
CWP-052 

WS 

TRANSFORMATION TO ZERO OFFSET 

by 

Thomas E. Jorden 

Partially supported by the Consortium Project on 

Seismic Inverse Methods for Complex Structures 

Center for Wave Phenomena 

Department of Mathematics 

Colorado School of Mines 

Golden, Colorado 80401 

Phone: (303)273-3557





ABSTRACT 

Since its introduction in the late 1970's, dip moveout has firmly 

entrenched itself as part of the processing sequence for complex 

structure. Dip moveout compensates for reflection point dispersal, 

properly sorting events into zero offset traces containing reflections 

arising from common depth points. To this end, the dip moveout mapping 

has been well defined. 

Dip~moveout amplitudes remain a mystery. The amplitude factors for 

conventional dip moveout arise from a Jacobian of traveltimes in going 

from finite offset to zero offset. To this extent, dip moveout is not a 

wave-equation based operation. Many questions remain regarding the 

proper distribution of amplitudes along the limbs of the operator. 

A wave-equation based algorithm can be formulated by considering 

the transformation to zero offset to be a two-fold process ~ prestack 

migration/inversion followed by a zero offset forward model. The 

prestack migration/inversion defines the subsurface. The zero offset 

model transforms this subsurface into zero offset time data. This 

cascaded migration/modeling analogy can be utilized explicitly to 

formulate a wave-equation based dip moveout. By taking advantage of 

integral operators, a cascaded migration/modeling scheme can be defined 

and reduced analytically to an algorithm suitable for implementation on 

a digital computer. 

In order to preserve amplitudes, an inversion algorithm can be



utilized in place of a migration in the cascaded migration/modeling 

system. An inversion algorithm offers the advantage of preserving 

amplitude information, and of compensating for the geometrical bias 

inherent in seismic data recording. 

Prestack applications of such a transformation to zero offset 

include velocity analysis and amplitude versus offset processing in the 

presence of structure. In particular, amplitude offset analysis 

requires a certain degree of confidence in the amplitude preservation of 

the preprocessing sequence. With conventional dip moveout’ the 

amplitudes are given little attention and the resultant data contains 

questionable amplitude information. A wave-equation based dip moveout 

offers the possibility of generating data upon which reliable amplitude 

interpretation can be based. 

This thesis will develop a dip-moveout algorithm based upon a 

cascaded inversion/modeling development. The resultant operator differs 

markedly from conventional dip-moveout. Examples are shown for both 

real and synthetic data. 
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zero offset (output) frequency 

input frequency 
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Vm: 

$o(x,&,): 

9(x,&): 

|n(x,&) |: 

D(n,&): 

F(y): 
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zero offset Green's function phase 
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offset Green's function phase 

determinant of the form: 

h(x,&) = det 

  

input data (Fourier transformed) 
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BACKGROUND AND INTRODUCTION 

This thesis is about dip moveout. The viewpoint is one which 

arises from seismic inversion theory. 

In a more general context, this thesis is about the process of 

transforming seismic data to zero offset. Traditionally, this 

transformation to zero offset was accomplished by means. of 

normal-moveout (NMO) applied to common-midpoint (CMP) ~~ gathers. 

Unfortunately, such a process has the effect of acting as a dip filter 

since NMO velocities are related to dip through the relationship (Levin, 

1971): 

  

nmo cos8 

More recently, dip moveout has been introduced to properly position 

events for stacking. With dip moveout, the correct NMO velocity is the 

true velocity, v, which is dip independent. Together, the procedures 

NMO + DMO comprise current state-of-the-art in transforming seismic data 

to zero offset. 

Although dip moveout is a fairly recent development in seismic data 

processing, the list of contributors is long, and their contributions 

are outstanding. The idea for dip moveout is generally credited to 

Judson, Schultz and Sherwood, who presented a paper at the 48th Annual 

SEG Meeting in San Francisco describing a technique they called



DEVILISH. This technique was never published in detail. 

Yilmaz and Claerbout (1980) published "Prestack Partial Migration”. 

There, they arrived at dip moveout through the double square root 

equation. Although, in hindsight, their methodology appears cumbersome, 

this paper was a landmark in defining the dip moveout problem and in 

illustrating many of the relevant concepts behind dip moveout. 

Deregowski and Rocca (1981) gave a geometrical interpretation to 

dip moveout which serves as the foundation for much of this thesis. 

They described the transformation to zero offset as a_ two-stage 

process — full prestack migration followed by zero offset modeling. 

Bolondi, Loinger and Rocca (1982) presented dip moveout in the 

context of finite differencing over offset (offset continuation). 

Introducing a differential equation for dip moveout, they show that the 

solution can be expressed by continuing the recorded data over offset 

until zero offset is reached. This differential equation was never 

derived. It can be derived by pure traveltime arguments, or by 

recognizing that dip moveout is equivalent to migration with a velocity 

h/t. 

In a companion paper to Bolondi, et al., Salvador and Savelli 

(1982) discussed offset continuation in the context of seismic stacking. 

They made the observation that offset continuation offers the 

possibility of stacking along the way. This makes finite differencing 

particularly attractive from the perspective of computation time. 

In his Ph.D. dissertation, Dave Hale (1983) treats dip moveout in



the context of the Fourier Transform. This work was published in 

Geophysics the following year. Hale shows a method for doing dip 

moveout by a simple substitution of variables in the (w,k) domain. 

Berg (1984) derived a time domain implementation of the Hale 

algorithm, Starting with Hale's result, Berg transforms the dip moveout 

operator to the (x,t) domain. The algorithm derived in this thesis is 

also an (x,t) algorithm. Berg's results are used as the basis for 

comparison, 

Biondi and Ronen (1986) presented a paper at the SEG Annual Meeting 

in Houston which discussed a substitution of variables which makes the 

dip moveout impulse response time invariant. By making the substitution 

t = e™, both the Fourier methods and finite-difference methods for 

dip-moveout are made much faster, This is undoubtedly a trick which 

will soon become commonplace, 

The above review is by no means comprehensive. It does, however, 

represent the major works which serve as a background for this thesis. 

In Chapter 1 Hale's (w,k) algorithm is reviewed. This provides 

motivation for the inversion based algorithm which is the major result 

of this thesis. Chapter 1 will attempt to underscore the idea that the 

conventional approach to dip moveout is not based on the wave equation. 

It is a mapping based on traveltime considerations. Chapter 1 will 

introduce a wave-equation based approach, leaving the derivation for 

subsequent discussion. 

The wave-equation approach suggested by Chapter 1 will rely heavily



on the mathematics of seismic inversion. To this end, Chapter 2 reviews 

some of this inversion machinery. Those uninterested in the 

mathematical details of the inversion algorithm are invited (and 

encouraged) to skip Chapter 2. 

Chapter 3 will present the inversion-based algorithm for 

transforming data to zero offset. This algorithm is derived in the 

appendices. Chapter 3 will discuss many of the attributes of this 

algorithm, These include the relationship of this algorithm to 

dip-moveout, two~ and three~dimensional applications, and the duality of 

the velocity field suggested by the algorithm. 

Chapter 3 will also present two prestack applications of this 

wave-equation based dip moveout - velocity analysis and amplitude versus 

offset processing. 

This thesis relies heavily on mathematical methods which are 

involved and unfamiliar to most geophysicists. In the final analysis 

the mathematics are irrelevant. They are a means to an end. Many of 

the mathematical details have been banished to the appendices.



1. WAVE EQUATION DIP MOVEOUT 

1.1 Review of DMO by Fourier Transform 

The constant velocity traveltime relationship for reflectors on a 

CMP gather is given by: 

. (1.1)   

For horizontal reflectors this relationship is exact and the 

stacking velocity, Vnmo» is equal to the interval velocity, v. If the 

reflector is dipping, there still exists a vy) which aligns the 

reflectors on a CMP gather. The Vymo Which aligns the reflector is a 

function of the dip (Levin, 1971): 

v = — . (1.2)   

Using Vimo as defined by Eq.(1.2), NMO can align events from 

reflectors of arbitrary dip. Unfortunately, the Vamo Which produces this 

alignment is a function of the dip. If two events cross one another on 

a time section the process of NMO + stacking has the effect of selecting 

one dip over another. Thus, stacking is a dip filter. 

Furthermore, even though Eq.(1.1) can be used to align dipping 

events on CMP gather, the reflection points do not coincide (Fig. 1.1). 

That is, the reflection points come from a smear on the reflector. It



is only the horizontal reflector which contains reflections from the 

same subsurface point. Thus, the negative effects of dipping reflectors 

on CMP stacking are two-fold. Not only is the optimum stacking velocity 

dip dependent (and, therefore, dip selective), but the stack is over a 

smear in the subsurface. 

Substituting Eq.(1.2) into Eq.(1.1), and using the trigonometric 

relationsihp cos7@ = 1 - sin’6 gives: 

2 2 
2 _ 4,2 4h 4h 2 t = to += - sin 0 

Vv Vv 

° (1.3)     

This suggests that there is a two-stage process. Defining a new 

traveltime variable, ty» by: 

2 

t= t? - 4b sin’o . (1.4) 
n 0 vy? 

Equation 3 can be rewritten to look exactly like NMO using the true 

earth velocity, v: 

t = Ctr ° (1.5) 

Equation 1.5 describes an NMO relationship. The output from this 

NMO is no longer ty), but a new variable t, as given by Eq.(1.4). 

Eq.(1.4) is dip moveout, though still cast in terms of the dip 0. That



is, it is still dip selective. Furthermore, Eq.(1.4) describes a 

traveltime shift. Used by itself it will not reposition events such 

that the stack is over common subsurface reflection points. This 

repositioning (i.e., partial migration) comes for free once we express 

these relationships in the (w,k) domain. 

The goal is to find a Fourier method to transform recorded data to 

zero offset. Zero offset data for a given offset h can be written in 

the Fourier domain as a transform over space and time: 

io t, 

Di (wo, kh) = dt ,e D,(t,»k,h) ° 1.6) 

Equation (1.4) defines a relationship between offset recorded data 

and equivalent zero offset data. To use this relationship in a Fourier 

method, it must be expressed in terms of (w,k). In terms of zero offset 

data: 

sing = SE, (1.7) 
2w 
  

Equation (1.4) becomes: 

t?=t? - . (1.8)   

Now the zero offset data, D,(t,.k,h), can be expressed in terms of



the offset data, D(t,,k,h): 

D(t ,k,h) = D(t (t.),k,h) . (1.9) 
ar) n ° 

D(t,- kh) is the recorded data after NMO with the earth velocity, 

v. Equation (1.9) suggests a substitution in the Fourier integral of 

Equation (1.6): 

iw t 
0 0 D,(w,+keh) = fa, e D(t (t,)ekeh) (1.10) 

This integral can be rewritten as an integral over ty by a simple 

substitution of variables. The Jacobian of this substitution is 

commonly given the name A: 

    

dt 
A= = 1+ |e . (1.11) 

Then Eq.(1.10) becomes: 

-1 iw At 
0 n 

D, (w,»k,h) S | dt A e D(t .k.h) ° (1.12) 

This is dip moveout by Fourier transform. A serious problem with 

Eq.(1.12) is the A appearing in the exponent. A is a function of input 

time t,. The net effect is that Eq.(1.12) as written cannot utilize



fast Fourier Transform algorithms. The t, > w, transform must be done 

explicitly. However, Fabio Rocca has _ suggested a _ log-stretch 

transformation (Biondi and Ronen (1986)) which makes the Jacobian A time 

invariant and greatly enhances the practical applicability of 

Eq. (1.12). 

Furthermore, note that A is not a function of the velocity, v. 

Thus, dip moveout is considered to be a process which is velocity 

independent. To be fair, we should note that this is only partially 

true. A truer statement is that dip moveout requires no more knowledge 

of the velocity field than that required by NMO, where NMO is taken to 

be NMO with the true earth velocities. Any error made in these 

velocities is passed on by dip moveout. The relevance of this remark 

will become clearer in Chapter 3. 

Figure 1.2 shows an impulse response from dip moveout by Fourier 

Transform. The impulse response is an ellipse given by: 

2 2 

ty x 

a + | — =1 . (1.13) 

n h 

x is the distance from the midpoint. 

The horizontal axis of the ellipse is equal to the offset (2h). 

The limbs of the operator near the surface are evanescent, corresponding 

to events with a traveltime slower than the traveltime of the media 

(i.e., the slope of the limbs is greater than 2/v). This evanescent 

energy is not a problem if one intends to migrate the output before



stacking over offset. Migration will naturally remove this energy by 

not migrating it. However, this evanescent energy may seriously degrade 

the signal to noise ratio if it is stacked along with the data enroute 

to post-stack migration. Limiting the integration of Eq.(1.12) in order 

to cancel the evanescent energy requires knowledge of the velocity 

field. This removes the velocity independence of dip-moveout processing 

(Hale, 1983). 

1.2 Why a New Dip Moveout Formulation? 

In the past decade dip moveout has established itself as a major 

tool in the processing of seismic data for complex structure. It is 

robust and fairly insensitive to velocity error, One might justifiably 

ask why we need consider a new algorithm. The answer, simply put, is 

that conventional dip moveout is not a wave-equation based algorithm. 

The goal is to formulate a wave-equation based dip moveout which might 

be an improvement over conventional dip moveout. 

The derivation of dip moveout in the previous section does not 

reference the wave equation. Conventional dip moveout is based entirely 

on traveltime arguments. In particular, consider again the substitution 

given by Eq.(1.9) which is restated here for convenience: 

D (t »k,h) = D(t (t ), k, h) e (1.9) 
0 0 n 0 

This states that data recorded with source-geophone offset, 

D(t,,k,h), is equal to the corresponding zero offset data, D,(t,k,h) 

- 10 -



given the appropriate traveltime relationship, t, = t,(t9-@,k,h). What 

is the basis for this equality? Among other things, the two wavefields 

have experienced different travelpaths and, therefore, exhibit different 

amplitude decay. 

A fundamental assumption behind Eq.(1.9) is that D(t,,k,h) has been 

corrected for spherical divergence. Spherical divergence corrections 

attempt to remove all wavefront decay. Therefore, Eq.(1.9) can only be 

true in the context that by D,(t,,k,h) we mean a D, which has spherical 

divergence corrections applied. The bottom line is that the equality 

implied by Eq.(1.9) is a dubious equality with respect to the amplitude 

of the respective wavefields. 

Let’s step back from this discussion for a moment and review the 

goals of this procedure. The primary goal is to transform a recorded 

dataset to zero offset. That is, we would like to recover a wavefield 

which is equivalent to a wavefield we might have recorded if the shots 

and geophones had been together on the surface. Any tendency of the 

acquisition geometry to favor certain areas of the subsurface over 

others should not be mirrored in the zero offset data. This violates 

the requirement that the resultant zero offset data should be nearly 

equivalent to data which would have been recorded by a zero offset field 

procedure. 

To illustrate this point, consider Fig. 1.3, which shows a sample 

shot and raypaths for two dipping layers. There is a marked difference 

in raypath density between the layer dipping toward the end of the cable 

- 11 -



(dipping right) and the layer dipping toward the beginning of the cable 

(dipping left). The layer dipping to the right recieves a higher 

density of subsurface coverage than the layer dipping to the left. 

This example has significant repercussions with respect to 

transforming the recorded data to zero offset. The aperture of seismic 

recording geometries results in an uneven density of subsurface ray 

coverage. For a complete survey, this unevenness of ray density is more 

complex than the simple illustration of Fig. 1.3. An NMO + DMO 

algorithm which ignores this phenomenon will mirror it in the zero 

offset data. 

So the driving question of “why a new dip-moveout formulation?” 

should be restated - "why not a new dip~moveout formulation?” Since 

conventional dip moveout is not wave-equation based, a wave equation 

procedure is worthy of consideration. The formulation proposed in this 

thesis addresses both major issues raised herein, The relationship 

between the offset (D(t,,k,h)) and zero offset (D(t,,k,h)) amplitudes 

are addressed rigorously, and the dip selectivity of the acquisition 

geometry is compensated for in transforming to zero offset. 

1.3 Wave Equation Dip Moveout 

Deregowski and Rocca (1981) gave a very elegant and simple 

interpretation to the process of transforming seismic data to zero 

offset. They showed that, geometrically, the process of taking offset 

recorded seismic data to zero offset can be viewed as a_ two-step 

- 12 -



procedure — full prestack migration followed by a zero offset forward 

model, Schematically: 

    

Input Time Data Depth Section Reflectivity Output Time Data 

D(t,&) > R(x, y,z) > D,(t,»&,) 

Prestack Zero offset 
Migration Modeling 

Figure 1.4 shows this process geometrically. An impulse on a 

recorded seismic trace corresponds to an elliptical mirror in the 

subsurface. All raypaths corresponding to reflections off the ellipse 

arrive at the geophone at the same time. The ellipse is simply the 

impulse response of prestack migration, It is a function of subsurface 

variables x = (x,y,z). The dimensions of the ellipse are a function of 

the source-geophone offset, media velocity, and input traveltime. 

Once defined, the ellipse can be used to generate zero offset data. 

For zero offset modeling, each point on the ellipse becomes a source for 

a diffraction hyperbola. The superposition of these hyperbolas is the 

zero offset time seciton. The hyperbolas of Fig. 1.4 are parameterized 

by position along the ellipse and by the medium velocity. The envelope 

formed by the osculation of the hyperbolas is the net operator which 

transforms the input impulse to zero offset. The process of taking the 

input data and spreading it along this curve (also an ellipse) is 

geometrically equal to transforming the input data to zero offset 

(NMO + DMO). It is a remarkable fact that the net shape of the 
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resultant curve formed by the hyperbolas is not a function of the medium 

velocity. Although changing the velocity changes both the ellipse and 

the hyperbolas, the net osculation curve remains the same. In terms of 

NMO and DMO, the time difference between the input time sample and the 

base of the osculation curve is the NMO correction. The osculation 

ellipse is the DMO operator. Thus, since the shape of the DMO operator 

is not a function of velocity, dip moveout is said to be independent of 

velocity. This is, however, only strictly true for input data which has 

the correct NMO velocity applied. 

This review of Deregowski and Rocca’s geometrical interpretation 

sets the stage for the wave equation dip moveout which is the central 

theme of this thesis. These geometrical relationships can be restated 

in operator notation. First, consider an operator which transforms 

input seismic data to a model of the subsurface reflectivity: 

R(x) = L,[ o(ee) | (1.14) 

Any operator which performs the indicated transformation is a valid 

candidate. Ly might be an operation involving finite differences, 

integrals, Fourier methods, etc. The only criterion is that Ly produce 

a reliable model of the subsurface, R(x). 

Now consider a zero offset modeling operator which produces zero 

offset data from a model of the subsurface: 
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Do (t 8) = L,| R(x) ] (1.15) 

Again, any operator which produces zero offset data is a valid 

candidate. The operator L, might be a ray tracer, a finite difference 

modeling program, an integral modeling algorithm, etc. The single 

criterion is that it produce reliable zero offset data from the input 

subsurface model. 

Together, Eqs. (1.14) and (1.15) suggest a cascaded operation by 

which data might be transformed to zero offset: 

D,(t, 8) = | Ly] vce] , (1.16) 

Equation (1.16) suggests that D(t,&) can be transformed into 

D,(t,.&) by cascading the output of L, into Ly. 

Up until now the only criteria that has been placed on Ly and Ly is 

that they perform their respective operations "reliably”. The 

“reliability” of these operators seves as the first criterion by which 

the specific form of Ly and Ly are selected. By "reliable", we mean 

that both Ly and Ly, must honor the acoustic wave equation. By 

suggesting operators which honor the wave equation, the cascaded system 

is intrinsically a wave-equation based algorithm. 

Secondly, the cascaded system must be solvable in a usable format. 

Many candidate operators perform the required wave-equation operations, 
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but not all operator types result in a cascaded system (1.16) which is 

tractable, The final result must be some explicit formalism which maps 

input data, D(t,&), to zero offset data, D,(t,,&). The particular 

choice for Ly and L, must facilitate this goal. 

Thirdly, the operators Ly and L, must be three-dimensional in 

nature, The transformation to zero off set is properly a 

three-dimensional problem. All reflections recorded by a shot/geophone 

pair, whether from reflection points in-plane or out-of-plane, have 

equivalent zero offset locations which lie on the line connecting the 

shot and geophone (Fig. 1.5). In principle, two-dimensional assumptions 

are unnecessary and inappropriate when transforming data to zero offset. 

This point will be revisited in Sec. 3.7 (Two and Three Dimensions). 

In order to have a reasonable chance at reducing Eq.(1.16) to a 

usable format, integral operators are utilized. The cascaded system 

Eq.(1.16) becomes a system of cascaded integrals. The reason for the 

choice of integral operators over other operator types is not 

irrefutable. A system of cascaded integrals is a more appealing system 

to solve than a system of cascaded finite differences or other more 

exotic operator types. (Undoubtedly, many would disagree with this 

statement. It is ultimately a function of the type of mathematics with 

which one is most familiar.) 

An integral inversion operator is utilized for Ly. An inversion 

operator has the advantage over a migration operator in that it 

explicitly addresses the issue of what quantity is being imaged (i.e., 
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velocity, density, etc.). Migration operators leave the interpretation 

of the output undefined, relying instead on an imaging condition which 

gives the wavefield at the reflection point. The forward modeling 

operator, L,, requires a well-defined model of the subsurface on which 

to operate (i.e., Eq.(1.15) calls for reflectivity, not just a 

structural image). Hence the choice of a seismic inversion operator. 

The particular operator utilized is one which was developed by 

Gregory Beylkin (1985) at Schlumberger and Cohen, Bleistein, and Hagin 

at the Center for Wave Phenomena at the Colorado School of Mines 

(Bleistein (1987), Cohen, Bleistein and Hagin (1986)). The inversion 

operates on recorded data to produce the perturbation in velocity, a(x). 

Perturbation is defined as the relationship of the total slowness of the 

medium to a background slowness: 

1 1 

v(x) v’ (x) 
mn 

    (1 + a(x)) . (1.20) 

In general, the background velocity v,(x) can be any function (the 

subscript m refers to migration velocity). The theory is equipped to 

handle a background velocity of arbitrary (x,y,z) variation. However, 

the more complicated the function v(x), the more complicated the 

resultant computations. For the development of this thesis, Vy(x) is 

taken to be a constant reference value, vm» This is for computational 

ease at the expense of accuracy. Inversion and migration programs 

require that traveltimes from point to point in the subsurface are 

known. A constant background velocity makes the computations of these 
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traveltimes simple. More elaborate background velocities require more 

elaborate means to compute the traveltimes (ray tracing, finite 

differencing the eikonal equation, etc.). Such an extension of this 

theory to more complicated background velocities remains a ripe area for 

further research. 

As will be demonstrated in Chapter 3, the assumption of a constant 

background velocity still offers the advantage of improving over 

existing algorithms. The processes NMO + DMO are also constant velocity 

algorithms. No cruder approximations to the velocity field are made 

than those made in standard processing. 

The particular form of the inversion operator is (Bleistein 

(1987)): 

2 

Vin 2 Jh(x,&) | -ing(x,§) 

a(x) = (an)? dé | dn A, @) 5G) e D(n.t). (1.21) 
  

This operator is discussed in detail in Chapter 2. The operator is 

a threefold integral over the input data. The dy integral is over the 

input frequency, yn. The d7& integrals are over the recorded data. The 

output perturbation a(x) = a(x,y,z) is a three-dimensional function. 

The generalization of this operator to lines of data is discussed in 

Chapter 3. 

The various terms of the inversion kernel are defined in the 

glossary. The nature of the double integral d*& changes depending upon 

the nature of the inversion. For example, if one is inverting common 
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shot records,€ = (&,,&,) refers to the coordinates of the geophones for 

that shot. If the inversion is common geophone, €, and €, are the 

coordinates of the shots for that particular geophone. If the inversion 

is over common offset data, &, and &, are the coordinates of the 

midpoints on the acquisition surface. 

The zero offset modeling operator, L,, is chosen to be the Born 

approximation modeling operator (Bleistein (1984)): 

iug (x,& ) 
a 3 A(x) e ° ° a(x) 

D (w,& ) =o dx : (1.22) 
°o 0 2 

v, (x) 

  

Again, all quantities are as defined in the glossary. v,(x) is the 

background velocity for a forward perturbation problem: 

1 1 
= ; (1 + a(x)) . (1.23) 
v (x) v, (x) 

    

There are really three velocities in this problem. There is the 

actual earth veloctiy field Ve (x). In the migration/inversion stage, we 

make an estimate of this velocity field in order to image the data. 

This estimate is v, (x). Whereas we hope that v(x) is nearly identical 

to v,(x), this is rarely the case. Once the perturbation, a(x), is 

known, the velocities v,(x) and Ve(x) leave the problem. The format for 

the Born approximation modeling integral leaves the choice of v,(x) at 

our discretion, In almost every case we would choose v,(x) to be equal 
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to v(x). Nevertheless, we are completely free to choose otherwise. 

This analysis leaves v,(x) and v,(x) uncoupled. This point will be 

revisited in Sec. 3.6. 

Finally, substituting Eq.(1.22) into Eq.(1.21) gives the cascaded 

system by which we might transform D(yn,&) to D,(w,&,): 

  

iwg (x,& ) 

. ii J Atx)e 9 v. 
D (w,é ) =o d x ° 

° ° v. (2n)° 

(1.24) 

| a | jn(x) | ing (x,€&) 
* 4d € | dy ————~- e D(yw,&). 

A(x) A, (x) 

Counting the inverse transform over w to yield D,(t,&), Eq.(1.24) 

describes a seven-fold integral system. Since both the input and output 

data sets are functions of time (or, alternatively, frequency) and 

surface location, the variables x = (x,y,z) pass through the process as 

dummy variables of integration. Before Eq.(1.24) is usable, these 

subsurface variables must be eliminated from the problem entirely. 

Chapter 3 discusses the solution. 
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2. INVERSION BACKGROUND 

2.1 The Beylkin Transformation 

The inversion formula Eq.(1.21) has been presented without proof or 

extensive discussion. Since this inversion forms the core of the 

cascaded system Eq.(1.24), it deserves considerable discussion. This 

section will review the philosophy and concepts behind Eq. (1.21). 

In 1985, Gregory Beylkin published a landmark paper (Beylkin, 1985) 

in which he described a general approach to seismic inversion based on 

the theory of pseudo~-differential operators. In this paper, Beylkin 

proposed a change of variables motivated by the search for an inversion 

operator. This change of variables allows for the derivation of 

inversion formulas for a wide variety of data types and acquisition 

geometries. This change of variables was later justified on a more 

rigorous basis by Bleistein (1987). 

The rigorous justification for this theory relies on asymptotic 

expansions. As such, it is a high frequency theory. For those 

purposes, data are considered to be high frequency if the wavelengths 

are small compared to the dimensions of the problem at hand. In terms 

of temporal quantities, high frequency means that (Bleistein, 1984) 

2nfT>>1 

where f is frequency in Hz and T is a typical time scale of the problem. 
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For our purposes 2nfT>3 is sufficient. Thus, seismic data can be 

considered to be high frequency. 

Consider a very general inversion formula for seismic data, D(n,€&). 

As before, €, and €, are taken to represent coordinates along the 

acquistion surface, €& = (E,.€,)5 n is the frequency. For common shot 

data these coordinates represent geophone coordinates. For common 

geophone geometry the coordinates are shot coordinates. For common 

offset &,, and &, are the coordinates of the midpoint. Nevertheless, 

the inversion is performed by a double integral over surface 

coordinates, &, and a single integral over input frequency, n: 

2 -ing (x,&) 

a(x) = d & | dn B(x,E,ne D(yn,&) (2.1) 

This inversion, given the appropriate kernel, B(x,&,n), recovers 

the perturbation in velocity, a(x). The task at hand, therefore, is to 

find the B(x,&,n) which makes Eq.(2.1) a valid inversion (i.e., 

identity). 

The determination of B(x,&,), is based upon a_ suitable 

representation for the input data, D(n,&). To this end, we represent 

D(yn,&) as a Born approximation integral (Bleistein, 1984) over the input 

perturbation a(x'): 

- 22 -



2 
v 

m 

2 {|| 5 A (x')A (x') ing (x’.&) 
D(n,€) = 7 d’x' S____8 a(x’) . (2.2) 

The Born approximation is but one of many choices at our disposal. 

The Born approximation is selected for Eq.(2.2) because it involves 

perturbation in velocity, which is the output of the inversion formula, 

Eq.(2.1). Had the inversion formula been selected to output 

reflectivity, R(x), the Kirchhoff representation would have been a more 

suitable choice for Eq.(2.2). Either choice will lead to a similar end. 

Choosing the Born approximation makes the analysis self-consistent. 

There is a close relationship between perturbation, a(x), and 

reflectivity, R(x). R(x) is the normal derivative of the perturbation, 

da/dn. In this discussion the two quantities will often be used 

interchangeably. 

Note that the subsurface variables in [Eq.(2.1) are noted 

x = (x,y,z), whereas the subsurface variables in Eq.(2.2) are noted 

x’ = (x',y’,z’). This is because they are not necessarily the same 

coordinates. The variables x’ in Eq.(2.2) are dummy variables of 

integration. The output is not a function of these variables. The 

variables x in Eq.(2.1) are variables of the output perturbation a(x). 

This point deserves some amplification. Migration/Inversion 

algorithms Eq. (2.1) attempt to solve for an unknown earth. To this end 

one builds this unknown earth by superposing the outputs from various 
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test points, or guesses (Fig. 2.1). Thus, in Eq.(2.1), the indicated int 

egrals are performed for each test point x = (x,y,z) without the a 

priori knowledge as to whether there is a reflector at x. The analogue 

for downward continuation algorithms is the imaging condition. The 

imaging condition is drawn upon at each depth level without the a priori 

knowledge that the depth level contains actual reflectors. When there 

is no reflector at the output point, the output is of negligible 

amplitude. Where there are reflectors, the image is strong. The 

condition of an actual reflector occurring at the test point is the 

condition that a(x) = a(x’). (Here perturbation and reflectivity are 

being used interchangeably.) 

Substituting the Born representation for D(n,&) into Eq.(2.1) 

gives: 

a(x) = | ae | a Blx,Eyn) n° || a’x! 

A. (x"JA,(x") in(g(x',&) - 6(x,&)) 
e a(x’). 

(2.3) 

. 2 
Vv 

m 

All quantities in this equation are well-defined except the unknown 

kernel, B(x,&,n). The problem becomes one of finding the B(x,&,y) which 

completes the equality. Since a(x’) is the input and a(x) is the 

output, one technique (Bleistein, Cohen, Hagin, 1985) is to recognize 

that the sum total of the amplitude and phase factors must be _ the 
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distribution 5(x’ - x), whose sifting property, 

[ff ax?sGrn ta =f), 

recovers the desired output, a(x). This approach was very successful. 

It does however, carry the inherent difficulty that it must be redone 

for every distinct inversion geometry (common shot, common geophone, 

common offset). 

Beylkin argued that the essential throw-weight of the procedure 

defined by Eq.(2.3) must occur near the point x= x'. This was later 

justified rigorously by Bleistein (1987). Beylkin suggested linearizing 

the phase function ¢(x’,&) about the point x’ = x: 

g(x',&) = g(x,&) + Volx’,&) » (x’-x) . (2.4) 

Since the significant energy of the operation Eq.(2.3) occurs only very 

near those points where x=x'’, we can make some preliminary 

observations about B(x,&,n). Certainly, B(x,&,n) must cancel the other 

amplitude factors when x and x’ coincide. Therefore, let B(x,&,n) be 

given by: 

2 
Vv 

B(x,&.9) = <a 
A, (x JA, (x ) 

b(x,&,n) e (2.5) 

Then inserting Eq.(2.4) and Eq.(2.5) into Eq.(2.3), the remaining 
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unknown becomes the amplitude factor b(x,&,n): 

2 2 3 —inVp(x',&)-(x'-x) 

a(x) = ad & dyn n b(x,&.n) > dx’e a(x') . (2.6) 

Beylkin observed that Eq.(2.6) has the appearance of a forward and 

inverse Fourier-like operator. That is, we can consider a forward 

Fourier transform over the perturbation to have the form: 

3 -ik:x' 

a(k) = dx’ e a(x’). (2.7) 

Then if we make the substitution, nVp(x,&) = k = (k,,k,,k,), the 

integration over x’ looks exactly like Eq.(2.7). Under this 

substitution, Eq.(2.6) becomes: 

ik:x 
a(x) = | dt | dy n b(x,En) e a(k) . (2.8) 

If the integrals in Eq.(2.8) could be cast in terms of integrals 

over the wavenumber coordinates, k = (k,,k,,k,)» Eq.(2.8) would have the 

exact appearance of an inverse transform over wavenumber. (d*&dy 3d°k). 

Beylkin suggested a substitution of variables of integration from 

(n.€,,€,) to (k,,k,,k,). The Jacobian of this substitution is: 
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  s{ +] = det k . (2.9) 
nr€& 

  

The change of variables of integration involves the substitution 

d°k = J[k/n,€]d7é dn. After changing the variables of integration from 

(n.€,,&,) to (k,,k,,k,) and the insertion of appropriate 2n scale 

factors, the forward/inverse inversion representation Eq.(2.3) has the 

exact form of a forward and inverse Fourier transform: 

1 3 ik-x 3 -ik:x’ 

a(x) = 3 dke d x’e a(x’) . (2.10) 
(2n) 

Following along with this argument, we can infer immediately that 

  

the unknown amplitude factor b(x,&,n) must be the scaled determinant: 

2 

n’b(x,8.n) = 1 7 det ae k = —_1~ h(x, &) 
(2n) gy (27) 

    . (2.11) 

  

h(x,€) can be expressed in terms of known quantities, since we have 
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defined (k,,k,,k,) to be equal to (nV¢,,.nV¢,.nV¢,). h is given by: 

&
 

  h = det Vg . (2.12) 
@
 

w
r
 

" 
a
 

  Ve 

&
 

Sv
e 

ee
 

The inversion formula, Eq.(2.1), becomes: 

  D(n,&) (2.13) 
Vin | a | jh (x,&)| -ing (*-8) 

1 ASG)A,(@) 

This is a general inversion formula for any background velocity, 

Vm(x). It is also a general inversion formula for any geometry (common 

shot, common geophone, common offset). The geometry has been left 

unspecified in the derivation. 

2.2 The Inversion Geometry 

The particular acquisition geometry has been left unspecified in 

the derivation of the previous section. It is implicit in the final 

form of the inversion formula. As previously stated, the variables 

& = (&,,€,) parameterize the acquisition surface. The particular 

inversion geometry is intimately related to the way € enters in the 

functional relationships of the various quantities. 
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For example, the phase function, ¢(x,€), is a sum of traveltimes 

from source to x and from x to receiver: 

9(x,&) = t (x) + w(x) . (2.14) 

In a constant velocity earth, these reduce to simple distances 

divided by velocity. In a more general earth, t, and t, are found by 

more elaborate means. Nevertheless, the interpretation of #(x,&) as a 

sum of traveltimes remains. The gradient Vp is given by a sum of 

vectors — one along the ray from x to the source, the other along the 

ray from x to the receiver. 

The geometry of the input data reflects itself through the particular 

form of the determinant, h. For a common shot configuration the 

coordinates of the shot can be given by €&, = (E54 °€52)- gs (and Ts) is 

a constant with respect to the variables of the integration. The 

coordinates of the receivers are the variables of integration. They are 

given by the be = & = (€,,&,)- Therefore, h takes the form: 
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Vie + _)+) 
s 8 

h = det Ve . (2.15)   

  Ve 

For common shot acquisition the derivatives of the second and third 

rows of this determinant depend on the geophone coordinates and output 

coordinates, but not on the source coordinates. Likewise, for a common 

receiver inversion the derivatives are with respect to the shot portion 

of g only. Similar relationships hold true for common offset and zero 

offset inversion. It is the form of h which compensates for the 

particular inversion geometry. 

In hindsight, this should not surprise us. The derivation of 

Sec. 2.1 treated the forward problem as a Fourier transform, The 

particular geometry parameterizes the forward transform Eq.(2.7). If we 

view this as a transform from subsurface variables x to wavenumber 

variables k, then any areal configuration of sources and receivers which 

is consistent with this interpretation should be consistent with the 

derivation of Sec. 2.1. The Jacobian of the substitution in the inverse 

problem absorbs the specifics of the problem at _ hand. The 

self-consistency is guaranteed by the substitutions: 

- 30 -



(nd, 9, nd,f nd_9) = (k, kk.) . (2.16) 

or, in terms of the variables of integration: 

=n [nla &a (2.17) dk dk dk, = y |[h|d Sdn. . 

The forward transform illuminates the subsurface (i.e., transforms 

it from space to wavenumber). The inversion recovers the illuminated 

portion. The geometry is accounted for as long as we are very careful 

in our specific definition of h. It must match the problem at hand. 

2.3 Illuminating the Subsurface with Limited Aperture 

Seismic imaging would be a simple task if the world were as 

cooperative as Sec. 2.1 suggests. With the forward problem seen as a 

forward Fourier transform, the inverse problem becomes an inverse 

Fourier transform and the problem is solved. We have recovered the 

model of the subsurface and can go on to solve new, more challenging 

problems. Or can we? 

Before declaring total victory, perhaps we should revisit some of 

the assumptions made in Sec. 2.1 and consider their limitations. 

Consider Eq.(2.7) which defined the forward Fourier-like transform 

(repeated here for convenience): 
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3 ik-x' . 

a(k) = d x’e a(x’) . (2.18) 

We defined the wavenumber, k by: 

k= Ve = V(t. + t,) . (2.19) 

There are subtle, but significant, limits to the substitution of 

Eq.(2.19). Figure 2.2 is a graphical depiction of Eq.(2.19). The 

quantity V(t, + tg) is a vector which is the sum of two vectors, Vr, and 

Vtg. As shown by Fig. 2.2, Vt, is a vector along the ray from the 

source to the subsurface point. Likewise, Vtg is a vector along the ray 

from the receiver to the subsurface point. Eq.(2.19) says that k is a 

vector which lies between Vr, and Vtg: 

We can make an estimate of the magnitude of k. The eikonal 

equation is: 

[ve |’ i) . (2.20) 

Therefore, the magnitudes |Vr.| and |ve, | are both equal to 1/v. 

The bounds on |k| can be deduced directly: 
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o£ |x| < 2inl . (2.21) 

For a given yn, the lower and upper bounds correspond to 

source/receiver offsets. The upper bound (|k| = 2|n|/v) corresponds to 

zero offset. the lower bound (|x| = 0) corresponds to infinite offset. 

Thus, there are reasonable bounds on the magnitude of |k|. 

A far more serious problem lies with limits on the direction of k. 

Referring again to Figure 2.2, the direction of k is the direction of 

the normal to the reflector. This is because k bisects the angle 

between Vr, and Vtg. (At reflection points the angle of incidence 

equals the angle of reflection). A limit on the direction of k is a 

limit on the range of dips which can be imaged. Real-life acquisition 

cannot recover all dips at every point in the subsurface. The limited 

aperture of practical recording limits the dips that can be recovered by 

a given experiment. 

For an excellent discussion of these concepts, see Beylkin, 

Oristaglio and Miller (1985). This paper contains some excellent 

examples of the effect of limited aperture on seismic migration. 

Eq.(2.7) would be an exact transformation if the recording 

frequency and aperture of the array were infinite. Limits on frequency 

introduce limits on the magnitude \x|. Limits on the array introduce 

limits on the direction of k. Thus, instead of a(k), the forward 

transform of Eq.(2.7) produces @(k), where @(k) is a band-limited 
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version of @(k). 

These concepts apply directly to the interpretation of the inverse 

Fourier-like transform Eq.(2.10). The output of the inversion is not 

a(x), but @(x) - the inverse transform of the band-limited @(k). 

Fig. 2.3 illustrates how limits of the recording array can be translated 

into limits on recorded dips, and how these translate to limits on the 

direction of k. 
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3. THE TRANSFORMATION TO ZERO OFFSET 

3.1. Overview 

The process of transforming recorded seismic data to zero offset 

can be represented as a prestack inversion followed by a zero offset 

forward model. This was expressed in operator notation in Chapter 1. 

We would like this process to preserve amplitude information in the 

recorded data, For this reason, an inversion is utilized in lieu of a 

migration. The specifics of this inversion are the subject of Chapter 

2. The forward model is the Born approximation integral for zero 

offset. Inserting the inversion operator into the forward modeling 

operator gives a cascaded operator which accomplishes the transformation 

to zero offset. This operator was given by Eq.(1.24), and is repeated 

here: 

iw, (x,&,) 
2 

D, (w,&,) = o- || d’x A ° ‘a 
ore v? (22)? 
  

(3.1) 

; Jn(x.&) |  -ing(x,&) 
° d é dy BK UxYA (x) e D(n,&) . 

s g 

The input to this integral system are the Fourier transformed 

recorded data D(n,&), which are a function of frequency n, and surface 

coordinates € = (&,,&,). The output is zero offset data Dy(w,&), which 

are a function of frequency w and zero offset location E = (&),,&,)- 
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Counting the inverse Fourier transform over w, Eq.(3.1) is a seven-fold 

integral. 

The goal is to reduce Eq.(3.1) to a format suitable for 

implementation on a digital computer. The integrals over surface 

coordinates & and input frequency y present no problem. These are 

variables for which the data are explicitly defined. The integrals over 

the subsurface variables x= (x,y,z) are a different matter. The 

subsurface variables arose from the formulation of the problem as a 

prestack inversion followed by a zero offset forward model. These 

subsurface variables are dummy variables of integration in Eq.(3.1). 

Before the cascaded system is implemented, the integrals over these 

variables can be eliminated by analytic means. 

Alternative solutions to the cascaded inversion/modeling problem 

might, indeed, leave the subsurface variables in the solution path. The 

solution path described herein is for a constant velocity earth. For 

this simple earth model, calculating the subsurface integrals 

analytically is a tractable problem. More exotic velocity models might 

require that the subsurface remain a part of the problem. For example, 

the cascaded inversion/modeling problem in an arbitrarily varying 

velocity field might require tracing rays from the subsurface point x to 

the shot €,, geophone es’ and zero offset location E,. 

The inversion philosophy discussed in Chapter 2 is a prestack 

theory. Since reflectivity is a function of angle of incidence the best 

one can hope for from the theory of Chapter 2 is an estimate of the 

- 36 -



angularly dependent reflection coefficients. Since a stack over offset 

is a stack over the angularly dependent reflection coefficients, the 

stacking process degrades much of the amplitude information that this 

theory is designed to preserve. 

There are two issues involved here. First, we expect a stacking 

theory developed upon this cascaded inversion/modeling transformation to 

do a better job than standard NMO+DMO+STACK, primarily because the 

theory developed herein is wave equation based. Secondly, (and perhaps 

of greater significance), we expect that theory developed herein to 

offer some prestack analysis which is an improvement over conventional 

dip moveout processing. We have two applications in mind - shot domain 

velocity analysis and amplitude versus offset processing. The cascaded 

system of Eq.(3.1) offers the potential to do both processes in a wave 

equation consistent fashion. 

3.2 The 2.5D Solution 

Eq.(3.1) describes a full three-dimensional problem. The 

subsurface is allowed to vary arbitrarily as a function of x = (x,y,z) 

(within the confines of a constant background velocity). The forward 

modeling operator introduced the three-fold integration over x in 

Eq.(3.1) The inversion operator is three-dimensional problem. Thus, 

the inversion operator also introduced a three-fold integration - two 

surface variables € = (€,,€,) and frequency yn. The six-fold integration 

of Eq.(3.1) describes the full three-dimensional transformation to zero 
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offset. 

The solution path can be simplified if we assume that the line of 

recorded data is a dip line. We retain the three-dimensional nature of 

the wave propagation, but we assume that the earth is invariant in the 

cross-line direction. That is, parallel lines of recorded data would be 

identical. This assumption has been termed 2.5D in order to contrast it 

with approaches which utilize only the 2D wave equation. The geometry 

of the 2.5D problem is illustrated in Fig. 3.1. 

A nice result from making a 2.5D assumption is that the 

out-of-plane receiver integral (&,) and the out-of-plane subsurface 

integral (y) can be evaluated by the method of stationary phase. (See 

Appendix C for a brief review of the stationary phase formula). The 

mechanics of the 2.5D solution of Eq.(3.1) are given in Appendix A. The 

result is the mapping from finite offset to zero offset: 

1/2 
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The various factors are defined in the glossary and Appendix A. 

A very nice feature of the derivation of Appendix A, and of the 

resultant Eq.(3.2), is that it is very general in regard to the geometry 

(i.e., common shot data, common receiver data, or common offset data). 

As discussed in Chapter 2, the specifics of the problem geometry are 

accounted for by the specific form of the determinant jh(x,&) ]- Thus, 

one would use a different [n(x.&) | depending upon whether the problem 

were cast in the common shot, common receiver, or common offset domain. 

The derivation and form for the common shot [n(x,&) | is given in 

Appendix H. The common receiver |h(x,t)| can be deduced from the common 

shot |n(x,&) | by simply reversing the roles of shot and receiver 

variables in that formula. The common offset |h(x,t)| is derived in 

Appendix I. 

One must be very careful in formulating the geometry of the problem 

if Eq.(3.2) is to be used correctly. The phase function of Eq.(3.1), 

¢(x,&) is a sum of shot and geophone traveltimes, Ts and Tepe In a 

constant velocity earth, these can be expressed by: 

  

  

=- 1 _ 2 2 
t (x) = v, (x Ea) + (y-& 4) + Zz 

(3.3) 

_ 1 _ 2 2 

+ fx) = Vv, | (x bya) + (y- 4) + Z ° 

Equation (3.3) is valid for all geometries. However, in 
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formulating the problem given by Eq.(3.1), one must be careful in 

defining what is meant by the double integral over receivers, 

& = (&,,&,). The reason for this is because in deriving Eq.(3.2) the &, 

integral is eliminated by stationary phase. The nature of the €, 

integral changes with the geometry. Common shot geometry is defined to 

be one in which the source point is fixed and the receivers are 

distributed along the acquisition surface. Thus, the position of the 

source, Es = (Eo. 2b 52)> is held constant with respect to the € 

integration in Eq.(3.1). The variables of integration & = (&,,€,) 

become the geophone coordinates ge = (Eg1°Eg2)- Alternatively, one 

might envision parallel lines of common offset data. Thus, the shot 

coordinate, es in Eq. (3.3), could be expressed by 

Es = (Eoa+82.) = (Es-h, EQ)» and the receiver position by 

bg = (Egarbga) = (Esth.€,). In the common offset formulation, &, and &, 

are the midpoints on the acquisition surface and h is the half offset. 

The derivation of Appendix A is valid for each of these cases so long as 

one is careful in defining the geometry of the problem. 

3.3 The TZO Impulse Response 

As we have said, a prestack inversion theory offers the greatest 

utility in prestack applications. Thus, one might apply Eq.(3.2) in a 

common shot, common receiver, or common offset configuration. Each of 

these applications represents a partial stack over the data. The goal 

of this partial stack is to generate the best estimate for zero offset 
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data from the domain of the partial stack. Thus, we might expect the 

operator to vary depending upon the geometry of the partial stack. 

There are really four different operators involved. These are for 

common shot, common receiver, common offset, and stacking. The common 

shot operator tries to give the best estimate of zero offset data by 

processing only single shot records. Likewise,: the common receiver 

implementation tries to produce the best zero offset data by considering 

only single common receiver records. The common offset implementation 

is a partial stack over both shots and receivers. There is an inherent 

geometrical bias in recording. For example, a shot record tends to 

favor dips inclined towards the geophones (thus, one attempts to "shoot 

into the dip”). The inversion theory of Chapter 2 attempts to 

compensate for this bias. The operators which result from Eq.(3.2) are 

different depending upon their domain of application. These differences 

are explained entirely by differences in the determinant jh(x,&) |. 

How do these operators differ from conventional dip moveout? 

Before answering this question, perhaps we should define what we mean by 

conventional dip moveout. The application of Eq.(3.2) will be in the 

(x,t) domain, Therefore, to have a fair comparison we should use a 

conventional dip moveout algorithm which is an (x,t) domain application. 

Lars Berg (1984) presented an (x,t) domain implementation of Dave Hale's 

(1983) (w,k) dip moveout algorithm. Figure 3.2 shows an impulse 

response of this algorithm for an offset of 5,000 ft., and velocity of 

8,000 ft./sec. 
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Figures 3.3a and 3.3b show a comparison of the Berg algorithm with 

the common shot operator of Eq.(3.2). In these figures the operator on 

the left is from the Berg algorithm, the operator on the right is the 

inversion-based operator. The comparisons are for seven impulses at 

offsets of 10,000 ft. and 5,000 feet. Note that the common shot 

operator has amplitudes which are asymmetric with respect to the 

midpoint. The Berg operator (and ali conventional dip moveout 

operators) are symmetric with respect to the midpoint. This asymmetry 

is a direct consequence of the asymmetry of the inversion operator. It 

compensates for the geometrical bias of the recording geometry. 

Figure 3.4 (a repeat of Fig. 1.3) shows a ray plot which might shed 

some light on the asymmetry of the common shot operator. Note that the 

ray density for the geometry shown is significantly higher for beds 

which dip into the geophone. The transformation to zero offset can be 

thought of as a procedure which projects this ray density onto an evenly 

sampled zero offset trace spacing. Figure 3.5 illustrates the zero 

offset geometry, and associated zero offset rays. The ray density of 

Figure 3.4 is mapped to the ray density of Figure 3.5. An uneven ray 

density in the original recording will evidence itself as a bias in the 

zero offset data. Therefore, the asymmetric operator tries to 

compensate for the inherent asymmetry of the original rcording. 

As previously discussed in Chapter 2, the determinant |r| has the 

form: 
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h (x,t) = det | — Vo . (3.4) 

  

The magnitude of this determinant |h| is a function of the quantity 

0V¢/at, which is simply the rate of change of traveltime with respect to 

change in the receiver position. Figure 3.6 graphs this rate of change 

for a common shot configuration. For several ‘subsurface points, the 

change in the gradient of the phase with changing receiver coordinates 

is illustrated. With common shot data, the change in Vg is equal to the 

change in t,- Comparing Fig. 3.6 with Fig. 3.4, we see that this rate 

of change of the ray with respect to the receiver position is directly 

related to the ray density. They are a measure of the same quantity — 

the density of subsurface coverage. At subsurface points where dV9/dé 

is low (i.e., the ray position changes slowly with change in receiver 

position), the ray density is high. At subsurface points where dV9/dE 

is high (i.e., the ray position changes rapidly with change in receiver 

position), the ray density is low. The determinant [n(x.€) | attempts to 

compensate for this phenomenon such that the resultant inversion (or, 

equivalently, zero offset data) does not mirror this bias. Thus, 

jh(x,&) | can be thought of as a wave-consistent "fold" compensator. 
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This is the reason for the asymmetry of the common shot operator. The 

common receiver operator has a similar asymmetry with amplitudes higher 

on the side of the shot. 

One might wonder if the asymmetry of the operator violates 

reciprocity. Reciprocity states that there is no change in the data if 

we interchange source and receiver. The operators pictured in Fig. 3 do 

not violate reciprocity. Recall that this asymmetry is anticipating 

that there will be a sum over the data. Although viewed independently, 

reciprocity seems to be an issue, taken in the context of the sum over 

surface data, it is not violated. 

The common shot operator is the operator which gives the best 

estimate of zero offset data from a given shot record. [It is not the 

operator which would be appropriate in stacking the data. As stated 

above, the common receiver operator has equal but opposite asymmetry. 

Since a recorded seismic survey can be expressed as either common shot 

or common receiver data, to stack with either the common shot or common 

receiver operators is to use a different operator depending upon the 

sorting of the input data! We do not advocate such an approach. 

Bleistein and Jorden (1987) give an inversion theory appropriate 

for stacking. There they develop a criteria for stacking which demands 

that a stack with a common shot operator must equal a comparable stack 

with a common geophone operator. The result is an averaged operator 

which is suitable for stacking. The operator is symmetric. 

The raypath density discussion of the previous paragraphs also 
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applies to the common offset implementation of Eq.(3.2). In common 

offset geometry, the ray density changes as a function of the dip. As 

in the common shot case, the determinant n(x, &) | compensates for the 

uneven ray density. However, in the common offset implementation the 

operator is symmetric but has amplitudes which vary with dip (i.e., 

which vary along the limbs of the operator). 

Figures 3.7a and 3.7b compare the Berg operator with the common 

offset inversion-based operator. As expected, the inversion-based 

operator applies a higher relative weight to the limbs of the operator 

(the higher dips) than does the Berg algorithm. An impulse on a 

constant offset section could come from a reflector of arbitrary dip. 

The inversion-based operator tells us that, for a fixed common offset 

traveltime, the flat beds received a higher ray density than the dipping 

beds. Since the reflections from dipping beds originate at shallower 

depths than contemporaneous flat reflections, a review of Fig. 3.6 

confirms this to be true. Once again, the determinant jn(x,&) | is 

acting as a wave-consistent "fold" compensator. 

"Bold" as commonly defined is a zero-dip number (i.e., number of 

common midpoints). The inversion theory of Chapter 2 extends the 

concept of fold to more realistic geometries. The operators of 

Figs. 3.3 and 3.7 incorporate this "fold” compensation. 

Note the behavior of the amplitudes at the edges of the limbs of 

the operator (the 90° point). The Berg algorithm truncates abruptly. 

To compensate for this phenomena, a tapering operator is often applied 
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to the impulse response. The TZO algorithm naturally tapers at the edge 

of the operator. 

3.4 Processing Applications 

Applications for the algorithm defined by Eq.(3.2) fall into two 

major categories - prestack and stacking. This section will discuss two 

prestack applications - velocity analysis and amplitude versus offset 

analysis. 

As stated previously, the stacking process has the effect of 

summing over the angularly dependent (i.e., offset dependent) reflection 

coefficients. The result is a loss of meaningful amplitude information. 

Since stacked data has dubious amplitudes, the best measure for stack 

quality is the quality of the resultant image. Conversely, since 

prestack data has the potential of preserving amplitude information, the 

best measure for a prestack algorithm should be quality (and 

consistency) of the data, as well as the behavior of the amplitudes. 

The operator of Eq.(3.2) (here and throughout we will occasionally 

refer to this operator as the TZO operator, TZO meaning Transformation 

to Zero Offset) can be cast in the time domain by inverse Fourier 

transforming over the frequency variable, yn (Appendix A). The resultant 

operator has a complicated amplitude term, but a traveltime relationship 

which is equal to NMO + DMO when v, equals vy (see Appendix D for 

proof). 

The operators displayed in the previous section were valid for dips 
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ranging from +/- 90 degrees, As a practical matter, it is often 

advantageous to limit the operator to a specified range of dips. This 

amounts to truncating the impulse response. Appendix E details the 

means by which the dip limits are defined. 

Another practical matter in processing is the domain of application 

of the dip-moveout operator. An (x,t) domain algorithm offers the 

potential to read in each trace and map it to the domain of zero offset 

traces it affects. In this case, the domain of zero offset traces are 

those traces which lie between the surface locations of the shot and 

geophone. As each trace is read, it is spread along the impulse 

response corresponding to the geometry of that trace. The output data 

can be constructed from the input data one trace at a time, eliminating 

the need to sort. 

3.4.1 Velocity Analysis 

Several goals guide the formulation of the velocity analysis 

application. First and foremost, we would like a velocity analysis 

which has the potential to estimate the dip-independent velocities. 

Secondly, we would like the data to be processed in shot order, 

eliminating the need to sort to common-midpoint. Thirdly, we would like 

the ability to display the velocity analysis in both a true amplitude 

fashion and a semblance display. 

The stationary phase evaluation of Eq.(3.1) dictates that the 

output trace must lie between the location of the shot and geophone on 
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the line connecting them. This is nothing more than a restatement of the 

fact that the dip moveout impulse response is an ellipse with horizontal 

axis equal to the offset - all the output traces lie between the shot 

and geophone. This is the domain of influence of a given input trace. 

Likewise, one can define the domain of influence for a given shot 

record. A shot record (here we are considering off-end shooting) will 

contribute to zero offset traces which lie between the shot and the far 

offset. 

Figure 3.8 shows the domains of influence of a set of shot records. 

Each shot contributes to the shaded zone of zero offset data. Figure 

3.9 shows the same figure, but with a location x, identified. x, is a 

location for which we might wish to do velocity analysis. Note that 

each of the shots of Figs. 3.8 and 3.9 contributes to the zero offset 

location x,- That is, for n input shots, there will be n different 

contributing traces to the location x, - one from each shot. If the 

velocity is correct, each of the n traces should be identical, or nearly 

so. If the velocity is incorrect the n traces should differ. 

In the shot domain velocity analysis, the transformation to zero 

offset is formulated using the common shot operator (Fig. 3.3). The 

correct velocity is that velocity for which the various traces (one from 

each shot) are identical. 

Figure 3.10 shows a model on which this velocity analysis is 

demonstrated. The model contains six layers with crossing and 

conflicting dips. The modeling algorithm is a constant 
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Kirchhoff integral code, with a velocity of 8,000 ft./sec. Within the 

confines of the constant velocity assumption, the fact that the layers 

cross is a geometrical artifact (the rays do not bend at the 

interfaces). The modeling geometry consisted of 25 split spread shot 

records. There are 96 channels per shot, with a near offset of 100 ft. 

and a far offset of 4,800 ft. (receiver interval 100 ft.). The first 

shot was at the location marked "S1", the last shot is at the location 

marked "S82", The shot interval is 200 ft. 

Figure 3.11 shows a velocity panel for a location midway between 

the first and last shot (marked x, on Fig. 3.10). As velocity is 

varied, each of the 25 traces contributing to the given location (one 

trace for each of the 25 shots) are plotted side by side. Note that the 

best agreement between the contributions from different shots occurs at 

the model velocity of 8,000 ft/sec. This analysis estimated the same 

velocity for both the dipping and flat beds. It is a dip-independent 

velocity analysis which processes the data in shot order without 

sorting. 

The data in the following examples are from a seismic line acquired 

in the vicinity of a Gulf of Mexico salt dome. These data were 

generously provided by Golden Geophysical and Anadarko Pretroleum. 

Figure 3.12 shows a near trace display. The offset is 1,056 ft. 

The data were shot from left to right, with a 120 channel cable and a 

receiver interval of 82 ft. The shot interval was also 82 ft., 

resulting in 60 fold data. 
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Because of the volume of data involved in this dataset, it was more 

efficient to scan over velocity functions rather than over constant 

velocity panels. Linear velocity functions were defined by an intercept 

and a slope (i.e., v = v, + kt). Both the intercept and the slope were 

incremented in the velocity scans. For each velocity function, the 

separate contributions to the zero offset location from each shot were 

saved and plotted side by side. Each trace, therefore, represents a sum 

over geophones for each shot record. The correct velocity was 

determined by agreement (i.e., horizontal alignment) of zero offset 

traces generated from different shots. 

The velocity analyses in the following examples correspond to the 

location marked x, on the near trace display of Fig. 3.12. Figure 3.13 

shows a comparison between the Berg algorithm and the TZO algorithm for 

a sample velocity function (v = 5000 + 375t). As before, the figure 

displays the various contributing traces from each shot plotted side by 

side. This velocity function was too slow for all but the most shallow 

data. The traces generated from the different shots do not agree 

- they ‘smile up’ toward those shots whose contributions are 

predominantly far offset traces. 

Figures 3.14a through 3.14c show enlargements of the data in 

Fig. 3.13. The data for the TZO panel is superior, particularly in 

Figs. 3.14b and 3.14c. However, both algorithms have done a good job. 

Recall that the traveltime of the algorithms is identical. The 

differences, therefore, will be in coherency and amplitude ‘quality’. 
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Fig. 3.15 is a similar comparison for a faster velocity function 

(v = 5600 + 1050t). As demonstrated by the horizontal alignment of 

events, this velocity function is quite good for much of the data 

(though too fast for the shallow data). Figs. 3.16a through 3.16c show 

an enlargement of the data in Fig. 3.15. 

Fig. 3.17 is a comparison for a velocity function which is too fast 

for all but the deepest data (v = 6000 + 1500t). The traces ‘frown’ 

towards the traces from shots which contributed predominantly far 

offsets. Figs. 3.18a through 3.18c are enlargements of the data in 

Fig. 3.17. 

Finally, Fig. 3.19 shows a comparison of semblance displays from 

the velocity panels of the two algorithms. Both semblance panels give 

good definition of the velocity spectra (Cook and Taner (1969). Douze 

and Laster (1979), Garotta and Michon (1967), Neidell and Taner (1971), 

Taner and Koehler (1969)). The TZO semblance display is marginally 

better for the shallow data. 

There is a peculiar packet of energy on the semblance displays at 

2.1 seconds. This packet has a velocity slower than the general trend. 

This is energy off the flank of the dome. Even though this analysis is 

designed to estimate the dip independent velocities, it has somehow 

failed to give the same velocity for the dome reflection and 

contemporaneous flat reflections. This is due to a failure of the 

constant velocity algorithm to properly handle a layered earth. The 

slower velocity is, indeed, the dip independent velocity for the dome 
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reflection (RMS velocity), but it is occurring at a time much later than 

comparable RMS velocities. The angled raypaths off the dome have 

traveled through a slower velocity than the raypaths for flat events 

arriving at the same time. An algorithm designed for a depth dependent 

velocity field is required to properly handle the reflection off the 

dome. 

Dip moveout is an offset dependent operation. Since a common shot 

formulation represents a stack over offset, common shot is a poor choice 

of domains in which to compare the performance of dip moveout 

algorithms. The natural domain of comparison is offset. 

3.4.2 Amplitude vs. offset. 

Much attention has been paid in recent years to the variation of 

seismic amplitudes with offset. These variations have been used as a 

means for direct detection of hydrocarbons. In the presence of 

structure, one would like to be assured that the comparison of 

amplitudes is made for a common reflection point. This often requires 

dip moveout. 

The role of dip moveout in an amplitude offset processing flow is 

ill-defined. In particular, since dip moveout is not wave equation 

based, and has amplitude factors derived solely from a _ traveltime 

Jacobian, one would be wise to be suspicious of the resultant amplitudes 

after dip moveout processing. This is not to say that the resultant 

amplitudes are unreliable, but rather to say that there is no basis upon 
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which to judge them. 

The TZO algorithm of Eq.(3.2) addresses the question of amplitudes 

rigorously within the framework of the acoustic wave equation. We 

would, therefore, expect it to produce more reliable amplitudes than 

conventional dip moveout. 

The following examples are from the location marked x, on Fig. 3.12 

(the same location as the velocity analysis of the previous section). 

The data affecting this location were processed to zero offset. The 

contributions from the various offsets were saved and plotted side by 

side for comparison. 

This type of analysis suggests an advantage of an (x,t) domain 

algorithm. As stated previously, the data are processed in trace 

sequential order. Each trace is read and then spread over the domain of 

zero offset traces affected by that trace. For a given input trace, 

isolating a particular output trace makes the transformation to zero 

offset a one to one mapping. That is, instead of spreading the input 

trace over the entire impulse response, one can map the input trace only 

to that part of the impulse response corresponding to the desired output 

location. This is in stark contrast to an (f,k) algorithm, which would 

need to process all the common offset panels in order to generate the 

contributions from each offset at a particular point. 

Figure 3.20 shows an offset comparison for the Berg and TZO 

algorithms. On this display the offset increases from left to right. 

The near offset is 1056 ft. The far offset is 10814 ft. Each trace is 
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the contribution to the location x, from each offset. For the TZO 

displays, the common offset operator (Fig. 3.7) was used. 

The velocity function at this location was picked from the 

semblance analysis. The extent to which events align is the extent to 

which the velocity is correct. Misalignment is caused by a combination 

of bad picking and the failure of a constant velocity algorithm to 

handle a variable velocity media. For example, the frowning events just 

below the 2.0 second timing line are reflections off the flank of the 

dome. These arrive at a slower velocity, as discussed in the previous 

section. 

Figs. 3.21a through 3.21c are enlargements of Fig. 3.20. Note that 

the TZO algorithm has produced events which have overall better 

coherency. The amplitudes also show a slightly different distribution 

between the outputs of the two algorithms. It would be foolish to claim 

that one is wunequivocably ‘right’. The TZO algorithm, however, does 

address the question of amplitudes. Overall, it has produced superior 

results. 

3.5 Stacking 

Certainly no discussion on dip moveout would be complete without 

some attention paid to stacking. As we have seen previously, the 

inversion theory upon which this thesis is based is a pre~stack theory. 

The inversion estimates the angularly dependent reflection coefficients 

(or, equivalently, pertubation in velocity). A stack over offset is, 

therefore, a stack over these offset dependent reflection coefficients. 
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Therefore, the process of stacking degrades much of the amplitude 

information which this theory was designed to preserve. 

Stacking is a necessity. The relevant question here is which is 

the appropriate stacking operator to use. We have seen operators 

derived for common shot (and , equivalently, common geophone) and for 

common offset. Neither of these derivations discusses the justification 

for summing over shots or summing over offsets. 

Bleistein and Jorden (1987) discuss a theory for seismic stacking 

which is based upon a weighted average of the various inversions. That 

is, the common shot inversions and the common receiver inversions are 

weighted such that the net operator is symmetric and produces an 

averaged value of the reflectivity. A similar justification can be 

offered for using the common offset operator to stack. With the caution 

that the amplitudes of the output are numerically dubious, one can 

proceed with a stack over offsets. The resultant stack is an average of 

a wave-equation based procedure, though the numerical meaning of the 

average is now a weighted sum over angularly dependent reflection 

coefficients. 

Figure 3.22 shows the near trace from the Gulf of Mexico data (near 

offset is 1056ft.). The zone of stacked data is indicated on the 

figure. (Practical limitations on computer time prohibited the stacking 

of the entire line). 

Figure 3.23 shows a comparison of the stacks from the Berg 

algorithm and from the TZO common offset algorithm. The light 
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amplitudes in the shallow data are a result of the drop in fold. The 

stack routine did not compensate for the fold loss at the surface. 

Figures 3.24a through 3.24c show enlargements of the data in Figure 

3.23 for three time windows (0-1s, 1-2s, and 2-3s, respectively). A 

careful inspection of the coherency and overall quality of the events 

shows that the TZO algorithm has produced a superior stack. For 

example, note the horizontal (or nearly so) events in Figure 3.24c. The 

TZO stack is noticeably cleaner. 

Arguably, the differences between the two algorithms are small. 

This is to be expected since the traveltime of the mapping is the same 

for both algorithms. The differences are to be found in _ subtle 

amplitude and coherency variations. One is a wave equation based 

procedure, the other is not. 

3.6 When v, Is Not Equal To v,, 

The TZO formulation separates the two velocities, vg and vm This 

is a constant background’ theory, formulated as a cascaded 

inversion/modeling procedure. The inversion produces an estimate of the 

perturbation in velocity. This is a perturbation within some background 

velocity field (Vim) Alternatively, the algorithm could have been 

formulated about an inversion scheme which inverted for reflectivity. 

In this case, the output would be reflection coefficients in some 

constant velocity medium (again, Vin) « Once the perturbation or 

reflectivity is found, there is no a priori reason to demand that the 
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forward model be generated with the same v,. One can choose a new 

velocity v,. That is, from the same depth model (perturbation or 

reflectivity) one can generate any time model (zero offset data). 

This degree of freedom is afforded because the algorithms are 

constant velocity algorithms. That is, the rays do not bend at changes 

in the reflectivity or perturbation. The effect of letting v, be 

different from v, is to produce an algorithm which not only transforms 

the recording geometry to zero offset, but also transforms the velocity 

field from v, to vy. 

In general, one would like to keep vy equal to vg. There are, 

however, cases where it is useful to let them vary independently. One 

such case is in velocity analysis. Once velocities have been picked, 

they can be verified through a (Vo Vay) analysis. By generating a zero 

offset section with v, not equal to v,,» errors in velocity picks show up 

as radical changes in shape of reflectors. Comparing a zero offset 

section with vg equal to v, (i.e., NMO + DMO) to one where v, differs 

from Vine @ny error in velocity shows up as a change in shape of 

reflectors between the two sections. When the velocity is correct, 

reflectors are positioned at a different time, but retain the same 

relative shape. 

Since the zero offset trace spacing is a parameter at the users 

discretion, these zero offset ‘check-sections’ can be generated with a 

greatly relaxed trace spacing. In this way errors in velocity can be 

flagged and the velocity spectrum repicked. 
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3.7 Two or Three Dimensions? 

Much of the justification for the particular choices of the 

inversion and modeling operators hinged upon the fact that they needed 

to be three-dimensional operators. This was a consequence of the fact 

that dip moveout is a three-dimensional problem. All reflections 

recorded by a shot-geophone pair, whether in-plane or out-of-plane, have 

equivalent zero offset projections which lie between the shot and 

geophone. This suggests that by processing only lines of data, the full 

three~dimensional variation of the subsurface can be preserved. 

The derivation for the algorithm of £q.(3.2) was for a 

2.5-dimensional earth. This was defined to be an earth which did not 

vary in the off-line direction (i.e., recording along true dip lines). 

Thus, the wave propagation is allowed to be three dimensional, but the 

reflection points all lie in-plane. The convenience of the 2.5D 

assumption is in computational simplicity. The computations of Appendix 

A become straightforward because the out-of-plane receiver integral, €., 

and the out-of-plane subsurface integral, y, can be done by stationary 

phase. 

With full three-dimensional variations, the stationary phase 

analysis in €, and y is not justifiable. There are no critical points 

in the off-line variables. One must search for alternative means to 

evaluate the cascaded system of Eq. 3.1. 

Appendix B outlines a possible three-dimensional solution path. 
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The solution involves uniform expansions of integrals along the lines 

suggested by Bleistein and Handelsman (1967). This three-dimensional 

implementation is not carried to completion, and Appendix B is presented 

solely as a suggestion for further research. 

The three-dimensional solution suggests that there are significant 

offline contributions from the dip-movement operator. That is, not only 

does a recorded trace affect zero offset traces lying between the shot 

and geophone, but it also has a nonnegligible contribution to nearby 

offline zero offset traces. In hindsight, perhaps this should not be 

surprising. Dip moveout maps a specular reflection to an equivalent 

zero offset specular reflection. When the offset and zero offset 

reflection points do not exactly coincide in the subsurface (but are 

near one another), the Fresnel zones might overlap in a geometrical 

arrangement which is more complicated than the Fresnel zone 

considerations of migration. We can consider an offset reflection point 

as having a contribution to a zero offset reflection point if their 

respective Fresnel zones overlap. Thus, the reflection points might be 

separated by two Fresnel zones and still have some significant 

interaction in the mapping from offset to zero offset (Fig. 3.25). The 

three-dimensional solution of Appendix B might, indeed, be revealing 

just this phenomena. 

The mathematics of the enclosed methodology is involved and 

lengthy. However, if treated properly, the physics reveals itself 

through the mathematics in an elegant and logical fashion. Thus, in the 

- 59 -



2.5D solution, the mathematics dictated that the offset trace lie 

between the shot and geophone. Likewise, the mathematics revealed the 

particular location of the reflection points corresponding to zero 

offset traces. These remarks are made solely as a motivation for 

pursuing the mathematics of the three-dimensional solution. Deviations 

between the mathematical principles and intuition (i.e., the presence of 

significant off-line contributions) might, indeed, require a 

readjustment of one’s intuition. 

3.8 Cost 

In preparing the applications for this thesis, little attention has 

been given to optimization. Therefore, these remarks are to be taken as 

preliminary. 

The applications shown herein were developed on a Gould 9750 

computer which lacked virtual memory and an array processor. The 

inversion-based algorithm ran approximately twice as long as the Berg 

algorithm. However, this is an unfair comparison. The inversion-based 

algorithm has a much more complicated amplitude function than the Berg 

algorithm. Lacking virtual memory, these amplitude factors were 

calculated for each input trace. This involved a high degree of 

redundancy of calculations. On a virtual memory installation, these 

factors could be calculated once for the entire dataset and read from 

look-up tables. With virtual memory the execution times of the 

inversion-based and Berg algorithms should be approximately equal. 
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CONCLUSIONS 

Conventional dip moveout algorithms are derived from traveltime 

relationships between offset recorded data and their equivalent zero 

offset reflections. However, to consider only traveltime arguments is 

to leave a number of issues unaddressed. In particular, one would like 

an algorithm based on the wave equation, not solely on traveltime 

considerations. 

A wave equation based algorithm has been derived by treating the 

process of transforming seismic data to zero offset as a cascaded 

inversion/modeling procedure. The output from a seismic inversion is 

cascaded as input to a forward modeling algorithm. The logic of this 

procedure demands an inversion rather than a migration, since the 

modeling algorithm requires particular estimates of the earth 

parameters. Furthermore, the richness of the inversion theory has been 

shown to offer a geometric versatilty, as well as the ability to 

carefully address the issue of amplitude variations along the limbs of 

the operator. 

Amplitude variations along the limbs of the dip moveout operator 

have traditionally been handled in a makeshift fashion, The operator 

derived in this thesis has amplitude distributions which differ markedly 

from those of conventional dip moveout. The process of transforming 

recorded data to zero offset is a process which projects an uneven ray 

density (finite offset) to an even ray density (zero offset). The 
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amplitudes along the Limbs of the operator account for these variations. 

Heuristically, the resultant operator incorporates a wave-equation 

consistent "fold compensation.” The result is amplitudes which are more 

reliable than those from conventional dip moveout. 

Applications for a wave equation based dip moveout have been shown 

for velocity analysis and for amplitude offset processing. In both 

cases the results are similar to conventional dip moveout. The 

differences are in fine variations in data character and quality. This 

is not surprising since the traveltime relationships of both algorithms 

are the same. 
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APPENDIX A: 

2.5D TZO DERIVATION 

This appendix will detail the 2.5~dimensional derivation of the 

transformation to zero offset (TZO). By 2.5-dimensional, we mean a 

three-dimensional subsurface which varies in only two dimensions. This 

would be equivalent to acquisition along a true dip line. Although the 

geology is invariant in the out-of-plane dimension (strike), the wave 

propagation is still three-dimensional and is treated as such. That is, 

we use the full three-dimensional wave equation for both inversion and 

forward modeling. The out-of-plane integrals are done analytically. 

Equation (1.24) will serve as a starting point. It arose from 

cascading a three-dimensional inversion operator into a 

three-dimensional forward modeling operator: 

  

A’ (x) 9 i, (x»8,) v. 

D (w,& ) = wo dx . = 
oO 0 2 3 

v5 (2n) 

(A-1) 

-ing (x,&) 
h (x,€) e s D (n.t) 2 

- |} ae | dn A, GA, (x) 

(See Glossary for definition of symbols.) 

Before beginning with the solution, a few observations on Eq.(A-1) 

are in order. Counting the inverse Fourier transform over w, Eq. (A-1) 

- 67 -



is a seven-fold integral system. The input to this integral system are 

the recorded data. The output is a zero offset trace at the specified 

location, E, = (Eo4»&),)- Note that three of the integrals involve 

subsurface variables, x = (x,y,z). Since neither the input data nor the 

output data are explicit functions of these subsurface variables, these 

integrals must be reduced analytically before Eq.(A-1) can be cast in a 

usable format. 

Furthermore, Eq.(A-1) contains a double integral over receivers, 

& = (€,,€,). This double integral is a natural consequence of a 

three~dimensional inversion algorithm, However, since we are treating 

the subsurface as 2.5-dimensional, the out-of-plane receiver integral 

can be done analytically. The acquisition envisioned here is one where 

parallel lines of data are recorded. Since these parallel lines of data 

are all dip lines over a strike-invariant earth, adjacent lines of data 

are identical. This invariance of adjacent data will serve as the 

justification for doing the €, (out-of-plane receivers) integral by 

stationary phase. 

Stationary phase (Appendix C) is a high frequency approximation. 

By high frequency, we mean that the wavelengths are small compared to 

typical scales of the problem. Thus, if f is temporal frequency and T 

is time, the high frequency requirement is that (Bleistein, 1984): 

2nfT>>1 
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In practice, a value of 2nfT greater than 3 is more than adequate. 

In this context, seismic data may be considered high frequency and the 

stationary phase approximation is justified. 

The solution begins by inverse Fourier transforming Eq.(A-1) with 

respect to the output frequency, w. Under this transformation, the w” 

term becomes ~3*/a,*. The expfiwg,] becomes a delta function with 

respect to output time, t,: 

  

a Vm ‘ 2 
Di (t, +8) = - Con)? 7, dyn F(n) d & Di (8) 

(A-2) 

Al (x) [h(x,&) | -ing (x,€) 
3 
BG) AG) S(t -9) (x.8)) e . dx 

Here we have taken advantage of the fact that v, and v, are m 

constants by pulling them out of the integrals. 

Equation (A-2) expresses the output trace as a function of zero 

offset location, €,, and zero offset output time, ty. Eq.(A-2) can be 

rewritten in order to isolate the x dependency. Since the zero offset 

phase term, ?,» is a function of x, it too must be grouped along with 

the x-dependent terms: 
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a? 

t 
  

2 
Vv 

—_- — fn 2 
D, (t,»&,) ” z= | dy F(n) d E D (n,€&) * I > (A-3) 

(2n)? 

where I is given by 

A, (x) [n(x,&) | ~ing (x, 8) 

AG) AG) 8(t,-9,(x.8,)) © . (A-4) 

The 8(t,-g,) factor can be used to do one of the subsurface 

integrals in I by taking advantage of the identity: 

8(z-z) 

| a6, ° 

0 Zz ZZ, 

b(t -9 (x,8,)) es (A-5) 

  

In order to use this identity, it must first be noted that the zero 

offset phase, 9,, is twice the distance (divided by velocity v,) from 

the zero offset location to the reflection point divided by the 

velocity, v,. Given a zero offset velocity, vo, and an output zero 

offset time, t,, this distance can be expressed directly: 
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This allows the specific evaluation of the partial derivative 

required by Eq.(A-5): 

2 
Z 

= lz: 2 . (A-7) 

v5 ty 
Z= Z 

99, 

dz 
  

    

The final form of the substitution suggested by Eq.(A-5) is: 

Vo ° ‘ 
| t,-¢,(x,&,) | = &(2-z)) + z . (A-8) 

Under this substitution, the z integral of Eq.(A-4) can be 

evaluated directly. After this evaluation, I becomes: 

2 2 

A (x) |h (x,&)| Vv t : 
= oN Pe] eine (x8) _ I= dxdy Kz) res) | 5 | z, e ° (A-9) 

where it is understood that x = (x,y,z,)- 
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Here the z dependency in both the amplitude and phase terms of 

Eq.(A-9) are now expressed as functions of z, as given above. This 

makes the resultant phase function 9 a great deal more complicated, for 

it is now a phase function which is a coupled version of the original 

zero offset phase, 9, and the prestack inversion phase, ¢: 

pint) -s[o, +o, | 
m 

  

  

2 
vit 

- oo = : | 2 | + (Ea bog) (En thon 29) + CE og) (E48 4722) (A-10) 

  

  

vt 
0-0 

* 2 + (Ea bon) (Ete 52) + (ES o3) (b54b 5572) ° 

The next integral to be evaluated will be the out-of-plane receiver 

integral, €,. Recall that the 2.5D assumption justifiies the evaluation 

of ths integral by stationary phase. Isolating the receiver integrals, 

the zero offset formula can be written as: 
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_ t 6 1 
Di (t.&) = ; = | dn F() dxdy - > ° JI. (A-11) 

(27) 4 0 

Here J is now the isolation of the & = (€,,€,) dependence: 

A’ (x) [h(x,8) | ing (x,8) 
2 

— 

J = dvé AG) aay 8 e . (A-12) 

The stationary point of this integral with respect to €, is found 

by setting the derivative of the phase equal to zero (see Appendix C for 

a review of the stationary phase formalism): 

1 
— | ——— + 
Vin P. Py 

28 - 2y 28, - 2y 
————|=0 . (A~13) 

The critical point is, therefore: 

f,7Y 

The stationary point with respect to &, are those receiver locations 

which lie directly in line with the reflection point y. This is 

consistent with the 2.5D assumption. The second derivative of the phase 

is also required, along with its sign (sgng”): 
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2 2 2 

a¢ 1} 2 (28 -2y) 2 (28 -2y) 

  
  

ae? = | 7? 3 
e. Vm | Ps P. P, P. 

(A-14) 

a9. 2/1 1 a°g 
3 =—]|—-+t— sen—S=+1 . 

a 2b, Tyee, Ym LPs Pp g 

Using the stationary phase formula Eq.(C-3), J can be expressed 

asymptotically as: 

2 

| Aj (x) |b (x,8) | 
T~ | dé, 

anv 

A (x) A (x) D(n.&) 1 1 rae Tel Peg 

(A-15) 

* exp | - -ing(x,E&) - = senn | . 

Now the full formula can be expressed as: 

| |" F(n) [- 
D,(t,.&) =- dy exp = senn | 

ere aan tap? 
(A-16) 

. | dé. D,(n,8) “LL. 

Here L isolates the x = (x,y) dependency: 
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1 Al(x) [h(x,&) | 

v || oxy 2 Gy AG ts 

(A-17) 

- exp | - ing(x.e) | 

The 2.5D assumption also justifies the evaluation of the y-integral 

by stationary phase. Since the subsurface is slowly varying (i.e., 

invariant with respect to y), the stationary phase treatment is 

reasonable. This will involve the evaluation of derivatives similar to 

those above (Eq. A-13 and A-14). After the &, stationary phase, ¢ is 

given by 

1 
p(x,€) = ve, (p+ p,) 

  

-[ye,, } + fetes | | eyat Serre | a8     
  

-[ye,, J+ | Basten lI Beat boa72 | |     
The y-critical point is found by differentiating this phase with 

respect to y: 
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a9 1 2(& - y) 2(E.- y) 
= 02 + °? =o . (A-19) 
ay Vn P, P, 

The critical point is, therefore: 

Together with Eq.(A-13), the stationary points dictate that, for a 

given &), output coordinate, the leading order contribution comes from 

those receivers inline with €,,, with all reflection points also 

in-line. 

Again, the second derivative and its sign are also required: 

  

  
  

2 2 

a 9 1 2 4(e oo y) 2 4(e - y) 

3 > 3 ~—*+t 3 
y Ym p. P. P, P 

(A-20) 

a79 2f1 1 ae. 

2 - "3 15.7 sen te a a 
y cs y 

Upon stationary phase evaluation of the y integral, L becomes 
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1 Ae (x) |h(x,&) | a 
L~ dx —— ow 

zy ASG) AG) i lan{ 2+ + 

(A-21) 

* exp [ -ing (x,&) + i sen n | . 

The reader is reminded that x is taken to mean x = (x,y,,7z9). 

This remaining x integral is also a candidate for stationary phase. 

However, in this case the meaning of the stationary point is somewhat 

different. The justification of the y and €, stationary phase 

calculations relied upon the 2.5D assumptions. Here, however, the 

subsurface varies as a function of x. The x stationary phase 

calculation finds the specular reflection point. Given a particular 

output location, &, and an output time, t,, there exists a unique 

specular reflection from a shot and geophone pair which has an 

equivalent zero offset reflection at the point x,.- (Appendix E proves 

this by actually finding the coordinates of this specular reflection for 

any given €,, Eg Ey, and t,-) 

As before, the critical point is found by setting the x derivative 

of the phase g to zero. The particular form of the phase at this point 

is given by: 
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\ 

Taking a derivative with respect to x gives: 

aa
 " 

ft 0 . (A-23) 

Before proceeding with the evaluation of Eq.(A-23), note that since 

the denominator of each term is intrinsically a positive quantity, the 

sign of the numerators must be opposite 

sgn (on & ) =- sgn (boa a (A-24) 
o1 

This relationship states that the zero offset output point must lie 

between the shot and geophone in order for the stationary phase 

condition to be satisfied. Thus, all reflections from a given input 
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trace map to zero offset traces which lie between the shot and geophone 

(Fig.°A-1). This is a restatement of the dip-moveout impulse response 

geometry. The DMO impulse response is an ellipse with a horizontal axis 

equal to the offset (i.e., the DMO impulse response maps a given trace 

to zero offset traces which all lie between the shot and geophone). 

The algebra of solving Eq.(A-23) for the stationary point, x,» is 

straightforward but lengthy. The result is: 

2 

Voto 

5 (+ ES 7 28) 

= & + . (A-25) 
*e ~ %e ae-t)(E-E) 

s 0 g 0 

  

  

The subscripts have been dropped with the understanding that €,, 

bee and € are all in-line. 

The second derivative of » with respect to x is: 

  

2 2 

ap __ 4 (BF) a 7 Be) 

ae |p P. Pe 

(A-26) 

2 

sgn of = -1 . 
Ox 

The subsurface integral L is asymptotically equal to: 
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2 -1 
1 Aj (x) [h(x 8) | 1 1 | 1 

L Nee —_ > CO 

A(x) A(x) p p Yin s g s g 2 Inf 

As before, x = (xosVogrZo)- Putting all this together gives the 

(A-27) 

2 

ag 
ax 

~-1/2 

| . exp| —ing(x,&) + = span ] . 
    

transformation to zero offset as a single integral over the recorded 

shot records: 

  

a? v 1/2 dn F(n) exp [+z sgn n | 

Di (t,+&,) = 3/2 0 = 3/2 

(2m) 16 In] 

2 -1 ~1/2 
a Aj(x) [h(x,&)| [1 . 1 | 3? a2) 

gz A (x):A (x) | p p 2 
o's 2 Ss g ax     

D(n,E&) + exp | -ing (x,&) ] . 

The evaluation of the second time derivative, a7*p/at’, is done by 
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considering only the leading order term. That is, since the phase, 9? 

is a function of time, the evaluation of the time derivative will give 

rise to several terms which can be expressed a power series in the input 

frequency variable, ‘y To leading order: 

2 
_a2 _ 2 ag _ 
aa) | 32 . (A-29) 

Therefore, the transformation to zero offset is given by: 

1/2 
t Vv 

i D, (t,»&) = Fe dy F(y) inp’? exp | 2 sgny ] 
(2x) 16 

- | ae ——————_—— | — + — (A-30) 
g A, (x) A, (x) Pp. 

2 

AQ(x) [axe | fa oa 7 t 
2 1/2 

8 a a
 

  

2 
ax 

D(y,.&) exp | -ing(x,&) | . 

The specific form of the various factors is: 
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ag 1 |e, - &)° | 
3 

ox n p P. 

The specific form of |n(x,&) | depends upon the geometry. Appendix 

G gives |n| for common shot. Appendix H gives jn | for common offset. 

In these formulations B, the angle between p, and Pg appears. cosB is 

given by: 

    

2 2 

1 vit (€ +& ~- 2€ 

s P| a 2 — Eee 

  
A*(x) = = 

(4np ) 

  

A (x) A (x) = i 
s & C4np.)(4np,) 

In practice the data are processed as follows. The input shot 

records are read one trace at a time, Fourier transformed, then filtered 

with the filter: 
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Diya 't) = Inj’? exp [ 43 sgun | . 

Those familar with dip moveout will recognize this as_ the 

square-root differentiator which shows up in many time domain DMO 

algorithms. After filtering, traces are inverse Fourier transformed. 

Each trace is then spread out along its impulse response defined by the 

phase function, g. As expressed in Eq.(A-30), the output is an integral 

over the input shot records. Equivalently, each input trace can be 

spread over the time varying impulse response as given by ¢, with the 

amplitude factor dictated by Eq.(A-30). In this fashion, data can be 

processed in trace sequential format. Once each trace has been spread 

along its impulse response (i.e., mapped to all zero offset locations to 

which it contributes) the trace is no longer needed. Sorting and tape 

rewinding are eliminated. 

- 84 -



APPENDIX B: 

3D TZO DERIVATION 

This appendix will outline the full three-dimensional derivation of 

the transformation to zero offset (TZO). The derivation is not carried 

to completion (i.e., an implementable form). This remains a ripe area 

for further research. The solution path presented here differs markedly 

from the 2.5D solution of Appendix A. 

Transforming data to zero offset is fully a three-dimensional 

problem. By processing only lines of data, the full three-dimensional 

variations on the subsurface can be maintained. Thus, two-dimensional 

assumptions are unnecessary in taking recorded data to zero offset. 

These asuumptions are best left for when they are appropriate - after 

stack. 

Figure B-1 illustrates the three-dimensional nature of dip-moveout. 

Two reflected raypaths, are shown. Note that, although the reflection 

points are out-of-plane, the zero offset mapping for these reflections 

lies at a surface point in-line. All reflections, whether in-plane or 

out-of-plane, have equivalent zero offset locations which are between 

the shot and the geophone. 

This is, of course, a ray approximation. In practice there is a 

finite contribution from receivers which are offline. Often this 

offline contribution is assumed to be a sinc-like weighting function. 

The full three-dimensional solution of this appendix offers the 

- 85 -



possibility of defining the offline contribution explicitly. 

In Appendix A, the system of cascaded integrals could be reduced 

utilizing the stationary phase approximation. This is equivalent to 

assuming that parallel lines of recorded data would be identical, and 

that the subsurface did not vary in the out-of-plane direction. This is 

consistent with acquisition along true dip lines. However, the previous 

arguments render this assumption invalid. Alternative techniques must 

be found to evaluate the out-of-plane &, and y integrals. As will be 

shown, the in-plane x integration is still properly handled by 

stationary phase. 

This derivation will be for a 3D common shot acquisition geometry. 

3D common shot is defined by a fixed source point with receivers 

distributed over the acquisition surface (Fig. B-2). Thus, the shot 

coordinates €&. = (€s,,€,,) are constant. The receiver coordinates 

ts = (E gab ya) are the variables of integration. 3D common receiver 

would be defined in a similar fashion. 

3D common offset could be defined by a recording geometry involving 

parallel lines of data. These data may then be written as parallel 

lines of common offsets. The shot coordinate would be Es = (€,-h,é,). 

The receiver coordinate would be es = (€,,+h,&,). The d7& integration 

would then be over a midpoint coordinate — = (&,,&,). 

These remarks are intended to illustrate the generality of the 

theory used herein. The specifics of the geometry are accounted for by 

the form of the determinant jh(x,&) |- Thus, one could handle more 
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realistic 3D marine data by defining an offset vector h = (h,,h,) and 

defining €, and es in terms of midpoint and offset vectors. The theory 

is developed for any geometry. 

The 3D common shot |h(x,&)| is given in Appendix I. It is 

anticipated that the solution path for other geometries (i.e., common 

offset) is very similar to the 3D common shot derivation given here. 

Equation (1.24) will once again serve as a starting point. It is 

the cascaded inversion/modeling system by which recorded data is 

transformed to zero offset: 

  

A? (x) e iug,(x,&,) y 

D (w,&) = wo a’x — . m 

os v? (2x)? 
0 

(B-1) 

-ing(x,&) 
h (x, ) e D (n,&) . 2 

“UPd e | dn yr) 
s & 

(See Glossary for definition of terms.) 

The solution begins along a path identical to Appendix A. Inverse 

Fourier transforming with respect to w, the w” becomes a}. The 

exp(iwg,) becomes a delta function with respect to output time, t,: 
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- a. Vv ? 
t 

2 D,(t,-&,) =~ ope } =| dy F(n) d°& Do (n,8) 

(B-2) 

, Agtx) [p(x 8) | ~ing(x,&) 
. d *"2,@) AG) &(t -g (x8 )) e . 

Here we have assumed that v,, and v, are constant. 

Equation (B-2) expresses the output trace, Do(ty,&)» as a function 

of the zero offset time, t,, and zero offset location, & (as well as 

the variables under the integration). Regrouping Eq.(B-2) in order to 

isolate the x dependency yields: 

  

D, (t, 8) -~ 
% [mn] , 

(2x) Vo 

where I contains the integration involving the subsurface, x: 

Ae (x) |h(x,&) | ~ing (x, 8) 

RY By BUF)? e 
4) 

I = dx 

As in Appendix A, the delta function, 8(t,-¢,), can be used to 

evaluate the z integration by first taking advantage of the 

distributional identity: 
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8(z-z,) 

a6, ° 

dz |z= Zo 

B(t -9 (x,8,)) = (B-5) 

  

The zero offset phase, $,» is simply two-way traveltime from the 

zero offset surface location § to the subsurface reflection point 

x = (x,y,z). This two-way traveltime is t,, the output time. This 

traveltime is equal to twice the distance divided by the velocity v,: 

  

2 

§,(x,8,) t, = + (x-E,,)” + (y-E,,)” + zo 

or: (B-6) 

  

2 

v,t 2 2 
2° | | - (x) - (v8) 

This allows the specific evaluation of the partial derivative 

required by Eq.(B-5): 

og, 

dz 
  

  

vA 

-l2] =. (B-7) 

Z= 2 ° ° 
0 

Again, as in Appendix A, the final form of the substitution 

- 89 -



suggested by Eq. (B-5) is: 

Vv t 

| t,- 6, (x-E,) ] = 8(z-z,) || — . (B-8) 

Once this substitution is made, the z integral can be evaluated by 

means of the delta function. After this evaluation, I becomes: 

I = dxdy 

Ae (x) |h(x,8)| | + J: * <ing, (x,&) ( 
B-9) 

A, “TA (x) A(x) A, (x) 

Here it is understood that x= (x,y,2z,)s % is as given by 

Eq.(B-6). 

The phase functions, 9, and g, are now coupled through the variable 

Zo. After the substitution z= z,, the resultant phase function is 

described by: 
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¢(x,&) a [ », + °, | 

  

  

vt 
p= | | = + (E2800) (E5248 4,729) + (E4784) (85, 48,522) (B-10) 

  

  

vt 

Pe = | | 5 . | + (Ea So) (E,, 4b 5g 2y) + (ES oa) (8,485, 2) ° 

In Appendix A the next step was to evaluate the y and &, integrals 

by stationary phase. This was equivalent to assuming that the data were 

acquired by parallel dip lines. All reflection points originated from 

the plane of the recorded data. For the three-dimensional derivation, 

this is an incorrect assumption. We must allow the subsurface to vary 

arbitrarily. We would, therefore, expect parallel lines of data to vary 

in an unpredictable fashion. Alternative means must be found to 

evaluate the y and €, integrals. 

Note that the form of the phase ¢ is such that when 

bs. = bya = €),, the phase is no longer a function of y. This was 

expressed graphically by Figure B-1. Figure B-1 shows two out-of-plane 

reflection points, as well as their equivalent zero offset rays. The 
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rays from the shot to reflection point, reflection point to geophone, 

and reflection point to zero offset location all lie in a common plane - 

the plane formed by the vectors p, and pg- The relationship between 

these vectors is preserved as they are rotated in or out of the plane of 

recording. As long as the output point & lies between the shot and 

geophone the mapping from finite offset to zero offset is not a function 

of y. The geometry of Figure B-1 can be rotated in- or out-of-plane at 

will without altering the geometrical relationships. 

This is a geometrical description of what is indicated by the form 

of the coupled phase function, 9, in Eq.(B-10). As long as the zero 

offset location lies in-line with the shot and geophone (i.e., 

bon = Ese = Eg) the phase is not a function of y. This suggests that 

there is some pathology regarding the condition &,-&,, that we might 

exploit in the solution. 

At this point one might wonder why we do not simply choose €, = E49, 

and take advantage of the resultant simplifications. The zero offset 

location, & = (&,,&,) is a parameter we are free to choose. For this 

3D case, the €, integration is over a range of &€g, values. We cannot 

fix the condition &, = &,. The stationary phase analysis of the y and 

E, integrals in Appendix A was essentially equivalent to specifying 

E, = &),- However, because of our 2.5D assumptions, this analysis was 

justified on physical principles. Here in the general 3D case, no such 

arguments are at our disposal. 
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This is not just an excercise in abstract mathematics. The 

complications of the 3D solution arise from the physics of the problem. 

For 3D Geometry Fig. B-1 might, indeed be an over simplification. In 

transforming to zero offset the Fresnel zones of the offset and zero 

offset reflections might interact in such a way as to make off-line 

contributions to the integral (i.e., & # €,) non-negligible. 

We will attempt to expand the kernel of the integral about the 

point &, = &,- For convenience, consider a new variable © which 

measures the offline distance of the zero offset point: 

@=€& -€& = 6 bon ° (B-11) 

For common shot geometry the variables of integration are 

B= (8.8) = (Epa ga)> So choosing &, = &), is equivalent to choosing 

Epa = boa: 
Since g. is the integration variable, the expansion about Gea = Eo2 

does nothing to facillitate the simplificatin of the (E527bo2) term in 

Pp, of EFq.(B-10). That is, p, is still a function of y. However, we are 

free to choose the coordinate system. Without loss of generality, we 

can select a coordinate system such that €,, = €,. With this choice 

the y-dependence of Ps vanishes. Therefore, the only y-dependence in ¢ 

is the y-dependence in Pgs 

So, when © = 0, the function ¢ has no y dependence. In fact, when 

@= 0 the entire amplitude term of the integral in Eq.(B-9) has no y 

dependence. Consider an expansion about the point 9 = 0: 
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g(y,0) - gly,0) = Oo . (B-12) 

Although 9 is a function of more than © and y, for notational 

convenience let ¢ be written as g(y,®). Eq.(B-12) is an exact 

expansion, The Q of the right hand side is left undefined in order that 

the expansion be exact. Thus, one might think of Q to be all terms of 

the Taylor series for the expansion about ®= 0. The expansion of 

Eq.(B-12) is exact. 

As we have said, the function ¢(y,0) has no y dependence because of 

the particular form of Eq.(B-10). We can rewrite Eq.(B-9) using the 

substituion of Eq.(B-12) (with the choice of coordinates €,. = &,): 

  

  

  

  

1 
(x,t) = gly,8) = vPs* p,? 

Vat, ° 
Ps = 2 + (8 abo) (b4b 0, 28) (B-13) 

v,t, ° 

Ps ~ 2 + 0(0+28 | -2y) + CE a boa) osteo y 22) ° 

Now consider a substitution of variables from y to 2. The Jacobian 

of this substitution is given dy/89. From Eq.(B-12), it is easier to 

solve for dN/dy. This is given by: 
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aa _ 2 gly,8) - gly,0) 

Oy dy 8 

a 1 9p, 

ay (g(y,8)) = Ody 

o
l
 

Or, in terms of the explcit form of pg: aN/dy is: 

or 

ay. _ os 
aa 2 

It is critical to note that this Jacobian is non-singular at the 

point 6 = 0. This was guaranteed by the form of the expansion about the 

point 9 = 0. 

(B-14) 

(B-15) 

In recasting the y integration in terms of a 2 integration, we must 

address the question of limits of integration. The original problem 

(Eq. (B-1)) was in terms of infinite Limits on the subsurface variables 

x = (x,y,z). However, specifying a zero offset output time naturally 

suggests finite limits to these integrals. Interpreting the original 

zero offset phase as twice the zero offset one-way traveltime (Eq. (B-6)) 
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suggests that for a fixed output time t, the limits cannot be infinite. 

The Limits must be such that the distance from the subsurface point x to 

the output location conforms to the two-way zero offset traveltime t,. 

For a given time t, the maximum offline distance y occurs when the 

reflection point is on the surface (z, = 0). Referring to Eq.(B6), 

these limits are given by: 

  

2 
Ynax = Goe + - (x-g,,) ° (B-16)     

For notational convenience, let the amplitude terms of the 

integrand be given by: 

A(x) [h(x.8) | 
f(x,€.€,) = K, TG) A tx) A Gz) 

(B-17) 

F(x,8,8,) = £(x.8,8,) 32 

Since we will be changing the y integration to an © integration, 

F(x,&,&) has been written to include the Jacobian, dy/aQ. 

It can also be shown that this amplitude term is an explicit 

function of ®, and that it, too, has no y dependence when © = 0. 

Therefore, we can perform a similar expansion of the amplitdue (again, 

we will use F(y,@) as notation for F(x,€,&,)): 
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F(y,6) - F(y,0) = OF, ° (B-18) 

As before, this is an exact expansion. No approximations have been 

made, We can rewrite the integral I of Eq.(B-9) in terms of these 

expansions: 

-in(¢(y,0)+02) 
I= dxdy f(x,€,&) e . (B-19) 

Since g(y,0) has no explicit y-dependence, it can be taken outside 

the y-integral: 

I= | dxe dy £(x,§.8)) e . (B-20) 

Admittedly, the notation is a little sloppy here. In particular, 

it is somewhat confusing to use the notation 9(y,0) and F(y,0) for 

quantities which have no y-dependence. 

Changing the variable of integration to 2 we now use F(x,8,€,) 

(written as F(y,®)). F(y,@) includes the Jacobian of the substitution. 

Here we utilize the expansion of Eq. (B-18): 

- 97 -



-ing(y,0) non 
I= | dx e dw (F(y,0) + OF,) e . (B-21) 

There are really two integrals to evaluate here. Eq.(B-20) can be 

rewritten to isolate the two integrals: 

I= }] dx e (J, + J.) . (B-22) 

J, is given by: 

-i762 
J, = | dQ Fly,0) e . 

1 

(B-23) 

-in6 

= F(y,0) dQ e . 

F(y,0) can be taken out of the integral since it has no y (nor 9) 

dependence. 

J, is given by: 

-in8Q 

J, = |doa OF e . (B-24) 
2 

We will first evaluate J,. J, produces a band-limited delta 

function (a sine function) in the offline variable 9: 
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eq
 Il 2n Fly,0) sinc (n6Q) 

(B-25) 

1 F(y,0) sine 0 

Jn 9 
= 2 

max 

Qnax is defined by Eq.(B-12) at the point y = Yma,y- In order to 

evaluate the behaviour of OQ ,, aS © = 0, L’Hopital’s rule must be 

used. The result shows that is is nonsingular at 8 = 0. 

J, can be evaluated by parts. Integrating Eq.(B-24) by parts leads 

to two terms: 

Q 
ore 1790 max 1 oF, non 

I, -—+—__ —— sa | = e" . (B-26) 
-in® in an 

-2 
max 

Note that the second term is of the form of the original J, 

integral (Eq.(B-24), but with a 1/in multiplier. Evaluation of this 

integral gives rise to terms that are of the same form of the two terms 

of Eq.(B-25). However, the 1/in multiplier insures that those terms wil 

be of lower order, since the evaluation will lead to terms of order 

1/n?. We can, therefore, neglect the second term of (Eq.B-26). For a 

more rigorous justification of this logic, see Bleistein and Handelsman 

(1967). 

With these expressions for J, and J, Eq.(B-22) becomes: 
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F 
I= dxe inely 0) 2n F(y,0) sinc@ , _2 ; (27) 

n ax! ~in 

Eq.(B-27) can be evaluated by stationary phase. The result is an 

explicit functional relationship for the offline contributions in 3D dip 

moveout. 

A detailed study of the offline contributions suggested by 

Eq.(B-27) is a ripe area for further research. 
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APPENDIX C: 

STATIONARY PHASE FORMULA 

For a derivation of the method of stationary phase see Bleistein 

(1984) or Bleistein and Handelsman (1986). The method is outlined here. 

Consider an integral of the form: 

b ing (x) 
I(x) = f(x)e dx . (C-1) 

For large A, the dominant contribution to the integral is at 

certain critical points (x,) at which the phase, g(x), is stationary. 

The condition of stationarity is: 

p(x) =0 . (c-2) 

By setting the derivative of the phase equal to zero, critical 

points (x,) can be found. Then the integral Eq.(C-1) can be 

approximated by: 

i/2 

. (C-3) 
c 

(ing (x,) + ipn/4) 
ILay~e  ° £(x,) bee | 

a |p" (x, | 

where » = sgen(g"(x_)). 
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APPENDIX D: 

TZO 2 NMO + DMO 

This appendix will prove that the traveltime relationship of 

Eq. (A-31) is equal to NMO + DMO when v, = v The TZO traveltime is: m° 

  

vat, 

le,-&, | 2 
tro 7 —ts- 1+ —) > . (D-1) 

a (£578) (E,-Eq) 

The NMO + DMO traveltime relationship is commonly expressed in 

terms of traveltime squared. It is: 

° (D-2)   

Here tamo i8 taken to be the NMO + DMO traveltime. Note that the 

zero offset travetime in Eq.(D-1) is t,, whereas the zero offset 

traveltime in Eq.(D-2) is termed t,. They are not the same traveltimes. 

Eq.(D-1) maps a reflection point to its zero offset equivalent (Fig. D- 

1). t, is the zero offset traveltime at the reflection point. Equation 

(D-2) also maps reflection points to their zero offset equaivalent, but 

the frame of reference is the midpoint. t, is the zero offset 

traveltime at the midpoint. 
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Since NMO + DMO makes no distinction between the migration velocity 

and zero offset velocity, the single velocity v, appears in Eq.(D-2). 

In order to reconcile Eq.(D-1)and Eq.(D-2), they must be expressed 

in common variables. The shot and geophone coordinates (E, and be) can 

be expressed in midpoint, half-offset coordinates: 

(D-3) 

wr
e It B + bo
 

Here the origin is taken to be the intercept of the dipping horizon 

in Fig. D-1. 

Substituting Eq.(D-3) into Eq.(D-1) and squaring gives: 

  

2 

| s | 

0 60 

2 2 

theo = aa 1+ —-+——— . (D-4) 
Vin h - (§,-m) 

Appendix E shows that the zero offset point, €,, is equal to: 

. (D-5)     

Then, referring to Fig. D-1, (v,t,/2) can be given in terms of 

sin, m, and h: 
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p, = € sine (D-6) 

or 

    

vit an? 

| =|. [55 | sso . (D-7) 

With these substitutions, Eq.(D-4) becomes: 

2 2 

thee ae + AEBS (mh?) (D-8) 
zo Vv Vv 

mn m 

Now the quantities tamo and ttzo are expressed in terms of common 

variables. 

Comparing Eq. D-8 to D-2, we see that tizo and timo are equal if: 

4m sin © 2 m sin one t,’ a . (D-9) 

m 

Referring again to Fig. D-2, sin® can be expressed in terms of to: 

vt’ 

sinO® = (D-10)   

With this substitution, Eq.(D-9) becomes: 
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2 

2 Vo 2 
' = — — 

Thus, tgno equals tizo only when vo equals v,. For any other 

choice of v, the mappings do not agree. 
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APPENDIX E: 

DIP MOVEOUT AS INTERCEPT MAPPING 

The TZO procedure maps offset specular reflections to zero offset 

specular reflections. This is a combination of NMO and DMO which maps 

directly to zero offset. Fig. E-1 shows the geometry of the mapping for 

a dipping layer which intercepts the surface at a location €;. For many 

applications, it becomes necessary to find the exact location of the 

specular reflection point, x, = (x,,z,). In particular, in reconciling 

the TZO phase to the DMO phase (Appendix D), finding this point as an 

explicit function of €,, be: and —& is essential. 

To solve for x,» consider a coordinate system with the origin at 

the intercept of the dipping layer of Fig. E-2. In such a coordinate 

system, we can express the dipping layer as: 

z=xtanOd . (E-1) 

Next we drop an image source, s = (s..8z) by extending a perpendicular 

line segment across the dipping layer (Fig. E-2). The coordinates of 

the image source point can be expressed in terms of the surface 

variables and the dip 9: 

s =& - 2(& sin@) = & (1 - 2sin 6) 
x s Ss s 

(E~-2) 

s. = 2& sin® cos 
Zz s 
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The line from the image source, s, to the receiver es is given by: 

z= 8) ~ (x-s,) tany . (E-3) 

y is the dip of the line connecting the image source s with the receiver 

(E-4) 

Now we know that the two lines intersect at the specular reflection 

point x. That is, the z values from the equations for each line are 

equal: 

s ~- (x - s_) tany = x tanO ., (E-5) 
Zz x x s 

Solving for x gives 

s + s_tan 
zZ x Y 

x, ~ fand + tany ~* (E-6) 

Then eliminating tany from the above equation and substituting the 

relationships (Eq.(E-2)) for the points s, and s, leads to the desired 

end: 
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2 
: & 6,008 8 

s h + gs 

(E-7) 

&é sin® cos 
= S§ 8 

S h + gS 

where h is defined to be the half offset: 

nh=-& _§ , (E-8) 

Now we have the coordinates of the specular expressed in terms of 

the shot and receiver positions, &, and be? and the dip ® It is 

peculiar that the coordinates of the specular point are not expressed as 

functions of the zero offset point €,. Referring again to Fig. E-2 we 

can use the above relationships to solve for & 4: 

ge = 8 , (E-9)   

Here m is the midpoint between €. and Eg: Equation (E-9) tells us 

that specular reflections from every bed (all dips ©) intersecting the 

surface at a given location have a zero offset mapping to the same 

surface point. 

We can turn this problem on its head by taking Eq.(E-9) and 

transforming to a more general coordinate frame not centered at the 

intercept of the beds. That is, we let the (now unknown) intercept be 
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given by &; and transform Eq.(E-9) to become: 

E.- €,)(€ - €.) 
(&- &) - $748 . (E-10) 

1 

Then solving for the intercept €; we have: 

gt omte (E-11) 

Here h is the half offset, m is the midpoint, and Ax is the 

distance from the midpoint, m- &. Now note that the intercept as 

given by Eq.(E-11) is not a function of the dip 6. All dips map to the 

same intercept for a given output location €, and given €, and es: 

The impulse response of TZO and DMO is an intercept mapping. The 

position along the impulse response determines the intercept of the 

reflector, and all reflectors with a common intercept map to the same 

trace on the TZO and DMO impulse responses. 

This result is useful in reconciling the phases of TZO and DMO in 

order to demonstrate that TZO is, indeed, NMO + DMO (Appendix D). 

- 109 -



APPENDIX F: 

LIMITS TO INTEGRATION 

As a practical matter, one might occasionally wish to limit the TZO 

integration range to correspond to a known dip limitation in the 

recorded data. The mapping as defined by the TZO formula (i.e., Eq. 

(A-30) defines an integral over receivers, Gg corresponding to a 

particular output location &,. This integral will map all dips from +90 

degrees to —90 degress. 

To limit the integration to a finite dip range consider Fig. F-1, 

which shows a particular zero offset location and a _ candidate 

shot/receiver pair. The length of the one way zero offset vector is 

Po = Vot,/2. This vector will be perpendicular to the reflecting bed. 

Referring to the figure, one can see that the sine of the dip angle is 

given by: 

(&, - x) (Eo - x) (+1) 
in @ = = 

sin Py (vt, /2) 

Appendix A, Eq.(A-25) gives an expression for the location of the 

reflection point, x,: 
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. (F-2)   

2 

vere [ t + - 26, | 

x, = bo + 

2fe-e ie -s | 

Therefore, substituting Eq. (F-2) into Eq. (F-1) gives an expression 

for sin®: 

  

[-s2 lI bt bs 7 2b ] 

sin 9 = . (F-3) 

ofe-s]k,- | 

Equation (F-3) states that for a fixed €,, E,» and be as time 

increases the quantity sin® increases. In other words, reflecting 

horizons with increasing dips (i.e., increasing sin®) are mapped to that 

location, Fixing the maximum dip angle limits the maximum output time 

which need be processed at that particular zero offset location (again 

with €, and &, held fixed). 

This maximum output time is given by 

4(8- 54) (é, - o) sin 9 (ra) 
  

t = = — 

max vi(g + § 2 6,) 

Equation (F-4) defines the limits of the integration. As each 

trace is reading (i.e., each trace corresponds to a fixed €, and bg) it 
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is mapped to all the zero offset traces to which it contributes. At 

each zero offset location €,, Eq.(F-4) defines the maximum output time 

as a function of the given dip limitations. 

Note that in order to be consistent with the sign notation of 

Eq. (F-1), dips to the left of the midpoint (i.e., beds dipping down to 

the right in Fig. F-1 are defined to be positive angles. Dips to the 

right of the midpoint (beds dipping down to the left are defined to be 

negative angles. This convention insures that t is always a positive 
max 

quantity. 
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APPENDIX G: 

CALCULATION OF DETERMINANT h - 2.5D COMMON SHOT 

The 2.5D derivation of the TZO formula (i.e., Appendix A and B) 

involves the evaluation of the determinant h. This determinant arises 

from the Jacobian of a change of variables originally suggested by 

Gregory Beylkin (see Beylkin, 1985, for details). For the purposes 

herein, it suffices to note that this determinant allows one to develop 

inversion formulas for a variety of acquisition geometries. The form of 

h is: 

  

Vo + Ve 
s g 

- a _ h (x,&) = det aE, (Ve. + ve) . (G-1) 

a 
Be, (Ve. + ve) 

In the notation, the lower case h will represent the determinant. 

The upper case H will represent the matrix. 

This appendix deals with 2.5D common shot geometry. That is, the 

acquisition is along parallel lines of data. Only the €, coordinate of 

the source is fixed. The €, shot coordinate varies together with the €, 

receiver coordinate, consistent with the geometry of parallel lines of 

recorded data. In this scenario, t, and t, in a constant velocity earth 

are given by: 
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p 
c= of x | (x8)? + (yb)? + a 

m m 

(G-2) 

tT = aoa | (x-§_)* + (y-&)* + 2” 
g vO 1 yo, 

m m 

Note that €, and € (&, = E91? . = §s. = be.) are variables in 

this equation. The inline source coordinate, €,,, is held fixed. A 

consequence of this is that the second row of Eq.(G-1) contains only 

derivatives of Te 

For the general case the evaluation of Eq.(G-1) is quite 

complicated. However, since it is assumed that the earth is 2.5D, the 

evaluation is made much simpler. Recall that 2.5D implies that, though 

the earth is three-dimensional, the geology itself is invariant in the 

€, direction. Parallel lines of data are identical. This is consistent 

with recording true dip lines. 

This determinant will be evaluated at particular locations for 

which y = &,. This arises out of the 2.5D stationary phase evaluation 

of Appendix A. Knowing this a priori will greatly simplify the analysis 

of Eq.(G-1). 

The 3 X 3 determinant h can be reduced to a more tractable 

determinant by multiplying the matrix H by an auxiliary matrix B. This 

is a trick suggested by Norm Bleistein. It takes advantage of the 

matrix property: 
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detH detB = det (HB) 

or: (G-3) 

det (HB) H= 
det detB 

Thus, one hopes to find a matrix (having a simple determinant) such 

that the determinant of the product HB is easy to evaluate. Consider 

the matrix: 

1 0 at 
xg 

B = 0 1 at (G-4) 
ys 

0 0 at 
Zz 8 

Clearly detB is simple. The product JHB is: 

  
    

  

@(ct +t) a(t +7.) Ve Ve + Ve Ve 
x s g y s 8 8 & 8 s 

a 8 a 
HB = (dc _) (dc ) (Vr °Vr_) . a€, x's a€, y's ae, sg 

a 3 a 
—— 0 (t +7 ) O(c te) ae (Ve We + Ve Vr :?d) 
ac, a s ¢g 0g, g g Ss s 

(G-5) 

Simplification of the matrix HB comes from recalling the eikonal 

equation: 
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Ve + Ve -— (G-6) 

Vv 

Therefore, Eq.(G-5) can be rewritten with the eikonal equation 

identity. The dot product, Vr, - Veg: is equal to cosB/v*, where cosB 

is the angle between the shot and geophone vectors, p, and Py: 

      

1 
0 (t+ *,) ac c) <a + cos B) 

0 a 3 1 
HB = 0 — aE, (8,,) ae, ( y's) de, 2 | 

m 

a a a 1 
oe, d (ttt) ae O(c ,* t,) 0g, FE (1 + eos) | | 

m 

      
(6-7) 

Clearly the subsurface velocity is not a function of the receiver 

coordinates, &, and &,. The derivatives of velocity with respect to 

surface location in the third column must be identically zero. 

Furthermore, in formulating the 2.5D problem, we have assumed that 

parallel lines of data are identical (i.e., dip lines). Under this 

assumption, cos Bh must also be invariant with respect to the offline 

source and receiver position, €,, since the sources and receivers vary 

together. Then taking advantage of these 2.5D observations, Eq. (G-7) 

becomes: 
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a(c +t) a(x +t) + (1 + cos B) 
x s g y s g 

  

  

2 
Vv 

mn 

a a 
HB = at az (Ot 0 G-8 at, x's at, °y"s (8) 

0 0 
ar OL (t +t” a(t +c) 0 
0g, x 8 ae, y s 8 

detHB has been reduced to the evaluation of a 2 XK 2 determinant. 

This determinant is given by: 

  

v 
ms 

1 a a 
HB) = — ——— det (HB) 7 (1 + cos) | Es a7, | | 3; a(t, + t)) 

(G-9) 

_ | a a 
| i dt, | O(t, + 7.) | . 

Referring to Eq.(G-2), the particular forms of these partial 

derivatives are: 

- 117 -



  

w 

  

a 1 
a ( +e) =s=—] -—t -—t 

ob, * & Ym p p. p p. 
s s g g 

ay, ea | bP) 
ob, ye Vy, °° 

& 

(x - Y(y - &,) 
9 (x toyed tes Bea) 9 7 8a) 

ae. x Ss g Ve °° 

g 

(G-10) 

Again, the 2.5D geometry can simplify the analysis, The stationary 

phase condition for the 2.5D analysis dictates that y = &, (see Appendix 

A). So all terms involving y ~ &, vanish. Eq.(G-10) becomes: 
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1 1 (x- &)” 
det(HB) = —z (1 + cosB) a 

Pe 

  

3 
Vn Pe 

(G-11) 

P,P, 

Finally, recognizing that for the 2.5D case: 

(x -&)* =p - 2” (G-12) 
1 8g 

Equation (G-11) can be factored further: 

1 1 1 

det (HB) = - —z (1 + cosp) | — + — 

Vin Ps Pg 

(G-13) 

2 2 2 

a ee 
- & + 8 

3 3 

Ps Ps 

or: 

2 

det (BB) = — ; ; (1 + cosf) 2 +a | ° (G-14) 
Vm? g s g 

Now all that remains is to divide det(HB) to give detH. detB is 

trivial: 
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2 (6-15) det B= 9% oi 2 
& m Ps 

Therefore, the detH consistent with the 2.5D geometry is given by: 

(G-16)   h(x,£) = - —2_ (1 + cos 8) Jae 
YaPs Ps Pe 

This is the particular form of the determinant appropriate to the 

derivations of Appendix A. 
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APPENDIX H: 

CALCULATION OF DETERMINANT h ~ 3D COMMON SHOT 

In order to evaluate the integrand for the 3D derivation of 

Appendix B, a determinant (h) must be evaluated. h arises from a 

general inversion derivation first suggested by Gregory Beylkin of 

Schlumberger Research (Beylkin, 1985). h has the form: 

  

  

Vo ot We 
Ss g 

= a - h(x,&) = det aE, (Veo + ve) . (H-1) 

0 
aE, (Vr + ve) 

The notation here will be to use the lowercase h to represent the 

determinant and the uppercase H to represent the matrix. Here t, and Tp 

in a constant velocity earth are given by: 

  

  

Ps 1 2 2 2 c.=<0 | (et)? + (8)? + 
mn m 

(H-2) 

<° gra | )? + CyB)? + 2? 
g Vv Vv 1 yw, ° 

m m 

For the general 3D case, h is the determinant of a 3 X 3 matrix. 

Each column of the matrix contains the respective (x,y,z) spatial 

components of the indicated quantities. The partial derivatives of the 

- 121 -



second and third rows, 8/0&, and 0/d&,, are derivatives with respect to 

the variables of integration of the inversion (Eq.(B-1). Thus, for 

common shot inversion, €, and &, represent the receiver coordinates on 

the surface. For common receiver inversion, €, and &, represent the 

source coordinates on the surface. For common offset inversion, &, and 

—, would be the midpoint coordinates on the acquisition surface. In 

this fashion, a very general inversion formalism can be developed with 

the specifics of the inversion geometry imbedded in the particular form 

of the determinant h. 

For the 3D common shot geometry the coordinates €, and &, will be 

the two receiver coordinates on the acquisition surface. By definition, 

a 3D common shot geometry assumes that the source position is fixed. 

The partial derivatives of the second and third rows will involve only 

the receiver traveltime (i.e., for a given point x = (x,y,z) the 

traveltime from source to x is neither a function of &, nor &,). 

The particular common shot form of h, is: 

Vo ot Ve 
s g 

a h = det —_— . H- e ag,‘ ,) (H-3) 

0 
ag, Vg) 

The evaluation of this 3 X 3 determinant is, in general, quite 

complicated. However, by taking advantage of a trick suggested by 
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Norman Bleistein, the evaluation can be greatly simplified. That is, 

using the same method as in Appendix G, the trick is to find an 

auxiliary matrix B, which when multiplied by H produces a matrix HB 

whose determinant is more easily evaluated. In this way one can take 

advantage of the matrix property: 

det (HB) = detH det B 

or: (8-4) 

det (HB) 
det H- rR: 

The task, therefore, is to find a matrix B for which the product HB 

has a determinant which is easily evaluated. Of course, since solving 

Eq. (H-4) will also involve evaluation of detB, one might hope that detB 

is simple. Consider the matrix 

1 0 a¢ 
xg 

B = 0 1 0 et . (H-5) 

y & 

0 0 at 
zg 

The product HB is: 
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8 (dt, + t,) dy (tT, + ¢_) Ve Wr + Ve Vr 

      

g 

a 8 0 
HB = ee 8 we a °¥ e me aE, ( x") aE. (a5t,) aE (Ve 7.) (H-6) 

0 0 0 
a (a ) Ve; 

56, (x",) oe, Py" a, ‘YW, 'Vty) 

The eikonal equation states that: 

[ve |* = Weve = (H-7) 

4 
5 

»|
+ 

Clearly the sound speed, v,, is not a function of the receiver 

coordinates &, and &,. Thus, the partial derivatives in the third 

column must be zero. Furthermore, the dot products in the first row of 

the third column can be described as 

Ve Ve + We We O= ta + cosB) (H-8) 
g & 8 s 2 

v 
m 

Here, B is taken to be the angle between the shot vector and the 

receiver vector. Therefore, the matrix product HB can be written as: 
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1 
8 (tot t,) Oo ( + t,) sa + cos B) 

    

  

Vv 
m 

a a = . H- HB aE, (8,7,) ae (a5t,) 0 (H-9) 

a a —— (dt ) a 0 
0g. xg oe. ys 

Although the evaluation of detHB is somewhat complicated, the zeros 

in the third column reduce the problem to the evaluation of a 2 X 2 

determinant. This is certainly preferable to the original 3 X 3 

determinant. detHB has the form: 

A 
v 

a a 
detHB = aE, (,7,) Fy (a,t,)   ; (1 + cosB) 

m 

(H-10) 

    

Referring to Eq.(H-2), the particular form of the derivatives in 

Eq. (H-10) becomes: 
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— dot 

og 6x g 

— 9a T 

  

  0_t 
ag, yg 

Substituting these 

a7e 1 (x-&_)? 
  

  

  

- _8 ~. + * 
0o 9. Yn? g Yn? g 

a°t (x-€ 1) (y-E,) 
= —S = + —______ 

06,8, Yn? 5 

(H-11) 

a” (x-& )(y-& ) 
- *3 = + * 1 y 2 

ata vp 
y m g 

ac 1 (y-& )? 
g 2 

= = = + e 

dé ,8 vp Vv p° 
y m g mg 

expressions into Eq. (H-10) gives: 
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detHB = +. (1 + cosB) - + ; - + : 

Vin Yn? g Vin? p Vn? Yn? 

(x-&)*(y-8)? 
TS (8-12) 

(vp) 
m g 

2 2 

1 1 1 (x-&,) + (y-&,) 
=-—> (1 + cos B) ra ; > 

Ym vm? g Vm? g VmPs 

but: 

(x-— > + (y-& D> =p - 2 , (H-13) 
1 2 g 

then: 
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det HB     i 
v? 2 2 

m VmPg = Ym?P 

2 2 

po- Zz 
(1 + cos B) 1 - 1 a | 

gL ‘m's 

    
  

  

1 1 p° 1-2 /p- 
= __ _ _8 g - 3 (1 + cos B) 7 ; (H-14) 

Vin Yn? g Yn s Yas 

1 1 1 ; a g) 2. = - Zz = + cos Zz 
z (1 + cosB) 3 2 2 2 + 24 vp! ° 

“m Ym? g = YmP?g = YmPg mg 

Returning to Eq.(H-6), h can be solved for directly: 

det HB 
= H- det B (H-15) 

detB is trivial. It is given by: 

det B= 817 =—~— (1+ cosp) . (H-16) 
zg Vip 

8g 

Therefore, h is: 

h =—~> (1 + cosf) (H-17) 
vp 
m g 

Without the detHB trick, the calculation of h would have been much 

more involved. A similar trick exists for the calculation of h in the 

common receiver case. Unfortunately, no such trick exists for 

calculating h in common offset geometry. 
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APPENDIX I: 

CALCULATION OF DETERMINANT h - 2.5D COMMON OFFSET 

The transformation to zero offset operator (Eq.A-30)) may be easily 

modified to operate in the common offset domain. The only significant 

modification is the calculation of the determinant h for common offset. 

This appendix will detail this calculation for 2.5D geometry. 

As before, h has the form: 

V(r. +t) 

  

8g 

_ a _ h = det aE, V(t, + t,) : (I-1) 

8 
ae, V(r. + 7) 

The 2.5D geometry envisioned is one where parallel lines of data 

are recorded over a subsurface which does not vary in the cross-line 

direction. Thus, parallel lines of data are identical. The variables 

€, and &, parameterize the midpoints of the common offset data. Since 

the acquisition is along parallel lines of data, each midpoint 

coordinate & = (€,,€,) is associated with a shot/geophone pair which 

share a common €, coordinate: 
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e. = (6,-4.8) 

(I-2) 

co =(@ thé) . 

With this convention the quantities t, and tg are given by: 

p 1 _ es | — 2 _¢ \2 2 
tToRyt z= (x & th) + (y g,) +z 

m m 

(1-3) 

Pp 1 2 2 2 
c =—8= =| (x-& -h)” + (y-& )" + 2 . 

g Vv Vv 1 2 
m mn 

The results of Appendix A tell us that the 2.5D condition of the 

TZO derivation is that y = €,. This condition, which is a result of the 

stationary phase calculations, must be imposed after the evaluation of 

the various derivatives involved in h. To impose this condition before 

evaluating the derivatives would be equivalent to assuming that the 

condition y = &, implies that all derivatives with respect to y and &, 
2 

are zero. This is not true. 

We will evaluate the derivatives of h one row at a time. The 

derivatives of the first row are the components of the gradient: 
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The derivatives of the second row are the derivatives of the gradient 

with respect to &,: 

  

    

  

3 1 1 0 (x-€+h)” 2 (x8 -h)” 
3 (tc te) = — = + wo Ls 

E ox s g Vin °° o° 

Ps s Ps g 

2 (y-@.) | x-€_ +h x-€ ~h 
oe ae) = - — ~ (1-5) 

df oy a y 3 3 
tm p. Ps 

2 x-€ +h = x-€_-h 
a Zz 2 1 

d€ az (v +0) - ve 3 3 ° 
Pe Pe 

The derivatives of the third row are the derivatives of the 

gradient with respect to €,: 
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a +t = 

0 ax (t. s Vin 3 3 
Pe Ps 

3° 1 1 (y-€,)* 1 (y-€,)” 
3.8 (vc +o) = —|F-—t+ port (1-6) 

ay S$ 8 “m P. P. Pe P, 

2 y-é y§ 
_o (ct +e) = ~ 2 + 2 . 

0€ dz s g Vin p” °° 

s 

Now is the appropriate time to use the 2.5D condition, y = €,. All 

terms involving the quantity (y-t,) vanish. Under this condition h 

  

    

becomes: 

0 (ct +t) 0 0 (t_t+v_) 
x $s g Zz S 8B 

h = det | a (x + ) 0 ~)_ a (x +t) (1-7) 
df x s 8 dg. zs 8 , 

0 9g (ce +t”) 0 
ae, yY s 8   

Now the determinant can be evaluated directly: 
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a 
og, 

a 
0 +t aE, a's 2   

    Q(t +e ) a (c_t+t_) a@(v +0) - 8 (t tt +) 
y s g zZ S g x Ss g x Ss g 

(1-8) 

Then calling upon the specific form of the derivatives as given by 

Eq.(I-4) through Eq.(I-6) with (y = &,), h is: 

1f1 14 271 a1]4 1 (x-8 +h)” 
he=-— — +t —— — —— + — — -— + —— 

Ym LPs Pg Yn LPs Ps F Ym Ps p 

  

2 (x-Ewh)*] 4 Pox th x8 -h 
~—— + | - + te (1-9) 

Py p m P. Pe 
& 

Zz x-€ th x-§ oh 

pat , v 
m P. Pa 

This expression can be simplified to become: 

Zz 1 1 1 1 
ho =-—> | — + — —+-— | (1 + cosf) . (I-10) 

p p 2 a 
Vin s g Ps Pe 

B is the angle between t, and + It is twice the angle of g 

incidence for a specular reflection. cosB is given by: 
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(x-€ +h) (x-€ -h) + z" 
cosB = . (I-11) 

PP, 
  

The amplitudes of the resultant common offset operator are symmetric 

about the midpoint. 
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Figure 1.4: Prestack Migration Ellipse. Every impulse on a seismic 

trace emanates from a point om an elliptical mirror in the sub- 

surface. Each raypeth shown has equal traveltine. 
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Figure 1.4b: Rocca’s Smile. The process of transforming data to zero 
offset is equivalent to a prestack migration followed by a 
zero offset forward model. Thus, each point of the ellipse 
becomes a point diffractor. Net curve is the DMO impulse 
response. 
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Figure 2.1a: A point diffractor in x’domain generates a diffraction on 
a recorded time section. 
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Figure 2.1b: In building the migrated section, each point on the 
output section x is assumed to be a source of a point diffractor. 
Each guess point x defines a diffraction curve on the tine 
section. With no a priori knowledge of where the actual diffractors 
are, each guess point is used to define a sum over a test 

diffraction curve. Only when the guess point x corresponds to the 
actual diffraction point x‘is the output of significant amplitude. 
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Figure 2.3a: A fixed source, s, and a receiver spread (lain to Emax) 
defines a range of dips which can be imaged by § the 
recording aperture. Thus, the shaded regions are the 
possible dip Limits for which the recording geometry 
can receive reflections. 
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Figure 2.3b: The dip limits in (a) can be translated into limits spon 
the direction of the wavevector, k. Since k bisects the 
angle between the shot and geophone rays, it is normal to 
reflecting beds. Thus, the k coverage shown for various 
subsurface points is a graphical description of the 
filtering effect of the recording aperture (after Beylkin, 
Oristaglio, and Miller (1986)). 
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Figure 3.2: Berg DMO Impulse Response. The input was seven isolated 

spikes. The offset is 5000ft, with a trace spacing of 
SOft. The velocity is 8000 ft/sec. The velocity is used 
to truncate the evanescent part of the operator. 
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Figure 3.3b: Berg DMO vs TZO Common Shot Operator. The offset equals 

10000ft, trace spacing is S0ft, with a velocity oo 
8000ft/sec. 
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Figure 3.7b: Berg vs TZO Common Offset Impulse Response. Offset is 

10000ft, receiver spacing SOft, and velocity 8s000ft. The 
TZO operator amplitudes increase along the limbs, and then 
taper smoothly to zero. These amplitudes are dictated by 

the behaviour of [h(x,%) |. 
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Figure 3.10: Synthetic Model. 25 split spread records were generated. 

Geometry is 96 channel split spread, with near offset equal 
to 100ft, and far offset equal to 4800ft. First shot is at 

location marked S,. Last shot is at Sys. Data were 4ms, 
with a 2.0 see recording. Modeling algorithm is a constant 
velocity Kirchhoff integral code writtea by the author. 
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8000 ft/sec the 25 traces agree. Note that this is a dip 
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records. No CDP sorting is required. 
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Figure 3.12: Salt Dome Data - Near Trace Display. Near trace offset 
is 1056 ft. Data were acquired from left to right with a 120 
channel cable. Receiver interval is 82ft (25m). Data courtesy 
of Golden Geophysical and Anadarko Petroleum. 
(All displayed data in this and subsequent displays is plotted 
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Figure 3.13: V=5000 + 375t velocity function for both Berg and Tzo 
algorithms. Volocity analysis is at location x, of Fig. 3.12. The 
zero offset traces generated from each shot are plotted side by 

side. The traces smile up toward those shots whose contributions 
consist predominantly of far offsets. Thus, velocity is too slow. 

- 156 -



BE
RG

 
v 

= 
S0

00
 

+ 
37

5t
 

TZ
O 

v 
= 

SO
OO

 
+ 

37
5+

 
20

 
40

 
60
 

80
 

10
0_
—«
-1
20
 

F
i
g
u
r
e
 

3.
14
a:
 

E
n
l
a
r
g
e
d
 

vi
ew

 
of
 

3.
13
 

fo
r 

0 
- 

1 
s
e
c
o
n
d
s
.
 

0 
0 

20
 

40
 

60
 

80
. 

10
0 

12
0 

on
 

 
 

 
 
 
 

spuesac ul 

SpuusaG ul 

~ 157 - 

OUI | 

SWI | 

  

 
 

 
 

  
  

 



B
E
R
G
 

v 
me
 
u
t
 

Ma
 

y
s
 

40
 

iy Me
 

«a 

  
    

  
 

Be
 

© 
t
i
s
 
i
 

ar
 

\ 

 
 

Sspuosac ul 

- 158 - 

 
 

aul | 

  

 
 

5
0
0
0
 

+ 
37

5t
 

60
 

  

(a
 

  

eT
 D | 8 : 0 

} | 10
0 

12
0 

TZ
O 

v 

  
  
  
 

5 
oy
) 

ue
 

  

oF
 

«i
 

r
a
e
 

    

Wa
 

th
 

o
e
 

oo
 

 
 
 
 

 
 
 
 

Mi
 a
e
 

a
s
 a
)
 

\ 

Da
il

 
v
e
 

“ ch
e K 

mi
d   SW

 

spu0seG Ul 

A
 ah
 

 
 

OWI] 

ii 
H n
S
 

fy 

nh 

ee
 

re
 

  y 

  

Wa
 

w
R
 i O
o
 

  

 
 
 
 
 
 
 

  

wy rR
) 

\) 

Me
 ny

 
Ny

 

sh
 

5
0
0
0
 

+ 
37
5t
 

60
 

  
  

  
  

 

i!
 

ro
ll
 

ae o
 

f
i
 

i 

ea
l o
 

m
 ih
 

o
h
 

jy A
i
s
 

f 
a
 

x
 

| i 

W
K
 

80
 fl   i i : 

i 

  

    
  

! il | 
  

10
0 

12
0 

 
 

 
 
 

 
 
 
 
 

O
y
 

 
 

 
 
 

eh 
a
l
y
 m
ye
 

e
e
 

\ ie
 

OX
 

 
 
 
 
 
 
 
 
 

    
 
 

c
e
 

r 
»
 
: 
o
n
 

 
 

a
 A
y
 
K
s
 

a
 i
e
 

Me)
 i
 
f
i
,
 i i
 

e
e
 Cy)
 
y
d
 

n
i
e
 

in
al
 

| 
| 

M
e
s
 
y
i
 

rh
 

Z , 

 
 
 
 
 
 
 

  

a
 

e
p
 ‘
 C. 

 
 

Mi
 

ih 
er
i 

i 
a
 

De
in
 a
 

sy
 

m
e
 

me
 e
y
 

a
e
 

Se 

  aN
 a
e
 

o
S
 

A
a
 

ba
 M
i 

E
n
l
a
r
g
e
d
 

vi
ew
 

of
 

3.
13

 
fo

r 
1 

~ 
2 

s
e
c
o
n
d
s
.
 

! i 
n
s
 o
o
 
u
i
 

KY
 ky 

ve
 

i 
‘ 

Ky 
A 

j 
  

  
  

m
t
 

A)
 r
a
 

a
 

eo 
R
r
 ca
l 

) 
e
l
 

i 
is 

 
 
 

 
 

m
e
 
x
 
H
k
 

 
 

o
S
)
 

       

*
 

     

i
A



*spuooes 
¢ 

-— 
Z 

JOJ 
EL°E 

JO 
MOTA 

pPOszeluy 

 
 

R
y
 

N
a
 

o
y
 

  

We 
Vi, hel M

N
 

ee 

ality e
s
 

  

o
d
 

Mt 
» 

>
 
a
 f
a
 

e
T
 

     

pte 
y
y
 
r
u
 

) \ 

yy * MH 
a
 

Re 
XS i 

4 

) 

 
 

pi 

es 
wnt 

w
D
 

as 
Nie 

  

ee ie 
“
 i
 
i
e
 

e
n
 

: Y
t
 

y be a
 

A
R
 

UATI(S 
dy “ i 

eb 

K
S
 

RA 

   

sail 
di \ 

e Ne 
N
o
 
a
 il 

5 
y
o
 

Ne ak 

Ae 

‘\) 
ity 
Ae 

 
 

 
 
 

  
i
s
 o
n
e
 
a
 

 
 

 
 
 
 

tne a 

s
e
 
i
e
 

a
 
yO 

ys Mo v
t
 

a
 

K
a
t
 fs a R

e
 

sii 
av 

O
i
 

uN 
«| 

DB in 
a
 

Z , 
a
x
 y 

aK ae aS 
hive u

e
 

ae 

  

 
 
 

 
 
 
 
 
 

i
f
 Roya 

n
t
 
, IN 

 
 

  

 
 

i 

   

     

#SZE 
+ 

O
O
O
S
 

oot 
08 

og 

NM 
‘ 
A
 y mh a

e
 

ri 
n
y
 

Ot 
Wy 

» 
AN 

W
y
 

A
 

Ky ui 
ie 

     

n
s
 
V
y
 a
 

S
t
S
 

ib 

S
a
 
H
t
 
a
 
I
N
 i
 

ua 
Mh 

n
e
 

‘ 

t
e
 dik Ny r

a
 
a
 
i 

yi 
, 

2
 

    

ie 
uo a 

 
 

* 
OZ1 

 
 
 
 
 
 
 

  
 
 

  

     

OUT | spuosac ul 

 
 
 

S
O
P
T
’
s
 

o
s
a
s
t
y
 

       

 
 

  
 
 

        

  

  

       

 
 

    

    
      

  

     
 

 
 
 
 
 

  
 
 

 
   

  
  

        

T
e
e
 

ia 
H
i
 WY 

o
i
 

Lops 
i
h
 

4
 
i
e
 
u
e
 is vi 

a
 

iA 
OF 

Ua 
KIN) 

y 

y
 TAN 

{ fi
e
 

at 

HL ‘ ts y 
in n

O
 

i
 4
 pi iy o

a
 a
 st 

ni 

h
y
 
e
a
 ies H

i
 i jest 

‘ 
A
R
 Raut Mg

 ee 

i i
e
 O
e
 

v
y
 

i i
 
mays WS i

e
s
 os 

i
y
 

f 
C
K
)
 

ork iM 

i
 

| A
 
e
e
 
n
e
s
 

] y ie alae 
P
a
 

wat ao 

Ki i
 fe 

‘) MN 
bs i oY 

if il l an
 

boa 
A
a
 

Oe 
Ozt 

OOT 
[a}=) 

Ov 
Oz 

+GZE 
+ 

Q
O
O
S
 

= 
* 
O
Y
A
 

      

SpuosaG ul OWI] 

- 159 -



BERG “600 * r050% TZO v = S600 + 1050t 

yy = i be | : | 
: s i : ‘ ts 

   
      

   

    

    
     

   
          

  

    

                                    

          

  

    

    

  

        

    

        

  

                                                      

    
      

  

   

  

  

     
     

N
 

o ” 
~o 0 a 

c 
Ss o~ 
Oo Oo 
o vi ® 

Ww Sy wn | 

= ¢ 

   

_ 
S
S
 
S
S
 
S
e
 

—
—
—
—
S
S
S
 

w
 

PA easel oS TE ts 
tage ee ned 
antec           

Figure 3.15: v = 5600 + 1050t velocity panel for Berg and TZO 
algorithms. Here the function is approximately correc t 
for the data betwen 2 and 3 seconds, as evidenced by 
agreement between traces from different shots. 
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Figure 3.20: Offset panels for Berg (a) and TZO (b) algorithms. For 
the location x, on Fig. 3.12 the contributions from each 
offset are saved and plotted side by side for comparison. 

Thus, this is equivalent to looking at the CDP Xo after 
the procedures NWO + DMO. Near offset is 1056 ft. Far 
offset is 10814 (receiver spacing 82 ft). 
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Figure 3.22: Near trace display showing region of stacked dats. 
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Figure 3.24a: Enlarged version of Fig. 3.23 for 0 - 1 seconds. 
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Figure 3.25: Fresnel zone overlap for 3D transformation to zero 

offset. The problem is formulated as a pre-stack migration 
followed by a zero offset model. For a migrated output poiat x, 
all receivers & whose specular reflection is a Fresnel zone away 
from x will have a non-negligible contribution to x. In the 
forward modeling problem, the zero offset reflection point, Xo> 
gets a non-negligible contribution from those points x which are 
within a Fresnel zone of x4. The result is that, in the 3D case, 
receivers & which are offline from & may produce a non-negligible 
contribution to &,. 
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Figure B-2: 3D Common Shot. 3D common shot is with a fixed source point and receivers distributed over the acquisition surface. 
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Figure E-1: Specular reflection point corresponding to es» %,- and 
output point &,. 8 
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Figure E-2: Image source facilitates the solution of x, in terms of known quantities 
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Figure F-1: Dip limits can be determined solely from geometrical 

considerations. 
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