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ABSTRACT
Many real-world seismic modeling and imaging applications require computing frequency-
domain numerical solutions of acoustic wave equation (AWE). However, obtaining
such solutions in media characterized by strong parameter contrasts and anisotropy
poses significant practical challenges to existing numerical solvers, especially for 3D
scenarios. Physics-informed neural networks (PINN) provide a computationally effi-
cient alternative approach for AWE solutions. However, PINNs solve only a single
instance of AWE and need to be re-trained for each different subsurface models and
frequencies. Fourier neural operators, on the other hand, can solve AWE for a wide
range of models and frequencies with a single set of network configuration and param-
eters. This method, though, requires a tremendous amount of data, which can be dif-
ficult and expensive to obtain. Here, we propose a methodology that combines PINNs
with Fourier neural operators to learn AWE solution operators that are valid for a wide
range of frequencies without requiring any training data. We present two numerical
examples that demonstrate the capabilities of the proposed method in modeling the
acoustic wavefield accurately and efficiently in the frequency domain.

1 INTRODUCTION

Frequency-domain numerical solutions of the acoustic wave equation (AWE) in anisotropic media form the key computational ker-
nel of a variety of full-waveform modeling, imaging, inversion applications that are of interest to scientists from various disciplines
ranging from exploration and planetary seismology to medical imaging. However, obtaining such solutions with available numerical
methods requires inverting a large impedance matrix, which is both challenging and expensive, especially for 3D scenarios Song
et al. (2021).

Physics-informed neural networks (PINN) provide an alternative approach to partial differential equation (PDE) solutions by
imposing physical constraints to the loss function during training (Raissi et al., 2017b,a). PINNs can compute wavefield partial
derivatives with respect to spatial and temporal coordinates with an accuracy up to the machine precision by using the automatic
differentiation procedure. Recently, many successful PINN-based wave-equation solvers have been demonstrated. Moseley et al.
(2020) and Voytan and Sen (2020) obtain time-domain PINN-based solutions for acoustic wave equation. Song et al. (2021) solve
the frequency-domain acoustic wave equation for scattered wavefields. Rao et al. (2020) present time-domain solutions of elasto-
dynamics on Cartesian coordinates without training data.

Despite their computational advantages over conventional numerical methods, PINN-based AWE solvers still suffer from
theoretical and practical limitations. Conventional PINN-based applications aim to find a mapping between inputs (e.g., spatiotem-
poral coordinates, subsurface parameters) and the desired AWE solution (e.g., scalar pressure and/or particle velocity vector) in
finite-dimensional Euclidean spaces. Therefore, they are limited to the specific spatiotemporal discretization (i.e., solution grid and
frequency) and subsurface parameters that are used during the training. These networks need to be re-trained if one needs to obtain
AWE solutions with a new set of subsurface parameters or at another frequency. Practitioners mentioned above utilize artificial
neural networks (ANN) to remove the dependency of the wave equation solution to a specific discretization, however ANNs are
computationally expensive and require training an enormous number of parameters especially for 3D applications.

Recently, scientists propose neural operators for obtaining resolution-independent PDE solutions (Li et al., 2020b,a). These
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methods aim to learn infinite-dimensional mappings (operators) from any input parameters to PDE solutions. Therefore, they are
not limited to a single instance of PDEs and can provide solutions for a wide variety of parameters and grid discretizations using a
single set of network configuration. Li et al. (2020a) parameterized neural operators in Fourier space (i.e., Fourier neural operators)
to solve a family of PDEs for a range of parameters. The Fourier space allows the utilization of global operators that are able to
capture long-distance spatial dependencies and provides a natural framework for AWE solutions in the frequency domain. However,
Fourier neural operators rely on a supervised network training procedure and require a tremendous amount of data generated using
conventional numerical (e.g., finite differences, finite elements) solvers for a wide range of parameter variations.

In this work, we combine the physics-informed deep learning methodology with neural operators in the Fourier space to obtain
the AWE solutions in VTI media without using training data. To facilitate the neural network training, we split the acoustic wavefield
into background and scattered terms. The background wavefield satisfies the isotropic AWE, which can be solved analytically, and
we predict the monochromatic scattered wavefield via a neural network. Because we train neural operators in a high-dimensional
Fourier space, our methodology allows us to use multiple frequencies simultaneously during training and generalize well to scenar-
ios where one wants to obtain AWE solutions on different frequencies than the ones used in the training. We provide two numerical
examples to demonstrate the quality of the results obtained with the proposed method as well as its advantages over conventional
PINN-based workflows.

2 METHOD

2.1 The pure P-wave equation in VTI media

The constant-density acoustic wave equation can be written in the frequency domain as

−ω2 u(x, ω)− L2 u(x, ω) = f(x, ω), (1)

where x = [x, y, z] are spatial coordinates; ω is the angular frequency; u(x, ω) is the scalar pressure wavefield; f(x, ω) is the
source function; L2 operator is obtained using the exact phase velocity expression in VTI media (Harlan, 1995) as

−L2 = v2z k
2
z + v2h k

2
r + (v2n − v2h) k2r k2z / k2ρ, (2)

where vz is the P-wave velocity along the symmetry axis (i.e., vertical); vn = vz
√
1 + 2δ is the NMO velocity; vh =

vz
√
1 + 2ε is the horizontal velocity; ε and δ are dimensionless anisotropy parameters; kx, ky , and kz are wavenumbers in the x,

y, and z directions, respectively; kr = k2x + k2y and kρ = k2x + k2y + k2z .
Because point-source injection poses practical challenges for PINN-based solvers (Song et al., 2021; Voytan and Sen, 2020),

we first split the acoustic wavefield and the vertical velocity into background and scattered terms (u = u 0 + δu, vz = vz 0 + δvz),
where vz 0 and u 0 are the background (i.e., reference) P-wave velocity, and wavefield, respectively, and δu is the perturbations
from the reference wavefield. The background pressure wavefield satisfies the isotropic acoustic wave equation

−ω2 u 0(x, ω)− L
2
0
u 0(x, ω) = f(x, ω), (3)

where −L2
0
= vz

2
0
k2ρ. We obtain the wave equation for scattered pressure in VTI media by subtracting equation 3 from 1 and

using u = u 0 + δu as

−(ω2 + L2) δu(x, ω) = (ω2 + L2 + L2
0
) u 0(x, ω). (4)

Note that equation 4 does not contain a point source term. Assuming an isotropic and homogeneous background allows us to
obtain the reference wavefield u 0(x, ω) from analytical AWE solutions.

2.2 Physics-constrained deep learning

To establish a deep learning framework to solve equation 4, we use a neural network system, where the inputs are real and imaginary
components of the background wavefield at different frequencies and the outputs are complex monochromatic scattered pressure
wavefields at multiple frequencies. We train our network by imposing equation 4 as physical constraints on the learning process
through minimizing the mean-squared loss function

f =
1

N

N∑
i=1

||(ω2 + L2 + L2
0
) u 0(x, ω) + (ω2 + L2) δu(x, ω)||

2

2
. (5)

To evaluate the L2 and L2
0

operators, we first transform the background and scattered wavefields to wavenumber domain using
the Fourier Transform, which is available in most modern deep-learning packages (e.g., PyTorch, Tensorflow), and multiply with
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wavenumber vectors according to equation 2. We then transform the results back to spatial coordinates and scale with appropriate
velocities.

2.3 Fourier neural operators

To obtain AWE solutions independent of the grid discretization and resolution as well as the frequency, we first lift network inputs
(i.e., background wavefields) to a high-dimensional “channel” space using a neural network that contains 1 × 1 convolutional
layers. We then use a series of Fourier layers to learn a solution operator that maps background wavefields to scattered wavefields at
multiple frequencies. In each Fourier layer, we first perform a 2D Fourier transform and apply a linear transformation on the lower
Fourier modes and filter out the higher modes to establish regularization during training. Finally, we perform an inverse Fourier
transform. After Fourier layers, we project features back to the image (i.e., spatial) domain using 1× 1 convolutional layers.

3 NUMERICAL EXAMPLES

3.1 Two-layer medium

Our first example presents a simple two-layer medium, with x = 2.5 km and z = 2.5 km, where the top layer is isotropic
vz = 2.5 km/s and the bottom layer is characterized by vertical transverse isotropy with vz = 4.0 km/s and anisotropy parameters
ε = 0.24 and δ = 0.1. The source is located at x = 1.25 km and z = 1 km.

The network contains two 1 × 1 convolutional layers after the input layer to lift the background wavefields obtained from
the analytical AWE solution to a high-dimensional space, and two 1 × 1 convolutional layers before the output layer to transform
features back to the spatial domain. In between convolutional layers, we use five Fourier layers. We train our network with 64
frequencies ranging from 5 Hz to 15 Hz, and we use 16 frequencies for validation. During the training, we perform 10000 epochs
with a learning rate of 0.0005. Figure 3.2 presents the real component of monochromatic wavefields obtained using a numerical
solver for equation 4 and using the proposed methodology at four different frequencies. Note that network predictions match to
wavefields obtained using the numerical solver in terms of both shape and amplitude, as all wavefields are plotted within the same
amplitude range.

3.2 Layered VTI medium

For our second example, we use a portion of the Marmousi model 3.2 with constant anisotropy parameters ε = 0.2 and δ = 0.1.
The models have same dimensions as the two-layer model. We place the source at x = 1.25 km and z = 0 km and use the same
network architecture and training parameters as the previous example. Figure 3.2 shows the real component of four monochromatic
wavefields generated using a numerical solver and predicted by the neural network. Similar to the previous example, the network
predicts accurate wavefields.

4 CONCLUSIONS

We propose a physics-based deep learning methodology to solve the AWE in the frequency domain. The proposed method uti-
lizes neural operators that can find mappings between monochromatic background and scattered pressure wavefields at multiple
frequencies. These operators are defined in the Fourier space to learn AWE solution operators that are independent from spatial
discretizations and are able to predict solutions at frequencies that are not included during the training process. Two numerical
examples demonstrate the prediction and generalization capabilities of our proposed methodology in generating accurate AWE
solutions.
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Figure 1. The real component of monochromatic scattered wavefields for the two-layer model obtained using a numerical solver (top row) and
predicted by the proposed neural network (bottom row).
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Figure 2. The real component of monochromatic scattered wavefields for the layered VTI model obtained using a numerical solver (top row) and
predicted by the proposed neural network (bottom row).
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