horizontal aspects of the signal, while the V/ panels emphasize the vertical aspects
of the signal.

Similarly, the angles #p:n and 8pmer defined by

def F\_ _A_*)

0pmin = arctan (2ﬂ) —arcta.n(zAx , (8)
def 2F;\ 2At

Opmer = arctan (Tt) = arctan ( Aa:) . (9)
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and shown in Figure 13, approximately bound the dips that appear in the D7 panels.

Decomposition of sloping refiections

Set F, = F, = 125Hz and set the signal band at 0-30 Hz throughout this section.
These assumptions imply that the boundary angle for the H and V panels is

egv = tan_l(l) = 45°;
that the bounding angles for the D panels are
Bpmin = tan~1(1/2) & 29°, Opmae; = tan™(2) = 61°,

Figures 14 shows the predicted contents of the first level panels as a function of dip
angle according to the restrictions implied by Figure 11 for the given signal band.
The darker curve is the maximum value in the band and the lighter curve is the
minimum. When the lighter curve lies above the darker curve, the band in that
panel is approximately empty. Thus, for example, D! and H! are empty for all
angles—this is a reflection of the fact that the maximum frequency f + = 30 Hz, while
half-Nyquist is 62.5Hz. Moreover since these values are well separated, no visible
leakage into these panels is expected for a reasonable wavelet. As the lower left panel
of Figure 14 indicates, the inequalities developed earlier imply that the V1! panel
remains {approximately) empty until an angle of about 64°.

Similarly, Figures 15 and 16 show the bandlimits predicted for levels two and
three. Data with 30° dip and the 0-30 Hz signal band is shown in Figure 17

The paper compares these theoretical predictions against the results of the discrete
wavelet decomposition of synthetic data using Daubechies 8 point wavelet {4 D). Here,
consider just the results for the HY panels at the first three levels. If the 5y angle
bound was strict, then, for the case at hand, H? would be empty. However, as
Figure 15 indicates, the lower bound is only slightly higher than the upper bound (the
precise values are f}', = 30Hz and fg: = 31.25Hz), and so it is not too surprising
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Fi1G. 14. Predicted first-level decomposition.

4l fasl  fol
1] 625 30.
2| 31.25 30.
3| 15.625 | 27.0633
4| 7.8125] 13.5316
5 | 3.90625 | 6.76582

Table 6. Theoretical frequency bounds for H7 for levels j = 1 to 5

that Figure 19 shows some “leakage” into H? caused by the imprecision of wavelet
filtering. Figure 16 and Table 6 indicate that H? should contain a substantial amount
of information relative to H?, and Figure 20 bears out this prediction. Figures 15 and
16 and Table 7 indicate that D', D? should be empty, while D? contains significant
information. Figures , and bear out this prediction.

Figure 21 shows the result of decomposition with a longer wavelet, the Daubechies
20 point wavelet. Since this wavelet has less overlap, the “leakage” is reduced. This
bears out the idea that the overlap phenomena (the intrinsic wavelet aliasing) can
be ameliorated by the choice of wavelet. However, using a longer wavelet is not a
panacea—in particular, for operator compression, shortness of the wavelet is an over-
riding concern. On the other hand, it is important to fit the wavelet to the task and
Meyer wavelets have markedly better filtering properties than the commonly used
Daubechies wavelets.
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Processing spatially aliased data

As an example of wavelet filtering some simple cases of spatial zc.using are treated
using the properties of the three wavelet basis. A central problem is that filtering
the panels near their boundaries will damage the overlap region causing aliasing
distortion in the reconstruction process. One way to cope with this is to use a
bandpass filters that avoid boundary regions. But if the wavelet used has a large
overlap, it is impossible to find a pass band that removes the spatial aliasing while
avoiding the overlap region.

A more fundamental way to obtain a satisfactory result is to use a wavelet with
smaller overlap regions. Good results were obtained using the Meyer wavelet of order
= 10, which has very small overlap (cf. Figure 7).

Filtering with two-dimensional wavelets

The above discussion of spatial aliasing made a good test bed for demonstrating
various aspects of the two-dimensional wavelet transform. These included exploiting
the division into horizontal, vertical and diagonal panels implied by the basis given
in equation (3) and controlling the intrinsic aliasing by choice of analyzing wavelet.
However, the applications shown could have been done with pure Fourier methodology
because the spatia.l—temporal localization of the wavelet basis wasn’t brought to bear.
A more suitable problem would be the treatment of spatial aliasing—or some other
phenomenon—occuring in a local region of gpace-time, z-1, a8 well as a local region
of the frequency plane, fe-fi-

That is, just as in the case of the one-dimensional transform, applications most
suited to wavelet transform analysis are those that effectively use the simultaneous
localization in data-domain and frequency-domain. The wavelet basis given in equa-
tion (5) implies the following theoretical expansion of the data:

s(t,z) = 3 e Vi (2) + 2 BB (,2) + 2 i (:5): (10)

k! kR k!

Notice that in this “pon-standard” two-dimensional basis, there is still only one fre-
quency parameter (j). The natural two-dimensional product basis implied by equa-
tion (4) would afford separate Jocalization in fz and fi, but this has been traded away
in favor of the dip localization afforded by the use of the three basis functions, '«bﬁcm
tbﬂk, and Pl at level-j in place of the single function Pjkjx (z,t) = qb,-k(t)'d)jfy(a:)
appearing at level-J, ' in the product basis.

In the non-standard basis, frequency localization by octave (in both f; and fr) is
attained by selecting j-values. Then selection of panel H, D or V further confines the
frequency to a half-octave (in both f: and f) and also confines the apparent dips.
Within a panel, temporal localization is attained by selecting k-values and spatial
localization is attained by selecting k’-values.

And, just as in one dimension, wavelet packets in 1 and/or z or the continuous
wavelet transform in ¢ and/or £ may be superior tools for applications requiring finer
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frequency control than stepping by octaves. Because of the greater continuity in
variables such as offset or midpoint than in time, ~-domain may more often require
these refinements than z-domain.
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use 8 and 4 grid points to cover the Nyquist frequency for the second-order and
fourth-order finite-difference methods, respectively. Both criteria, used by Alford and
Kelly, and Dablain, are consistent. However, for data in which the embedded wavelet
occupies, for example, two octaves, the dominant frequency is perhaps half of the
reference frequency used by Kelly and Alford, and might be one-third or less of the
Nyquist frequency used by Dablain. Thus, to satisfy the above requirement, about 18
to 20 points per Jominant wavelength rust be used for the second-order method, and
9 to 12 points per dominant wavelength for the fourth-order finite-difference method.

The flux-corrected transport (FCT) method developed by Boris and Book (1973)
has been successfully applied in the golution of the continuity equation for acoustic
media in circumstances involving large gradients and. discontinuities, where conven-
tional algorithms fail. This FCT technique has recently been implemented in acoustic
problems for seismic applications (Fei, 1993). In that work, the gecond-order acoustic-
wave equation is replaced by a set of first-order partial Jdifferential equations through
a change of dependent variables. The FCT algorithm can treat strong gradients,
shocks and impulses without the usual dispersively generated ripples, even for five or
fewer points per dominant wavelength.

Here, 1 developed 2 FCT finite-difference algorithm that can be directly used
with the gecond-order wave equation. This algorithm can also be applied to geismic
modeling and migration with full consideration of variable velocity and density. It can
image reflectors with a wide range of dips and generate synthetic seismograms with
no numerical dispersions. it can also be used on a relatively coarse grid to achieve
accuracy comparable to that of conventional finite-difference approaches on a finer

grid.

THEORY

For velocity and density fields that are functions of space, the acoustic-wave equa-
tion is

16%P 8 (10P g (10P 8 (10P
= Y- o (-5 o (100 .
fol o2t C2\:3:1:(p ax) + dy\p ay) + 9z \p 9z ] + f(wiy!za ); (1)

where p = plx,y,2) 18 density, ¢ = ¢(&¥> Z) is wave velocity, and f (z,y,2,t) i the
source function.

The above wave equation for inhomogeneous media can be approximated by
a second-order explicit conventional finite-difference scheme. However, this finite-
difference discretization causes the phase speed to become 2 function of discretization
interval, and generates undesirable numerical dispersion when the spatial grid is too
coarse (that is, to0 few samples per wavelength are used). In order to eliminate this
non-physical dispersion, a new FCT algorithm directly applied to the second-order
wave equation can be applied.
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The essential idea of FCT is the application of a corrective diffusion to a dispersive
transport scheme, such as conventional second-order finite-difference schemes, localiz-
ing the diffusion to the regions where non-physical ripples tend to form. This diffusion
is carried out in a conservative way; that is, whenever a portion of the wavefield is
removed at one point, the same amount is added back in somewhere else, and, as a re-
sult, there is no net loss or gain of the quantity (e.g. pressure) to the system. But for
a real problem, there is no priori information about where the dispersion might exist,
so the FCT attempts to apply the diffusion everywhere (steps 2 and 4 in Appendix
A}. Once the solution is diffused, an oppositing anti-diffusion is introduced to cancel
the diffusion wherever it is not needed (steps 3, 5 and 6 in Appendix A). Interaction
of the conventional stage (or transport stage), and diffusion and anti-diffusion stages
enables FCT algorithms to treat strong gradients, shocks, and wavefields on coarse
grids, with almost none of the usual dispersively generated ripples.

With this flux-corrected transport technique, seismograms and depth migration
images for spatially variable media are obtained at less computational effort than in
conventional finite-difference methods, which require a finer grid and smaller time
step to achieve comparable accuracy.

In the computer implementation, the absorbing boundary condition of Clayton
and Engquist (1980) has been applied to the side boundaries and the lower bound-
ary. Also, when doing the wave extrapolations, an expanding boundary (about the
wavefield moving outward from the source) has been used in order to save the com-
putational cost.

NUMERICAL EXAMPLES

The following gives sample results of tests of the new FCT algorithm on two-
dimensional forward problems and reverse-time depth migration, and comparison
with results obtained by a conventional finite-difference method. The reverse-time
depth migration, which basically is the same as forward modeling, simply runs time
backwards.

Wedge model

Here, I give comparisons of the FCT and the second-order conventional finite-
difference results with the analytical results for a 90-degree wedge model. The time
variation of the source function is (¢ — 0.1)e=*¢—91)"| where ¢ is time, measured in
8, and a=700 s~2. Figure 1 shows the normalized source function and its power
spectrum. The upper half-power frequency is 10 Hz, and the corresponding half-
power wavelength is about 0.244 km for velocity v=2.438 km/s.

Figure 2a shows a model in which the velocity in a rectangular area is assumed to
be zero, while outside that area, the velocity is a constant 2.438 km/s. The modeled
area in the tests is 5.266x5.266 km?, with upper left corner at the origin. The upper
left corner of the rectangular is at (2.194 km, 3.510 km). A line source is located at
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(2.633 km, 3.072 km), and three receivers, #1, #2 and #3, are located at (2.545 km,
3.159 km), (1.755 km, 3.072 km) and (2.018 km, 3.861 km), respectively. Figures 2a,
4a and 6a illustrate the geometry of the model, receiver locations and the spacing for
tests involving three different sizes of spatial step.

! Upper half-power
L | : f
= requency
30’ b ? 0.8
Eg 0.5
oy .2 0.3 0.4 - I Y i .
wo-* \/ Time (s) 0.2 ;
3 s :° 3% 30 25 36 35
Frequency (Hz)

(a) (b)

FiG. 1. (a) Normalized time response of the source function. (b) Normalized power
spectrum of the source function.

For the fine grid, Az=0.02194 km, the number of grid points G per upper half-
power wavelength is about 11. Figures 2b and 2c show wavefield snapshots at 1.026
s by the conventional finite-difference method and by the FCT method, respectively.
Figure 3 shows the comparison of time responses by both methods with that obtained
by the analytical solution at the three different receiver locations. The comparison
indicates that both conventional method and the FCT method generate accurate
solutions with no numerical dispersion.

On a medium-coarseness grid, Az=0.04388 km, for which Gy = 5.5, the wavefield
snapshot obtained by the conventional finite-difference approach becomes dispersive
(Figure 4b). As seen in Figures 4 and 5, an oscillatory tail has developed in solutions
by the conventional finite-difference method. For the FCT method, the wavefield
snapshot and time responses show no indication of numerical dispersion. However,
the FCT method produces some distortion of waveform.

When the grid size becomes more coarse, Az=0.08776 km, for which Gy ~ 2.7, the
oscillations in the conventional finite-difference solution increase significantly (Figure
6b, Figure 7a, 7c and 7e). The FCT technique, however, still generates a wavefield
with no numerical dispersion (Figure 6¢). Time responses at the three receiver loca-
tions also indicate that the FCT technique has eliminated numerical dispersion, even
for Go &~ 2.7 (Figure 7b, 7d and 7f). However, the waveforms generated by the FCT
method show considerable distortion, change of amplitudes, and, in places, apparent
time errors. The most obvious waveform distortion (Figure 6) is a loss of resolu-
tion, much as would happen in an attenuating medium. As seen in Figure 6b, that
distortion exists for the conventional finite-difference solution, as well. The loss of
resolution is a limitation imposed by use of too coarse a grid, independent of whether
or not FCT is used.

The comparison presented here demonstrates that the FCT technique can over-

158



Fei Dispersion elimination

v=2.438 kn/s

N A

208 )\ [20ax

450N 450 | |

- source
. receiver
(a)
Distance (km) Distance (km)
0 1 3 4

0 1 2 3 4 5 2

£ . g 0
[=% o
L g1

(b) | (c)

F1G. 2. Wavefield snapshot at 1.026 s on fine grid (G ~11), Az=0.02194 km. (a)
Wedge model. (b) Conventiona] finite-difference solution. (¢) The FCT solution.
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(&) G

Fic. 3. Comparison of analytical solution (solid line) with conventional finite-
difference solution and FCT solution (x) on fine grid (Go = 11). (a), (c) and (e)
are for the conventional finite-difference method. (b), (d) and (f) are for the FCT
method. (a) and (b) are the solutions at receiver #1; (c) and (d) are the solutions at
receiver #2; and (e) and (f) are the solutions at receiver #3.
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F1G. 4. Wavefield snapshot at 1.026 s on medium-coarseness grid (Gy = 5.5),

Az=0.04388 km. (a) Wedge model. (b} Conventional finite-difference solutjon. (¢)
The FCT solution.
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Fei

1.0

(e) ' (f)

Fic. 5. Comparison of analytical solution (solid line) with conventional finite-
difference solution and FCT solution (x) on medium-coarseness grid (Gp = 5.3). (a),
(c) and (e) are for the conventional finite-difference method. (b), (d) and (f) are for
the FCT method. (2) and (b) are the solutions at receiver #1; (c) and (d) are the
solutions at receiver #2; and (e) and (f) are the solutions at receiver #3.
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FI1G. 6. Wavefield snapshot at 1.026 s on coarse grid (Go ~ 2.7), Az=0.08776 km.
(a) Wedge model. (b) Conventional finite-difference solution. (¢) The FCT solution,
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Fic. 7. Comparison of analytical solution (solid line) with conventional finite-
difference solution and FCT solution (x) on coarse grid (Go = 2.7). (a), (c) and
() are for the conventional finite-difference method. (b), (d) and (f) are for the FCT
method. (a) and (b) are the solutions at receiver #1; (c) and (d) are the solutions at
receiver #2; and (e) and (f) are the solutions at receiver #3.
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The three semi-circular reflectors seen in the figure are in the correct positions, with
no indication of numerica) dispersion. Theory predicts that the migration impulse
Tesponse in two-dimensiona] Space carries a 45-degree phase shift (Claerbout, 1985),
80 a symmetrical input pulse generates a phase-distorted migration response. The
measured migration impulse response in this test (Figure 8) has about 90-degree
phase shift.

For velocity changing both laterally and vertically, ¢ = 1.540.1z +0.52 km/s, the
post-stack migration response of the FCT algorithm to three impulses (five samples
per wavelength of the sinusoid pulse, and At = 2.6 ms } is shown in Figure 9.
Again, three semi-circular reflectors are in the correct positions, with no indication
of numerical dispersion. Here the FCT method gives a good image for reflector dip
beyond 90 degrees, but, the amplitudes beyond 90-degree appear weak. Note that
due to the lateral velocity variation, the centers of the semi-circular reflectors are
shifted to the right.

Salt-dome structure mode]

Figure 10 shows g reflector structure modeling the boundary of an overhanging
salt dome with dip as large as 125 degrees. The input zero-offset time section for two
different velocity models (Figure 11) was obtained by a Kirchhoff modeling program,

depth migration applied to each of the zero-offset synthetic data sets in Figure 11.
The spatial steps Az and Az in these tests are 0.012 km; the time step At is 1.7 ms
for the constant vertica] velocity gradient, and 1.5 mg for the diagonal-gradient case.

Figure 11a gives the synthetic data for velocity linearly increasing with depth,
c(z) = 1.5+ 0.9z km/s. The second-order FCT migrated section (Figure 12) shows
accurate imaging of the dome structure, with no indication of grid dispersion. The

Second-order conventional finite-difference migration applied to the same zero-offset
data with the same spacing has strong numerica] dispersion (Figure 13). When I
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Fic. 8. Migration impulse responses by the flux-corrected transport method for a
constant background velocity of 2.0 km/s and constant density.
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[4)]

FiG. 9. Migration impulse response for velocity linearly increasing with depth and
horizontal distance, ¢ = 1.5 + 0.1z + 0.5z km/s, and constant density.
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F1G. 10. Reflector model used to generate synthetic data in Figure 11 for the tests
described in Figures 12 through 15.
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(a) (b)

F1G. 11. Zero-offset synthetic time sections generated by Kirchhoff modeling for (a)
velocity linearly increasing with depth, ¢(z) = 1.5+0.92 km/s, and (b) velocity model
with linear variation in (2,2), c(z) = 1.5+ 0.1 + 0.9z km/s.
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Depth (km)

e mode] as
hat for the FCT migration in Figure 19 and on the finer grid. Az=A2=0.008 km.

0 1 2 3 4 5 6

Depth (km)

FIG. 15. FCT migration for velocity model ¢(z) = 1.5 + 0.17 + 0.9z km/s, and
constant density, Az = Ay = 0.012 km.
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reduce the grid size to 0.008 km, which has about the same computation cost as
that for the FCT method on the coarser grid, the migrated section obtained by the
conventional method still has strong numerical dispersion (Figure 14).

For the second model, wherein velocity varies both laterally and vertically, c(z) =
1.5+ 0.1z +0.92 km/s, again migration by the FCT method gives clear and correct
reflector position for all dips with no numerical dispersion (Figure 15).

VSP data

Figure 16 shows a fault structure used for generating synthetic, acoustic VSP
data. The velocity i8 5.2 km/s in the first layer (shallow part), and 7.5 km/s in the
second layer (deep part). The line source is located at £ = 0.666 km on the surface
and the receiver borehole is at = = 3.75 km.

Distance (km)
2 3 4 5 6

o
)
\ﬂ

== 3
1
ll-ll-'lIlI-llI-llll.-

Fic. 16. Velocity model (fault Vmodel) used for generating synthetic VSP data.

Pigure 17 gives gynthetic VSP seismograms for the fault model in Figure 16.
Figure 17a 18 generated by applying the zero-gradient reflection boundary condition
on the surface and absorbing boundary condition on the side and lower boundaries.
For the seismogram in Figure 17b, 2 zero-gradient reflection boundary condition i8
applied to all the boundaries. Figure 17a shows that only the direct arrival, reflection
from the interface and the reflection from the surface can be clearly identified. Weak
waves have been reflected from the sides or bottom. Figure 17¢c shows VSP data from
the physical modeling of the same VSP and fault geometry. The physical model has
dimension of 72x48 inch2. In it, the upper layer (Lexan) has a P-wave velocity 5.2
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km/s, and the lower layer (Plexiglass) has a higher P-wave velocity 7.2 km/s. A
vertical-displacement source is located on the surface, 8 inches from the upper left
corner, and the borehole containing vertical-displacement receivers is on the vertical
line 45 inches from the left edge. The synthetic VSP data for reflection boundary
conditions (Figure 17b) compares favorably with the physical modeling VSP data

(Figure 17c). One source of difference will be that the physica.l-model data contain
S-waves.

CONCLUSIONS

Too coarse a grid used in ﬁnite-diﬁerence‘waveﬁeld extrapolation, causes both
pumerical dispersion and loss of resolution. The FCT method is effective in curing
the dispersion problem; the resolution problem gtill remains. As we have seen, the
FCT finite-difference modeling and reverse-time depth migration can handle arbi-
trary velocity and density fields. Although the additional FCT steps used for the
second-order wave equation require about 1.8 times more computation than does the
conventional finite-difference step, the FCT method offers the opportunity to use a
coarse grid to obtain accuracy in wavefield extrapolation that is comparable to that
obtained by conventional finite-difference methods on finer grid. From the comparison
of the FCT technique for the gecond-order wave equation with that for the first-order
wave equation (Fei, 1993),1 conclude that both FCT algorithms have about the same
computational cost. However, the advantage of the FCT method for the second-
order wave equation i8 that the corrective stage can be easily embedded in existing
finite-difference algorithms.

In any case, 2-D finite-difference reverse-time depth migration is still slower than
other methods such as Caussian beams. 3-D modeling and single-pass 3-D migra-
tion might offer more computational benefit for the reverse-time FCT approach; this

remains to be investigated.
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APPENDIX A: FLUX-CORRECTED TRANSPORT

The flux-corrected transport (FCT) method (Boris and Book, 1973) was deve)-
oped primarily for solving the first-order continuity equation in hydrodynamics, In
Appendix A of Fej (1993), I showed the Prescription for applying the method to the

1. Advance the solutions by a standard second-order finite-difference method and
obtain PIAL at time level n+1 (P4l is the value of P at the time sample 5 1,
Z-coordinate sample i, y-coordinate sample j and z-coordinate sample k).

2. Compute diffusive fluges ag time level 5 :

Deivrfain = m(Ph, ;- Pr, — Fiw+ PR o<n <1
Qisrrpn =m (Btre — Py — L Piw) 0<m<1
Qeliprije = m (P, — Pk = Piga + P 0< gy <1, (A1)

treatment of events for small scale problems. Results are not critically sensitive
to the choice of h once it is close to 3 good value.

3. Compute diffusive fluxes at time level n + 1, for use in step 6 below :
5 7+l n n 7 n
Q¢?+1/2.j,k = ??2(1°;'+ij,1= — P~ Fliin+ Fiw) 0<p<1
> ndl n ,,
Duigiiyoe = 1a(PLh , — Prkt _ Fline+Ply) 0<m<1
> n+l n
Qsijrtiyn = me (P — PR — Blip + Flie) 0<p<a, (A-2)

with a similar choice of 72 as for n; in step 2.
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4. Modify (i.e. diffuse) the solution P using Qz, Q, and Q:; this process smooths
the solution (also causes SOMe loss of amplitude) and climinates the dispersive
ripples:
Pt =Py (Qorriy2ik — Q=iT1/240)
+ (Qy?,;l-lﬂ,k - Qu?,;_luz,k)
+ (Qz?ﬁﬂ/z - Qz?,;l:—lﬂ)' (A-3)

5. Compute diffusive fluxes with the diffused Pt and P™:
Xinage = Prie — Plags) = (PR = Piyk)

_ (Pntl n pn+l _ pm
Yij+1/2k = (Piivie— i,j+1.k) - (Pije Pia'-k)

Zijrrrf2 = (Bl — ) ~ (P — Plip)- (A-4)

6. Anti-diffuse the solution as follows, and obtain the corrected solution for P:

= Briy - (Xinyae— X5 1 jagk) ~ (Yiiei/2ke — YEi-1/28)

— {Zijper/2— Zf,j,k—uz)a (A-3)

where

e . ~ nt+l
Xi+1j2,j,k = Sz max{O, mln[szxi-lﬂ.j.ks abS(QSi+1j2.j,k)s S'-':Xi+3/2,:i,k]}!
e R ~ nt+l
Y2k = S max{0, min[Sy¥ij-1/2k; abs(Qy; 141/2,8) SyYiirazal}s
. ~ ntl
Z§ i ppry2 = S max {0, min[S; Zijk—1/2: abs(Q i 1/2) S Zijks3s2l}
~ n+4l

Sy = Sign{QxiH/z,j,k}s
. ~ n+l
Sy = Slgn{Qyi,j+1/2,k}‘

. ~ n+l
S, = Slgn{Qz?,j,k+1j2}'
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ABSTRACT

Realistic modeling of elastic wave propagation in the Earth requires considera-
tion of the inhomogeneity and, in some applications, anisotropy. Finite-difference
modeling based on the full elastic-wave equation can take such factors into ac-
count.

Here, through a change of dependent variables, I first replace the second-
order elastic wave equations by a set of first-order partial differential equations,
which I then solve by finite-differences upgraded by the flux-corrected transport
(FCT) method. Computed snapshots of the two-dimensional elastic wavefield and
synthetic seismograms for inhomogeneous models of anisotropic media indicate
that this method gives solutions without numerical dispersion even when as few
as five samples per dominant wavelength are used.

INTRODUCTION

Finite-difference solutions to the wave equation are useful tools in wave extrapo-
lation. The methods can address a full range of issues — arbitrary velocity variation,
attenuation, turning waves, shear waves and anisotropy.

Finite-difference schemes for the wave equation often suffer from undesirable rip-
ples, particularly near large gradients in wavefields or when too coarse a computation
grid is used. Alford et al. (1974), Kelly et al. (1976) and Dablain {1986) have studied
the numerical dispersion existing in finite-difference methods. To eliminate the grid
dispersion in the second-order finite-difference method, Kelly and Alford stated that
at least 11 points per upper half-power wavelength must be used, and Dablain con-
cluded that 8 points per wavelength at Nyquist frequency must be used. Consistent
with Kelly, Alford and Dablain’s conclusions, Fei (1993b) expressed the computation
accuracy in terms of number of points per dominant wavelength (typically about
twice the upper half-power wavelength) and found that about 18 to 20 points per
dominant wavelength must be used for the conventional second-order method. To
reduce the computational requirements in finite-difference modeling and migration,
Fei (1993a, 1993b) adapted the flux-corrected transport (FCT) method, developed
by Boris and Book (1973) for solving the continuity equation in hydrodynamics, to
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seismic applications for acoustic media. The FCT algorithm can treat strong gradi-
ents, shocks and impulses, without the usual dispersively generated ripples, even for
five or fewer points per dominant wavelength. The method thus gains its efficiency
because it requires fewer points per wavelength.

In seismic applications, acoustic media are not always applicable. Modeling of
amplitude versus offset (AVO) behavior requires treatment of wave propagation in
elastic media. Likewise, acoustic-wave modeling cannot yield any information about
P- and S-wave conversion. Moreover, since isotropy is not a valid assumption for
much of the Earth’s subsurface, general seismic modeling and imaging techniques for
anisotropic media needs to be developed. Here, I extended the FCT finite-difference
modeling technique from acoustic media to elastic and anisotropic media.

THEORY

The key steps in deriving equations used for FCT modeling for acoustic media
are given in Fei (1993a). For elastic media, the pattern is similar: (1) define new
dependent variables, (2) form nine first-order, so-called conservative, equations in
these variables, based on the original second-order elastic-wave equation, and (3)
apply the FCT technique to the conservative equations.

Equations of motion for elastic media

For elastic media, the three general equations of motion are

2
p-‘zt—“; — fi+ 5‘3:—-1_(0,-,-) i=1,2,3, (1)
where 1,, z2 and x3 are the three Cartesian coordinates (later labeled z, y and z).
u; is the displacement vector, p is density, f; is the source function, and o;; are the
components of the stress tensor. By Hooke’s law, the stress and strain tensors have
the relation g;; = Cijpe€pq, Where cijpq are the elastic coefficients. The most general
inhomogeneous anisotropic medium is defined by 21 independent components in C;jpq,
each of which can vary independently over space. e, are the components of the strain
tensor

_1/0u, Buq)
8w=§(5,;+ax,, : @)

Since the strain tensor is symmetric, it has six independent components: €11, €22, €33,
€12, €13 and €o3.
With new dependent variables defined as
Bu,-

v EPE- i=1,2,3, (3)
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and considering the six independent components of strain tensor epq as the other six
dependent variables, equations (1) and (2) can then be replaced by nine first-order
partial differential equations. These nine new equations comstitute a complete set
of equations for doing wave extrapolation by the FCT method, for the most general
inhomogeneous, anisotropic elastic media. These equations are

Oy; 0 )
O _ 0 (%), 9O (¥ _
at. 3:1:4 (2p) + 317" (2p) p,9=1,2,3. (5)

Note in definition (3) that the new dependent variables v; have 90-degree phase
shift relative to the variables u;.

Where the elastic medium is assumed to be isotropic, the ¢;j,, take the form

Ciipg = Abijbpg + 1(ip0jq + Bigbiy), (6)

where 0;; 15 the Kronecker delta. Thus, when the medium is isotropic, Cijpq involves
only two independent coefficients, A and p, the Lamé coefficients. Using relation (6)
in the three equations (4), gives

o

0 )
5t = f.‘ + 5;[)6;3'(811 + €93 + 333) + 2}16,'1'] 1= 1, 2, 3. (7)
7

With the P-wave velocity a = |/ “—'*f‘i and S-wave velocity 8 = ‘/E, equations (7)
can be rewritten as

% =fi+ %[P(f — 26%)6;;(e11 + e + ea3) + 2Pﬂ2f’iﬁ] i=1,23. (8
7

With equations (8) and (5), wave extrapolation by the FCT technique can be
accomplished for the most general inhomogeneous, isotropic medium.

The Earth’s subsurface is seldom isotropic. In some applications, it is useful to
consider the medium as transversely isotropy. Then, the strain and stress relation
can be written as

o1 = Aeu + (A - 2N)822 + F633,
O9p = (A _ 2N)€11 + A822 +- F833,
o33 = Feyy + Fegy + Cea,
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o3 = 2Len,
013 = 2Ley3,
O19 = 2N812, (9)

where A, C, F, L and N are the five independent elastic coefficients that describe a
general transversely isotropic isotropic medium, with axis of symmetry in the vertical
(z3) direction. With these strain and stress relations, the three equations of motion
‘for transversely isotropic media, with vertical axis of symmetry, can be written as

dv a B - d
—a—tl =hHh+ "6?1 [Aeu + (A - 2N)622 + Fegz| + 3_582 [2N812 + 'aTs [2L813] . (10)
dv, o d o
-é? =fo+ a—xl-[2Ne12 + 3_:32[(A -_ 2N)811 + Aesn + F633] + 'aTa[zLeza] , (11)
dv a a a
Ea = fa3+ %;[21:813 + 5;; [2L623] + EE[FCH 4+ Fegy + 0633] (12)

Using Thomsen (1986) parameters for elastic anisotropic media, the relations be-
tween above elastic coefficients and Thomsen parameters are as follow,

<I9S

O =
L
ﬁ0=J:a
fil
__A-C
M To R
hN—L
T
_(F+L?—(C-L)y
6= 2C(C — L) ’ (13)

where ag is P-wave velocity parallel to the symmetry axis, Bp is S-wave velocity
parallel to that axis, and €, 7 and & are three dimensionless anisotropy parameters.
With these relations, we can convert between the two sets of parameters.

Three first-order equations, (10) through (12), and six others, equations (8) give
a complete set of equations for doing wave extrapolation in general transversely
isotropic media (with vertical axis of symmetry) by the FCT technique.
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Flux-corrected transport

For the most general elastic media, the FCT technique is basically the same as
that for acoustic media. Conceptually, the method consists of two major stages — a
transport stage (Stage I), followed by an anti-diffusive or corrective stage (Stage II).
Interaction of these two stages enables FCT algorithms to do the wavefield extrapo-
lation with no numerical dispersion.

In the transport stage, a standard finite-difference method is used to advance the
solution. In this stage, the amplitude ripples of numerical dispersion arise if too coarse
a grid is used. Stage II is devoted to correcting the numerical dispersion introduced
in Stage L. In Stage II, a corrective diffusion step is applied to the solutions obtained
in Stage I, and then an oppositing anti-diffusion step is applied where the diffusion
was not needed.

The difference between the elastic FCT and acoustic FCT algorithms is that for
acoustic media, the FCT corrections need only apply to one dependent variable, while
for elastic media, the FCT corrections should be applied to three dependent variables,
v1, v2 and v3. When v, v; and v3 are corrected, e;; can then be directly computed
from equation (5). In Appendix A of Fei (1993a), the FCT procedures for solving the
first-order acoustic-wave equations were given, The same procedures can be equally
applied to the first-order elastic-wave equations. For wave propagation in acoustic
media, Fei (1993b) also showed that the FCT method could be formulated to work
directly on the second-order acoustic-wave equation, and that formulation should hold
for the elastic-wave equations as well. However, I prefer working with the first-order
elastic-wave equations, as described here, because coding should be easier and the
strain tensor is obtained for free.

The promise of this flux-corrected transport technique is that for a given spatial
grid size, accuracy of the finite-difference calculation is enhanced. Alternatively, one
could do seismic modeling for spatially variable media at less computational effort
than that in conventional finite-difference methods, which require a finer grid and
smaller time-step to achieve comparable accuracy.

acoustic medium | elastic medium
Transport Stage 1 3.6
Corrective Stage 1.5 4.5
Total 2.5 8.1

Table 8. Comparison of the relative cost of the FCT method for acoustic and elastic
media.

Because of the increased complexity of the equations and increased number of
dependent variables, the cost of conventional finite-difference solution to the elastic-
wave equation is about 3.6 times the cost of finite-difference solution to the acoustic-
wave equation. In the FCT method, added cost is required for the corrective stage. Fei
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(1993a) stated that, for the acoustic problems, the corrective stage added about 1.5
times the cost of the finite-difference computation, making the full FCT method about
9.5 times the cost of the conventional finite-difference computation (for the same grid
size). Satisfyingly, the cost of the corrective stage for each of the three dependent
variables in the elastic-wave equation is identical to the cost of the corrective stage
for the acoustic case. Therefore, whereas the cost of the conventional finite-difference
modeling (i.e. the transport stage of the FCT method) for elastic media is about 3.6
times of that for acoustic media, for the full FCT method, the cost ratio is reduced
to about 3.2.

The approximate relative costs are summarized in Table 1. Note in Table 1, that
for elastic media the cost of the full FCT method is about 2.3 times that of conven-
tional finite-difference modeling when the same grid size is used in both. However,
just as for the acoustic case (Fei, 1993a), the cost of the FCT for 2-D elastic wave
modeling will be about a sixteenth that for conventional finite-difference modeling
because the FCT method can yield comparable accuracy on a coarser grid.

NUMERICAL EXAMPLES

I tested the FCT algorithm on two-dimensional forward problems for both ho-
mogeneous and inhomogeneous elastic, isotropic media, and on layered, transversely
isotropic media. For each medium, P- and SV-waves, as well as S H-wave, are com-
puted. In each of the tests, the spatial steps Az and Az are 0.02 km, and the time
step At is chosen to satisfy a conventional stability condition.

Test results show that, as with acoustic media, for elastic media the FCT method
can also generate wavefields without numerical dispersion, even for as few as five
points per dominant wavelength.

Snapshots for isotropic media

Figures 1 and 2 show the snapshots at 0.64 s for two elastic isotropic media with
a constant density 2.4 g/cm3. The line source, with a 20-Hz Ricker wavelet assigned
to force components f, f2 and f3, is located at (2.5 km, 2.5 km). For this source
function, the corresponding points per dominant S-wavelength are about 4 to 6,
depending on the velocity of the medium, while for P-wave, the points per dominant
wavelength are about 8 to 10. Force components f, and f3 are for generating the
P- and SV-waves, while the force component f; is for generating the SH-wave. The
directions of the force are indicated in Figure 1.

Figure 1, for a homogeneous medium, shows expected circular P- and S-waves
with the wavefront at their correct positions. Figure 2 shows the wavefront behavior
in an inhomogeneous medium with linear velocity variation. The P-wave velocity is
v, = 1.5+ 0.1z + 0.52 km/s, and the S-wave velocity is v, = 1.0+ 0.1z + 0.4z km/s,
where z is the lateral direction and z is depth. Note that the wavefronts of the P-,
SV- and SH-waves in Figure 9 propagate faster in directions of increasing velocity.
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Both figures show that applying the FCT method to elastic isotropic media generates
wavefield snapshots with no numerical dispersion.

Qo Bo 3 é v p

Material (km/s) | (km/s) | (g/cm3)
“Sandstone-shale 3.009 | 1.654 | 0.013 | -0.001 | 0.0035 | 2.34
Mesaverde-shale 3.749 | 2621 |0.128( 0.078 | 0.1 2.92
Cotton Valley shale 4.721 2.89 [0.135 0.205 | 0.18 2.64
Limestone-shale 3.306 | 1.819 {0.134{ 0.0 0.156 2.44
Taylor sandstone 3.368 | 1.829 [ 0.11 [ -0.035{ 0.255 2.5
Anisotropic-shale 2.745 | 1.508 [0.103|-0.001 ] 0.345 2.34
Anisotropic* 2.0 0.894 | 0.0 [-0.241]| 04 2.4
Mesaverde clayshale 3.928 | 2.065 [0.334| 0.73 [ 0.575 2.59
Gypsum-weathered material | 1.911 | 0.795 | 1.161 | -0.14 | 2.781 2.35

Table 9. Thomsen parameters for several materials (Thomsen, 1986). * Medium with
Thomsen parameters designed here to test wavefront behavior for =0, and with
relatively large § and 7.

Snapshots for transversely isotropic media

Each of Figures 3 through 5 shows a set of nine wavefield snapshots for waves
from a line source in a transversely isotropic medium, with vertical axis of symmetry
and constant Thomsen parameters (Thomsen, 1986). Table 2 gives the values of the
Thomsen parameters for the different materials tested here. For all cases, the same
source function and location used for the examples in Figures 1 and 2 has been used
here.

Figure 3 shows sets of snapshots for three media considered to be mildly aniso-
tropic, sandstone-shale, Mesaverde shale and Cotton-Valley shale. Figure 4 gives the
wavefield snapshots for limestone-shale, Taylor sandstone and anisotropic-shale. For
these moderately anisotropic media, the weak triplication behavior can be seen in the
SV-wavefronts. Figure 5 exhibits the wavefront behavior for examples of media with
extreme anisotropy, a medium with ap=2.0, 5,=0.894, £=0.0, y=0.4, §=-0.241 and
p=2.4 g/cm®, Mesaverde clayshale and gypsum-weathered material. Strong triplica-
tions in the SV-wavefronts are evident.

Tested examples given here indicate that the FCT method also works well for
seismic modeling in anisotropic media: the method generates wavefields with no
indication of numerical dispersion.

Snapshots in a layered medium

Figure 6 shows a 2-D earth model with three layers. Each layer is homogeneous.
The snapshots in Figures 7 through 9 have been generated at times t=0.48, 0.6, and
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X - component Z - component SH - wave

FIG. 1. Snapshots for a homogeneous elastic, isotropic medium with P-wave velocity
of 3.0 km/s, and S-wave velocity of 1.8 km/s. The density is a constant, 2.4 g/cmd.

Distance (km) Distance (km) Distance (km)
0o 1

0 1 2 3 4 2 3 4

X - component Z - component SH - wave

FIG. 2. Snapshots for an elastic isotropic medium with linear velocity variation. P-
wave velocity is v, = 1.5+0.12+0.52 km/s, and S-wave velocity v, = 1.040.1z+0.4=.

The density is a constant 2.4 g/cm®.
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F1G. 3. Wavefield snapshots for (a) sandstone-shale; (b) Mesaverde shale; and (c)
Cotton Valley shale.
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FIG. 4. Wavefield Snapshots for (a) limestone-shale; (b) Taylor sandstone; and (c)
anisotropic shale. '
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FI1G. 5. Wavefield snapshots for media that are considered strongly anisotropic.

(a) medium with 0p=2.0, §,=0.894, ¢=0.0, v=0.4, 6=-0.241 and p=2.4 g/cm?;
‘Mesaverde clayshale; and (c) gypsum-weathered shale.
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Lateral Position (km)
0 1 2 3 485 ¢ 7 8

0 | 1 l

Anisotropic shale

Depth (km)

F1G. 6. Earth model used for generating the wavefield snapshots, synthetic surface
reflection seismograms and VSP seismograms shown in Figures 7 through 12. The
upper layer is anisotropic shale with low P- and S-wave velocities; the second layer is
Cotton Valley shale, which has high velocities, and the third layer is limestone-shale
with intermediate velocities. The dashed line is the borehole position.
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0.84 s, respectively, with a line source (same as that used for the examples in Figures
1 and 2) located at (3.5 km, 0.8 km).

The snapshots show the evolution of the various (complicated) wavefields for this
simple earth model. After the earliest of times, the P- and SV-waves intermingle
fully, while the SH-wave propagation is much simpler.

Synthetic seismograms in a layered medium

Figures 10 to 12 show the synthetic surface reflection seismograms and VSP seis-
mograms generated by the FCT method for the layered model in Figure 6. The
vertical-displacement line source (20-Hz Ricker wavelet) is located on the surface,
at lateral position 4 km (position of black triangle in Figure 6). Also, the source
for generating the SH-wave (20-Hz Ricker wavelet) is given at the same location.
The receiver line for recording the reflection seismograms is on the surface, and the
receiver borehole for recording the VSP seismograms is at lateral position 6 km.

Figure 10a shows the in-line horizontal-motion of the surface reflection seismo-
gram. From the figure, it is seen that both the reflection amplitudes and the phases
change with offset. At small offset, hardly any reflection can be observed, because a
vertical-displacement source is used. Figure 10b gives the in-line horizontal-motion
of the VSP seismogram. The direct arrival in each layers, P, PP and PPP, and the
conversions of the P- and SV-waves at the interfaces, can be clearly identified.

Figure 11a shows the in-line vertical-motion of the surface reflection seismogram.
Strong P-wave reflection, with phase changes versus offset, can be observed for all
offsets. At small offset, the SV-wave reflection and the reflection from P- and SV-
wave conversion cannot be observed. Figure 11b gives the in-line vertical-motion of
the VSP seismogram. From this figure, again, we can clearly identify the direct arrival
and the P- and SV-wave conversions.

For the $H-wave, the surface reflection seismogram and the VSP seismogram are
given in Figure 12a and Figure 12b. Both figures indicate that the SH-wave behaves
much simpler than do the P- and SV -waves.

CONCLUSIONS

The FCT seismic modeling applied to the first-order acoustic-wave equation can
be applied equally well to the elastic anisotropic media. Rewriting of the elastic-wave
equations gives a new set of the first-order partial differential equations, with no
additional assumptions. These equations are then amenable to solution by the flux-
corrected transport method. The FCT finite-difference modeling presented here was
applied to 2-D problems with arbitrary elastic coefficients (or Thomsen parameters)
and density fields. Tested results show no numerical dispersion, even when as few
as five samples per dominant S-wavelength are used. For a given grid size, the
cost of the full FCT method is about 2.3 times that of conventional finite difference
modeling. However, the FCT method offers the opportunity to use a coarse grid to
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obtain accuracy in wavefield extrapolation that is comparable to that obtained by
conventional finite-difference methods, at less computation effort. Therefore, for 2-D
problems, the FCT method will cost about a sixteenth of the cost of conventional
finite-difference modeling.

Just as for acoustic case (Fei, 1993b), the FCT method can be applied directly to
the second-order elastic-wave equations. Moreover, the FCT algorithms for solving
first-order and second-order wave equations can both be applied to media with tilted
axis of symmetry by rotating the whole set of system equations. The FCT for the
first-order wave equations, as is done here, is easier to code. In contrast, an advantage
of using the FCT directly for the second-order wave equation is that the corrective
step can be readily implemented in existing conventional finite-difference algorithms.
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ABSTRACT

Monte Carlo based global optimization methods, such as simulated annealing
and genetic algorithms, are used in a wide variety of fields such as management
science, computer science, engineering, applied earth sciences and VLSI design.
Unlike most local search procedures, Monte Carlo techniques do not require any
derivative information about the objective function, and are found to provide
a robust search method for a broad spectrum of optimization problems. Ge-
netic algorithms work simultaneously with a group of potential solutions and use
stochastic processes to guide the search for an optimal result. This provides an
efficient exchange of information among likely solutions, and allows the algorithm
to rapidly assimilate and exploit the information gained to find better results,
i.e., associated with lower values of the objective function, to the optimization
problem.

Here I outline the theory of genetic algorithms. Then, I present the relatively
new model of distributed genetic algorithms based on the paleontological theory
of “punctuated equilibria” (Cohoon et al., 1987). This approach offers a concep-
tual modification to the traditional genetic algorithms by taking advantage of a
number of populations (sets of likely solutions) evolving quasi-independently. I
outline details of the implementation of this method on a cluster of net-connected
workstations using PVM as a message-passing subroutine library. Optimization
of a multimodal objective function and inversion of 1D acoustic seismic synthetic
data are examples used to compare the relative performance of distributed genetic
algorithms and conventional genetic algorithms.

INTRODUCTION

The problem of multi-parameter nonlinear optimization is common in many areas
of science and engineering. Solving such a problem amounts to the difficult task of
minimizing a nonlinear function in the presence of many local minima. This func-
tion, often called “objective” or “cost” function, is not necessarily analytic and must
quantify the quality of the proposed solution.

It is well known that gradient-based optimization techniques may fail to provide
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the correct result when the objective function is multimodal. If such a technique is
applied to a given problem, it is necessary to rely that the initial estimate of the
optimum answer is within the valley of the global minimum. Otherwise the method
will get stuck in local minima. Since these techniques use local information about the
objective function to improve initial estimates of the optimal solution they fall into
the category of local search optimization methods.

Approaches to solving problems with multimodal objective functions are collec-
tively called global search optimization methods. These techniques are designed
to obtain the optimum answer of the problem by performing a wide search over the
space of likely solutions. Exhaustive search is an example of such a technique. Here
the objective function is evaluated at every possible solution and the best result is
reported. Considering the extremely large number of possible answers to a typical
nonlinear optimization problem, this method is useless in practice. The so-called
Monte Carlo optimization techniques are another example of global search methods,
where probabilistic transition rules are used to improve estimates of the solution
toward the optimum result.

A relatively new Monte Carlo optimization procedure, the genetic algorithm,
has been increasingly applied to a wide variety of multimodal optimization problems.
This method, based on the work of Holland (1975) in the artificial intelligence field,
works simultaneously with a group of potential solutions and uses stochastic processes
to guide the search for the optimal result, in a way that proceeds from an analogy
between function optimization and evolution theory. It thus provides an efficient
exchange of information among likely solutions, and allows the algorithm to rapidly
assimilate and exploit the information gained to update the current set of solutions
toward better ones.

Cohoon, et al. (1987) have introduced an alternative formulation of genetic algo-
rithms, motivated by the concept of “punctuated equilibria” and the desire to make
effective use of a distributed-memory parallel computing system in complex opti-
mization problems. This approach offers a conceptual modification to the traditional
genetic algorithms by taking advantage of several groups of trial solutions that are
processed quasi-independently.

After a brief introduction on the theory of genetic algorithms, I shall assess the
characteristics of this new formulation, denoted from now on as distributed genetic
algorithms, relative to conventional ones. In this evaluation, I use as examples
optimization of a multimodal analytic objective function and inversion of 1D seismic
data. Finally, I outline details of the implementation, where I used a cluster of net-
connected workstations with the Parallel Virtual Machine (PVM) library ! as the
message-passing software.

from Oak Ridge Laboratories
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AN OVERVIEW ON GENETIC ALGORITHMS

This brief description on genetic algorithms follows closely the work of Scales, et al.
(1992). For the interested reader, an extensive bibliography is currently available on
the theory of genetic algorithms and its application to several fields (see, for example,
Holland (1975), Goldberg (1987) and Whitley (1993)).

Genetic algorithms are designed with an analogy to the mechanics of natural selec-
tion and genetics, and are based on the principle of “survival of the fittest.” Instead of
acting on one possible solution of the optimization problem at a time, this procedure
acts on a “population” of likely solutions. Essentially, a set of stochastic transition
operators is applied to the current population, which favors the creation of new “indi-
viduals” (new possible solutions) that “perform better” than did their predecessors.
In this context of optimization, better performers means that the objective function
evaluated for those individuals has lower values than those of their competitors.

Although many different stochastic operators have been proposed to improve the
performance of genetic algorithms (Muhlembein et al., 1991), they are closely related
to the ones originally proposed by Holland. In this work I restrict this overview to
these conventional operators, namely selection, crossover and mutation.

At this point it is useful to present some details on a common internal repre-
sentation used by genetic algorithms for the individuals of a population, where each
parameter of a trial solution is coded into a binary string. So, for example, if the
current population consists of two possible solutions with three parameters each, as
(18,28, 6) and (16,20,3), and the required resolution requires a 5-bit string, a pos-
sible internal representation of this population would be (10010,11100,00110) and
(10000, 10100, 00011). All the stochastic operators are then applied to these strings.

Many other types of coding are possible, each of which may have a different effect
on the nature of the algorithm. Goldberg (1987) discusses a gray coding, which
prevents that any two sequential decimal values are represented by binary strings
that differs by more than one element. As an example, 7 and 8 are represented by
(0111) and (1000) using standard binary coding and by (0100) and (1100) using gray
coding. This is the coding scheme used in this work.

Selection

Selection of an individual from a population means an opportunity that is given
to this individual to propagate its characteristics into the next generation. This
stochastic procedure assigns the highest and lowest probability of selection to the
best and worst individual of a population, respectively. How the probabilities of
selection are allocated for the other individuals is dependent on the specific selection
mechanism. In any case, better-performer individuals have always greater possibilities
of being selected.

Typically a group of individuals is selected from the current population, forming
a “population of parents.” It is important not to overemphasize the fitness of an indi-
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vidual in the selection process. Such overemphasis can lead to premature convergence
to a local minimum. In the other hand, too little weight given to higher-performer
individuals can result in unnecessarily slow convergence. This balance between ex-
ploration (global search) and exploitation (local search) is important in the global
optimization process. I will address this issue later.

Crossover

From the population generated by the selection process, new individuals are gen-
erated by a mixing, or crossover, of the binary strings from two randomly paired
parents. Each individual of the population is crossed over with a probability P, and,
as a consequence, some of the previously selected individuals may not have a chance
to reproduce.

Figure la illustrates this process. In this example, the parents are the individu-
als (10100,11010,11111) and (11111,00011,00110). The crossover point, where the
binary strings are cut and transposed, is also randomly chosen. After the crossover
the new individuals are {11100,00010,01111) and (10111,11011,10110). Typically,
the new individuals will replace the parents, however, in different implementations a
criterion may be used to define whether the replacement will occur or not.

At this point a new set of potential solutions, whose features are mainly inherited
from better performer individuals of the previous population, is generated. How-
ever, nonzero chances are also allocated for allowing poorer performer individuals to
propagate their characteristics to future generations.

Mutation

This last stochastic operator randomly perturbs one parameter of an individual in
the current population. This process is illustrated in Figure 1b. The objective here is
to add diversity to the current population. Note that, in the absence of mutation, no
individual generated by the crossover operator could ever acquire a new characteristic
that was not already present in the population.

It is important to understand that as the mutation probability is increased, a larger
degree of randomness is introduced in the optimization process. As a consequence,
exploration of the model space becomes favored over exploitation of the information
contained in the population.

Typically mutation probability is kept small (= .001). However in some advanced
genetic implementations, the mutation probability starts from a high value (favouring
exploration) and is slowly reduced (favoring exploitation) as the search goes on (Sen
and Stoffa, 1992).

Although much progress has been made in the theoretical understanding of ge-
netic algorithms, it is not yet known how to insure an optimal implementation for a
given problem. The tuning of the genetic algorithm’s free parameters, namely size
of the population, crossover probability and mutation probability are rather ad hoc.
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FI1G. 1. Crossover (a) and mutation (b) operators.

A clearer theoretical framework is needed for a more thorough comprehension of the
subject. This is an active topic of current research interest. Nevertheless, genetic
algorithms have been applied to an increasing number of complex optimization prob-
lems with success.

Parallel implementation of genetic algorithms offers many possible alternatives.
Since the objective-function evaluations at each potential solution of the problem
are independent from each other, a high degree of parallelism can immediately be
perceived. The application of the stochastic operators to the current population can
also be done concurrently. Next, I discuss an alternative, distributed implementation
of genetic algorithms presented in Cohoon, et al. (1987).

DISTRIBUTED GENETIC ALGORITHMS

According to the the theory of “punctuated equilibria,” continued evolution can
be obtained through introduction of previous stabilized individuals into new environ-
ments. As a consequence, new species would be generated since these individuals
must adapt themselves to different conditions.

A possible model of a distributed genetic algorithm, inspired by this theory, evolves
N subpopulations in parallel and disjointedly from each other during a given number
of iterations (i.e., one evolution). Following that, is a phase during which some
individuals migrate from one subpopulation to the others. As a consequence each
subpopulation is augmented by a surplus of individuals and must select from among
the new and old ones those that will survive to the next generation. This procedure is
repeated for a prespecified number of evolutions. Typically, the number of individuals
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within a subpopulation is kept constant during the whole optimization process.

The relationship of this strategy with the concept of “punctuated equilibria” is
clear. Each subpopulation corresponds to a disjoint environment. By exchanging
individuals among them new characteristics are added to those subpopulations, what

propitiates different conditions for the evolution of possibly better-performer individ-
uals.

This scheme is illustrated in Figure 2. Figure 2a shows isolated environments
(cities) where the evolution of the individuals takes place, and likely paths that they
may follow when migrating from one environment to the other. Figure 2b shows a
possible implementation of this modei on a distributed-memory computer systein.
All the initial individuals are generated in the master processor and randomly dis-
tributed among the worker processors, connected by a ring topology, forming the
subpopulations. Each processor sends, using a selection criterion or just randomly,
some individuals from its subpopulation to a neighbor processor, following the direc-
tion showed in Figure 2b. In this implementation each processor is an IBM RISC /6000
workstation model 530, and the connection is provided by a Token Ring network with
nominal data transfer rate of 16 Mbit/s.
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F1G. 2. Punctuated equilibria model (a) and a possible computer implementation

(b).

Several parameters are necessary to execute a distributed genetic algorithm. Table
1 describes the most important ones.

Table 2 illustrates an example where four different sets of 50 randomly generated
possible solutions are allocated to each one of the four processors. In each evolution,
the stochastic operators are applied to the subpopulations, with the defined proba-
bilities, until the objective function is evaluated 1000 times. Remember that at each
iteration (selection + crossover + mutation) a new generation is produced, and the
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performance of the new individuals should be computed. In this case with 50 individ-
uals in a subpopulation, approximately 20 generations are formed in each evolution.
In each generation approximately 60% of the individuals will attempt to produce new
trial solutions due crossover. The .001 mutation probability implies that 1 among
1000 individuals, in average, will have its characteristics changed by this stochastic
operator.

Subpopulation size (SP) Number of individuals in each processor
Number of evolutions (E) Number of exchanges among processors
Trials per evolution (TE) Number of iterations without processor communication
Number of processors (WP) Number of processors used in this execution
| Probability of crossover (Pc) | Probability for crossover occurrence of two individuals
Probability of mutation (Pm) | Probability for mutation occurrence in a individual

Table 10. Important parameters for the distributed genetic algorithm.

Subpopulation size 50
Number of evolutions 10
Trials per evolution 1000
Number of processors 4
Probability of crossover | .6
| Probability of mutation | .001

Table 11. Example of parameters for the distributed genetic algorithm.

After one evolution, 10% of the individuals (in this case 5) of each subpopulation
are exchanged among the processors following the ring topology illustrated in Figure
2b. A new evolution starts and this process is repeated 10 times. To reproduce this
experiment in terms of computational demand, using a sequential genetic algorithm,
the following parameters would be used:

Subpopulation size 200
Number of evolutions 1
Trials per evolution | 40000
Number of processors 1
Probability of crossover | .6
Probability of mutation [ .001

Table 12. Required parameters for a sequential genetic algorithm applied in an ex-
periment that is similar to that in Table 1, in terms of the total number of objective-
function evaluations.

Due to the stochastic nature of the algorithm it is not guaranteed that the same
amount of computations is performed in both cases. By tight contirol of the execution,

205



Distributed GA Gouveia

it would be possible to assure the same computational cost of the sequential and
parallel versions, but this option is not provided in the current implementation.

It is claimed in the genetic algorithm literature (Cohoon et al., 1987, Whitley
and Starkweather, 1990, Muhlembein et al., 1991, and Sen and Stoffa, 1992) that
distributed genetic algorithms, based on the concept of “punctuated equilibria,” not
only provide a computational speedup 2 but also are able to perform a more efficient
search over the space of solutions. By more efficient, I mean producing an equivalent
result for the optimization problem with fewer evaluations of the objective function.
Next, ] make a comparative analysis among sequential and distributed genetic algo-
rithms, with respect to computational speedup, and effectiveness of the search for the
optimum solution.

A COMPARATIVE ANALYSIS OF SEQUENTIAL AND
DISTRIBUTED GENETIC ALGORITHMS

In comparing of sequential and distributed genetic algorithms I will use two dif-
ferent objective functions. The first one, proposed in Torn and Zilinskas (1989), is
defined by the following expression

R(zy1,%2,...,%a) =N+ i[:c? - cos(21r:1:.-)] . (1)

i=1

This function is highly multimodal. The global minimum is at z; = 0,i =
0,1,...,n, giving R(z;) = 0. Grid points with z; = 0 except at one coordinate,
where z; = 1, give R(z;) = 1, the “best” of all local minima. With increasing dis-
tance from the global minimum the objective function evaluated at local minimum
becomes larger.

The second objective function is related to the geophysical inversion: problem.
The aim of inversion is the estimation of elastic properties of the subsurface whose
modelled response matches observations within given tolerance. Therefore the objec-
tive function, used called the misfit function in this context, quantifies the difference
between synthetic seismograms, obtained from the trial solution (subsurface model),
and the observed seismograms. Several mathematical expressions for the misfit func-
tion are possible. In this paper, for the sake of simplicity, I will use the following
definition

R() = 3" (S0 - Siw?)*.

i=1

(2)

Where So; and S;(i) are the " sample of the observed and synthetic seismogram
modeled for the geological profile p respectively. n is the number of samples used

2Ratio of elapsed time for the sequential test to that for the distributed implementation
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in the computation of the misfit function. I address here the problem of 1D seismic
inversion, in order to reduce the computational demand of the problem as compared
with that in 2D or 3D seismic inversion. However, the results obtained here could be
extended to 2D and 3D situations.

I used the modeling algorithm described in Robinson (1967), which provides the
complete reflectivity series (primaries and multiples), which will be used in the calcula-
tion of the objective function. For display purposes the reflectivity series is convolved
with a finite-length wavelet.

First I assess the computational performance improvement provided by the dis-
tributed genetic algorithm. Then, I compare the effectiveness of the global search for
the optimum solution performed by the two implementations, given the same amount
of initial information.

Computational performance

Of the many possible ways to evaluate the performance gain provided by the
distributed implementation, in this analysis I used equation [1] with dimensions n =
20 and n = 400 as the objective function, and the parameters shown in Table 4
for the distributed genetic algorithm. I selected these parameters in order to keep
the product (E).(TE).(WP) the same as in the correspondent sequential run. This
assures that the parallel and sequential executions will perform approximately the
same number of computations.

Experiment (Fig. 3) "~ SP E TE WP
1 (Fig. 3a) 50,100,150,200 | 2 | 4K,8K,12K,16K | 2...8
2 (Fig. 3b) 50,100,150,200 | 4 | 2K,4K,6K,8K | 2..8
3 (Fig. 3c) 50,100,150,200 [ 8 | 1K2K3K4K | 2..8
4 (Fig. 3d) 50,100,150,200 | 16 | .5K,1K,1.5K,2K | 2..8
5 (Fig. 3e) 50,100,150,200 | 16 | .5K,1K,1.5K,2K | 2...8

Table 13. Parameters used in the performance analysis of the distributed genetic
algorithm.

Consider first the performance curves illustrated in Figures 3a-3d. Despite fluctua-
tions due the stochastic nature of the algorithm, the performance curves are generally
above the line of linear speedup. The exchange of individuals among processors may
explain this super linear-speedup, since, as it adds new characteristics to each subpop-
ulation, it can facilitate the task of the crossover operator to produce new individuals.
The easier is this process, the bigger the number of new individuals produced in each
generation.

As the optimization process advances, the population tends to reduce its diversity
of information due the combination and selection of better-performer individuals. Asa
consequence, the generation of new trial solutions by the stochastic operators becomes
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FIG. 3. Performance results of the distributed implementation. In each curve the total
number of evaluations of the objective function is kept constant, and each symbol
corresponds to different population sizes from 50 to 200 individuals.
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increasingly more difficult. The distributed genetic algorithm seems to provide an
effective way to overcome this lack of diversity.

Increasing the number of evolutions in the experiments has the purpose to raise
the communication among processors, in order to identify a possible drop in the
performance of the system. It is well known that the limitation on data transfer rate
of the network is the main degrading factor of performance in distributed applications
on a cluster of workstations. To impose a communication demand on the network
20 times higher than in the case illustrated in Figure 3d, I optimized equation [1]
with n = 400. Performance curves are shown in Figure 3e. Although they are
slightly below the linear-speedup line, no noticeable degradation can be observed in
the performance of the system. These figures lead to the conclusion that distributed
genetic algorithms are a suitable application for network computing systems.

We should keep in mind that these results depend on the parameters and the ob-
jective function used in the experiments. Different parameters and objective functions
will produce other performance results. Besides, all these measures were performed
in a controlled environment, where all the workstations and the network were in a
low level of utilization. When the processors are shared by other applications, a more
realistic situation, these figures will certainly change.

Optimization results

Here I compare the optimization results obtained from the sequential and dis-
tributed genetic algorithms. The total number of objective function evaluations,
necessary to compute the optimum solution within a given error, will be the main
measure for this analysis.

Consider first the optimization of equation [1] witk n = 20. Each parameter
can assume 1024 different values within the interval [—5.12,5.11]. Thus, the size of
the space of possible solutions is approximately 1.6x108. As mentioned before, the
minimum global is at z; = 0, = 0, 1, ..., n, giving R(z;) = 0. The parameters used in
single-processor, 6-processor and 8-processor runs are shown in Table 5. The objective
function evaluated at the best solution (i.e., the error of the final result), the elapsed
time of each experiment and the speedup provided by the distributed implementation
are also presented. Figure 4 illustrates the performance of the best individual in
the current population as a function of the number of iterations (evaluations of the
objective function) for the three experiments.

The distributed version was more efficient in its search for the optimum solution
than the sequential one, since an equivalent result was obtained with less computa-
tional effort (60000, 45600 and 45000 evaluations of the objective function for the
single-processor, 6-processor and 8-processor runs, respectively).

The distributed implementation provides a better balance between exploitation
and exploration over the space of possible solutions. The small subpopulations, when
evolving in isolation, perform efficient local searches over several regions of the space
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of solutions. The exchange of individuals among these subpopulations is responsible
for the assimilation of global information.

The size of each subpopulation is a critical parameter in the distributed imple-
mentation. It should be tuned accordingly to the specific situation, and a number of
trial experiments is always necessary.

Parameter Sequential | Distributed 1 | Distributed 2
SP 320 40 25
E 1 20 15
TE 60000 380 375
WP 1 6 8
Pc 0.6 0.6 0.6
Pm 0.001 0.001 0.001
Objective function 0.0414499 0.0373033 0.0186594
Elapsed time (s) : Speedup | 188: 1 20: 94 16 : 11.7

Table 14. Parameters and results for the optimization of equation [1].

For the 1D seismic inversion problem (equation [2]), using an example similar to
that of Scales, et al. (1992), I consider the simple situation of a five-layer acoustic
model. The synthetic 1D reflectivity series plays the role of “observed” data. The trial
models consists of 14 reflection coefficients each constrained to the interval of [1,1].
In this case, the size of the space of possible solutions is approximately 1.39x10%2.

Table 6 gives parameters for the single-processor, 4-processor and 6-processor
runs. Matches with the observed data are shown in Figure 5a. Figure 5b illustrates
the performance of the best individual during the optimization, as a function of the
number of iterations, for the three experiments, 40000 and 43200 iterations for the
4-processor and 6-processor runs, respectively, and 70000 for the sequential run were
necessary to provide equivalent results, demonstrating, in this example, the superior
performance of the parallel implementation.

Parameter Sequential | Distributed 1 | Distributed 2
Ssp 390 45 35
E 1 10 9
TE 70000 1000 800
WP 1 4 6
Pc 0.6 0.6 0.6
Pm 0.001 0.001 0.001
Objective function 0.0479291 0.0473291 0.0475291
Elapsed time (sec) : Speedup | 237: 1 24:98 19: 125

Table 15. Parameters and results for the 1D acoustic seismic inversion.
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F1a. 4. (a) Performance of the best individual during the optimization of equation
[1] using 1, 6 and 8 processors. For better visualization, (b) shows just the first 8000
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F1G. 5. Results obtained from the 1D seismic inversion. In (a) trace 0 is the “ob-
served data,” and traces 1, 2, and 3 were obtained from the 1, 4 and 6 processor

runs respectively. (b) illustrates the performance of the best individual during the
optimization for the three experiments.
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IMPLEMENTATION DETAILS

As already mentioned the distributed genetic algorithm was implemented on a
cluster of workstations IBM Risc/6000 model 530H, connected by a Token Ring net-
work. All the synchronization and data transfer-routines were provided by the Parallel
Virtual Machine (PVM) library.

Figure 2b illustrates the ring topology used in this implementation of the dis-
tributed genetic algorithm. All trial solutions are generated randomly at the host
processor and spread over all the work processors. During the optimization process
just the work processors communicate, for the exchange of individuals, until the ob-
jective function is evaluated a specified number of times (number of evolutions times
the trials per evolution). Finally the work processors send their final solutions to the
master processor, that chooses the best one.

The pseudo code for this implementation is outlined below.

/* Random generation of solutions and distribution among work processors */
MASTER: Random generation of possible solutions at the master processor
MASTER for: N work processors do
MASTER send: subpopulation to each worker
WORKER receive: subpopulation from the master
MASTER endfor;
/* Evolution and exchange of individuals */
WORKER. for: Number of evolutions do
WORKESR. for: Number of evaluations of the objective function do
WORKER: Evolve the population
WORKER endfor;
WORKER send: 10% of its subpopulation to neighbor processor
WORKER receive: new individuals from neighbour processor
WORKER endfor;
/* Best solutions of each processor send to master */
WORKER send: best solution to the master
MASTER receive: receive best solution from each work processor
MASTER: select best solution of the optimization

Other topologies are possible. I also implemented a hypercube-type connection,
wherein all the work processors receive the best individuals from all other processors
involved in the optimization. At least for the examples tested, the ring topology seems
to provide better results. A possible reason is that, in this case, the subpopulations
are optimized more independently than in the hypercube implementation. This may
result in a more efficient global search under the paradigm of “punctuated equilibria.”
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CONCLUSION

In this work I studied the distributed genetic algorithm, an alternative implemen-
tation of genetic algorithms based on the concept of “punctuated equilibria.” Results
provided by the distributed version, implemented on a cluster of net-connected work-
stations using PVM as a message-passing library, are encouraging. Not only the
computational speedup is satisfactory but fewer iterations are necessary to obtain an
equivalent answer than the one provided by the sequential genetic algorithm, indicat-
ing a better balance between exploration and exploitation of the space of potential
solutions.

However it is worth mention that many parameters influence the performance of a
genetic algorithm in an optimization problem, and some trial experiments are always
necessary to estimate them. The already large set of required parameters is increased
in the distributed implementation by the new parameters: The number of work pro-
cessors, the size of the subpopulation, the number of solutions exchanged among the
processors, and the number of evolutions necessary for a satisfactory answer.

Nevertheless, in a complex optimization procedure such geophysical inversion, the
distributed implementation provides a much faster response time, which enables a
more thorough inspection of the likely solutions of the problem. A convenient set
of likely solutions can supply confidence bounds on the estimated parameters of the
final optimal solution, which can be useful in further steps of data processing.

Further research on this subject will focus on the study of the applicability of
genetic algorithms in 2D seismic full-waveform inverse problems. The multimodal
character of the objective functions that arise in this problem overwhelms conven-
tional optimization techniques, and efficient Monte Carlo methods may be a useful
alternative.
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ABSTRACT

The Kirchhoff integral provides a robust method for implementing seismic
modeling and prestack depth migration, which can handle lateral velocity varia-
tion and turning waves. With a, little extra computation cost, the Kirchhoff-type
migration can obtain multiple outputs that have the same phase but different
amplitudes, compared with that of other migration methods. The ratio of these
amplitudes is helpful in computing some quantities such ag reflection angle.

Here, I develop a seismic modeling and prestack depth migration method
based on the Kirchhoff integral, that handles both laterally variant velocity and
a dip beyond 90 degrees. The method uses a finite-difference algorithm to cal-
culate traveltimes and WKBJ amplitudes for the Kirchhoff integral. Compared
to ray-tracing algorithms, the finite-difference algorithm gives an efficient imple-
mentation and single-valued quantities {first arrivals) on output. In my finite-
difference algorithm, the upwind scheme is used to calculate traveltimes, and the
Crank-Nicolson scheme is used to calculate amplitudes. Moreover, interpolation
is applied to save computation cost.

The modeling and migration algorithms here require a smooth velocity func-
tion. I develop a velocity-smoothing technique based on damped least-squares to
aid in obtaining a successful migration. This velocity-smoothing technique also
can be used to improve results of other migration algorithms, such as Gaussian
beam migration.

INTRODUCTION

Seismic modeling and migration play an important role in seismijc data processing.
To treat complex media, one needs prestack depth migration that can handle lateral
velocity variation and reflector dips. Conventional techniques, such as the down-
ward continuation of sources and geophones by finite difference (S-G finite-difference
migration), are relatively slow and dip-limited. Compared to S-G finite-difference
migration, the Kirchhoff integral implements prestack migration relatively efficiently
and hag no dip limitation.
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Bleistein et al. (1987) derived the Kirchhoff integral method by using the WKBJ
approximation. This method treats amplitude in migration in a WKBJ-consistent
manner so that the output is the reflectivity function. Furthermore, Bleistein showed
that one can design weights in the Kirchhoff integral to determine quantities such
as the reflection angle, based on the stationary-phase principle. In Bleistein’s inte-
gral formula, the integrand consists of traveltime, WKBJ amplitude, ray parameters,
and so on. Two commonly used approaches to calculate traveltimes and the other
quantities in the Kirchhoff integral are ray-tracing and finite-difference applied to
the eikonal equation. The ray-tracing algorithm calculates traveltimes and ampli-
tudes on each ray. Usually, the rays do not pass through output grid points, so we
need to interpolate to obtain traveltimes and amplitudes at the grid locations. This
interpolation is complicated when the raypaths have a caustic, and thus limits the
efficiency of the ray-tracing algorithm. In contrast, the finite-difference algorithm cal-
culates traveltimes and amplitudes directly at output grid locations. For caustics, the
finite-difference algorithm calculates the first-arrival traveltime and the corresponding
amplitudes.

Traveltimes satisfy the eikonal equation, and amplitude terms satisfy linear par-
tia] differential equations that depend on traveltime derivatives. Van Trier and Symes
(1990) introduced a finite-difference scheme for solving this equation to obtain the
traveltimes and traveltime derivatives. Pusey and Vidale (1991) used a similar, ex-
plicit scheme to solve for the WKBJ amplitudes. For the explicit scheme, one has to
choose a small enough step gize for a stability when the velocity function is varied. In
this paper, 1 use the Crank-Nicolson scheme to solve for the amplitudes. Compared
to the explicit scheme, the Crank-Nicolson scheme is second-order accurate and ab-
solutely stable so that computation cost is made relatively small for variable velocity
by choosing large step sizes.

Calculation cost of pointwise traveltimes and amplitudes by the above method
would dominant the total calculation cost of the Kirchhoff integral method. For each
source or receiver, the calculation cost depends on the number of grid points. To
speed up the Kirchhoff integral method, 1 apply interpolation to avoid computation

on the entire grid.

A smooth velocity function is required by most migration algorithms. A few
methods for smoothing the model velocity have been developed in the past. The
windowed-averaging method, for example, calculates a smooth velocity value at one
point by averaging velocity values over a depth-midpoint window centered at this
point. If the original velocity is discontinuous, it is easy to show that the smoothed
velocity from the windowed-averaging method does not have the continuity of the
first derivative. Consequently, this method is not effective when the velocity has a
strong discontinuity. Here, I present a velocity-smoothing technique based on damped
least-squares. The curvature of the raypath isa key factor in migration imaging. The
smaller the curvature, the more stable the migration result. I derive a representation
for the curvature that depends on first derivatives of velocity. A smooth velocity
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function is sought that minimizes the weighted sum of (1} the deviation between the
smooth velocity and the original one, and (2) the first derivatives of velocity with
respect to spatial variables. I use the result that the reciprocal of the curvature of
the raypath is proportional to the velocity gradient. Therefore, my method may
remove migration artifacts by suppressing the curvature of the raypath. Moreover,
this method allows local variation in the degree of smoothing allowed by using a
window function, so that the velocity is smoothed more in rougher areas.

FINITE-DIFFERENCE ALGORITHM
The Kirchhoff integral method can be represented by
output = integral{weight - input}.

For modeling problems, the input consists of velocity layers, and the output is seismic
traces; for inversion problems, the input is seismic traces, the output is a structural
image. Both require common quantities to be calculated. These quantities include
(Bleistein, 1986):

T traveltime,
¢ propagation angle,
o running ray parameter,
B8 incident angle from source or reciever,
04/0z geometrical spreading parameter.
For each source or receiver, the above quantities satisfy the follow eqations:
o\ (or\'__ 1 )
oz 0z)  v¥z,z)’
or
= 2
sing = v— e (2)
Og0r 0Oodr _ (3)
dxdr 820z
opor opor
4
3x3x+azaz 0 4)

3 (32) + 2 e 2] =0 ®

where v(z, 2) is velocity and
#(z, z) [ ]



Modeling and Migration Liu

Equation (1) is the eikonal equation. Equations (3) and (4) are derived by Pusey
and Vidale (1991). Equation (5) follows from equation (3). Van Trier et al. (1990)
used the efficient upwind scheme to solve this equation for traveltime and traveltime
derivatives. However, computation in Cartesian coordinates requires that 87/9z be
positive, so turning waves cannot be handled. Computation in polar coordinates does
not suffer this limitation. Let us introduce the coordinate transform

x =I,+rsiné, z = rcosé.

In polar-coordinates, equations (1) through (5) become

&) +5 (&) -=w ©

sin(¢ — ) = %g—;, (7)

where

ar [ ,ar]!
,u(r, 6) = 50- rz.éF] T

Although more computation is required in polar-coordinates, the boundary conditions
are more easily treated and, more importantly, we can handle turning waves.

The coeficient p of equation (10) is inside the differential operator. If an error
exists in numerical computation of u, the solution of equation (10) may suffer. Instead
of solving equation (10), I use an approximate formula

% = %?r_r cos(f — @), (11)
where v, is the velocity value at the source position. Formula (11), derived in
Appendix A, is exact for linear velocity. When velocity is strongly nonlinear, the
geometry-spreading factor based on formula (11) is not accurate. However, not only
the geometry-spreading factor but also the finite difference algorithm, which requires
that 87/0r be positive, suffers from strong-nonlinear velocity . The smoothing tech-
nique in this paper will produce a sufficiently smooth velocity to solve these two
_problems.
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Crank-Nicolson scheme

Van Trier et al. (1990) gives an upwind finite-difference scheme for solving equa-
tion (6). Also that scheme yields derivative values for use in equation (7). Pusey and
Vidale (1991) use a similar scheme to solve equation (8). Those upwind schemes are
explicit. Therefore, one has to choose a small enough step size for stability when the
velocity function is varied. In this paper, the Crank-Nicolson scheme is applied to
equations (8) and (9). Compared to the explicit scheme, the Crank Nicolson scheme
is second-order accurate and absolutely stable so that computation cost is made rel-
atively small for variable velocity by choosing large steps.

Let
_or _lor
P= % 1= 2%
With the Crank-Nicolson approximation, equation (8) becomes
0J+l OJ q_1+1 + q] . .
W(P’ +pl)+ SAD S (ol — ot ol —aly) =1, (12)
and equation (9) becomes
i+1 g j+1
— B; + ,
B B iyl SR i s pl gl =0, (13

where j is the 1ndex of r, i is the index of 8, and Ar and A8 define the grid cell sizes.

For each j, equations (12) and (13) are tridiagonal systems that can be solved
relatively efficiently.

INTERPOLATION TECHNIQUE

Calculation cost of pointwise traveltimes and amplitudes by the above method
would dominant the total calculation cost of the Kirchhoff integral method. For each
source or receiver, the calculation cost depends on the number of grid points. To
speed up the Kirchhoff integral method, I apply interpolation at two stages so as to
avoid computation on the entire grid.

One stage is the interpolation between the sources or receivers: I calculate trav-
eltimes and amplitudes only at selected sources or receivers, and then interpolate
traveltimes and amplitudes at the other sources or receivers. Suppose that the trav-
eltime functions 7(z, z; z,,) and 7(z, z; 2,,) from two sources z,, and x,, have been
calculated. I interpolate a traveltime function from source z, (,, < £, < 2,,) by

T(2,2,2,) = AT(T+ Tpy —Ts, 2;T5,) + (1 — N 7(2 424, ~ 24, 2; 24, ), (14)

where A = (r, — z,,)/(2,; — ,,). When the velocity is only depth-dependent, this
linear interpolation is exact because the traveltime is invariant for parallel movement;
i.e., for any A,

7(z + h,z; 2, + h) = 7(z, 2; T,).
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For a general velocity function v(z,z), the interpolation error depends on Jv/dz.
Reducing this error is one motivation for smoothing the velocity.

The other interpolation is between grid points. To save computation, I use a
relatively coarse grid in the traveltime and amplitude calculation. Then, to preserve
resolution, I use a finer grid for migration output with traveltimes and amplitudes
calculated by bilinear interpolation.

VELOCITY SMOOTHING

A smooth velocity function is required by most migration algorithms. Before a
smoothing technique is selected, it is essential to-know how smoothness of velocity
affects migration resuits.

Numerous migration algorithms are based on ray theory (high-frequency assump-
tion). The smaller the curvature or the larger the radius of curvature, the better is
the quality of the raypath. Generally, a large curvature increases the sensitivity of
a raypath to the incident angle from the source, resulting in sparse raypath cover-
age. In addition, a large curvature may cause troubles in the imaging process. In
Gaussian beam migration, for example, traveltime at one point in the vicinity of a
central ray are calculated by projecting this point onto the ray and then by using
the Taylor series expansion. If the curvature of the ray is too large, the projecting
point is not unique and also the Taylor series expansion is inaccurate, so that a poor
migration result may suffer from the inaccurate calculation of the traveltimes. For
another example, the finite-difference method in this paper will fail if, at any point
of the raypath, there is more than a 90-degree difference between the ray direction
and the direction from the source position to this point. Therefore, control of the
curvature of the raypath is necessary. From Dohr (1985, p. 23}, the curvature « can

be represented by
_ 1 _ ducosf  Jvsind
"=RTTor v 0z v’
where R is the radius of the curvature, v is the velocity, and 6 is the propagation
angle. Equation (15) shows that the first derivatives dominate the curvature of the
ray. Based on this characteristic, I used the damped least-squares method to calculate
a smooth velocity that has suppressed the first derivatives and, therefore, reduced the
raypath curvature, Use of a smooth velocity function is also required in the WKBJ

approximation and in the interpolation for traveltimes.

(15)

Let v(z, z) be the original velocity; then a smooth velocity v, (z, ) is determined
by

f(’l-J,(:B, z) — v(z, 2))? dz + o f w(z, 2) (%%)2 dz = min, (16)

[ (05(2, 2) — Ts(z, 2))? dz + j w(z, 2) (%2’)2 dz = min, (17)
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where a.,a, are the smoothing parameters and w(z,2) is a window function. The
window function, ranging from 0 to 1, allows local variation in the degree of smoothing
desired. Roughness of the original velocity function is usually not uniform, so one
can design a window function such that velocity is smoothed more in rougher areas.

Equation (16) smooths the original velocity along the z-direction, from which
¥,(%,z) is obtained; equation (17) smooths ,(z, z) along the z-direction to get the
smoothed velocity v,(z,z). In the wavenumber domain and for w(z,z) = 1, the
smooth velocity can be determined by

V(ks, k:)
(1+ a2k2)(1 + a2k2)’

Vilkz, k) = (18)

where V, and V' are the Fourier transforms of v, and v respectively. Therefore, large-
wavenumber components are suppressed. In discretization, equation (18) becomes

V(ke, k)

(1 + 4(az/Az)?sin’(k, Az/2)) (1 + 4(a, / A2)?sin?(k,A2/2)) (19)

Va (kza kz) =

where Az and Az define the grid-cell sizes. A proof of formula (18) and formula (19)
is in Appendix B. I define the unit of the smoothing parameters by

a, = Az/2, a, = Az/2.

For such smothing parameters, the Nyquist-wavenumber components in z and 2z di-
rections, respectively, reduce by 1/2, i.e.,

Vi(2/Az,2/Az) = iV(2/Aa:,2/Az).
The larger the values of @, and a,, the smoother will be vs(2, 2) and the larger will

be the difference between v(z, z) and v,(z, z). The following formula may be used to
measure the difference between v(z, 2) and v,(z, 2):

_ Sl (wlz, 2') — v(z, #'))?d2'dzx
62(2) = 240 T I o(z, z’)2dz’da: . (20)

Based on my experience,if ¢(z) is greater than 0.1, the smoothing parameters are too
large—the velocity is oversmoothed,

COMPUTER IMPLEMENTATION

I applied the modeling and migration method to synthetic models. Also, I tested
the effect of velocity smoothing on the Kirchhoff migration of this paper and Gaussian
beam migration.
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Synthetic Data

The first model shown in Figure 1a, consists of five reflectors, each with a dipping
and horizontal segment. Dips for the dipping segments range from 30 to 90 degrees in
15-degree increments. The velocity function consists of a linear function, v(z) = 1.5+2
km/s, plus a lateral variation that is cos(5(z —1.5)) multiplied by a depth-dependent
function, as shown in Figure 1b. The maximum lateral variation is 12 percent at
2 — 1 km. With the model and the velocity function, I generated two data sets:
zero-offset and an offset of 1000 m. Figures 2 and 3 show the modeling data and
inversion results for the two offsets. Because of the lateral variation in velocity, even
horizontal reflectors give curve events in the data. After migration, all reflectors,
horizontal through vertical, are imaged to their correct positions, for both the zero-
and nonzero-offset data. Figure 4 shows Gaussian beam migration result by using
the same zero-offset data. While both our method and Gaussian beam migration did
well, the Gaussian beam migration used 17 minutes on the IBM Risk System/6000,
and our method used 7 minutes, even though I used the prestack algorithm for the
zero-offset data.

The second example is on turning-wave migration. The model shown in Figure 5
is a single reflector, with a segment beyond 90 degrees. The velocity function is the
same as in the first example, shown in Figure 1b. With the model and the velocity
function, I generated a data set with an offset of 500 m, shown in Figure 6a. After
migration, the reflector is imaged to its correct position shown in Figure 6b, even
for the segment beyound 90-degrees. This result shows that my method can handle
lateral variation in velocity and turning waves.

Smoothing test

The velocity model shown in Figure 7 consists of six constant-velocity layers and
the input zero-offset data for migration shown in Figure 8 were generated with this
model by the CSHOT program(Docherty, 1987).

Different smoothed velocity functions are used in Gaussian-beam migration that
is implemented by Hale’s program (1992). Figure 9 shows the data migrated with
the unsmoothed velocity in Figure 7. The migration result is poor: low resolution
and migration artifacts are in the first three reflectors, and the last two reflectors
are almost invisible. Figure 10 shows the data migrated with a smoothed velocity
(smoothing parameters a; = ¢, = 2.5). While it is much better than Figure 9, there
are still some artifacts. Figure 11, showing the data migrated with a more smoothed
velocity ( smoothing parameter a, = &; = 5), gives an improved structural image. If
too large smoothing parameters (o, = o; = 20) are used, the migration result, shown
in Figure 12, deteriorates. One can see that the corners of the third reflector have
become too sharp, and the bottom reflector is no longer flat. Figure 13 shows the
data migrated with the smoothed velocity by the windowed averaging method. The
window size is selected so that the difference between the smoothed velocity and the
original one is about the same as that in Figure 11. Both the damped least-squares
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and the windowed averaging method improve structural images through smoothing
the velocity, but the former looks a little better than the latter. There is incoherence
on the vicinity of the right intersection between the first and the second interface in
Figure 13 compared to Figure 11. The selected parts are shown in Figure 14. From
this result, one may conclude that if the differences between the smoothed velocities
and the original one are the same, the damped least-squares method smooths velocity
a little more effectively, therefore, gives a. slightly better result.

The velocity in Figure 7 has strong lateral variation. For this unsmoothed velocity,
the finite difference algorithm for the eikonal equation 6 will break down because
d7/0z may not positive. Therefore, in order to implement the Kirchhoff migration
of this paper, the smoothed velocity is required. The least smoothing parameters for
this requirement are a; = @, = 14. Since the velocity is slightly oversmoothed, the
bottom reflector is not very flat. Furthermore, like other Kirchhoff migration methods,
the discontinuities in the bottom event of Figure 8 make strong diffraction smiles in
Figure 10 since large apertures are used. In contrast, Gaussian beam migration does
not suffer this problem.

Figure 16 shows the differences between the smoothed velocities and the original
one, which is calculated by using formula (20). The larger the smoothing parameters,
the larger the difference. This difference may help to choose suitable smoothing
parameters. For example, the difference for a, = a, = 20 is greater than 0.1 from
which I conclude that the velocity is oversmoothed and then reject these smoothing
parameters.

CONCLUSION

The Kirchhoff integral provides a powerful tool for modeling and migration. In this
paper, a finite-difference algorithm is used to calculate traveltimes and amplitudes.
With the help of interpolation, this method can be efficiently implemented. The result
on the synthetic data shows that this method can handle lateral variation in velocity
and turning waves. One limitation is that the Kirchhoff method cannot efficiently deal
with caustics in the Green’s functions of the integration operator and multiple-arrival
times. Another is that this method needs a sufficiently smooth velocity function.
When velocity has a strong lateral variation, the eikonal equation cannot be solved
by this method. This difficulty may be solved through using smoothed velocity.
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APPENDIX A: GEOMETRIC-SPREADING FACTOR FOR LINEAR
VELOCITY

Firstly, I assume that the velocity is
v(2) = vg + az.

Following from formulas in Bleistein (1986}, 1 find

T—y= a;i,onﬁ(cosﬁ — cos ¢}, (A-1)
e 3(cos f — cos)
__ t}(cos 3 — cos ]
7= asin® 8 ' (4-2)

From Snell’s la
om Snell’s law snd sing

to v(z)’
I have
dé _ v(z) cosﬂ. (A-3)
d3 vp COS @
By using the Snell’s law and equation (A-1), I obtain
T— T, = %’- cot 3 — -U—:—) cot ¢. (A-4)

Taking the derivative with respect to § and using equation (A-3) gives

Oz Vo v(z) do _ vg v¥(2)cos 3 wolcos B —cos ¢>)_

0 asin? 8 asin%;)@ B —asin2ﬂ + avg sin® ¢ cos ¢ ~  gsin®fBcos¢
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F1c. 1. (a) Subsurface structural model used to generate synthetic seismic traces.
(b) Velocity model. The darker shading denotes higher velocity.

227



Modeling and Migration Liu

Midpoint {m)
-1000 0 1000 2000 3000

Midpoint (m)
-1000 0 1000 2000 3000

2000

(b)

FiG. 2. (a) Zero-offset data for the model in Figure 1. (b) The Kirchhoff migration
of the data in (a), with velocity model in Figure 1b.
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Midpoint(m)
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1000} : o

Depth (m)

F1G. 3. (a) Nonzero-offset data (offset=1000 m) for the model in Figure 1. (b) The
Kirchhoff migration of the data in (a), with velocity model in Figure 1b.
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Midpoint (m})

Depth (m)

FIG. 4. Gaussian-beam migration of the data in Figure 2a.

2000 1
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FIG. 5. Subsurface structural model used to generate turning waves.
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F1G. 6. (a) Data (offset=500 m) for the model in Figure 5. (b) The Kirchhoff
migration of the data in (a), with velocity model in Figure 1b.
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Midpoint (m)
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Depth (m)

FIG. 7. True velocity model in smoothilng test. The darker shading denotes higher
velocity.

Midpoint (m)

2000 4000 6000
0.0- -

F1G. 8. Zero-offset synthetic data generated with the velocity model in Figure 7.
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Midpoint (m)

F1G. 9. Gaussian beam migration with the unsmoothed velocity model in Figure 8.

Midpoint (m)
o 000 4000 6000

1000
E
£ :
o

F1G. 10. Gaussian beam migration with a smoothed velocity model. The smoothing
parameters a, = a, = 2.5. The velocity is undersmoocthed.
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Midpoint (m)
2000 4000 6000

:

Depth (m)
:

Fic. 11. Gaussian beam migration with a smoothed velocity model. The smoothing
parameters o, = @, = 5.

Midpoint (m)
4000 6000

2000

Depth (m)

Fic. 12. Gaussian beam migration with a smoothed velocity model. The smoothing
parameters a, = &, = 20. The velocity is oversmoothed.
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Midpoint (m)
4000 6000

F1G. 13. Gaussian beam migration with a smoothed velocity model. The velocity is
smoothed by the windowed averaging with the window size of 9 points.

F1G. 14. Selection form Figure 11 and Figure 13. The left one is from Figure 11 and
the right one is from Figure 13.

235



Modeling and Migration Liu

Midpoint (m)
2000 4000 6000

Fic. 15. Kirchhoff migration with a smoothed velocity model. The smoothing
parameters a; = o, = 14. The velocity is slightly oversmoothed.
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FIc. 16. The relative rms-differences between smoothed velocities and the true ve-
locity. Four solid curves denote the smoothed velocities by the damped least-squares.
The dashed curve denotes the smoothed velocity by the windowed averaging.
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Therefore,
Oz o
a8~ vgcos ¢’ (4-5)
ie.,
98 _ wcosg
5" o (4-5)
From equation (4),
a6 __porfor]™  op
%~ %o [‘a—] =g ¢
The above formula and the chain rule for partial differentiation give
o8 OB oz 00z ap . __ rcos(f — ¢)
53—5;60+5%—E:-(rcosa+rsm9tan¢)—-m——, (A-7)
Finally, substituting equation (A-6) into (A-7), I obtain
aﬁ _ Yo
%o cos(@ — ¢). (A-8)

When the velocity is a linear function of z and 2, there is a rotational transfor-
mation around the point (z,,0) such that the velocity is a linear function of 2 in the
new coordinate system. Also it is easy to show that equation (A-8) is invariant under
the rotational transformation.

APPENDIX B: SMOOTHING IN WAVENUMBER.

By using the Euler’s formula from the calculus of variations, we change (16) into
a differential equation for 7,(z, z):
o 027,
* ox?
Taking the Fourier transforms with respect to r and z gives the solution in the
wavenumber domain

Ty(z,2) — v(z,2) — =0. (B-1)

ES(kmkz) = v(k,, kZ)/(l + aﬁki)

Similarly,
v (ks, kz) = "_’s(kw:kZ)/(l + agkg)'

S
¢ v(k,, k,)

(14 02k2)(1 + o2k2)”
In discretization, the second derivative can be approximated by

0%3, _ B,(z + Az, 2) ~ 20,(z, 2) + B,(z — Ax, z)
022 (Az)?

vs(k,, k) = (B-2)
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whose Fourier transform with respect to z is

4sin®(k,Az/2) _
(Ao Uy (ks 2).

Using this formula and taking the Fourier transforms with respect to £ and 2 in (B-1)
give the solution in the wavenumber domain
_ v(kz, kz)
s k:n kz = " .
%ke, k) = T 0000 JAD)2 sin (ko2 2)

Similarly, (kz, k)
B Us(kzy Kz
volke,ke) = T30 a0 s’ (kA2 2)

So

- v(kz, kz) -
va(kesBx) = (T Ao/ Az) o (ko A0/2)) (1 + 4o/ A2)?sin’ (k:A2/2)) .
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ABSTRACT

Prestack depth migration provides a powerful tool for doing velocity analysis in
complex media. Both prominent approaches to velocity analysis—depth-focusing
analysis and residual-curvature analysis, rely on approximate formulas in order
to estimate velocity errors. Generally, these formulas are derived under the as-
sumptions of horizontal reflector, lateral velocity homogeneity, or small offset.
Therefore, the conventional methods for updating velocity lack sufficient compu-
tational efficiency when velocity has large, lateral variations.

Here, using a perturbation method, we derive an analytic relationship be-
tween residual moveout and residual velocity. In our derivation, we impose no
limitation on offset, dip, or velocity distribution. Based on this formula, we revise
the residual-curvature-analysis method for velocity estimation that involves recur-
sion and iteration. Furthermore, this formula provides the sensitivity and error
estimation for migration-based velocity analysis, which is helpful in explaining
the reliability of the estimated velocity.

INTRODUCTION

Prestack depth migration that can handle dipping reflectors and lateral velocity
variations is robust in imaging complex structures. In order to process data by this
method, one often needs to have a more accurate velocity model than may be obtained
from simple velocity-analysis methods, such as normal moveout. Meanwhile, prestack
depth migration itself is an attractive tool for doing velocity analysis because of its
high sensitivity to the velocity model. Two approaches to migration velocity analysis
have been developed: depth-focusing analysis (DFA) and residual-curvature analysis
(RCA). Depth-focusing analysis is based on using stacking power to measure velocity
error. Residual-curvature analysis is based on residual moveout to measure velocity
€ITOT.

Migration velocity analysis must address two issues to succeed: (1) how to estab-
lish a criterion for knowing if a migration velocity is acceptable; (2) how to update
the velocity, if it is unacceptable. In DFA, a migration velocity is acceptable if the
difference between migration depth and focusing depth is zero. In RCA, a migration
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velocity is acceptable if the difference between imaged depths from different offsets is
zero. Quantitatively, these differences can be used to update the velocity. To date,
a variety of updating formulas have been developed. These formulas degrade with
increasing complexity of media (lateral velocity variation and reflector dip), because
of rough approximations used to estimate velocity. Although iteration generally is
helpful in obtaining a more accurate velocity, a good approximation not only reduces
iteration steps but guarantees the convergence. The conventional formulas for updat-
ing velocity were derived under one or more assumptions as follows:

(i) lateral velocity homogeneity;

(i) small offset;

(iii) horizontal reflector.
In DFA, all three assumptions are used (MacKay and Abma, in 1992). In RCA,
the assumptions vary with migration types. For common-shot migration or common-
receiver migration, Al-Yahya's formula (1989) used all three assumptions. Lee and
Zhang (1992) developed a formula that replaces assumption (iii) by the assumption
of small dip. For Common-offset migration, Deregowski’s formula {1990) used the
first two conditions. [This was proven by Liu and Bleistein (1992).] Both DFA
and RCA use assumptions (i) and (ii). Under the assumption of a small offset, the
residual moveout can be approximated by a hyperbola or a parabola. However, this
approximation is poor when the velocity has an obvious lateral variation.

Conventional approaches, such as DFA and RCA, inspect information on each
midpoint individually. This may not be reliable when conflicting events exist because
velocity estimation will depend on which event is used. Furthermore, the conventional
approaches estimate the stacking velocities that are assumed to equal the rms veloc-
ities, and then convert the rms velocities into the interval velocities by Dix’ equation
or other methods. The stacking velocity is very sensitive to the lateral variation in
velocity. When the velocity is laterally variant, the stacking velocity may be very
different from the rms velocity.

Because of limitations, conventional approaches to velocity analysis cannot handle
complex media (such as the model for Marmousi data). To overcome these limitations,
some geophysicists used a macro-model method for estimating the interval velocity
directly . A macro-model consists of velocities and velocity interfaces. An initial
macro-model is determined from conventional techniques; the macro-model is updated
iteratively by using depth-focusing, residual-curvature analysis, or both. The whole
process may be accomplished with interpretation based on geological knowledge. The
present macro-model method has two significant drawbacks. The first one is that
velocity distribution is assumed to be constant in layers. In fact, velocity may vary
within a block. The second one is that no efficient formula is used to update velocity.
The criterion used now for updating velocity is only qualitative, which resuits in
inaccuracy and inefficiency in velocity estimates.

In this paper, we present a new method for velocity analysis that revises the RCA
method. Based on perturbation theory, we derive a quantitative relationship between
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residual moveout and error of velocity that is valid for any offset, dip and velocity
distribution. A similar formula was proposed by Lafond et al. (1993). However,
that formula is restricted to constant-velocity layers. In contrast, our formula can
handle any parameterization of velocity. To apply this formula, it is necessary to
calculate some quantities that depend on the specular source-receiver pairs for each
image point. Here, we use multiple outputs of Kirchhoff migration to determine these
quantities efficiently.

Although prestack migration has superior advantages to deal with complex me-
dia, its weaknesses should be considered in application. Besides the costly computa-
tion, complexity of medium may degrade the effectiveness of the prestack migration
method. Here, we discuss the sensitivity of migration-based velocity analysis, and
show what factors affect the sensitivity, so that we may estimate the velocity error
involved in the velocity analysis. Furthermore, this sensitivity analysis provides an
indicator of when a priori geological knowledge is necessary for estimating reasonable
velocities.

VELOCITY ESTIMATION

If an incorrect velocity is used in prestack migration, the imaged depths from dif-
ferent offsets at a common-image-gather will differ from each other. In this situation,
a residual moveout is observed in migrated data. The principle of velocity analysis
is to correct the velocity so that the imaged depths at each common-image-gather
are close to for each other. For this purpose, one needs a quantitative relationship
between the residual moveout and the velocity error. Here, we use the perturbation
method to derive the representation for the residual moveout.

We denote by X a 2-D vector, X = (z,z) . Let z, be the source position and z,

be the receiver position on the surface. For any point X below the surface, 7,(z,, X)
or 7.(X, z,), respectively, denote traveltimes from z, to X, or X to z..

Suppose we know the total reflection travetime function T'(y, k) (therefore, 81'/3y)
that depends on midpoint ¥ and half-offset h. Given a velocity function v(z, z), then,
for each h, the reflector is determined by

Ta(xu X) + Tr(X! $,-) = T(y1 h)r (1)
ar, Oon. OT
i LAl 2
3 oy = B (2)

where X = (z, z) is the point on the reflector. The reflector is related to offset; for a
fixed image location 7, the imaged depth z can be computed that is a function of h.
If v(z, z) equals the true velocity, then the imaged depth z is independent of offset A;
otherwise—for incorrect velocity—z varies with offset h. Consequently, the imaged
depth provides information on velocity.

Suppose that the velocity distribution v is characterized by a parameter A,

v = v{A; X).
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For example, when v(x, 2) = vp + az + bz, A is either v, a, or b.
For a fixed image location z, we differentiate equation (1) with respect to A.
Noticing that y and z are functions of A, then

31‘, o, dy 31:, 67, 61', dz aTdy (3)
By d\  dyadx

By using equation (2), the first term of the left side in equation (2) is balanced by
the right-hand term. Therefore,

[67, 31',.] dz _ 91, 0
2

oz 1oz | ax

A ax
From
d1,  cosb, at, _ cosé,
8z v ' 8z v’

where 0§, or 8, are angels between the raypath from the source or the receiver, and
the vertical at X, we have that

cosf, + cos 8, dz or, On

v dx -~ X ox

That is, P
2
) @
where,
_ or, O v(A; X)
g(z,h) =~ [ﬁ + 3/\] cosf, +cosb,.’ (5)

Suppose that the true parameter is A* and the true depth is z*. If there is a
small perturbation AXA = A* — X between the true parameter and the parameter
used in migration, then the imaged depth will have a corresponding perturbation
Az(z,h) = z* — z(x,h). From equation (4), Az can be represented by

Az = g(z,h)AM (6)

Equation (6) is true for an arbitrery velocity distribution, any dipping reflector,
and any offset, which is significantly different from the limited result of conventional
RCA.

When the velocity distribution is characterized by multiple parameters, A= (A1,
A2, sy An)T, the imaged-depth perturbation will be affected by the perturbations of
all these parameters. Therefore, equation (6) is modified by

Ar(z,h) =3 %Axs = 3ol HAx, )
i=1 t =
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where

o, 31',.] v(A; X) (8)

gi(z,h) = — [3,\,- + dA;| cosf, + cosd,’
If we could solve for A}, the true parameters can be estimated by
=M+ AL

Notice that the left side of equation (7) involves the unknown z*, so it is necessary
to remove z* in this equation. The true depth can be approximately replaced by the
corrected imaged depth 2 + Az,

2"~ z(z,h) + Az(z, h) = z(z, h) +z:g,-(x, h)AM

Because z* is independent of offset, the corrected imaged-depths from different offsets
should be close to for each other. Suppose that there are offsets h,, hg, ..., Ay, and
image locations z,, z3, ..., Tk, then

P 4 Az =0 L T BAN,
i=1

where
z}k) = z(xk‘)hj)i
AZ® = Az(zi, hy),

gI(J) = gi(zk, hj).-

We seek AA;’s such that the corrected imaged depths have the minimum variance;

ie.,
K m
S5 (9 + A7Y — 58+ 250)” = min, 9

k=1 j=1

where -
2(k) = (Z% )s‘é )v"’zi(':"f))T’

Az®) = (Az{k) AZT L AT

Here we use the overline to denote the mean value of a vector over the offset index.
For example,

2® = Z 2,

m =1

Indroduce the matrix and vector,
A® = [eP)axn, B9 = (00,50, 80)7,
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= % "
Z(g.(,’ _5)) (g(;c) ~i,

where

J=1
m

B = 21 (g,‘f’ ~'(k)) (zj(_k) - _gtk)),
=

A(k) (k) (k) ))T

(gsl 1 g9 3 -+ Gin

then, as shown in Appendix A, the solution of equation (9) must satisfy the linear
equation,

K . K
Lz A(")] Al == b8, (10)
k=1

=1
Specifically, if there is only one parameter to be determined, equation (10) will have
an explicit solution

o _E{i T (g;k) W) (~(k) 308 1)

ka1 T (9( 9 -5'(_")) ,

g} ) = g(xkvhj)s

where

and

. %) _(k
g(k) — (g( ) gé )’ (k))T

If the corrected imaged-depths are not close enough to each other, we implement
iteration to obtain more accurate parameters. The iteration stops when the variance
achieves a given accuracy.

Calculation of the function g;

The function g;(y,h) involves the derivatives of traveltimes with respect to the
parameter A. In the eikonal equation,

or\*, (or)"_ _1
oz 8z)  vi(z,2)’

if we take the derivative with respect A, then

oudr Oopuodr 120 1
9707 020z 55_( 2(x ,z))’ (12)
where
_or
)

For each source or receiver, 87/0) is determined by solving equation (12). Therefore,
given an imaged point (r,z) and a specular source-receiver pair z, and z,, we can
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calculate g; from formula (8). However, there is not an explicit formula to represent
the specular source-receiver pair from the imaged point for a complex medium. To
solve this problem, here, we use the Kirchhoff integral to calculate g;. In the Kirchhoff
summation, we calculate two inversion outputs which have two different amplitudes.
One is the original amplitude; the other is the original one multiplied by the quaatity
gi. Thus, the ratio of the amplitudes of the two outputs will give g; at the specular
source-receiver position according to the stationary-phase principle, without requiring
knowledge of the specular source-receiver pair. This is the same technique as was used
to determine the angle of reflection in Kirchhoff inversion. [See Bleisten et al. (1987).]

Parameterization of Velocity

Although equation (7) holds for any velocity distribution, the solution will be
underdetermined if too many unknown parameters are involved. Consequently, it is
essential to characterize the velocity distribution by choosing appropriate parameters.
Conventionally, one assumes that a velocity model consists of the construction of the
macro-model (constant velocities and velocity interfaces). The interfaces divide the
whole model into a number of blocks. Here, we replace constant velocity in one block

by a linear function that is characterized by three parameters:

/\1 + Az(z - Zo) + A3(1‘ —_ 150),

where (o, 2p) is a reference point. Thus, the velocity distribution is written in a form

of
v(z, z) = v(z, 2) + A + ez — 20) + As(z — 20), (13)

where vy is a background velocity.

An imaged depth only depends on the velocity above it, except for turning rays.
Therefore, a recursive algorithm is possible to determine velocity in an individual
block. We start from the block nearest surface. In each block, iteration is used to
calculate velocity parameters. Given an initial guess for A;’s, common-offset depth
migration is implemented to obtain imaged depths and gi(z,k) in equation (8) for
each midpoint and each offset. Equation (10) will give a correction of the parameters.
Then by using the updated parameters as initial guess, we correct the velocity again
until convergence is achieved. After velocity analysis in one block, we migrate data
with the correct velocity, and then pick the block interface from the imaged structure.
When we finish determining velocity and velocity interface in one block, we will repeat
the same procedure to the next block.

SENSITIVITY OF MIGRATION VELOCITY ANALYSIS

Velocity analysis by prestack migration uses the difference between the imaged
depths from different offsets to correct the velocities, which is represented by equa-
tion (10). If the variance defined by (9) is zero, we conclude that the velocity is
correct. However, one cannot obtain exactly zero variance. Many factors result in
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a non-zero variance: noise in the input data, nonacoustic properties, and inaccurate
description of velocity distribution, so on. Even the variance is apparently zero, it
is actually not zero because of the errors in picking the imaged depths. The imaged
depths in the variance are picked on the migration output, so that the position error
in imaged depths is controlled by the resolution of the migration output, which, in
turn, depends on wavelength, among other things.

Quantitatively, the matrices in equation (10) that depend on the functions, g;,
can be used to describe the sensitivity of the velocity error AA to the variance error.
Here, we will derive analytical representations for the simplest cases. For simplicity,
we assume that the velocity v(r, z) consists of a constant background velocity vp and
a perturbation that is a linear function of depth in one block. Moreover, we assume
that the upper boundary of the block is a horizontal line, z = d; i.e.,

’U(.’B, Z) =t + a(Al + AZ(z - Z())), (14)
where a = 0 for z < d and a = 1 for z > d. The initial guesses are
A=A =0

Suppose that the true parameters are A} and A3, and the reflector is a horizontal
segment at a depth z*. As shown in Appendix B, we obtain the representations for
the g;’s in equation (8)

R4+22z2—-d

aiz,h) = = - (13)
h2 + 22 (2 — 2)? — (d — 2)?
g2z, h) = o 2o . (16)

From the above two equations, we conclude that

— z;)(zz__(:)— 20)291 (z, h).

This means that the coefficients in equation (8) are proportional for all image locations
and all offsets, so that we cannot solve for A\; and Ap separately. Thus, we have a
conclusion: The parameters A; and Ay cannot be determined at the same time if only
one reflector segment is used in the velocity-analysis process.

g2(z,h) =

This conclusion shows that one should avoid solving for A; and Ag at the same
time unless well-separated reflector segments are used for velocity analysis.

If the parameter A, is given (i.e., AX; = 0), then equation (8) is simplified to

2 -
Az(z,h) = (% + 1) 2=d 5, (17)

Yo
When A); is small, z(z, k) & z*. Therefore, for any different two half-offsets h, and
hy (hg > hy), the difference of imaged depths from these two offsets are

2 2 2 —
Z(..":,hg) - z(a;,hl) = [(;% - (z_h;l)i:l -—-EAAl

Yo
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ie.,

2 2\ ( *
62(x, h, ha) = z(z, he) — 2(z, 1) = (h — B)(=" — d) Al (18)
(2*)2vo
Equation (18) shows that the error in )\ is proportional to the thickness of the block
layer, which is consistent with results in the paper of Liu and Bleistein (1990). When
there is a thin layer, the velocity estimation will become unreliable, so that migration-
based velocity analysis cannot handle thin layers.

Similarly, if the parameter A; is given (i.e., AX = 0), then

(h2 — h3)(z* —d)(z" +d — 22 )
L Ty % AM. (19)

52(.’1‘, hl, hg) =

Equation (19) shows that the error in Ag is determined not only by the thickness of
the block layer but by the difference between the central depth of the block layer and
the reference depth zo.

We have two kinds of the depth errors: Az and 6z. The former is the difference
between the true depth and the imaged depth, which reflects migration error due to
the velocity error; the latter is the difference between the imaged depths from different
offsets, which results in the velocity error in velocity analysis. The ratio of these two
depth errors is given by equations (17) and (18),

Az(z,h) B2+ (2*)?

7= 62(1.', hl, hg) . (h% - h%) ' (20)

The ratio « indicates the migration error due to the resolution in migration output.
Equation (20) shows that 7 increases as the depth increases.

For a general case, we do not have analytical representations for the g;’s. But we
can calculate the g;’s numerically from which to estimate. the velocity error. In fact,
if there is only one parameter, equation (11) gives an explicit error estimation,

- AE ~ 9q1/2
1A < Yo Cie ZJ(' ) — z(k))z (21)
E{:{=l E;'n=l (gjsk) - g(k) )

where the Cauchy-Schwarz inequality is used.

COMPUTER IMPLEMENTATION

We applied our velocity analysis technique to synthetic data. The prestack migra-
tion is implemented by Liu’s program (1993). The velocity model shown in Figure 1
consists of linear velocity functions and interfaces. Synthetic seismic traces are gen-
erated from this model, with 5 offsets ranging from 100 meters to 900 meters. Two
of the common offset gathers are shown in Figure 3.
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The velocity analysis process is outlined as follows:
In the first layer, the initial guess of velocity is 1500 m/s. With two iterations,
the velocity is 2017 m/s. The true value is 2000 m/s.
In the second layer, we assume that velocity has the form v(2) = 2017+ (z— 500)
m/s, which guarantees a continuous velocity across the first interface. The initial
guess is A = 0. With two iterations, the velocity is

v(z) = 2017 + 1.035(z — 500) = 1500 + 1.035z m/s.

The true velocity is v(z) = 1500 4 1.0z m/s.

In the left third layer, we assume that velocity has the form v(z,z) = 1000 +
1.5z + Az m/s. The initial guess is A = 0. With one iteration, the velocity is
v(z,z) = 1000 + 1.5z — 0.1z m/s. The true velocity is v(z, z) = 1000 + 1.5z — 0.2z
m/s. Despite the error in lateral variation, the stopping criterion is met since the
difference of the imaged depths is apparently zero. Therefore, iteration ceases.

In the right third layer, we assume that velocity has the form v(z) = 2535+ A(z —
1000) m/s. The initial guess is A = 1.085. With one iteration, the velocity is

v(z) = 2535 + 1.55(z — 1000) = 985 -+ 1.552 m/s.

The true velocity is v(z) = 1000 + 1.5z m/s.
In the fourth layer, the velocity is a constant. The initial guess is v = 4000. With
one iteration, the velocity is 3586 m/s. The true velocity is v = 3500 m/s.

After velocity analysis, we obtain the velocity model shown in Figure 2. With this
velocity model, we implement migration, and the result is shown in Figure 5 which is
close to the migration result with the true velocity, shown in Figure 4.

Also, we test the computation of g1 in the first layer. The numerical g, is computed
from the ratio of the amplitudes in the Kirchhoff migration outputs. Then.we compare
the numerical g, with the true value calculated in equation (17). In our test, vy = 500
m/s and d = 0. The result listed in Table 1 shows that our numerical value of g, is
accurate for all offsets.

Table 16. Test for g). The unit of offset and depth is m/s,

Offset | Imaged depth | Numerical g; | True q
100 370 0.249 0.251
300 360 0.278 0.282
500 330 0.345 0.346
700 290 0.476 0.475
9200 210 0.773 0.783

250



Liu and Bleistein Velocity Analysis

CONCLUSION

Velocity analysis by prestack migration can handle complex media for which
conventional approaches lack the efficiency in updating velocity. The perturbation
method is used here to derive an analytical relationship between the residual moveout
and the error in the background velocity. This method is not limited by offset, dip,
or velocity distribution. Based on that, we can estimate velocity efficiently. Further-
more, this relationship helps us to estimate the velocity error from the data resolution.
This velocity analysis technique also can be generalized to 3D and to converted waves.
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F1G. 2. The velocity model from velocity analysis. The velocity unit is m/s.
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FIG. 3. Synthetic data: (a) with offset of 100 meters and (b) with offset of 900
meters.
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Fi1G. 4. Prestack migration with the true velocity model in Figure 1. The offset is
100 meters.
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F1G. 5. Prestack migration with the velocity model in Figure 2. The offset is 100
meters,
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DERIVATION OF EQUATIONS (10)

By using the matrix and vector notations on page 5 and 6, we have

Az =

Il
Ma
o~
>4
2>
3|~
NE
8
s
e

= (AA,-@) , (22)

P 4 AP O L AZE = P 30 4 A —AZ@

= P oTmryan (e -30). @

i=1

and

Define a function

FlAX) = Z i( ® 4 Az — O+ AZ0) .

k=1 j=1

Thus, finding the minimum of f(Aj\) is equivalent to that its gradient with respect
to A) equal 0, i.e.,

af(ax)

= 1=1,2,..,n. 24

By using equation (23),

. K m R n 2
_ Z Z [Z,(-k) T EA’\ (gI(Jk) gl;k-) ] .
E=1j=1 i=1

So,
a7 (A%) S le_sm. ( ® T(k))] *) _.(k))
= 2 zi — 3l AXil g — G ( — g
AN ,,Z_},Z_E ! =1
K m
- 2y Y (z}k) . g(k_)) (ggr) _ fh(k))
k=1 j=1
K m n N
+23° 33 AN (g;, -37) (9:(,’-“) —.c‘n(k))- (25)
k=1 j=1i=1
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The conditions (24) imply that
m n K m
K ~(k k ~(k k k ~(k
EZZM (gf,’ FE) )) ( (*) _)() -y 3 (49 - 7) (g,‘,-’ —i® ));
k=1 j=1i=1 k=1 j=1

ie.,

[2 A(")] i:j b, (26)

This completes the verification that the solution of equation (10) provides the
minimum of the left side in (9).

DERIVATION OF EQUATIONS (14) AND (15)

The solution of equation (12) can be represented by

s R A

where L is the raypath. Here, to simplify notations, we suppose that all derivatives
with respect to A are evaluated at A; = Ay = 0. When the background velocity is a
constant vy as in (13), equation {27) becomes

ar 1 z _,0u(z,?')
a__cosﬂjo Y 7)) dz, (28)

where 0 is the angel between the raypath and the vertical. For the velocity function
in equation (14), if z > d, then

dv(z, )

=1
I ’
and o0(z, )
ONTZ) _ 1 e
6)\2 ==z 20,
if z < d, then
dv(z,2') ov(z,?) 0
aA1 - 3)\2 -
Therefore,
a7 1 =1, 1 z—d
“ S = 9
A\ cosf Ja vE dz cosf vi ' (29)
and 1 ( )2 (d )2
27 - ZO z2—=2Zy) — —2p
- . 30
A2 cosﬂf " cosf 20 (30)
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Because the reflector is horizontal, the raypaths from the source and the receiver are

symmetric. We have .

Wy
Substituting the above formula and equations (29) and (30) into equation (8), we
obtain

W+ztz-d

22 Vo

cosfl, = cosf, =

a(z,h) =

and
W+ 22 (2 —2)% = (d—2)?

22 2v9

92($sh) =

This completes the verifications of equations (15) and (16)
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Application of dynamic ray tracing in
triangulated subsurface models

Andreas Riger

ABSTRACT

Hale and Cohen {1991) developed software to generate two-dimensional com-
puter models of complex geology. Their method uses a triangulation technique
designed to support efficient and accurate computation of seismic wavefields for
models of the earth’s interior. Subsequently, Hale (1991) used this triangulation
approach to perform dynamic ray tracing and create synthetic seismograms based
on the method of Gaussian beams. Here, I extend this methodology to allow an
increased variety of ray-theoretical experiments. Specifically, it is now possible to
define a reflection and transmission sequence for each interface and to incorpo-
rate attenuation and density variations. In addition, I have added an option to
perform Fresnel-volume ray tracing (Cerveny" and Soares, 1992). Corrections for
reflection and transmission losses at interfaces, and for two-and-one-half dimen-
sional (2.5-D) spreading are included. However, despite these enhancements, dif-
ficulties remain in attempts to compute accurate synthetic seismograms if strong
lateral velocity inhomogeneities are present. Several examples of computations
of high-frequency seismograms based on the method of Gaussian beams are pro-
vided to emphasize the advantages and disadvantages of the proposed modeling
method. The new features are illustrated for both surface and vertical seismic
profiling (VSP) acquisition geometries.

INTRODUCTION

New triangulation methods for representing subsurface models in computers have
helped to overcome limitations inherent to previous computer models of the earth’s
interior. A mesh of triangles can flexibly characterize complex subsurface models
that can, for example, include velocity lenses and overhanging dome structures. Ad-
ditionally, Hale and Cohen (1991) designed spatial data structures that contain the
adjacency topology (Weiler, 1988) of the model, so that computing time is not wasted
in searching for the triangles and model parameters in the vicinity of any arbitrary
point in the model.

The combination of dynamic ray tracing (Cerveny, 1985) and the triangulation

261



Dynamic Ray Tracing Riiger

technique is very promising. Dynamic ray tracing is an important extension of the
classical kinematic ray tracing. It provides useful dynamic properties such as geo-
metrical spreading and wavefront curvature information along the rays. Hale (1991)
took advantage of the dynamic ray tracing results to generate synthetic seismograms
based on the method of Gaussian beams (Cerveny, et al., 1982).

The purpose of this project is to enhance the usefulness of Gaussian beam ray
tracing in triangulated subsurface media and to discuss its current limitations.

In the era of high-speed computing, forward modeling based on ray-theoretical
methods competes with finite-difference approaches (e.g., Fei, 1993). The latter allows
specification of model parameters such as the seismic velocity at each point in the
gridded model. If the grid spacing is chosen fine enough, the accuracy of the calculated
synthetic seismograms is very good. A synthetic section generated with a finite-
difference method provides all types of seismic events simultaneously. This often
makes it difficult to identify reflections from interfaces of interest. Moreover, the
computing speed of finite-difference methods is about two orders of magnitude slower
than for ray tracing experiments. This significantly reduces the application of finite-
difference methods as an interpretation tool.

FLEXIBILITY | DIAGNOSTIC | ACCURACY SPEED

FD 10 5 9 3

oldTRIl 6 7 5 10
newTRI| & 9 7 G
poor excellent

12345678910

Table 17. A comparison of finite-difference methods (FD), Hale’s Gaussian beam

modeling package (oldTRI) and its extension (newTRI), which is introduced in this
paper. Details are given in the text.

If certain requirements are met, ray-theoretical techniques and, in particular, the
dynamic ray tracing method do have a future in seismic modeling. Several criteria
may be established to compare the performance of either method (see Table 17).
Here, based on my experience, I assign grades from 1 to 10 to the performance of
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finite difference methods (FD), Hale’s Gaussian beam modeling package (oldTRI)
and its extension (newTRI), which I introduce in this paper.

¢ Flexibility : The first criterion assesses the model complexity and the variety
of ray modes that can be traced. I have added an option to specify a constant
attenuation factor and density for each geologic block, i.e., for each area bounded
by interfaces. Moreover, the software now allows the introduction of a broader
class of raypaths. That is, as shown in Figure 1, interfaces no longer are limited
to being either reflectors or transmitters of seismic energy, but now can be both,
in a specified sequence. This generalization broadens the applicability of the
modeling. For example, it is now possible to include multiples.

Distance (km)

Depth (km)

FI1G. 1. Ray tracing in a complex subsurface model. This model includes sharp-edged
interfaces and lens-grpe structures. Lithological interfaces are represented by black
lines. The shading denotes the seismic velocity field. Also shown as black lines are
raypaths corresponding to one type of interface multiple. The white lines are edges
of auxiliary triangles used in the model building.

e Diagnostics : The second criterion evaluates the capability of the method
to act as a tool for interpretation and for understanding of wave propagation
in complex structures. Several new options have been included and will be
presented in this paper. One of the new features, called phystical ray tracing or
Fresnel-volume ray tracing (Cerveny and Soares, 1992), may be used to study
the resolution and the validity conditions of the ray method.

e Accuracy : Third, accurate seismograms have to be computed. The computa-
tion of the reflection and transmission losses at interfaces as well as correction for
2.5-D amplitude spreading improve the accuracy of the Gaussian beam ray trac-
ing. However, problems remain when dealing with significant inhomogeneities
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in the model. Some limitations are intrinsic to ray methods; others are specific
to the Gaussian beam approach. Both are discussed later in this paper.

e Speed : The fourth criterion, computational aspects, underlines one of the big
advantages of ray methods. The new options of the ray-tracing package such as
the computation of the out-of-plane spreading, energy partitioning at interfaces,
and attenuation, can be performed while still maintaining the attractive feature
of computational efficiency with limited computer storage requirements.

Modeling using the Gaussian beam method is only one possible application of
the dynamic ray-traced data generated along rays. Alternative methods (e.g., the
paraxial method) can also use these data to create synthetic seismograms. The new
modifications such as the tracing of multiples, computation of out-of-plane spreading,
or reflection and transmission correction are evaluated independently of the Gaussian
beam procedure. To understand better the advantages and disadvantages of Gaussian
beam ray tracing, the new options are illustrated for both surface and VSP acquisition
geometries. A comparison with VSP data obtained in a physical modeling laboratory
supports benefits of the ray-theoretical modeling.

Distance (km)
0 0.5 1.0 1.5 20

Depth {km)

F1c. 2. Raypaths for two different families of multiples. Interfaces of interest are
labeled. The shading of the different layers indicates that the seismic wave velocity
varies with both depth and lateral position.
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IMPROVEMENTS IN THE MODEL REPRESENTATION

Reflection and Transmission Sequences

Hale (1991) demonstrated how complicated models such as salt domes can be
triangulated for efficient ray tracing. His version of the modeling code was designed
to generate reflections from only a single selected reflector in any given run of the
program. The approach presented here is more dynamic. The generation of multiple
raypaths, for example, requires a certain flexibility in the definition of the interfaces.
Previously, any given interface could either reflect or transmit seismic energy, but not
both; this definition of interfaces did not allow one to trace multiples. As illustrated
in Figure 2, to obtain selected multiples, a sequence of reflections and transmissions
has to be defined at each interface of interest. I have installed this new feature in the
ray-tracing code. For each reflector, a reflecting sequence can now be defined by the
user of this modeling software.

The two different families of multiples in Figure 2 have been created by instructions
similar to those in other SU command shells. To generate the multiple raypath
between interface 2 and 3 shown on the left side of the figure, the shell parameter
statements are the following:

\ # refl./transm. sequence for interface 2

refseq=2,0,1,0
1\ # refl./transm. sequence for interface 3

refseq=3,1,

The first number after the equality sign denotes the interface; the following num-
bers signify the sequence of reflections and transmissions at this interface: “0” denotes
transmission, “1” reflection. If no reflection sequence is defined for a reflector, the
interface is considered to be only transmitting. In the above case, the first hit on
interface 2 will lead to a transmission of the seismic energy and the second arrival
generates a reflection. Finally, the ray propagates towards the surface. For the type
of multiple displayed on the right side of Figure 2, the following statements are used:

refseq=1,0,1,0 \ # refl./transm. sequence for interface 1
refseq=2,1,0,0 \ # refl./transm. sequence for interface 2
refseq=3,1 \ # refl./transm. sequence for interface 3

Attenuation and Density

I have not changed the original specification of the velocity field characterized
by a linear gradient in reciprocal velocity-squared (so-called sloth). Additionally, the
user may now assign a constant attenuation and density value to each geologic block
bounded by interfaces. The implementation of noncausal absorption is made efficient
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Quality factor
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Fic. 3. Synthetic seismograms displayed as a function of quality factor Q. The
receiver is situated in a homogeneous medium, 5km from a point source. Velocity
of the medium is 2.5 km/s. Only the noncausal attenuation effect is evaluated. The
solid line in the right diagram represents analytically computed solutions; the triangles
denote modeled resulits.

by introducing a complex velocity using the Debye approzimation (Miiller, 1983).

1 1 i

Z (14 —

v Ureal ( 2Q
where v,.q is the specified real-valued seismic velocity, and @ is the familiar quality
factor for dissipative wave propagation. For w denoting radial frequency and s, the
monotonically increasing arclength along the ray, the amplitude decay Agecqy due to
attenuation is given by

),

8
L) 2Q'U-real

For a constant Q in each triangle, the global absorption factor ¢~

Adecay = €Xp (—w ds) = exp(—wt”)

1 =N t;
ds = —
e 2Q'L'real i=1 2Q;

can be obtained as a simple by-product of the ray tracing. Here, V is the number of
triangles traversed; Q; and ¢; are the quality factor and the traveltime within the :-th
triangle. The efficiency of the noncausal treatment in dissipative models is essentially
the same as in perfectly elastic models. Figure 3 is a display of the seismic response
of a homogeneous, absorbing medium with v,es = 2.5km/s. The receiver is situated

" =
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5km from the source. Each trace corresponds to a different value of quality factor Q.
The right diagram shows the amplitude at the dominant frequency versus Q. The solid
line represents the analytically computed values, the triangle symbols denote results
computed by the Gaussian beam modeling. The values are normalized by setting the
amplitude for the perfectly elastic medium to unity. Note that the accuracy increases
with decreasing absorption in the medium. However, even for small values of Q, the
comparison is satisfactory.

Multiplication by Agecay in the frequency domain yields noncausal results. I im-
plemented a correction proposed by Cerveny (1987) to approximately simulate causal
absorption (see Figure 4). For decreasing Q, one recognizes a similar decay in am-
plitude as in the noncausal case, but also a delay of the causal signal towards larger
traveltime. A more detailed examination shows that the signals broaden and be-
come slightly asymmetric. The computational cost of including causal attenuation
is significantly higher than for the noncausal case; therefore, the causal feature is

optional.

Quality factor
0 250 500

2.1

F1G. 4. Symthetic seismograms displayed as a function of quality factor Q. The
receiver is situated in a homogeneous medium, 5 km from a point source. Velocity of
the medium is 2.5 km/s. Causal absorption is included.
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GAUSSIAN BEAM MODELING AS AN INTERPRETATION TOOL
VSP Modeling Experiment

Recordings from VSP experiments are routinely used to improve the estimation
of subsurface properties close to a well. VSP data sets are often more difficult to
interpret than are surface data. While the latter bear a certain similarity to actual
subsurface structure, the patterns in VSP sections are quite different from the actual
configuration in the subsurface. Generation of VSP synthetic data helps to overcome
this interpretation problem by providing a tool to help identify events on recorded
VSP seismic sections and to check the validity of existing imaging software.

F1G. 5. Fault-model VSP experiment with one shot-point. The generated seismic
wavefield is recorded by geophones in a well. Figures 9 and 10 show synthetic data
and physical-modeling data for this model.

The software described in this paper can be used to generate data for VSP ex-
periments. Consider the fault model shown in Figure 5. This model was used by
Jaramillo (1993) of the VSP research group at €SM both- to analyze the quality of
the generated synthetic and physical model data and to use the modeling software as
an interpretation tool for the Yucca Mountain Project. 'The ray-tracing code provides
an additional source of model data.

Figure 6 shows one family of rays generated by the modeling software. Two
reflections are considered in the ray propagation: the first is at the left boundary
of the model, and the second at the hanging wall. The rays finally are recorded by
receivers in the borehole.

If the left boundary of the model is labeled 1, the fault 2, and the borehole 3, the
UNIX command shell for this experiment contains the lines:

refseq=1,1 \ # refl./transm. sequence for the left boundary
refseq=2,1 \ # refl./transm. sequence for the fault
refseq=3,-1 \ # refl./transm./stop sequence for the borehole
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F1G. 6. One family of rays afenera.ted by the modeling program. The event is recorded
by receivers in the vertical borehole. The corresponding reflection in the synthetic
seismic section in Figure 9 is labeled i.

I have previously introduced the designations, “1” for reflection, “0” for trans-
mission; here, I introduce “-1” to denote the stopping of the ray. Thus, the first
intersection of the raypath with the borehole terminates the tracing of this ray. Infor-
mation including the traveltime, corresponding amplitude, and index of the stopping
interface are stored in a file. By default, the rays are stopped at the boundaries of
the model. Only rays with the correct stopping index will contribute to the events
on the seismic section and, optionally, will be displayed. Another feature allows one
to select only direct arrivals or only primaries. These new enhancements proved to
be helpful in the Yucca Mountain Project.

The synthetic seismic response for the specific event shown in Figure 6 is labeled
as event i in Figure 9. This reflection can also be identified in the recorded p-wave
physical modeling data (Figure 10). In Figures 7 and 8, a series of ray families is
displayed for the same geometry. The letter labels on the models in Figures 7 and 8
correspond to the events in Figure 9. In this form, one can conveniently compare the
synthetic section and the physical modeling data, and identify individual events.

The modeling software now allows tracing of all rays of interest. It is possible to
specify reflections from the vertical and horizontal boundaries of the model, features
that are recorded in physical modeling experiments; multiples can be conveniently
defined, and rays may also be traced across the borehole before they encounter the
receiver line a second time and are recorded (see events g and h).

Differences in Figures 9 and 10 can be attributed to a number of factors. Among
them is the fact that the ray-trace code presently generates only acoustic events,
whereas the physical model is 2-D elastic. - The entire experiment, including the
building of the model, the tracing of nine different ray modes, and the generation of
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(o d

F1G. 7. Four different ray types are shown. In example a, both direct arrivals and
primaries from the foot wall and the hanging wall are present. b displays bottom
reflections and direct arrivals, ¢ surface multiples and d bottom multiples. The
corresponding seismic events are labeled accordingly in the seismic section. Note that
although the ray density at the source is ident-ica% in each figure, the ray coverage at
the borehole is different.
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Fic. 8. The modeling software allows tracing of raypaths that reflect from the sides
of the model and that cross the borehole. Rays that are reflected back from the
boundary of the model, and pass the receiver line a second time are finally recorded
by the geophones in the borehole (see events g and h in Figure 9). As can be seen in
e and f, rays with overcritical incidence are not transmitted.
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Receiver depth (km)
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FiG. 9. Synthetic data generated by the extended version of Hale'’s acoustic modeling
program. The ray families presented in the previous two figures generate seismic
responses that are labeled accordingly here.

Time (s)
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Receiver depth (km)
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Time (s)

Jztr ‘

¥1G. 10. The physical modeling data set after applying a waveform filter to obtain
the p-wave contribution to the data. Comparison with the synthetic section helps
identify the majority of the dominant coherent events.

e
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the synthetic seismic sections took 23 s of CPU time on an IBM RS6000 workstation.

Fresnel-Volume Ray Tracing

The term Fresnel-volume was introduced by Kravtsov and Orlov (1980) to gener-
alize the concept of Fresnel-zones. These authors suggested that rays be considered
as physical objects rather than volumeless trajectories. Stated differently, all points
within a region in the vicinity of the ray, the Fresnel-volume, influence the wave prop-
agation associated with this ray. As illustrated in Figure 11, a point F belongs to the

First Fresnel Zone

FIG. 11. The Fresnel-volume for a ray from A to B. The point O marks the inter-
section of the ray with the plane X. Points such as F' influence the wavefield along

the ray if the Fresnel condition (1) is satisfied (see also Cerveny and Soares [1992]).

Fresnel-volume of the ray from A to B, if the Fresnel condition (1) is satisfied (see
also Cerveny and Soares [1992]), that is

IT(F’A) +T(FaB)_—T(B’A)I <

b | =

T. (1)

Here, T denotes the dominant period of the signal, and 7(F, A), 7(F, B) and 7(B, A)
are the traveltimes from F to A, F to B and B to A, respectively. Fresnel-volumes
depend on the velocity field close to the ray as well as on the dominant frequency of
the signal.

I used recent work by Cerveny and Soares (1992) to supplement the dynamic ray
tracing routine with an option to compute the two-dimensional paraxial approxima-
tion of the Fresnel-zone. This may be performed efficiently and accurately by using
the elements of the ray propagator matrix, which are evaluated in the dynamic ray
tracing.
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Fresnel-volume ray tracing (or physical ray tracing) offers several applications for
the field of exploration geophysics. For example, study of the resolution of the seismic
method can be extended to complicated media, and the validity conditions of ray
methods can be stated explicitly in terms of the radius of the Fresnel-zone at any
point along a specified raypath (see Kravtsov and Orlov, 1980). In Figure 12, the
plot of the Fresnel-volume (actually, Fresnel area, for these 2-D models) for a signal
frequency of 5 Hz indicates that the ray-theoretical assumptions are violated because
the edges of the fault and the velocity lens intersect with the Fresnel-volume. The
wavefield along the ray is, in this sense, obstructed. The wavefield recorded at the
receiver is influenced by the zone covered by this Fresnel-volume and not only by the
line traced by the classical ray.

Depth (km)

10-

F1G. 12. The Fresnel-volume for a ray traveling through an inhomogeneous medium.
A signal frequency of 5 Hz is considered. Interaction of the Fresnel-volume and the
edges of the lens and the fault indicate a violation of the ray-theoretical assumptions.

ACCURACY OF THE MODELING
Two-and-one-half Dimensional Spreading

I included a computationally simple procedure to correct for geometrical spread-
ing for a point source in the medium. Previously, the Gaussian beam modeling
yielded amplitudes for a line source with a cylindrical wave expansion. I used the
three-dimensional dynamic ray-tracing equation to derive the necessary amplitude
correction. Consider variations of the properties of the medium to be restricted to
the (z;,z3)-plane, with no variations in the zy-direction allowed. This situation is
referred to as being two-and-one-half dimensional (Bleistein, 1986).

The factor that multiplies the original two-dimensional solution is proportional to

(js:vds)_% = (0 —00)7 7,
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where o is a running parameter of units [length?/time], and s is the arclength in-
creasing from sg to s along the ray. Figure 13 emphasizes the difference in amplitude
decay for homogeneous 2-D and 2.5-D media. To help see the spreading behavior, the
10 traces of each seismic section are summed and displayed below. The amplitude
decay is proportional to r—7 for the line source and r— for the point source, where r
is the distance traveled.

Receiver-Source Distance (km) Receiver-Source Distance (km)
5 10 5 10
0 0
L —
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F1G. 13. Seismic sections generated by Gaussian beam modeling in homogeneous
media. The right side simulates the energy spreading due to a point source; the left
time section shows the response due to a line source. Below, the seismic traces of
each section are added to better visualize the difference in amplitude decay.

Reflection and Transmission

Hale (1991) traced rays through models containing velocity discontinuities. One
example is the model shown in Figure 14. If a ray impinges on a boundary divid-
ing two media with different velocities or densities, one must account for reflection
and transmission at boundaries in order to properly calculate the wavefield ampli-
tude. While Hale implemented a correction for the influence of discontinuities on
geometrical spreading, the loss of energy reflected by impedance discontinuities was
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Distance (km)

Depth (km)

F1G. 14. Rays and wavefronts for an overthrust model. Rays are plotted as white
lines, and wavefronts as black symbols. Data acquired for this model need to be
corrected for reflection and transmission losses.

not included. I modified the program to compute the necessary correction factor Agr
along the ray:

N
Arr =Y Ra/ (v /i)y (cosaif feosay) (2)
i=1
A corresponding expression for two-dimensional elastic media has been derived by
Cerveny and P3encik (1984). The summation is over all interfaces encountered by
the ray. At the i¢-th interface, this expression involves the reflection or transmission
coefficient R; for acoustic pressure waves, which can be evaluated by assuming the
continuity of both pressure and the normal component of particle velocity across an
interface (Brekhovskikh, 1960). The meaning of the other quantities in equation (2)
is sketched in Figure 15. If the ray is reflected back from interface X;, the two square-
roots yield unity because both the velocities and the angles of incident and reflected
ray are identical. The additional computing time required for evaluating the reflection
and transmission correction is negligible.

Difficulties with the Gaussian Beam Approach

So far, the majority of issues addressed in this paper involved the tracing of the
rays and the computation of helpful information such as out-of-plane spreading or
reflection and transmission losses. These quantities and the results of kinematic and
dynamic ray tracing are evaluated at the ray ends and stored in a file. Several meth-
ods have been proposed to use these data to generate synthetic seismograms, among
them are the parazial method (e.g. Beydoun and Keho, 1987) and the Gaussian beam
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F1G. 15. Sketch of the quantities involved in the transmission of a ray at interface X;.
The incidence angle is o ,and the refraction angle is o . The velocity is discontinuous,
jumping from v to v} across the interface.

method (GBM) (e.g., Cerveny, et al, 1982). Both of these methods share the ad-
vantage that time-consuming two-point ray tracing is not required. In the paraxial
method, the seismic response at a receiver is calculated by extrapolating the informa-
tion provided by the nearest ray. The GBM uses a weighted sum of information of all
rays in the vicinity of the receiver. Although this procedure is computationally more
difficult and less efficient, it offers the advantage that the results are regular, even
in regions where the conventional ray methods fail (e.g. caustics or shadow zones).
These situations are extensively discussed in the literature (e.g. Weber, 1988; Kastner
and Fritsche, 1988; Miiller, 1984), and several examples of computations of GBM re-
sults are shown. None of these references, however, provides examples of using the
GBM in models of significant complexity, such as in Figure 14, nor do they consider
reflections from more than one target. To improve our understanding of the difficulties
that influence the Gaussian beam solutions for models with strong inhomogeneities,
a quick review of the Gaussian beam summation approach is necessary.

Gaussian beams represent high-frequency asymptotic solutions of the wave equa-
tion. These solutions are concentrated close to rays. Similar to the classical ray
methods, where the source wavefield is expanded into rays, in the GBM the source
field is expanded into Gaussian beams. Several degrees of freedom are available to
achieve an accurate expansion:

¢ the number of beams used in the expansion
o the width of each beam

¢ the phase-front curvature of each beam.

Phase-front curvature, i.e., the second derivative of traveltime evaluated at the ray,
and beam width may vary from beam to beam and can be specified at an arbitrary
point along the ray. The width and the number of beams determine the beam coverage
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in the area of interest. Since the wave equation is linear, synthetic seismograms may
be computed at any point P in the medium as a weighted sum over all beams.

u(P) = j;¢(¢) us(P) do, 3)

where u(P) is the solution at the receiver, and u4(P) is the solution of the beam with
take-off angle ¢, evaluated at P. The common procedure for estimating the complex-
valued weighting function ®(¢) is to compare integral (3) with the exact solution
of the wave equation in homogeneous media for frequency w — oo (Cerveny, et al,
1982). Additionally, it is assumed that, at the source, the phase-front curvature and
the width of the beam are the same for all take-off angles or, as shown by Miiller
(1984), vary linearly as a function of ¢. For simplicity, the curvature of the phase

receivers
/
£ Ot
beam width at ray ends
"’°o
’7-"@ source beam width = "beam parameter”

F1G. 16. Sketch to illustrate the meaning of beam parameter and beam width at ray
end. Note that the rays are the support of the beams and that the amplitude of a
beam decreases exponentionally away from the ray. The response at the receivers is
obtained as a weigﬁted sum over the beams.

front of the beam is set to zero at the source; i.e., phase-fronts are planar at the
source. The introduction of beams with plane phase-fronts at the source does not
include any error; however, that choice reduces the variety of possible expansions of
a wavefield into Gaussian beams. The only beam parameter left to be specified is the
beam width at the source (see Figure 16).

To illustrate difficulties inherent to the GBM, a simple experiment is sketched in
Figure 17. Rays are traced from a single shotpoint and are reflected from an interface
at the depth of 2.5 km. Synthetic seismograms for various choices of beam parameter
are shown in Figure 18. Note that the choice of beam parameter has influence on the
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shot critical offset
| recelver line,
I km
2.5 km
I velocity 1 =5 km/s

critiél angle velocity 2 = 7 km/s

Fic. 17. Geometry of an experiment to show the dependence of the GBM results
on the choice of beam parameter. Seismic sections for various beam parameters are
displayed in Figure 18.

generated time sections. Even in this simple model, a poor choice of beam parameter
yields spurious arrivals and abnormatl amplitude behavior (see Figures 18a and 18d).

This phenomenon may be understood better by considering Figure 19. The di-
agram shows the dominant frequency beam widths at the ray ends as a function of
source-to-receiver offset. The wrong choice of beam parameter yields beam widths
that are too broad at the ray ends. For an initial beam width of 0.1 km, the width
of the beams at the ray ends even exceeds the horizontal dimensions of the model.
This leads to spurious arrivals because the influence of the beam is not limited to the
vicinity of its emerging point.

There is an additional problem in tracing beams through models such as the one
in Figure 14. Hale (1991) generated a synthetic midpoint gather for a shotpoint at
1.6 km. This result is shown in Figure 20a. Negative and positive offset represent the
interchange of source and receiver positions. Reciprocity requires that trace ampli-
tudes be independent of this interchange. The asymmetry suggests that the created
dataset is not accurate. Hale supposed two reasons for the failure. First, the missing
correction for reflection and transmission on the amplitudes, and second, the violation
of the beam assumption. The latter requires the model parameters to vary smoothly
relative to the width of the beam (e.g., White, et al., 1987). At an interface, for
example, the width of the beam has to be significantly smaller than the radius of
curvature of the interface. Figure 20b displays the result of the common midpoint
gather after correcting for the energy loss due to reflection and transmission. The
asymmetry is still very strong, and one cannot recognize any obvious improvement. I
evaluated the beam width at the surface for a source located at a horizontal distance
of 1.6 km (see Figure 21). The range of beam widths exceeds the dimensions of the
model by about one order of magnitude! This indicates that beams attached to rays
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Fic. 19. A more detailed analysis of the results obtained in the experiment sketched
in Figure 17 allows a better understanding of some of the difficulties of Gaussian
beam modeling. The diagram displays plots the dominant frequency beam width at
the receiver as a function of offset. Each symbol denotes a different choice of initial
beam width at the source.

do not provide an accurate description of the wavefield. Moreover, I was unable to
choose any beam parameter that gave acceptable beam widths at the surface.

Increasing the complexity of the model requires a more careful examination of
the width of the beam. The beam parameter must be chosen such that the beam
remains as narrow as possible along the ray. Both the location at which to assign
this parameter (e.g., at the source or at the ray ends) and its optimum value have
been investigated by various authors (Weber, 1988; Miiller, 1984; Cerveny, 1985).
The results, however, were satisfactory only for models with minor inhomogeneities
(Késtner and Fritzsche, 1988).

APPLICATION OF GAUSSIAN BEAM MODELING
I suggest a compromise between the rigorous validity conditions of the beam meth-

ods and the practical application of beam modeling. Three criteria should be carefully
examined when modeling seismic responses in complex media:

o The beam width should not exceed the natural length-scale of the problem.
e Each receiver should receive contributions from several beams.

e The modeling should yield stable results for small variations of the “optimal”
beam parameter.
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Offset (km)
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F1a. 20. Common midpoint gathers for the model shown in Figure 14. The midpoint
is situated at 1.6 km offset. Asymmetry suggests that the data generated are not
accurate. In (a), the correction for transmission and reflection of seismic energy
at velocity discontinuities is not included. After taking into account reflection and
transmission losses (b), amplitudes are changed, but the asymmetry remains.
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F1G. 21. Analysis of the dominant frequency beam widths at the ray end indicates
the violation of the beam assumptions for the overthrust model (Figure 14). Several
beam wiéiths exceed the horizontal dimension of the model by about one order of
magnitude.

Even a simple plot of the beam width at the ray ends can help to decide if the
beam approach is appropriate. Figure 22 shows rays traced in a salt dome model. The
area of inapplicability of the Gaussian beam method can be identified in Figure 23.
The arrivals at receiver positions between 0 to 1.5 km correspond to turned rays.
Positions in that range, according to my experience, also show unstable results for
classical ray tracing. It is possible, however, to generate accurate seismograms in the
range of receiver positions from 1.5 to 4 km.

I supplemented the modeling code with an option to display beam-width infor-
mation at the ray ends. Both statistical data such as the average beam width, and
graphical information similar to those in Figures 21 and 23 are computed. This
information helps identify regions of inapplicability of beam modeling and find an
appropriate beam parameter. The default beam parameter is the one that yields the
minimum average beam width at the ray ends.

To reduce the spurious arrivals due to the influence of beams that are too broad, I
added an option to limit the range of extrapolation away from the ray ends. Moreover,
a warning is given if too few beams contribute to a receiver. Experiments indicate that
the modeling, including the testing of various beam parameters, can be performed
more efficiently than by conventional ray tracing with the CShot package (Docherty,
1987).
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Position (km)

Depth (km)

2 -

F1G. 22. Rays traced in a salt dome model. The source is situated at 3.2 km horizontal
position. Near-critical rays emerge in the region of 0 to 1.5 km and yield extremely
broad beam widths. The rays reflected from the dome, however, behave well.

-t ok wd
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Beam width at ray ends (km)
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Position (km)
F1G. 23. Analysis of the dominant frequency beam width at the ray ends in Fig-

ure 22. Data acquired in the region beyond the horizontal position of 1.5 km will
yield accurate results.
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FUTURE WORK
Two approaches may help to improve the performance of Gaussian beam modeling:

e A more sophisticated choice of beam parameter has to be developed. The
optimal choice of beam parameter is certainly dependent on the properties of
the medium encountered by the individual rays. It might be necessary to specify
a different phase-front curvature and beam width at proper chosen locations
along each ray, that is, as a function of ¢. In addition, we should consider a
weighting function that varies with ¢; that is, ®(¢) in equation (3) must be
evaluated.

e Smoothing of the velocity field could reduce the spreading problem of the beams.
This approach is motivated by the good performance of the Gaussian beam
migration procedure (e.g., Hale, 1992; Hill, 1990) where the model velocities
are smoothed.

The GBM should be used for modeling of seismic wavefields in models with sig-
nificant inhomogeneities only when we can achieve a focusing of the beams along
the ray. Then, an extension of the GBM modeling code to elastic media would be
worthwhile. The required changes are not difficult. The more involved extension to
three-dimensional models and an interactive procedure for the modeling could then
be considered.

As long as these improvements cannot be realized, the GBM should be restricted
to models with weak inhomogeneities. This constraint is similar to those in conven-
tional ray tracing. However, the GBM provides an explicit means of checking the
applicability of the method by providing beam-width information.

Modeling using the GBM is only one possible application of the dynamic ray-
traced data generated along rays. Alternative methods (e.g., the paraxial method)
can also use these data to create synthetic seismograms. The new modifications such
as the tracing of multiples, computation of out-of-plane spreading, or refiection and
transmission correction are evaluated independently of the Gaussian beam procedure.

CONCLUSION

Several new implementations improve the flexibility and accuracy of Gaussian
beam modeling in triangulated subsurface media. The influence of energy partitioning
at interfaces, 3-D spreading in a 2-D model, and attenuation on the seismic amplitudes
and phases can be simulated efficiently. An option to perform Fresnel-volume ray
tracing helps in the study of the resolution of seismic signals and indicates the validity
region of ray-theoretical methods. The modifications can be used while maintaining
the attractive feature of computational speed and limited computer storage.

The theory of beam modeling is accurate and efficient if models with weak inhomo-
geneities are considered. To help choose an appropriate beam parameter, I included
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a code to statistically analyze the beam widths at the ray ends and to compute an
“optimal” beam parameter.

The GBM, as currently developed, cannot properly handle models of high com-
plexity. The limitations are similar to those of classical ray theory. However, the
GBM provides an explicit means of checking the applicability of the method by pro-
viding beam-width information. A test of the beam widths can identify regions where
difficulties might be expected.
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a prior: information

John A. Scales, Boyi Ou and Albert Tarantola *

ABSTRACT

In order to estimate quantitatively the confidence that one can place in the
solution of an inverse calculation, it is necessary to know both the statistics of
the data and the distribution of physically reasonable models.

In the first place, we need to know the statistics of the data even to be able to
define what we mean by “fitting the data.” If we are too optimistic about these
uncertainties, it may be impossible to find a model which does fit. If we are too
pessimistic, then too many models will fit the observations.

We also need to characterize the distribution of feasible models since it is
easy to construct unrealistic models which nevertheless fit the data quite well.
For example, a highly heterogeneous, isotropic model may fit the data as well
as a relatively homogeneous anisotropic one. If we say that the heterogeneous,
isotropic model is unrealistic or has artifacts, then we are using prior information
to assign it a small significance.

We describe preliminary research aimed at characterizing this a priori infor-
mation. Qur goals are to compute approximations to the probability density
function of seismic data without making any restrictive assumptions, and to con-
struct distributions on the space of feasible models which take into account the
expertise of interpreters, geologists, reservoir engineers, etc. At present, we are
a long way from completing those goals and can provide only the barest outline
of how things will go. Therefore this report should be taken as being decidedly
provisional.

* Institut de Physique du Globe de Paris
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FIG. 4. The “binned” version of the log using 100 bins. This version of the log is
reasonably close to the log shown in Figure (3).
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FIG. 5. Probability density function estimated from the smoothed histogram of values
appearing in the log using 100 bins. This is overlain by a Gaussian having the same
mean and standard deviation.
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data histogram

F1G. 6. Histogram of pairwise transitions from bin 7 to bin j.

the data and pseudo-random realization are drawn from the same distribution.®

‘Wheel of Fortune

The pseudo-random realizations of the log are computed in the following way.
First, looking at Figure (6), we observe that for any bin value 7, a slice through this
surface for constant j is a 1-D histogram giving the relative probability of making a
transition from j to any of the bins. What we do is make a weighted roulette wheel
for each j based upon these 1-D histograms. In other words for each j there will be
a roulette wheel with, in this case 100, sectors, one for each of the bins. The size
of the i-th sector will be in proportion to the transition probability j — i from the
2-D histogram. The idea is this: if we are at a particular site on the log and the
current value of the binned P-wave velocity is j, then by spinning the roulette wheel
associated with j, we will select a transition with exactly the probability required by
the observed statistics. So we simply start at one end of the log and select a bin at
random. From then on we fill out the log by selecting the appropriate roulette wheel,
spinning it, and putting the resulting sample in the next site on the log.

There are many other ways of generating psuedo-random realizations based on
these histograms. For example, on a much simpler problem of lithology estimation,
Doyen and Guidish (1992) suggest doing a kind of Monte Carlo optimization using
an objective function that is the difference between the observed data histogram
and a histogram computed for a model chosen by randomly perturbing some initial
model. But in our case, due to the multi-modality of the histograms, as evidenced
in Figure (6), it is not clear that this sort of optimization would achieve reasonable
extrema. This is especially true given the fact that a log with 8000 samples drawn from

6Most any statistics text will have a discussion of the Kolmogorov-Smirnov and related Chi-
squared tests. The code we used implementing the K-5 test is from Press et al. (1986).
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Binned P-wave velocity

F1G. 7. Pseudo-random log generated according to the second-order statistics of the
observed log.

100 bins represents a sample in a model space containing 1003 points! In addition,
there is a vast literature in geostatistics which treats this issue. (For example, see
Journal and Huijbregts (1978).) We plan to take advantage of as much of this work
as we can.

Figure (7) shows an example of a pseudo-random log generated according to the
roulette-wheel method outlined above. Its histogram of pair-wise transitions is shown
in Figure (8) and would seem to provide a relatively good match of that shown in
Figure (6). The RMS difference between these two histograms is shown in Figure (9).

"The pseudo-random log seems to capture some of the “texture” of the real data
reasonably well. In order to quantify this similarity we ran a two-sample Kolmogorov-
Smirnov test on the data, the null-hypothesis being that both samples are drawn
from the same distribution, The K-S statistic returns a very small value (.006) for
the resulting probability, indicating a very low probability for the null hypothesis,

'To make a more systematic look at this phenomenon, we generated a suite of
100 pseudo-random logs according to our prescription. Figure (10) shows very little
systematic trend in the values of the K-S statistic. Presumably, if we can consistently
generate logs with a high value of the K-S statistic, then we can be reasonably certain
that we have captured the essence of the data. In the absence of this, the only
solution would appear to be to estimate the higher order statistics of the data; i.e.,
the polyspectra. For example, the third-order cumulant of a stationary process, which
is a function of two lags s; and s,, is given by

Cls1,82) = BU{X: — pa H Xevar = e H KXot — p12]}] (8)

where i, = E[X,] (Priestley, 1989). The bi-spectrum is the Fourier transform of this
cumulant. A rigorous test for Gaussianity could then be based on testing the null
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random histogram

FIG. 8. Histogram of pairwise transitions from bin i to bin j in the pseudo-random
log

Fia. 9. RMS difference between the data histogram and that of the pseudo-random
log.
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F1G. 10. Kolmogorov-Smirnov statistic for 100 pseudo-random realizations of the
log.

hypothesis that the bi-spectrum is zero at all frequencies. The test statistic would be
constructed from estimates of the bi-spectrum over a grid of frequencies, as described
in Priestley (1989).

CONCLUSIONS

We have shown some very preliminary work aimed at, on the one hand, estimating
statistics of seismic data in a very general way, in particular without resorting to any
parametric models; and on the other hand, we have begun to consider what sorts of
realistic a priori information we might be able to use in a seismic inverse calculation.
We believe that the latter will require seismologists to work in close cooperation with
stratigraphers, geostatisticians, reservoir engineers, and- others who have expertise
that can be brought to bear on the Earth models we are attempting to construct
from seismic data. Once we have constructed these more realistic Bayesian priors we
are faced with the daunting task of sampling a high-dimensional, almost certainly
multimodal posterior probability density on the space of models. However, recent
work on Monte Carlo methods such as genetic algorithms leave us optimistic that
such sampling can be done provided the dimensionality of the spaces is not too large.
And here, realistic prior information will be important not only to limit the search
to models which are a priori likely but also to allow us to generate parsimonious
parameterizations, or Earth models, so as to mitigate the “curse of dimensionality”,
which seems to affect all global sampling methods.
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APPENDIX A: THE BAYESIAN POSTERIOR PROBABILTY
DENSITY

As we have argued, the posterior probability density on the space of models must
be the product of two terms: a term which involves the a priori probability on the
space of models and a term which measures the extent of data fit

o(d) = p(m) L(m). (A-1)

L is called the likelihood function and depends implicitly on the data.

We now show how Equation (A-1) follows logically from Bayes’ theorem provided
we generalize our notion of “data” to allow for the possibility that the data might
be specified by probability distributions (Tarantola (1987), Chapter 1). To do so we
make use of an idea due to Jeffreys (1983) (see also, Duijndam (1987)). We begin by
using the notation common amongst Bayesians, then we show how this relates to the
more standard inverse-theoretic notation in Tarantola (1987).

In this approach we assume that we have some prior joint distribution po(m,d).
Further, we suppose that as the result of some observation, the marginal pdf of d
changes to p;(d). We regard p;(d) as being the “data” in the sense that we often
know the data only as a distribution, not exact numbers.. In the special case where
the data are exactly known, p;(d) reduces to a delta function §(d — d,,).

How do we use this new information in the solution of the inverse problem? The
answer is based upon the following assumption: whereas the information on d
has changed as a result of the experiment, there is no reason to think that
the conditional degree of belief of m on d has. Le.,

p1(m|d) = po(m]|d). (A-2)

From this one can derive the posterior marginal p; (m):

pi(m) = [ pi(m,d) dd (A-3)
- jD pr(m]d)pi(d) dd (A-4)
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= [ m(mld)pr(d) dd (A-5)

_ po(d|m)po(m)
= /. (@) (@ dd (A-6)
= pofem) [ P @) aa, (A7)

where D denotes the data space.

Switching now to the inverse-theoretic notation, let us regard po(d) as being the
noninformative prior distribution on data yp (d): this is what we know about the data
before we've actually done this particular experiment. Further, we identify p;(m)
as the posterior distribution on the space of models, p1(d) as the data errors, po(m)
as the prior distribution on the space of models, and po(d|m) as the modeling errors:

py(m) = o{m)
pi(d) = pp(d)
po(m) = pu(m)
po{dm) = ©(dim),

then we arrive at precisely Equation (1.65) of Tarantola (1987)

pp(d)©(d|m)
D pp(d)
An important special case occurs when the modeling errors are negligible, i.e., we

have a perfect theory. Then the conditional distribution ©(d|m) reduces to a delta
function §(d — g(m)) where g is the forward operator. Then the posterior is simply

o(m) = pu(m) dd (A-8)

o(m) = pae(m) [””(d) (4-9)
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John W. Stockwell, Jr.

ABSTRACT

"The need for modeling 3-D seismic data in a 2-D setting has motivated investi-
gators to create so-called 2.5-D modeling methods. One such method proposed by
Liner (1991) involves the use of an approximate 2.5-D wave operator for constant-
density media.

The traveltimes and amplitudes predicted by WKBJ analysis of the Liner
2.5-D wave equation match those predicted by Bleistein’s 2.5-D ray-theoretic de-
velopment for both constant and piecewise constant wavespeed models. However,
WKB.J analysis indicates that the Liner 2.5-D variable wavespeed equation will
have a maximum amplitude error of +35% (compared with the +250% error ob-
tained by using the ordinary 2-D wave equation) in a linear ¢(z) model where the
wavespeed doubles or halves from the beginning to the end of a raypath. The
WKBJ series results suggest a modification to the Liner equation that may reduce
this error.

Construction of 2.5-D wave equations for variable density (acoustic) problems
also follows from the WKBJ analysis.

INTRODUCTION

The recording of seismic data along a line on the Earth’s surface is still a widely
used techrique. The earth model implied by such a dimensionally-constrained record-
ing geometry is a 3-D mode! with only 2 dimensions of parameter variability, Bleistein
(1986). Consequently, there is a need for modeling seismic data in problems with 2-D
parameter variability, but yielding waves having full 3-D amplitude behavior. This
need has motivated investigators (Deregowski and Brown 1983, Ursin 1978, Hubral
1978, and Newman 1973) to consider 2-D models scaled by an out-of-plane geometric
spreading factor to make the amplitudes approximate 3-D amplitudes,

Bleistein (1986) shows how to describe such 2.5-D modeling in a unified manner
using the methods of high-frequency asymptotics. In particular, Bleistein develops the
ray-theoretic implications of 2.5-D modeling for both constant and variable-density
acoustic problems. Bleistein also characterizes the effects of the 2.5-D assumption on
the Fourier-like integrals that form the basis of many migration algorithms.
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A different approach was taken by Liner (1991), who attempted to create a “2.5-D
wave equation” by using the constant wavespeed Green’s function as trial solution
to the 2-D wave equation. The resulting equation has the general form of a damped
wave equation with a damping coefficient that varies both in space and time. This
equation also contains an additional term containing no derivatives.

The advantage of the Liner approach is that it promises to make full-waveform
modeling in 2.5 dimensions possible. Because numerical implementation of the Liner
equation has yielded encouraging results (Bording and Liner 1992 and Bording and
Liner 1993), further analysis of this equation is warranted. Therefore, the topic of
this paper will be a test of Liner’s 2.5-D wave equation against the 2.5-D ray theoretic
results of Bleistein via a WKBJ series method. A WKBJ ~based extension of the Liner
equation to variable-density (acoustic) problems is presented here, as well.

THE CONCEPT OF A 2.5-D WAVE EQUATION

To approximately describe 3-D wave propagation in a 2-D setting, a reasonable
approach might be to construct a damped wave equation

a 1
v2 - - U -
[ y(z,t) : ¥ 2] Ulz,t) =0

with a spatially and temporally-varying damping coefficient 7(x,t) to correct the
amplitudes for the effect of out-of-plane geometric spreading. (Here ¢ = (z,z) and
v? is the 2-D Laplacian operator.) Such a «9 5D wave equation” will probably not
be an exact result, but may be best described as an asymptotic wave operator. That
is, it would be an approximate wave operator having the same asymptotic behavior
as the 3-D wave equation for a select collection of models and/or frequency ranges.

The use of approximate wave operators in geophysics has a long tradition.
The most notable examples involve the use of the parabolic approximations to the
Helmholtz equation (see Claerbout 1970 for exploration geophysics applications; see
Tappert 1977 and Hill 1986 for examples of ocean acoustics applications).

THE LINER 2.5-D WAVE OPERATOR

Here is a brief outline of the method that Liner (1991) used to construct a 2.5-D
asymptotic wave operator. Liner reasoned that in a constant wavespeed medium,
the “2.5-D Green’s function” is just the in-plane representation of the 3-D Green’s

function:
8(t —r/c)
dzr

with r = /Z2 + 22 being just the range for the case y = 0. The ideal problem to be
solved would be to find £ such that

Gasp =

LGay5p = —6(t)6(),

312



Stockwell 2.5-D full-waveform modeling

where £ = (z,z). Then £ would be the “exact 2.5-D operator”. Note that the
Green’s function must also satisfy the homogeneous equation

LGysp =10 (1)

for (=,t) # (0,0).

Because Liner did not intend to use the operator in the vicinity of the source,
he chose to try to construct a nontrivial wave operator that satisfies (1) using the
homogeneous 2-D wave equation as starting point. Liner’s method was to substitute
G2.5p as a trial solution into the homogeneous 2-D wave equation to yield

[v'~’ - zﬁ-%} Gaosp(e,t) = —6'(;:2/ 9 6("4;:;/ ) (2)

The two remainder terms on the right result because Ga5p is not a solution to the
-D wave equation. Liner proposed the following formula

[V2‘212‘{3%+§%+§}J U(,t) =0, (3)

which is just the homogeneous 2-D wave equation with 2 additional terms, to account
for the remainder terms in equation (2). Note, while G25p is a solution to equation
(3), it cannot be assumed to be the Green’s function of this equation.

Equation (3) is a constant wavespeed equation. To handle variable wavespeed
problems, Liner proposed the following formula.

[v2—${£+%d%+$}] U(z,t) = 0. (4)

Liner justified choosing this form by noting that in equation (3) the factors of efr
and c/r? are, respectively, 1 /7, and 1/72, where 7 is traveltime. Because the. signals
typically recorded in geophysical investigations have considerably shorter duration
than the observed traveltimes, Liner assumed that & T, where ¢ is absolute time.

For future reference, equations (3) and (4) will be called, respectively, the “r-
equation” and the “t-equation”, reflecting the respective r and ¢ dependence of the
coefficients of these equations. Note that the t-equation reduces to the r-equation for
constant wavespeed media under the assumption of ¢ a .

Testing the r-equation with WKBJ Asymptotics

If the Liner 2.5-D wave equation is to be considered useful, its solution must match
the solutions predicted by other methods of solving the 2.5-D modeling problem. The
paper by Bleistein (1986) outlines a ray-theoretic WKBJ asymptotic-based solution to
the 2.5-D modeling problem. By deriving the eikonal and transport equations associ-
ated with Liner’s 2.5-D wave equations, it is possible to make a direct comparison of
the high-frequency behavior of these equations with the Bleistein’s 2.5-D ray theory.
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All standard 2-D and 3-D ray theoretic results that follow are taken from Bleis-
tein (1984) section 8.2, while 2.5-D ray theoretic results are taken from Bleistein
(1986). Paralleling the standard development of ray theory, the r-equation is Fourier
transformed in time to yield the Helmholtz-like or reduced form

w? w1
[V2+—C§-+;‘_C-—;§§] u(m,w) = 0. (5)

The WKBJ series

u(ze,w) ~ g—?:—ug)ain)— expliwr ()],

is substituted into (5). Here 7(x) is the traveltime and A, () is the n™* order ampli-
tude function.

The result is a series in powers of iw

0 = vr® i [(i:;:_z ((V'r)2 - %)

n=0

-+

P (2VT VAp + AV + %) (6)

+ o (70— 25

Only the n =0 and n = 1 terms of this series are of immediate interest.

The n = 0 term of the series is O(w?). Setting the coefficient of this first term
equal to 0 yields the 2-D eikonal equation

(V)2 — 5 =0. (7)

This result agrees with the eikonal equation in the 2.5-D ray theoretic formulation.

The n = 1 term is O(w!). Setting the coefficient of this term equal to 0 yields the
(first) transport equation

2V Ay -Vr+ AOVZT + éf =0. (8)

This equation is just the standard 2-D transport equation with an extra term, Ao/cr.

If this new transport equation describes the 3-D in-plane geometric spreading that
the 2.5-D model requires, then it is reasonable that it would have the form of a 2-D
transport equation with an extra term to account for the out-of-plane component of
geometric spreading.

Just such a transport equation may be deduced from Bleistein's 2.5-D ray theoretic
development. From standard ray theory

oz d 1
Vr= 5; and EE ;,'.E.

ﬂ

(9)
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Here ¢ is a running parameter along a ray, representing a quantity with units of
[length)?/[time] and is related to the traveltime 7 through the second expression
above. The standard transport equation (either 2-D or 3-D)

2V Ay - VT + 4V =, (10)
may be rewritten as
dA7 202
Tia'_ = _Auv T, (11)

by multiplying equation (10) by Ag and by using the first relation in (9).
Another important result from ray theory is that

8(z1, 29, z3)
a(a’ @, ﬂ)
Here J3p is the 3-D ray Jacobian and a and g are parameters that label the ray by
its initial direction.
For the special case of T2 = 0 and () = c(z, z3)—the 2.5-D assumption—J5p
becomes oo and equation (11) becomes

d
V2A0 = % {log[J3D]} where J3D =

d oz, x
V24, = . {logloJap]}  where  Jyp = a(—:{;ﬁ.
Thus,
V4, = 1 +2 {log[Jap]} = = + V2,4, (12)
o do a 2D<50s
where V2, is the 2-D in-plane Laplacian. This implies that equation (10) becomes
2V Ay - V7 + AgVir + ? =0 (13)

for 2.5-D. Because the out-of-plane component of the gradient of 7 is Zero, i.e,
O7/0xy = 0, when (13) is evaluated in the z2 = 0 plane, V and V2 are the 2-D gra-
dient and Laplacian operators, respectively. For constant wavespeed media, o = c*r
and T = r/c, meaning that this equation reduces to (8) for the case of constant
wavespeed.

This shows that the high-frequency behavior of the r-equation, as expressed by
leading order WKBJ (ray theoretic) analysis, agrees with Bleistein’s 2.5-D ray theory
both in traveltime and amplitude.

Progressing wave analysis of the t-equation

The WKBJ analysis of the r-equation in the previous section yields eikonal and
transport equations that reduce to forms consistent with the expectations of a 2.5-D
theory assuming constant wavespeed. However, the t-equation is of greater interest,
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‘because it is intended for use in variable wavespeed problems. This equation is not as
easy to analyze with the WKBJ method as the r-equation because the time variability
of the coefficients makes forming the temporal Fourier transform more difficult. (This
is not impossible, if divisions by it are interpreted as integrations in w, see Liner and
Stockwell, 1993).

There is an alternate asymptotic method called the progressing wave formalism,
Lewis (1964), (compare with Cerveny, Molotkov, and Pgentik, 1977) that can be
used to conduct a WKBJ -like analysis in the time domain. This method uses the
trial solution o

U@, ~ 3 Aa(@)Sa(t = 7(@)),
n=0
where each S,—; is the derivative of each S,. Substituting the series into equation
(3) to yield

0 = 5[t (07 - 3)

n=0

AWy (2V'r VA, + A VT + éﬂ)

o
A
24 _ “in
+W,.(v Au 5 )]

(Here the substitution Wy, = (—1)"S, has been made to emphasize the similarity of
this result with equation (6).) The coefficients of each term of a given order in n
are set to zero individually because Wi of different order in k cannot be assumed to
cancel each other.

As with the WKBJ analysis, the coefficients of the n = 0 and n = 1 terms of the
series are of immediate interest. The coefficient of the n = 0 term yields the same
eikonal equation as seen in the WKBJ analysis (see equation (N).

The coefficient of the WKBJ or the progressing waveform analysis of the t-equation
yields a first transport equation of the form

A
OV Ag - V7 + AV + 32% =0. (14)
Under the assumption that the propagating waveforms have short time histories,
 may be substituted for t in equation (14).

Amplitude comparisons

The eikonal equation associated with the t-equation is the same 2-D eikonal equa-
tion that is implied by Bleistein’s 2.5-D ray theory, meaning that the t-equation
predicts the same traveltimes as Bleistein’s 2.5-D ray theory, for high-frequency data.
Comparing the amplitudes predicted by the t-equation with Bleistein’s 2.5-D theory
requires that the transport equation (14) be solved.
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Equation (14) may be rewritten as a differential equation in ¢

dA§ A} . d
T = ~ar ~Aig; loglol},

as was equation (12). Here ¢?r replaces the o in equation (12). Dividing by A3 and
integrating with respect to o gives

c1dAZ., [ do v d
o B de " =~ |, Faprye ~ .. 27 Uosl o} do’

Simplifying, yields

70

log 43(0) ~log 43(on) = ~ [" T —loglao(o)] + logl(ow)l. (15

To solve equation (15) for A, it is necessary to integrate

o - do'
Q= @)’

where ¢’ and 7/ are dummy integration variables. Recall from equation (9) that
do’ = (z(7’))dr.
Using this in equation (15) gives

_ 1@ Ee(r)dr e dr
/ -

= () W (o) P log{r(c)] - log[r(c0)). (16)

Substituting equation (16) into equation (15) yields

log A2(0) — log A(ay) = - log[7(o)] + log[r{oy)]
~logl/ap(0)] + loglap(co)].  (17)

Absorbing all of the parts in equation (17) that depend on ¢y into a constant and
solving for Ag(c), yields the result

A(]]Liner(a) = const

TJ2 D )
The corresponding result from Bleistein (1986) is

., 1
A{])BIelstem( a) —

dn\foJop

For a medium with constant wavespeed cg, the transport equation associated with
the t-equation is the same as that for the standard scalar wave equation, because
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o = ci7 in that case. If, however, the wavespeed profile is smoothly varying, beginning
as a constant value co, then the t-equation result must be the same as Bleistein’s result
for the constant wavespeed part, meaning that a factor of 1/¢g must be present in
the constant multiplier.

Therefore, the high-frequency amplitude function for Liner’s equation is

A%Jlner ( 0’) —

1
47(@J2D(0')’

where ¢ is the wavespeed at the beginning of the ray path in a smoothly varying
medium.

Because the leading order terms of the WKBJ series are the same for the Liner
equation as for the standard wave equation, the same 9 5.D form of the WKBJ Green's
function is implied in both cases. This means that, to leading order, the transmis-
gion and reflection effects across boundaries will be described by the same asymp-
totic representation. Thus, as long as the high-frequency condition is honored, the
Liner equation can be expected to describe wave propagation in piecewise constant
wavespeed media with the same degree of accuracy as the standard wave equation,
provided that ¢ =~ 7.

However, the t-equation will not describe the amplitudes exactly in smoothly
varying media, even if ¢ = 7 because the out-of-plane spreading factor 1/ co+/T is not
the same as 1/4/0,

AMPLITUDE ERROR ESTIMATES

The maximum and minimum error estimates for a medium with the linear
wavespeed profile of the form c(z) = co(1 + nz) are given by the ratio

AoBleistein B c%'r
A%;iner ¥ o

Bleistein (1986) gives analytic expressions for o and 7 in the special case of ¢(z)
media

z dz
= e e

and i

Z
o= .
& \f1/¢(2') — sin® B/cH(és)
Here, £3 and z represent the initial and final x3-positions on the ray, respectively, with

2’ being the dummy integration variable. The parameter 3 is explicitly defined to be
the initial ray take-off angle, measured from the vertical. Therefore it is possible to

(18)
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directly compare the Bleistein’s 2.5-D amplitudes with the high frequency asymptotic
amplitudes of the t-equation for the simple linear profile ¢(2) = ¢o(1 + n2).

The ratio of the 2.5-D amplitudes to the t-equation amplitudes is given by
ABleistein o2

ALiner m lo|

Bleistein

A

FIG. 1. Ratio of Bleistein’s 2.5-D amplitudes vs. WKBJ amplitudes for the
t-equation.

For the model being considered, this ratio is independent of the reference
wavespeed ¢p, meaning that we may arbitrarily fix the depth to z = 1. Then /]
will represent the fractional change in wavespeed with depth from its initial value of
¢ at z = 0, to its final value at 2 = 1. For example, n = —0.5 and n = 1.0 imply
wavespeeds of ¢y/2 and 2¢p at 2 = 1, respectively.

Figure 1 shows a estimate of this amplitude ratio for —0.5 < 7 < 1.0 and 0 <p<
90 degrees, computed using Mathematica™. (The zone that is blank represents, n, G
combinations for which no rays exist.) The amplitude ratio shows that the t-equation
overestimates the amplitude when the wavespeed decreases with depth (i.e. when
7 < 0) and underestimates the amplitude when the wavespeed increases (i.e. when
n > 0). The maximum size of the error in amplitude is about F35% in each respective
case of halving or doubling the wavespeed from the reference value. From Figure 1 it
is apparent that the Liner equation is most acceptable in models where the amplitude
change is described by |5 < 0.2, implying amplitude errors < 10%.
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PROPOSED MODIFICATIONS OF THE T-EQUATION

The t-equation is useful for modeling constant density media with a range of con-
stant, piecewise constant, and weakly-varying wavespeed profiles. However, insight
gained from considering the WKBJ analysis can be used to propose extensions of this
equation to more general problems.

The following symbolic form
a2
[v2 - %3 - -1—9-] Ulz, 1) = (19)

would have equation (13) as its transport equation. (Remarkably, this choice of wave
equation yields a WKBJ series that agrees to all orders with the WKBJ series implied
by Bleistein’s 2.5-D theory.) Note that there is no term corresponding to the last
term in the t-equation in (19).

The practicality of implementing (19) may be questionable, because an estimate
of o is needed. Recall that o = f7 &*(7')dr’, meaning that o is a quantity that can
be derived in the most general application only by tracing rays to all points in the
medium—not practical for this application. Clearly, an approximation is needed.
One approximation is to take o, & 2(z, z)nAt, which is just the ¢ approximation
(with t = 7) that is built into the Liner equation. More sophisticated approximations
could be made by assuming a general form of a c(z) profile as an “average medium”
and using equation {18) to estimate 0.

Extension to variable density

Bleistein (1986), section 5, develops 2.5-D ray theory for the variable density

(acoustic) wave equation
T 2
A=)V (W;((:)’ t)) - z5 2l - (20)

Here, @ = (21, %2, 3) and p(z) is the density function for the medium. Equation {20)
is Fourier transformed with respect to time and the WKBJ series '
&, By(x)

u(z,w) ~ Y i) expliwr(x)],

n=0

is substituted to yield the series

0 = e‘”*‘”’f[(—iﬁﬁ——z ((VT)z—Elz-)

n=0
1

(iw)m-1
1 2
+ (v B,.,)].
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As before the coefficients of the n = 0 and n = 1 terms are of greatest interest.

The n = 0 term yields the same 2-D eikonal equation as seen in other parts of
this paper, while the n = 1 term yields the first transport equation

9VT . VBy + BopV (%) + ByV2r = 0. (21)
Dividing equation (21) by p'/2 it is possible to obtain the simplified form
By By 5

Comparing equation (22) with (10), it is apparent that the quantity Byp—'/2 sat-
isfies the standard transport equation, meaning that

Bo(x) = const A(z)/p(x).

If the same initial datum for A is given at a point #; for B, then the initial values of
B and A would have to agree, meaning that

B(@,)yf p(o) = A(zo)y/ p(20)

B(z) = A(”)‘I ;‘3 ,

for the general position . The only difference between constant density amplitudes
and variable density amplitudes is the additional factor of V() p(zo).

The amplitude function for 2.5-D models variable density acoustic problem is given

by Bleistein as
Ar\ p§) odap

Here, p(£) is the density at some initial position £ and o is the running parameter
along the ray.

It is apparent that variable density does not affect the value of the out-of-plane
spreading coefficient. It is possible to write the transport equation implied by the
variable-density 2.5-D theory as

at g, implying that

By By _, By
ZV(W).VT-FWV T+p_1/¥=0’

or multiplying through by p!/2,

2V(By) - VT + BopV (%) + BoVr + J—iﬂ = 0.
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Damped wave operators of the form

=0

()7 - (VU(m,t)) —a, )dU(m,t) 1 d&U(=,1)

() & A(x) de

will yield eikonal and transport equations compatible with the 2.5-D theory for the
acoustic wave equation. It follows that the 2.5-D variable-density wave equation
corresponding to Liner’s t-equation is

VU (z,t 1{d&8# 1d 1
p(:n)v~(—’:’-(Lé:z)—))'—g{ﬁi'l'?a'-}-ﬁ}f}(z,t):ﬂ.

Similarly,

VU(z,t 1dU(z, 1 d?U(z,
"(“’)V'('?(%—))‘; - ST =0

is the symbolic form that corresponds to equation (19).

CONCLUSIONS

Analysis of the 2.5-D wave equation of Liner (1991) using a WKBJ series method
shows that the traveltimes and amplitudes predicted by Liner’s equation match
those of predicted by Bleistein’s 2.5-D ray theory for constant and piecewise-constant
wavespeed media.

However, for media with smoothly varying wavespeed profiles the WKBJ analysis
reveals that the transport equation associated with the Liner wave equation is not the
same as that implied by Bleistein’s 2.5-D theory. For a linear ¢(z) wavespeed profile
whose wavespeed halves or doubles from the beginning to the end of a ray path, the
amplitude error resulting from this mismatch will be F35%. For models with turning
rays, the total amplitude error will tend to be less, because the overestimation of
amplitude in one direction will be offset by an underestimation of amplitude as the
ray travels in the opposite direction. In either case, the Liner 2.5-D equation will
still yield amplitudes that are far more realistic than the 2-D wave equation. For the
linear ¢(z) model discussed above, the corresponding amplitudes for the 2-D wave
equation will be 250% too large.

The WKBJ analysis provides a method for creating an alternate asymptotic wave
operator that resembles the Liner equation, but that is matched more closely to
Bleistein’s 2.5-D ray theory in predicted amplitude behavior. However, there may
be little advantage in implementing this alternate scheme because of the difficulty of
estimating the parameter o.

The WKBJ method also may be applied to create 2.5-D wave operators for variable-
density (acoustic) problems. As of this date, these new operators have yet to be tested
numerically.
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ABSTRACT

Dip-moveout (DMO) processing is usually based on the cosine-of-dip correc-
tion for moveout velocity valid for homogeneous, isotropic media. Some recently
developed DMO algorithms allow for a velocity gradient above the reflector, but
still ignore anisotropy.

While there is little doubt that anisotropy may seriously distort most pro-
cessing and interpretation steps (e.g., migration), the character of the influence
of anisotropy on DMO is not clear. Numerical studies of moveout velocities of
reflections from dipping boundaries beneath transversely isotropic media (Levin,
1990; Larner, 1993) have shown no apparent correlation between the conventional
measures of anisotropy and errors in DMO correction. Here, I present an analytic
treatment of normal moveout velocities valid for a wide range of homogeneous
anisotropic models including transverse isotropy with a tilted symmetry axis and
symmetry planes in orthorhombic media. NMO velocity for a dipping reflector
is shown to be a relatively simple function of phase velocity and its first two
derivatives taken at the dip angle.

In the case of weak transverse isotropy, the exact expression for NMO velocity
is transformed into a concise DMO formula, which gives an adequate explanation
for the existing numerical results. The errors in isotropic DMO correction turn out
to be dependent primarily on the difference between Thomsen parameters € and 8.
For the most common case, e—§ > 0, the cosine-of-dip corrected moveout velocity
remains significantly larger than the moveout velocity for a horizontal reflector.
DMO errors at a dip of 45° may exceed 25%, even for weak anisotropy. By
comparing analytically-derived NMO velocities with moveout velocities calculated
on finite spreads, I analyze the magnitude of nonhyperbolic moveout as a function
of reflector dip.

For transversely isotropic media with a constant vertical velocity gradient and
typical (positive) values of the difference ¢ — &, inhomogeneity tends to reduce
(sometimes significantly) the dip-moveout error that anisotropy induces in con-
ventional constant-velocity DMO.

327




Dip moveout in anisotropic media Tsvankin

The formula for NMO velocity derived in the paper provides a basis for build-
ing dip-moveout algorithms in anisotropic media. It can also be used to overcome
the ambiguity in the inversion of reflection moveouts for anisotropic parameters
by including dip-dependence of moveout velocities in the inversion procedure.

INTRODUCTION

Conventional methods of seismic processing and interpretation are designed for
isotropic velocity fields and, therefore, are subject to error when velocity is angle-
dependent. It has been shown that elastic anisotropy may seriously distort the results
of velocity analysis, normal moveout (NMO) correction, migration, amplitude-versus-
offset (AVOQ) analysis etc. (Banik, 1984; Thomsen, 1986; Winterstein and Paulsson,
1990; Tsvankin and Thomsen, 1992, Larner and Cohen, 1993, among others). Ap-
parently, dip moveout processing cannot be an exception because existing algorithms
rely on the behavior of moveout velocity with reflector dip established for isotropic
models (Levin, 1971):

Vumo(qs) = V;lmo(o)/ COS¢', (1)

where ¢ is the dip angle. For homogeneous isotropic media reflection moveout is
purely hyperbolic, and equation (1) is exact for any spread length.

It is well known that anisotropy may distort the normal (short-spread) moveout
velocity for horizontal reflectors as well as enhance deviations from hyperbolic move-
out (Banik, 1984; Thomsen, 1986; Tsvankin and Thomsen, 1992, 1993a). Therefore,
it is natural to expect formula (1) to become inaccurate in the presence of anisotropy.

Levin (1990) modeled reflection moveout for dipping reflectors beneath homo-
geneous transversely isotropic media with two different orientations of the axis of
symmetry. He showed that if the axis is perpendicular to the reflector, isotropic
DMO formula (1) holds with good accuracy. However, if the symmetry axis is kept
vertical, the error of equation (1) for one of the models in Levin’s study (the shale-
limestone) reaches almost 40% at 60° dip. For the other three media used by Levin
the errors were relatively small, although one of the models (Cotton Valley shale)
may be considered even more “anisotropic” with respect to P-waves than the shale-
limestone. Indeed, Thomsen anisotropic parameters € and & for the shale-limestone
are € = 0.134, § = 0, while for Cotton Valley shale ¢ = 0.135, § = 0.205. Small
errors for the other two models (Pierre shale and Berea sandstone) are not surprising
since both are characterized by very weak P-wave anisotropy. It is also important to
mention that Levin has not found noticeable nonhyperbolic moveout on CMP gathers
with spread length equal to the distance from the CMP to the reflector.

Recently, it has been recognized that depth-variable velocity may have a signif-
icant impact on dip-moveout processing. However, existing DMO algorithms built
for depth-variable velocity fields still ignore anisotropy (e.g., Hale and Artley, 1993).
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The combined influence of anisotropy and inhomogeneity on DMO has been studied
by Larner (1993), who has performed calculations similar to those of Levin (1990)
but for “factorized” transversely isotropic models with a vertical velocity gradient
(“factorized” means that the ratios of the elastic constants are independent of spatial
position). The main conclusion of that work is that the DMO errors remain very
close to those found by Levin, provided isotropic DMO correction takes the velocity
gradient into account.

Thus, the existing numerical results show no simple correlation between DMO
errors and the “degree of anisotropy.” Evidently, further insight into the problem
requires analytic description of dip moveout in anisotropic media. Byun (1982) and
Uren et al. (1990b) derived analytic expressions for normal moveout velocity from
dipping reflectors in elliptically anisotropic models. Uren et al. (1990b) also showed
that for elliptical anisotropy reflection moveout remains hyperbolic irrespective of the
orientation of the elliptical axes. However, elliptical anisotropy is just a special case of
transverse isotropy that is hardly typical for real rocks (Thomsen, 1986). Byun (1984)
obtained an analytic expression for normal moveout velocity in general transversely
isotropic media by applying a local elliptical fit to the wavefront. The results discussed
below show that Byun’s formula deviates from the exact NMO velocity for non-
elliptical models.

Here, I derive a formula for rormal moveout velocity valid for many anisotropic
models of practical importance. This expression is convenient to use because it in-
volves just phase velocity and its two first derivatives taken at the dip angle; cal-
culation of group velocity and group angle is not necessary. For weak transverse
isotropy with a vertical symmetry axis, this exact expression for NMO velocity is
transformed into a simple function of Thomsen parameters € and §. The exact and
weak-anisotropy expressions for NMO velocity are then compared with the moveout
velocity calculated from ¢2 — z2 curves on conventional short spreads in order to verify
analytic solutions and estimate the influence of nonhyperbolic moveout. For values
of € and § believed to be typical for real rocks, the DMO-corrected moveout velocity
remains significantly higher than the NMO velocity for a horizontal reflector. Fi-
nally, Larner’s (1993) ray-tracing algorithm is used to analyze the combined influence
of anisotropy and vertical velocity gradient on the isotropic constant-velocity DMQ
correction.

NORMAL MOVEOUT VELOCITY IN ANISOTROPIC MEDIA

Let us consider a common-midpoint (CMP) gather over a homogeneous anisotropic
medium; the CMP line is perpendicular to the strike of the reflector (Figure 1).
The only assumption made about anisotropy at this stage is that phase and group
velocity vectors do not deviate from the sagittal (incidence) plane, i.e., the sagittal
plane is a plane of symmetry. For instance, the present treatment is valid for any
plane containing the symmetry axis in transversely isotropic media (plus the isotropy
‘plane), as well as for symmetry planes in orthorhombic media.
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Qut-of-plane phenomena cannot be neglected if the sagittal plane lies outside
symmetry planes in azimuthally anisotropic media; still, the formula derived below
remains a good approximation if azimuthal anisotropy is weak. Azimuthally aniso-
tropic models with orthorhombic symmetry caused by a combination of thin hori-
zontal layering and vertical fracture systems with a low fracture density seem to be
typical for sedimentary basins (Leary et al., 1990). Such media are characterized
by relatively weak azimuthal anisotropy and more pronounced velocity variations in
vertical planes. It is likely that for models of this type the normal-moveout equation
discussed here would be acceptable even outside symmetry planes.

F1G. 1. Common-midpoint gather over a homogeneous anisotropic medium. 173, and
V’Fh are the group and phase velocity vectors respectively. .For brevity, henceforth in
the text V,y, is referred to just as V..

Our goal is to find an analytic expression for the normal moveout velocity in the
CMP geometry (Figure 1):

. dz?
Vr?mo(¢) = ll_l;% EF : (2)

The NMO velocity for CMP gathers over horizontally homogeneous isotropic or
anisotropic media may be written as (Larner, 1993)

1dz
meo(¢) = ?(;E;’ (3)

where z is the source-receiver offset, to is the two-way traveltime along the “normal-
incidence” ray (the normal-incidence ray corresponds to the zero-offset reflection [z =
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0] but is not necessarily perpendicular to the reflector in the presence of anisotropy),
and p is the ray parameter. The derivative should be taken at z = 0.

Ignoring the displacement of the reflection point at small offsets, we can use 2
(Figure 1) as the depth of the normal-incidence reflection point. The offset = then
becomes

z =2z (ta'n'»b_ tam,bn) ’

where 9 is the group angle with the vertical (2) axis and ), is the angle between
vertical and the normal-incidence ray. Now equation (3) can be rewritten as

220 d
Vuold) = 22 t;;"’. @

In order to evaluate equation (4), we use the general relation between group and
phase velocities in anisotropic media (Berryman, 1979)

. B(kV)

7= 24 Q) . BV

ok, ok, ar,

where k is the the wave vector, V,, and V are the group and phase velocities re-
spectively. If the incidence (vertical) plane [z, z] is a plane of symmetry, group- and
Phase-velocity vectors for CMP reflections remain in the vertical plane and depend
only on the in-plane phase angle 6 (we measure # from the z axis, see Figure 1).
Therefore, group velocity may be represented as

- dv
Vor = (Vsin0+d—v-cosﬂ)a':‘+ (V cos® — —sinf)z. (5)
db df
Note that the vertical axis is not necessarily an-axis of symmetry. From equa-
tion (5), the group angle 1 is given by

tang + + <
tany = ——gar (6)
v d

The derivative ‘%‘;’i in (4) may be written as

dtanty dtan@bﬁ

dp =~ df dp’
Using equation (6) we find
dtany 1+ %%
= p e
dé cos? (1 — 208 r)2
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Since p = siné/V,

o v
dp  cosf(l — =)’

and

dtany V(14 35F) -
dp feos8(1— L)

The vertical distance from the normal-incidence reflection point to the surface is
given by

-

Using expression (5) for group velocity yields

1 tanf dV’
29 = Evto 0059(1 - —"—f-—a-a) . (8)

Now (7,8) are substituted into equation (4) for NMO velocity:

_Ve) 1+ -‘%f_,%

. cos? § (1 _ ;_V_B%)z

V2 no®)

Since the phase angle # for the normal-incidence ray is equal to the dip angle ¢,
we finally obtain

T &V
Vi) = LAV T 7io) a7 9)

Tangdv
cos ¢ 1—%5

where the derivatives should be evaluated at the angle ¢.

Equation (9) is valid for NMO velocity of P and S-waves in symmetry planes of
arbitrary anisotropic media. Difficulties in application of formula (9) can be expected
only in anomalous areas near shear-wave singularities and cusps, where the group-
velocity function is multi-valued. This expression is relatively simple to use because
it does not involve components of the group-velocity vector of the normal-incidence
ray (note that the angle between the normal-incidence ray and vertical is generally
different from @). For example, it can be used in symmetry planes of orthorhombic
media just by substituting the appropriate phase velocity function and its derivatives.

Apparently, the result of the conventional isotropic dip-moveout correction
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Veorr (9) = Vamo(®) cos ¢ (10)

may be far different from the NMO velocity for a horizontal reflector Vamo(0), if
anisotropy is present. Below, I examine the behavior of the normal moveout velocity
and performance of the isotropic DMO correction for transversely isotropic media.

TRANSVERSE ISOTROPY WITH A TILTED AXIS OF SYMMETRY

Levin (1990) showed numerically that the isotropic P-wave DMO correction re-
mains accurate in the case when the symmetry axis is perpendicular to the reflector.
Equation (9) gives a clear analytic explanation for this result. If the reflector’s nor-
mal coincides with the symmetry direction, then ‘;V—a at the dip angle is zero, and
formula (9) reduces to

Vo #) = 20 \Jl G (1)

The values of V(¢) and % at any dip correspond to the symmetry direction and,
therefore, are independent of ¢. Hence, equation (11) coincides with the isotropic
equation (1)

Vumo(¢’) = 1/ﬂmo(o)/cosqs .

This means that the isotropic DMO correction holds if the symmetry axis is per-
pendicular to the reflector. However, this result is derived for normal (zero-spread)
moveout velocities rather than for moveout velocities measured on finite spreads. If
the medium above the reflector is homogeneous and isotropic; reflection moveout
on CMP gathers is purely hyperbolic, and equation (1) is exact irrespective of the
maximum offset. In the presence of anisotropy, moveout is generally nonhyperbolic
(Tsvankin and Thomsen, 1992, 1993a), and (1) may become inaccurate with increas-
ing spread length. Although the spreads used by Levin (1990) are rather short (equal
to the normal distance to the relector), his results for the models with the symmetry
axis perpendicular to the reflector show small errors in formula (1) indicative of the
influence of nonhyperbolic moveout on the moveout velocity.

While dip-dependence of the NMO velocity is not distorted by the anisotropy
when the symmetry axis is perpendicular to the reflector, the value of Vamo(0) is
not the same as the NMO velocity for isotropic media. The P-wave V., velocity
depends on the anisotropic parameter §, which is responsible for P-wave velocity near
the symmetry axis (Thomsen, 1986); this will be discussed in more detail below.

Application of formula (9) remains straightforward in a more general case when the
symmetry axis is tilted at an arbitrary angle. Phase velocity in transversely isotropic

333



Dip moveout in anisotropic media Tsvankin

media is usually expressed through the angle between the phase-velocity vector and
the symmetry axis. The formula for the P-wave phase velocity in standard notation
(using the elastic coefficients ¢;; and density p) can be found, for instance, in White
(1983):

2PV2(9) = (611 + 644) sin? 8 + (633 + 644) cos? 0
+ {[(c11 — caq) 5in® @ — (c33 — Ca4) cos? 4]
+4(cy3 + c44)? sin? B cos® 01172, (12)

To get the SV-wave velocity, the plus sign in front of the radical should be re-
placed with a minus. Thomsen (1986) gives analogous formulas in his notation, and
transforms them into much simpler expressions for weakly anisotropic media. In or-
der to use any of these velocity equations in the calculation of the NMO velocity (9),
they should be evaluated at the angle between the symmetry axis and the reflector’s
normal.

TRANSVERSE ISOTROPY WITH A VERTICAL AXIS OF
SYMMETRY

Levin (1990) points out that the two orientations of the symmetry axis most likely
to be encountered in practice include a vertical axis and an axis normal to reflectors.
In the previous section it was proved that in the latter case dip-dependence of nor-
mal moveout velocity remains the same as in isotropic media. Therefore, although
formula (9) allows for rather general anisotropy, in the following I concentrate on
transversely isotropic media with a vertical symmetry axis, or vertical transverse
isotropy (VTI).

VTI will be characterized by the vertical P- and S-waves velocities (Vpg = 1/c33 /o

and Vgo = {/cas/p), and anisotropic parameters €, §, and v, as suggested by Thomsen
(19886):

(o QLT (13)
2633
2 _ 2
5= (c13 + €a4)? — (€33 — Caa) , (14)
2c33(c33 — €14)
€6 — Ca4 -
= . 1

P- and SV-waves propagation is fully described by four parameters: Vpo, Vso, €,
and 6.
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The SH-wave slowness surface and wavefront are elliptical with the phase velocity
given (exactly) by

Vsa(8) = Vsoy/1 + 2ysin®0. (16)

Special cases: comparison with previous results

In this section, formula (9) is compared with analytic expressions for the normal
moveout velocity from a horizontal reflector beneath VTI media (Hake et al., 1984;
Thomsen, 1986), and from dipping reflectors beneath elliptically anisotropic media
(Byun, 1982; Uren et al., 1990b). Formula (9) and the P-wave moveout velocity
computed from 2 — 22 curves are also compared with analytically-based calculations
for general transverse isotropy presented by Byun (1984).

In the case of a horizontal reflector (¢ = 0), equation (9) reduces to

Vamel0) = V(O)\JH T

Using equation (12) to evaluate the second derivative of phase velocity and sub-
stituting expression (14) for 6, we find for the P-wave

Vamo(0) (P) = V(0)V'1 +26, (17)

which coincides with Thomsen’s (1986) result. When the symmetry axis is perpen-
dicular to a dipping reflector, the P-wave NMO velocity is given just by (17) and the
cosine-of-dip factor {equation (1)). Similarly, we get the known expression for the
zero-dip NMO velocity of the SV-wave.

For elliptical anisotropy,

Vi{g) = \/Vlz cos? § + V¥ sin4.

The NMO velocity (9) then becomes

2

Vamo(®$) = \Jco&x2 ¢+ % sin®o. (18)

cos ¢

Equation (18) agrees with the normal-moveout formulas of Byun (1982) and Uren
et al. (1990b). In elliptically anisotropic media, reflection moveout remains purely
hyperbolic irrespective of reflector dip or the orientation of the elliptical axes (Uren

et al., 1990).
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In VTI media, equations for elliptical anisotropy are strictly valid only for the
SH-wave. If the SH-wave phase velocity is parametrized by v (16), formula (18)
yields

Vamel®) (SH) = P2 EL 1 ysia? . (19)

Since for the SH-wave Vymo(0) = Viso/T + 27, (19) may be represented as

Vamo{0) Vsu(4)

Vnmo(QS) (SH) = COS¢ VSO

y (20)

Vsr(®) is the SH-wave’s phase velocity at the dip angle. Therefore, for elliptical
anisotropy the error of the cosine-of-dip DMO correction is directly determined by
phase velocity variations, i.e., the error is given just by the phase velocity at the dip
angle divided by the vertical velocity.

Below I demonstrate that the formula for elliptical anisotropy may lead to sig-
nificant errors in the P-wave NMO velocity even for “almost” elliptically anisotropic
models.

Byun (1984) generalized his elliptical normal-moveout formula for arbitrary trans-
verse isotropy by applying a local elliptical fit to the wavefront. The resulting ex-
pression for the normal moveout velocity involves the group velocity and group angle
of the normal-incidence ray. The moveout velocity multiplied with the cosine of the
angle 1, between the normal-incidence ray and vertical (“emergence angle” in Byun’s
paper) Byun calls the “diffractor velocity.” Figure 2 shows the P-wave moveout ve-
locity for the limestone-sandstone model used in Byun's study with his normalization.
The dotted curve is the analytic NMO velocity computed from formula (9); the solid
curve is the moveout velocity recovered directly from traveltimes (¢> — x® curves)
calculated by a ray-tracing code over a spread of 1500 m:- The distance from the
CMP to the reflector in the traveltime calculations on this and all subsequent plots
(except for Figure 13) is 3000 m (for a description of the algorithm used to calculate
traveltimes, see Larner, 1993).

Figure 2 was designed to reproduce the result in Figure 6a in Byun’s (1984)
paper. However, the moveout velocities in Figure 2 are substantially higher than
those computed by Byun; a similar discrepancy was found for the second model used
in Byun’s work. Since the analytic and numerical results in Figure 2 are close to each
other (a small difference between the two curves will be explained below), it seems
that Byun’s formula deviates (at least for these two models) from the exact Vimo for
non-elliptical media.

We can only speculate about the reason of this inaccuracy. One of the assumptions
made by Byun in his derivation is that V,m, for VTI media can be found by fitting
an ellipse with vertical and horizontal axes to the wavefront. It is possible that the
correct moveout velocity at non-zero dips is given by a tilted fitted ellipse, even though
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Limestone-sandstone

Corrected Vmo (f/s)

1.0 i : :
0 15 30 45 60
Dip (deg)

F1G. 2. P-wave moveout velocity calculated from formula (9) (dotted curve) and from
traveltimes (solid curve) for the limestone-sandstone model from Byun (1984). Both
curves are converted into the “diffractor velocities” as suggested by Byun. Model
parameters are Vpo=10483 ft /s, Vgo=5753 ft/s, €=0.183, § = —0.004,

the symmetry axis is vertical. However, this is no more than a tentative conclusion;
the nature of the above discrepancy needs further investigation.

How many parameters determine the P-wave DMO signature?

This important question has to be answered before starting a systematic study
of the behavior of NMO velocities in transversely isotropic media. In conventional
notation, the P-wave phase velocity (12) is a function of four elastic coefficients:
€11, €33, C13, and cg4. This might lead one to believe that dip-dependence of the P-
wave V,m, is also determined by four variables.

However, it is possible to cut down on the number of parameters by switching
to Thomsen (1986) notation. First, note that Vpq is just a scaling coeflicient for the
P-wave phase velocity, if Vpo/Vso, €, and § are kept constant. Therefore, Vpg does
not change the dependence of the P-wave normal moveout velocity V,mo on the dip
angle ¢. This conclusion is illustrated by Figure 3, which proves that the normalized
P-wave NMO velocity Vimo(¢)/Vamo(0) is independent of the vertical velocity Vpy.
The moveout velocity in Figure 3 is multiplied with cos ¢, as it is conventionally done
in the isotropic DMO correction.

Another parameter that can be eliminated from the P-wave dip-moveout problem
is the shear-wave vertical velocity Vg (or the ratio Vpg/Vg). Although the P-wave
phase velocity formally depends on four Thomsen parameters (Veo, Vo, €, and §), the
contribution of Vg is practically negligible.

Indeed, in the weak anisotropy approximation, the P-wave phase velocity is a
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Fic. 3. Influence of Vpp on the cosine-of-dip corrected P-wave normal moveout veloc-
ity calculated from formula (9). The black curve corresponds to the shale-limestone
model with Vpe=3.306 km/s, Vso=1.819 km/s, ¢=0.134, 6=0. The gray curve is for

the model with Vpe=4.200 km/s, and the same Vpo/Vso, €, and 8.
The curves on the right plot are normalized by the NMO velocity for a horizontal

reflector V,umo(0)-
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FiG. 4. Influence of Vo on the cosine-of-dip corrected P-wave normal moveout veloc-
ity calculated from formula (9). The solid curve corresponds to the shale-limestone

model with Vpp=3.306 km/s, Vso=1.819 km/s, ¢=0.134, 6=0. The other two curves
are for the models with the same Vpy, €, and &, but with Vso=1.300 km/s (gray) and
V50=2.300 km/s (dashed)
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function just of Vpg and the anisotropic coefficients € and 6 (Thomsen, 1986). If
anisotropy is not weak, Thomsen’s velocity equation becomes inaccurate, but the P-
wave phase velocity remains practically independent of Vg, (Tsvankin and Thomsen,
1993b). Hence, even for a wide range of Vg, the corresponding variations in the
P-wave normal moveout velocity are extremely small, as is supported by the result
in Figure 4.

Thus, in VTT media dip-dependence of the P-wave NMO velocity is a function of
just two anisotropic coefficients ¢ and 5. More than that, in the next two sections
I show that the angular behavior of the NMO velocity is primarily determined by
a particular combination of these parameters, i.e., by the difference ¢ — 8. If the
symmetry axis is inclined, the NMO velocity is also dependent on the tilt angle.

Weak-anisotropy approximation for normal moveout velocity

A convenient way to understand the influence of anisotropy on normal moveout
velocity is to use the weak-anisotropy approximation (WAA). Although WAA is no
substitute for exact equations (such as formula [9]) in DMO correction, it can provide
us with simple analytic relations elucidating the dependence of the NMO velocity on
the parameters € and 6.

In the case of weak anisotropy (¢ < 1, 8 < 1), phase velocities of P- and SV-
waves can be significantly simplified by retaining only the terms linear in § and e.
The P-wave phase velocity linearized in € and 6 is given by (Thomsen, 1986)

Vp(8) = Vo (1 + 6sin® 0 cos? 8 + esin® ) . (21)

The derivatives of (21) needed in the expression for NMO velocity (9) are then

dVp(0)

B - Vposin 28 (6 cos 28 + 2esin’ §)

dv3(6)
do?

= 2Vpg [6 cos 46 + 2¢sin® §(1 + 2 cos 26)] .

After substitution of the above weak-anisotropy equations into (9) and further
linearization in € and §, we get

Vamo(®) = —?:% [1+ 6 +2(e — 6) sin® (1 + 2 cos® ¢)]. (22)

Vp(¢) is the phase velocity given by (21). In the isotropic DMO correction, mul-
tiplication of Vj0(¢) with cos ¢ is supposed to convert the moveout velocity at dip
¢ into the moveout velocity for a horizontal reflector. Hence, the anisotropy-induced

DMO error is given by
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Vumo(¢) CO8 ¢ — VP (¢)
Vnmo(o) VPO

The structure of equation (23) suggests that the P-wave dip-moveout error in
transversely isotropic media has two major components, which may be called the
“elliptical error” and “non-elliptical error.” Indeed, for elliptical anisotropy € = 4,
and the error is determined just by angular variations in the P-wave phase velocity.
This result has already been discussed in the previous section (18,20). The second,
“pon-elliptical” component of the DMO error is the term containing the difference
¢ — §. Comparison of the two terms shows that even for relatively small values of
¢ — &, the second term usually makes a significant contribution to the total error,
especially at mild dips (up to 45°). For typical values of the anisotropic coefficients,
the difference ¢ — § determines, to a large degree, the angular behavior of the P-wave
NMO velocity. This conclusion is supported by exact pumerical calculations in the
next section.

[1 + 2(e — 6) sin? (1 + 2 cos’ ¢)] . (23)

Now we can explain the puzzling difference between the DMO signatures for the
models of Cotton Valley shale and the shale-limestone (Levin, 1990; Larner, 1993).
For Cotton Valley shale (¢ = 0.135, §=0.205), the P-wave phase velocity increases
with angle, while e — & is negative. As a result, the two components of the DMO error
in (23) almost cancel each other, and the accuracy of the isotropic DMO correction
is quite satifactory.

Figure 5 shows the comparison between the moveout velocity calculated directly
from traveltimes (t2—z2 curves) over a spread of 3000 m, the exact NMO velocity (9),
and the weak-anisotropy normal-moveout approximation (22). All three curves for
Cotton Valley shale display only small variations in the corrected moveout velocity
with angle, confirming the conclusion about the validity of isotropic DMO for this
particular model. Though Cotton Valley shale has a large value of 6, the weak-
anisotropy result is close to the exact NMO velocity (the difference is less than 1.5%).

For the shale-limestone (¢ = 0.134, §=0), the increase in the P-wave phase velocity
is supplemented by a positive value of e — §. This combination leads to a pronounced
increase in the cosine-of-dip corrected moveout velocity with dip angle. Note that the
accuracy of the weak-anisotropy approximation for the shale-limestone is very high.
A systematic comparison between the weak-anisotropy approximation and the exact
NMO velocity is presented in the next section.

Formula (9) can also be transformed into the weak-anisotropy approximation for
the SV-wave normal moveout velocity. Using the WAA expression for the SV-wave
phase velocity (Thomsen, 1986), we obtain

Vamo(9) (SV) = Yé%s(g)- [1 + o — 20sin® &(1 + 2 cos® §)], (24)

where ¢ is the effective parameter introduced by Tsvankin and Thomsen (1992) to
describe SV-wave propagation:
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Cotton Valley shale Shale-limestone
é..rs.o
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Fic. 5. Cosine-of-dip corrected P-wave moveout velocity for Cotton Valley shale
and the shale-limestone. The solid curve is the moveout velocity calculated from
the traveltimes on a Sf)read of 3000 m; the dotted curve is the exact NMO velocity
computed from formula (9); the dashed curve is the weak-anisotropy approximation
(22).

‘Is’acf)a.gbesters of Cotton Valley shale are Vpg=4.721 km/s, V5,=2.890 km/s, €=0.135,

Hence, the DMO signature for the SV-wave is mostly determined by just one
anisotropic parameter - o.

Equations (22) and (24) can be easily rewritten for the more general case of
transverse isotropy with a tilted axis of symmetry..

Dip-moveout signature for P-waves

Before doing a systematic analysis for vertical transverse isotropy, it is worthwhile
to explain the difference between the moveout velocities calculated directly from trav-
eltimes (2 — z? curves), and exact NMO velocities in Figures 2 and 5. The moveout
velocities calculated from traveltimes coincide with those computed by Levin (1990)
for the same parameters, thus proving the accuracy of the numerical algorithm. Since
the moveout velocity was determined from a least-squares fit to ¢2 — 2 curves on a
finite spread length, it could have been distorted by nonhyperbolic moveout, while the
analytic NMO velocity describes purely hyperbolic moveout on very short spreads.
To check out this possibility, Figure 5 is reproduced in Figure 6, but with the moveout
velocity calculated on a much shorter spread (1000 m instead of 3000 m), reduced to
just 1/3 of the distance from the CMP to the reflector. Now the moveout velocity
recovered from the traveltimes (solid curve) practically coincides with the analytic
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solution for the NMO velocity (dotted curve). Therefore, the analytic and numerical
results are in agreement with each other.

Cotton Valley shale Shale-limestone

FIG. 6. Same as Figure 5, but the spread length used to calculate the moveout velocity
from 2 — z2 curves (solid curve) is 1000 m instead of 3000 m.

The analytic curves of the exact NMO velocity (dotted) and the weak-anisotropy
approximation (dashed) have not been changed.

Since the two models studied above exhibit such a different behavior of the P-
wave NMO velocity, it is important to find out what can be expected for transversely
isotropic media that are likely to be encountered in the subsurface. Existing labo-
ratory and field data indicate that in most cases € > 6 (Thomsen, 1986; Tsvankin
and Thomsen, 1992). For instance, € > § for transversely isotropic media due to thin
bedding of isotropic layers (Berryman, 1979). Also, the value of ¢ is almost always
positive (Thomsen, 1986). This means that the cosine-of-dip corrected moveout ve-
locity in transversely isotropic media is usually higher than the moveout velocity for a
horizontal reflector (see formula [23]). Hence, the behavior of the corrected moveout
velocity for the shale-limestone model may be typical for subsurface formations.

Rather than examine specific transversely isotropic models published in the liter-
ature, I present a systematic analysis of the P-wave DMO signatures for transversely
isotropic media parametrized by € and §. Since the weak-anisotropy approximation
suggests the difference € — § as the most influential parameter in the DMO correc-
tion, I generate four suites of plots for e — 6 = —0.1, 0, 0.1, and 0.2 (Figures 7-10).
The choice of the values of € — & is explained above; although € — § is believed to
be predominantly positive, the value of —0.1 is included for completeness. Each plot
contains the same three curves as Figures 5 and 6: the moveout velocity calculated
from 2 — 2 curves on the spread 3000 m long (solid), the exact analytic normal
moveout velocity computed from equation (9) (dotted), and the weak-anisotropy ap-
proximation for Vym, given by equation (22) (dashed). Comparison between the first
two curves makes it possible to estimate the influence of nonhyperbolic moveout on
the moveout velocity for the typical spread length equal to the distance from the CMP
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F1@. 7. Cosine-of-dip corrected P-wave moveout velocity for models with ¢—§ =—0.1.
The solid curve is the moveout velocity calculated from ¢2 — 22 curves on a spread
length of 3000 m; the dotted curve is the exact NMO velocity from formula (9); and

the dashed curve is the weak-anisotropy approximation from formula (22).
The solid curve for e = 0.3, § = 0.4 stops around 52° because the algorithm used to
calculate traveltimes broke down at steep dips.

to the reflector. The difference between the second and third curves shows the error
of the weak-anisotropy approximation. The vertical P-wave velocity Vpg is adjusted
so that on each plot the exact Vymo(0) = 1.

First, I examine dip-dependence of the cosine-of-dip corrected moveout velocity
using the exact analytic expression (9) (dotted curve). Later on, I discuss the accuracy
of the weak-anisotropy approximation and the influence of nonhyperbolic moveout.

The whole suite of plots in Figures 7-10 proves that the P-wave DMO signature is
controlled, to a significant degree (although not entirely), by the difference € — 6. In
spite of certain variations from one pair of ¢, § to another, the behavior of the moveout
velocity is similar for all curves with fixed e — §, especially for moderate anisotropies
lel < 0.2, 8] < 0.2. The dominant role of € — § is particularly pronounced for the
most typical case € — é > 0 (Figures 9, 10). It is interesting that on most of the
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F1G. 8. Cosine-of-dip corrected P-wave moveout velocity for models with € — § =0
(elliptical anisotropy).

plots the exact NMO velocity shows even less dependence on -a specific combination
of € and 6 for a fixed € — 8, than does the weak-anisotropy result (for instance, see
Figure 10).

When € — § =—0.1 (Figure 7), the cosine-of-dip corrected moveout velocity de-
creases with dip (for mild dips), as predicted by the weak-anisotropy approximation.
This trend becomes less pronounced with increasing € and 6 due to a more significant
increase in the phase velocity with angle (formula [23]). Note that for a fixed negative
¢ — §, isotropic DMO becomes more accurate (i.e., the curves are closer to unity) with
increasing anisotropies € and §. On the whole, the error in isotropic DMO, deter-
mined by the amplitude of the angular variations in the corrected moveout velocity,
is relatively small (the ” Cotton Valley shale” case).

For elliptically anisotropic models (¢ — § = 0, Figure 8), the anisotropy-induced
distortions of DMO are entirely determined by the amplitude of the phase-velocity
variations with angle. The DMO error for elliptical anisotropy is moderate: the
difference between the corrected moveout velocity and the zero-dip Vimo for ¢ < 60°,
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F1G. 9. Cosine-of-dip corrected P-wave moveout velocity for models with € — § =0.1.

le] < 0.2, 6] < 0.2 is less than 15%. The DMO correction is, of course, perfect for
the isotropic case, €e = § = 0.

If e—6 is positive (the most common case, Figures 9 and 10), the anisotropy causes
a pronounced increase in the cosine-of-dip corrected moveout velocity with dip angle,
Even for relatively small € — § = 0.1, the dip-moveout error reaches 25% at 45° dip
and 30-35% at a dip of 60° (“the shale-limestone” case). For e — § = 0.2 (Figure 10),
the corrected moveout velocity at 60° dip is consistently about 60% higher than the
zero-dip moveout velocity! A remarkable feature of models with positive € — § is a
very weak dependence of the exact NMO velocity on € and § for a fixed difference
€—4.

Thus, for typical VTI media, with positive € — §, the isotropic DMO correction
severely understates moveout velocities at dips exceeding 20° to 30°, even when the
anisotropy is weak.

The weak-anisotropy approximation for the normal moveout velocity given by
equation (22) remains sufficiently accurate in the most important range of small and
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F1G. 10. Cosine-of-dip corrected P-wave moveout velocity for models with
e —6=0.2.

moderate values of € and 8. The error of the weak-anisotropy result (as compared
with the exact NMO velocity) does not exceed 5% for |¢| < 0.2, [§| < 0.2 (the only
exception is the model with € = 0, § = —0.2).

The above suite of plots also presents a comprehensive picture of the moveout-
velocity distortions at various dips caused by nonhyperbolic moveout. The influence
of nonhyperbolic moveout manifests itself through the difference between the moveout
velocity, calculated from #2 — z curves, and the exact NMO velocity. It is well known
that deviations from hyperbolic moveout rapidly increase with spread length; this
trend may be enhanced by anisotropy (Tsvankin and Thomsen, 1992, 1993a). For
a maximum offset-to-depth ratio of 1, used in my calculations, the contribution of
nonhyperbolic moveout to the moveout velocity is not significant, but the difference
between the NMO and finite-spread velocities is clearly visible on some of the plots.

For small dips, the distortions of the moveout velocity due to deviations from
hyperbolic moveout are in good agreement with the analytic results by Tsvankin
and Thomsen (1992, 1993a), who gave a description of nonhyperbolic moveout for
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horizontal reflectors using the quartic Taylor series term for 2 — 22 curves. For the
P-wave, the influence of nonhyperbolic moveout is proportional to the absolute value
of € — §; if € — 6 is fixed, nonhyperbolic moveout is more pronounced for smaller
6. The analytic analysis also shows that the P-wave moveout velocity measured on
finite spreads is larger than the NMO velocity if e — § > 0, and smaller than V,,,, if
€—4 < 0. Evidently, for elliptical anisotropy (¢ = §) the moveout is purely hyperbolic,
and the dotted and solid curves fully coincide with each other. The validity of these
conclusions is clearly seen in Figures 7-10.

The observed differences between the NMO velocity and the finite-spread moveout
velocity seem to contradict the results by Levin (1990) and Larner (1993), who have
not noticed visible deviations of their moveout curves from hyperbolae for the same
spread length. However, this is an apparent discrepancy. Tsvankin and Thomsen
(1992, 1993a) show that for spread lengths close to the depth of the reflector, the
best-fit hyperbola is very close to the actual moveout curve although the moveout
velocity of this hyperbola may be different by several first percent from the NMO
velocity.

It is interesting that the difference between the moveout velocity on a finite spread
and the NMO velocity changes sign with increasing dip (i.e., the solid and dotted lines
cross), but the influence of nonhyperbolic moveout for steep reflectors is typically
smaller than for zero dip. I conclude that if |e — §| <0.15-0.2, nonhyperbolic moveout
does not seriously distort the P-wave moveout velocity on short spreads, common for
CMP acquisition design, even if dips are relatively large.

DMO FOR TRANSVERSELY ISOTROPIC MEDIA WITH VERTICAL
VELOCITY GRADIENT

The above analysis is valid for homogeneous transversely isotropic models. Larner
(1993) has studied the P-wave dip-moveout error for factorized VTI media with a
constant gradient in vertical velocity. In terms of Thomsen notation used here, the
velocity Vpg in factorized transversely isotropic media varies with position, while the
Vo /Vso ratio and the anisotropic coefficients ¢ and § remain constant. The four
models used in Larner’s work have the same anisotropic parameters and root-mean-
square (RMS) vertical velocity down to the reflector as the models in Levin’s (1990)
study. One of the interesting results reported by Larner is that for the shale-limestone
model with a typical value of the velocity gradient, constant-velocity DMO gives a
higher accuracy than does V(z) DMO (both DMO corrections ignore anisotropy).
Comparison of the moveout velocities for homogeneous and inhomogeneous shale-
limestone suggests that inhomogeneity can compensate (to a certain degree) the DMO
distortions caused by the anisotropy.

The results obtained in the previous section indicate that the DMO signature for
the homogeneous shale-limestone may be considered typical for a wide range of VTI
models. To verify whether the “compensation effect,” found by Larner, is typical
for inhomogeneous VTI media, I carry out the same calculations as in the previous
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section, but for factorized transversely isotropic media with a vertical velocity gra-
dient of 0.6 s~! (Figure 11). The moveout velocity is calculated from ¢* — z? curves
using Larner’s (1993) ray-tracing program; the only change made in the code was the
parameterization of VTI media in terms of € and é.

6 15 30 45 6 0 15 30 45 60
Dip (deg) Dip (deg)

Fig. 11. Cosine-of-dip corrected P-wave moveout velocity for VTI models with a
velocity gradient of 0.6 s~!. The curves are normalized by the moveout velocity for
a horizontal reflector. Each curve corresponds to a different pair of €, 6. On the left
plot, e=0, § = —0.1 (black curve); e=0.1, 6=0 (gray curve); €¢=0.2, 6=0.1 (dashed
curve). On the right plot, e=0.1, § = —0.1 (black curve); ¢=0.2, 6=0 (gray curve);
¢=0.3, 6=0.1 (dashed curve). The distance from the CMP to the reflector and the
spread length are 3000 m; the RMS vertical velocity down to 3000 m is 3500 m/s.

Comparison of Figure 11 with Figures 9 and 10 shows that for typical positive
values of € — §, angular variations of the cosine-of-dip corrected moveout velocity
are substantially suppressed by the velocity gradient. When velocity increases with
depth, small-offset reflections from dipping interfaces travel more close to vertical than
in a homogeneous medium. This makes the “effective dip” of the reflector smaller
and reduces the increase in the moveout velocity with dip angle, both in isotropic
and anisotropic media. For ¢ — §=0.1, the influence of vertical velocity variations
even leads to “overcorrection” in constant-velocity DMO, making the cosine-of-dip
corrected moveout velocity decrease with dip angle.

Note that we do not make a distinction between the true dip angle and the appar-
ent dip often used in constant-velocity DMO process (Larner, 1993). In homogeneous
media, the two dips are usually close to each other; the dip-angle error in inhomo-
geneous media depends on the relative spatial position of dipping reflectors and a
horizontal reflector, and will not be discussed here.

Figure 11 is reproduced in Figure 12, but with the DMO correction that honors
inhomogeneity (V(z) DMO, Larner, 1993). Although the DMO error caused by the
anisotropy is somewhat smaller than in homogeneous media with the same € and 6
(Figures 9 and 10), it is much larger than the error of the simplest cosine-of-dip cor-
rection (Figure 11). Therefore, consistent with Larner’s results for the shale-limestone
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model, for typical factorized transversely isotropic models the DMO correction that
ignores both anisotropy and inhomogeneity is often more accurate than the correction

that honors inhomogeneity but ignores anisotropy.
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F1G. 12. P-wave moveout velocity after V(z) DMQ correction. All parameters are
the same as in Figure 11.
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F1aG. 13. Cosine-of-dip corrected P-wave moveout velocity for the same elastic param-
eters as in Figure 11, but for a more shallow reflector: the distance from the CMP to

the reflector and the spread length are 1500 m.

Another important conclusion from Figures 11 and 12 is that in factorized verti-
cally inhomogeneous VTI media the P-wave moveout velocity is still primarily con-
trolled by the difference between € and 6, rather than by the individual values of
these parameters. However, in V(z) media, dip-dependence of the moveout velocity
is also a function of the velocity gradient, the RMS vertical velocity, and the depth
of the reflector. As illustrated by Figure 13, for more shallow reflectors the influence
of the velocity gradient is less pronounced, and the corrected moveout velocity is
closer to the result for a homogeneous medium. It is interesting that for the rather
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typical model parameters used in Figure 13, the anisotropy and inhomogeneity practi-
cally cancel each other’s influence, and constant-velocity DMO yields almost an ideal
correction.

DISCUSSION AND CONCLUSIONS

In the presence of anisotropy, dip-dependence of moveout velocity deviates from
the cosine-of-dip function, thus leading to errors in isotropic DMO correction. Here,
I have presented an analytic expression for normal moveout velocity valid in the case
when the incidence (sagittal) plane coincides with one of the symmetry planes ofa
homogeneous anisotropic medium. This formula can be used for P- and S-wave NMO
velocities in many anisotropic models of practical importance, including transverse
isotropy with a tilted symmetry axis, and symmetry planes in orthorhombic media.

Further insight into the problem is provided by the simple dip-moveout formula
for weak transverse isotropy derived from the exact NMO expression. This weak-
anisotropy approximation for the P-wave normal-moveout velocity is sufficiently ac-
curate in a wide range of small and moderate values of € and §. The error of the
weak-anisotropy result usually does not exceed 5% for |¢] < 0.2, |§] < 0.2, The ana-
lytic solutions give a clear explanation for existing numerical results for transversely
isotropic media, such as Levin's (1990) conclusion that the isotropic DMO correction
remains valid when the symmetry axis is perpendicular to the reflector.

Dip-dependence of the P-wave moveout velocity for transverse isotropy with a ver-
tical symmetry axis is shown to be a function of only two parameters — € and 6. More
than that, the P-wave DMO signature is controlled, to a significant degree, by the
difference € — §. The systematic study of VTI media parameterized by ¢ and é proves
that for € — 6 > 0 (the most common case), the cosine-of-dip corrected moveout ve-
locity remains significantly larger than the moveout velocity for a horizontal reflector.
Even for relatively small € — 6 = 0.1 and ¢ < 0.2, the error of conventional isotropic
DMO reaches 25% at 45° dip and exceeds 30% at a dip of 60°. For e—§ = 0.2 (also a
feasible value), the cosine-of-dip corrected moveout velocity at 60° dip is almost 60%
higher than the zero-dip moveout velocity!

The analytic study of NMO velocities was supplemented by calculations of the
P-wave moveout velocity from reflection t> — z? curves on short-spread CMP gathers,
typical for CMP acquisition design. Comparison between the analytic NMO velocity
and the moveout velocity calculated on finite spreads makes it possible to analyze the
magnitude of nonhyperbolic moveout as a function of reflector dip. The difference
between the two velocities changes sign with increasing dip but usually is smaller for
steep dips than for a horizontal reflector. If je— 6| <0.15-0.2, nonhyperbolic moveout
does not seriously distort the P-wave moveout velocity on short spreads, even for
steep reflectors.

Significant errors of conventional DMO correction for typical transversely isotropic
models mean that it is imperative to develop dip-moveout algorithms for anisotropic
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media. Uren et al. (1990a) have generalized Gardner DMO for elliptically anisotropic
models; however, the elliptical P-wave DMO correction becomes inaccurate even for
“almost” elliptically anisotropic models. The formula for NMO velocity, derived here,
can provide a basis for building DMO algorithms for general transversely isotropic
and even orthorhombic media.

One of the major problems in developing dip-moveout processing (as well as mi-
gration, amplitude-versus-offset algorithms, etc.) in anisotropic media is to recover
anisotropic parameters with sufficient accuracy. For VTI media, the parameter § can
be determined using the P-wave NMO velocity from a horizontal reflector and the
true vertical velocity (such as from check shot or VSP data). However, the proper
DMO correction also requires knowledge of the parameter €, which cannot be recov-
ered from short-spread P-wave data alone. If the vertical P- and/or S-velocities (or
reflector depth) are known, both € and § can be determined from the P- and SV-wave
NMO velocities. Tsvankin and Thomsen (1992, 1993b) show that it is possible to
find all four anisotropic parameters governing P-SV propagation (Vpg, Vg, €, §) from
the combination of long-spread P- and SV-traveltimes. Since e is directly related to
the horizontal velocity, it can also be determined from head-wave velocities or results
of cross-hole tomography.

Another way to overcome the ambiguity in the inversion for anisotropic parameters
is to include dip moveout itself in the inversion procedure. High sensitivity of the P-
wave normal moveout velocity to €— & can be used to find ¢ from the NMO velocity of
a reflection from a dipping interface by means of equation (9), provided & has already
been determined. Since the true dip angle ¢ is usually also unknown, the analytic
expression for the NMO velocity should be used along with the equation for the
apparent dip on the zero-offset section. This combination provides two simultaneous
equations to be solved for ¢ and ¢. More than that, normal moveout velocites for
two distinctive dips and the NMO velocity for a horizontal reflector are sufficient to
recover all three parameters governing P-wave. propagation: Vpy, €, and 4. Certainly,
this kind of inversion would be much more dificult to carry out in V(z) media. These
ideas will be explored further in a sequel paper.

For transversely isotropic media with a linear velocity gradient and typical (posi-
tive) values of the difference € — 6, inhomogeneity tends to reduce (sometimes signif-
icantly) dip-moveout error that anisotropy induces in conventional constant-velocity
DMO. Therefore, if a medium is not only anisotropic, but also has a vertical velocity
gradient, constant-velocity isotropic DMO can perform better than can be expected
from the results for homogeneous anisotropic media.
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I. Tsvankin

ABSTRACT

It is well known that the angular dependence of reflection coefficients may be
significantly distorted in the presence of elastic anisotropy. However, the influence
of anisotropy on amplitude-versus-offset analysis (AVO) is not limited to reflec-
tion coefficients. AVO signatures in anisotropic media are also distorted by the
redistribution of energy along the wavefront of the wave travelling down to the
reflector and back up to the surface. Significant anisotropy above the target hori-
zon may be rather typical of sand-shale sequences commonly considered in AVQ
analysis. Unless properly corrected for, propagation phenomena in anisotropic
media may seriously distort the character of AVO anomalies.

Here, I examine the influence of P- and S-wave radiation patterns on AVO
in the most common anisotropic model — transversely isotropic media. A con-
cise analytic solution, obtained in the weak-anisotropy approximation, provides a
convenient way to estimate the impact of the distortions of the radiation patterns
on AVO results. It is shown that the shape of the P-wave radiation pattern in the
range of angles most important to AVO analysis (0 —45°) is mostly dependent on
the difference between Thomsen parameters-€¢ and 8. For models with e — 6 > 0
(the most common case), the P-wave amplitude may drop substantially over the
first 25° — 45° from vertical, even if the anisotropy is relatively weak. The dis-
tortions of the SV-wave radiation pattern are usually much more significant than
those for the P-wave.

The anisotropic directivity factor for the incident wave may be of equal or
greater importance for AVO than the influence of anisotropy on the reflection co-
efficient. Therefore, interpretation of AVO anomalies in the presence of anisotropy
requires an integrated approach that takes into account not only the reflection
coefficient but also the wave propagation above the reflector.

INTRODUCTION

It has been shown in the literature that elastic anisotropy may significantly distort
the angular dependence of reflection coefficients {e.g., Keith and Crampin, 1977;
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Banik, 1987; Wright, 1987). Banik (1987) and Thomsen (1993) developed analytic
approximations for the reflection coefficient at a boundary between two transversely
isotropic media. Yet another substantial distortion of the amplitude-versus-offset
(AVO) signature in anisotropic media is associated with the wave propagation above
the reflector.

The real goal of AVO is to perform reflection coefficient-versus-angle analysis
rather than study directly amplitude-versus-offset dependence. Hence, correction for
the angular amplitude variation caused by the wave phenomena above the reflector
is an essential component of AVO technology. This correction is well understood for
isotropic models; in the ray approximation, it involves primarily source directivity,
energy divergence, reflection and transmission coefficients along the raypath, and
attenuation losses (Duren, 1992).

If the velocity above the reflector is angle—dependent, the behavior of body-wave
amplitudes becomes much more complicated, and the isotropic correction breaks
down. The presence of anisotropic layers above the target horizon may be quite
typical for sand-shale sequences commonly considered in AVO analysis. While reser-
voir sands can be expected to exhibit very weak anisotropy (if any), shale formations
are often characterized by strong transverse isotropy (White et al., 1983; Banik, 1984;
Winterstein and Paulsson, 1990).

Tsvankin and Chesnokov (1990a; hereafter referred to as Paper I) gave a descrip-
tion of point-source radiation patterns in azimuthally isotropic and orthorhombic
media. They showed that the most powerful factor that modifies the distribution of
energy along the wavefront is focusing and defocusing of energy, usually associated
with maxima and minima, respectively, in the angle-dependent velocity. Further
discussion of radiation patterns in different anisotropic models can be found in Ben-
Menahem et al. (1991) and Gajewski (1993). A numerical example. illustrating the
influence of the distortion of P-wave radiation patterns on AVO was presented by
Samec and Blangy (1992).

The main goal of this paper is to study the infiuence of the distortions of body-
wave radiation patterns in anisotropic media on amplitude-versus-offset analysis. The
existing solutions for point-source radiation in anisotropic models require numerical
evaluation and do not provide easy analytic insight into the problem. Here, I present a
concise weak-anisotropy approximation for radiation patterns in transversely isotropic
media, which relates the distortions of point-source radiation to Thomsen parameters
¢, 6 (for the P- and SV-wave), and 7 (for the SH-wave). The analytic solution is com-
pared with results of numerical modeling based on the technique suggested in Paper I.
The analytic and numerical methods are used to study radiation patterns in the range
of angles most important for AVO analysis and compare the influence of anisotropy
on two principal components of AVO signature, i.e., on the wave propagation above
the reflector and reflection coefficients.
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GENERAL ANALYSIS FOR TRANSVERSE ISOTROPY

Far-field point-source radiation in isotropic homogeneous non-attenuating media
is determined just by the source directivity factor and spherical divergence of am-
plitude (Aki and Richards, 1980). The far-field approximation for source radiation
in anisotropic media, derived in Paper I by means of the stationary-phase method,
is a much more complicated function, which depends on the shape of the slowness
surface. The most significant distortion of radiation patterns in anisotropic media is
caused by the phenomena defined in Paper I as “focusing” and “defocusing” of energy.
Energy increases (focuses) in parts of the wavefront with high concentration of group-
velocity vectors of elementary plane waves (which comprise point-source radiation).
Conversely, defocusing corresponds to areas with low concentration of group-velocity
vectors. Often (but not always), focusing takes place near velocity maxima, while
defocusing is often associated with velocity minima.

The stationary-phase approximation was used in Paper I only for qualitative es-
timates. Quantitative analysis of radiation patterns in Paper I was performed by
a numerical technique based on plane-wave decomposition of point-source radiation
with subsequent evaluation of Fourier-Bessel integrals in the frequency domain. This
numerical method involves an approximate treatment of azimuthal anisotropy; how-
ever, it is exact for azimuthally isotropic media. Here, the stationary-phase solution
for radiation patterns from Paper I is transformed into a much simpler expression
valid for weak transverse isotropy. The accuracy of the weak-anisotropy formula is
checked by comparison with radiation patterns generated by the numerical plane-wave
decomposition technique.

I consider a simple model of a horizontal reflector below a transversely isotropic
medium with a vertical symmetry axis (VTI) (Figure 1). Transverse isotropy will
be described by the vertical velocities of P- and S-waves (Vpo and Vgo) and three
dimensionless anisotropic parameters (¢, 6, and ) introduced by Thomsen (1986).

Source
Wavefront
Dei)th Vpo Vso € 8 L
REFLECTOR

F1G. 1. Reflection from the bottom of a transversely isotropic layer. The redis-
tribution of energy along the wavefront of the incident wave may distort the AVO
response.

It is important to mention that the radiation patterns in this paper are derived as
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a function of the phase angle with the symmetry axis; therefore, the analytic devel-
opments below can be easily applied not only for VTI media, but also for transverse
isotropy with any orientation of the axis of symmetry.

Derivation of the weak-anisotropy approximation for point-source radiation is
given in Appendix A. The far-field radiation pattern from a point force for weak
transverse isotropy (e < 1,8 < 1,7 < 1} is shown to be

F, 1
U(R,e) = 41rpV2(9)R J%ii“;% (1+%%) ) (1)

where U is the absolute value of the displacement, & is the phase angle measured from
vertical, V is the phase velocity, p is the density, R = v 22 + r2 (2 is the receiver depth,
r is the horizontal source-receiver offset). The source term F, is the projection of the
force on the displacement (polarization) vector. Expression (1) should be evaluated at
the phase angle 8, corresponding to a given ray (group-velocity) angle ¢ = tan~!(r/z)
of the incident wave; note that at velocity maxima or minima the phase and group
velocity vectors coincide with each other.

Formula (1) clearly shows the way anisotropy distorts point-source radiation in
anisotropic media. The term F,/ (47pV?R) formally coincides with the well-known
expression for the far-field point-force radiation in isotropic media (Aki and Richards,
1980). However, phase velocity in equation (1) is angle-dependent, and the term V2(8)
reflects direct influence of velocity variations on the radiation pattern. Since body-
wave polarizations are dependent on the elastic constants, the source term F, may
also be distorted by anisotropy. Also, the expression should be evaluated at the phase
direction, which is generally different from the source-receiver direction due to the
presence of anisotropy.

The term under the radical represents the pure contribution of anisotropy to the
radiation pattern. As shown in Paper I, the second derivative of phase velocity is
responsible for the focusing and defocusing phenomena discussed above.

The distinction between the source term and the rest of formula (1) is very im-
portant. While F, is itself distorted by anisotropy, the existence of a pure “medium”
term means that the redistribution of energy along the wavefront happens not only
in the source layer, but also in any other anisotropic layer along the raypath.

Apparently, in the absence of anisotropy equation (1) reduces to the expression
for isotropic media given in Aki and Richards (1980). If the anisotropy is not weak,
formula (1) cannot be expected to be quantitatively accurate but it is still useful for
qualitative estimates. Asymptotic expression (1) is used below to study the influence
of transverse isotropy on the AVO response for P-, SV-, and SH-waves.

358



Radiation patterns and AVO in anisotropic media

P-WAVE RADIATION PATTERNS AND AVO

The issue of P-wave AVO is of particular importance because P-waves constitute
the overwhelming majority of all seismic data being acquired in the oil industry. The
P-wave phase-velocity function for weak transverse isotropy (6 <« 1, € < 1) is given
by (Thomsen, 1986)

Vp(8) = Vpo (1 + 6sin® @ cos® 9 + esin'9) . (2)
Equation (2) is fully linearized in the anisotropies ¢ and 8. Differentiating (2) yields

d‘i’i’;o) = Vpo sin 26 (6 cos 20 + 2¢sin’ §), (3)
2
dl;gg“‘o) = 2Vpg [6 cos 48 + 2esin® 6(1 + 2 cos 26)] . 4)

Also, for weak anisotropy
siny = sin@ {1 + cos® §[26 + 4(e — 6) sin® 4]} .

Substituting the above equations into formula (1) and further linearizing in é and
€, we obtain a concise approximation for the P-wave radiation pattern,

F,

m [1 - 26 — 2(e — &) sin® 20 + §sin’ 4] (5)
P

Up(R,0) =

The weak-anisotropy approximation (5) is more accurate at velocity maxima and
minima than in areas of rapid velocity changes. ‘At velocity extrema d—:éﬂ = 0, phase
and group angles are equal to each other, and many terms quadratic in the parameters

¢ and § drop out from the original stationary-phase formula (A-4), thus increasing
the accuracy of the weak-anisotropy approximation.

The polarization of the P-wave excited by a point source in a homogeneous aniso-
tropic medium is usually close to the isotropic direction (Paper I). This means that
the source directivity factor F, has almost the same influence on the P-wave radia-
tion pattern, as it has in isotropic media. However, for more complex sources such
as explosions or dislocations, the source term becomes a function of phase velocity
and, therefore, may have a significant influence on the angular amplitude distribution
(Tsvankin and Chesnokov, 1990b).

The P-wave phase velocity always has an extremum in the symmetry (vertical}
direction. According to formula (5), for § = 0 the anisotropic correction factor
reduces to 1 —26. Thus, the focusing (or defocusing) of the P-wave energy at vertical
incidence depends on just one anisotropic coefficient — §, the parameter responsible
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for near-vertical P-wave propagation. If § < 0, the velocity function has a maximum
at 8 = 0°, and the amplitude at vertical incidence decreases due to the defocusing;
conversely, if § > 0, a velocity minimum leads to lower amplitudes at § = 0°. It should
be emphasized that the velocity maximum or minimum in the symmetry direction is
the only “3-dimensional” extremum in transversely isotropic media: phase velocity
increases (or decreases) away from the symmetry axis in all directions, not just in the
incidence plane. Therefore, the focusing (or defocusing) of energy in the symmetry

direction is more pronounced than for any other velocity extremum with the same
value of dV%/d6*.

Normalized P-Wave Ampilitude
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FiG. 2. Angular dependence of the P-wave amplitude and phase velocity in trans-
versely isotropic olivine. The model parameters are: Vpp=8.328 km/s, Vs0=4.606
km/s, § = —0.059, ¢ = —0.008. The wave is excited by a vertical point force. The
source-receiver distance is constant. The dashed curve is the uncorrected amplitude;
the solid curve is the amplitude after the correction for the source directivity used in
isotropic models. Both curves are normalized by the vertical-incidence amplitude.

Equation (5) shows that the lowest order anisotropic correction to the radiation
pattern in the range of angles used in AVO (0° — 45°) is determined by the difference
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€ — 6. For elliptical anisotropy (¢ = 6), the term 2(e — &) sin® 20 vanishes, and the
anisotropic correction factor does not change much between 0° and 45°, unless § is
relatively large.

If e =6 > 0 (the most common case), transverse isotropy causes the P-wave
amplitude to decrease away from vertical. Figure 2 shows the amplitudes of the
P-wave excited by a point vertical force in a model of transversely isotropic olivine
with € — 6 = 0.051. The amplitudes were picked from seismograms generated by the
numerical technique based on evaluation of Fourier-Bessel integrals (Paper I).

The solid curve in Figure 2 shows the amplitude after the standard correction
for the source directivity used in isotropic media (just 1/ cos+) in this case). If the
medinum were isotropic, this correction would make the amplitude independent of
angle. Due to the influence of anisotropy, the amplitude at a group angle of 45°
remains 13.5% lower than at vertical incidence. For the model in Figure 2, the P-
wave phase velocity has a maximum at § = 0° and a minimum near 6 = 49°. Thus,
due to the focusing of energy at vertical incidence and the defocusing near 45 — 50°,
the P-wave amplitude decreases away from vertical. Although a distortion of 13.5%
over a 45° interval does not seem significant, it occurs in a medium with less than 2%
maximum variation in the P-wave phase velocity!

For the model of transversely isotropic olivine, the difference between the weak

anisotropy approximation (5) and the result obtained by the numerical technique
developed in Paper I is essentially within the error of the numerical method (Figure 3).

Analytic vs Exact

-
o
1

o
({e)
{

Normalized Amplitude
o
(o)

o
~

15 30 45 60 75
Group Angle (Degrees)

o

F1G. 3. Comparison between analytic approximation (5) (dotted curve) and the exact

P-wave amplitude (solid curve, same as in Figure 2) for the model from Figure 2.
Both curves are corrected for the isotropic directivity factor and normalized by the
vertical-incidence amplitude.

The above model represents a weakly anisotropic medium with small negative
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— —0.059 and € ~ 0. While both positive and negative values of § are plausible,
¢ is almost always positive (Thomsen, 1986). Formula (5) shows that if § <0, the
decrease in the P-wave amplitude becomes more pronounced with increasing e and
decreasing 6. The example in Figure 2, corresponding to € = 0, has been chosen
to illustrate the minimum distortions of the P-wave radiation pattern for a typical
negative 6.

The dependence of the amplitude distortions on the anisotropic parameters for
§ < 0 is related to the position of the velocity minimum. The locations of the minima
and for maxima of the velocity function are determined by the zeroes of %,E, given
by formula (3). Obviously, the velocity function always has minimum or maximum
at vertical incidence and at § = 90°. An wintermediate” extremum between 0° and
00° occurs if at some 8;

X )
Slll2 0,‘ = 5(_6?_67 . (6)

From (6) it follows that this extremum exists only if

§>0
{6>2€ (7)

or

§<0
{ 6 < 2 ()
Furthermore, from (6) it is easy to deduce that the extremum is located at angles
between 0° and 45° only if § and e have opposite signs.

With increasing € and decreasing 6 (¢ > 0, § < 0), the P-wave phase-velocity
minimum moves closer to vertical (formula [6]), and the defocusing of energy deter-
mined by the second derivative of the velocity function (formula [4]) becomes more
pronounced and spreads over a wider range of angles. It is important to mention that
the maximum of energy defocusing in this case is shifted from the velocity minimum
towards larger angles because %‘f‘ continues to increase even beyond the velocity mini-
mum. As a result, even for weakly anisotropic models with § < 0 (|6] < 0.1, |¢ £0.1),
the P-wave amplitude may drop by 30% and more from 0° to 45° (Figure 4; plots on
the left).

Thus, for negative & the corrected P-wave amplitude typically decreases with angle
because ¢ is predominantly positive, and € — 6 > 0. In addition, the term ¢ sin?6 in
(5) is also negative.

If & is positive, the anisotropy causes either an increase or a decrease in P-wave
amplitude with angle depending on the difference ¢ — 6. For elliptical anisotropy
(e = §), the P-wave amplitude is governed by the term §sin® 0 in (5) and, therefore,
slowly increases away from vertical.
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FIG. 4. Angular dependence of the P-wave amplitude and phase velocity for two
models with the same € — § = 0.15 and Vpg=8 km/s. The plots on the left are for
e=0.1, § = —0.05; the plots on the right are for €=0.2, §=0.05. The computations were
made in the weak-anisotropy approximation. The amplitude curves are corrected for
the isotropic directivity factor and normalized by the vertical-incidence amplitude.

According to the existing data, typically ¢ > § (Thomsen, 1986; Tsvankin and
Thomsen, 1992). For instance, € > & for transverse isotropy caused by thin bedding
of isotropic layers (Berryman, 1979). If € > §, the anisotropy usually leads to a
decrease in the P-wave amplitude with angle due to the term —2(e— §) sin? 26, unless
6 >> e~ 6. Although there are no velocity minima between 0° and 90° for € > § > 0,
the second derivative of the phase-velocity function usually increases with angle 6.
Since Vp and (sin/sin#) in formula (1) also grow with angle, the P-wave amplitude
decreases away from vertical (Figure 4; plots on the right).

From the results for § < 0 (e.g. Figure 2}, one might get the impression that
the P-wave amplitude anomalies represent an amplified version of the phase-velocity
function. However, this is not necessarily the case because the P-wave amplitude
behavior is mostly determined by the difference € — &, rather than by the individual
values of the anisotropic coefficients. Two distinctly different phase-velocity functions
in Figure 4 correspond to models with the same ¢ — & and, therefore, yield similar
amplitude curves.

How do the distortions of the radiation pattern compare with the influence of
anisotropy on the reflection coefficient? Thomsen (1993) gives the following approx-
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imation for the P-wave reflection coefficient in the limit of weak transverse isotropy,
and small velocity and density contrasts at the reflector:

R(e) = Riaot(a) + Ram’s(e) ) (9)
where Risq(0) is the reflection coefficient in the absence of anisotropy (¢ =0, § = 0)
and

Ranis(6) = —;-(61 —6) sin?@ + -;-(6 — & +€—¢€1) sin?ftan®9. (10)

Incident P-Wave Amplitude
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FiG. 5. Comparison of the influence of anisotropy on the P-wave radiation pattern
and on the refection coefficient. The transversely 1sotropic model from Figure 2 over-
lies an isotropic medium with the normal-incidence reflection coefficient B(0) = 0.1.
(Top) The exact amplitude of the incident wave corrected for the isotropic direc-
tivity factor. (Bottom) The angular variation in the reflection coefficient caused by
anisotropy (calculated from Thomsen's equation as Ranis(6)/ R(0)).

Subscript 1 refers to the medium below the reflector. Suppose beneath the trans-
versely isotropic medium from Figure 2 is an isotropic medium, and the normal-
incidence reflection coefficient has a typical value of 0.1. From equations (9) and
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(10), we find that the anisotropy-induced variations in the reflection coefficient are
limited to 5% as compared with 13.5% distortions of the radiation pattern (Figure 5).
This means that in this case the redistribution of energy above the reflector causes
more pronounced angular amplitude variations than does the influence of anisotropy
on the reflection coefficient.

Obviously, this comparison cannot be regarded as general. The angular variations
in the reflection coefficient depend on the difference in the anisotropic parameters
above and below the reflector, while the radiation pattern is entirely determined by
the properties of the incidence medium. Also, the influence of anisotropy on the
reflection coefficient becomes more pronounced for very weak reflectors. However, it
is clear that the two phenomena are often of the same order of magnitude.

In isotropic AVO analysis, the presence of gas is often identified by an increase
in the P-wave reflection coefficient with angle. If the medium above the reflector is
transversely isotropic with € — § > 0, the amplitude may substantially decrease away
from vertical due to propagation phenomena above the reflector and, therefore, cancel
out or even reverse the increase in the reflection coefficient.

S-WAVE RADIATION PATTERNS AND AVO

The phase velocity of the SV-wave in transversely isotropic media is mostly de-
2

termined by a single anisotropic parameter ¢ = -“;?:(e — &) (Tsvankin and Thomsen,

1992; Thomsen 1986). In the weak-anisotropy approximation, the SV-wave phase
velocity is given by

Vsv (8) = Vo (1 + o sin® 0 cos?9) . (11)

Note that formula (11) car be obtained from the P-wave phase velocity (equa-
tion {2]) by replacing § with ¢ and setting ¢ = 0.- Since the radiation pattern in
the weak-anisotropy approximation (1) is a function of phase velocity (except for the
source term F,), the SV-wave radiation pattern can be easily derived from P-wave
formula (5) by making the same substitutions (§ = o, € = 0):

=B
drpVER

In addition to maxima or minima at § = 0° and # = 90°, the SV-wave phase
velocity function has an extremum near 45° (unless € = §, and Vsy is constant).
In the most common case of positive o (¢ > §), the SV-wave phase velocity has a
minimum at vertical incidence followed by a maximum near 45° (exactly as for the
P-wave when ¢ = 0, § > 0). As shown by formula (12) and the analysis in the
previous section, this leads to an increase in the incident wave amplitude with angle.
An important difference, however, is that ¢ is usually much bigger than § due to the
contribution of the squared velocity ratio. It is also noteworthy that the term F,

Usv(R,8) 1 — 20 + 20sin? 29 + osin? 6] . (12)
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is usually much more distorted by transverse isotropy for the SV-wave than for the
P-wave.

Figure 6 shows the angular variation in the SV-wave amplitude for the model from
Figure 2, which has ¢ > 0. As in Figure 2, the amplitudes were calculated using the
technique described in Paper 1. It is interesting that due to the influence of anisotropy
even the raw amplitudes of the SV-wave grow with incidence angle, although the angle
between the force and the polarization vector increases as the receiver moves away
from vertical. After the isotropic correction for the source directivity, the amplitude
at 45° is more than 60% higher than at vertical incidence.

Normalized SV-Wave Amplitude
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FIG. 6. Angular dependence of the SV-wave amplitude and phase velocity in trans-
versely isotropic olivine (model from Figure 2, 0 = 0.168). The wave 1s excited by a
horizontal point force. The source-receiver distance is constant. The dashed curve 1s
the uncorrected amplitude; the solid curve is the amplitude after the correction for
the source directivity used in isotropic models. Both curves are normalized by the
vertical-incidence amplitude.

Tn spite of a relatively high value of o (o = 0.168), the weak anisotropy approxima-
tion (12) (not shown on the plot) accurately predicts the magnitude of the amplitude
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increase between 0° and 45°.

The SV-wave velocity anisotropy (i.e., the maximum variation in velocity) for the
model from Figure 6 is only about 5%. Thus, the combination of the velocity extrema
of opposite sign at 0° and near 45° causes strong distortions of the SV-wave radiation
pattern, even for only moderate velocity variations. The SV-wave velocity anisotropy
of about 10% leads to drastic distortions of the radiation pattern (see Paper I).

The SH-wave slowness surface in a homogeneous transversely isotropic medium is
elliptical, and the phase velocity is given (exactly) by

VS’H (9) = Vgo \/ 1+ 2’}’ sin2 8.

Thus, the results we obtained for the P-wave for the case of elliptical anisotropy
(€ = &) apply to the SH-wave, if ¢ = § is replaced by 4. If 7 is positive (which is
usually the case; see Thomsen, 1986), the defocusing of energy at vertical incidence
leads to an increase in the SH-wave amplitude with angle. However, for weak and
moderate anisotropy this increase is not substantial.

DISCUSSION AND CONCLUSIONS

Since the conventional methods used to compensate for propagation phenomena
in AVO analysis are based on the assumption of isotropy, the influence of anisotropy
on the wave propagation to and from the reflector may have a direct infiluence on the
character of AVO anomalies.

Here, the relation between P- and S-waves’ radiation patterns and AVO response
has been analyzed for transversely isotropic models. A concise analytic solution,
obtained in the weak-anisotropy approximation, relates the angular dependence of
body-wave amplitudes to the anisotropic parameters.- Combined-with the Thomsen
(1993) appproximation for the reflection coefficients in transversely isotropic media,
this solution provides a framework for a comprehensive qualitative analysis of the
influence of transverse isotropy on AVO.

The shape of the P-wave radiation pattern in the range of angles most important to
AVO analysis (0 — 45°) is mostly dependent on the difference between the parameters
€ and 6. For models with e — § > 0, transverse isotropy causes the P-wave amplitude
to drop by 30% and more over the first 45° from the vertical, even if the anisotropy
is relatively weak. These results prove that application of the elliptical-anisotropy
approximation (e=6) to P-wave’s amplitudes may lead to serious errors even if the
medium is relatively close to elliptical.

The redistribution of energy along the wavefront is even more significant for the
SV-wave than for the P-wave. For the typical case, ¢ > ¢ (¢ > 0), and just 5% SV-
velocity anisotropy, the SV-wave amplitude increases by over 60% between 0° and
45°.
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The results obtained here can be easily applied to transversely isotropic media with
a tilted symmetry axis. The distortions of radiation patterns in more complicated
anisotropic models (e.g., orthorhombic) may be substantially reinforced by azimuthal
velocity variations (Paper I) and shear-wave singularities.

The distortions of radiation patterns may be of greater importance to AVO anal-
ysis than the influence of anisotropy on the reflection coefficient, especially for strong
reflectors or small differences in the anisotropic coefficients across the reflector.

Therefore, accurate interpretation of AVO anomalies in anisotropic media is im-
possible without a proper correction for the influence of anisotropy on the wave prop-
agation above the reflector. It is also clear that this correction should be included in
any algorithm designed to use reflection coefficients to invert for anisotropy.

An approximate correction for simple models like the one considered in this work
can be made by using asymptotic expressions for radiation patterns such as those
discussed in this paper or presented by Ben-Menahem et al. (1991) or Gajewski
(1993). However, the redistribution of energy along the wavefront may occur not
only in the source layer but also in any anisotropic layer between the reflector and
the surface. The correction for more complicated, realistic models requires application
of numerical methods capable of allowing for anisotropy in wave propagation through
layered media.

Still, the greatest challenge in correcting AVO signatures for anisotropy is to de-
termine anisotropic parameters with sufficient accuracy. The lowest-order correction
to the reflection coefficient depends just on the value of § above and below the reflec-
tor. For VTI media, § can be determined in a straightforward way from the P-wave
moveout velocity and the true vertical velocity. However, the lowest-order term in
the angular dependence of the P-wave radiation pattern contains the difference € — 9.
Therefore, correction for propagation phenomena requires knowledge of the parame-
ter €, which is much more difficult to obtain. Some ways to recover ¢ are discussed
by Tsvankin (1993).
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APPENDIX A: WEAK-ANISOTROPY APPROXIMATION FOR
RADIATION PATTERNS IN TRANSVERSELY ISOTROPIC MEDIA

In Paper I, point-source radiation in homogeneous arbitrary-anisotropic media
was decomposed into a Weyl-type integral over plane waves. The displacement from
a point force in the frequency domain was shown to be

369



Radiation patterns and AVO in anisotropic media

. 3
- W +oo  pto0 o, .
0= 3 [ [ Buertimmsmrrim) dmdma, (A1)

v=1""

with the plane-wave displacement (:.sz given by

Un = Res [-D—(i—n;G“'ﬁ] - (A-2)

The source is located at origin of a Cartesian coordinate system. The summation
over v corresponds to three possible wave types (P- and two S-waves); 1M is the
slowness vector, G = Cijr™M;mMi — pbix is the Creen-Christoffel matrix, G*¢ is the
adjoint matrix of G, ma. (the vertical slownesses of the plane waves) are roots of
D(m3) = det G, F is the point-force vector, and i = v/—=1. To obtain the solution in
the time domain, (A-1) should be convolved with the source pulse.

It is convenient to represent (A-1} in the polar coordinates (mq = mycos ¢,mg =
mg sin 0):

- . 3 oo 2@ .
0= zud)z 2 /0 /0 (g e mor costo=o) ) o dmod, (A-3)
i

2mw) 0T
where z; = rcosa, T2 = rsina, 73 = 2.

In Paper I, the far-field radiation pattern was derived from (A-1) by means of
the stationary-phase approximation. For vertical transverse isotropy, the stationary-
phase solution for the v-th wave (for brevity, henceforth I omit the superscript v) is
represented by

L |, sin0 (0 + 40/Y) gin )

101 = i Jinod (a4)
2nv Vet G
2 . 1 d2(1/V)
- = (rsm9+zcosﬂ)[-‘7— 1
2 {rcosf — zsiné 2
Ty (rsin9+zc030) g (A-5)

where @ is the phase function in the integral for source radiation (A-3), 0 is the phase
angle measured from the vertical (z) axis, V' is the phase velocity. Expression (A-
4) should be evaluated at the phase angle 8, corresponding to a given ray (group
velocity) angle ¥ determined by the receiver position (tant =r/z).

Here, the general solution for transverse isotropy (A-4) is transformed into a much
simpler weak-anisotropy approximation. The derivation is given for P-waves only; the
radiation patterns of S-waves are obtained in a similar way.
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In the following, it is assumed that the source and receiver are located in the
[z1, 73] plane; in this case, at the stationary-phase point ¢ = o = 0. As a preliminary
step, {Uy| (formula [A-2]) should be represented as a function of the P-wave slowness
vector. The non-zero components of the Green-Christoffel matrix in the plane [z1, z3]
are

Gy = cum2 + cum? — p, (A-6)
Gz = cegmy + cagm — p, (A-T)
Gas = cyami + C33m§ -p, (A-8)
Gia = Ga1 = mom3(c13 + caa) - (A-9)

The determinant of G is
D =det G = Go (G11G33 — G§3) .

The vertical slownesses of the P- and SV-waves are the roots of the polynomial
G11G33 — Gfs, while the solutions of Gas = 0 give the vertical slownesses for the SH-
wave. Since the P-wave displacement vector lies in the [z;,z;] plane, formula (A-2)
for the P-wave becomes

Uni1 = R(F1G33 — F3Ghy), (A-10)
with
R = M3 M3p = 1 (A-12)

det G |myp  2c3zcasmap(mip — migy)
m3p and magy are the vertical slownesses for the P- and SV-waves. magy is given by

mE — p)(cum? —
2 {(eumj P)(4; 6—p) (A-13)
C33C44M3p

Magy =

Taking into account that for map G11Gs3 — G5 = 0, we find from (A-10) and
(A-11):

|Upt| = RF, (G11 + Gaa) (A-14)
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where F, is the projection of the point force on the plane-wave displacement vector
Uyi. Substututing R from (A-12) and (A-13), Gy from (A-6) and Gg; from (A-8) into
(A-14) yields

Fymap m3(ci1 + cas) +miplcas + csq) — 2P
2 mipcascu — (cumf — p) (caamd — p)

Uil = (A-15)

Equation (A-15) is valid for general transverse isotropy. At this point, we sub-
stitute € = (c11 — caa)/ (2¢33), mo = sinf  and map = 9%’2, and introduce the weak-

v ?
anisotropy approximation for the P-wave phase velocity (Thomsen, 1986)

Vp(8) = Vpo (1 + sin’ fcos® 0 + esin®8). (A-16)

Formula (A-16) along with the expressions for €,myg, and map can be used to
transform (A-15) for weak transverse isotropy. Linearization in 6 and ¢, after tedious
but straightforward algebra, gives

|I7,,¢| = Fy 7 1+ 2 sin? 6(6 cos 20 + 2¢ sin? §)] . (A-17)

2V pcos

The next step is to obtain the weak-anisotropy approximation for %‘f# (A-3). Ex-
pressing r and 2 through the source-receiver distance R (r = Rsiny, z = Rcos?),
we find

rsin® + zcosf = Reos(y —0), (A-18)

and

rcosf — zsin@ tan 1 — tan @
rsinf + zcosé ~ 1+ tanytand

(A-19)
The weak-anisotropy approximation for the group angle v is (Thomsen, 1986)

tan ¥ = tan @[l + 26 + 4(e — 6)si 29]. (A-20)
Using equations (A-18), (A-19), and (A-20), and dropping the terms quadratic in

¢ and § from equation (A-5), we get

oy (1, 18 )

a2~ Vv vV}’

Substituting the phase-velocity function (A-16) into the numerator of equation (A-
4) yields

372



Radiation patterns and AVO in anisotropic media

0030 d(l/V) . _ COSG i 9 s 2
( vt 7] smﬂ) = [1 — 2s8in® 8(8 cos 26 + 2¢sin? 9)] . (A-22)

Finally, formulas (A-17), (A-21), and (A-22) are substituted into the original
stationary-phase expression (A-4):

F, 1

= —2  __°
4mpV2R [
R %)

Equation (A-23) can be fully linearized in the anisotropies € and §. However,
expression (A-23) is a useful intermediate result because analogous derivations lead

to the same formula for S-waves. Fully linearized expressions for each wave (P, SV,
SH) are discussed in the main text.

: (A-23)
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~ABSTRACT

Stable, explicit depth-extrapolation filters can be used to propagate plane
waves corresponding to the qP and qSV (quasi-P and quasi-SV propagation)
modes for transversely isotropic media in which the axis of symmetry is vertical
(VTI). Here, I discuss and compare results of two different methods for obtaining
the filters. The first, a modified Taylor series method, is used to calculate N-
coefficients of a finite-length filter such that the Taylor expansion around vertical
propagation matches the spatial Fourier transform of the downward continuation
operator for VTI media. Second, a least-squares method is used to calculate
the filter coefficients such that the amplitude and phase departures from the ideal
response of the downward continuation operator for VTI media are minimized over
a range of frequencies and propagation angles. In both methods, the amplitude
response of the filter is forced to be less than unity in the evanescent region and
close to unity in the propagation region in order to achieve stability.

In general, as exemplified in the cases studied here, the constrained least-
squares method produced filters with accurate wavefield extrapolation for a wider
range of propagation angles than that obtained for the modified Taylor series
method. In both methods, the maximum angle that can be accurately propagated
depends on the ratio of frequency to vertical phase velocity (f/V,), and on the
length of the filter. However, for a fixed length and for a given ratio f/V,, the
maximum angle propagated with accuracy depends on the elastic constants of the
medium. The accuracy of the filters degrades as the degree of anisotropy becomes
more extreme. For anisotropic media that are almost elliptical, the filters are quite
accurate.

INTRODUCTION

Explicit filters (Holberg, 1988; Hale, 1991a) are a useful tool in the extrapola-
tion of seismic wavefields for depth migration in isotropic media. Explicit filtering is
attractive because it can be implemented efficiently on pipelined and parallel com-
puters. In addition, explicit methods can be easily extended for 3-D depth migration
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in isotropic, heterogenous media (Hale, 1991b). For transversely isotropic media, ex-
plicit depth-extrapolation filters can be obtained following the same steps as in the
isotropic case but with special considerations for the anisotropic nature of the phase
velocity.

'The modified Taylor series method used by Hale (1991a) for isotropic media can
be adapted for VTI media, but now considering that the horizontal wavenumber and
the phase velocity are functions of the propagation angle. The basic idea is to find
a filter in frequency-midpoint (w — x) space such that its spatial Fourier transform
matches (in the propagation region) that of the downward continuation operator for
TI media. To ensure attenuation of the evanescent energy, some degrees of freedom
in the filter are used to force amplitude values to be less than unity in the evanescent
region.

Holberg (1988) obtained explicit depth-extrapolation filters for isotropic media by
minimizing the squared error of amplitude and phase of the filter in a given range
of propagation angles with the vertical (0 < 8 < 0,.4z). For VTI media I follow the
same approach, but now take into account the theoretical expression of the downward-
continuation operator for VTI media. To get stability for angles greater than 8,
and in the evanescent region, I introduce a penalty function that grows for amplitude
values of the filter greater than unity. I then use a conjugate gradient algorithm to
minimize the resulting function.

FILTER DESIGN

The theoretical downward-continuation operator for VT media can be obtained
from the equations of motion for elastic plane waves propagating in the vertical (z, 2)
plane (Kitchenside, 1991). The match is done only in the propagation region; the
filter must attenuate the energy in the evanescent region. For a particular frequency
w in the propagation region, the spatial Fourier transform of the filter W (k.,w) must

approximate
wAz )’ 2 :
(2%) k,(a)] } W

where D [k,(0)] is the exact downward-continuation operator for the medium, Az and
Az are the vertical and horizontal sampling intervals, and V,(f) and k.(#) are the
phase velocity and the horizontal wavenumber for a given propagation mode (qP or
qSV), evaluated at the propagation angle 6. k,(8) is related to the phase velocity by

JAZ
D[k, (8)] = exp {EZE

ko(0)  wsin(f)
Az~ V,(8)° @)

W (k.,w) can be written as
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(N=1)/2
W(k,,w) = g (2 - Jgo)hg(w)cos(k,l), (3)

where 6jg is the Kronecker delta function, h;(w) are complex coefficients of the filter,
and N is the number of coefficients. Because W(k,,w) is symmetric in k., only
(N +1)/2 different coefficients h;(w) are needed to determine the filter response.

In the modified Taylor series method (Hale, 1991a), the filter coefficients A;{(w)
are obtained by matching the filter’s Taylor expansion around # = 0 with that of
the downward-continuation operator. In particular, because the filter is symmetric
and we want this filter to be exact for vertical propagation, we would match the first
(N +1)/2 even derivatives at § = 0. However, to obtain attenuation in the evanescent
region, we must try to match fewer than (N + 1)/2 derivatives and let the remaining
degrees of freedom in the filter be used to ensure that the amplitude of the filter is
less than unity in that region (|W(k.,w)| < 1). Following Hale {1991a), the filter
coefficients are represented as a sum of M weighted basis functions:

M-1
h(w) = 3 cm(w)bmi, (4)

m=0

where the basis function b,,; is given by

2rml
). 6

The problem is now to determine M complex weights ¢,,(w). To achieve stability, the
number M of weights must be less than the number (N + 1)/2 of filter coefficients,
so only the first M derivatives of the Fourier transform of the filter are matched
with those of the downward-continuation operator for VTI media. The remaining
(N +1)/2 — M degrees of freedom are used to ensure stability.

The Fourier transform of the extrapolation filter will be now

byat = (2 — Bme) co8(

M-1

W (k) = 3 on(0)Bali()] = DL ©)
where By,[k:(0)] is given by
N=1/72 2aml
Bm [k,,(G)] = (2 - 6,“0) g (2 — 610) COS( N )COS[k,: (9)1] (7)

The basic difference between this Fourier transform of the basis function By, [k, ()]
and that given by Hale (1991) for isotropic media is that in this case (VTI media)
the horizontal wavenumber k, also depends on # through V,(8) (see equation (2)).
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In equation (6), M terms in the Taylor series expansion around 6 = 0 for the filter
W(k,,w) are matched with those terms corresponding to the Taylor series expansion
of the downward continuation operator D{(k;). These Taylor series expansions are
given by

M-1 ‘
Wik (8),w)] = z_:ocm(w) B..(0) + Bf,,é(!))eﬂ 4 Bf,.{(:;))04 N "'B?"(ZS%‘:M]
Dik.(8)] ~ D(0) + D*(0)9* | DY0)@*  D(0)6*

2! a4 T M)y

where D@ (0) and B®)(0) are the 2! derivatives of the downward continuation
operator and basis functions respectively, evaluated at 8 = 0. Matching of these
Taylor expansions gives a linear system of equations for the coefficients cm (w)

Mf em(W)BE(0) = DPN0) 1=0,1,.M, (8)
m=0
(v1)/2 2nmn
BE(0) = (2— 6mo) D cos( N ) cos[nk,,(ﬁ)](ﬂ) (0), (9)
n=0

where cos[nk,(#)]%(0) is the 2{** derivative of cos[nk,(9)] evaluated at 8 = 0. This
system of equations is solved for ¢, {w), and equation (4) is used to calculate the final
filter coefficients hy(w).

For the least-squares method, the match of the Fourier transform of the filter
with the downward-extrapolation operator is done over a range of propagation angles
(0 = 0,..,0p4:). Following Holberg (1988), we do the matching by minimizing the
sum of the square errors in the amplitude and phase response of the filter,

0=0paz
J(w) = ja (8 + a)dk, (10)
stbject to the constraints
|W (k.,w)| < 1.0 for |kz| > w8in(Omaz) (11)
- ' 7 Vo(Omae)
Here, « is the amplitude error of the filter, given by & = 1.0 — [W(k.,w)|, and & is

the phase error of the filter given by § = k,Az — tan‘l%((%ff)l)l.

Constraint (11) was incorporated into the least-squares problem (10) by adding
to the error function J(w) a penalty function that is proportional to the square of
the amplitude error when the amplitude of the filter exceeds unity. I then use for the
minimization the IMSL subroutine NCONG, which solves a non-linear least-squares
problem using a conjugate-gradient algorithm.
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FILTER ACCURACY FOR A SINGLE FREQUENCY

Taylor series method

For the Taylor series method we can see from equation (8) that the degree to
which the filter would approach the downward-continuation operator depends on the
number M of terms used in the Taylor expansion. Long filters will use more terms, so
they better approximate the D{k,) operator than do short filters. However, for VTI
media the downward-continuation operator is also a function of the phase velocity,
whose variations with respect to the propagation angle # changes from one medium
to another. For media with smooth variation of V,(f) with respect to #, the Taylor
expansion of V,(#) would be a good representation of V,(#) itself, and only a few
terms in (8) would be used. For strongly anisotropic media with large variations of
V,(#), more terms would be needed in equation (8).

The downward-continuation operator is a complex exponential (see equation (1))
of unity magnitude in the propagation region (0° < # < 90°). The Taylor series
expansion would be a good representation of D(k,) when its amplitude is equal to
one and its phase is equal to the phase of D(k,). Figure 1 shows the amplitude
for the Taylor series expansion of the downward continuation operator as a function
of the propagation angle, for several VTI media. The vertical phase velocities and
anisotropy parameters for these media are given in Table 1, with the same notation
given by Thomsen (1986). The number of terms in the expansion was 19, Az/Az =1
and, for all the cases shown, the ratio wAz/V,(0) (normalized frequency in radians)
is constant and equal to 1.86. This ratio was kept constant because the downward-
continuation operator is basically a function of wAz/V,(#). If I had fixed w the ratio,
wAz [V,{0) would change with V,(0) for the different media and thus the comparison
would not be fair. From Table 1, we see for example, that a ratio of wAz/V,(0) of
1.86 for the Taylor sandstone with Az = 10 m, corresponds to a frequency of 27 Hz
for the q-SV propagation mode and 50 Hz for the q-P mode.

Figure 1 shows that for the first two media (Berea and Lance sandstones), the
amplitude of the Taylor expansion for the g-P and q-SV modes matches the amplitude
of D(k,) in the range 0 to 60°. Similar fits, not shown here, are obtained for the phase
response. For the other two media (Taylor sandstone and Cotton Valley shale) the
Taylor expansion can approximate the amplitude of D(k,) only in the range 0 to
50°. A filter designed to match these Taylor expressions could propagate waveforms
accurately only until a maximum of 60° (Berea and Lance sandstones) and 50° (Taylor
sandstone and Cotton Valley shale). Even when the length of the filter and the ratio
wAz[V,(0) is the same for all the media in Figure 1, the maximum angle that can
be accurately propagated by the filter is different for each medium. That is not the
case for isotropic media, where, for a given length of the filter, this maximum angle
of propagation is limited only by the ratio wAz/V,(0) (Hale, 1991a). The curves in
Figures 1 through 3 all pertain to a single normalized frequency. Similar curves result
for other normalized frequencies, but the dip limit for acceptable accuracy becomes
more restricted as normalized frequency increases.

381



Depth migration VTI media Uzcategui
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F1G. 1. Amplitude of Taylor expansions for the downward-continuation operators of
several VTI media, and for both gP and qSV propagation modes. The number of
terms in the expansion is N=19, and a normalized frequency of 1.86 radians is used.
The Berea and Lance sandstones can be considered as weakly anisotropic. Taylor

sandstone and Cotton Valley shale are moderately anisotropic.
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Medium o Bo € é
km/s | km/s
Berea sandstone 4.206 | 2.664 | 0.002 { 0.020
Lance sandstone 5.029 | 2.987 | -0.005 { -0.015
Taylor sandstone 3.368 | 1.829 | 0.110 | -0.035
Cotton Valley shale | 4.721 | 2.890 | 0.135 | 0.205
Mesaverde clayshale (a) | 3.928 | 2.055 | 0.334 | 0.730
Mesaverde clayshale (b) | 3.794 | 2.074 | 0.189 | 0.204
Gypsum-weathered 1.911 1 0.795 | 1.161 {-0.140

Table 18. Vertical phase velocities (P-wave o and S-wave fy) and anisotropy
parameters (¢ and 6) for several VTT media, in the notation of Thomsen (1986).

According to Thomsen (1986), a medium can be considered as weakly anisotropic
if the values of the anisotropy parameters € and § are small with respect to unity. On
this basis, the Berea and Lance sandstones can be considered as weakly anisotropic,
and the Taylor sandstone and Cotton Valley shale moderately anisotropic. Figure 2
shows amplitude responses for two media that are highly anisotropic; the Mesaverde
clayshale {(a) and the weathered gypsum both have high values of ¢ and § (see Table
1). For the same length of filter and ratio wAz/V,(0) used in Figure 1, the filters
can propagate accurately to a maximum angle of only 25° for both the qP and qSV
modes in the Mesaverde clayshale (a), and to 35° and 20° for the qP and gSV modes,
respectively, in the weathered gypsum.

Figures 1 and 2 showed just the Taylor series expansions of the downward-
continuation operator for several VTI media and for a given wAz/V,(0). To obtain
the filter coefficients k;(w) in the modified Taylor series method, these Taylor series
expansions are used in the right-hand side of equation (8) and that system of equations
is solved for the coefficients ¢,,(w) to get finally h/(w) using equation (4). Figure 3
shows detailed amplitude spectra of filters in the propagation region (§ < 90°) ob-
tained from the Taylor series expansions shown in Figures 1 and 2 for the Taylor
sandstone and the weathered gypsum. The amplitude scale displays only values close
to unity to show the stability in the propagation region. Note that the maximum
angle accurately propagated in Figures 1 and 2 is larger than the angle shown in Fig-
ure 3. The filters designed by the modified Taylor series method must not only match
the Taylor expansions but also attenuate the energy in the evanescent region. There-
fore, some degrees of freedom have been used to obtain attenuation, so the designed
filter cannot match exactly the Taylor series expansions. Figure 4 shows amplitude
spectra of the filters in Figure 3, now as a function of normalized wavenumber (in
cycles) rather than dip; 0.5 cycles corresponds to Nyquist wavenumber (r/Az). The
amplitude scale has been increased to show attenuation in the evanescent region. Nor-
malized wavenumbers greater than 0.2 and 0.18 correspond to evanescent waves for

383



Depth migration VTI media Uzcategui

Mesaverde clayshale Weathered gypsum
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FiG. 2. Amplitude of Taylor expansions for the downward-continuation operators
of the Mesaverde clayshale (a), and weathered gypsum, and for both qP and qSV
propagation modes. The number of terms in the expansion is N=19, and a normalized
frequency of 1.86 radians is used. The media shown in this figure can be considered
as strongly anisotropic.
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F1G. 3. Detailed amplitude response in the propagation region for qP and SV,
19-coefficient filters obtained from the Taylor expansions of Figures 1 and 2. The
normalized frequency is 1.86 radians.
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Fic. 4. Amplitude response for the same filters in Figure 3 but now evaluated as a
function of wavenumber. Wavenumbers greater than 0.2 correspond to the evanescent
region.

the Taylor sandstone and weathered gypsum respectively. The small amplitudes in
the evanescent region show that both extrapolators are clearly stable in the evanescent
region.

Least-squares method

The filter accuracy in the least-squares method will also depend on the number
of coefficients used, but now, we match the filter response with the exact downward
continuation operator and not with its Taylor series expansion, as we did in the
Taylor series method. This approach will avoid the progressively more poorer fit
of the theoretical operator by the Taylor series expansion for increasing propagation
angles. However, the amplitude spectrum of a filter designed by least-squares methods
has an oscillatory character, as seen in Figure 5, with amplitude values greater than
unity for some wavenumbers. As demonstrated by Holberg (1988), the magnitude of
these oscillations is reduced by restricting the range of propagation angles for which
the fit is done. This introduces a new parameter (absent in the Taylor series method)
in the design of the filter— the maximum design angle (fmas in equation (10}).

Figure 5 shows amplitude spectra as a function of dip (left) and as a function
of wavenumber (right) for filters obtained using the least-squares method, for the
Taylor sandstone and for the same normalized frequency used in Figures 1 and 2.
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F1G. 5. Detailed amplitude response in the propagation region (left), and amplitude
as a function of wavenumber (right) for qP and qSV 19-coefficient filter obtained
using the least-squares method. The normalized frequency is 1.86 radians.

The maximum design angles were 8, = 60° and 35° for the qP and qSV mode,
respectively. Note the ripples in the propagation region seen in the detailed amplitude
spectrum. Although some of these amplitude values are greater than unity, they
do not exceed 1.001, which guarantees the application of this filter for about one
thousand steps of downward extrapolation with a maximum error of approximately
e ~ 2.71. Both extrapolators (qP and gSV) are stable, and attenuate the energy in
the evanescent region.

For a given length of filter, there will be a maximum design angle (f,4;) in the
least-squares method beyond which accuracy and stability are lost. The maximum
allowed design angle increases somewhat as filter length increases. Here, an accurate
and stable filter is one having a maximum absolute amplitude error of no more than
0.001 in the region § < 0,,.;, and amplitude values less than unity for 8., < 8 <
90° and in the evanescent region. An N-coeflicient filter cannot achieve both goals
(accuracy and stability) for 8., close to 90° because there are not enough degrees
of freedom to satisfy both conditions. The maximum design angles in Figure 5 were
obtained after several tests with differents 0,4, beginning with a high initial value
of @pq and reducing this value until an accurate and stable filter is found.
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F1c. 6. Contours of amplitude error (left) and phase error (right) for the gP mode in
the Taylor sandstone. The 39-coefficient filter was com uted by the modified Taylor
series method. For the amplitude error, contour levels are -1/1000 (thin), -1/100
(medium), and -1/10 (thick) for each step of depth extrapolation. The phase errors
are labeled with the number of extrapolation steps required to accumulate one-half
cycle of phase error.

ACCURACY FOR A RANGE OF FREQUENCIES

In a real application, several filters are obtained to propagate a range of frequen-
cies. Figure 6 shows the amplitude and phase errors for the Taylor sandstone using a
30.coefficient filter based on the modified Taylor series method. The errors are shown
as a function of normalized frequency fAz/V,(0) in cycles, and propagation angle in
degrees. The thin, medium, and thick contours correspond, respectively, to amplitude
errors of —1/1000, —1/100, and —1/10. The amplitude error was calculated as the
difference | W | —1.0, so negative values in the error indicate amplitude values in the
filter less than unity. An amplitude error of —1/1000 corresponds to a filter amplitude
of 0.999; after 1000 steps of downward extrapolation with this error, the amplitude of
the initial waveform extrapolated will be (0.999)1%%° ~ 0.4 times the initial amplitude.
Phase errors are labeled with the number of steps of downward extrapolation needed
to accumulate an error of one-half cycle (x radians). Figure 6 shows that the Taylor
sandstone’s filter will attenuate waves propagating at about 45° by a factor of 0.4,
and with one-half cycle of phase error after 1000 steps of downward extrapolation.

Figure 7 shows the corresponding errors for a 39-coefficient filter and the Taylor
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F1G. 7. Amplitude error contours (left) and phase error contours (right) for the gP
mode in the Taylor sandstone (39-coefficient filter; least-squares method).

sandstone, now using the least-squares method. After 1000 steps of downward ex-
trapolation, seismic waves propagating at more than 60° will accumulate error that
is comparable to errors for waves propagating at only 45° in Figure 6. Thus, for
the same number of filter coefficients, almost 15° has been gained through use of the
least-squares approach.

Figures 8 and 9 compare amplitude and phase errors of a 39-coefficient filter for the
qP mode in the weathered gypsum using the Taylor series and least-squares methods.
The design angle used in the least-squares method was 30°. Note the small increase
(=~ 5°) in the range of angles for accurate propagation when the least-squares method
is used. Figures 10 and 11 show the corresponding errors for the qSV propagation
mode in the Taylor sandstone. The design angle used in the least-squares method
was 35°. Comparing with Figures 6 and 7, we see that for a given medium (Taylor
sandstone), the range of angles for accurate propagation is better for the qP than for
the ¢SV mode. Note in Figure 10 the irregular error in amplitude and phase produced
by the Taylor-series filter; however, for the least-squares filter, the error is uniform
for angles less than the design angle (00 = 35°) and very irregular beyond this
region, where there is no control over the phase and amplitude of the filter. Figure 12
shows the amplitude and phase errors for the SV propagation mode in the weathered
gypsum using the Taylor series method. For this medium, errors in both amplitude
and phase are large for very small propagation angles. The result for the least-squares
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Fi1c. 8. Amplitude error contours (left) and phase error contours (right) for the qP
mode in the weathered gypsum (39-coefficient filter; Taylor series method).
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Fic. 9. Amplitude error contours (left) and phase error contours (right) for the qP
mode in the weathered gypsum (39-coefficient filter; least-squares method).
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F1G. 10. Amplitude error contours (left) and phase error contours (right) for the
qSV mode in the Taylor sandstone (39-coefficient filter; Taylor series method).
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F1G. 11. Amplitude error contours (left) and phase error contours (right) for the
aSV mode in Taylor sandstone (39-coefficient filter; least-squares method).
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F1G. 12. Amplitude error contours (left) and phase error contours (right) for the ¢SV
mode in the weathered gypsum (39-coefficient filter; Taylor series method). Only low
propagation angles have small errors in amplitude. The phase error is large for almost
all the propagation angles.

method (not shown here) is no better. Moreover, use of filters with more than 39
coefficients in both methods is of little help.

MIGRATION IMPULSE RESPONSES

The performance of the operators can also be illustrated by study of migration
impulse responses. The same migration program used by Hale (1991) for isotropic
media was used here to calculate the migration impulse responses for the qP and
gSV propagation modes. This same program can be used because in migration by
explicit filtering, the downward continuation process is performed by space-variant
convolution of the data with the explicit filters (Holberg, 1988). The convolution
process is the same for both isotropic and VTI media; we need only change the filter

coeflicients.

Figure 13 shows qP impulse responses for the Taylor sandstone using the modi-
fied Taylor series method (left) and the least-squares method (right). In both tests,
spatial sampling intervals Az = Az = 10 m, and the time sampling interval At =
10 ms; therefore, the Nyquist frequency is 50 Hz. The normalized frequency varies
from 0 to 0.3 cycles. A trajectory of the theoretical impulse response (shown in the
figures as a thin solid line) was calculated using the theoretical group velocity and ray
angle (Thomsen, 1986) for this medium. Note that the large dips are more severely
attenuated by the modified Taylor series filter than by the least-squares filter. Al-
though steep events (corresponding to high propagation angles) are attenuated for

391



Depth migration VTI media Uzcategui

llldpc;lr:'t (km) Midpoint (km)
i 1.0

Depth (km)

L g 0 0.5 15 20

F1G. 13. Impulse responses of migration via N=39-coefficient explicit extrapolators
for the qP propagation mode in the Taylor sandstone. Modified Taylor series (left)
and least-squares (right) methods.

both filters, the fit with the theoretical impulse response is good for a wide range of
angles.

Figure 14 shows qP impulse responses for the weathered gypsum, using the mod-
ified Taylor series method (left) and the least-squares method (right). The highest
dip present in this response is lower than that obtained for the qP Taylor sandstone
filter (compare with Figure 13). This basically reflects the behavior of the amplitude
error shown in the Figures 8 and 9, where wavefield components with dips greater
than 30° are propagated with large negative errors corresponding to amplitude values
less than unity. Therefore, these components will be attenuated.

Figures 15 and 16 show qSV impulses for the Taylor sandstone and Mesaverde
clayshale (b) (almost elliptical material; Thomsen, 1986), respectively. Both responses
were calculated using 39-coefficient filters derived by the least-squares method. Note
the attenuation at large dips for the Taylor sandstone. However, for the Mesaverde
clayshale (b), steep events can be propagated accurately. Even when the number of
coefficients is the same in both media, more accurate propagation is obtained for the
almost elliptical material.
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FIG. 14. Impulse responses of migration via N=39-coefficient explicit extrapolators
for the gP propagation mode in the weathered gypsum. Modified Taylor series (left)

and least-squares (right) methods.
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FiG. 15. Migration impulse responses via N=39-coefficient, explicit extrapolators for
qSV waves in the Taylor sandstone, Least-squares method.
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F1G. 16. Migration impulse responses via N=39-coeflicient, explicit extrapolators for
qSV waves in the Mesaverde clayshale(b). Least-squares method.

CONCLUSION

Explicit depth-extrapolation filters for VTI media can be derived either by a
generalization of the modified Taylor series method or by a least-squares method
initially developed for isotropic media.

Clearly, the results shown here are limited to the few models used, and also pertain
to just VIT media. A similar approach for transversely isotropic media with a tilted
axis of symmetry can be developed if the theoretical downward-continuation operator
for such media is used in the equations developed here. In a qualitative way, the results
in this paper show that the accuracy in the extrapolators (for a constant filter-length
and normalized frequency) is a function of the elastic properties in the medium. In
particular, more-accurate filters are obtained for weakly than for strongly anisotropic
media. This result can be related to the behavior of the downward-continuation
operator in the medium. Weakly anisotropic media need fewer filter coeflicients than
do strongly anisotropic media to produce a good representation of the downward-
continuation operator. However, further analysis is neccesary to study the role of the
anisotropy parameters (¢ and &) in the accuracy of the extrapolators. In particular,
the fact that highly-accurate filters were obtained for almost elliptical anisotropic
media (¢ — § =~ 0) could be an indication that the accuracy of the filters would be a
function of this difference.

The examples presented also show that the constrained least-squares method pro-
duced filters with accurate extrapolation for a wider range of propagation angles than
that obtained for the modified Taylor series method. Again, the accuracy in both
methods degrades as the degree of anisotropy becomes more extreme. For weakly
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and moderately anisotropic media, the accuracy of the filters in doing downward ex-
trapolation is comparable to that obtained by Hale (1991a) and by Holberg (1988) for
isotropic media. Some alternative approach to improve the accuracy of the operators
for strongly anisotropic media might be suggested once a quantitative analysis of the
influence of € and & on the accuracy of the filters is performed.
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ABSTRACT

Conventional migration of wavefields is based on depth extrapolation of the
upgoing field in reverse time. This extrapolation provides us with a means to de-
termine the positions of reflectors and diffraction points and, therefore, to produce
an image of a geological cross section. However, conventional depth extrapolation
allows us to restore only some transformation of the field in the subsurface rather
than the true field. For example, this approach rules out the proper imaging of
multiple reflections. Meanwhile, there is reason to expect that a different recon-
struction of the seismic wavefield — reconstruction by analytic continuation —
can yield a more comprehensive image of a medium. An exact depth extrapo-
lation based on analytic continuation could contribute to the restoration of the
true process of seismic wave propagation in a medium. In this case, multiples do
not “pass” the layers where they have been formed and, hence, they cannot gen-
erate any fictitious reflecting boundaries. Here, we describe a method for doing
migration of seismic wavefields in the frequency domain by analytic continunation
through a medium with vertically variable velocity. Some preliminary experi-
ments have been carried out and they show that the method works well in the
case that we have multiples from a horizontal layer.

INTRODUCTION

The conventional procedure for the migration of wavefields is based on the depth
extrapolation of the upgoing field in reverse time. However, this extrapolation re-
stores only a transformation of the field in the subsurface rather than the true field.
Also, one-way field extrapolation cannot reconstruct correct amplitudes of the seismic
waves (Larner et al., 1981; Kosloff and Baysal 1982). In some situations it is worth-
while to restore the true distribution of the total seismic wavefield in the subsurface.
This restoration can be accomplished by the method of analytic continuation. The
method of analytic continuation is based on restoration of the field distribution in the
lower halfspace with given background velocity from the known values of the field on
the earth’s surface. It is related to the analytical theory of the functions of real or
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complex variables, but in this paper we discuss only the straightforward implementa-
tion needed for the solution of the migration problem. Some aspects of this problem
have been discussed in earlier papers published by Kosloff and Baysal (1982) and by
Zhdanov and Matusevich (1984). A more detailed introduction to this subject can be
found in Zhdanov (1988) and Zhdanov, et al. (1988). Here, we focus on the method
of migration by analytic continuation in a layered medium with vertically variable
velocity.

FORMULATION OF THE PROBLEM

The method of analytic continuation can be formulated as a boundary value prob-
lem for the wavefield. Suppose the seismic field u, and its normal derivative are given
on the surface of the layered half-space with the given vertical profile of the veloc-
ity variations (practical ways to determine the boundary values u! will be discussed
later):

u(z,y,0,0) = ¥’(z,3,0), (1)

9 1
gu(:c,y,z,.u) =u (E:y$w)' (2)

Z=l

Reconstruction of the field u(z,y, 2,w) is required inside all layers in the earth. The
solution of this problem can be divided into two stages:

1. continnation of the seismic field into a given layer with a depth-dependent ve-
locity based on the equation

2

Viu(z,y,z.w) + -ﬁ;f(?)u(a:, y,2,w) =0, ha1 <2< R, (3)

where h, means the depth to the bottom of layer a.

2. recalculation of the field and its normal derivative from one side of the interface
to the other by applying the proper boundary conditions on interfaces.

-u(.z,y,ha - 05"‘-’) = u(zsyzha + Oa"‘:), (4)

and

0 a
Va(z)gu(;r,y,z,w) = a+1(z)'a_zu($a ¥, z:“)

ha+0

Therefore, the solution of the stated problem comes down to continuation of the field
within the limits of one given layer.
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WAVEFIELD IN THE FREQUENCY-WAVENUMBER DOMAIN

We can present the field u(z, y, 2,w) in the form of the Fourier transform by space
variables z, y

+o0 phoo .
u(kz, by, 2,w) = f f u(z, y, z,w)e " F==trd) dpdy, (6)

In the frequency-wavenumber domain, equation (3) can be written as
Lu(k,, ky, z,w) =0, (7)
where L is the one-dimensional Helmholtz operator

d? w?
L=szt oy

syt (52

Note that C' is a function of the vertical coordinate z and the space k., k, and time
w frequencies:

C = C(k;, ky, z,w),

but, for the purposes of solving the differential equation in 2, we write it as C(2).
Correspondingly, boundary conditions (1) and (2) will take the form

u(kz, ky, 0,w) = u"(k,,ky,w), w'(kz, ky, 0,w) = ul ks, Ky, w), (8)

where prime denotes the vertical derivative.

Our goal is to determine u everywhere inside the first layer, where the function
C(z) is a continuous function of depth, from the given values of 4 and u! on the
earth’s surface. To solve this problem we apply the one-dimensional Green’s theorem
and corresponding Green'’s function.

SOLUTION OF THE BOUNDARY VALUE PROBLEM

Applying Green’s theorem in one dimension to the first layer (Bleistein, 1984)
gives

N CR 910 )

by
| w(z)Eg(2,0) — g2 O Lu(2)]) d2 = u(z)d/(2,0)
Here, u(z) = u(k., ky, 2,w) and g(z,({) = g(k., ky, 2,¢,w) is the Green’s function that
satisfies the equation

Lg(k:r.: ky:z’ ¢ w) = _6(Z - C) (10)
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Substituting equations (7) and (10) into (9) gives
u{¢) = g(z,()u’(z)'?-u(z)g’(z,() |:1. (11)

We now have two key issues. The first is how to determine the Green’s function.
This problem can be solved using the high-frequency asymptotic (WKBJ) approxi-
mation for the Green’s function (Bleistein, 1984). The corresponding expressions for
the Green'’s function are given in Appendix A.

The second key issue is how to determine the values of the field u on the bottom of
the layer z = h, in equation (11). Evidently we can solve the boundary value problem
(the recalculation of the field u inside the earth), if we know the field’s values on the
bottom of layer z = hy. But we only have the recorded data u on the earth’s surface
z = 0. To overcome this difficulty we apply a special method of transformation of
the right-hand side in (11), given at the bottom of the layer, to its surface. As shown
in Appendix A, we can express the field values at z = h; in terms of the values at
the earth’s surface by decomposing the Green’s function into the multiplication of
two functions that depend on z and ( separately, and by using Green’s theorem (9)
once again. A detailed mathematical explanation of this transformation is given in
Appendix A.

Following this procedure, we have from equation (11) the following expressions for
the analytic continuation of the wavefield into the first layer:

c()C
u(¢) = u° g%cos we()] + ul—%(—m- sin [weé(()], (12)
where ¢ ae
#(Q) = | e

In the same way, we can obtain an expression for the vertical derivative of the field
inside the first layer:

£() = ”O_ci-owc—wism [we(O)] + % o(O)]. (13)

The last result can be applied to the wavefield continuation from the top of the o
layer to depth ¢ within this layer:

C(O)Co(ho-1
u(¢) = u(ha-1) E,;c—'(f;l(f—_)l)cos[wqba(g)].{.u'(ha_l)\/ (C)w ( )sin[wg‘)a(C)],
(19)
¥(¢) = it sinfw ! %—_1—) 0s|w
(0 = lhom) mmmstinloto )+ i S o0
(15)
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where c p
%0=[ C—‘(fa (16)

Thus, using formulae (12) through (16) and boundary conditions (8), (4) and (5)
we can analytically continue the wavefield u from the surface of the earth through a
variable background medium to any internal point of the earth’s interior (as long as
C?%(z) > 0, see Appendix A).

For analytic continuation of zero-offset seismic data, we apply to equations (12)
and (14) the inverse Fourier transform from the frequency-wavenumber domain,
(kz, ky,w) to the time-space domain (z,y,t):

1 400 ptoo  ptoo )
[ p— i('===+kyy—wf)
u(z,y,2t) = o j_ . j: . f_ _ ulker by, z,0)e dk. dkydw.  (17)

BOUNDARY CONDITIONS

In practice, only one of the functions u#° or u! can be recorded on the earth’s
surface. Computation of the remaining field requires an additional geophysical as-
sumption.

Here, we consider two possible models for the boundary conditions. One is based
on the so-called free surface conditions wherein the vertical derivative of the wavefield
on the surface of the solid earth is equal to zero:

ul(x,yaw) =0. (18)
Relations (12) and (14) are then

u(¢) = ,‘%cos w(Q)], (19)

ur — 0__
() TG0 nfwe(C)]- (20)

Another model has been discussed by Kosloff and Baysal (1983). They suggest
that the velocity V(z) = V(0) = constant in some vicinity of the surface and that the
recorded wavefield consists of upgoing waves only. In this case, the general solution
of equation (7) in the vicinity of z = 0 takes the form

and

u(kz, ky, ¢, w) = ut(k;, by, w) exp [wC(CO) + u™ (s, ky, w) exp [ WEE.T)] (21)

Because we consider only the upgoing wavefield at the surface, we delete the first
term in this equation, giving

u(ky, ky, (,w) = u™ (ks, ky,w) exp [—iwa—?-a)-] : (22)
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Now we can calculate the vertical derivative of the wavefield at the earth’s surface:

ul (ky, by, ) = _E“("F)u%k,,k,,w). (23)

Substituting (23) into (12) and (13) , we have for the first layer,

u(¢) = o0 %%exp [—iw(0)], (24)

—iw

w((}=u —mexp (—iwe(C)] -

PHASE-SHIFT MIGRATION

(25)

Let us now compare the obtained results with corresponding expressions in conven-
tional migration approaches. In traditional migration algorithms, it is assumed that
the value h, goes to infinity. The reason for this assumption is that the boundaries
of the layers with the strong velocity contrasts can generate the multiple reflections
that involve both upgoing and downgoing waves; but the conventional migration al-
gorithms are based on the exploding-reflector concept, which cannot deal with the
multiple reflections and which considers only upgoing fields (Claerbout, 1985). In
this assumption, taking into consideration the radiation condition from (11}, we have

u(¢) = u(0)F(0,¢) — §(0,9)w'(0). (26)

Note, here we use the complex conjugated Green’s function §(w) = g(—w) because in
this section we would like to consider only upgoing waves.

In the case under consideration, we can modify the Green's function in such a
way that on the earth’s surface it is equal to zero. To see this, let us introduce the
auxiliary function g,

o(e,0) = ~LEOLD i [ i) + 6121 @)

Everywhere in the lower half-space the function g(2) is the high-frequency asymptotic
solution of the Helmholtz equation

Lg(z) =0, (28)

satisfying the radiation condition at infinity. Therefore, we can rewrite equation (26)
in the form:

u(€) = u(0) [§(0,¢) + ¢'(0,)] - [5(0, ) + 4(0, )] w'(0)- (29)
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However, according to the definition (27),

Q(O: C) = _g(O,C),Q’(O, C) = gl(OaC) (30)
Thus, we have
Q) = 2u0)70,0) = u(0)| G exp [-iw(0)]. (31)

Formula (31) presents exactly Gazdag’s phase-shift method (Gazdag, 1978) for
depth extrapolation of a seismic wavefield in the wavenumber-frequency (k., &, w)
domain. For migration of zero-offset seismic data, we apply to (31) the inverse Fourier
transform (19) from frequency-wavenumber (k., k,,w) to time-space domain (z, y,t)

1 ptoo ptoo rteo . 3
u(zr,y,2,t) = 33 /_m j_w j_m u(k,,ky,ﬂ,w _g%e—wqb(z)e:(k,=+ksy—wt)dk= dk, dw.
(32)

According to the exploding-reflector concept, the subsurface image I,,,, based on the
migration transformation, is obtained by setting ¢ = 0 in equation (32),

In(z,2) = u(z,2,0) =

+oo ptoo p4oo .
% -/—oo -/:on f_.x, u(kz, Ky, 0,w) %eg[ﬁﬂkﬂ_wﬂznd"’“ dkydw.  (33)
This result is a direct formulation of Gazdag's phase-shift migration method (Gazdag,
1978).

Let us now return from the phase-shift depth extrapolation formula (31) to the
basic formula (26), and compare the latter with the general formula for analytic
continuation (11). The main difference between them is that the formula for analytic
continuation (11) takes into consideration both upgoing and downgoing waves and,
therefore, accounts for the multiple reflections that are produced by strong velocity
contrasts. This is achieved by calculating the wavefield in equation (11) along the two
surfaces: z = 0 and z = h; (but we should remember that as a result of mathematical
transformation, the integration over the plane z = h, is reduced to the integration
over the surface of the earth z = 0). Conventional migration ignores the multiples,
thus, possibly resulting in the reconstruction of false reflectors in the migrated image
(we will discuss this question in detail later).

However, note that (31) and (24) are the same formula! This means that the
initial step of analytic continuation in the model suggested by Kosloff and Baysal
(1983) is the same as phase-shift depth extrapolation. As soon as we cross the first
strong velocity boundary, however, we have to apply the boundary conditions (4) and
(5), and then to extrapolate the field using formulae (14) and (15). From the physical
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point of view, this means that we take into consideration the multiples generated at
the first strong velocity boundary, and at subsequent ones, as well.

Thus, we can combine conventional methods of depth extrapolation (if we wish
to ignore the multiples in some depth interval) with analytic continuation through
the structures with the strong velocity contrasts. In this way, we aid the efficiency
of analytic continuation. For media with continuously changing velocity V(z) (ie.,
hi — o0), analytic continuation [equation (24)] with the boundary condition (23) is
identical to Gazdag's depth extrapolation (31).

MIGRATION OF TIME SECTIONS BY ANALYTIC CONTINUATION

It is important to recognize that in the general case analytic continuation is an
ill-posed problem; that is, errors in the initial data can increase significantly during
the continuation process. This follows from the behavior of the evanescent waves,
which are given by the exponentially varying solutions of the wave equation. The
evanescent waves are usually defined by the condition

2, 1.2 w’
B4k > g5y (34)

The simplest way to overcome this difficulty is to eliminate the evanescent energy
when implementing the analytic continuation algorithm (Kosloff and Baysal 1983).
Moreover in this paper we use the high-frequency asymptotic approximation for the
Green'’s function, which is only valid when

C*z) >0 (35)
or 2
2 1.2 w
ke +ky < 3y B (36)

Thus, as in the case of conventional depth extrapolation, by using the analytic
continuation algorithm, we eliminate the evanescent waves. The subsurface image
then can be obtained based on the space-time structure analysis of the earth’s total
seismic wavefield. Consider the situation of a reflector on which a reflected wave is
produced at the moment of direct wave arrival. Interference of the waves results in
an increase (or decrease ) of the amplitude of the total field at the reflection points
in comparison with that of the surrounding points. This fact makes possible the
use of analytic continuation for imaging of the earth’s interior. We can restore the
wavefield at each point of the section at the moment of direct-wave arrival. Then the
locations of anomalous amplitudes of the field will show the location of the reflectors
and the diffraction objects. We call this procedure migration by analytic continuation.
This method of obtaining a migrated section (subsurface image I.(z,y, #)) from time
sections can be expressed mathematically by the formula

L(zr,y,z) = j::o 6[t — (z,y,2)] u(z,y,2,t) dt, (37)
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where 7(x,y,2) is the time of arrival of the direct wave at the point (z,y,z) and
u(z,y,2,t) is the analytically continued seismic wavefield; and (¢} is the Dirac delta
function.

Thus, substituting equation (14) into (17) and then into (37) we get

L(z,y,2) = 5a3 / ]__; f +°°{ﬂ(ha—1 c (ah(f_) )005[w¢a(C)]+

u'(h _1) \/ Ca(ow a—l) sin [w be ( O]} i[kso+Ryy~—wr(z,9,2)] dk, dk, dw, (38)

which describes imaging based on the analytic continuation migration.

ELIMINATION OF MULTIPLE REFLECTIONS

The problem of multiple elimination has been extensively studied in a number of
publications (see, for example, Anstey and Newman, 1967; Kennett, 1974; Verschuur
et al., 1980 and Verschuur et al., 1992) However, in most of the published papers,
only surface-related multiple elimination have been discussed. Migration by analytic
continuation provides an opportunity to eliminate the multiples that are produced
by the (perfectly) reflecting free surface, as well as by the strong velocity contrasts
in the lower parts of the section. Consider for the sake of simplicity the two-layered
model shown in Figure 1. A line source is located in the lower layer. Conventional
migration based on the depth extrapolation of the upgoing field fails to recognize
multiple reflections shown in the right figure of Figure 1 for what they are. As a
result they will give rise to fictitious reflecting boundaries in the migrated section.
During migration, multiple waves produced in the top layer and presented in the
observed field, “pass” into the lower layer where, in reality, they cannot penetrate.
In contrast, depth extrapolation of the total field based on analytic continuation will
restore the true process of wave propagation. Multiples are understood as such and
hence, cannot generate any fictitious reflecting boundaries.

Figure 2 shows snapshots of the analytically continued wavefield at specified mo-
ments in time. Input consisted of the data shown at the right of Figure 1. At the latest
time shown (150ms), m is a multiple reflection from within the shallow layer. As time
decreases, the spatial structure of the calculated wavefield is simplified substantially
and is free of multiple waves for times 50ms and less

Figure 3 shows a two layer model with a free surface and corresponding zero-
offset data. Performing conventional phase-shift migration and migration by analytic
continuation resulted in Figure 4. Conventional migration shows the false reflector
caused by the presence of the multiple reflections. Migration by analytic continuation
gives the correct image of the section. However the primary also gets weaker (twice
as weak, where the multiple gets 20 times as weak). This is caused by interference of
the upgoing and downgoing wavefield and the imaging condition (imaging at t=7).
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F1G. 1. (left) Point source in half-space beneath surface layer. (right) Synthetic
zero-offset data, including two multiples.

Conventional phase-shift migration considers only the upgoing wavefield and images
at t=0.

As a final example Figures 5 and 6 show the modeling and migrated results of
a three layered model with a free surface and a syncline below the first layer. The
multiple has become weaker (5 times as weak) because most energy has been migrated
to the position of the primary. However again, the syncline and the primary of the
flat interface get weaker as well after migration (twice as weak).

CONCLUSIONS

Migration by analytic continuation allows reconstruction of the true distribution
of the seismic waves inside the earth. Implementation of this method is no more
complicated than that of conventional migration (Stolt or Gazdag) in the frequency-
wavenumber domain. The developed method can be applied to geological models
with strong velocity contrasts. The method treats not only those multiple reflections
related to the perfectly reflecting free surface, but also those from strong velocity
boundaries within the subsurface. The quality of the multiples treatment by this
migration technique will, of course, be degraded by the errors in the estimation of the
acoustic-impedance discontinuities and location of the interfaces, that produce the
multiples. This problem is of fundamental importance to the method and requires
further study.
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Fic. 3. (left) Simple two layer model with a free surface. (right) Zero-offset data
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F1G. 4. (left) Depth-migrated data using conventional Gazdag migration. (right)
Depth-migrated data using migration by analytic continuation.
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F1G. 5. (left) Three layer model with a free surface and a syncline below the first

layer. (right) Zero-offset data obtained from a simulated seismic reflection experiment
containing the primaries and one multiple reflection
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F1G. 6. (left) Depth-migrated data using conventional Gazdag migration. (right)
Depth-migrated data using migration by analytic continuation.
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APPENDIX A: 1-D GREEN’S FUNCTION IN THE SOLUTION OF
THE BOUNDARY VALUE PROBLEM

In the simplest case, when V(z) = V = constant and correspondingly, C (2) =
C = constant, the Green's function can be expressed in the form

9(3,0) = — - exp [£ (= Q)] (A-1)

where we use the + sign for z > ¢ and the — sign for z < {. In the general case of
variable V(z) and C(z), it is difficult to construct the direct analytical solution for the
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Green'’s function. However, we can effectively use the high-frequency asymptotic so-
lution (the so-called WKBJ approximation), which in the case of the one-dimensional
Green’s function can be written following Bleistein (1984) as

o(a,0) ~ - LEITE o [ﬁw [ %] , (A2)

where, as in equation(A-1), we use the sign + for z > { and the sign — for z < ¢. For
constant velocity equation, (A-2) reduces to (A-1). Note that for the construction of
WKBJ approximation we have to neglect the evanescent waves so that according to
(35) and (36), we assume that

C%(z) > 0.
Now, if we know the field’s values at the bottom of layer z = h;, we can use equation
(11) to solve the boundary value problem — recalculation of the field u inside the

earth. To overcome this difficulty, let us represent the Green’s function g(h;,¢) in
the form

g(h1,¢) ~ a(h1)b(¢), (A-3)
where
C (z
a(2) = 2iw [ / c ({)] (A-4)
and

40 = O ewp |- [ 551, (A-5)

Everywhere inside the first layer the function a(z) is the high-frequency asymptotic
solution of the Helmholtz equation

La(z) = 0. (A-6)

Therefore, from Green’s theorem (9), we have

u(h1)g (h1,€) — g(h1, (v’ (1) = u(0)a’(0)(¢) — a(0)b(¢)u'(0). (A-7)
Substituting (A-7) into (11) we have
u(() = —u(0) [a'(0)b(¢) — ¢'(0, {)] + «'(0) [a(0)b(¢) — 9(0, ()] - (A-8)
According to (A-2), (A-4) and (A-5)
0,0 ~ ~LEOD o oy, (A-9)
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and
c()C
a(@b(0) ~ ~LX ey i) (210
where
0= [ 5t (a-11)
The leading order terms for ¢'(0,¢) and a'(0)b(¢) are
70,0 ~ gﬁ\ o expliwe(c)], (a12)
and
JOB(0) ~ 3| Gk exp [-iws(0)]. (+13)

Substituting equations (A-9), (A-10), (A-12) and (A-13) into (A-8), and taking
into consideration the boundary conditions (8) we obtain

c)c(o
u(¢) = u® -g%cos [we(C)] + ul—%(—) sin [wé(()] - (A-14)

In the same way, we can calculate the vertical field derivative inside the first layer:

W() = ﬁ sin [wo(Q)] + %% cos [wh(C)] (A-15)

Thus, using the formulae (A-14) and (A-15) together with {14) and (15) and boundary
conditions (8), (4) and (5), we can analytically continue the wave field u from the
surface of the earth through a variable background medium to any internal point of
the earth’s interior.
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Tutorial: Regularization in inversion theory,
Expanded Abstract

Michael Zhdanov

ABSTRACT

Inversion of geophysical data is complicated by the fact that geophysical data are
invariably contaminated by noise and are acquired at a limited number of observation
points. Moreover, mathematical models are usually complicated, and yet at the same
time are also simplifications of the true geophysical phenomena. As a result, the so-
lutions are ambiguous and error-prone. The principal questions arising in geophysical
inverse problems are the existence, uniqueness, and stability of the solution. Methods
of solution can be based on linearized and nonlinear inversion techniques, and include
different approaches, such as least-squares, gradient type (including steepest-descent
and conjugate-gradient ) and others. A central point of this tutorial is the application
of so called "regularizing” algorithms for the solution of ill-posed inverse geophysical
problems. These algorithms can use a priori geologic and geophysical information
about the earth’s subsurface to reduce the ambiguity and increase the stability of
solution.

The important role of “regularizing” algorithms in the solution of ill-posed inverse
seismic problems has been investigated in recent works of Koch-(1992) and Sun and
Shuster (1992). In mathematics we have a classical definition of the ill- posed problem:
a problem is ill-posed, according to Hadamard (1902), if the solution is not unique or
if it is not a continuous function of the data ( i.e., if to a small perturbation of data
there corresponds an arbitrarily large perturbation of the solution).

Unfortunately, from the point of view of the classical theory, all geophysical inverse
problems are ill-posed, because their solutions are either non-unique or unstable.
However, geophysicists solve this problem and obtain geologically reasonable results
in one of two ways. The first is based on intuitive estimation of the possible solutions
and selection of a geologically adequate model by the interpreter. The second way is
based on the application of different types of regularization algorithms, which allow
automatic selection of the proper solution by the computer using e priori geologic
and geophysical information about earth structure.

The most consistent approach to the construction of regularization algorithms
has been developed in the works of Tikhonov (1977, 1987) ( see also Zhdanov, 1988,
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Zhdanov et al. 1988). This approach gives a solid basis for construction of effective
inversion algorithms for different applications. In usual way, describe the seismic
inverse problem by the operator equation:

Am=d, me M, de D, (1)

where D is the space of seismic data and M is the space of the parameters of seismic
models; A is the operator of the forward problem that calculates the proper seismic
data d € D for given model m € M.

The main idea of the regularization method consists of the approximation of the
ill-posed problem (1) by the family of well-posed problems

Am=d, meM, de D, (2)

depending on a scalar parameter X called the regularization parameter. The regular-
ization must be such that as ) vanishes, the procedures in the family should approach
the accurate procedure A.

It is important to emphasize that regularization doesn’t necessary mean the
“smoothing” of the solution. The main basis for regularization is an implementa-
tion of a priori information in the inversion procedure. The more information we
have about the seismic model, the more stable is the inversion. This information is
used for the construction of the “regularized family” of well-posed problems (2).

The main goal of this paper is to present an overview of the methods of regular-
ized solution of inverse problems based on the ideas of Tikhonov regularization, and
to show different forms of their applications in both linear and nonlinear inversion
techniques.

The foundations of regularization theory reviewed here include: 1) formulation of
well-posed and ill-posed problems, 2) definition of the sensitivity and resolution of
geophysical methods, 3) development of regularizing operators and stabilizing func-
tionals, 4) introduction of the Tikhonov parametric functional, and 5) elaboration
principles for determining of the regularization parameter.

I describe basic methods of the solution of the linear inverse problem using regu-
larization, paying special attention to the discussion of regularization in the Backus-
Gilbert method. I also discuss the main methods for regularizing the solution of

nonlinear inverse problems. Finally, I describe regularization methods in wave-form
inversion and travel-time inversion.
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