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ABSTRACT

Since its introduction in the late 1970's, dip moveout has firmly
entrenched itself as part of the processing sequence for complex
structure. Dip moveout compensates for reflection point dispersal,
properly sorting events into zero offset traces containing reflections
arising from common depth points. To this end, the dip moveout mapping
has been well defined.

Dip~moveout amplitudes remain a mystery. The amplitude factors for
conventional dip moveout arise from a Jacobian of traveltimes in going
from finite offset to zero offset. To this extent, dip moveout is not a
wave—equation based operation. Many questions remain regarding the
proper distribution of amplitudes along the limbs of the operator.

A wave-equation based algorithm can be formulated by comsidering
the transformation to zero offset to be a two—-fold process — prestack
migration/inversion followed by a zero offset forward model. The
prestack migration/inversion defines the subsurface. The zero offset
model transforms this subsurface into zero offset time data. This
cascaded migration/modeling analogy can be utilized explicitly to
formulate a wave-equation based dip moveout. By taking advantage of
integral operators, a cascaded migration/modeling scheme can be defined
and reduced analytically to an algorithm suitable for implementation on
a digital computer.

In order to preserve amplitudes, an inversion algorithm can be



utilized in place of a migration in the cascaded migration/modeling
system, An inversion algorithm offers the advantage of preserving
amplitude information, and of compensating for the geometrical bias
inherent in seismic data recording.

Prestack applications of such a transformation to zero offset
include velocity analysis and amplitude versus offset processing in the
presence of structure. In particular, amplitude offset analysis
requires a certain degree of confidence in the amplitude preservation of
the preprocessing sequence. With conventional dip moveout the
amplitudes are given little attention and the resultant data contains
questionable amplitude information. A wave-equation based dip moveout
offers the possibility of generating data upon which reliable amplitude
interpretation can be based.

This thesis will develop a dip—moveout algorithm based upon a
cascaded inversion/modeling development. The resultant operator differs
markedly from conventional dip-moveout. Examples are shown for both

real and synthetic data.
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GLOSSARY

w: zero offset (output) frequency
n: input frequency
&, zero offset trace location; &, = (&,,,&,,)
{ P shot location; &g = (tsl'ész)
Eq: geophone location; §, = (681.§8,)
x: x = (x,¥,z) subsurface variables
A:(x): square of zero offset Green's function amplitude
A = —1
(4np°)

2

P, = j (x-¢ )+ (y-g, )" + 2

Asgx)Ag(x): offset Green's function amplitude

1
(4ﬂps)(4npg)

A (x)A (x) =
s g

2 2
Py = j (x—&gl) + (y—tgz) + z

v, zero offset modeling velocity



Vm*

¢o(x'§o):

?(x:g):

|n(x,8) |:

D(n::):

F(n):

inversion velocity

zero offset Green's function phase

2po

g, (x:8) =

offset Green's function phase

determinant of the form:

h(x, &) = det

input data (Fourier transformed)

band limited prefilter (optional)
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BACEKGROUND AND INTRODUCTION

This thesis is about dip moveout. The viewpoint is one which
arises from seismic inversion theory.

In a more general context, this thesis is about the process of
transforming seismic data to =zero offset. Traditionally, this
transformation to zero offset was accomplished by means of
normal-moveout (NMO) applied to common-midpoint (CMP) gathers.
Unfortunately, such a process has the effect of acting as a dip filter
since NMO velocities are related to dip through the relationship (Levin,

1971):

nmo cosO

More recently, dip moveout has been introduced to properly position
events for stacking., With dip moveout, the correct NMO velocity is the
true velocity, v, which is dip independent. Together, the procedures
NMO + DMO comprise current state—of-the—art in transforming seismic data
to zero offset.

Although dip moveout is a fairly recent development in seismic data
processing, the list of contributors is long, and their contributionmns
are outstanding. The idea for dip moveout is generally credited to
Judson, Schultz and Sherwood, who presented a paper at the 48th Annual

SEG Meeting in San Francisco describing a technique they called



DEVILISH. This technique was never published in detail.

Yilmaz and Claerbout (1980) published "Prestack Partial Migration”.
There, they arrived at dip moveout through the double square root
equation. Although, in hindsight, their methodology appears cumbersome,
this paper was a landmark in defining the dip moveout problem and in
illustrating many of the relevant concepts behind dip moveout.

Deregowski and Rocca (1981) gave a geometrical interpretation to
dip moveout which serves as the foundation for much of this thesis.
They described the transformation to zero offset as a two—stage
process — full prestack migration followed by zero offset modeling.

Bolondi, Loinger and Rocca (1982) presented dip moveout in the
context of finite differencing over offset (offset continuation).
Introducing a differential equation for dip moveout, they show that the
solution can be expressed by continuing the recorded data over offset
until zero offset is reached. This differential equation was never
derived. It can be derived by pure traveltime arguments, or by
recognizing that dip moveout is equivalent to migration with a velocity
h/t.

In a companion paper to Bolondi, et al,, Salvador and Savelli
(1982) discussed offset continuation in the context of seismic stacking.
They made the observation that offset continuation offers the
possibility of stacking along the way. This makes finite differencing
particularly attractive from the perspective of computation time.

In his Ph,D, dissertation, Dave Hale (1983) treats dip moveout in



the context of the Fourier Transform. This work was published in
Geophysics the following year. Hale shows a method for doing dip
moveout by a simple substitution of variables in the (w,k) domainm,

Berg (1984) derived a time domain implementation of the Hale
algorithm, Starting with Hale’'s result, Berg transforms the dip moveout
operator to the (x,t) domain., The algorithm derived in this thesis is
also an (x,t) algorithm. Berg's results are used as the basis for
comparison,

Biondi and Ronen (1986) presented a paper at the SEG Annual Meeting
in Houston which discussed a substitution of variables which makes the
dip moveout impulse response time invariant. By making the substitution
t = e¥, both the Fourier methods and finite-difference methods for
dip-moveout are made much faster, This is undoubtedly a trick which
will soon become commonplace.

The above review is by no means comprehensive. It does, however,
represent the major works which serve as a background for this thesis.,

In Chapter 1 Hale’'s (w,k) algorithm is reviewed. This provides
motivation for the inversion based algorithm which is the major result
of this thesis. Chapter 1 will attempt to underscore the idea that the
conventional approach to dip moveout is not based on the wave equation.
It is a mapping based onm traveltime considerations. Chapter 1 will
introduce a wave-equation based approach, leaving the derivation for
subsequent discussion,

The wave—~equation approach suggested by Chapter 1 will rely heavily



on the mathematics of seismic inversion. To this end, Chapter 2 reviews
some of this inversion machinery. Those uninterested in the
mathematical details of the inversion algorithm are invited (and
encouraged) to skip Chapter 2.

Chapter 3 will present the inversion-based algorithm for
transforming data to zero offset. This algorithm is derived in the
appendices. Chapter 3 will discuss many of the attributes of this
algorithm, These include the relationship of this algorithm to
dip-moveout, two~ and three—~dimensional applications, and the duality of
the velocity field suggested by the algorithm,

Chapter 3 will also present two prestack applications of this
wave—-equation based dip moveout - velocity analysis and amplitude versus
offset processing,

This thesis relies heavily on mathematical methods which are
involved and unfamiliar to most geophysicists. In the final analysis
the mathematics are irrelevant. They are a means to an end. Many of

the mathematical details have been banished to the appendices.



1. WAVE EQUATION DIP MOVEOUT

1.1 Review of DMO by Fourier Transform

The constant velocity traveltime relationship for reflectors on a

CMP gather is given by:

. (1.1)

For horizontal reflectors this relationship is exact and the
stacking velocity, vpmos 1S equal to the interval velocity, v. If the
reflector is dipping, there still exists a v, which aligns the
reflectors on a CMP gather. The vp,, Which aligns the reflector is a

function of the dip (Levimn, 1971):

v =, (1.2)

Using v, ., as defined by Eq.(1.2), NMO can align events from
reflectors of arbitrary dip. Unfortunately, the v,,, which produces this
alignment is a function of the dip. If two events cross ome another on
a time section the process of NMO + stacking has the effect of selecting
one dip over another. Thus, stacking is a dip filter.

Furthermore, even though Eq.(1.1) can be used to align dipping
events on CMP gather, the reflection points do not coincide (Fig. 1.1).

That is, the reflection points come from a smear on the reflector. It



is only the horizontal reflector which contains reflections from the
same subsurface point. Thus, the negative effects of dipping reflectors
on CMP stacking are two~fold. WNot only is the optimum stacking velocity
dip dependent (and, therefore, dip selective), but the stack is over a
smear in the subsurface.

Substituting Eq.(1.2) into Bq.(1.1), and using the trigonometric

relationsihp cos?0 = 1 - sin?@ gives:

2 2
2 _ .2 4h 4h 2
t” = to t = sin“0@
v v

. (1.3)

This suggests that there is a two-stage process. Defining a new

traveltime variable, t,, by:

2
t? = ¢? - 4h % . (1.4)
n [} vz

Equation 3 can be rewritten to look exactly like NMO using the true
earth velocity, v:

t = tn+—;—- . (1.5)

Equation 1.5 describes an NMO relationship., The output from this

NMO is no longer t,, but a new variable t, as given by Eq.(1.4).

Eq.(1.4) is dip moveout, though still cast in terms of the dip ©. That



is, it is still dip selective., Furthermore, Eq.(1.4) describes a
traveltime shift. Used by itself it will not reposition events such
that the stack is over common subsurface reflection points. This
repositioning (i.e., partial migration) comes for free once we express
these relationships in the (w,k) domain,

The goal is to find a Fourier method to transform recorded data to
zero offset. Zero offset data for a given offset h can be written in

the Fourier domain as a transform over space and time:

iwoto
Do(wopkrh) = dtoe Do(to,k.h) . (1.6)

Equation (1.4) defines a relationship between offset recorded data
and equivalent zero offset data. To use this relationship in a Fourier
method, it must be expressed in terms of (w,k). In terms of zero offset

data:

sind = YE_ | (1.7)
20

Equation (1.4) becomes:

t? = t? - . (1.8)

Now the zero offset data, D,(t,,k,h), can be expressed in terms of



the offset data, D(t,,k,h):

D (t ,k,h) = D(t (t ),k,h) . (1.9)
0 o n ©°

D(tn.k,h) is the recorded data after NMO with the earth velocity,

v. Equation (1.9) suggests a substituotion in the Fourier integral of

Equation (1.6):

in t
o o0

D, (w,,k,b) = ldto e D(t_(t),k.h) . (1.10)

This integral can be rewritten as an integral over ta by a simple
substitution of wvariables. The Jacobian of this substitution is

commonly given the name A:

dt 2
A=--2- 1+[hk] ) (1.11)

Then Eq.(1.10) becomes:

-1 iw At
)

n
Do(wo'k'h) = l dtnA e D(tnnk’h) . (1.12)

This is dip moveout by Fourier transform. A serious problem with
Eq.(1.12) is the A appearing in the exponent. A is a function of input

time t,. The net effect is that Eq.(1.12) as written cannot utilize



fast Fourier Transform algorithms. The t;, - w, transform must be done
explicitly. However, ©Fabio Rocca has suggested a log—stretch
transformation (Biondi and Ronen (1986)) which makes the Jacobian A time
invariant and greatly enhances the practical applicability of
Eq. (1.12).

Furthermore, note that A is not a function of the velocity, v.
Thus, dip moveout is comnsidered to be a process which is velocity
independent. To be fair, we should note that this is only partially
true. A truer statement is that dip moveout requires no more knowledge
of the velocity field than that required by NMO, where NMO is takem to
be NMO with the true earth velocities. Any error made in these
velocities is passed on by dip moveout. The relevance of this remark
will become clearer in Chapter 3.

Figure 1.2 shows an impulse response from dip moveout by Fourier

Transform. The impulse response is an ellipse given by:

2 2

t° x
e + | - =1 (1.13)

n h

x is the distance from the midpoint.

The horizontal axis of the ellipse is equal to the offset (2h).
The 1imbs of the operator near the surface are evanescent, corresponding
to events with a traveltime slower than the traveltime of the media

(i.e., the slope of the 1limbs is greater than 2/v). This evanescent

energy is not a problem if ome intends to migrate the output before



stacking over offset. Migration will naturally remove this energy by
not migrating it. However, this evanescent energy may seriously degrade
the signal to noise ratio if it is stacked along with the data enroute
to post-stack migration, Limiting the integration of Eq.(1.12) in order
to cancel the evanescent energy requires knowledge of the velocity
field. This removes the velocity independence of dip-moveout processing

(Hale, 1983).

1.2 VWhy a New Dip Moveout Formulation?

In the past decade dip moveout has established itself as a major
tool in the processing of seismic data for complex structure. It is
robust and fairly insensitive to velocity error, One might justifiably
ask why we need consider a new algorithm., The answer, simply put, is
that conventional dip moveout is not a wave-equation based algorithm.
The goal is to formulate a wave—equation based dip moveout which might
be an improvement over conventional dip moveout.

The derivation of dip moveout in the previous section does not
reference the wave equation, Conventional dip moveout is based entirely
on traveltime arguments. In particular, consider again the substitution

given by Eq.(1.9) which is restated here for convenience:

D (t lklh) = D(t (t )o kph) . (1-9)
0 ] n ]

This states that data recorded with source-geophone offset,

D(tn,k,h), is equal to the corresponding zero offset data, D,(t,k,h)

- 10 -



given the appropriate traveltime relationship, t_, = tn(to.w.k.h). What

n
is the basis for this equality? Among other things, the two wavefields
have experienced different travelpaths and, therefore, exhibit different
amplitude decay.

A fundamental assumption behind Eq.(1.9) is that D(t,,k,h) has been
corrected for spherical divergence. Spherical divergence corrections
attempt to remove all wavefront decay. Therefore, Eq.(1.9) can only be
true in the context that by D (t,,k,h) we mean a D, which has spherical
divergence corrections applied. The bottom line is that the equality
implied by Eq.(1.9) is a dubious equality with respect to the amplitude
of the respective wavefields.

Let’s step back from this discussion for a moment and review the
goals of this procedure. The primary goal is to transform a recorded
dataset to zero offset., That is, we would like to recover a wavefield
which is equivalent to a wavefield we might have recorded if the shots
and geophones had been together on the surface. Any tendency of the
acquisition geometry to favor certain areas of the subsurface over
others should not be mirrored in the zero offset data. This violates
the requirement that the resultant zero offset data should be nearly
equivalent to data which would have been recorded by a zero offset field
procedure.

To illustrate this point, consider Fig. 1.3, which shows a sample

shot and raypaths for two dipping layers. There is a marked difference

in raypath density between the layer dipping toward the end of the cable

- 11 -



(dipping right) and the layer dipping toward the beginning of the cable
(dipping left). The layer dipping to the right recieves a higher
density of subsurface coverage than the layer dipping to the left.

This example has significant repercussions with respect to
transforming the recorded data to zero offset. The aperture of seismic
recording geometries results in an uneven density of subsurface ray
coverage, For a complete survey, this unevenness of ray density is more
complex than the simple illustrationm of Fig. 1.3. An NMO + DMO
algorithm which ignores this phenomenon will mirror it in the zero
offset data,

So the driving question of "why a new dip-moveout formulation?”
should be restated - "why not a new dip~moveout formulation?” Since
conventional dip moveout is not wave-equation based, a wave equation
procedure is worthy of consideration. The formulation proposed imn this
thesis addresses both major issues raised herein, The relationship
between the offset (D(t,,k,h)) and zero offset (D(ty,k,h)) amplitudes
are addressed rigorously, and the dip selectivity of the acquisition

geometry is compensated for in transforming to zero offset.

1.3 Wave Equation Dip Moveout
Deregowski and Rocca (1981) gave a very elegant and simple
interpretation to the process of transforming seismic data to =zero
off set. They showed that, geometrically, the process of taking offset

recorded seismic data to zero offset can be viewed as a two—step

- 12 -



procedure — full prestack migration followed by a zero offset forward

model. Schematically:

Input Time Data Depth Section Reflectivity Output Time Data
D(t,E) > R(x,y,z) > Do(to,to)
Prestack Zero offset
Migration Modeling

Figure 1.4 shows this process geometrically. An impulse on a
recorded seismic trace corresponds to an elliptical mirror in the
subsurface. All raypaths corresponding to reflections off the ellipse
arrive at the geophone at the same time. The ellipse is simply the
impulse response of prestack migration, It is a function of subsurface
variables x = (x,y,z). The dimensions of the ellipse are a function of
the source—geophone offset, media velocity, and input traveltime.

Once defined, the ellipse can be used to generate zero offset data.
For zero offset modeling, each point on the ellipse becomes a source for
a diffraction hyperbola. The superposition of these hyperbolas is the
zero offset time seciton. The hyperbolas of Fig., 1.4 are parameterized
by position along the ellipse and by the medium velocity. The envelope
formed by the osculation of the hyperbolas is the net operator which
transforms the input impulse to zero offset. The process of taking the
input data and spreading it along this curve (also an ellipse) is
geometrically equal to transforming the input data to zero offset

(NMO + DMO). It is a remarkable fact that the net shape of the
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resul tant curve formed by the hyperbolas is not a function of the medium
velocity. Although changing the velocity changes both the ellipse and
the hyperbolas, the net osculation curve remains the same. In terms of
NMO and DMO, the time difference between the input time sample and the
base of the osculation curve is the NMO correction. The osculation
ellipse is the DMO operator. Thus, since the shape of the DMO operator
is not a function of velocity, dip moveout is said to be independent of
velocity. This is, however, only strictly true for input data which has
the correct NMO velocity applied.

This review of Deregowski and Rocca’s geometrical interpretation
sets the stage for the wave equation dip moveout which is the central
theme of this thesis. These geometrical relationships can be restated
in operator notation. First, consider an operator which transforms

input seismic data to a model of the subsurface reflectivity:

R =L [ | - (1.14)

Any operator which performs the indicated transformation is a valid
candidate, Ly might be an operation involving finite differences,
integrals, Fourier methods, etc. The only criterion is that LI produce
a reliable model of the subsurface, R(x).

Now consider a zero offset modeling operator which produces zero

offset data from a model of the subsurface:
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D (t &) = Lo[ R (x) ] . (1.15)

Again, any operator which produces zero offset data is a valid
candidate. The operator L, might be a ray tracer, a finite difference
modeling program, an integral modeling algorithm, etec. The single
criterion is that it produce reliable zero offset data from the input
subsurface model.

Together, Eqs. (1.14) and (1.15) suggest a cascaded operation by

which data might be transformed to zero offset:

D, (t,.8) = L°[ L[ pee.00] ] : (1.16)

Equation (1.16) suggests that D(t,E) can be transformed into
Dy(t,,&) by cascading the output of Ly into L,.

Up until now the only criteria that has been placed on LI and L, is
that they perform their respective operations "reliably”. The
"reliability” of these operators seves as the first criterion by which
the specific form of Ly and L, are selected. By "reliable”, we mean
that both Ly and L, must honor the acoustic wave equation, By
suggesting operators which honor the wave equation, the cascaded system
is intrinsically a wave—equation based algorithm,

Secondly, the cascaded system must be solvable in a usable format,

Many candidate operators perform the required wave—equation operations,
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but not all operator types result in a cascaded system (1.16) which is
tractable. The final result must be some explicit formalism which maps
input data, D(t,f), to zero offset data, D (t,,&,). The particular
choice for Ly and L, must facilitate this goal.

Thirdly, the operators LI and L, must be three-dimensional in
nature, The transformation to zero offset is properly a
three-dimensional problem. All reflections recorded by a shot/geophone
pair, whether from reflection points in-plane or out-of-plane, have
equivalent zero offset locations which lie on the line connecting the
shot and geophone (Fig. 1.5). In principle, two—dimensional assumptions
are unnecessary and inappropriate when transforming data to zero offset.
This point will be revisited in Sec. 3.7 (Two and Three Dimensions).

In order to have a reasonable chance at reducing Eq.(1.16) to a
usable format, integral operators are utilized. The cascaded system
Eq.(1.16) becomes a system of cascaded integrals, The reason for the
choice of integral operators over other operator types is not
irrefutable. A system of cascaded integrals is a more appealing system
to solve than a system of cascaded finite differences or other more
exotic operator types. (Undoubtedly, many would disagree with this
statement., It is ultimately a function of the type of mathematics with
which one is most familiar.)

An integral inversion operator is utilized for Ly. An inversion
operator has the advantage over a migration operator in that it

explicitly addresses the issue of what quantity is being imaged (i.e.,
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velocity, density, etc.). Migration operators leave the interpretation
of the output undefined, relying instead on an imaging condition which
gives the wavefield at the reflection point. The forward modeling
operator, L,, requires a well-defined model of the subsurface on which
to operate (i.e., Eq.(1.15) calls for reflectivity, not just a
structural image). Hence the choice of a seismic inversion operator.
The particular operator utilized is omne which was developed by
Gregory Beylkin (1985) at Schlumberger and Cohen, Bleistein, and Hagin
at the Center for Wave Phenomena at the Colorado School of Mines
(Bleistein (1987), Cohen, Bleistein and Hagin (1986)). The inversion
operates on recorded data to produce the perturbation in velocity, a(x).
Perturbation is defined as the relationship of the total slowness of the

medium to a background slowness:

11

vi(x) B v i(x)
m

(1 + a(x)) . (1.20)

In general, the background velocity vp(x) can be any function (the
subscript m refers to migration velocity). The theory is equipped to
handle a background velocity of arbitrary (x,y,z) variation. However,
the more complicated the function vp(x), the more complicated the
resultant computations. For the development of this thesis, vp(x) is
taken to be a constant reference value, vy. This is for computational
ease at the expense of accuracy. Inversion and migration programs
require that traveltimes from point to point in the subsurface are

known. A constant background velocity makes the computations of these
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traveltimes simple. More elaborate background velocities require more
elaborate means to compute the traveltimes (ray tracing, finite
differencing the eikonal ;quation, etc.). Such an extension of this
theory to more complicated background velocities remains a ripe area for
further research.

As will be demonstrated in Chapter 3, the assumption of a constant
background velocity still offers the advantage of improving over
existing algorithms. The processes NMO + DMO are also constant velocity
algorithms. No cruder approximations to the velocity field are made
than those made in standard processing.

The oparticular form of the inversion operator is (Bleistein

(1987)):

2

Vi 2 |h(x.§)| -in¢(x.§)
alz) = (ZH)S d g dn As(x) Ag(x) € D(n-&) . (1.21)

This operator is discussed in detail in Chapter 2. The operator is
a threefold integral over the input data. The dn integral is over the
input frequency, n. The d%¢ integrals are over the recorded data. The
output perturbation a(x) = a(x,y,z) is a three-dimensional function.
The generalization of this operator to lines of data is discussed in
Chapter 3.

The various terms of the inversion kernel are defined in the
glossary. The nature of the double integral d*¢ changes depending upon

the nature of the inversion. For example, if one is inverting common

_18_



shot records,& = (&,,€,) refers to the coordinates of the geophones for
that shot, If the inversion is common geophome, &, and &, are the
coordinates of the shots for that particular geophone. If the inversion
is over common offset data, ¢, and ¢, are the coordinates of the
midpoints on the acquisition surface.

The zero offset modeling operator, L,, is chosen to be the Born

approximation modeling operator (Bleistein (1984)):

ivg (x,& )
. . A:(x) e ° ° a(x)
D (0, &) = o d x . (1.22)
1] [] 2
vo(x)

Again, all quantities are as defined in the glossary. v,(x) is the

background velocity for a forward perturbation problem:

! -l e . (1.23)

v (x) v (x)
/]

There are really three velocities in this problem. There is the
actual earth veloctiy field ve(x). In the migration/inversion stage, we
make an estimate of this velocity field in order to image the data.
This estimate is v (x). Whereas we hope that vp(x) is nearly identical
to ve(x), this is rarely the case. Once the perturbation, a(x), is
known, the velocities v, (x) and ve(x) leave the problem. The format for

the Born approximation modeling integral leaves the choice of v, (x) at

our discretion, In almost every case we would choose v,(x) to be equal

- 19 -~



to vp(x). Nevertheless, we are completely free to choose otherwise.
This analysis leaves v, (x) and v, (x) uncoupled. This point will be
revisited in Sec. 3.6.

Finally, substituting Eq.(1.22) into Eq.(1.21) gives the cascaded

system by which we might transform D(n,&) to D (w,&,):

i(!.)? (x.ﬁ )
\ ]'” L Ame o v
D (wr§ ) = o d x M
¢ o v? (2m)’

(1.24)

l[ . l |h(x)| ~ing(x,&)
. d ¢ dn —————— ¢ D{(n,&) .
As(x) As(x)

Counting the inverse transform over v to yield D,(t,E,), Eq.(1.24)
describes a seven-fold integral system. Since both the input and output
data sets are functions of time (or, alternatively, frequency) and
surface location, the variables x = (x,y,z) pass through the process as
dummy variables of integration. Before Eq.(1.24) is nusable, these
subsurface variables must be eliminated from the problem entirely.

Chapter 3 discusses the solution,
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2, INVERSION BACKGROUND

2.1 The Beylkin Transformation

The inversion formula Eq.(1.21) has been presented without proof or
extensive discussion. Since this inversion forms the core of the
cascaded system Eq.(1.24), it deserves considerable discussion. This
section will review the philosophy and concepts behind Eq.(1.21),

In 1985, Gregory Beylkin published a landmark paper (Beylkin, 1985)
in which he described a general approach to seismic inversion based on
the theory of pseudo-~differential operators. In this paper, Beylkin
proposed a change of variables motivated by the search for anm inversion
operator. This change of variables allows for the derivation of
inversion formulas for a wide variety of data types and acquisitiomn
geometries, This change of variables was later justified on a more
rigorous basis by Bleistein (1987).

The rigorous justification for this theory relies on asymptotic
expansions. As such, it is a high frequency theory. For those
purposes, data are considered to be high frequency if the wavelengths
are small compared to the dimensions of the problem at hand. In terms

of temporal quantities, high frequency means that (Bleistein, 1984)

2nfT>>1

where f is frequency in Hz and T is a typical time scale of the problem.
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For our purposes 2nfT>3 is sufficient, Thus, seismic data can be
considered to be high frequency.

Consider a very general inversion formula for seismic data, D(n,%).
As before, &, and ¢, are taken to represent coordinmates along the
acquistion surface, & = (§1,§2); n is the frequency. For common shot
data these coordinates represent geophone coordinates. For common
geophone geometry the coordinates are shot coordinates. For common
offset &,, and &, are the coordinates of the midpoint. Nevertheless,
the inversion 1is performed by a double integral over surface

coordinates, &, and a single integral over input frequeancy, n:

2 —in¢(!.§)
a(x) = d'¢ | dn B(x,E,n)e D(n,&) . (2.1)

This inversion, given the appropriate kernel, B(x,&,n), recovers
the perturbation in velocity, a(x). The task at hand, therefore, is to
find the B(x,&,n) which makes Eq.(2.1) a valid inversion (i.e.,
identity).

The determination of B(x,&,n), is ©based wupon a suitable
representation for the input data, D(n,E). To this end, we represent
D(n,&) as a Born approximation integral (Bleistein, 1984) over the input

perturbation a(x'):
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2
v
m

. ,  A(xDA (x')  ing (x',8)

D(n,E) =1 l[[ d x' £ e a(x’') . (2.2)

The Born approximation is but ome of many choices at ouwr disposal.
The Born approximation is selected for Eq.(2.2) because it involves
perturbation in velocity, which is the output of the inversion formula,
Eq.(2.1). Had the inversion formula been selected to output
reflectivity, R(x), the Kirchhoff representation would have been a more
suitable choice for Bq.(2.2). Either choice will lead to a similar end.
Choosing the Born approximation makes the analysis self-consistent.

There is a close relationship between perturbation, a(x), and
reflectivity, R(x). R(x) is the normal derivative of the perturbation,
da/dn. In this discussion the two quantities will often be wused
interchangeably.

Note that the subsurface variables in Eq.(2.1) are noted
x = (x,y,z), whereas the subsurface variables in Eq.(2.2) are noted
x’ = (x',y',z'). This is because they are not necessarily the same
coordinates., The variables x’' in Eq.(2.2) are dummy variables of
integration. The output is not a function of these variables. The
variables x in Eq.(2.1) are variables of the output perturbation a(x).

This point deserves some amplification. Migration/Inversion
algorithms BEq. (2.1) attempt to solve for an unknown earth. To this end

one builds this unknown earth by superposing the outputs from various
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test points, or gunesses (Fig. 2.1). Thus, in Eq.(2.1), the indicated int
egrals are performed for each test point x = (x,y,z) without the a
priori knowledge as to whether there is a reflector at x. The analogue
for downward continuation algorithms is the imaging comditionm. The
imaging condition is drawn upon at each depth level without the a priori
knowledge that the depth level contains actual reflectors. When there
is no reflector at the output point, the output is of negligible
amplitude. Where there are reflectors, the image is strong. The
condition of an actual reflector occurring at the test point is the
condition that a(x) = a(x’'). (Here perturbation and reflectivity are
being used interchangeably.)

Substituting the Born representation for D(n,&) into Eq.(2.1)

gives:

alx) = ” e ]d,, B(x,Em) -« 0 m a'x’

As(x')Ag(x') in(p(x’',€&) - o(x,¥))

e a(x’') .

(2.3)

2
v
m
All quantities in this equation are well-defined except the unknown
kernel, B(x,E,n). The problem becomes one of finding the B(x,&,n) which
completes the equality. Since a(x’) is the input and a(x) is the

output, ome technique (Bleistein, Cohen, Hagin, 1985) is to recognize

that the sum total of the amplitude and phase factors must be the
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distribotion 8(x’ - x), whose sifting property,
J[f ax*stxr-0) £x) = 200

recovers the desired output, a(x). This approach was very successful.
It does however, carry the inherent difficulty that it must be redone
for every distinct inversion geometry (common shot, common geophone,
common offset).

Beylkin argued that the essential throw-weight of the procedure
defined by Eq.(2.3) must occur near the point x = x'. This was later
justified rigorously by Bleistein (1987). Beylkin suggested linearizing

the phase function ¢(x',&) about the point x' = x:

g(x', &) = ¢(x,&) + Vp(x',E) - (x'-x) . (2.4)

Since the significant energy of the operation Eq.(2.3) occurs only very
near those points where x = x', we <can make some preliminary
observations about B(x,E&,n). Certainly, B(x,&,n) must cancel the other
amplitude factors when x and x' coincide. Therefore, let B(x,&,n) be
given by:

2
v

m
As(x')AS(x')

B(x,&,n) = b(x,&,n) . (2.5)

Then inserting Eq.(2.4) and Eq.(2.5) into Eq.(2.3), the remaining
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unknown becomes the amplitude factor b(x,&,n):

2 2 s -inVe(x',E) - (x'-x)
a(x) = a ¢ dn n b(x,&,n) - d x' e alx’) . (2.6)

Beylkin observed that Eq.(2.6) has the appearance of a forward and
inverse Fourier-like operator. That is, we can consider a forward

Fourier transform over the perturbation to have the form:

s -ik-x'
alk) = d x' e a(x’') . (2.7)

Then if we make the substitution, nV¢(x,&) = k = (k,,k,,k;), the
integration over x' 1looks exactly 1like Eq.(2.7). Under this

substitution, Eq.(2.6) becomes:

ik x
a(x) = I] d2§ I dn n’b(x.ﬁ.n) e alk) . (2.8)

If the integrals in Eq.(2.8) could be cast in terms of integrals

over the wavenumber coordinates, k = (k,,k,,k,), Eq.(2.8) would have the
exact appearance of an inverse transform over wavenumber. (a%tdn > d’k).

Beylkin suggested a substitution of variables of integration from

(n,&,,¢,) to (k,,k,,k;). The Jacobian of this substitution is:
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3
e

r

J[L] = det (2.9)
. &

QD
Q g ]
"

The change of variables of integration involves the substitution
d®k = J[k/n,E1d%¢ dn. After changing the variables of integration from

(n,8,,¢,) to (k,,k,,k;) and the insertion of appropriate 2n scale
factors, the forward/inverse inversion representation Eq.(2.3) has the

exact form of a forward and inverse Fourier transform:

1 s ik'x s -ik-x’
a(x) = n dke dx'e a(x’) . (2.10)
(2n)

Following along with this argument, we can infer immediately that

the unknown amplitude factor b(x,&,n) must be the scaled determinant:

2
n’b(x,E,q) = 1 - det aa k = ——3—; h(x,¥)
(2n) gy (2n)

. (2.11)

h(x,E) can be expressed in terms of known quantities, since we have
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defined (k,,k,,k,) to be equal to (nVg,,nVg,,nVg¢,). h is given by:

D

h = det \7 . (2.12)

Q
T
N

D

Vo ]

r

Q

Ua
»

The inversion formula, Eq.(2.1), becomes:

D(n,&) . (2.13)

Vo l] . l b (x,®)| ~-ing (x,8)

W W

This is a gemeral inversion formula for any background velocity,

Vm(x). It is also a general inversion formula for any geometry (common

shot, common geophone, common offset). The geometry has been left

unspecified in the derivation.

2.2 The Inversion Geometry
The particular acquisition geometry has been left unspecified inm
the derivation of the previous section. It is implicit in the fimal
form of the inversion formula. As previously stated, the variables
&= (&,t,) parameterize the acquisition surface. The particular
inversion geometry is intimately related to the way & enters in the

functional relationships of the various guantities.
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For example, the phase function, ¢(x,§), is a sum of traveltimes

from source to x and from x to receiver:

?(x,t) = ts(x) + tg(!) . (2.14)

In a constant velocity earth, these reduce to simple distances
divided by velocity. In a more general earth, v, and vy are found by
more elaborate means. Nevertheless, the interpretation of p(x,&) as a
sum of traveltimes remains, The gradient V¢ is given by a sum of
vectors — one along the ray from x to the source, the other along the
ray from x to the receiver.

The geometry of the input data reflects itself through the particular
form of the determinant, h. For a common shot configuration the
coordinates of the shot can be given by &g = (gsi'ész)' g (and ts) is
a constant with respect to the variables of the integration. The
coordinates of the receivers are the variables of integration. They are

given by the §g = ¢ = (&,,t,). Therefore, h takes the form:
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h = det | = Vx . (2.15)

For common shot acquisition the derivatives of the second and third
rows of this determinant depend on the geophone coordinates and output
coordinates, but not on the source coordinates. Likewise, for a common
receiver inversion the derivatives are with respect to the shot portion
of ¢ only. Similar relationships hold true for common offset and zero
offset inversion. It is the form of h which compensates for the
particular inversion geometry.

In hindsight, this should not surprise wus. The derivation of
Sec. 2.1 treated the forward problem as a Fourier transform. The
particular geometry parameterizes the forward transform Eq.(2.7). If we
view this as a transform from subsurface variables x to wavenumber
variables k, then any areal configuration of sources and receivers which
is consistent with this interpretation should be consistent with the
derivation of Sec. 2.1. The Jacobian of the substitution in the inverse
problem absorbs the specifics of the problem at hand. The

self-consistency is guaranteed by the substitutions:
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(nax¢. n8y¢. naz¢) = (kl.kzks) . (2.16)
or, in terms of the variables of integration:
= n |nld*Ed (2.17)
dk dk dk = n |b|d"&dn . .

The forward transform illuminates the subsurface (i.e., transforms
it from space to wavenumber). The inversion recovers the ijilluminated
portion. The geometry 1is accounted for as long as we are very careful

in our specific definition of h, It must match the problem at hand.
2.3 Illuminating the Subsurface with Limited Aperture

Seismic imaging would be a simple task if the world were as
cooperative as Sec. 2.1 suggests. With the forward problem seen as a
forward Fourier transform, the inverse problem becomes an inverse
Fourier transform and the problem is solved. We have recovered the
model of the subsurface and can go on to solve new, more challenging
problems. Or can we?

Before declaring total victory, perhaps we should revisit some of
the assumptions made in Sec. 2.1 and consider their limitations.
Consider Eq.(2.7) which defined the forward Fourier-like transform

(repeated here for convenience):
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s ik-x' :
a(k) = d x'e a(x’) . (2.18)

We defined the wavenumber, k by:

k=nVp = nV(x  + tg) . (2.19)

There are subtle, but significant, limits to the substitution of
Eq.(2.19). PFigure 2.2 is a graphical depiction of Eq.(2.19). The
quantity V(-cs + tg) is a vector which is the sum of two vectors, Vrg and
V%g. As shown by Fig. 2.2, Vz, is a vector along the ray from the
source to the subsurface point. Likewise, Vtg is a vector along the ray
from the receiver to the subsurface point. Eq.(2.19) says that k is a
vector which lies between Vr_ and Vtg.

We can make an estimate of the magnitude of k. The eikonal

equation is:

ve|? =;17 . (2.20)

Therefore, the magnitudes |Vr | and [Veg | are both equal to 1/v.

The bounds on |k| can be deduced directly:
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0% x| S-ZJ‘-:L[ . (2.21)

For a given 1, the lower and wupper bounds correspond to
source/receiver offsets. The upper bound (|k| = 2|n|/v) corresponds to
zero offset. the lower bound (|k| = 0) corresponds to infinite offset.
Thus, there are reasonable bounds on the magnitude of |k|.

A far more serious problem lies with limits on the direction of k.
Referring again to Figure 2.2, the direction of k is the direction of
the normal to the reflector. This is because k bisects the angle
between Vrg and Vrg. (At reflection points the angle of incidence
equals the angle of reflection). A limit on the direction of k is a
limit on the range of dips which can be imaged. Real-life acquisition
cannot recover all dips at every point in the subsurface. The limited
aperture of practical recording limits the dips that can be recovered by
a given experiment.

For an excellent discussion of these concepts, see Beylkin,
Oristaglio and Miller (1985). This paper contains some excellent
examples of the effect of limited aperture on seismic migration.

Eq.(2.7) would be an exact transformation if the recording
frequency and aperture of the array were infinite. Limits on frequency
introduce limits om the magnitude Ikl. Limits on the array introduce
limits on the direction of k. Thus, instead of a(k), the forward

transform of Eq.(2.7) produces @(k), where @&(k) is a band-limited
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version of @(k).

These concepts apply directly to the interpretation of the inverse
Fourier-like transform Eq.(2.10). The output of the inversion is not
a(x), but @a(x) - the inverse transform of the band-limited @(k).
Fig. 2.3 illustrates how limits of the recording array can be translated
into limits on recorded dips, and how these tramslate to limits on the

direction of k.
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3. THE TRANSFORMATION TO ZERO OFFSET

3.1, Overview

The process of transforming recorded seismic data to zero offset
can be represented as a prestack inversion followed by a zero offset
forward model. This was expressed in operator notation in Chapter 1.
We would like this process to preserve amplitude information in the
recorded data, For this reason, an inversion is utilized in lieu of =&
migration. The specifics of this inversion are the subject of Chapter
2. The forward model is the Born approximation integral for zero
offset. Inserting the inversion operator into the forward modeling
operator gives a cascaded operator which accomplishes the transformation
to zero offset. This operator was given by Eq.(1.24), and is repeated

here:

i(l)po (xngo)

2
b (0 £ ) = o l[[ s Ao(x) e v
o TTte v? (2m)

(3.1)

) |h(x,8)| ~-ing(x, &)
° d § d‘l] m e D(n.&) .
s g

The input to this integral system are the Fourier transformed
recorded data D(n,&), which are a function of frequency n, and surface
coordinates § = (&,,€,). The output is zero offset data Dy(w,&,), which

are a function of frequency w and zero offset location &, = (&g,,&,,)-
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Counting the inverse Fourier transform over w, Eq.(3.1) is a seven—-fold
integral.

The goal is to reduce Eq.(3.1) to a format suitable for
implementation on a digital computer. The integrals over surface
coordinates & and input frequency w present no problem. These are
variables for which the data are explicitly defined. The integrals over
the subsurface variables x = (x,y,z) are a different matter., The
subsurface variables arose from the formulation of the problem as a
prestack inversion followed by a zero offset forward model. These
subsurface variables are dummy variables of integration in Eq.(3.1).
Before the cascaded system is implemented, the integrals over these
variables can be eliminated by analytic means.

Alternative solutions to the cascaded inversion/modeling problem
might, indeed, leave the subsurface variables in the solution path. The
solution path described herein is for a constant velocity earth. For
this simple earth model, <calculating the subsurface integrals
analytically is a tractable problem, More exotic velocity models might
require that the subsurface remain a part of the problem. For example,
the cascaded inversion/modeling problem in an arbitrarily varying
velocity field might require tracing rays from the subsurface point x to
the shot &g, geophone §g, and zero offset location &,.

The inversion philosophy discussed in Chapter 2 is a prestack
theory. Since reflectivity is a function of angle of incidence the best

one can hope for from the theory of Chapter 2 is an estimate of the
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angularly dependent reflection coefficients. Since a stack over offset
is a stack over the angularly dependent reflection coefficients, the
stacking process degrades much of the amplitude information that this
theory is designed to preserve.

There are two issues involved here., First, we expect a stacking
theory developed upon this cascaded inversion/modeling transformation to
do a better job than standard NMO+DMO+STACK, primarily because the
theory developed herein is wave equation based. Secondly, (and perhaps
of greater significance), we expect that theory developed herein to
offer some prestack analysis which is an improvement over conventional
dip moveout processing. We have two applications in mind - shot domain
velocity analysis and amplitude versus offset processing, The cascaded
system of Eq.(3.1) offers the potential to do both processes in a wave

equation consistent fashion.

3.2 The 2.5D Solution

Eq.(3.1) describes a full three-dimensional problem, The
subsurface is allowed to vary arbitrarily as a function of x = (x,y,z)
(within the confines of a constant background velocity). The forward
modeling operator introduced the three-fold integration over x in
Eq.(3.1) The inversion operator is three-dimensional problem. Thus,
the inversion operator also introduced a three-fold integration - two
surface variables & = (El,tz) and frequency n. The six—fold integration

of Eq.(3.1) describes the full three—dimensional transformation to zero
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offset.

The solution path can be simplified if we assume that the line of
recorded data is a dip line. We retain the three-dimensional nature of
the wave propagation, but we assume that the earth is invariant in the
cross—1line direction. That is, parallel lines of recorded data would be
identical, This assumption has been termed 2.5D in order to contrast it
with approaches which utilize only the 2D wave equation. The geometry
of the 2.5D problem is illustrated in Fig. 3.1.

A nice result from making a 2.5D assumption is that the
out-of-plane receiver integral (¢,) and the out—of-plane subsurface
integral (y) can be evaluated by the method of statiomary phase. (See
Appendix C for a brief review of the stationary phase formula). The
mechanics of the 2.5D solution of Eq.(3.1) are given in Appendix A. The

result is the mapping from finite offset to zero offset:

1/2
t v
=_°'m_ 1/3 in
D, (t .E ) 2016 l dnF(n) |n| exp[ 7 Sson ]
a¢
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The various factors are defined in the glossary and Appendix A.

A very nice feature of the derivation of Appendix A, and of the
resultant Eq.(3.2), is that it is very genmeral in regard to the geometry
(i.e., common shot data, common receiver data, or common offset data).
As discussed in Chapter 2, the specifics of the problem geometry are
accounted for by the specific form of the determinant |h(x.§)|- Thus,
one would use a different Ih(x.§)| depending upon whether the problem
were cast in the common shot, common receiver, or common offset domain.
The derivation and form for the common shot Ih(x,g)' is given in
Appendix H. The common receiver |h(x,&)| can be deduced from the common
shot |h(x.§)| by simply reversing the roles of shot and receiver
variables in that formula. The common offset |h(x,g)| is derived in
Appendix ¥.

One must be very careful in formulating the geometry of the problem
if Eq.(3.2) is to be used correctly. The phase function of Eq.(3.1),

¢p(x,E) is a sum of shot and geophone traveltimes, Tg and Tge In a

constant velocity earth, these can be expressed by:

_-_1- ~ 2 2
w0 = L j (g )"+ (g )"+ oz
(3.3)
_i _ 2 2
tg(X) = v j (x 681) + (y—ggz) + z .
Equation (3.3) is wvalid for all geometries. However, in
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formulating the problem given by Eq.(3.1), one must be careful in
defining what is meant by the double integral over receivers,
t = (&,t,). The reason for this is because in deriving Eq.(3.2) the &,
integral is eliminated by stationary phase. The nature of the &,
integral changes with the geometry. Common shot geometry is defined to
be one in which the source point is fixed and the receivers are
distributed along the acquisition surface., Thus, the position of the
source, §s = (Esi'gsz)’ is held constant with respect to the §
integration in Eq.(3.1). The variables of integration & = (&,,&,)
become the geophone coordinates Eg = (égi'égz)‘ Alternatively, one
might envision parallel lines of common offset data. Thus, the shot
coordinate, & in Bq.(3.3), could be expressed by
Es = (Eg1.&ga) = (£5,-h,E,), and the receiver position by
g = (§g1:85,) = (E4%h,E,). In the common offset formulation, &, and &,
are the midpoints on the acquisition surface and h is the half offset.
The derivation of Appendix A is valid for each of these cases so long as

one is careful in defining the geometry of the problem.

3.3 The TZ0 Impulse Response
As we have said, a prestack inversion theory offers the greatest
otility in prestack applications. Thus, one might apply Eq.(3.2) in a
common shot, common receiver, or common offset configuration. Each of
these applications represents a partial stack over the data. The goal

of this partial stack is to generate the best estimate for zero offset
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data from the domain of the partial stack. Thus, we might expect the
operator to vary depending upon the geometry of the partial stack.

There are really four different operators involved. These are for
common shot, common receiver, common offset, and stacking, The common
shot operator tries to give the best estimate of zero offset data by
processing only single shot records. Likewise,  the common receiver
implementation tries to produce the best zero offset data by considering
only single common receiver records. The common offset implementation
is a partial stack over both shots and receivers. There is an inherent
geometrical bias in recording., For example, a shot record tends to
favor dips inclined towards the geophones (thus, one attempts to "shoot
into the dip”"). The inversion theory of Chapter 2 attempts to
compensate for this bias. The operators which result from Eq.(3.2) are
different depending upon their domain of application. These differences
are explained entirely by differences in the determinant |h(x,§)|-

How do these operators differ from conventional dip moveout?
Before answering this question, perhaps we should define what we mean by
conventional dip moveout. The application of Eq.(3.2) will be in the
(x,t) domain, Therefore, to have a fair comparison we should use a
conventional dip moveout algorithm which is an (x,t) domain application.
Lars Berg (1984) presented an (x,t) domain implementation of Dave Hale's
(1983) (w,k) dip moveout algorithm., Figure 3.2 shows an impulse
response of this algorithm for an offset of 5,000 ft., and velocity of

8,000 ft./sec.
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Figures 3.3a and 3.3b show a comparison of the Berg algorithm with
the common shot operator of Eq.(3.2). 1In these figures the operator on
the left is from the Berg algorithm, the operator on the right is the
inversion-based operator. The comparisons are for seven impulses at
offsets of 10,000 ft. and 5,000 feet. Note that the common shot
operator has amplitudes which are asymmetric with respect to the
midpoint. The Berg operator (and all conventional dip moveout
operators) are symmetric with respect to the midpoint. This asymmetry
is a direct consequence of the asymmetry of the inversion operator. It
compensates for the geometrical bias of the recording geometry.

Figure 3.4 (a repeat of Fig. 1.3) shows a ray plot which might shed
some light on the asymmetry of the common shot operator. Note that the
ray density for the geometry shown is significantly higher for beds
which dip into the geophone. The transformation to zero offset can be
thought of as a procedure which projects this ray density onto an evenly
sampled zero offset trace spacing, Figure 3.5 illustrates the zero
offset geometry, and associated zero offset rays. The ray density of
Figure 3.4 is mapped to the ray density of Figure 3.5. An uneven ray
density in the original recording will evidence itself as a bias in the
zero offset data. Therefore, the asymmetric operator tries to
compensate for the inherent asymmetry of the original rcording.

As previously discussed in Chapter 2, the determinant |h| has the

form:
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h (x,8) = det | —=2— Vp . (3.4)

The magnitude of this determinant |h| is a function of the quantity
0Vp/a¢, which is simply the rate of change of traveltime with respect to
change in the receiver position. Figure 3.6 graphs this rate of change
for a common shot configuration. For several subsurface points, the
change in the gradient of the phase with changing receiver coordinates
is illustrated. With common shot data, the change in V¢ is equal to the
change in <g. Comparing Fig. 3.6 with Fig. 3.4, we see that this rate
of change of the ray with respect to the receiver position is directly
related to the ray density. They are a measure of the same quantity -

the density of subsurface coverage. At subsurface points where 3Vg/d&
is low (i.e., the ray position changes slowly with change in receiver
position), the ray demsity is high. At subsurface points where 3dVp/d&
is high (i.e., the ray position changes rapidly with change in receiver
position), the ray density is low. The determinant Ih(x,§)| attempts to

compensate for this phenomenon such that the resultant inversion (or,

equivalently, zero offset data) does not mirror this bias. Thus,

|h(x,§)| can be thought of as a wave-consistent "fold” compensator.
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This is the reason for the asymmetry of the common shot operator. The
common receiver operator has a similar asymmetry with amplitudes higher
on the side of the shot.

One might wonder if the asymmetry of the operator violates
reciprocity. Reciprocity states that there is no change in the data if
we interchange source and receiver. The operators pictured in Fig. 3 do
not violate reciprocity. Recall that this asymmetry is anticipating
that there will be a sum over the data. Although viewed independently,
reciprocity seems to be an issuwe, taken in the context of the sum over
surface data, it is not violated.

The common shot operator is the operator which gives the best
estimate of zero offset data from a given shot record. It is not the
operator which would be appropriate in stacking the data. As stated
above, the common receiver operator has equal but opposite asymmetry.
Since a recorded seismic survey can be expressed as either common shot
or common receiver data, to stack with either the common shot or common
receiver operators is to use a different operator depending upon the
sorting of the input data! We do not advocate such an approach.

Bleistein and Jorden (1987) give an inversion theory appropriate
for stacking. There they develop a criteria for stacking which demands
that a stack with a common shot operator must equal a comparable stack
with a common geophone operator. The result is an averaged operator
which is suitable for stacking. The operator is symmetric.

The raypath density discussion of the previous paragraphs also
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applies to the common offset implementation of Eq.(3.2). In common
offset geometry, the ray demsity changes as a function of the dip. As
in the common shot case, the determinant lh(x,§)| compensates for the
uneven ray demsity. However, in the common offset implementation the
operator is symmetric but has amplitudes which vary with dip (i.e.,
which vary along the limbs of the operator).

Figures 3.7a and 3.7b compare the Berg operator with the common
offset inversion-based operator. As expected, the inversion-based
operator applies a higher relative weight to the limbs of the operator
(the higher dips) than does the Berg algorithm, An impulse on a
constant offset section could come from a reflector of arbitrary dip.
The inversion-based operator tells us that, for a fixed common offset
traveltime, the flat beds received a higher ray density than the dipping
beds. Since the reflections from dipping beds originate at shallower
depths than contemporaneous flat reflections, a review of Fig. 3.6
confirms this to be true. Once again, the determinant |h(x,§)| is
acting as a wave-consistent "fold"” compensator.

"Fold” as commonly defined is & zero—dip number (i.e., number of
common midpoints). The inversion theory of Chapter 2 extends the
concept of fold to more realistic geometries. The operators of
Figs. 3.3 and 3.7 incorporate this "fold” compensation.

Note the behavior of the amplitudes at the edges of the limbs of
the operator (the 90° point). The Berg algorithm truncates abruptly.

To compensate for this phenomena, a tapering operator is often applied
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to the impulse response. The TZO algorithm naturally tapers at the edge

of the operator.

3.4 Processing Applications

Applications for the algorithm defined by Eq.(3.2) fall into two
major categories — prestack and stacking. This section will discuss two
prestack applications - velocity analysis and amplitude versus offset
analysis.

As stated previously, the stacking process has the effect of
summing over the angularly dependent (i.e., offset dependent) reflection
coefficients. The result is a loss of meaningful amplitude information.
Since stacked data has dubious amplitudes, the best measure for stack
quality is the quality of the resultant image. Conversely, since
prestack data has the potential of preserving amplitude information, the
best measure for a prestack algorithm should be quality (and
consistency) of the data, as well as the behavior of the amplitudes.

The operator of Eq.(3.2) (here and throughout we will occasionally
refer to this operator as the TZ0 operator, TZ0 meaning Transformation
to Zero Offset) can be cast in the time domain by inverse Fourier
transforming over the frequency variable, m (Appendix A). The resultant
operator has a complicated amplitude term, but a traveltime relationship
which is equal to NMO + DMO when v, equals v, (see Appendix D for
proof).

The operators displayed in the previous section were valid for dips
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ranging from +/- 90 degrees. As a practical matter, it is often
advantageous to limit the operator to a specified range of dips. This
amounts to truncating the impulse response. Appendix E details the
means by which the dip limits are defined.

Another practical matter in processing is the domain of application
of the dip-moveout operator. An (x,t) domain algorithm offers the
potential to read in each trace and map it to the domain of zero offset
traces it affects. In this case, the domain of zero offset traces are
those traces which lie between the surface locations of the shot and
geophone, As each trace is read, it is spread along the impulse
response corresponding to the geometry of that trace. The output data
can be constructed from the input data one trace at a time, eliminating

the need to sort.

3.4.1 Velocity Analysis

Several goals guide the formulation of the velocity analysis
application. First and foremost, we would like a velocity analysis
which has the potential to estimate the dip-independent velocities.
Secondly, we would like the data to be processed in shot order,
eliminating the need to sort to common-midpoint. Thirdly, we would like
the ability to display the velocity analysis in both a true amplitude
fashion and a semblance display.

The stationary phase evaluation of Eq.(3.1) dictates that the

output trace must lie between the location of the shot and geophone on
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the line connecting them. This is nothing more than a restatement of the
fact that the dip moveout impulse response is an ellipse with horizontal

axis equal to the offset — all the output traces lie between the shot

and geophone. This is the domain of influence of a given input trace.

Likewise, ome can define the domain of influence for a given shot

record. A shot record (here we are considering off-end shooting) will

contribute to zero offset traces which lie between the shot and the far

offset.

Figure 3.8 shows the domains of influence of a set of shot records.
Each shot contributes to the shaded zone of zero offset data. Figure
3.9 shows the same figure, but with a location x, identified. x, is a
location for which we might wish to do velocity analysis. Note that
each of the shots of Figs. 3.8 and 3.9 contributes to the zero offset
location x,. That is, for n input shots, there will be n different
contributing traces to the location x, - one from each shot. If the
velocity is correct, each of the n traces should be identical, or nearly
so. If the velocity is incorrect the n traces should differ.

In the shot domain velocity analysis, the transformation to zero
offset is formulated using the common shot operator (Fig. 3.3). The
correct velocity is that velocity for which the various traces (one from
each shot) are identical.

Figure 3.10 shows a model on which this velocity analysis is
demonstrated. The model contains six layers with crossing and

conflicting dips. The modeling algorithm is a constant
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Kirchhoff integral code, with a velocity of 8,000 ft./sec. Within the
confines of the constant velocity assumption, the fact that the layers
cross is a geometrical artifact (the rays do mnot bend at the
interfaces). The modeling geometry consisted of 25 split spread shot
records. There are 96 channels per shot, with a near offset of 100 ft.
and a far offset of 4,800 ft. (receiver interval 100 ft.). The first
shot was at the location marked "S1”, the last shot is at the locationm
marked "S2", The shot interval is 200 ft.

Figure 3.11 shows a velocity panel for a location midway between
the first and last shot (marked x, om Fig. 3.10). As velocity is
varied, each of the 25 traces contributing to the given location (one
trace for each of the 25 shots) are plotted side by side. Note that the
best agreement between the contributions from different shots occurs at
the model velocity of 8,000 ft/sec. This analysis estimated the same
velocity for both the dipping and flat beds. It is a dip—-independent
velocity analysis which processes the data in shot order without
sorting,

The data in the following examples are from a seismic line acquired
in the vicinity of a Gulf of Mexico salt dome. These data were
generously provided by Golden Geophysical and Anadarko Pretroleum,

Figure 3.12 shows a near trace display. The offset is 1,056 ft.
The data were shot from left to right, with a 120 channel cable and a
receiver interval of 82 ft., The shot interval was also 82 ft.,

resulting in 60 fold data.

_49_



Because of the volume of data involved in this dataset, it was more
efficient to scan over velocity functions rather tham over constant
velocity panels. Linear velocity functions were defined by an intercept
and a slope (i.e., v = v, + kt). Both the intercept and the slope were
incremented in the velocity scans. For each velocity function, the
separate contributions to the zero offset location from each shot were
saved and plotted side by side. Each trace, therefore, represents a sum
over geophones for each shot record. The correct velocity was
determined by agreement (i.e., horizontal alignment) of zero offset
traces gemnerated from different shots.

The velocity analyses in the following examples correspond to the
location marked x, on the near trace display of Fig. 3.12. Figure 3.13
shows a comparison between the Berg algorithm and the TZO algorithm for
a sample velocity function (v = 5000 + 375t). As before, the figure
displays the various contributing traces from each shot plotted side by
side. This velocity function was too slow for all but the most shallow
data. The traces gemnerated from the different shots do not agree

- they ‘'smile up’ toward those shots whose contributions are
predominantly far offset traces.

Figures 3.14a through 3.14c show enlargements of the data in
Fig. 3.13. The data for the TZO panel is superior, particularly in
Figs. 3.14b and 3.14c. However, both algorithms have dome a good job.
Recall that the traveltime of the algorithms is 1identical. The

differences, therefore, will be in coherency and amplitude 'quality’.
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Fig. 3.15 is a similar comparison for a faster velocity function
(v = 5600 + 1050t). As demonstrated by the horizontal alignment of
events, this velocity function is quite good for much of the data
(though too fast for the shallow data). Figs. 3.16a through 3.16c show
an enlargement of the data in Fig. 3.15.

Fig. 3.17 is a comparison for a velocity function which is too fast
for all but the deepest data (v = 6000 + 1500t). The traces 'frown’
towards the traces from shots which contributed predominantly far
offsets. Figs. 3.18a through 3.18¢c are enlargements of the data in
Fig. 3.17.

Finally, Fig. 3.19 shows a comparison of semblance displays from
the velocity panels of the two algorithms, Both semblance panels give
good definition of the velocity spectra (Cook and Tamer (1969). Douze
and Laster (1979), Garotta and Michon (1967), Neidell and Taner (1971),
Taner and Koehler (1969)). The TZO semblance display is marginally
better for the shallow data.

There is a peculiar packet of emergy on the semblance displays at
2.1 seconds. This packet has a velocity slower than the general trend.
This is energy off the flank of the dome. Even though this analysis is
designed to estimate the dip independent velocities, it has somehow
failed to give the same velocity for the dome reflection and
contemporaneous flat reflections., This is due to a failure of the
constant velocity algorithm to properly handle a layered earth. The

slower velocity is, indeed, the dip independent velocity for the dome
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reflection (RMS velocity), but it is occurring at a time much later than
comparable RMS velocities. The angled raypaths off the dome have
traveled through a slower velocity than the raypaths for flat events
arriving at the same time, An algorithm designed for a depth dependent
velocity field is required to properly handle the reflection off the
dome.

Dip moveout is an offset dependent operation., Since a common shot
formulation represents a stack over offset, common shot is a poor choice
of domains in which to compare the performance of dip moveout

algorithms. The natural domain of comparison is offset.

3.4.2 Amplitude vs. offset.

Much attention has been paid in recent years to the variation of
seismic amplitudes with offset. These variations have been used as a
means for direct detection of hydrocarbons, In the presence of
structure, one would 1like to be assured that the comparison of
amplitudes is made for a common reflection point. This often requires
dip moveout.

The role of dip moveout in an amplitude offset processing flow is
ill-defined. In particular, since dip moveout is not wave equation
based, and has amplitude factors derived solely from a traveltime
Jacobian, one would be wise to be suspicious of the resultant amplitudes
after dip moveout processing. This is not to say that the resultant

amplitudes are unreliable, but rather to say that there is no basis upon
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which to judge them.

The TZO algorithm of Eq.(3.2) addresses the question of amplitudes
rigorously within the framework of the acoustic wave equation. We
would, therefore, expect it to produce more reliable amplitudes than
conventional dip moveout.

The following examples are from the location marked x, on Fig. 3.12
(the same location as the velocity amalysis of the previous section).
The data affecting this location were processed to zero offset. The
contributions from the various offsets were saved and plotted side by
side for comparison.

This type of analysis suggests an advantage of an (x,t) domain
algorithm, As stated previously, the data are processed in trace
sequential order., Each trace is read and then spread over the domain of
zero offset traces affected by that trace. For a given input trace,
isolating a particular output trace makes the transformation to zero
offset a one to one mapping. That is, instead of spreading the input
trace over the entire impulse response, one can map the input trace only
to that part of the impulse response corresponding to the desired output
location., This is in stark contrast to an (f,k) algorithm, which would
need to process all the common offset panels in order to gemerate the
contributions from each offset at a particular point.

Figure 3.20 shows an offset comparison for the Berg and TZO
algorithms. On this display the offset increases from left to right.

The near offset is 1056 ft. The far offset is 10814 ft. Each trace is
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the contribution to the location x, from each offset. For the TZO
displays, the common offset operator (Fig. 3.7) was used.

The velocity function at this location was picked from the
semblance analysis. The extent to which events align is the extent to
which the velocity is correct. Misalignment is caused by a combination
of bad picking and the failure of a constant velocity algorithm to
handle a variable velocity media. For example, the frowning events just
below the 2.0 second timing line are reflections off the flank of the
dome., These arrive at a slower velocity, as discussed in the previous
section,

Figs. 3.21a through 3.21c are enlargements of Fig. 3.20. Note that
the TZO algorithm has produced events which have overall better
coherency. The amplitudes also show a slightly different distribution
between the outputs of the two algorithms. It would be foolish to claim
that ome is wunequivocably ‘right’., The TZO algorithm, however, does
address the question of amplitudes. Overall, it has produced superior
results.

3.5 Stacking

Certainly no discussion on dip moveout would be complete without
some attention paid to stacking. As we have seen previously, the
inversion theory upon which this thesis is based is a pre-stack theory.
The inversion estimates the angularly dependent reflection coefficients
(or, equivalently, pertubation im velocity). A stack over offset is,

therefore, a stack over these offset dependent reflection coefficients.
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Therefore, the process of stacking degrades much of the amplitude
information which this theory was designed to preserve.

Stacking is a necessity. The relevant question here is which is
the appropriate stacking operator to use. We have seen operators
derived for common shot (and , equivalently, common geophone) and for
common offset. Neither of these derivations discusses the justification
for summing over shots or summing over offsets.

Bleistein and Jorden (1987) discuss a theory for seismic stacking
which is based upon a weighted average of the various inversions. That
is, the common shot inversions and the common receiver inversions are
weighted such that the net operator is symmetric and produces an
averaged value of the reflectivity. A similer justification can be
offered for using the common offset operator to stack. With the caution
that the amplitudes of the output are numerically dubious, ome can
proceed with a stack over offsets. The resultant stack is an average of
a wave-equation based procedure, though the numerical meaning of the
average is now a weighted sum over angularly dependent reflection
coefficients.

Figure 3.22 shows the near trace from the Gulf of Mexico data (mear
offset is 1056ft.). The zone of stacked data is indicated omn the
figure. (Practical limitations on computer time prohibited the stacking
of the entire line).

Figure 3.23 shows a comparison of the stacks from the Berg

algorithm and from the TZ0 common offset algorithm, The 1light
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amplitudes in the shallow data are a result of the drop in fold. The
stack routine did not compensate for the fold loss at the surface.

Figures 3.24a through 3.24c show enlargements of the data in Figure
3.23 for three time windows (0-1s, 1-2s, and 2-3s, respectively). A
careful inspection of the coherency and overall quality of the events
shows that the TZ0 algorithm has produced a superior stack. For
example, note the horizontal (or nearly so) events in Figure 3.24c. The
TZO stack is noticeably cleaner.

Arguably, the differences between the two algorithms are small.
This is to be expected since the traveltime of the mapping is the same
for both algorithms. The differences are to be found in subtle
amplitude and coherency variations. One is a wave equation based

procedure, the other is not.

3.6 When v, Is Not Equal To v

The TZO formulation separates the two velocities, v, and vp. This
is a constant background theory, formulated as a cascaded
inversion/modeling procedure. The inversion produces an estimate of the
perturbation in velocity. This is a perturbation within some background
velocity field (vm). Alternatively, the algorithm c¢ould have been
formulated about an inversion scheme which inverted for reflectivity.
In this case, the output would be reflection coefficients in some
constant velocity medium (again, Vo) - Once the perturbation or

reflectivity is found, there is no a priori reason to demand that the
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forward model be genmerated with the same v,, One can choose a new
velocity v,. That is, from the same depth model (perturbation or
reflectivity) one can generate any time model (zero offset data).

This degree of freedom is afforded because the algorithms are
constant velocity algorithms. That is, the rays do not bend at changes
in the reflectivity or perturbation. The effect of letting v, be
different from v, is to produce an algorithm which not only transforms
the recording geometry to zero offset, but also transforms the velocity
field from vy to v,.

In general, one would like to keep v, equal to vp. There are,
however, cases where it is useful to let them vary independently. One
such case is in velocity analysis. Once velocities have been picked,
they can be verified through a (Vo,vm) analysis. By generating a zero
offset section with v, not equal to vy, errors in velocity picks show up
as radical changes in shape of reflectors. Comparing a zero offset
section with v, equal to v, (i.e., NMO + DMO) to one where v, differs
from v , any error in velocity shows up as a change in shape of
reflectors between the two sections. When the velocity is correct,
reflectors are positioned at a different time, but retain the same
relative shape.

Since the zero offset trace spacing is a parameter at the users
discretion, these zero offset ’'check-sections’ can be generated with a
greatly relaxed trace spacing. In this way errors in velocity can be

flagged and the velocity spectrum repicked.

_57_.



3.7 Two or Three Dimensions?

Much of the justification for the particular choices of the
inversion and modeling operators hinged upon the fact that they needed
to be three—dimensional operators. This was a consequence of the fact
that dip moveout is a three—~dimensional problem, All reflections
recorded by a shot—geophone pair, whether in-plane or out-of-plane, have
equivalent zero offset projections which 1lie between the shot and
geophone. This suggests that by processing only lines of data, the full
three~dimensional variation of the subsurface can be preserved.

The derivation for the algorithm of Eq.(3.2) was for a
2.5~dimensional earth. This was defined to be an earth which did not
vary in the off-line direction (i.e., recording along true dip lines).
Thus, the wave propagation is allowed to be three dimensional, but the
reflection points all 1lie in-plane. The convenience of the 2.5D
assumption is in computational simplicity. The computations of Appendix
A become straightforward because the out-of-plane receiver integral, §,,
and the out—of-plane subsurface integral, y, can be done by statiomary
phase.

With full three-dimensional wvariations, the stationary phase
analysis in §, and y is not justifiable. There are no critical points
in the off-line variables. One must search for altermative means to
evaluate the cascaded system of Eq. 3.1.

Appendix B outlines a possible three—-dimensional solution path.
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The solution involves uniform expansions of integrals along the lines
suggested by Bleistein and Handelsman (1967). This three—dimensional
implementation is not carried to completion, and Appendix B is presented
solely as a suggestion for further research.

The three-dimensional solution suggests that there are significant
offline contributions from the dip-movement operator. That is, not only
does a recorded trace affect zero offset traces lying betweem the shot
and geophone, but it also has a nonnegligible contribution to nearby
offline zero offset traces. In hindsight, perhaps this should not be
surprising. Dip moveout maps a specular reflection to an equivalent
zero offset specular reflection, When the offset and zero offset
reflection points do not exactly coincide in the subsurface (but are
near one another), the Fresnel zones might overlap in a geometrical
arrangement which is more complicated than the Fresnel zone
considerations of migration. We can consider an offset reflection point
as having a contribution to a zero offset reflection point if their
respective Fresnel zones overlap. Thus, the reflection points might be
separated by two Fresnel zones and still have some significant
interaction in the mapping from offset to zero offset (Fig. 3.25). The
three—dimensional solution of Appendix B might, indeed, be revealing
just this phenomena.

The mathematics of the enclosed methodology is involved and
lengthy. However, if treated properly, the physics reveals itself

through the mathematics in an elegant and logical fashion. Thus, in the
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2.5D solution, the mathematics dictated that the offset trace lie
between the shot and geophone. Likewise, the mathematics revealed the
particular location of the reflection points corresponding to zero
offset traces. These remarks are made solely as a motivation for
pursuing the mathematics of the three-dimensional solution. Deviations
between the mathematical principles and intuition (i.e., the presence of
significant off-1ine contributions) might, indeed, require a

readjustment of one’s intuition.

3.8 Cost

In preparing the applications for this thesis, little attention has
been given to optimization. Therefore, these remarks are to be taken as
preliminary,

The applications shown herein were developed on a Gould 9750
computer which lacked virtual memory and an array processor. The
inversion-based algorithm ran approximately twice as long as the Berg
algorithm. However, this is an unfair comparison., The inversion-based
algorithm has a much more complicated amplitude function than the Berg
algorithm, Lacking virtual memory, these amplitude factors were
calculated for each input trace. This involved a high degree of
redundancy of calculations. On a virtual memory imnstallation, these
factors could be calculated once for the entire dataset and read from
look-up tables. With wvirtual memory the execution times of the

inversion-based and Berg algorithms should be approximately equal.
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CONCLUSIONS

Conventional dip moveout algorithms are derived from traveltime

relationships between offset recorded data and their equivalent zero

offset reflections. However, to consider only traveltime arguments is
to leave a number of issues unaddressed. In particular, ome would like
an algorithm based on the wave equation, mnot solely on traveltime
considerations,

A wave equation based algorithm has been derived by treating the
process of transforming seismic data to zero offset as a cascaded
inversion/modeling procedure. The output from a seismic inversion is
cascaded as input to a forward modeling algorithm., The logic of this

procedure demands an inversion rather than a migration, since the

modeling algorithm requires particular estimates of the earth
parameters. Furthermore, the richness of the inversion theory has been
shown to offer a geometric versatilty, as well as the ability to
carefully address the issue of amplitude variations along the limbs of
the operator.

Amplitude variations along the limbs of the dip moveout operator
have traditionally been handled in a makeshift fashion, The operator
derived in this thesis has amplitude distributions which differ markedly
from those of conventional dip moveout. The process of transforming
recorded data to zero offset is a process which projects an uneven ray

density (finite offset) to an even ray density (zero offset). The
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amplitudes along the limbs of the operator account for these variations.
Heuristically, the resultant operator incorporates a wave-equation
consistent "fold compensation.” The result is amplitudes which are more
reliable than those from conventional dip moveout.

Applications for a wave equation based dip moveout have been shown
for velocity analysis and for amplitude offset processing. In both
cases the results are similar to conventional dip moveout. The
differences are in fine variations in data character and quality. This
is not surprising since the traveltime relationships of both algorithms

are the same.
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APPENDIX A:

2.5D TZ0 DERIVATION

This appendix will detail the 2.5-dimensional derivation of the

transformation to zero offset (TZ0). By 2.5-dimensional, we mean a
three—dimensional subsurface which varies in only two dimensions. This
would be equivalent to acquisition along a true dip line. Although the
geology is invariant in the out—of-plane dimension (strike), the wave
propagation is still three-dimensional and is treated as such. That is,
we use the full three—-dimensional wave equation for both inversion and
forward modeling. The out-of-plane integrals are done analytically.
Equation (1.24) will serve as a starting point. It arose from
cascading a three-dimensional inversion operator into a

three—dimensional forward modeling operator:

Az(x) eiw¢o(x0§°) vz
D (w,E ) = 0 a’x — . =
[ 1] 2 3
v, (2n)
(A-1)
-in¢ (x::)
lh (x.§)| S D (n.g) .

2
- |l a%e | an
A, A (0

(See Glossary for definition of symbols.)
Before beginning with the solution, a few observations on Eq.(A-1)

are in order. Counting the inverse Fourier transform over o, Eq.(A-1)
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is a seven—fold integral system. The input to this integral system are
the recorded data. The output is a zero offset trace at the specified
location, &, = (€,4.&4,)- Note that three of the integrals involve
subsurface variables, x = (x,y,z). Since neither the input data nor the
output data are explicit functions of these subsurface variables, these
integrals must be reduced analytically before Eq.(A-1) can be cast in a
usable format.

Furthermore, Eq.(A-1) contains a double integral over receivers,
&= (&,,&,). This double integral is a natural consequence of a
three—~dimensional inversion algorithm, However, since we are treating
the subsurface as 2.5-dimensional, the out-of-plane receiver integral
can be done analytically. The acquisition envisioned here is one where
parallel lines of data are recorded. Since these parallel lines of data
are all dip lines over a strike—invariant earth, adjacent lines of data
are identical. This invariance of adjacent data will serve as the
justification for doing the {, (out-of-plane receivers) integral by
stationary phase.

Stationary phase (Appendix C) is a high frequency approximation.
By high frequency, we mean that the wavelengths are small compared to
typical scales of the problem, Thus, if f is temporal frequency and T

is time, the high frequency requirement is that (Bleistein, 1984):

2nfT>>1
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In practice, a value of 2nfT greater than 3 is more than adequate.
In this context, seismic data may be considered high frequency and the
stationary phase approximation is justified.

The solution begins by inverse Fourier transforming Eq.(A-1) with
respect to the output frequency, w. Under this transformation, the 0’
term becomes —a’/at’. The expliwg,] becomes a delta function with

respect to output time, t,:

a: vm 2 2
Do(to.go) = - )’ ;: dn F(n) d & Ds(n.t)

(A-2)

AL(x) |a(x,®) | _ing (x,8)
D WE 8(t,-p, (x,E,)) e

3
. d x

Here we have taken advantage of the fact that v, and v, 8&re

m
constants by pulling them out of the integrals.

Equation (A-2) expresses the output trace as a function of zero
offset location, E,, and zero offset output time, t,. Eq.(A-2) can be
rewritten in order to isolate the x dependency. Since the zero offset

phase term, ¢, , is a function of x, it too must be grouped along with

the x—dependent terms:
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3?
t

2
v
- m 2
Do(to3§o) = [;;"] dn F(n) d E D ('ﬂlg) + I » (A—3)

(2n)°

where I is given by

A, ) [bx®)| -ing(x,£)
A A @ TR xED) e : (A-4)

The &(t,—¢,) factor can be used to do ome of the subsurface

integrals in I by taking advantage of the identity:

8(z—zo)
| a9, ’

0z z=12z,

s(to—?o(x'go)) = (A"S)

In order to use this identity, it must first be noted that the zero

offset phase, ¢ , is twice the distance (divided by velocity v, ) from

the zero offset location to the reflection point divided by the

velocity, v,, Given a zero offset velocity, vy, and an output zero

offset time, t,, this distance can be expressed directly:
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This allows the specific evaluation of the partial derivative

required by Eq.(A-5):

2

Z
- l.z_ ] _° . (A-7)
v, ty

Z=Zo

8¢°
0z

The final form of the substitution suggested by Eq.(A-5) is:

Vo ’ to
6[ ty—p,(x, &) ] = 8(z-z,) [-i— ] ;:- . (A-8)

Under this substitution, the z integral of Eq.(A-4) can be

evaluated directly. After this evaluation, I becomes:

2

2
A(x) |b (x,8)] [ v, ] t -ing(x,8) (A-9)

]
=&Y T mim 2| =z,
s g

where it is understood that x = (x,y,z,)-
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Here the z dependency in both the amplitude and phase terms of
Eq.(A-9) are now expressed as functions of z, as given above. This
makes the resultant phase function ¢ a great deal more complicated, for
it is now a phase function which is a coupled version of the original

zero offset phase, ¢ , and the prestack inversion phase, ¢:

¢<x.g)=%—[ps+pg]
m

2
v t
I | o o
= ;:-[ J [ 2 ] + (§sz'§oz)(§sz+§oz—2y) + (§s1-§01)(§sl+§°;2x) (A-10)

v t
0o 0
* [ 2 ] + (tgz_goz)(ggz+goz_2y) + (§g1_§o1)(631+€o1_2X) .

The next integral to be evaluated will be the out-of-plane receiver

integral, §,. Recall that the 2.5D assumption justifiies the evaluation

of ths integral by stationary phase. Isolating the receiver integrals,

the zero offset formula can be written as:
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- _t ° 1
D (t ,E) = - — | dn F(n) || dxdy + —— - T . (A-11)
(2n) 4 )

Here J is now the isolation of the & = (él,gz) dependence:

AZ(x) |n(x,®)| —ing (x,8)

z —
T = a g e Ag(x) D(n,&) e . (A-12)

The stationary point of this integral with respect to §, is found

by setting the derivative of the phase equal to zero (see Appendix C for

a review of the stationary phase formalism):

1
— +
A P Py

26, - 2y 2¢, -2y ]
=0 . (A-13)

The critical point is, therefore:
€, =y

The stationary point with respect to ¢, are those receiver locations
which 1lie directly in line with the reflection point Yy. This 1is
consistent with the 2.5D assumption. The second derivative of the phase

is also required, along with its sign (sgng”):
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2 2 2
3¢ 1|2 (2 -2y 2 (2g -2y)

oE” S — |t 3
£, Vo | Ps Pe Py Py
(A-14)
2’ 2 |1 1 "¢
3 =— | —*+— sgn —> = + 1 .
)
%, |yz, "mlPs Py g,

Using the stationary phase formula Eq.(C-3), J can be expressed

asymptotically as:

2
[ A (x) |h (x,8)]
T~ | g,

2nvm
A (x) A (x) D(n.8) 1 1
SR My
P Pg

(A-15)
+ exp [ ~-ing(x,E) - i—-sgnn ] .
Now the full formula can be expressed as:
[ ] F(n) [
D,(t,,E) = - dn exp ——-sgnn ]
[} [} 0 (2") 5 2 | '1/
(A-16)

. ] dg, Ds(n.t) «+ L .

Here L isolates the x = (x,y) dependency:
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L = dxdy - ;:' As(x) Ag(x)

1 A0 [a(x,8) | [1 1 J"/z
—_—F —
Py Py
(A-17)

cew [ - mpxtr |

The 2.5D assumption also justifies the evaluation of the y-integral
by stationary phase. Since the subsurface is slowly varying (i.e.,
invariant with respect to y), the stationary phase treatment is
reasonable. This will involve the evaluation of derivatives similar to

those above (Eq. A-13 and A-14). After the &, stationary phase, ¢ is

given by

1
p(x,¢) = a (ps+ pg)

% “ I EE R TR T ey e

N J [2t ] vt 1o [eaten ] [ 20t t0i2e ]] : .

The y-critical point is found by differentiating this phase with

respect to y:
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a9 1 2(¢ - y) 2(¢ - y)
= 02 + 02 = 0 . (A-19)
y v, P Py

The critical point is, therefore:

Together with Eq.(A-13), the stationary points dictate that, for a
given §&,, output coordinate, the leading order contribution comes from
those receivers inline with &,,, with all reflection points also

in-line.

Again, the second derivative and its sign are also required:

2 2
9 ¢ 1 2 4(&02— y) 2 4(&0z -y
3 x| T — 3 -t 3
y Vi Py Py by Py
(A-20)
%9 2 [1 1 2 .
2 R sgn ==~ 1 -
2 3
Y vk, -~ ° B y

Upon stationary phase evaluation of the y integral, L becomes
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1/,
2 -1/
L 1 A (x) |a(x,8)| 1 1 3 2nv
~ | dx — L SEpF .
z, As(x) Ag(x) Ps Py |2ﬂI';L'+ ;L_J
Py Py

(A-21)
© exp [ -ing (x,&) + %;-sgn n ] .

The reader is reminded that x is taken to mean x = (x,yc,zo).

This remaining x integral is also a candidate for stationary phase.
However, in this case the meaning of the stationary point is somewhat
different. The justification of the y and &, stationary phase
calculations relied upon the 2.5D assumptionms. Here, however, the
subsurface varies as a function of x. The x stationary phase
calculation finds the specular reflection point., Given a particular
output location, &,, and an output time, t,, there exists a unique
specular reflection from a shot and geophone pair which has an
equivalent zero offset reflection at the point x, . (Appendix E proves
this by actually finding the coordinates of this specular reflection for
any given &, Eg. &y, and t,.)

As before, the critical point is found by setting the x derivative
of the phase ¢ to zero. The particular form of the phase at this point

is given by:
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¢(x, &) =;}— [ps + pg]
m

2
-4 H [ ]+ Lot [t ae] o

2
' [v;tO]+[§z;§°1][§ztg°1-zx]l )

\

Taking a derivative with respect to x gives:

]
-
]

0 . (A-23)

Before proceeding with the evaluation of Eq.(A-23), note that since
the denominator of each term is intrinsically a positive quantity, the

sign of the numerators must be opposite

sgn (tsl- E ) = - sgn (§31- €os) - (A-24)

o1

This relationship states that the zero offset output point must lie
between the shot and geophone in order for the stationary phase

condition to be satisfied. Thus, all reflections from a given input
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trace map to zero offset traces which lie between the shot and geophone
(Fig.-A-1). This is a restatement of the dip-moveout impulse response
geometry. The DMO impulse response is an ellipse with a horizontal axis
equal to the offset (i.e., the DMO impulse response maps a given trace
to zero offset traces which all lie between the shot and geophone).

The algebra of solving Eq.(A-23) for the statiomary point, x;, is

straightforward but lengthy. The result is:

2

voto
[ 3 ] (§g + §s - 2&0)
= E + . (A—25)
e T So 2E - E) (E- E)
S 1] g []

The subscripts have been dropped with the understanding that &g,
Eg’ and &, are all in-line.

The second derivative of ¢ with respect to x is:

2 2
g4 | B m 8 B mE)
x> ;; 3 3
P Pg
(A-26)
2
sgn Q—g-= -1 .
0x

The subsurface integral L is asymptotically equal to:
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2 -1
- 1 A () |ax8)| [ 1 . 1 ] o
— i i —_ — —m
v s(x) g(17 Ps Py |2 In|

|

As before, x = (xc,yc,zo). Putting all this together gives the

(A-27)

2
¢

ax’

-1/2
] . exp[ -ing(x, &) + %;-ssnn ] .

transformation to zero offset as a single integral over the recorded

shot records:

a: v 7/2 dn F(n) exp [-1% sgn N ]
Do(toaéo) = - 3/2 0 = 3/2
(2n) 16 Inl

_1/2
2
¢
ax’

—
dtg z, As(x):Ag(x) P pg

(A-28)

2 -1
A(x) |(x,®)] [ 1 1]

D(n,E&) - exp [ -ing (x,¥) ] .

The evaluation of the second time derivative, azp/at“. is done by
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considering only the leading order term. That is, since the phase,

?l

is a function of time, the evaluation of the time derivative will give

rise to several terms which can be expressed a power series in the input

frequency variable, w To leading order:

2

—a® — o2 |32
B > [at

Therefore, the transformation to zero offset is given by:

/2
t v
i
D, (t,.&,) = :/z 2 dn F(n) |n|1/z exp [-ig sgnn ]
(2n) 16

3 |

) dgg As(x) Ag(x) B;'+.;—

1/2

ALx) b 1 1 ]"1 at |
al

& ¢

2

ox

D(n,E&) exp [ -ing(x,E) ] .

The specific form of the various factors is:
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©
I
—_—
e
R
1
o
(-]
co———
o
-
~
N

1 le &1 /s
® (x,8) = ﬁ (ps""’g) = _;ml_s_ pt/

P=1+
(8,-8,) € -8,)

%9 vt 1,1

at_4vm p_s p_g
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2" 1, -0 -’ ]

3
ox m
p Pg

The specific form of |h(x,§)| depends upon the geometry. Appendix
G gives |h| for common shot. Appendix H gives |h| for common offset.
In these formulations B, the angle between pg and pg» appears. cosP is

given by:

2 2
1 vt (¢, +&_- 28 )
cosp = °e ] [ 1+ g S + (6 - E(E - E) ]
. l 208, - EJ(E, - &) s %0’'5g T S

A:(x) = =
(4npo)

1

A (x) A (x) =
s & (4nps)(4npg)

In practice the data are processed as follows. The input shot
records are read one trace at a time, Fourier transformed, then filtered

with the filter:

_83_



Dx/z(t) = |n|1/z exp [-%g sgnn ] .

Those familar with dip moveout will recognize this as the
square-root differentiator which shows wup in many time domain DMO
algorithms., After filtering, traces are inverse Fourier transformed.
Each trace is then spread out along its impulse response defined by the
phase function, ¢. As expressed in Eq.(A-30), the output is an integral
over the input shot records. Equivalently, each input trace camn be
spread over the time varying impulse response as given by ¢, with the
amplitude factor dictated by Eq.(A-30). In this fashion, data can be
processed in trace sequential format. Once each trace has been spread
along its impulse response (i.e., mapped to all zero offset locations to
which it contributes) the trace is no longer needed. Sorting and tape

rewinding are eliminated.
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APPENDIX B:

3D TZO DERIVATION

This appendix will outline the full three-dimensional derivation of
the transformation to zero offset (TZ0). The derivation is not carried
to completion (i.e., an implementable form). This remains a ripe area
for further research. The solution path presented here differs markedly
from the 2.5D solution of Appendix A,

Transforming data to zero offset is fully a three-dimensional
problem, By processing only lines of data, the full three-dimensional
variations on the subsurface can be maintained. Thus, two-dimensional
assumptions are unnecessary in taking recorded data to zero offset.
These asuumptions are best left for when they are appropriate - after
stack.

Figure B-1 illustrates the three-dimensional nature of dip-moveout.
Two reflected raypaths, are shown. Note that, although the reflection
points are out-of-plane, the zero offset mapping for these reflections
lies at a surface point in-line. All reflections, whether in-plame or
out—of-plane, have equivalent zero offset locations which are between
the shot and the geophone.

This is, of course, a ray approximation. In practice there is a
finite contribution from receivers which are offline. Often this
offline contribution is assumed to be a sinc-like weighting function.

The full three—-dimensional solution of this appendix offers the
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possibility of defining the offline contribution explicitly.

In Appendix A, the system of cascaded integrals could be reduced
utilizing the stationary phase approximation. This is equivalent to
assuming that parallel lines of recorded data would be identical, and
that the subsurface did not vary in the out-of-plane direction. This is
consistent with acquisition along true dip lines. However, the previous
arguments render this assumption invalid. Alternative techniques must
be found to evaluate the out-of-plame ¢, and y integrals. As will be
shown, the in-plane x integration is still properly handled by
stationary phase.

This derivation will be for a 3D common shot acquisition geometry.
3D common shot is defined by a fixed source point with receivers
distributed over the acquisition surface (Fig. B-2). Thus, the shot
coordinates & = (§s1,§sz) are constant. The receiver coordinates
&g = (Egl.tg,) are the variables of integration. 3D common receiver
would be defined in a similar fashion.

3D common offset could be defined by a recording geometry involving
parallel lines of data. These data may then be writtem as parallel
lines of common offsets. The shot coordinate would be §s = (¢,-h,E,).
The receiver coordinate would be §g = (&,,+h,€,). The d*t integration
would then be over a midpoint coordinate & = (&, ,¢,).

These remarks are intended to illustrate the generality of the
theory used herein. The specifics of the geometry are accounted for by

the form of the determinant |h(x.§)|. Thus, one could handle more
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realistic 3D marine data by defining an offset vector h = (h ,h,) and
defining &g and E, in terms of midpoint and offset vectors. The theory
is developed for any geometry.

The 3D common shot |h(x,E)| is given in Appendix I. It is
anticipated that the solution path for other geometries (i.e., common
offset) is very similar to the 3D common shot derivation given here.

Equation (1.24) will once again serve as a starting poinmt., It is
the cascaded inversion/modeling system by which recorded data is

transformed to zero offset:

A A2 x) o 1R (X:E) o
D (0, &) = o d'x . m
0 o v: (2n)?
(B-1)
—i‘n¢(x.§)
R 2 |h (x.§)|
Al e wes A e D (n.8) .

(See Glossary for definition of terms.)

The solution begins along a path identical to Appendix A. Inverse
Fourier transforming with respect to ©, the > becomes —at. The

exp(ing,) becomes a delta function with respect to output time, t,:
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- a’ v 2
D (t,,E) = - —— |2 an k(o || a*ep (o
(2n) Vo s
(B-2)
AY(x) |n(x,®) | pyy SimD
| EmmEm T SRR :

Here we have assumed that v, and v, are constant.

Equation (B-2) expresses the output trace, D,(t,,§,), as a function
of the zero offset time, t,, and zero offset location, &, (as well as
the variables under the integration). Regrouping Eq.(B-2) in order to

isolate the x dependency yields:

Do(to'go) ="

% W] ,
(2n) Yo

where I contains the integration involving the subsurface, x:

A:(x) |h(x,8) | —ing(x,®) B
A K (D 8(t,-p,(x.E)) e . (B-4)

I= dsx

As in Appendix A, the delta function, &8(t,-¢,), can be used to
evaluate the =z integration by first taking advantage of the

distributional identity:
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6(z—zo)
aéo
9z |z = Z,

5(t -9 (x,E,)) = : (B-5)

The zero offset phase, ¢,, is simply two-way traveltime from the
zero offset surface location §, to the subsurface reflection point
x = (x,y,z). This two-way traveltime is t,, the output time. This

traveltime is equal to twice the distance divided by the velocity v,:

2
¢o(x’§o) t, = ;:'j (x—go:.)z + (y—§°2)2 + z:

or: (B-6)

v t

2
22 [ °2°] - (x8, ) - (v,

This allows the specific evaluation of the partial derivative

required by Eq.(B-5):

a¢°
0z

z
=[;%_]T° (B-7)
zZ = Z 0 0
0

Again, as in Appendix A, the final form of the substitution
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suggested by Eq. (B-5) is:

v t
5[ t,=p, (x, &) ] = 8(z-z,) [To] =2 . (B-8)

Once this substitution is made, the z integral can be evaluated by

means of the delta function. After this evaluation, I becomes:

I-= dxdy

2 2
Ao(x) |h(x;§)| :g- £ ;‘iﬂ¢s(Xs§) (B-g)
2 z,

A A (D

Here it is understood that x = (x,y,z,); 1z, is as given by
Eq.(B-6).

The phase functions, ¢ and ¢, are now coupled through the variable
z,. After the substitution z = z,, the resultant phase function is

described by:
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#(x,§) =-‘1,— [ps + pg]

v t
p = [J [ R ] + (5,78, ) (& _,+E, ,723) * (& =F, ) (& +E,72x) (B-10)

vt
pg = J [ '; : ] + (tgz_éoz)(ggz+§oz—2y) + (581*201)(681+§OI-ZX) .

In Appendix A the next step was to evaluate the y and &, integrals
by stationary phase. This was equivalent to assuming that the data were
acquired by parallel dip limes. All reflection points originated from
the plane of the recorded data. For the three-dimensional derivation,
this is an incorrect assumption. We must allow the subsurface to vary
arbitrarily. We would, therefore, expect parallel lines of data to vary
in an unpredictable fashion, Alternative means must be found to
evaluate the y and §, integrals.

Note that the form of the phase ¢ is such that when
€sa = 533 = £y,» the phase is no longer a function of y. This was
expressed graphically by Figure B-1. Figure B-1 shows two out-of-plane

reflection points, as well as their equivalent zero offset rays. The
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rays from the shot to reflection point, reflection point to geophone,
and reflection point to zero offset location all lie in a common plane -

the plane formed by the vectors pg and pg. The relationship between
these vectors is preserved as they are rotated in or out of the plane of
recording. As long as the output point §, lies between the shot and
geophone the mapping from finite offset to zero offset is not & function
of y. The geometry of Figure B-1 can be rotated in- or out-of-plane at
will without altering the geometrical relationships.

This is a geometrical description of what is indicated by the form
of the coupled phase function, ¢, in Eq.(B-10). As long as the zero
offset location 1lies in-line with the shot and geophone (i.e.,
€0z = €ga = tgz) the phase is not a function of y. This suggests that
there is some pathology regarding the condition §,-¢,, that we might
exploit in the solution,.

At this point one might wonder why we do not simply choose &, = &,,
and take advantage of the resultant simplifications., The zero offset
location, &, = (§,,,&,,) is a parameter we are free to choose. For this
3D case, the &, integration is over a range of g, values. We cannot
fix the condition &, = &,,. The stationary phase analysis of the y and
€, integrals in Appendix A was essentially equivalent to specifying
¢, = &,,- However, because of our 2.5D assumptions, this analysis was
justified on physical principles. Here in the general 3D case, no such

arguments are at our disposal.
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This is not just an excercise in abstract mathematics. The
complications of the 3D solution arise from the physics of the problem.
For 3D Geometry Fig. B-1 might, indeed be an over simplification. In
transforming to zero offset the Fresnel zomnes of the offset and zero
offset reflections might interact in such a way as to make off-line
contributions to the integral (i.e., &, # &,,) non—negligible.

We will attempt to expand the kernel of the integral about the
point &, = &,,. For convenience, consider a new variable © which

measures the offline distance of the zero offset point:

e:t—& =§2_§03 o (B"'ll)

For common shot geometry the variables of integration are
€= (§,8,) = (£g1:852)+ So choosing &, = &, is equivalent to choosing
Eg2 = Eoa-

Since Eg is the integration variable, the expansion about ggz = &oa
does nothing to facillitate the simplificatin of the (&sz—toz) term in
pg of Eq.(B-10). That is, pg is still a function of y. However, we are
free to choose the coordinate system. Without loss of generality, we
can select a coordinate system such that &g, = §,,. With this choice
the y—dependence of Ps vanishes. Therefore, the only y-dependence in ¢
is the y—-dependence in Pge

So, when @ = 0, the function ¢ has no y dependence. In fact, when
6 =0 the entire amplitude term of the integral in Eq.(B-9) has no y

dependence. Consider an expansion about the point 6 = 0:
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¢(y,0) - ¢(y,0) = 602 . (B-12)

Although ¢ is a function of more than © and y, for mnotational
convenience let ¢ be written as ¢(y,0). Eq.(B-12) is an exact
expansion, The Q of the right hand side is left undefined in order that
the expansion be exact. Thus, one might think of © to be all terms of
the Taylor series for the expansion about © = 0. The expansion of
Eq.(B-12) is exact.

As we have said, the function ¢(y,0) has no y dependence because of
the particular form of Eq.(B-10). We can rewrite Eq.(B-9) using the

substituion of Eq.(B-12) (with the choice of coordinates §g, = &,,):

1
-‘-,;(ps+ pg)

¢(x,§) = ¢(y,9)

(8,8, ) (&, *E,,-20)

s1 (B-13)

°
»
]
ol
(e —
<
o
i [ d
©
]
»
+

0(0+28 -2y) + (£ =F, ) (E_+E, -20) .

©
=
il
=
]
<
(-]
R [
(-
O ]
»
+

Now consider a substitution of variables from y to ©. The Jacobian
of this substitution is given dy/992. From Eq.(B-12), it is easier to

solve for 9a0/dy. This is given by:
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9 =_3_ ¢(y,0) - ¢(y,0)
oy dy 5]

9 1 8p8
3y (¢(y,0)) = 99y

O =

Or, in terms of the explcit form of pg. an/dy is:

or
oy '
an 2
It is critical to note that this Jacobian is non-singular at the
point © = 0. This was guaranteed by the form of the expansion about the
point 6 = 0,

(B-14)

(B-15)

In recasting the y integration in terms of a 0 integration, we must

address the question of limits of integration.

The original problem

(Eq.(B-1)) was in terms of infinite limits on the subsurface variables

x = (x,y,z). However, specifying a zero offset output time naturally

suggests finite limits to these integrals, Interpreting the original

zero offset phase as twice the zero offset one-way traveltime (Eq.(B-6))
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suggests that for a fixed output time t, the limits cannot be infinite.
The 1imits must be such that the distance from the subsurface point x to
the output location conforms to the two-way zero offset traveltime t .
For a given time t, the maximum offline distance y occurs when the
reflection point is on the surface (z, = 0). Referring to Eq.(B-6),

these limits are given by:

voto ’ 2
ymax = §02 + 3 - (x—to:.) . (B-16)

For notational convenience, let the amplitude terms of the

integrand be given by:

2 2
A () |z ®) | [v, ] ¢,
E e

f(x:C'go) = As(x) Ag(x)
(B-17)
F(x,8,8) = £(x.8.8) 3T

Since we will be changing the y integration to an Q integration,
F(x,E,Z) has been written to include the Jacobian, dy/d9.

It can also be shown that this amplitude term is an explicit
function of ©, and that it, too, has no y dependence when © = 0.

Therefore, we can perform a similar expansion of the amplitdue (again,

we will use F(y,0) as notation for F(x,E,&,)):
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F(y;e) - F(Y.O) = 9F1 . (B_18)

As before, this is an exact expansion. No approximations have been
made, We can rewrite the integral I of Eq.(B-9) in terms of these

expansions:

—-in(g¢(y,0)+00Q)
I= dxdy f(x,E,§)) e . (B-19)

Since ¢(y,0) has no explicit y-dependence, it can be taken outside

the y—integral:
I =1|dxe dy f(x.t.&o) e . (B-20)

Admittedly, the notation is a little sloppy here. In particular,
it is somewhat confusing to use the notation ¢(y,0) and F(y,0) for
quantities which have no y-dependence.

Changing the variable of integration to 2 we now use F(x,§,§o)
(written as F(y,0)). F(y,0) includes the Jacobian of the substitution.

Here we utilize the expansion of Eq.(B-18):
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-ing(y,0) -nen
I=|dxe do (F(y,0) + OF,) e . (B-21)

There are really two integrals to evaluate here. Eq.(B-20) can be

rewritten to isolate the two integrals:
I =]dxe (I1 + Jz) . (B-22)

J, is given by:

-in0Q

J. = l dQ F(y,0) e .

1

(B-23)

-inoQ
= F(y,0) dQ e .

F(y,0) can be taken out of the integral since it has no y (mor Q)
dependence.

J, is given by:

-indQ
y, = |dQ 9F1 e . (B-24)

2

We will first evaluate J,. J, produces a band-limited delta

function (a sinc function) in the offline variable O:
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[
(]

2n F(y,0) sinc(n6Q)

(B-25)

. F(y,0) sinc ©
In @

=2

max I

Qpax is defined by Eq.(B-12) at the point y = yp,,. In order to
evaluate the behaviour of Qp,, 8s © =0, L’Hopital’s rule must be
used. The result shows that is is nonsingular at 6 = 0.

J, can be evaluated by parts. Integrating Eq.(B-24) by parts leads

to two terms:

Q
9F1e-i“99 max 1 ok _irog
T — + — da[— e " . (B-26)
-in® in a0
-0
max

Note that the second term is of the form of the original J,
integral (Eq.(B-24), but with a 1/in multiplier. Evaluation of this
integral gives rise to terms that are of the same form of the two terms
of Eq.(B-25). However, the 1/in multiplier insures that those terms wil
be of lower order, since the evaluation will lead to temms of order
1/n%, We can, therefore, neglect the second term of (Eq.B~26). For a
more rigorous justification of this logic, see Bleistein and Handelsman
(1967) .

With these expressions for J, and J, Eq.(B-22) becomes:
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F
I = dxe—in¢(y,0) 2n F(y,0) sinc® 1 ] (27)
n Inmax| ~in

Eq.(B-27) can be evaluated by stationary phase., The result is an

explicit functional relationship for the offline contributions in 3D dip

moveout.

A detailed study of the offline contributions suggested by

Eq.(B-27) is a ripe area for further research.

- 100 -



APPENDIX C:

STATIONARY PHASE FORMULA

For a derivation of the method of stationary phase see Bleistein
(1984) or Bleistein and Handelsman (1986). The method is outlined here.

Consider an integral of the form:

b irg(x)
I(A) = f(x)e dx . (c-1)

For large A, the dominant contribution to the integral is at

certain critical points (x.) at which the phase, ¢(x), is stationary.

The condition of statiomarity is:

p'(x) =0 . (c-2)

By setting the derivative of the phase equal to zero, critical
points (x;) can be found. Then the integral Eq.(C-1) can be

approximated by:

1/a

. (c-3)
c

(irg(x,) + ipn/4)
1) ~e o C £(x,) [-———311———-]
k|¢"(xc)|

where p = sgnlgn(x,)).
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APPENDIX D:

TZ0 l NMO + DMO

This appendix will prove that the traveltime relationship of

Eq.(A-31) is equal to NMO + DMO when v, = v The TZO traveltime is:

mo

2
t
4]
2 ]
) (8,8,

if/2

v
. (D-1)
tzo

o ¢

=_'EL—§_81 1 + [
Vm (§

The NMO + DMO traveltime relationship is commonly expressed in

terms of traveltime squared. It is:

2 2 2
£ = tr? 4 4h" _ 4h sin © . (D-2)
dmo ° 2 2
v Vo

Here tgp, is taken to be the NMO + DMO traveltime. Note that the
zero offset travetime in Eq.(D-1) is t,, whereas the zero offset
traveltime in Eq.(D-2) is termed t;. They are not the same traveltimes.
Eq.(D-1) maps a reflection point to its zero offset equivalent (Fig. D-
1). t, is the zero offset traveltime at the reflection point. Equation
(D-2) also maps reflection points to their zero offset equaivalent, but
the frame of reference is the midpoint. t' is the zero offset

traveltime at the midpoint.
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Since NMO + DMO makes no distinction between the migration velocity
and zero offset velocity, the single velocity v, appears in Eq.(D-2).

In order to reconcile Eq.(D-1)and Eq.(D-2), they must be expressed
in common variables. The shot and geophone coordinates (§s and §g) can

be expressed in midpoint, half-offset coordinates:

(D-3)

e
It
B
+

-

Here the origin is taken to be the intercept of the dipping horizonm
in Figo D—lo

Substituting Eq.(D-3) into Eq.(D-1) and squaring gives:

2
[ " ]
o o
2 2
t:zo = -—“2‘ 1+ — — . (D-4)
A h - (§o—m)

Appendix E shows that the zero offset point, § , is equal to:

£ e n*h?
& = smg I . (D-5)

Then, referring to Fig. D-1, (v, t,/2) can be given in terms of

sinO, m, and h:
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p, = &, 8ind® (D-6)

or

v t zhz
[ 020]=[m; ]sin@ . (D-7)

With these substitutions, Eq.(D-4) becomes:

2 2
ey = dh . 48120 oyt (D-8)
Zz0 v v
m m

Now the quantities tsmo and t:zo are expressed in terms of common
variables.

Comparing Eq. D-8 to D-2, we see that t:zo and témo are equal if:

4m sin @
2 m sin o
tol =-—v—2_ . (D 9)

m
Referring again to Fig. D-2, sin® can be expressed in terms of t;;

v t!

sin® = (D-10)

With this substitution, Eq.(D-9) becomes:
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2

2 vo 2
- _

Thus, tgn, equals ti,o only when v, equals v, . For any other

choice of v, the mappings do not agree.
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APPENDIX E:

DIP MOVEOUT AS INTERCEPT MAPPING

The TZO procedure maps offset specular reflections to zero offset
specular reflections. This is a combination of NMO and DMO which maps
directly to zero offset. Fig. E-1 shows the geometry of the mapping for
a dipping layer which intercepts the surface at a location £;. For many
applications, it becomes necessary to find the exact location of the
specular reflection point, x5 = (xg,2zg). In particular, in reconciling
the TZO phase to the DMO phase (Appendix D), finding this point as an
explicit function of &, 53, and &, is essential,

To solve for xg, consider a coordinate system with the origin at
the intercept of the dipping layer of Fig. E-2. 1In such a coordinate

system, we can express the dipping layer as:

Z = x tan® . (E-1)

Next we drop an image source, s = (sx.sz) by extending a perpendicular
line segment across the dipping layer (Fig. E-2). The coordinates of
the image source point can be expressed in terms of the surface

variables and the dip O:
s =t - 2(& sin®) = & (1 - 25in"0)
X S S S

(E~2)
s = 2¢ sin® cosO
z s
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The line from the image source, s, to the receiver 68 is given by:

z=s - (x—sx) tany . (E-3)

vy is the dip of the line connecting the image source s with the receiver

(E-4)

Now we know that the two lines intersect at the specular reflection
point x. That is, the z values from the equations for each line are

equal:

s = (x - s ) tany = x tan® , (E-5)
z x x s

Solving for x gives

s + s tan
z b ¢ Y

Xs ~ tan® + tany ° (E-6)

Then eliminating tany from the above equation and substituting the
relationships (Eq.(E-2)) for the points s; and s, leads to the desired

end:
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2
Esﬁgcos 0

s h + §s
(E-7)
¢ & sinB@ cosO

zg = — gh +

s Es

where h is defined to be the half offset:
E - &

h = 32 s . (E-8)

Now we have the coordinates of the specular expressed in terms of

the shot and receiver positioms, &g and §g' and the dip ©. It is

peculiar that the coordinates of the specular point are not expressed as
functions of the zero offset point £,., Referring again to Fig. E-2 we

can use the above relationships to solve for &,:

g =28 (E-9)

Here m is the midpoint between L  and g- Equation (E-9) tells us
that specular reflections from every bed (all dips ©) intersecting the
surface at a given location have a zero offset mapping to the same
surface point.

We can turn this problem on its head by taking Eq.(E-9) and
transforming to a more general coordinate frame not centered at the

intercept of the beds. That is, we let the (now unknown) intercept be
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given by &; and transform Eq.(E-9) to become:

RAEALEEN

(.- ¢.) = — . (E-10)
o i (m - &)
Then solving for the intercept &; we have:
2
h
&i =m+ = . (E-11)

Here h is the half offset, m is the midpoint, and Ax is the
distance from the midpoint, m - §,. Now note that the intercept as
given by Eq.(E-11) is not a function of the dip ©. All dips map to the
same intercept for a given output location , and given {g and Eg-

The impulse response of TZO and DMO is an intercept mapping. The
position along the impulse response determines the intercept of the
reflector, and all reflectors with a common intercept map to the same
trace on the TZ0 and DMO impulse responses.

This result is useful in reconciling the phases of TZO and DMO in

order to demonstrate that TZO is, indeed, NMO + DMO (Appendix D).
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APPENDIX F:

LIMITS TO INTEGRATION

As a practical matter, one might occasionally wish to limit the TZO
integration range to correspond to a known dip limitation in the
recorded data. The mapping as defined by the TZO formula (i.e., Eq.
(A-30) defines an integral over receivers, Eg, corresponding to a
particular output location &,. This integral will map all dips from +90
degrees to -90 degress.

To limit the integration to a finite dip range comnsider Fig. F-1,
which shows a particular zero offset location and a candidate
shot/receiver pair. The length of the one way zero offset vector is
Py = Voto/2. This vector will be perpendicular to the reflecting bed.

Referring to the figure, one can see that the sine of the dip angle is

given by:

(&, - xc) (§° - xc) . 1)

in 0 = =
sin P, (voto/2)

Appendix A, Eq.(A-25) gives an expression for the location of the

reflection point, xg°
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. (F-2)

2
[ v;:o ] [ §g +E - 28, ]
xc = §° +
2 e, -6 | [, - 5 ]

Therefore, substituting Eq. (F-2) into Eq. (F-1) gives an expression

for sin@:

[vozto ]’[ g+ & - 28 ]

sin 0 = . (F-3)

2 [ e ] [y ]

Equation (F-3) states that for a fixed § , Eg» and gg' as time

increases the quantity sin® increases. In other words, reflecting
horizons with increasing dips (i.e., increasing sin®) are mapped to that
location, Fixing the maximum dip angle limits the maximum output time
which need be processed at that particular zero offset location (again

with &g and &g held fixed).

This maximum output time is given by

4(§s- §°) (Eo - Eg) sin © . (Eet)

t = = -
max vo(gg +E 28,

Equation (F-4) defines the 1limits of the integration. As each

trace is reading (i.e., each trace corresponds to a fixed &g and &8) it
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is mapped to all the zero offset traces to which it contributes. At
each zero offset location § , Eq.(F-4) defines the maximum output time
as a function of the given dip limitationms.

Note that in order to be consistent with the sign notation of
Eq. (F-1), dips to the left of the midpoint (i.e., beds dipping down to
the right in Fig. F-1 are defined to be positive angles. Dips to the
right of the midpoint (beds dipping down to the left are defined to be

negative angles, This convention insures that t is always a positive

max

quantity.
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APPENDIX G:

CALCULATION OF DETERMINANT h - 2.5D COMMON SHOT

The 2.5D derivation of the TZ0O formula (i.e., Appendix A and B)
involves the evaluation of the determinant h., This determinant arises
from the Jacobian of a change of variables originally suggested by
Gregory Beylkin (see Beylkin, 1985, for details). For the purposes
herein, it suffices to note that this determinant allows one to develop

inversion formulas for a variety of acquisition geometries. The form of

h is:
V%s + vcg
h (x,8) = det a21 Ve, + Ve | (6-1)
%z- (Ve + Ve ) j

In the notation, the lower case h will represent the determinant.
The upper case H will represent the matrix.

This appendix deals with 2.5D common shot geometry. That is, the
acquisition is along parallel lines of data. Only the &, coordinate of
the source is fixed. The &, shot coordinate varies together with the &,
receiver coordinate, consistent with the geometry of parallel lines of

recorded data. In this scenario, vy and v, in a constant velocity earth

are given by:
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p
m m
(6-2)
= fﬁ—i] (x=£ ) + (y-£ )% + 2°
g v v 1 s,
m m

Note that &, and &, (&, = §g1: €, = &5, = §g,) are variables in
this equation. The inline source coordinate, §_,, is held fixed. A
consequence of this is that the second row of Eq.(G-1) contains only
derivatives of Tge

For the general case the evaluation of Eq.(G-1) is quite
complicated. However, since it is assumed that the earth is 2.5D, the
evalunation is made much simpler. Recall that 2.5D implies that, though
the earth is three-dimensional, the geology itself is invariant in the
€, direction. Parallel lines of data are identical. This is consistent
with recording true dip lines.

This determinant will be evaluated at particular 1locations for
which y = §,. This arises out of the 2.5D stationary phase evaluation
of Appendix A. Knowing this a priori will greatly simplify the analysis
of Eq.(G-1).

The 3 X 3 determinant h can be reduced to a more tractable
determinant by multiplying the matrix H by an auxiliary matrix B. This
is a trick suggested by Norm Bleistein. It takes advantage of the

matrix property:
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detH detB = det(HB)
or: (G-3)

det (HB)

H =
det detB

Thus, one hopes to find a matrix (having a simple determinant) such
that the determinant of the product HB is easy to evaluate. Consider

the matrizx:

1 0 T
X g
B = 0 1 d T (G-4)
y 8
0 0 d T
z g |

Clearly detB is simple., The product HB is:

d (t +) 9 (v + <) Ve Vv + Vr Ve
X s g y s 8 8 :4 g s
0 i ] i}

HB = (@ v ) (0. ¢ ) (Ve *Vxr ) .

3, x'g 3E, v g 3E, s g
i} 9 0

— 9 (v +t ) 3 (v +tt ) — (V& V¢ +Vr Ve )

| 3%, oL, s g 9L, g 8 s s

(G-5)

Simplification of the matrix HB comes from recalling the eikonal

equation:
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Ve « V¢ =-—21 (G—G)
v

Therefore, Eq.(G-5) can be rewritten with the eikonal equation
identity. The dot product, Ve - Vtg. is equal to cosp/v*?, where cosf

is the angle between the shot and geophone vectors, pg and pa.

1
ax(ts+ tg) ay(cs+ T ) ;;-(1 + cos B)
0 i) 9 1
HB = ] -
3t, (axrg) 3t ( ytg) 3t [ > ]
m

3 3 3 1
3L, 9 (Tt ) X O (=t 2p) 9, [v_’ (1% cosp) ] |
m

(6-7)

Clearly the subsurface velocity is not a function of the receiver
coordinates, &, and &,. The derivatives of velocity with respect to
surface 1location inm the third column must be identically =zero.
Furthermore, in formulating the 2.5D problem, we have assumed that
parallel lines of data are identical (i.e., dip lines). Under this
assumption, cos P must also be invariant with respect to the offline
source and receiver position, £,, since the sources and receivers vary
together. Then taking advantage of these 2.5D observationms, Eq.(G-7)

becomes:
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) 1 ;
3 + + —_—
x(ts tg) 0 (ts tg) K (1 + cos B)
m
d )
HB = It — 0 T 0 G-8
3E, °x'g 58, % (6-8)
i) i)
(v + ) 9 (r +<) 0
| 9, x g %, v s g ]

detHB has been reduced to the evaluation of a 2 X 2 determinmant.

This determinant is given by:

1 d 9
HB) = — ——
det (HB) v;s(l + cosp) [ [a§1 ax'cg ] [a§2 ay(-cs + -cg) ]

(G-9)
_ 0 0
[—361 ay«:g ] [—-—a{:2 ax('l:'s + 1:3) ] .

Referring to Eq.(G-2), the particular forms of these partial

derivatives are:
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™

9 1
d ( +T)=s—] - —+ - —+
%, ' & m p o’ P o
s s g g
B 5. oL (y - &)=~ &)
B, v v, o
g
(x - Y(y - &)
I S o :
agz X s g Va ps
g

(G-10)

Again, the 2.5D geometry can simplify the analysis, The stationary

phase condition for the 2.5D analysis dictates that y = &, (see Appendix

A). So all terms involving y ~ &, vanish. Eq.(G-10) becomes:
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1 1 G-
det(HB) = — (1 + cosf) - —
Pg

3
Vi p8
(G-11)
[ : : ]
Ps Py
Finally, recognizing that for the 2.5D case:
(x - &) =p" - 2° (6-12)
1 g
Equation (G-11) can be factored further:
1 1 1
det(HB) = - — (1 + cosB) | — + —
A\ Ps Py
(G-13)
2 2 2
p. P -z
-84+ &
3 3
pg pS
or:
2
det(HB) = - f . (1 + cosp) [*5; +-£; ] . (G-14)
Vmpg s g
Now all that remains is to divide det(HB) to give detH. detB is
trivial:
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z (6-15)

det B=azt =-v1———
& mpg

Therefore, the detH consistent with the 2.5D geometry is given by:

(G-16)

h(x,8) = - —2— (1 + cos B) [i-+l-] :
Py Ps Py

This is the particular form of the determinant appropriate to the

derivations of Appendix A.
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APPENDIX H:

CALCULATION OF DETERMINANT h - 3D COMMON SHOT

In order to evaluate the integrand for the 3D derivation of
Appendix B, a determinant (h) must be evaluated. h arises from a
general inversion derivation first suggested by Gregory Beylkin of

Schlumberger Research (Beylkin, 1985). h has the form:

Vr + Ve
s g
- 9 -
h(x,&) = det 3%, (V’ts + Vts) . (B-1)
d
_852 (V%s + Vtg)

The notation here will be to use the lowercase h to represent the

determinant and the uppercase H to represent the matrix. Here vy and Tg

in a constant velocity earth are given by:

ps 1 2 2 2
v =t "_\j (x-E_ ) + (7€ ) + 2
m m
(B-2)
v = —p§-=—1—j(x—§ )+ (yg )+ 2P
g v v 1 s, )
m m

For the general 3D case, h is the determinant of a 3 X 3 matrix.
Each column of the matrix contains the respective (x,y,z) spatial

components of the indicated quantities., The partial derivatives of the
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second and third rows, 3/d¢, and 3/3f,, are derivatives with respect to
the variables of integration of the inversion (Eq.(B-1). Thus, for
common shot inversion, ¢, and &, represent the receiver coordinates on
the surface. For common receiver inversion, &, and &, represent the
source coordinates on the surface. For common offset inversion, &, and
£, would be the midpoint coordinates on the acquisition surface. In
this fashion, a very gemneral inversion formalism can be developed with
the specifics of the inversion geometry imbedded in the particular form
of the determinant h.

For the 3D common shot geometry the coordinates &, and &, will be
the two receiver coordinates on the acquisition surface. By definition,
a 3D common shot geometry assumes that the source position is fixed.
The partial derivatives of the second and third rows will involve only
the receiver traveltime (i.e., for a given point x = (x,y,z) the
traveltime from source to x is neither a function of &, nor &,).

The particular common shot form of hg is:

Vv + V¢
s g

h = det (Vtg) . (B-3)

The evaluation of this 3 X 3 determinant is, in general, quite

complicated. However, by taking advantage of a trick suggested by
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Norman Bleistein, the evaluation can be greatly simplified., That is,
using the same method as in Appendix G, the trick is to find an
auxiliary matrix B, which when multiplied by H produces a matrix HB
whose determinant is more easily evaluated. In this way one can take

advantage of the matrix property:

det (HB) = detH det B
or: (B-4)

det (HB)

det H = —o—g— -

The task, therefore, is to find a matrix B for which the product HB
has a determinant which is easily evaluated. Of course, since solving
Eq.(H-4) will also involve evaluation of detB, one might hope that detB

is simple. Consider the matrix

1 0 EIK
X g
B= 0 1 81.' . (H_s)
ysg
0 0 acj
z'g

The product HB is:
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- ax(‘ts + tg) i’y('t:s + 'cg) V-::g-‘t"t:8 + V-cg-v-rs -

HB = 32_1 (0% 3‘3’&-1- (3,%) 321 (Ve Ve ) . (B-6)
- 322 (Gxtg) agz (aytg) ag, (Vtg-v-;g) |

The eikonal equation states that:
fve]* = vevx = (B-17)

4
B »I"‘

Clearly the sound speed, v,, is not a function of the receiver
coordinates &, and &,. Thus, the partial derivatives in the third
column must be zero. Furthermore, the dot products in the first row of
the third column can be described as

L

Ve Vr + Vo Vr = (1 + cosB) (H-8)
g g g s

2
v
m

Here, P is taken to be the angle between the shot vector and the

receiver vector., Therefore, the matrix product HB can be written as:
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1

ax('cs+ 1:8) ay(ts+ ‘l.'g) ;T (1 + cos B)
m

0 2

= . H_
HB 1) (ax 8) 3¢, (aytg) 0 (H-9)
D ) d_ (3 %) 0
852 X 9L, g |

Although the evaluation of detHB is somewhat complicated, the zeros
in the third column reduce the problem to the evaluation of a 2 X 2
determinant, This is certainly preferable to the original 3 X 3

determinant. detHB has the form:

detHB = iz (1 + cosp)

Vm

(3 v )

ag g 8§ (8 T )

(H-10)

Referring to Eq.(H-2), the particular form of the derivatives in

Eq. (H-10) becomes:
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—_— T = ———&-—: - + :
agl X g aglax vmpg vmp8
9 't (x-¢ ) (y-E,)
— axtg = 8 = + 5
agz aglax vmp8
(B-11)
] 3’ (x-& )(y-t )
g _ 1 2
ayxg = =+ .
agl aglay vmpg
) a”rg 1 (y-&z)’
d_t = = - + .
at ye 9t d v op v p3
2 2y mg mg

Substituting these expressions into Eq. (H-10) gives:
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detHB = ;%-(1 + cosB) - + - +

v
m vmpg vmpg vmpg vmpg

(x-¢ )*(y-¢)*

- (H-12)
(v p*)?
mg
2 2
1 1 1 (x-&l) + (y—&z)
= (1 + cos B) 2 3 ’
Vo vmp8 vmpg vmpg
but:
(x~& )* + (y-& ) = p* - 2* (B-13)
1 2 g
then:
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det HB

1
vz 2 2
m YoPg  Vnf

2 2
p —~ z
(1 + cos B) 1 __ 1 _E__;__ ]
g L "mPg

1 1 ~ 1-22/p
= I g -
z (1 + cos B) oy . (H-14)
/. vmp8 vmpg vmpg
1 1 1 : (1 B) z
= - z - + cos z
7 (1 + cosp) 3 2 2 2 + 2 4 v‘p‘ )
m g "nPg VmPyg mg
Returning to Eq.(H-6), h can be solved for directly:
det HB
B e H~-
Tot B (H-15)
detB is trivial, It is given by:
det B=09 t =—— (1 + cosp) . (B-16)
2'g VP
g
Therefore, h is:
h = — (1 + cosp) (H-17)
vop
mg

Without the detHB trick, the calculation of h would have been much
more involved. A similar trick exists for the calculation of h in the
common receiver case. Unfortunately, mno such trick exists for

calculating h in common offset geometry.
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APPENDIX I:

CALCULATION OF DETERMINANT h - 2.5D COMMON OFFSET

The transformation to zero offset operator (Eq.A-30)) may be easily
modified to operate in the common offset domain. The only significant
modification is the calculation of the determinant h for common offset.
This appendix will detail this calculation for 2.5D geometry.

As before, h has the form:

V(‘Cs + ‘Cg)
— 9 -
h = det 3E, V(‘Cs + 'cg) . (I-1)
0
] -a—g—z- V(T.‘s + ‘L'g) ]

The 2.5D geometry envisioned is omne where parallel lines of data
are recorded over a subsurface which does not vary in the cross—line
direction. Thus, parallel lines of data are identical. The variables
€, and &, parameterize the midpoints of the common offset data. Since
the acquisition is along parallel 1lines of data, each midpoint
coordinate § = (El,éz) is associated with a shot/geophone pair which

share a common ¢, coordinate:
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8, = (§, - b, £)
(I-2)
§g = (&, +h E) .
With this convention the quantities vty and vy, are given by:
P 1
Py L 2 . 13 2
T ST C ;—-j (x §1+h) + (y Ez) + 2z
m m
(I-3)
p 1 2 2 2
v =_8-= ——-J (x-¢ =h)" + (y-& )" + z .
g v v 1 2
m m

The results of Appendix A tell us that the 2.5D condition of the
TZO derivation is that y = §,. This condition, which is a result of the
stationary phase calculations, must be imposed after the evaluation of
the various derivatives involved in h. To impose this condition before
evaluating the derivatives would be equivalent to assuming that the

condition y = ¢, implies that all derivatives with respect to y and &,

2
are zero. This is not true.
We will evaluate the derivatives of h ome row at a time. The

derivatives of the first row are the components of the gradient:
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—a"—’—uﬂ)
x s g

i
<
] I“
[ —
M
1
JYe
h-N
[/
+
=
B
!
sl
h-NE
|
=
|

g
2« AT [ ~ ] (I-4)
ttt) = —— | —+ — -
TY_ s g Vm ps pg
1 1
%(tsﬂg) = :—[-—+—] .
mlPs P

The derivatives of the second row are the derivatives of the gradient

with respect to &,:

52 . 1 (x¢+n)° 1 (xg-m)’
3 (v +¢v ) = — Y N
§lax s 8 vm ps ps
Ps s Pg g
2 (y-¢.) | x-t_+n x-&_~h
8 _ (x +v) = 2 o+ z (1-5)
Bﬁlay s g v 3 3
m P Py
a? ey o x-¢ +h  x-¢ -h
9% 9z Ty T ;;' 3 3 .
Py Py

The derivatives of the third row are the derivatives of the

gradient with respect to §,:
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2 (y-¢,) | x-¢,+h  x-{ -h
+

9
+T =
3¢, 0x (ts g) vy ps p!
s g
2’ 1 1 (yhéz)2 1 (y*-liz)2
(t +t ) = — | - — - —t — (I-6)
8¢ oy s g v 3
2 m Py Py pg pg
3’ . |78, v,
—_— (.t ) = — .
9,0z s g A p3 ps
L s g

Now is the appropriate time to use the 2.5D condition, y = §,. All

terms involving the quantity (y-&,) vanish. Under this condition h

becomes:
9 (v +t ) 0 0 (v 4+t )
X s g zZ s g
h=det | <2— 9 (v +t ) 0 2 3 (x ) (1-7)
3, x s g &, 'z s g *
0 9_ 5 (¢ 4+t ) 0
3, v s g

Now the determinant can be evaluated directly:
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5%, ay(ts+tg) az(ts+rg) T ax(cs+cg) - ax(ts+tg) 3%, az(ts+t8)

(1-8)

Then calling upon the specific form of the derivatives as given by

Eq.(I-4) through Eq.(I-6) with (y = §,), h is:

h=__[_+_][ [_+_] [ <x-§+h>

1 (¢ -®'1 1 [xE+h xE-h
—-— + — | + (1-9)
Py 0 o P Py
g
z x-El+h x—&l—h
v =
v
m Py Py
This expression can be simplified to become:
z 1
= - | —+ — — + — | (1 + cosp) . (1I-10)
p p 2 3

B is the angle between <t  and Tge It is twice the angle of

incidence for a specular reflection. cosp is given by:
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(x-&_+h) (x-¢ ~h) + 2’
cosp = . (1-11)
PPy

The amplitudes of the resultant common offset operator are symmetric

about the midpoint.
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I

time

Figure 2.1a: A point diffractor in x‘’domain generates a diffractiom on
a recorded time section.

time

Figure 2.1b: In building the migrated section, each point om the
output section x is assumed to be a source of a poimt diffractor.
Bach guess point x defines a diffraction curve on the time
section. With no a priori knowledge of where the actual diffractors
are, ecach guess point is used to define a2 sum over a test
diffraction curve. Only when the guess point x corresponds to the
actual diffraction poimt x’is the output of significant amplitude.
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Figure 2.3a: A fixed source, s, and a receiver spread Rgin to Smayx)
defines a range of dips which can be imaged by the
recording aperture. Thus, the shaded regions are the
possible dip limits for which the recording geome try
can receive reflections.

EMIN g‘“AX

X3

Figure 2.3b: The dip limits in (a) can be translated into limits spon
the direction of the wavevector, k. Simce k bisects the
angle between the shot and geophome rays, it is normal to
reflecting beds. Thus, the k coverage shown for various
subsurface points is a graphical description of the
filterimg effect of the recording aperture (after Beylkin,
Oristaglio, and Miller (1986)).

- 142 -



- 143 -

Q o
Sed i
- Y
YR RN
:-oo
nag"%
e
e
- o H @
o - o
o W
o N o=
k-3 k-
g g K
o
““oa
iggﬂn
= [~
ws 2" .
" & 5
-_:a,
«w o2
""HHO-
Q‘MA
- TR ™
un 88
®
-
[ L - 1
Og‘g
(-3 ]
ﬁq:ﬂ“
=]
TS
2 by
u.SS";,-
Q& Hg
!0& Py
Oa ‘°
°3gnt
[E) [
v | I )
o8 &9
[ ]
Taee
:“’“
-0 .aw
0 B
”

(3]
sﬂﬂia
®

o
[- )

livan.)

-y



BERG Offset=5000ft dx=50¢+

0 W' 20 40 60 80 0

in Seconds
— F—
|

Time

i 2

Figure 3.2: Berg DD Impulse Response. The input was sevem isolated
spikes. The offset is 5000ft, with a trace spacing of
S0ft. The velocity is 8000 ft/sec. The velocity is wused
to trumcate the evamescent part of the operator.
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Figure 3.3b: Berg DMO vs TZO Common Shot Operator. The offset equals

100001€t, trace spacing is 50ft, with a velocity o
8000£t/sec.

- 146 -






(¥3A§993x Iy} woxy Luas Supjuyod - uwaoys 3Jvy) 03 93ysoddo sy
#A jo uor3saxpp [e039Y) -A3ysuop Lex 9yl 03 pojvyex A3dexyp sy FA

gy ofusyd oy *sjuyod oeowjrasqns [v39aes 3I0J Ayyeopydexs
uaoys S¥ Jusrpead a3 oy 98ueyd g3 uogjvandyjuos
jJoys ommod ® Jof °3 ‘uofitsod I9AF9s9x FSupSumys yIpa ($A) osuyd
943 jo juorpesl oyl uy ofueys oyl woda juwopuwodop opujjulwm suy

:9°¢ oznlyy

_Au.uv.-_ JUTUIBISIOP oY *SOfIsA 9dmjansqus s 0/dAe

- 148 -



Berg vs Tzo Df‘f‘se+ OOOOOOOOOOOOOOO

t } i H“ M H\l %

Hmnm “imm i F

u U Wm Mu W

; mmmuur

| MM

:————

|
rl
\l

EE:
= |

i
M

WM )

%

f

MMH

i

———-J

l

)
[
H
sS 5a°
.-§UD
et
e » " -3
°=0u:’.
8 o
° =
T w
e g
'-3:...
04
u "‘04 S ——
" S
a

=]

.0 g‘
“Ei ‘E' %%
5ass :%
» To — —

[=] -

°"ﬂ'°

=] [ o

[ -1
O“U %



Time in Seconds

I :tl ! 2

2

Figure 3.7b: Berg vs TZ0 Common Offset Impulse Response. Offset is
10000ft, receiver spacing 50ft, and velocity 8000ft. The
TZ0 operator amplitudes increase along the 1limbs, amd thea
taper smoothly to =zero. These amplitudes are dictated by

the behaviour of |h(x,%)|.
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Figure 3.10: Synthetic Nodel. 25 split spread records were gemerated.

Geometry is 96 chanmel split spread, with near offset equal
to 100ft, and far offset equal to 4800ft. First shot is at
location marked S,. Last shot is at Syg. Data were 4ms,

with a 2.0 see¢ recording. Nodeling algorithm is a constant
velocity Kirchhoff imtegral code writtea by the author.
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Figere 3.11: For the 1location marked x,, velocity scans were donme.
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side by side. When velocity is the correct velocity of
8000 ft/sec the 25 traces agree. Note that this is a dip

independent velocity analysis (NJSO+DNO) done on shot
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BERG 5600 1OSO'r TZ0 v = 5600 + 1050t
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Figure 3.15: v = 5600 + 1050t velocity panel for Berg and TZ0

algorithms. Here the function is approximately correc t

for the data betwea 2 and 3 seconds, as evidenced by
agreemont between traces from differemt shots.-
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for the
Borg algorithm (a) and the TZO algorithm. The bar along the side of

spectra

of the velocity

displays

Semblance

each spectrum plots the relative maximum semblance values at each

time.

Figure 3.19
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Figure 3.20: Offset panels for Berg (a) amd TZO (b) algorithms. For

the location x;, on Fig. 3.12 the contributions from each
offset are saved and plotted side by side for comparison.
Thus, this is equivaleat to 1looking at the CDP x, after
the procedures NNO + DNO, Near offset is 1056 ft. PFar
offset is 10814 (receiver spacing 82 ft).
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Near trace display showing region of stacked dats.

Figure 3.22:
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BERG Stack vs TZO Stack
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Figure 3.23: Comparison of Berg and TZO stacks over the ange
indic tdinFig 3.22. The TZO operator ased is the common offset

domain operator
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Figure 3.25: Fresmel zonme overlap for 3D transformation to zero
offset. The problem is formulated as a pre-stack migration
followed by a zero offset model. For a migrated omtpet poimt x,
all receivers ! whose specular reflection is a Fresmel zome awvay
from x will have a nomnmegligible contribution to x. In the
forward modeling problem, the zero offset reflection point,
gets a mom—nmegligible comtribution from those points x which are
vithin a Fresmel xzome of x,. The result is that, in the 3D case,
receivers ¢ which are offline from o may produce a non—negligible
contribution to §,.
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Figure B-2: 3D Common Shot. 3D common ghot is

with a fixed source point and receivers distributed over
the acquisition surface.

defined as data
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(0,0) Es E ES

Figure E-1: Specular reflection point corresponding to 8, %,. and
output poinmt ,. 8
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Figure E-2: 1Image source facilitates the solution of x; in terms of
known quantities
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Figure F-1: Dip 1limits can be determined solely from geometrical
considerations.
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