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3D image-domain wavefield tomography using time-lag

extended images

Tongning Yang and Paul Sava

Center for Wave Phenomena, Colorado School of Mines

ABSTRACT

Image-domain wavefield tomography is a technique that reconstructs the velocity
model by extracting information from migrated images. In time-lag extended images,
velocity model accuracy can be evaluated by reflection focusing error, which represents
the traveltime residual in the image domain. The model is updated by minimizing an
objective function similar to the one used by wave-equation traveltime inversion. Un-
like wave-equation traveltime inversion wherein traveltime residual is obtained from
crosscorrelation of a single-shot data, the focusing error is extracted from time-lag
gathers, which are wavefield crosscorrelations based on multiple experiments. Because
the signal-to-noise ratio is higher in common-image gathers than that in common-shot
gathers, our technique is able to measure focusing error more accurately in presence of
noisy data and complex geologic structures. In addition, the image-domain approach
is robust as it does not suffer from cycle-skipping, which is common in conventional
data-domain full-waveform inversion. We also use the focusing error to precondition
the gradient of the objective function in order to improve the convergence of the inver-
sion. This is done by constructing a gradient mask which restricts the model updates
to areas where the accumulated focusing error exceeds a certain threshold. This pre-
conditioning of the gradient limits the model update to areas containing the velocity
model errors. We illustrate the method using both synthetic and field data. The North
Sea 3D field data example demonstrates that the technique is effective in optimizing
the velocity model and improving image quality. In addition, the method is efficient in
3D because only the time-lag extensions are computed and stored, in contrast to dif-
ferential semblance optimization which requires costlier inline and crossline space-lag
extensions.

Key words: wavefield tomography, 3D, extended images, adjoint-state method, fo-
cusing error

1 INTRODUCTION

In seismic imaging, building an accurate and reliable veloc-
ity model remains one of the biggest challenges. The need
for high-quality velocity models is driven by the wide-spread
use of advanced imaging techniques such as one-way wave-
equation migration (WEM) and reverse-time migration (RTM)
(Etgen et al., 2009).

In the past decade, velocity model-building methods us-
ing full seismic wavefields (Tarantola, 1984; Pratt, 1999; Vigh
and Starr, 2008; Symes, 2009) have become popular mainly
because of their accuracy and because the availability of in-
creased computational power. One can divide the family of
such velocity-estimation techniques into data-domain meth-

ods (Sirgue and Pratt, 2004; Plessix, 2009) and image-domain
methods (Sava and Biondi, 2004; Shen and Symes, 2008; Yang
and Sava, 2011). Data-domain methods adjust the velocity
model by minimizing the difference between simulated and
recorded data (Tarantola, 1984; Pratt, 1999). This formulation
is based on the strong assumption that the wave equation used
for data simulation is consistent with the physics of the earth,
which is often violated in practice. In addition, the methods
also require low-frequency data and sufficiently accurate ini-
tial model to avoid the cycle-skipping problem.

Unlike the data-domain approaches, image-domain meth-
ods update the velocity model by optimizing the image qual-
ity. As stated by the semblance principle (Al-Yahya, 1989;
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Yilmaz, 2001), the image obtained by multiple and redun-
dant seismic experiments is optimized when the correct ve-
locity model is used to migrate the data. The common prac-
tice is to optimize image coherency in common-image gathers
by iteratively updating the velocity model. In complex geol-
ogy, image-domain wavefield tomography is capable of han-
dling complicated wave propagation because it uses a wave-
equation engine to simulate the wavefields. Furthermore, the
band-limited wavefields used in the velocity model building
are consistent with the wave-equation migration algorithms
used in imaging.

The cycle-skipping problem in conventional data-domain
full-waveform inversion is mainly caused by its objective
function, which is the L-2 norm of the difference between
the observed and simulated data. Cycle-skipping occurs when
the initial model is not accurate enough or the data do not
have sufficiently low frequency components. To overcome this
problem, wave-equation traveltime inversion was proposed to
reconstruct the velocity model in complex geologic environ-
ments (Luo and Schuster, 1991; Zhang and Wang, 2009; van
Leeuwen and Mulder, 2010). The essential idea behind this
method is to invert the velocity model using only the travel-
time information rather than full waveforms. In this way, the
nonlinearity of the objective function with respect to the model
is significantly reduced, and the objective function is less sen-
sitive to data noise and the accuracy of the initial model.
For wave-equation traveltime inversion, the traveltime residual
is obtained from the cross-correlation between the recorded
and simulated data, and then spread along the wavepath com-
puted by solving the wave equation in the background model.
Nonetheless, these techniques aim to invert for a velocity
model using transmission waves, and not reflected waves. As a
result, they are limited to cross-well experiments or to surface
experiments with diving waves.

Velocity model updates using traveltime residuals are
also performed in the image domain, by techniques known
as focusing analysis (Faye and Jeannot, 1986). The traveltime
residual is defined as focusing error, since it uses the focus-
ing of reflections as a measure for the coherence of migrated
images. Such information indicates the accuracy of the veloc-
ity model and thus can be used for model building. For wave-
equation migration, one can extract focusing information from
time-lag extended images (Sava and Fomel, 2006); focusing
is quantified as the reflection focus shift along the time-lag
axis. Wang et al. (2005) propose a velocity analysis method
using time focusing applied to re-datumed data sets. Their ap-
proach is ray-based and thus may become unstable when the
complex geology results in multi-pathing. Higginbotham and
Brown (2008) and Brown et al. (2008) also propose a model-
building method that converts the focusing error into velocity
updates using an analytic formula. However, the formula is
derived under the 1D assumption, the focusing error is trans-
formed into vertical updates only, and therefore the accuracy
of the method is degraded in areas with strong lateral veloc-
ity variations. Wang et al. (2008, 2009) illustrate that focusing
analysis can be used as an image-enhancement tool to improve
the image quality and to update subsalt velocity models. Yang

and Sava (2010a) analyze the relationship between the focus-
ing error and velocity model accuracy, and develop a wave-
equation migration velocity analysis based on this relationship
(Yang and Sava, 2010b).

Here, we propose a methodology for 3D image-domain
tomography using the focusing information of migrated im-
ages. The essential idea is to extract focusing error from time-
lag extended images and then convert it into velocity updates
by a procedure similar to wave-equation traveltime inversion
(Luo and Schuster, 1991). In addition, we use focusing error
to constrain the updates only in target areas where velocity er-
ror exists and to speed up the convergence of the inversion.
We begin by defining an objective function based on mea-
sured image focusing. We discuss its gradient computation and
illustrate how the focusing error can be used to construct a
mask for preconditioning the gradient. Then we use a simple
synthetic model to illustrate the workflow of the method and
present an application of the method to a North Sea 3D OBC
field dataset. The improved image quality and flatter events
in angle-domain common-image gathers demonstrate that the
method is a robust and effective 3D velocity model-building
tool. Finally, we compare and contrast our approach to other
wave-equation-based velocity model building methods.

2 THEORY

The objective function for our wavefield tomography approach
is

J= %nmuz : (1)

Here A7 stands for the focusing error, which is the time lag
of reflection focus away from zero measured in extended im-
ages. Time-lag extended images are the crosscorrelation be-
tween extrapolated wavefields (u, and u,)

R(x’ T) = Ezus (i’ x’ w)uT (i) x) w) e_ziwr ? (2)
i w
where j is the shot index, w is the angular frequency, and x

are the space coordinates {z,y, z}. The source and receiver
wavefields us and u, satisfy

FE0™ ] 0] = [ (3]

where £ and £* are forward and adjoint frequency-domain
wave operators, and f; and f, are the source and receiver data.
The wave operator £ and its adjoint £* propagate the wave-
fields forward and backward in time, respectively, using a two-
way wave equation, i.e., £ = —w?m — A, where m represent
slowness squared and A is the Laplacian operator.

The objective function in equation 1 is the same as that
defined in wave-equation traveltime inversion (Luo and Schus-
ter, 1991; Zhang and Wang, 2009). However, the physical
meanings of A7 in the objective functions differ. In our ap-
proach, Ar is the focusing error measured from the stack over
shots of image obtained by wavefield crosscorrelation. In con-
trast, AT in wave-equation traveltime inversion is the travel-



time misfit measured between observed and simulated data at
the known receiver locations for a single shot.

We compute the gradient of our objective function using
the adjoint-state method (Plessix, 2006). The first step is to
construct state variables u, and u., which relate the objective
function to the model parameters (equation 3). The next step
is to construct the adjoint sources, which are used to obtain
adjoint-state variables. The adjoint sources are the derivative
of the objective function with respect to the state variables.
In our case, as A7 is not directly dependent on the wavefields,
we use the connective function similar to the one developed by
Luo and Schuster (1991). Since the focusing error represents
the time lag when the reflection events focus, we have

R (x,A7) = maz{R(x,7)|T € [-T,T]} . @)

As a result, the connective function can be written as

; OR
far or Q)]
AT
= Z Z (—2iw) us (G, X, w)ur (j, X, w) e~ 28T
j w
©)
The adjoint sources are then obtained as
a(fan
(U, x,w) = aJ =A1'6(AT) —AT_a(LuAs)_Z -
gs U, X, 9 (us) 8 (us) - 8£RA-.-:
a(AT)
= % (2iw) ur G, X, w)e? A7 ®
and
o(Bar
ooy B0 _ a8, S
o 0%) = 565 = AT ) A a(my
(A7)
= % (—2iw) us (j, X, w) e 2987 | (10)

where

E = ZZ 4w2us (i) x,w)ur (j, x, W) e—2iuA'r . (l 1)
J w

The adjoint-state variables are constructed similarly to state
variables as follows:

0 L (x,w,m)

[c (x,w,m) 0 Ha Grxw)] _ [gs (i,x,w)] .

ar (j,x,w)| ~ |gr (,%x,w)
12)

The gradient of the objective function is simply the crosscor-

relation between state and adjoint-state variables:

d

9t = 13)

om
ZZS—:; ('u,s Gy %, w) as (j, X, ) + ur (j, X, w) ar (j,x,w)) ’

(14)

L . s 2
where 5= is just —w”.

One common problem for image-domain wavefield to-
mography is that the computed gradient always distributes the

3D wavefield tomography 3

measured misfit along the wavepaths from image points to the
surface. This is because the focusing error actually measures
velocity model error accumulated from top to bottom, and the
gradient spreads the updates all the way up to the surface. If
certain areas above the image point do not contain error in
the velocity model, the inversion needs additional iterations to
eliminate the update in this region, which consequently slows
the convergence of the inversion. To ameliorate this problem,
we use the focusing error as a constraint for the inversion. The
focusing error is associated with the accuracy of the velocity
model and accumulated from top to bottom in a way similar to
the velocity model error. Therefore, the integral of the focus-
ing error absolute value over depth indicates the distribution
of the velocity model error. If this integral in a certain area is
close to zero, then the velocity model for this area and above
is accurate and needs no updates. Therefore, we can construct
a gradient mask to mute areas where no model update is re-
quired. We define the gradient mask W as:

0 if [|A7(z,y,2)|dz < 1o
0

1 elsewhere

W(x)= , (15)

where 7 is a user-defined threshold. By applying the gradient
mask and limiting the model updates in the target regions, we
reduce the number of iterations needed by the inversion and
improve the convergence of the method. This idea is similar
to applying layer-stripping in velocity model building: we first
update the model in the shallow regions, and then proceed to
updates of the deeper portion of the model while keeping the
upper portion fixed.

3 EXAMPLES

We demonstrate the gradient computation and preconditioning
of our method using a synthetic horizontally layered model,
and then we apply the method to a North Sea 3D OBC field
dataset.

Figure 1(a) shows the velocity profile of the synthetic
model. The model has two interfaces located at z = 0.5 km
and z = 1.1 km, and the velocities for the three layers from
top to bottom are 1.5, 1.7, and 2.3 km/s. We simulate the data
using acoustic two-way wave-equation finite-difference mod-
eling. The initial model used for imaging is constant using the
velocity from the first layer in the true model, i.e. 1.5 km/s.
We use this model to migrate the data and to obtain the im-
age and the time-lag gathers. As the initial model is correct
in the first layer, we expect that the first interface be correctly
imaged, and the second interface shifted. The migrated image
in Figure 1(b) indeed shows that the first reflector is correctly
imaged at z = 0.5 km, and that the second reflector is too
shallow, at 2 = 1.0 km. Figure 2 shows a gather located at
the center of the model. Using such gathers, we can extract
the focusing error A7 by measuring the lag of the focus from
zero time lag. Here, the time-lag gathers accurately capture the
velocity information: as there is no velocity model error asso-
ciated with the first layer, the corresponding reflection focus is
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Figure 1. (a) The layered velocity model, and (b) migrated image obtained with the initial model, the constant with velocity from the first layer in
the true model, i.e. 1.5 km/s.
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Figure 2. Time-lag gathers obtained with the initial model. The gather is located at at z = 2.25 km, y = 2.25 km. The reflection focus of the top
layer is located at zero lag as there is no velocity error. The focus of the second layer shifts to positive 0.1 s due to the incorrect initial model.
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Figure 3. (a) The gradient obtained with a single shot, which corresponds to the sensitivity kernel of our method, and (b) the gradient obtained with
all shots.
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located at zero time lag. In contrast, the reflection focus of sec-
ond layer is shifted to 7 = 0.1 s indicating that the migration
velocity is lower than that of the true model. Using the focus-
ing error, we construct the objective function and compute the
gradient following the workflow discussed in the previous sec-
tion. Figure 3(a) plots the gradient obtained for one gather at
the center of the model and one shot located at z = 1.1 km,
y = 2.25 km. This single-shot gradient corresponds to the
sensitivity kernel of the method. The kernels connecting the
source and receivers to the image point on the second layer.
Figure 3(b) plots the gradient obtained for all gathers and all
shots. The gradient is negative, indicating that the velocity of
the initial model should be increased, which agrees with our
experimental setup. The gradient in Figure 3(b) also suggests
a update in the area between z = 0 km and z = 0.5 km, be-
cause the sensitivity kernels for the second layer distributes the
focusing error along the path from the source to image points
to receivers. However, the focusing error (Figure 4(a)), which
characterizes the velocity model error distribution, is zero in
the top layer because there is no velocity error in this area.
This demonstrates that the computed gradient is not consis-
tent with the velocity error distribution, so we need to restrict
the updates from the top layer. Using the focusing error as a
priori information, we construct the gradient mask using equa-
tion 15, as shown in Figure 4(b). Because the mask is zero in
the first layer, this effectively removes the updates there. The
final preconditioned gradient, after applying the mask, is plot-
ted in Figure 5(a). The update is now limited to the second
layer only, and results in a faster convergence for the inver-
sion. In this simple case, we reconstruct the model shown in
Figure 5(b) after only one iteration.

The North Sea 3D OBC field dataset was acquired in the
Volve field, and the construction of the initial model is de-
scribed in Szydlik et al. (2007). The Earth model is anisotropic
and can be described using the Thomsen parameters Vj, e,
and 6 (Thomsen, 1986). Here we assume that the medium
is isotropic and use only the V,, model to test our algorithm.
Figures 6(a) and 7(a) show the initial model obtained by a
layer-stripping method and the corresponding migrated im-
age. Using the objective function and gradient computation
discussed in the previous section, we run the inversion for
five iterations. The updated velocity model and its correspond-
ing migrated image are plotted in Figures 6(b) and 7(b). Ob-
serve that the inversion increases the velocity around the cen-
ter part of the model between z = 2.5 km-4.0 km. This up-
date improves the image quality, as the main reflections around
z = 2.8 km are more focused and coherent, and the conti-
nuity of the deeper reflections improves as well. These im-
provements can be better observed in the zoom-in inline sec-
tions extracted at y = 3.5 km in Figures 8(a) and 8(b). To
further assess the model improvement, we construct angle-
domain common-image gathers before and after the inversion.
Figures 9(a)-9(c) and Figures 10(a)-10(c) plot angle gathers
sampled in the inline direction at three different crossline lo-
cations using the initial and updated models, respectively. No-
tice that the main reflector around z = 2.8 km is characterized
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by flatter gathers after the inversion, indicating the model im-
provement.

4 DISCUSSION

We demonstrate an image-domain wavefield tomography ap-
proach that can be used as an alternative to data-domain wave-
equation traveltime inversion. We use focusing to measure a
traveltime error, which depends on the velocity model error,
i.e., we formulate an objective function by minimizing the fo-
cusing error.

Our method shares many similarities with wave-equation
traveltime inversion, e.g., the objective function construction.
The main difference between these two techniques, however,
lies in how the focusing information is extracted. In wave-
equation traveltime inversion, the traveltime residual A7 is
obtained from the cross-correlation between recorded and sim-
ulated data in individual shot gathers. In contrast, our method
estimates the focusing error A7 from time-lag gathers, which
are the cross-correlations of extrapolated source and receiver
wavefields stacked over all experiments. In general, the signal-
to-noise ratio in common-image gathers is higher than in shot
gathers due to the stacking process. Thus, the approach pro-
posed here is expected to render more accurate focusing in-
formation in presence of noise and complex geology. Besides,
wave-equation traveltime inversion is designed to extract the
traveltime information from transmission waves, which can be
used only in cross-well geometry or for diving waves in sur-
face acquisition. Our approach, in contrast, extracts the travel-
time information from reflected waves, and thus it is capable
of inverting the velocity model in deeper target regions.

Furthermore, our method requires less computational ef-
forts compared to differential semblance optimization (DSO).
DSO uses space-lag gathers and needs to compute the lags in
both inline and crossline directions in 3D. This leads to 5D
image hypercubes which are too expensive to compute and
store. In comparison, our method requires only the time lag
to evaluate velocity information even in 3D. As a result, the
computational and storage cost is at least one order of mag-
nitude lower than in the case of space-lag gathers. Nonethe-
less, the azimuthal resolution of our method is lower than that
provided by DSO since the time-lag itself is not sufficient to
characterize the azimuth information in the gathers.

5 CONCLUSION

We develop a 3D image-domain velocity model building tech-
nique based on time-lag extended images, which characterize
the traveltime residual due to velocity error by reflection fo-
cusing. We formulate the optimization problem by minimiz-
ing the focusing error based on images constructed by wave-
equation migration, which puts our technique in the family of
wavefield tomography techniques. We speed up inversion by
exploiting focusing information as a priori information to pre-
condition the gradient. A North Sea field data example illus-
trates that our method is effective in improving model accu-
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Figure 6. North Sea field data example. (a) The initial model used for the inversion, and (b) the updated model obtained after the inversion.
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Figure 7. North Sea field data example. (a) The migrated image obtained with the initial model, and (b) the migrated image obtained with the
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(b)

Figure 8. North Sea field data example. Zoom-in image extracted at y = 3.5 km to highlight the difference in image quality. (a) The image obtained
with the initial model and (b) the image obtained with the updated model.
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Figure 9. Angle-domain gathers obtained with the initial model at (a) y = 3 km, (b) y = 6 km, and (¢) ¥ = 9 km. The angle range is from —60°

to 60°.




14 T Yang and P. Sava

AN
1/1.’\ ,v.r;.\-
\

B T S WA
N, | |
F2 A /'_n:n_z

'\ /-\

(N
g o
T
.\A-m e

¢ /~'u-

m,\: 7 M.).
r/m.://*\\\\,ﬂ“\
| ///"‘ ) '/‘n..
-

Figure 10. Angle-domain gathers obtained with the updated model at (a) y = 3 km, (b) y = 6 km, and (¢) ¥y = 9 km. The angle range is from
—60° to 60°.



racy and image quality. In addition, the method is computa-
tionally efficient in 3D velocity model building applications.
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Wavefield tomography using RTM backscattering

Esteban Diaz and Paul Sava
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ABSTRACT

Reverse time migration (RTM) backscattering contains kinematic information that can
be used to constrain velocity models. The backscattering results from the correlation
between forward scattered and backscattered wavefields from sharp interfaces, i.e.
sediment-salt interfaces. The synchronization between these wavefields depends on
the velocity of the sediment section and the correct interpretation of the sharp bound-
ary. Therefore, we can use these events along with reflection and diving waves to define
a joint optimization problem for velocity model building. As in RTM images, in gra-
dient computation the backscattering and diving information produces cross-talk. In
order to avoid the cross-talk, we use a directional filter based on the Poynting vector
which preserves the components of the wavefield that travel in the same direction. Us-
ing backscattered waves for constraining the velocity in the sediment section requires
defining the top of salt in advance, which would imply a dynamic workflow for model
building in salt environments where both sediment velocity and salt interface change
iteratively during inversion.

Key words: RTM backscattering, wavefield tomography, Poynting vector

1 INTRODUCTION

The two-way way equation is the engine of reverse-time mi-
gration (RTM) (Baysal et al., 1983; McMechan, 1983; Whit-
more, 1983). This imaging technology is used routinely to ob-
tain high fidelity images of the subsurface. Despite the com-
puting cost, the two-way operator has many advantages over
other modeling approaches, like downward continuation or
Kirchhoff modeling. This technique is especially suited for
complex geological settings such as those with strong veloc-
ity gradients, sharp boundaries (e.g. salt bodies), and strong
lateral variations. The reason for the RTM success is that a
wavefield reconstructed with the two-way operator can eas-
ily handle any dip, multi-pathing, and reflections from steep
structures (Gray et al., 2001; Etgen et al., 2009).

RTM also produces low wave-number events in seismic
images, which are usually referred to as RTM artifacts. The
low wave-number energy is produced by the correlation of
waves that propagate in the same direction, thus violating
the assumptions of the conventional cross correlation imaging
condition (Claerbout, 1985). Such events include backscat-
tered waves, head-waves, and diving waves. The backscattered
events obstruct the image representing the subsurface reflectiv-
ity, and so are usually considered noise. Numerous techniques
can be employed to remove the RTM noise. In terms of filter-
ing approach, we could divide such methods in two categories:
pre-imaging filtering (Fletcher et al., 2005; Yoon et al., 2004;
Liu et al., 2011) and post-imaging filtering (Youn and Zhou,

2001; Guitton et al., 2007; Zhang and Sum, 2009; Kaelin and
Carvajal, 2011).

Although the low wavenumber energy is noise for imag-
ing purposes, it can be used for velocity model-building. This
energy is the result of the correlation of waves traveling in the
same direction, thus coinciding in space and time. This space
and time coincidence only occurs when the wavefields extrap-
olation is accurate. Therefore, if the velocity model is correct,
the RTM backscattering is strong simply because the wave-
fields are synchronized (Diaz and Sava, 2012). For reflected
data, the space-time synchronization criterion also applies at
the reflector position. Since both types of waves (transmitted
and reflected) share the same kinematic behaviour, we can de-
sign a joint optimization problem that improves the synchro-
nization of all the data simultaneously,thus allowing us to re-
fine the model and to use the RTM backscattering as a source
of information instead of treating it as noise.

To optimize the velocity model, one can choose a method
that is consistent with the modeling operator (two-way). Such
an inverse problem could be formulated by finding a model
that produces data which resembles the observed data, as
is done in Full Waveform Inversion (Tarantola, 1984; Pratt,
1999). This data-domain approach relies on the kinematic and
dynamic consistencies between modeled and observed data.
Therefore, if the propagation engine used is not dynamically
consistent with the data, i.e. the modeled amplitudes are not
accurate, then the chances for convergence diminish. Alterna-
tively, one can optimize the model in the image space using
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techniques from the family usually referred to as wavefield to-
mography (Woodward, 1992; Sava and Biondi, 2004; Flied-
ner and Bevc, 2008; Shen and Symes, 2008; Yang and Sava,
2011a). The image domain approach seeks the kinematic syn-
chronization of the wavefields at an image location. Therefore,
the aim of this method is to improve the image focusing rather
than to match the dynamic information of the wavefields as in
done in the data-domain approach. This increases the robust-
ness of the method, but decreases its ability to construct high
resolution models. One way to formulate the problem in the
image space is by using extended images (Rickett and Sava,
2002; Sava and Fomel, 2006; Sava and Vasconcelos, 2011),
from which we can extract wavefield similarities in space and
time (Shen et al., 2003; Yang and Sava, 2010). Extended im-
ages are normally used for optimizing the reflected data infor-
mation, but Diaz and Sava (2012) show that similar to reflected
data, the RTM backscattered energy also maps to zero time-lag
and space-lag when the velocity model is correct.

In this paper, we demonstrate that it is possible to use
the backscattered and diving waves for image-domain wave-
field tomography. Using the two-way wave equation opera-
tor allows simultaneous inversion based on the reflected, div-
ing and backscattered waves. We formulate the tomography
problem using the adjoint state method (ASM), which is an
efficient technique for gradient-based optimization (Plessix,
2006). However, the gradient computed using the ASM suf-
fers from cross-talk between forward and backscattered waves,
which produces undesirable reflector-like evens. In order to
avoid the unwanted correlations, we apply a directional filter
designed to keep the contributions between wavefields travel-
ing in the same direction during the correlation step of the gra-
dient computation. This filter is based on the Poynting vectors
of the extrapolated wavefields (Yoon et al., 2004), although
other filtering techniques can be used instead.

We start this paper with a brief review of the RTM
backscattering kinematic properties and the mapping patterns
in extended images, and then we review wavefield tomography
using extended images. We show how this methodology can be
adapted to backscattering energy and define an objective func-
tion and its gradient, which are essential for inversion. We then
illustrate how we can make use of the backscattering informa-
tion for wavefield tomography, and demonstrate our method
using a complex synthetic based on the Sigsbee model (Paf-
fenholz et al., 2002).

2 RTM BACKSCATTERING REVISITED

RTM backscattering is produced in the presence of sharp mod-
els, e.g. sediment-salt interfaces. In such cases, wavefields ex-
trapolated with a two-way operator (e.g. the scalar wave equa-
tion)

1 8%u(x,t)
v3(x) Ot

- Vu(x,t) = f(x,t) )

contains forward and backscattered components. Here, u(x, t)
the reconstructed wavefield, v(x) the medium velocity and

f(x,t) the source function. Therefore, we can write the source
wavefield as a superposition of two components

us(x,t) = uls’(x, t) + uf (x,t), 2)

where the superscripts ® and { correspond to the backscat-
tered and forward scattered wavefields from the sharp bound-
ary, respectively. Similarly, the receiver wavefield can be de-
composed into two components with the equivalent naming
convention:

ur(x,t) = ul(x, t) + ul(x,t). 3

2.1 Conventional imaging condition

The source and receiver wavefields allow one to construct an
image with the conventional imaging condition (Claerbout,
1985) defined as the zero-lag correlation between source and
receiver wavefields:

R(x) = Z Z us(e, x, t)ur(e, x,t). ®

Here e refers to the experiment index, e.g. shot number or
plane-wave take-off angle.

If the wavefields used in imaging contain backscattering,
we can substitute equations 2 and 3 into equation 4 and obtain
an image which is a superposition of 4 individual images:

R(x) = R (x) + R®(x)
+ R (x) + R (x). 5)

Following the convention in Diaz and Sava (2012), the first
superscript corresponds to the source wavefield and the sec-
ond to the receiver wavefield. In this total image, two com-
ponents (7 and %) provide an estimate of the reflectivity, and
the other two components (*® and ®f) represent backscattering.
This means that the backscattering is produced from the corre-
lation of wavefields traveling in the same direction. For exam-
ple, R® (x) is produced when the backscattered source wave-
field ub(x, t) resembles the forward scattered receiver wave-
field uf (x, t), and R®(x) is produced with the opposite com-
bination of the propagating wavefields. Several authors (Yoon
et al., 2004; Fei et al., 2010; Liu et al., 2011) use this wave-
field directionality notion to keep only the components related
to reflectivity in the image and to remove everything else. Here
we use the directionality concept to keep the components that
travel in the same direction during tomography.

2.2 Extended imaging condition

A generalized version of equation 4 can be used to understand
the (kinematic) similarities between source and receiver wave-
fields. This concept is known as extended imaging (Rickett
and Sava, 2002; Sava and Fomel, 2006; Sava and Vasconce-
los, 2011). A general case of an extended image is defined as
follows:

R(x,\,7) = ZZus(e,x— At—Tur(e,x+ A t+71),
e t
()
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Figure 1. Synthetic experiment setup: (a) the density (spike function) model (g/cc) and the velocity (step function) model (km/s), and (b) the

modeled data.

where X\ and 7 are space and time extensions of the cross-
correlation, respectively. Extended images are commonly used
to produce angle gathers (Sava and Fomel, 2003, 2006; Sava
and Vlad, 2011) and for velocity estimation (Shen and Symes,
2008; Yang et al., 2012; Yang and Sava, 2011b).

In the presence of sharp models, we can substitute equa-
tions 2 and 3 into equation 6. By doing so, we can differenti-
ate between the different components of the extended image,
which is similar to what we do for conventional images:

R(x,\,7) = R (x,\,7) + R®(x, A, 7)
+RY (x5, A, 7) + R, A, 7). (D)

The reflected data maps into the components ff and °°,
whereas the backscattered energy maps into the *° and ®f com-
ponents. In the conventional image R(x) (both backscattered
and reflected energy) coexist above sharp interfaces, for exam-
ple due to the presence of a salt body. The two components are
usually separated based on the spectral content (the artifacts
have low wavenumber content, whereas the reflectivity has
high wavenumber content). This separation is normally done
using some sort of high-pass filter, like a Laplacian (V%) oper-
ator (Youn and Zhou, 2001; Zhang and Sum, 2009) or by least-
squares filtering (Guitton et al., 2007). The separation is not
perfect in areas with similar spectral content. In the extended
image space, however, the reflected and backscattered energy
has unique mapping patterns (Diaz and Sava, 2012), which can
be used to effectively separate both components (Kaelin and
Carvajal, 2011).

Diaz and Sava (2012) show that the backscattered and
reflected energy share the wavefield synchronization criterion.
The spatial and temporal synchronization occurs above a sharp
boundary for backscattered events, whereas the synchroniza-
tion occurs at the position of the reflectors for reflected data.
The synthetic model shown in Figure 1(a) illustrates the ex-
tended image kinematic sensitivity to model error. The data in
Figure 1(b) show two events: the earlier one corresponding to

a reflector in the density model (spike in Figure 1(a)), and the
later one resulting from a sharp contrast in the velocity model
(step function in Figure 1(a)). The third event in the data cor-
responds to an internal multiple generated between the density
and velocity interfaces.

Figures 2(a), 2(b), and 2(c) show time-lag gathers for
three different velocities. These gathers are generated using
equation 6 with A = O after stacking over different experi-
ments, i.e. shots in this case. We simulate a velocity error in the
first layer and adjust the sharp boundary according to the mi-
gration velocity, for example a low velocity shifts the bound-
ary upwards and a high velocity shifts the boundary down-
wards. The backscattering maps vertically in the three cases,
however it deviates from 7 = 0 when the velocity is incorrect.
The time delay error in the backscattering is the same to the
one produced by the reflected energy at the sharp interface.
Therefore, the backscattering provides information about the
sharp interface at any place in the image above it.

Figures 3(a), 3(b), and 3(c) show the equivalent space-
lag gather dependency with respect to the velocity error. Sim-
ilar to the time-lag gathers, the space-lag gathers are gener-
ated after stacking the contribution from different experiments.
The backscattering (mapping vertically in the gathers) spreads
away from A = O with the velocity error, thus emulating the
defocusing of the reflected data. Similarly to the time-lag gath-
ers, the backscattering above the interface is the expression of
the defocusing at the sharp boundary.

Since both reflected and backscattered data share simi-
lar velocity dependency, we conclude that we can design an
inverse problem that optimizes both type of events simultane-
ously (Diaz and Sava, 2012). The following section details the
velocity analysis procedure based on backscattering.
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Figure 3. Space-lag gathers for (a) low, (b) correct and (c) high velocities.

3 WAVEFIELD TOMOGRAPHY WITH EXTENDED
IMAGES

In order to analyze the velocity model error, we can make use
of the semblance principle which seeks image consistency as
a function of extended image parameters. Stork (1992) imple-
ments the idea using the consistency between common off-
set images. Symes and Carazzone (1991) exploit this concept
using the differential semblance optimization (DSO) method.
DSO can also be used to increase the flatness of angle gath-
ers. Rickett and Sava (2002) and Sava and Fomel (2003) show
that common angle gathers and extended images are related by
a slant stacking operation. Therefore, these two type of com-
mon image gathers are equivalent for velocity analysis. Shen
and Symes (2008) and Yang and Sava (2011a) use the consis-
tency criterion in extended images to formulate a tomographic
problem based on space-lag gathers or joint space and time-lag
gathers, respectively.

3.1 Inversion with time-lag gathers

If the velocity is correct, the time-lag gathers (Sava and Fomel,
2006) show maximum focusing at zero lag. This observation
derives from the fact that the source and receiver wavefields
are synchronized at the reflector position. The velocity model
can be improved by increasing the wavefield synchronization,
which is equivalent to locating the events in the extended im-
ages as close as possible to 7 = 0. This can be done by mini-
mizing the following objective function (OF):

J = 3 IP@RG DI, ®
where P(7) = |7| is an operator that penalizes the energy out-
side 7 = 0. Following the notation in Yang and Sava (201 1a),
we can express R(x, 7) as

R(x,7) = Z ZT(—T)US(G, x, )T (+7)ur(e, x,t), (9)

€



where T'(+7) is a time-shift operator applied to the source
or receiver wavefields. Note that this OF cannot drop to zero
completely because in the time-lag gathers, there is always
correlation energy for all values of 7. However, this OF is min-
imum when the velocity model is correct and most of the en-
ergy in the extended image locates at 7 = 0.

We compute the gradient of equation 8 using the Adjoint
State Method (ASM) (Tarantola, 1984; Plessix, 2006). The ad-
joint source with respect to the source wavefield for an exper-
iment e is

gs(x,€e) = ZT(—T)P2(T)R(x,T)T(—'r)ur(e, X, t),

10)
and the adjoint source with respect to the receiver wavefield is

gr(x,€) = Y T(r)P*(r)R(x,7)T(T)us(e, %,t). (11)

We construct the adjoint state variables by injecting the ad-
joint sources at the gather positions and by extrapolating the
wavefields using the adjoint modeling operators. The adjoint
source wavefield a,(e, x, t) is reconstructed backward in time,
whereas the adjoint receiver wavefield a-(e, x,t) is recon-
structed forward in time. Using the state and adjoint state vari-
ables, the gradient with respect to the velocity model is

VJ(x) = U;(i) ) Xt:aat’;“ (e, %, t)as(e, x, )+

&u,

W(e) X, t)ar(ey X,t), (12)

where ;{Lx) 6%2, corresponds to the derivative of the modeling
operator éequation 1) with respect to the velocity model.

In the gradient expression (equation 12) we expect to cor-
relate state and adjoint state wavefields traveling in the same
direction which implies that the gradient is smooth. However,
if backscattering is present in the wavefield, we obtain cross-
talk similar to that seen in RTM. The cross-talk in this case is
generated by the correlation of wavefields traveling in the op-
posite direction. In order to attenuate the cross-talk, we can use
a filter that preserves the components of wavefields traveling
in the same direction and eliminates the wavefields traveling in
opposite directions. We can find the direction of propagation
using the approach of Yoon et al. (2004), which constructs the
Poynting vectors P(e, x, t) using the equation

Ple, x,t) x M’tx’t)VU(e, x,t), (13)

17
where u can be either the source or the receiver wavefield. In
practice we use the time-averaged Poynting vectors using a
Gaussian smoothing over a small time window determined by
the dominant period of the data

< P(e,x,t) >=P(e,x, t) * G(t). (14)

Here, the symbol * denotes convolution, and G(¢) is the Gaus-
sian smoothing filter.

To keep just the wavefields components traveling in the
same direction, we can compute a weighting function W ()
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with

1 Py(x,t) - Pr(x,t)
6(x,£) = cos (IPs(x,t)IIPr(x,t)I) 13

such that we preserve the wavefield cross-correlation for
which Ps(x,t) - Pr(x,t) = 1, i.e. when the direction of
propagation is similar within a given tolerance. The weighting
function can be designed using a cutoff angle, from which the
function tapers off smoothly using a Gaussian function with
standard deviation o which defines the range from which the
angles are accepted.

1 :0°<f<a
W(b,a,0) = { e (0-)2/2?) ., <6< 180°. (16)

Based on this filter, we change equation 12 to

8%u,

VJ(x) = v—a_(% ZZW(G)W(e’ X, t)as(e, x,t)+

2
W(0) 2 (e, )a (e, %, 1),
an

This new gradient avoids cross-talk and emphasizes wave-
fields traveling in the same direction.

Figures 4(a), 4(c), and 4(e) show the gradient constructed
using equation 12 for low, correct, and high velocities, respec-
tively. One can see that the intensity of the gradient with cor-
rect velocity is lower that obtained for either low or high ve-
locities. One can also observe the cross-talk due to wavefields
propagating in opposite directions which appears as reflectors
in the gradient. The gradient is computed using equation 17
with a cutoff angle a = 15°, Figures 4(b), 4(d), and 4(f) show
the cross-talk significantly attenuated.

3.2 Inversion with space-lag gathers

We can also use the information contained in space-lag gath-
ers (Rickett and Sava, 2002). If the velocity model is correct,
then space-lag gathers focus at A = 0. If the velocity model is
incorrect, the gathers contain defocused energy outside A = 0.
This criterion is used by Shen and Symes (2008) and Yang and
Sava (201 1a) to formulate wavefield tomography using the OF

1
I = 5 IIP)RG NI, (18)
where P(X) = || is a penalty operator. Even with correct

velocity, this OF does not become zero due to the band-limited
nature of the data and due to illumination effects (Yang et al.,
2012). Nevertheless, this OF provides an effective criterion for
velocity updating.

We compute the gradient of equation 18 using the same
workflow as the one used for equation 8 (Yang and Sava,
2011a). The adjoint sources are defined as

gs(x,€) = Y _T(=A)P*(A)R(x, A\)T(~A)ur(e, x, t)
A
(19)
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Figure 4. Gradients obtained using time-lag gathers for (a)-(b) low, (c)-(d) correct, and (e)-(f) high velocities. Gradients (), (c), and (e) are

constructed without filtering and (b), (d) and (f) with filtering.

for the source side, and

gr(x,€) = Y T(+X) P (A)R(%, )T (+A)us(e, X, 1)
A

(20
for the receiver side. Here T(£) is a space shifting opera-
tor applied to the wavefields. The only difference between the
time-lag and space-lag gather formulation is in the OF and in
the computation of the adjoint sources. The gradient and ad-
joint wavefields are computed using the same wave-equation
and background velocity model as in the case of thetime-lag
gathers (equations 12 and 17).

Figures 5(a), 5(c), and 5(e) show the gradients for
low, comrect, and high velocity, respectively. To compute
these gradients, we use the space-lag gathers shown in Fig-
ures 3(a), 3(b), and 3(c), respectively. As for the gradient con-
structed with time-lag gather, one can see that the energy in
the space-lag gradient is proportional to the focusing error ob-
served in the gathers. The gradients obtained using equation 12
also contain cross-talk similarly to the gradient constructed
with time-lag gathers. If we apply the directional filtering dur-
ing the gradient computation (equation 17), we obtain gra-
dients with significantly lower cross-talk. Figures 5(b), 5(d),
and 5(f) show the filtered gradients for the low, correct, and
high velocity models, respectively.

4 EXAMPLES

In this section, we illustrate the use of the backscattering
and reflected events on a modified version of the Sigsbee 2b
model (Paffenholz et al., 2002). We focus on the small basin
formed by the salt intrusion (Figure 6(a)). We simulate data
for 61 shots evenly distributed on the surface, with a fixed re-
ceiver array at the surface, in order to test the effect of using
a fast sediment velocity with an error increasing with depth
(Figure 6(b)). After migrating the data with the fast sediment
velocity, we interpret the top of salt (TOS) and place the salt
bellow it as shown in Figure 6(c). Figure 6(d) shows the dif-
ference between Figure 6(c) and Figure 6(a), and indicates that
overall the incorrect velocity is faster.

Figure 7(a) depicts the RTM image using the velocity in
Figure 6(b), and show that the focusing of the TOS event de-
grades with depth and is not simple to interpret. Figure 7(b)
shows evenly sampled space-lag gathers, which also indicate
that the defocusing increases with depth. Figure 7(a) shows
the RTM image obtained with the model after salt flooding
(Figure 6(c)). One can see that the backscattering above the
TOS event is not uniform and changes sign throughout the
sediment section, thus indicating velocity or TOS interpreta-
tion error. Figure 7(b) shows space-lag gathers corresponding
to the RTM image in Figure 7(c). Note that the backscattering
(mapping vertically in the gathers) spreads away from A = 0,
following the defocusing of the TOS reflector.

Figure 8(a) shows the gradient computed using the ve-
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Figure 5. Gradients obtained using space-lag gathers for (a)-(b) low, (c)-(d) correct, and (e)-(f) high velocities. Gradients (a), (c), and (e) are

constructed without filtering and (b), (d) and (f) with filtering.

locity in Figure 6(c). Figure 8(b) shows the filtered gradient,
whereas Figure 8(c) shows the difference between the gradi-
ents in Figures 8(a)-8(b). One can see that the gradient energy
is concentrated above the sharp boundary; therefore the update
is correctly focused in the sediment basin, and the cross-talk is
effectively removed by our filter using the Poynting vectors.

Since we use the top of salt for the tomography update,
it is necessary to interpret the TOS event at each iteration. In-
terpretation of salt boundaries could be very difficult and time
consuming, especially in complicated salt bodies with over-
hanging flanks (Ahmed et al., 2012). Since the sediment ve-
locity changes at each iteration, the TOS also changes slowly
with iteration. In practice, one could interpret the salt bound-
ary in the first iteration and look for TOS changes in the vicin-
ity of the previous solution, for example using automatic salt
interpretation (Lomask et al., 2007; Halpert, 2011).

For comparison, we also compute a gradient using the
fast sediment velocity shown in Figure 6(b) and the corre-
sponding space-lag gathers in Figure 7(b). The gradient de-
picted in Figure 9(a) shows that some cross-talk is still present,
despite the fact that strong sharp boundaries are not present in
the model. We hypothesize that the cross-talk in the gradient
is due to diving waves in the wavefields. The filtered gradient
shown in Figure 9(a) and the difference shown in Figure 9(b)
indicate that the filter effectively removes the cross-talk.

5 CONCLUSIONS

We demonstrate that it is possible to use RTM backscattered
data in wavefield tomography. The RTM backscattering pro-
vides information about the wavefield synchronization and
focusing of the sharp boundaries at any place in the image
above the boundaries. As for RTM imaging, sharp models in-
troduce cross-talk in wavefield tomography gradients, which
appears as reflections instead of low wavenumber events as
in the case of RTM images. We filter the cross-talk with an
approach based on Poynting vectors to emphasise the wave-
field components traveling in the same direction and to discard
the wavefield components traveling in opposite directions. The
purpose of this filter is exactly the opposite of the one proposed
by Yoon et al. (2004) to attenuate the backscattering energy in
RTM images.

We can use the backscattered information and sharp
boundaries in the model to constrain the sediment velocity
in the upper section. Using this information requires a dy-
namic model building work flow, with both the sediment and
salt boundaries being updated at every iteration. Although we
demonstrate the presence of cross-talk with extended images
wavefield tomography, we assert that similar events exist in
other two-way domain tomography methods, e.g. waveform
inversion. Nevertheless, we conclude that sharp sediment-salt
interfaces generate information useful for model updates.
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Figure 6. Salt model example: (a) true velocity model, (b) fast sediment flood velocity model, (c) fast sediment velocity with salt flood, and (c) the
difference (c)-(a). In the difference, dark colors indicate positive difference and light colors indicate negative differences
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Figure 1. Slowness models computed with (a) conventional full waveform inversion and (b) full waveform inversion using an

approximation of the data residual.

ABSTRACT

One difficulty in full waveform inversion is the requirement for an accurate ini-
tial model, which if not satisfied, can result in cycle skipping and convergence
to local minima. Similarly, in least-squares migration, errors in the background
model can lead to an incoherent, defocused image. These difficulties can be
attributed in part to the fact that the data residual, the difference between
simulated and observed data, contains error in both the smooth background
model that affects traveltimes, as well as the rough reflectivity model that af-
fects amplitudes. These two types of error are not treated equally in either full
waveform inversion or in least-squares migration. To address this issue, we use
an approximation of the data residual to separate traveltime and amplitude
errors, and we show that the use of this approximation results in more accurate
inversions for velocity in full waveform inversion, and better focused images in
least-squares migration.

Key words: waveform inversion least-squares migration traveltime amplitude

1 INTRODUCTION

Iterative migration and inversion algorithms can pro-
duce high-resolution images and models of the subsur-
face. Such algorithms proceed by minimizing an objec-
tive function, e.g., a least-squares functional; and var-
ious methods exist for solving this optimization prob-
lem, including gradient descent and conjugate gradient
methods, as well as Gauss-Newton, quasi-Newton, and
full-Newton methods. Common to these methods is the
computation of the gradient of the objective function
with respect to model parameters, which is computed
by applying a migration operator (Lailly, 1983; Taran-
tola, 1984) to a residual that depends on the choice of

objective function. Clearly the choice of objective func-
tion is important, but from an algorithmic standpoint,
the residual is the input to the computation of the gra-
dient. So, it is interesting to investigate the influence of
the residual in iterative migration and inversion algo-
rithms.

In full waveform inversion (Lailly, 1983; Tarantola,
1984; Pratt et al., 1998) and least-squares migration
(Nemeth et al., 1999; Dai, 2012), with a least-squares
objective function, the residual is simply the data resid-
ual, i.e., the difference between simulated (modeled) and
observed (recorded) data. As shown in Figure la, full
waveform inversion is susceptible to cycle skipping and
convergence to local minima, especially when the ini-
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tial model is far from the true model, and simulated
and observed data differ by more than one-half cycle.
Least-squares migration faces a similar issue when the
background velocity model used for migration contains
errors, so that traveltimes in the simulated and observed
data do not match. These issues arise partly from the
fact that nonzero data residuals result from both travel-
time and amplitude errors, but the different wavenum-
ber components of the model responsible for these two
types of error may be difficult to recover for any one
inversion or migration algorithm. For example, least-
squares migration inverts for a high-wavenumber reflec-
tivity model; thus, it cannot recover the background
model responsible for traveltime errors.

In this report, we use a simple approximation of
the data residual when computing the gradient in least-
squares migration and full waveform inversion. With
this approximation, we can better separate traveltime
errors, affected by the low-wavenumber component of
the model, from amplitude errors, affected by the high-
wavenumber component. We show that this separation
can improve focusing and reflector continuity in migra-
tion images when the background model contains er-
rors, and, as shown in Figure 1b, that it can also help
mitigate cycle skipping and improve convergence in full
waveform inversion.

2 LEAST-SQUARES MIGRATION

Migration can be described as the adjoint of a forward
modeling operator applied to observed data (Claerbout,
1992). Migration produces a reflectivity image that ap-
proximates the true reflectivity insofar as the adjoint of
the forward operator approximates the pseudoinverse.
Thus, to obtain a more accurate reflectivity image, we
require the pseudoinverse of the forward operator.

Least-squares migration (Nemeth et al., 1999;
@stmo and Plessix, 2002; Plessix and Mulder, 2004;
Kiihl and Sacchi, 2003; Dai, 2012) can be described as
the pseudoinverse of the forward operator applied to
data. Direct application of the inverse operator requires
the inverse of the Hessian matrix of second derivatives
of an objective function with respect to model param-
eters, which is prohibitively expensive to compute for
most practical-sized problems. Approximations of the
inverse Hessian (Gray, 1997; Chavent and Plessix, 1999;
Shin et al., 2001; Rickett, 2003; Guitton, 2004; Plessix
and Mulder, 2004; Valenciano, 2008; Symes, 2008) are
more feasible, and are often used to improve the qual-
ity of final migration images or to precondition iterative
migration algorithms.

For least-squares migration, we assume a linear re-
lation between data and model parameters. We sepa-
rate the slowness model s(x) into a smooth background
model so(x) and a rough reflectivity model

r(x) = s(x)* — so(x)". 1)

Distance (km)

Depth (km)

Slowness (s’km)

Figure 2. The background slowness model used in Born
modeling and least-squares migration.

Then, assuming that wavefields satisfy the acoustic
constant-density wave equation, we have, under the
Born approximation, two forward modeling equations
(Bleistein et al., 2001):

(5o 2 ~ 9 ol t2) = 1(08x -, (2)

where po(X, t; X,) is the wavefield modeled in the smooth
background for a point source with waveform f(t) lo-
cated at x5, and

2
(so(x)z% - Vz) p1(%, ;%) = —7(%) Po(x, t; Xs),
(3)
where p1(x, t; x,) is the wavefield singly scattered by the
reflectivity r(x). In equation 3, the wavefield p1 (x, t; xs)
is linear in the reflectivity r(x). The solutions of equa-
tions 2 and 3 are, respectively,

PO(X, t; xs) = GO(X, t; xs) * f(t)1 (4)
and
p1(%, t;%s) = — / Golx, t;x') # 1(x) o (', ; x4) dX,
®)

where Go(x,t;xs) is the Green’s function satisfying
equation 2 for f(¢) = 6(t). Equation 5 is the Born mod-
eling formula (Bleistein et al., 2001). Note that we do
not compute po(x, t;Xs) and p1(x, t; xs) from equations
4 and 5, but instead use finite-difference approximations
to solve equations 2 and 3.

Given observed data p(xg,t;xs) recorded at re-
ceiver locations x4, we seek to invert for the reflectivity
r(x). We use a conjugate gradient method to minimize
an objective function

J= %ZZ/[P(xg,t;xs) — B(xg, t;x5))* dt, (6)

where p(xg,t;X,) are the simulated data that depend
on the model parameters. The gradient of the objective
function in equation 6 with p(xg,t;xs) = p1(xXg, t;Xs)
is (Lailly, 1983; Tarantola, 1984; Plessix and Mulder,
2004)

Ve =— Z/ﬁo(x,t;xs)do(x,t; xs) dt, (7
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Figure 3. The (a) true reflectivity model, and reflectivity models computed using (b) least-squares migration for the true
background slowness, (c) least-squares migration for the true background slowness scaled by 95%, and (d) least-squares migration
using the amplitude residual (equation 11) for the true background slowness scaled by 95%.

where ao(x, t; x,) is the adjoint state variable (Plessix,
2006; Symes, 2007) given by

ao(x,t;xs) = ZGo(x, —t;Xg) * 6p(xg, t; Xs),
P’

(8)
where

(9)

are the data residuals. Thus, equation 7 corresponds to
a migration of the residuals.

In migration, it is assumed that the smooth back-
ground model is correct, and hence that traveltimes in
simulated data match those of observed data. If this
assumption is satisfied, then any nonzero data resid-
uals (equation 9) are due to differences in amplitude
between simulated and observed data, and these differ-
ences in turn are due to errors in reflectivity. In this
case, least-squares migration can recover an accurate
reflectivity model. For example, Figure 3b shows the
computed reflectivity model after 20 iterations of least-
squares migration using the true background slowness
model shown in Figure 2. The background slowness
model shown in Figure 2 is obtained by smoothing the
true slowness model (Figure 7a) with a two-sided expo-
nential filter that approximates a Gaussian filter with
a half-width of 100 m. The data used for migration are
computed using 153 shots evenly spaced at the surface
with receivers also at the surface, using a 10 Hz source
function, which we assume is known. The reflectivity
shown in Figure 3b matches well the true reflectivity
shown in Figure 3a, because this is the ideal case in
which the background slowness model used for migra-
tion is the true background slowness.

However, if the background model contains errors,
then nonzero data residuals will result from both ampli-
tude and traveltime errors in simulated data. Then, we

6p(x.‘17 t’ x3) = p(xg» t) xs) - ﬁ(xga t; xs))

should expect the image to be degraded, because least-
squares migration inverts for reflectivity only. Reflectiv-
ity does not directly affect the kinematics of wave propa-
gation, and thus least-squares migration cannot correct
for traveltime errors. This degradation can be seen in
Figure 3c, which shows the reflectivity model after 20
iterations of least-squares migration using an incorrect
background slowness model, specifically, the true back-
ground slowness (Figure 2) scaled by 95%. Compared
to the reflectivity computed for the true background
slowness (Figure 3b), reflectors are misplaced and are
generally less focused and less continuous as a result of
traveltime errors in the simulated data.

The sensitivity of least-squares migration to errors
in the background model has been noted by others (e.g.,
Dai et al., 2011; Yousefzadeh and Bancroft, 2012), and
efforts have been made to reduce this sensitivity. For ex-
ample, some authors use the flatness of common-image
gathers as a regularization constraint in least-squares
migration (Gerard Schuster, personal communication).
Other approaches might involve data- or model-domain
preconditioning to mitigate the effects of large travel-
time errors.

We propose a simple approach, which is to modify
the data residual used when computing the gradient of
the objective function. Our goal in this modification is
to distinguish terms in the residual due to amplitude
errors from terms due to traveltime errors. With this
goal in mind, we expand the observed data p(xg,t;xs)
about time ¢t + 7, where 7 are the traveltime shifts be-
tween simulated and observed data:

P(Xg, 6 Xs) = P(Xg, t+ T Xs) — 7 P(Xg, t+ 75 X5 ) + O(72).

(10)
Then, because we assume in migration that the back-
ground model affecting the kinematics of wave propa-
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Figure 4. The (a) observed data computed using the true
background slowness shown in Figure 2 and true reflectiv-
ity shown in Figure 3a for a source located at distance 4.6
km, (b) simulated data computed using the true background
slowness scaled by 95% and reflectivity shown in Figure 3c,
and (c) simulated data computed using the true background
slowness scaled by 95% and reflectivity shown in Figure 3d.
Note the similarity in amplitude between the observed data
(a) and simulated data (c).

gation is known, i.e., that traveltime shifts 7 are small,
we drop O(7) and higher terms in equation 10, and use

Op(xg,t; Xs) = p(Xg, t;Xs) — B(Xg, t + T3 Xs), (11)

for the residual (instead of equation 9) when computing
the gradient in least-squares migration. Equation 11 is
a poor approximation when the traveltime shifts T be-
tween simulated and observed data are large; however,
note that if the traveltime shifts are estimated correctly,
then any nonzero residuals in equation 11 are caused by
errors in reflectivity. So, it is natural to use equation 11
in least-squares migration since we invert for (only) re-
flectivity.

We refer to equation 11 as the amplitude residual, as
it ideally contains only amplitude errors. Computation
of the amplitude residual requires estimating the travel-

time shifts T between simulated and observed data. For
the examples in this report, we use dynamic warping
(Hale, 2013) to estimate these shifts. Compared to lo-
cal crosscorrelation, dynamic warping is less sensitive to
cycle skipping, and estimated shifts are more accurate,
especially when the shifts vary rapidly in time.

Figure 3d shows the reflectivity model after 20 it-
erations of least-squares migration using the amplitude
residual (equation 11) to compute the gradient. Com-
pared to the conventional least-squares migration im-
age shown in Figure 3c, reflectors are more continu-
ous and better focused. However, compared to the im-
age for the true background slowness (Figure 3b), we
see some discrepancies, most noticeably the misposi-
tioning of reflectors in depth. This mispositioning is
not surprising, because the incorrect background slow-
ness model is never corrected in least-squares migra-
tion. Therefore, least-squares migration with an incor-
rect background model will result in misplaced reflec-
tors, along with other migration artifacts. Nevertheless,
with least-squares migration using the amplitude resid-
ual (Figure 3d), imaged reflectors are more continuous
and better focused than for conventional least-squares
migration (Figure 3c).

Finally, we compare data modeled using the differ-
ent reflectivities shown in Figure 3, for a source located
at distance 4.6 km. Figure 4a shows the observed data
modeled using the true background slowness (Figure 2)
and the true reflectivity (Figure 3a), Figure 4b shows
the simulated data modeled using the true background
slowness scaled by 95% and the reflectivity computed
using least-squares migration (Figure 3c), and Figure 4c
shows the simulated data modeled using the true back-
ground slowness scaled by 95% and the reflectivity com-
puted using least-squares migration using the amplitude
residual (Figure 3d). Compared with Figure 4b, the am-
plitudes in Figure 4c more closely match the amplitudes
of the observed data (Figure 4a). However, large travel-
time shifts remain between the observed data shown in
Figure 4a and the simulated data shown in Figure 4c.

3 FULL WAVEFORM INVERSION

In full waveform inversion (Lailly, 1983; Tarantola,
1984; Pratt et al., 1998), we invert for slowness rather
than reflectivity. For this reason, full waveform inversion
can potentially recover both high- and low-wavenumber
components of the slowness model, and thus can cor-
rect for both amplitude and traveltime errors between
simulated and observed data.

As before, we solve the acoustic constant-density
wave equation

(s(x)2% - Vz) p(x, 6 %s) = f()(x — x,), (12)

to model the wavefield p(x, t; x;). Using the same least-
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Figure 5. The (a) observed data computed using the true
slowness model shown in Figure 7a for a source located at 4.6
km, (b) simulated data computed using the initial slowness
model shown in Figure 7b, (c) estimated traveltime shifts
between simulated and observed data, (d) data residual, and
(e) combined residual.
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Figure 6. The (a) normalized difference between the initial
and true models, (b) gradient for the first iteration of full
waveform inversion, and (c) gradient for the first iteration of
full waveform inversion using the combined residual (equa-
tion 14).

squares objective function (equation 6), the gradient is
given by

VoJ = 2503 / P(x, 6 %)a(x, tixs) b, (13)

where p(x, t;x,) and a(x,t; X,) are defined analogously
to equations 4 and 8 with Go(x,t;xs) replaced by
G(x,t;xs), the Green’s function for equation 12, and
likewise for the receiver-side Green’s function.

Unlike in least-squares migration, in full waveform
inversion we expect both amplitude and traveltime er-
rors between simulated and observed data. For this rea-
son, here we keep the O(r) term in equation 10, and
thus use

‘Sp(xg: t; xs) =~ p(xgv 4 xs)

. . (14)
—p(xg,t + 73 %s) + TP(Xg,t + T; Xs).

for the residual when computing the gradient in full
waveform inversion. We refer to this residual (equa-
tion 14) as the combined residual, since it combines the
amplitude residual (equation 11) with a traveltime-like
residual.

An example of the combined residual is shown in
Figure 5. The source function is a Ricker wavelet with
5 Hz peak frequency. Figure 5a shows the observed
data modeled in the true slowness model shown in Fig-
ure 7a; Figure 5b shows the simulated data modeled
in the initial slowness model shown in Figure 7b; Fig-
ure 5c shows the traveltimes shifts between simulated
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Figure 7. The (a) true slowness, (b) initial slowness, (c) slowness computed with conventional full waveform inversion, and (d)
slowness computed with full waveform inversion using the combined residual (equation 14).

and observed data, estimated using dynamic warping;
Figure 5d shows the data residual (equation 9); and Fig-
ure 5e shows the combined residual (equation 11). Note
the similarity between Figures 5d and 5e, except for the
early arrivals, which have larger amplitude in Figure 5e
because of the large traveltime shifts between the first
arrivals in the simulated and observed data. Despite this
similarity, however, gradients computed using these two
residuals show significant differences.

Gradients computed with 77 shots evenly spaced
at the surface and with receivers also at the surface are
shown in Figures 6b and 6¢. Figure 6a shows the normal-
ized difference between the initial slowness model shown
in Figure 7b and the true slowness model shown in Fig-
ure 7a, and thus indicates the ideal gradient direction.
Figure 6b shows the gradient for the first iteration of
full waveform inversion computed using the data resid-
ual (Figure 5d), while Figure 6c shows the gradient for
the first iteration computed using the combined resid-
ual (Figure 5e). Comparing Figures 6a and 6b, notice
in some areas the difference in sign, which may result
in slow convergence for full waveform inversion. Com-
paring Figures 6b and 6c¢, notice that the gradient com-
puted using the combined residual contains more low-
wavenumber information. When the initial model is far
from the true model, as is the case for this example, the
traveltime-like term in the combined residual will tend
to dominate due to large traveltime shifts between sim-
ulated and observed data. As a result, the gradient will
compensate mostly for traveltime errors, hence the low-
wavenumber content in the gradient in Figure 6¢c. Once
the kinematics are corrected and the traveltime shifts
decrease, the amplitude residual will become more sig-
nificant, and the gradient will begin to correct for ampli-
tude errors caused by the high-wavenumber component
of the model. In this way, the inversion tends to first

update the low-wavenumber component of the model
before updating the high-wavenumber component.
Figure 7 shows the results of the inversion. Fig-
ure 7a shows the true slowness model, which we seek
to recover from the initial slowness shown in Figure 7b.
Figure 7c shows the computed slowness model after 20
iterations of full waveform inversion, while Figure 7d
shows the slowness model after 20 iterations of full
waveform inversion using the combined residual (equa-
tion 14). Compared to Figure 7c, Figure 7d is closer
to the true slowness, especially in shallow areas of the
model. The improvement in Figure 7d is most noticeable
in shallow areas because it is difficult to use reflection
energy to update the low-wavenumber component of the
model. To more effectively use reflection energy, one
could alternately update the high- and low-wavenumber
components of the model (Xu, 2012; Ma, 2012).

4 CONCLUSION

Using an approximation of the data residual, we are
able to separate traveltime errors, due to an incorrect
background model, from amplitude errors, due to an in-
correct reflectivity model. We have demonstrated that
the use of this approximation in computing the gradient
of the objective function yields more coherent and bet-
ter focused images in least-squares migration, and more
accurate slowness models in full waveform inversion.
The result of using the amplitude residual in least-
squares migration is a more focused reflectivity model
(migration image), and forward modeling using this re-
flectivity model produces simulated data that match
well the amplitudes of observed data, but not the trav-
eltimes. These remaining traveltime errors indicate that
the use of the amplitude residual in least-squares migra-
tion does not minimize the difference between simulated
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and observed data. However, if our goal is to obtain a
focused image, then perhaps minimizing that data dif-
ference is not the best approach.

In the case of full waveform inversion, using the
combined residual results in a more accurate slowness
model. This might suggest that, compared to the data
residual, the combined residual minimizes an objective
function that is more quadratic and contains fewer lo-
cal minima. Also worth noting is that if there are no
traveltime errors between simulated and observed data,
then the combined residual equals the data residual.
Thus, full waveform inversion using the combined resid-
ual could potentially achieve the same resolution as con-
ventional full waveform inversion, in addition to being
less susceptible to cycle skipping and local minima.

One remaining issue is that, because we approxi-
mated the data residual without considering the objec-
tive function, it is unclear what objective function is
being minimized with either the amplitude residual or
the combined residual. For small traveltime shifts, our
approximation of the data residual is more valid, and
the objective function could simply be the least-squares
function. But for the examples shown, the traveltime
shifts were relatively large. Nevertheless, the use of an
approximation of the data residual improved the models
computed using least-squares migration and full wave-
form inversion.
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ABSTRACT

Imaging the change in physical parameters in the subsurface requires an estimate of the
long wavelength component of the same parameters in order to reconstruct the kine-
matics of the waves propagating in the subsurface. The model is unknown and must be
estimated from the same data. One can try to reconstruct the method by matching the
recorded data with modeled waveforms extrapolated in a trial model of the medium.
Alternatively, assuming a trial model, one can obtain a set of images of the reflectors
from a number of seismic experiments and match the locations of the imaged inter-
faces. Apparent displacements between migrated images contain information about
the velocity model and can be used for velocity analysis. A number of methods are
available to estimate the displacement between images; in this paper we compare pe-
nalized local correlations and image warping. We show that the image warping vector
field is a more reliable tool for estimating displacements between migrated images and
leads to a more robust velocity analysis procedure. Using image warping, we define
an optimization problem for migration velocity analysis. We derive the expressions for
the objective function using the adjoint-method and we also propose an alternative,
simpler solution for the computation of the model update based on the estimated per-
turbation of the imaged reflectivity and demigration. The second approach has straight-
forward implementation and reduced computational cost compared to the adjoint-state
method calculations. We also discuss the weakness of migration velocity analysis in
the migrated-shot domain in the case of highly refractive media, when the Born mod-
eling operator is far from being unitary and thus its adjoint operator (the migration

operator) poorly approximates the inverse.

1 INTRODUCTION

Accurate propagation velocities in the subsurface are crucial
in seismic imaging and exploration geophysics. A kinemati-
cally accurate velocity model allows us to correctly reconstruct
Green functions and thus precisely image the subsurface dis-
continuities responsible for the data acquired at the surface or
in boreholes. An accurate image of the geologic structure is
key for planning drilling operations and for reducing hazards
associated with drilling through faults. Seismic propagation
velocities are sensitive to the stress conditions in the subsur-
face and carry information about the orientation of the prin-
cipal stresses and overpressures (Carcione, 2007), which are
both important for mitigating hazards during drilling opera-
tions and reducing risk in production.

In recent years, a main distinction has been drawn be-
tween methods that try to recover the velocity model by match-
ing the recorded data with simulated synthetic wavefields
modeled in a trial velocity model (Tarantola, 1984; Pratt, 1999;
Sirgue and Pratt, 2004), and methods that focus on optimiz-
ing properties of the migrated images (Fowler, 1985; Faye and
Jeannot, 1986; Al-Yahya, 1989; Chavent and Jacewitz, 1995;
Biondi and Sava, 1999; Sava et al., 2005; Albertin et al., 2006).
Full-waveform inversion is the name used to indicate tech-

niques that operate in the data domain and focus on the min-
imization of some functional of the data residual. Migration
velocity analysis, or image-domain tomography, identifies all
methods that reconstruct the velocity model by analyzing the
similarity between migrated images.

Full-waveform inversion is simple to implement, but it
is very sensitive to every inconsistency between the recorded
and modeled data. It requires an accurate parametrization of
the physics of wave propagation, knowledge of the source sig-
nature, and a kinematically reliable starting model in order
to converge to the global minimum of the objective function
(Santosa and Symes, 1989; Kelly et al., 2010). Migration ve-
locity analysis is not as sensitive to errors in the source signa-
ture and it is more robust against errors in the initial velocity
model; it is characterized by an objective function which is
convex over a wide range of model perturbations and thus in-
trinsically more suitable for gradient-based optimization pro-
cedures. Nonetheless, as it ignores the amplitude information
in the data for inversion purposes, migration velocity analysis
cannot achieve the high-resolution results that full-waveform
inversion promises in the ideal scenario. Migration velocity
analysis is conventionally used to produce a kinematically ac-
curate model to initialize full-waveform inversion for refining
the velocity with high-resolution details.
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Image-domain tomography has advantages and disadvan-
tages compared to the data-domain full-waveform inversion.
In general, the image domain is more robust against errors in
the velocity model. Full-waveform inversion needs a kinemat-
ically accurate initial guess of the model parameters in order
to converge to geologically plausible models. Image-domain
tomography recovers the long wavelength component of the
model, which is responsible for the wave kinematics. Since it
aims to match the observed data with simulated waveforms,
full-waveform inversion is rather sensitive to the source sig-
nature; on the contrary, the image domain is insensitive to the
source wavelet. On the other hand, the data-domain allows us
to achieve higher resolution in the inversion result. Moreover,
in extremely refractive media, single-shot migrated images can
be contaminated by kinematic artifacts due to the fact that mi-
gration is just the adjoint, and not an inverse, of a modeling
operator (Stolk and Symes, 2004). In this work, we are inter-
ested in the reconstruction of the long wavelength component
of the model parameters and thus we focus on image-domain
tomography.

This paper deals with the estimation of the velocity model
using image warping. Perrone et al. (2012) show how the ap-
parent displacement field estimated between two images can
be used to measure velocity errors with a minimum number
of migrated images. Perrone et al. (2012) also derive an ap-
proximation for the image perturbation based on the estimated
displacement field and design a linearized wave-equation mi-
gration velocity analysis algorithm based on the method de-
veloped by Sava and Biondi (2004). The method presented
in Perrone et al. (2012) relies on several approximations and
linearizations: the wave-equation migration velocity analysis
operator is obtained from the phase-shift continuation oper-
ator and several linearizations with respect to the wavefield
and wavenumber (Born approximation). The entire inversion
procedure stems from the particular form of the extrapola-
tion operator that allows one to derive a linearized operator
which links perturbation in the image space to perturbation in
the model (slowness) parameters. Because of the strong as-
sumption of a phase-shift continuation wave-extrapolator, this
method cannot be applied to images obtained using different
engines (for example, with reverse-time migration). Moreover,
events that are not correctly handled by the extrapolation op-
erator (for example, diving waves and overturning reflections)
become noise for the inversion scheme.

In order to generalize the wave-equation migration veloc-
ity analysis method for nonlinear inversion, Perrone and Sava
(2012) propose an image-domain wavefield tomography ap-
proach where the residual is computed from estimates of lo-
cal shifts between migrated images. The shifts are obtained
from penalized local correlations of images from nearby ex-
periments. The gradient of the objective function is computed
using the adjoint-state method and thus a local gradient-based
nonlinear inversion scheme is implemented. The method pre-
sented in Perrone and Sava (2012) involves the solution of the
full two-way wave equation and thus integrates reverse-time
migration into the inversion procedure. The method shows
weak points when reflectors are located near the acquisition

surface (where the distance between the shot positions be-
comes an important illumination issue) and when several re-
flectors fall inside the same local window, thus biasing the
computation of the local correlations through the crosstalk be-
tween the closely spaced events. In contrast, the displacement
vector field appears to be a more stable and reliable measure
of image variation: the displacement vectors can be computed
using the algorithm developed by Hale (2007b) as an iterative
procedure searching for the maximum of local correlations,
thus leading to a smooth estimate of the displacement vectors.

In this paper, we extend the linearized wave-equation mi-
gration velocity analysis algorithm of Perrone et al. (2012) to
incorporate a two-way extrapolation engine and to directly ex-
ploit the displacement field. The displacement vector field is
used to estimate an image perturbation, then through single
scattering Born modeling, the wavefield perturbation due to
the image perturbation is computed. The correlation between
the scattered and background wavefields represents the gradi-
ent of the objective function, which is the kernel for the model
update. We compare the objective function based on the image
perturbation with the objective function based on local image
correlations (Perrone and Sava, 2012) and show that the dis-
placement field leads to a robust objective function and model
update. For comparison, we also derive the equations for the
computation of the gradient of the objective function using the
adjoint-state method and show that the greater complexity and
computational cost does not produce a higher quality gradient.

2 THEORY

Perrone et al. (2012) introduce a measure of velocity error for
migration velocity analysis exploiting the consistency between
the orientation of the structural features in the image and the
apparent displacement between two migrated images. The er-
ror measure J is the energy of the projection of the displace-
ment vector u (x) onto the dip vector v (x)

T (m) = 3 v -ul?, )

where m (x) represents the model parameter (slowness, slow-
ness squared, or velocity) as a function of position x. The dip
vector v (x) is defined as the vector normal to the structure at
position x, and the displacement vector u (x) is also a function
of the position vector x. The dip vector v can be computed us-
ing the algorithm presented in Hale (2007a) and based on gra-
dient square tensors (van Vliet and Verbeek, 1995). Displace-
ment vectors u are obtained by iterative search of the maxi-
mum of local correlations and warping of the input images;
the method, first applied to measuring the apparent shift be-
tween migrated images in 4D seismic processing, is described
in detail in Hale (2007b).

Both the dip and the displacement vectors depend nonlin-
early on the model parameters. The dip vector depends non-
linearly on the migrated image, since we need to compute the
eigenvector associated with the largest eigenvalue of the gra-
dient square tensor in order to obtain an estimate of the dip
vector (van Vliet and Verbeek, 1995). The displacement vector



field is obtained by picking the correlation lag that maximizes
the local correlation panels:

u(x) = arg;nax c(x,A), 2)

where ¢ (x,A) = [, Ri (€ = 3) Riv1 (€ + 3) d€ is the
local correlation of two images R; = R;(x) and Riy1 =
Ri41(x), and w (x) is are seamless overlapping windows.
The arg max operator is not differentiable and thus we can-
not compute the Frechét derivative with respect to the model
parameters directly.

Perrone et al. (2012) show that, for optimization pur-
poses, it is possible to substitute the dip vector field in equa-
tion 1 with the gradient of the migrated image, the latter being
at every point parallel to the dip field and oriented toward the
direction of maximum increase in the image amplitude. The
objective function then becomes

1
J (m) = S IVR-ul. )

Substituting the dip field with the image gradient has the ad-
vantage of introducing in equation 3 quantities (the gradient
of the migrated images) that we can easily differentiate with
respect to the model parameters using standard perturbation
theory techniques and thus enable a gradient-based optimiza-
tion algorithm.

In this paper, we discuss two possible approaches for
minimizing equation 3. The first solution is to use the adjoint-
state method (Lions, 1972; Fichtner et al., 2006) and can be
considered the brute-force approach. The second solution is
based on demigration of the residual VR - u, which is in-
terpreted as the mismatch between the updates of the small
wavelengths of the model parameters obtained from adjacent
shots. This second approach is related to the work of Xu et al.
(2012), who follow a two-step, migration/demigration proce-
dure to better condition FWI for reflection data. Another work
on a similar path is the differential waveform inversion pre-
sented by Chauris and Plessix (2012) again in the framework
of FWI. Here, we set up the problem in the image domain, i.e.
in the framework of migration velocity analysis. The demigra-
tion approach reduces the computational cost and complexity
with respect to the adjoint-state calculations and greatly sim-
plifies the implementation and the physical interpretation of
the method. Of course, since we are approximating the image
difference with our image warping procedure and we are not
constructing the exact gradient for the objective function in
equation 3, we are introducing a systematic error in the proce-
dure. The exact quantification of this error requires the com-
parison with the exact gradient obtained via the adjoint-state
method.
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2.1 Direct adjoint-state calculations for vector
displacements

Let us consider equation 3; we can write the gradient of the
objective function as follows:

il(v}g.uf

am?2
OVR du

va =

C))

in this paper m (x) represents slowness squared. The gradi-
ent in equation 4 consists of two terms. The term ?;MR -u
involves a linear function of the image; the term VR - a%“ﬁ
involves a nonlinear function of the image, because the ap-
parent displacement is estimated as the maximum argument
of local image correlations (equation 2). Although lengthy,
the adjoint-state calculations for the first part of the gradient
are straightforward because of the linearity between V R and
R; more complicated is the second term because the nonlin-
ear and non differentiable arg max function does not allow
an immediate application of the adjoint state method. Perrone
and Sava (2012) avoid the complications of computing the dif-
ferential of arg max by defining a measure of shifts through
penalized local image correlations. The correlation operator is
(bi)linear in the input images and allows one to derive directly
the adjoint-state equation to compute the gradient with respect
to the model parameters.

Using standard perturbation theory we can write

T +87 %/(V(R+6R)-(u+6u))2dx

_ % / ((VR+ V5R) - (u+6u)dx. (5

Expanding the products and identifying the terms that are lin-
ear in the perturbations in equation 5, we obtain

6J — 6JV5R + 636\1
/ (VR - u) (VOR - u) dx

il

+ / (VR-u) (VR du) dx. ©)

The objective function perturbation in equation 6 consists of
two terms: J ¥ ° % involves the perturbation of the image gradi-
ent, §.7°" depends on the perturbation of the displacement. In
the context of velocity analysis, the perturbations § R and du
depend on the the change in model parameters m. To derive
an expression for the gradient of the objective function with
respect to the model parameters, we need to relate the objec-
tive function perturbation to wavefield perturbations. Then, us-
ing standard adjoint-techniques, we can obtain the gradient of
the objective function without actually computing the Frechét
derivatives of the wavefield with respect to the model param-
eters (Fichtner et al., 2006). In the following, we analyze both
terms 8.7 V47 and 6 7" and express them directly in terms of
wavefield perturbations.

Let us start with 8.7 V°%, Since the V operator is linear
and the image R is a linear functional of the source and re-




38 E Perrone & P. Sava

ceiver wavefields, we can perturb the image with respect to the
wavefields first and then apply the V operator. The migrated
image R is the zero-lag correlation in time of the source and
receiver wavefields u; (x, t) and u, (x, t) (Claerbout, 1985):

R(x) = / s (%, £) wy (x, £) dt. »

By perturbing the source and receiver wavefields in equation 7
and collecting the terms that depend linearly on the perturba-
tion, we obtain

0R = /(uséur + du,ur) dt, 8)

where we drop the dependence on x and ¢ to simplify the no-
tation. The wavefield perturbations éu and du, in equation 8
can be easily computed using the demigration approach pre-
sented in (Xu et al., 2012) or using standard adjoint-state tech-
niques. From the image perturbation R is straightforward to
compute the gradient by applying the operator V.

To link the second term in equation 6 to the perturbation
of the source and receiver wavefields, we use the method of
connective functions developed by Luo and Schuster (1991).
Let us formally write the gradient of 7% with respect to the
model parameters:

VnI™ = (VR - u) (VR- a—“) . ©

om

Notice that since we are analyzing only the changes of the
apparent displacement field due to perturbations of the veloc-
ity model, we do not include in equation 9 the gradient of VR
with respect to the model m. We want to explicitly link the dis-
placement perturbation Ju to the wavefield perturbation, then
standard adjoint-state calculations allow us to avoid the com-
putation of the Frechét derivatives of the wavefields and thus
compute the gradient of the objective function in equation 3
efficiently.

By definition, the maximum of the local correlation is an
extremum and thus the gradient with respect to the correlation
lags must vanish for A = u

Va clacn =/( )Ri(&)VRH.l (6+u)de=0. (10)

Equation 10 implicitly connects the displacement vectors u
with the model parameter m via the migrated images and the
wave-equation. Thus, we define the connective function

F(x,u)=/()&(e>vm+1(e+u)ds=o an

Using equation 11 and following a derivation analogous to Luo

and Schuster (1991), we rewrite the gradient of the displace-

ment vectors with respect to the model parameters in equa-
tion 4 using the connective function F (x, u)

-1

su oF oF

m = . | == - 12

VT (VR-u)VR (6u) om (12)

The derivative of the connective function with respect to the

model parameters can be computed using adjoint-state tech-

niques; the mathematical form of F' (x, u) involves only the

migrated image and linear functions of the images, and thus,

in principle, the derivative 2£ can be calculated using the

adjoint-state method. The derivative % is the multidimen-
sional generalization of the denominator in equation (7a) in

Luo and Schuster (1991):
= [R©VVR €+ wa  ay

where, in 2D,

8%Ri11 (§+w) 8% Riq1(€+u)
. — 2 828
VVR41(§+W) = 02027 chw)  o2Ropiietuw)
dx0z 922
(19)

is a 2 X 2 tensor of second derivatives. Notice that since
(‘Z—ﬁ ~!is a 2 x 2 matrix-valued function defined at every
image point x, and g—z is a 2 x 1 vector-valued function at
every point x, their product is a 2 x 1 vector-valued function,
and then the dot product with the spatial image gradient VR
in equation 9 makes mathematical sense. The generalization to
3D is straightforward. This expression is similar to equations
(6) and (7a) in (Luo and Schuster, 1991); the vectorial nature
of the displacement field makes equation 12 tensorial.

The analysis of the differential of objective function in
equation 3 with respect to the model parameters shows the
mathematical complexity of implementing this solution for ve-
locity analysis. Especially the multidimensional generalization
of the procedure developed in Luo and Schuster (1991) poses
a number of implementation challenges: in the time domain,
we have one-dimensional shifts and equation (7a) in Luo and
Schuster (1991) involves scalar functions; in the image do-
main, the shifts are vectors and we have to deal with vector
and matrix-valued functions, which considerably increases the
complexity of the gradient computation. Moreover, the data
correlation used in Luo and Schuster (1991) is global over the
entire seismic trace, intuitively that accounts for an average
shift between the observed and simulated data. In the image
domain, the global correlation of the migrated images has little
physical sense (if any at all). The local correlation implemen-
tation increases the dimensionality of the problem and then the
cost, and picking of specific location in the image is necessary
for an efficient implementation.

In the next section, we show how to greatly simplify the
computation of the update of the velocity model using the con-
cept of image perturbation and the link between the image dif-
ference and the dot product VR - u, as suggested in Perrone
et al. (2012).

2.2 Adjoint-state method, demigration, and linearized
inversion

The dot product between the gradient of the migrated im-
age and the apparent displacement field between two images
(equation 3) is a linear approximation of the image difference
with respect to the displacement vector (Perrone et al., 2012).
Compared to the image difference, equation 3 is less affected
by amplitude differences due to the change of the shot location



and is less prone to cycle skipping problems because warping
maps every event in one image to the corresponding event in
the second image. The relation between image difference and
the dot product of image gradient and displacement field can
be used to set up a wavefield tomography procedure based on
the image difference objective function, but more robust.

The adjoint-state calculations for the image difference
objective function are well-known in the geophysics litera-
ture (Plessix, 2006). Although introduced as a regularization
term for full-waveform inversion, the image-difference objec-
tive function represents a sensible functional for migration ve-
locity analysis. Intuitively, all images from separate seismic
experiments must be maximally similar to each-other when
the velocity model is correct, and thus the energy of the first
derivative along the shot dimension must be minimum. The
major weak points of this approach are related to sensitivity
to the acquisition geometry and cycle skipping in the image
domain, as discussed in Perrone et al. (2012). Also, the kine-
matic artifacts due to the fact that the migration operator is
the adjoint and not the inverse of the Born modeling opera-
tor limit any technique in the shot-image domain (Stolk and
Symes, 2004).

The adjoint sources gs; (x,t) and gr; (x,t) for the
image-difference objective function are straightforward to
compute. They depend on the second derivative of the mi-
grated images along the shot axis of the prestack image

cube and the wavefields computed in the background model
(Plessix, 2006).

gs; = (Ri——l —2R; + Ri+1)u"‘i (15)
gr; = {(Rici1—2R:i+ Rit1)us;. (16)

The functions in equation 15 are the force terms for the wave-
field extrapolations

L (m) Qs;i = Gs; an
Lm)ar; = gri (18

where as; (x,t) and a,; (x, t) are the adjoint wavefields. The
adjoint sources generate the scattered fields due to the re-
flectivity perturbation represented by (Ri—1 — 2R; + Rit1).
These wavefields can also be interpreted as the demigrated re-
flectivity perturbation (R;—1 — 2R; + Ri41). The gradient of
the objective function is then the zero-lag time correlation of
the background and adjoint wavefields (Fichtner et al., 2006;
Plessix, 2006).

By inspecting equation 15 and 16, we can immediately
see the practical issues of implementing waveform tomogra-
phy by minimizing the energy of the image difference. Am-
plitudes in the prestack images depend on the relative position
between the shots, thus even when the velocity model is cor-
rect, uneven illumination of the subsurface may lead to spu-
rious adjoint sources and gradients of the objective function.
Even more important than illumination, cycle skipping may
arise when the velocity model is severely inaccurate, because
different images map the same structures at inconsistent posi-
tions in the subsurface.

We propose to replace the term (R;—1 — 2R; + Riy1)
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in the expression of the adjoint sources with an approxima-
tion derived from image warping. The apparent displacement
field absorbs the amplitude differences due to the change in
the shot position and, at the same time, removes the cycle skip-
ping problem by warping one image into its neighbor. Let us
indicate with u;_; and u; the apparent displacement field that
warps R;—1 into R; and R; into Ry, respectively. We can
construct approximations of the image differences by comput-
ing the dot product of the image gradient with the displace-
ment fields. In order to guarantee symmetry with respect to
the ith shot, we use R; to construct the image perturbations

AR; R; — Ri-1 ® VR;u;1 19
AR; = Riy1— Ri=VRu,. (20)

Using the expressions in equations 19-20, we can approximate
the second derivative along the shot axis as follows:

Ri_1 —2R;+ Riy1 = AR: — AR, 2D

which is robust against cycle skipping (only one image, R,
enters the expression for the image perturbation), and it is less
sensitive to illumination patterns because the amplitude effects
are absorbed in the computation of the displacement fields.

3 NUMERICAL EXAMPLES

We test image warping wavefield tomography for different
depths of the reflecting interface and compare it with the di-
rect image difference tomography approach (Plessix, 2006)
and local image correlation wavefield tomography (Perrone
and Sava, 2012). We show that image warping wavefield to-
mography is more robust with respect to the depth of the re-
flector (i.e. the ratio between the source receiver offset and
the depth of the reflector) and lead to more stable gradients
for model update. We also show how the method fails to pro-
duce sensible gradients in highly refractive media, despite the
fact that the objective function is able to identify the correct
model. In this later case, the displacement estimation is stable
but the artifacts in the migrated image produce noisy image
gradients and thus lead to spurious scattered wavefields and
artifacts in the gradient of the objective function. Finally, we
test our method on the Marmousi model.

3.1 Horizontal reflector

Let us consider a flat horizontal reflector in a homogeneous
velocity model. In the first case, the interface is at 2 km depth
(Figure 1) and it is due to a density contrast. In order to mea-
sure errors in the velocity model, we analyze two nearby shots:
the shot position of the first shot is * = 3.8 km and the dis-
tance between the shots is 200 m. We apply different homoge-
neous perturbations to the velocity model, we migrate the data
and construct the image perturbations for the different mod-
els from the migrated images Figure 2. Figures 2(a), 2(c), and
2(e) show the migrated imaged for high, correct, and low ve-
locities. The image perturbations for the different models com-
puted as the inner product between the image gradient and the
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Figure 1. Horizontal reflector model. The interface is due to a density contrast in a constant velocity medium. The depth of the interface is large

compared to the distance between the shot points.
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Figure 2. Migrated images using (a) high, (c) correct, and (e) low velocities. The perturbation with respect to the correct model is constant and
homogeneous over the entire model. Image perturbations for (b) high , (d) correct, and (f) low velocities. The perturbation with respect to the correct

model is constant and homogeneous over the entire model.

displacement vector field obtained by warping one image into
the other are shown in Figures 2(b), 2(d), and2(f). Observe that
the image perturbation is coherent when the velocity model
is incorrect (Figures 2(b) and 2(f)), whereas it is practically
weak random noise when the velocity model is correct (Fig-
ure 2(d)), except at the edges of the subsurface aperture. We
obtain the sensitivity kernels and the objective function in Fig-
ures 3(a), 3(b), and 3(c) by correlating the background wave-
fields (used for migration) with the scattered wavefields ex-
cited by the interaction of the background wavefields with the
reflectivity perturbation computed from equation 21. The gra-
dient is smooth over the entire extent of the reflector when the
velocity is incorrect and has negligible value when the model

is correct. The objective function in Figure 12 is convex over
the entire perturbation range and the global minimum clearly
points at the correct model.

By comparison, Figures 4(a), 4(b), and 4(c) shows the
gradients obtained for the same perturbations using the image-
difference objective function. Notice the strong side lobes at
the edges of the reflector, where we observe cycle skipping be-
cause the overlap between the images is not enough. The gra-
dients are noisier than the ones obtained using image-warping,
and also the objective function in Figure 4(d) shows a weak
bias when the model is correct. Nonetheless, the gradients ob-
tained using image warping in this example are comparable
with the results reported in Perrone and Sava (2012) for the
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Figure 3. Sensitivity kernels obtained using image warping wavefield tomography for (a) high, (b) correct, and (c) low velocities. (d) Objective
function for image warping wavefield tomography evaluated for a set of model perturbations and the deep interface in Figure 9(b). The minimum

of the objective function indicates the correct model.
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Figure 4. Sensitivity kernels obtained using image difference wavefield tomography for (a) high, (b) correct, and (c) low velocities. (d) Objective
function for image difference wavefield tomography evaluated for a set of model perturbations and the deep interface in Figure 9(b).
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Figure 5. Horizontal reflector model. The interface is due to a density contrast in a constant velocity medium. The reflector is at half the depth of

the model in Figure 1.
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Figure 6. Migrated images of the shallow reflector using (a) high, (c) correct, and (e) low velocities. Image perturbations obtained using image
warping for the shallow reflector and (b) high, (d) correct, and (f) low velocities. The perturbation with respect to the correct model is constant and
homogeneous over the entire model.
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Figure 7. Sensitivity kernels obtained using image warping wavefield tomography for (a) high, (b) correct, and (c) low velocities. (d) Objective
function for image warping wavefield tomography evaluated for a set of model perturbations and a shallow interface. As in the case of a deep
reflector, the minimum of the objective function indicates the correct model.



z (km)

(a)

z (km)

©)

Image warping waveform tomography 43

x (km)
4

3

E]

z (km)

(b)

Objective function
[
o~

(-]

2 0 2 4 & 8 10
Slowness anomaly (%)

(@

-0 -8 -6 -4

Figure 8. Sensitivity kernels obtained using local image correlations wavefield tomography for (a) high, (b) correct, and (c) low velocities. Notice
that the kernels fail to recover the sign of the perturbation. (d) Objective function for local image correlation wavefield tomography evaluated for a
set of model perturbations and a shallow interface in Figure 5. The objective function does not indicate correctly the correct model.

objective function employing local image correlations. Thus,
the image warping and the penalized local image correlation
are expected to perform similarly when the ratio between the
depth of the reflector and the shot-point separation is large.

We also consider a shallower interface and compare the
single scattering approach with the penalized local correla-
tions. We consider the model in Figure 5 where the density
interface is at 1 km depth. The model perturbations applied to
the velocity field are the same used as in the previous case.
The position of the first shot is again at z = 3.8 km and
the shot separation is 200 m. The migrated images obtained
using different perturbed velocity models are shown in Fig-
ures 6(a), 6(c), and 6(¢). The lateral extent of the reflector that
can now be imaged is smaller than in the previous case because
of the shorter distance between acquisition surface and reflec-
tor. Figures 6(b), 6(d), and 6(f) shows the dot product of the
migrated image with the estimated warping field in this sec-
ond case. Again, the image perturbations are coherent when
the migration model is incorrect (Figures 6(b) and 6(f)) and
incoherent for the correct model (Figure 6(d)). Notice that the
edges of the subsurface aperture impacts more severely the im-
age perturbation when the reflector is shallow. The sensitivity
kernels computed for the shallow reflector (Figures 7(a), 7(b),
and 7(c)) show a good behavior, which is comparable with the
case of the deep reflector. In Figure 7(d), the objective function
is slightly less sensitive to positive perturbations probably be-
cause of both the vicinity of the interface to the acquisition sur-
face and the smaller extent of the imaged reflector. Nonethe-
less, it maintains the convex shape seen in the preceding case
and indicates the correct model (global minimum).

We also use the penalized local correlation approach pre-
sented in Perrone and Sava (2012) for this second case. The
size of the local correlation window is 31 samples in both ver-
tical and horizontal direction, which means the local window

capture the overlapping part of the migrated images (the shot
distance is 10 samples at the surface and the velocity model is
constant). The computed gradients are shown in Figures 8(a),
8(b), and 8(c). Observe that we are not able to recover the
correct sign of the perturbation. The separation between the
migrated image is such that there is a poor overlap between
the images, the values of the computed local correlation co-
efficients drop, and the estimated shift is strongly biased. The
behavior of the objective function (Figure 8(d)) shows that for
the case of shallow reflectors the penalized local correlations
fail to measure the error in the velocity model.

3.2 Highly refractive model and migration failure

When the model is highly refractive, kinematic artifacts con-
taminate the single-experiment migrated images, even though
the exact model is used to reconstruct the source and receiver
wavefields (Stolk and Symes, 2004). This fact is due to the
very nature of the migration operator, that is the adjoint of the
Born modeling operator and not its inverse.

Figure 9 shows the velocity model and density model we
use to study the behavior of image warping wavefield tomog-
raphy in highly refractive media. The model contains a strong
low velocity Gaussian anomaly, whose minimum value is 40%
lower than the background 2 km/s velocity. The reflector is
simulated by a density contrast. The data are generated using
a 15 Hz Ricker wavelet and a staggered-grid finite-difference
algorithm with absorbing boundary conditions on every side.
The horizontal sampling is 20 m and the vertical sampling is
10 m.

The low velocity area in the model creates triplications of
the wavefields. The shot-gather in Figure 10 shows the com-
plexity of the wavefield recorded at the surface. The source is
located at z = 3 km on the surface and receivers are at ev-
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Figure 9. (a) Velocity model used to study the behavior of the inversion in highly refracting media. The low velocity anomaly is Gaussian-shaped
and at its minimal value it is 40% smaller than the background 2 km/s background. (b) Density model used to generate reflections.

ery grid point at the surface. Figure 11(a) show the result of
migrating the shot-gather in Figure 10 with the exact model.
Notice that the image is contaminated at about z = 5 km with
the kinematic artifacts described in Stolk and Symes (2004).
These artifacts do not satisfy the relationship between dip field
and displacement vector assumed in our inversion procedure.
Moreover, since the migration operator is simply the adjoint,
and not the inverse, of the Born modeling operator, the ampli-
tudes of the image are corrupted as well. All these distortions
affect the calculation of the sensitivity kernel. In Figure 11(b),
we show the sensitivity kernel computed for the exact velocity
model. Instead of having negligible amplitude, the sensitivity
kernel is strong and totally spurious. A Possible solution to
obtain kinematically correct images that are suitable for im-

age warping is least-square migration (Nemeth et al., 1999)
but would make the inversion procedure more computation-
ally expensive.

Figure 12 shows the objective function obtained by per-
turbing the correct model with a Gaussian anomaly that pro-
gressively cancels out the low velocity zone. Interestingly, al-
though the sensitivity kernel is inaccurate, the objective func-
tion is still able to measure the distance from the correct
model. This indicates that although the velocity error measure
is efficient, the linearizations used for computing the sensitiv-
ity kernels and model update can introduce strong errors.
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Figure 10. Shot-gather for a source at z = 3 km. Notice the complicated response of the medium due to the triplications of the wavefield passing

through the low velocity anomaly.

3.3 Marmousi model

We also test our approach on the Marmousi model (Fig-
ure 13(a)). We model 100 shots separated by 80 m. The spa-
tial sampling is 8 m in both the = and z direction. Receivers
are located at every grid point on the surface. The data are
modeled without free-surface multiples but internal multiples
are present in the data. We assume that free-surface multi-
ples can be effectively removed from the data using SRME
(Verschuur, 1991). The Marmousi model represents a complex
land-like scenario and it is characterized by multipathing and
strong refractions. This complexity is exemplified by the ray-

paths calculated in a smoothed version of the correct model,-

Figure 13(b), for a shot at z = 4.8 km.

The initial model is obtained by filtering the exact Mar-
mousi model with a triangular smoother with radius 120 sam-
ples vertically and 200 samples horizontally. The smooth
model is then biased with a —0.4 km/s homogenous pertur-
bation (Figure 14(a)). The migrated image obtained using this
model is shown in Figure 14(b). The central part of the image
is non interpretable and all reflectors are mispositioned and de-
focused; the deep and strong reflectors are shifted about 500 m
upward because of the bias toward low velocities in the initial
velocity model. The noise in the image is due to the strong
errors in the migration model and the inconsistent imaging of
the reflectors from different shots. Also, the internal multiples
in the data are not imaged correctly since migration is based
on single scattering (Born) assumptions.

The inversion reaches a floor after about 20 iterations and
returns the velocity model in Figure 15(a) and the associated
migrated image in Figure 15(b). In the final image, the re-

flectors are shifted toward their correct location. We improve
the truncation of the sedimentary beds against the fault walls
around z = 1 km and z = 3.5 km; the migration frowns in
the original image, due to the discontinuities of the sediments
at the fault locations, are corrected by the inversion procedure.
Notice that the edges of the image are undercorrected with re-
spect to the better illuminated part of the model. Illumination
compensation using the energy of the source, receiver, or both
wavefields can attenuate this problem. Because the image per-
turbation is related to the actual amplitude of the reflectors,
the model update is naturally biased toward stronger, more
coherent, and better illuminated interfaces. Illumination com-
pensation can also help balancing the strength of the update
between the sides of model, which are characterized by sim-
ple sedimentary structures, and the central part of the model,
where the faults and discontinuities of the reflectors make the
wavefields complicated and the wavefront less coherent.

The importance of regularization is described by Fig-
ure 15(c), which represent the image obtained after smooth-
ing the model in Figure 15(a) using a triangular filter with ra-
dius 100 samples vertically and 400 samples horizontally. The
smoothing homogenize the velocity models by spreading the
update over a larger subsurface aperture, thus it effectively re-
duces the effects of uneven illumination. If we compare this
image with Figure 13(a), we can observe that the position
of the reflectors is quite accurate. The faulted portion of the
model is not optimally imaged yet, but the kinematics of the
wavefield has been clearly improved and, as a direct conse-
quence, the migrated image improved as well. This result has
been obtained in post-processing by smoothing the velocity
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Figure 11. Migrated image obtained from the shot-gather in Figure 10 with the correct velocity model. Observe the distorted image of the reflectors
and the artifacts introduced by the migration operator. (b) Sensitivity kemel obtained using image warping wavefield tomography for the correct
velocity model. The kernel should be very small and incoherent because the model is actually correct; the spurious kernel is thus completely due to

the artifacts in the image.

model obtained by inversion; smoothing corrects the uneven
illumination and removes the abrupt changes in the velocity
field that distort the image in Figure 15(b). We speculate that
a careful illumination compensation and amplitude balancing
in the computation of the gradient can achieve a similar result
in a direct and automatic way.

4 DISCUSSION

The complete adjoint-state calculations for the objective func-
tion in equation 3 is computationally expensive and involved.
We require not only the wavefields in the background medium

but also their spatial derivatives. The warping field requires a
dedicated procedure based on connective functions that link
the warping vectors to the velocity model. From the point
of the inversion, this step increases the dimensionality of the
problem, as at every image point we have to consider the ex-
tra dimensions in which the warping vector is defined. Pick-
ing image point locations (Yang and Sava, 2010; Perrone and
Sava, 2012) becomes crucial to reduce the dimensionality and
thus the computational cost. In the method presented in this
paper, no picking is necessary in order to construct the image
perturbation that we use to construct the estimated scattered
wavefields.
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Figure 12. The objective function obtained by perturbing the model with a Gaussian anomaly having the same extent of the one in the correct model
but with different amplitudes. Notice that the objective function correctly measures errors in the velocity model.
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Figure 13. (a) Exact Marmousi velocity model. (b) Ray-tracing in a smooth version of the exact model for a shot at z = 4.8 km. The complex

raypaths highlight the refractive behavior of the Marmousi model.

The image difference objective function presented in
Plessix (2006) as a regularization term for full-waveform in-
version is simple to implement and carries straightforward
physical intuition about the action of the inversion. In me-
dia that are not highly refractive, the drawbacks related to the

sensitivity to the amplitude patterns and potential cycle skip-
ping can be effectively and efficiently handled using the ap-
parent displacement field between migrated images and con-
structing robust approximations of the image difference. Esti-
mating the displacement field and computing the image gra-




48  F Perrone & P. Sava

Figure 14. (a) The initial model represented by an incorrect v(z) velocity. (b) The migrated image is distorted and not interpretable in the central
part of the model. Observe the general upward shift of the image due to the bias in the velocity model.

dient have a negligible computational cost compared to mi-
gration. Moreover, we preserve the physical interpretation of
the image perturbation that enters the expression of the ad-
Joint sources, equation 15, which is useful for quality control
and for quickly assessing the evolution of the inversion result.
The residual evaluation is immediate and the calculation of
the adjoint sources is straightforward compared to local cor-
relation waveform tomography, where the computation of the
adjoint-sources requires implementation of nonstationary con-
volutions of the input images with the penalty operators, and
local scaling of the background wavefields. When compared
to methods that require image-gathers or extended images, our
method based on apparent displacement vectors appears easier
to implement and less computationally demanding.

Computing the relative shift between two images in local
seamless overlapping windows requires some degree of over-
lapping of the two migrated images. The quantity of interest to
qualitatively characterize the distance between the two images
in simple subsurface geometries is the ratio between the shot-
point separation and the depth of the reflectors. The smaller
this ratio, the greater the overlap between migrated images.

When we estimate the shift between the migrated images us-
ing penalized local correlations, the extent of the local window
constrains the domain in which the maximum of the correla-
tion must be. When the separation between the shot is large
and the local window is not wide enough to capture the posi-
tion of the maximum of the local correlation, we introduce an
error in the evaluation of the residuals. Notice that increasing
the size of the local correlation window implies a decrease in
resolution. Moreover, if other events (more reflectors) enter the
local window and/or the reflector changes orientation in space,
increasing the extent of the local window implies a drop in the
values of the estimated correlation coefficients and thus a de-
crease in the quality of the estimated shifts. The displacement
vector field is more robust than the penalized local correla-
tions because of the iterative search and warping procedure
used (Hale, 2007b) and thus it allows us to obtain high-quality
velocity updates at shallow depths where the ratio between the
shot distance and the depth of the reflector is relatively high.

The main drawback of performing inversion in the shot-
migrated image domain is related to the nature of the migration
operator and to the associated migration artifacts. In highly re-
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Figure 15. (a) Velocity model after 20 iteration of wavefield tomography and (b) corresponding migrated image. The reflectors shift toward their
correct location, and the truncation of the beds against the fault walls improves. (c) Image obtained after smoothing the model in Figure 15(a) with
a triangular filter with radius 100 vertically and 400 samples horizontally.
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fractive media, triplications and multipathing between source
and receiver produce artifacts in the migrated image (Stolk and
Symes, 2004). The artifacts are due to the migration operator
being the adjoint and not the inverse of the Born modeling
operator; they have the same frequency content of the signal
and, although the stack over experiments removes them from
the final image, they severely contaminate the migrated images
for individual shots. Since these kinematic artifacts do not sat-
isfy the assumed relation between the directions of the image
gradient and displacement vector field, they represent the prin-
cipal source of noise for our method. Least-square migration
may attenuate the artifacts in the reflectivity images but would
increase the computational cost and time. The development of
simpler and more cost effective methodologies to avoid the
migration artifacts is currently a topic of research.

In complicated models, such as the Marmousi model, reg-
ularization plays an important role in balancing the strength
of the update and removing the natural bias that comes from
the uneven illumination and the complexity of the subsurface
structures.

5 CONCLUSIONS

The image-difference objective function for wavefield tomog-
raphy in the migrated-shot domain can be made more robust
using image warping. Displacement fields warping a migrated
image into the image obtained from a neighboring experiment
absorbe amplitude differences due to the shift in source lo-
cation and removes cycle skipping, because every reflector in
one image is mapped into the corresponding event in the sec-
ond image.

Our method is more effective than local image correlation
wavefield tomography for shallow reflectors, i.e., when the ra-
tio between the source separation and the depth of the reflector
is high. However, kinematic artifacts contaminate the image in
highly refractive media and destabilize the computation of the
sensitivity kernel. Nonetheless, the objective function based
on the warping relation between the images is able to mea-
sure the distance between different models, and to highlight
the most coherent images, thus enabling local gradient-based
optimization.
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ABSTRACT

Full-waveform inversion (FWI) has proved effective in significantly improving the spa-
tial resolution of seismic models. However, it is implemented mostly for isotropic me-
dia and the applications to anisotropic models are often limited to acoustic approxima-
tions. In a previous publication, we introduced a methodology for performing FWI of
multicomponent (PP and PS) reflection data from a stack of horizontal, homogeneous
VTI (transversely isotropic with a vertical symmetry axis) layers. Taking into account
both anisotropy and elasticity in the description of the reflected wavefield makes it
possible to resolve the interval Thomsen parameters and constrain the depth scale of
the model. Here, we develop a foundation for extending elastic FWI to laterally het-
erogeneous VTI media using the adjoint state method. The main focus is on deriving
the gradients of the objective function with respect to the model parameters. To test the
algorithm, we introduce Gaussian anomalies in the Thomsen parameters of a homo-
geneous VTI medium and study the influence of the size of the anomaly, the source-
receiver configuration, and the source polarization on the gradients. The model update
for FWI can be produced by an appropriate scaling of the gradient using the steepest
descent or similar methods.

1 INTRODUCTION

Full-waveform inversion (FWI) is a technique for estimat-
ing subsurface properties by using entire seismic waveforms
recorded at the surface or in a borehole. Depending on the
problem and availability of forward-modeling algorithms,
FWI can be performed in the time domain (Kolb et al., 1986;
Gauthier, 1986; Mora, 1987; Bunks et al., 1995) or frequency
domain (Song and Williamson, 1995; Song et al., 1995; Pratt,
1999; Pratt and Shipp, 1999). Evaluation of the gradient of the
objective function is often based on the adjoint state method,
as described in Tarantola (1984a), Fichtner et al. (2006), and
Liu and Tromp (2006).

Kohn et al. (2012) discuss the influence of parameteri-
zation on elastic isotropic FWI and conclude that describing
the model in terms of P- and S-wave velocities and density
gives better results than using impedances. Liu and Tromp
(2006) derive the gradients of the objective function for earth-
quake data with respect to the parameters (bulk and shear mod-
uli, density, source location, and source function) of an elas-
tic earth model. FWI has been extended to anisotropic me-
dia, but typically in the acoustic approximation (Plessix and
Rynja, 2010; Gholami et al., 2011; Plessix and Cao, 2011;
Shen, 2012). Such “anisotropic acoustic” algorithms, however,
suffer from trade-offs between the model parameters. Elastic
FWI of synthetic multicomponent surface seismic data (con-
sisting of both diving waves and reflections) for VTI media is
performed by Lee et al. (2010), but suboptimal parameteriza-

tion in terms of the stiffness coefficients causes ambiguity in
their results.

In our previous work (Kamath and Tsvankin, 2012; here-
after, referred to as Paper I), we invert multicomponent re-
flection data from a horizontally layered VTT model for the
the interval Thomsen parameters — the P- and S-wave vertical
velocities (Vpo and Vso) and anisotropy parameters € and 4.
Including density as an unknown parameter makes the objec-
tive function highly nonlinear, thereby causing the algorithm
to get trapped in local minima. Therefore, the densities in all
layers are fixed at the correct values. Although PP-waves alone
may be sufficient to resolve Vpo, Vo, €, and 4, stable param-
eter estimation for layers at depth requires employing long-
offset data (with the spreadlength-to-depth ratio reaching at
least two) or the addition of PS-waves. Inversion of multicom-
ponent data benefits from using a multiscale approach, which
helps reduce the sensitivity to the choice of the initial model
(Bunks et al., 1995).

Here we build the foundation for extending FWI to later-
ally heterogeneous VTI media. The model is parameterized in
terms of Vpo, Vso, and the P-wave NMO (Vymo, ») and hori-
zontal (Vior, p) velocities. To compute the gradient of the ob-
jective function, we adapt the results of Liu and Tromp (2006)
obtained with the adjoint-state method. The algorithm is ap-
plied to VTI models with Gaussian anomalies in the Thomsen
parameters inserted into a homogeneous background.
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2 METHODOLOGY
2.1 Full-waveform inversion for VTI media

FWTI in the time domain is designed to minimize the following
objective function:

1en (T
F=32 [ It - doe il
r=1v0

where N is the number of receivers, T is the trace length,
u(xr, t) is the modeled displacement, and d(x., t) is the ob-
served displacement at receiver location x;-. Since the relation-
ship between the data and the model is nonlinear, the inversion
is performed iteratively, and the model update at each iteration
can be found as:

Am = [J73]7 3TAq, @)

where J is the Fréchet derivative matrix obtained by perturb-
ing each model parameter, JTJ is the approximate Hessian
matrix, T denotes transposition, and Ad is the difference be-
tween the observed data and those computed for a trial model.

In Paper I, we use PP reflections or a combination of
PP and PS events generated for a horizontally layered VTI
model to invert for the interval parameters Vpo, Vso, €, and 4.
For the purpose of inversion, it is convenient to use quantities
that can be constrained by the data and have the same units.
Hence, instead of € and § we invert for the P-wave NMO ve-
locity (Vamo,p = Vipov/1 + 28) and the horizontal velocity
(Vhor,p = Vpov/1 + 2¢). If the number of layers (which is
fixed during the inversion) is not large, it is possible to com-
pute the Fréchet matrix and the approximate Hessian explicitly
by perturbing each model parameter.

2.2 Inverse problem in 2D

In the case of laterally heterogeneous media, computation of
the Fréchet derivatives becomes prohibitively expensive since
it involves calculating as many forward models at each itera-
tion as the number of parameters (typically defined on a grid).
It is more practical to calculate the gradient (JT Ad in equa-
tion 2) of the objective function with the adoint state method,
which has been widely used in FWI (Tarantola, 1984b; Plessix,
2006; Liu and Tromp, 2006; Fichtner et al., 2006). The model
update, which is a scaled version of the gradient, is then calcu-
lated using steepest-descent or conjugate-gradient algorithms.
Alternatively, either the so-called BFGS (Broyden-Fletcher-
Goldfarb-Shanno) method or its limited-memory equivalent,
the L-BFGS method (both are quasi-Newton techniques), can
be employed to scale the gradient by the inverse of an approx-
imate Hessian (Virieux and Operto, 2009).

The adjoint state method involves computing the so-
called adjoint wavefield to obtain the gradient. Because the
wave equation is self-adjoint, it can be solved for the adjoint
wavefield with the data residuals treated as sources. The resid-
uals at each time step are injected “backward in time” (i.e.,
starting from the last sample), which is commonly described
as back-propagation of data residuals. For 2D multicomponent

data, the vertical and horizontal displacement components of
the data residuals should be injected into the medium simul-
taneously. The gradient is obtained by applying the imaging
condition to the spatial derivatives of the forward and adjoint
wavefields.

Here, we assume that the properties of the VTI medium
vary in 2D and consider only in-plane polarized waves. Hence
the model is described by four stiffness coefficients (written
in the Voigt notation): Cy1, C33, C13, and Css. However, it is
certain combinations of the stiffnesses that control traveltimes
and amplitudes of seismic waves (Tsvankin, 2012). In partic-
ular, description of wave propagation and inversion of seismic
data can be facilitated by employing Thomsen parameters and
their simple combinations (e.g., the anellipticity coefficient 7).
Lee et al. (2010), who parameterize the VTI model in terms
of the stiffnesses, are unable to resolve the coefficient Ci3,
likely because of the tradeoff between C13 and Css in P-wave
kinematic signatures. In Paper I we were able to constrain the
relevant Thomsen parameters (Vpg, Vso, €, and §), although
the algorithm operated with the vertical, horizontal and NMO
velocities. Here, we parameterize the model in terms of the
squared velocities Vg, Vg, ViZno,p, and Vi%, p. Squaring
the velocities is a matter of convenience because it simplifies
the gradient expressions.

The gradients of the objective function (equation 1) with
respect to the elements of the stiffness tensor are derived in
Appendix A using the results of Liu and Tromp (2006):

T Bu:
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where u and 1 are the forward and adjoint wavefields, respec-
tively. Using the chain rule, we can find the gradient for the

squared velocities V,Z (Vi3o, Vo, ViZno,p, and V2, p):
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The stiffness coefficients are expressed in terms of the veloc-
ities in equations A18—A21. Combining equations 3, 4, and
A18—A2] yields the gradients with respect to the squared ve-
locities (equations A22— A25).

Here, FWI is implemented in the time domain, primarily
because the finite-difference modeling software available to us
performs time-domain computations. The multiscale approach
described in Bunks et al. (1995) and Paper I helps reduce the
nonlinearity of the objective function and ensure that each up-
dated solution lies in the basin of convergence. At first, diving
waves are employed to update the low-wavenumber compo-
nent of the model and obtain a close approximation for trav-
eltimes of the recorded arrivals. Reflection events can then be
used to increase the vertical and lateral resolution of the in-
verted model. Application of this methodology to 2D synthetic
data from heterogeneous VTI models will be discussed in a se-
quel paper.
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Figure 1. VTI model with a Gaussian anomaly (standard deviation o = 75 m) in the anisotropy parameter €. The background and maximum values
of € are 0.1 and 0.128, respectively. The other Thomsen parameters are spatially invariant: Vpg = 3000m/s, V5o = 1500 m/s,and § = —0.1.
The white dot marks the source location and the white vertical line represents an array of receivers placed at each grid point (6.6 m apart).
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Figure 2. (a) Vertical and (b) horizontal displacements generated for the model in Figure 1.

3 GRADIENTS FOR GAUSSIAN ANOMALIES

Next, we perform tests for a simple synthetic model to verify
the accuracy of the gradient computation. Because the initial
stage of FWI involves diving waves, we compute the gradient
for transmission experiments. The model includes Gaussian
anomalies in the parameters Vpo, Vso, €, and § inserted into a
homogeneous VTI medium between a buried source and a ver-
tical array of receivers (Figure 1). A point-displacement source
with a peak frequency of 10 Hz polarized in the horizontal
direction generates the data. The horizontal and vertical dis-
placement components (“observed data”) recorded by the re-
ceivers in the presence of the anomaly in € are shown in Figure
2. Then the “modeled” data are generated in the background
medium, and the adjoint source is obtained as the difference
between the two wavefields (Figure 3).

The gradients with respect to the model parameters
(squared velocities) for an anomaly in € are calculated from

equations A22—A25 (Figure 4). For the source-receiver ge-
ometry in Figure 1, waves travel close to the isotropy plane,
and are influenced primarily by Viior, p, Which is a function of
€. Hence, the largest gradient is that for the velocity Vior, P,
which correctly identifies € as the parameter that needs updat-
ing. However, the gradient with respect to Vsp is also signif-
icant, most likely because of the P-to-S conversion that takes
place at the anomaly. The observed data include such conver-
sions, while the wavefield modeled in the background medium
does not. As a result, the obtained gradient resembles an “im-
age” of the scatterer responsible for the conversion.

For a Gaussian anomaly with a larger radius (Figure 5),
the gradient with respect to Vso decreases (Figure 6), and
there are fewer artifacts. This is likely due to the absence of
the anomaly-induced PS conversions. In addition, the gradi-
ents for Vpo and Vamo,p are also small. In the presence of
such a smooth anomaly in ¢, we expect to see a change only
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Figure 3. (a) Vertical and (b) horizontal components of the adjoint source for the model in Figure 1 obtained as the difference between the observed
data from Figure 2 and the modeled data for the background medium (in the absence of the anomaly).
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Figure 4. Gradients of the objective function (equation 1) with respect to (a) V3, (b) V), (c) V,?mo, p»and (d) thor, p for the model with an
anomaly in e (Figure 1). All four gradients here and on the plots below are plotted on the same scale.

in Vhor, p, which is indeed the case (Figure 6). As mentioned
above, this is the desired result because Vyor, p is the only pa-
rameter influenced by e. All gradients in Figures 4 and 6 reach
extremely large values at the source where the wavefield has
the highest amplitude. This problem can be mitigated by ap-
plying an appropriate preconditioner (e.g., a Gaussian taper

at the source). The large gradients along the horizontal ray-
path from the source indicate the nonuniqueness of the inverse
problem for the configuration with a single source. Increasing
the number of shots is likely to help focus the largest gradient
values at the anomaly.

Similar tests performed for Gaussian anomalies in the pa-
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Figure 5. VTI model with a larger (in spatial extent) Gaussian anomaly in the anisotropy parameter e. The standard deviation of the
anomaly & =300 m. The background and maximum values of € are 0.1 and 0.128, respectively. The other parameters are Vpo = 3000 m/s,

Vso = 1500m/s, and 6 = —0.1.
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Figure 6. Gradients of the objective function with respect to (a) V3, (b) V4, () meo, p» and (d) thor’ p for the model with an anomaly in e

from Figure 5.

rameter § show that the gradients with respect to all four veloc-
ities are smaller compared to those obtained for the anomaly
ine.

Next we introduce an anomaly in the P-wave vertical ve-
locity Vipo (Figure 7). As was the case for the model in Figure
5, there are no PS conversions because of the increased spa-

tial extent of the anomaly. The largest gradient is the one with
respect to the horizontal velocity (Figure 8), whereas the gra-
dients with respect to Vpg and Vimo, p (Which also depend on
Vpo) are negligible. Although Vior, p depends on Vpo, updat-
ing the horizontal velocity without changing Vpo will result in
an update in ¢ and steer the inversion away from recovering
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Figure 7. VTI model with a Gaussian anomaly in the P-wave vertical velocity Vpg. The background and maximum values of Vg are 3000 m/s
and 3140 m/s, respectively. The other parameters are Vgg = 1500 m/s, § = —0.1, and € = 0.1.
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Figure 8. Gradients of the objective function with respect to (a) V3, (b) VZ,. (c) Vnzmo, p»and (d) thor, p for the model with an anomaly in Vpg

from Figure 7.

the anomaly in Vpg. Increasing the number of sources, with
a larger polar angle coverage, is likely to elevate the gradients
with respect to all three velocities, and, potentially improve the
convergence of the inversion algorithm.

When the source-receiver configuration is rotated by 90°
(Figure 9) and the wave propagation is predominantly verti-

cal, the largest gradient is the one with respect to Vpo (Figure
10). In principle, the gradients for Vamo and Vior, £ should not
vanish, which would ensure that the parameters ¢ and & do not
get updated. As in the previous case, multiple shots with im-
proved spatial coverage should increase the gradients for the
NMO and horizontal velocities.
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Figure 9. VTI model with a Gaussian anomaly (¢ = 300m) in the P-wave vertical velocity Vpg and different source-receiver geometry. The
source-receiver configuration from Figure 7 is rotated by 90°. The background and maximum values of Vpg are 3000 m/s and 3140 m/s, respec-
tively. The other parameters are Vgo = 1500m/s, § = —0.1,and ¢ = 0.1.

The gradients for a Gaussian anomaly in Vo and a hori-
zontal receiver array (Figure 11) are displayed in Figure 12. As
expected, the gradient with respect to Vo is much larger than
the other three. However, because the source is polarized in
the vertical direction, the SV-wave amplitude vanishes along
the symmetry axis and increases away from it. As a result, the
gradient for Vg reaches its maximum at oblique incidence an-
gles near the symmetry axis.

4 CONCLUSIONS

One of the most important steps in performing FWI is cal-
culation of the gradient of the objective function with re-
spect to the model parameters. We discussed gradient com-
putation for elastic multicomponent wavefields from 2D
VTI media. The in-plane polarized waves (P and SV) are
controlled by combinations of four stiffness coefficients:
C11, Ci3, Cas, and Css. The adjoint state method was em-
ployed to derive analytic expressions for the gradients of the
least-squares objective function with respect to the stiffnesses.
A more convenient parameterization, however, includes the
squares of the P-wave vertical (Vpo), NMO (Vimo, P), and hor-
izontal (Viior, p) velocities, and of the S-wave vertical velocity
(Vso).

After obtaining the gradients for V3, V2, V2, p, and
Vi2,., we conducted numerical tests for Gaussian anomalies
in the Thomsen parmeters Vpg, Vso, €, and § embedded in a
homogeneous VTI model. The gradients were computed for a
single buried source and an array of receivers placed at each
grid point along a straight line. If the spatial extent of the

anomaly is small, it acts as a secondary source that gener-
ates P-to-S conversions. The obtained gradients in this case
essentially represent images of the anomaly and their meaning
requires further analysis.

For anomalies with a larger spatial extent, the converted
waves are weak and there are fewer artifacts. The magnitude
of the gradient with respect to each model parameter is gov-
erned by the source position and polarization, as well as the
location and configuration of the receiver array. For example,
an anomaly in Vpg produces a large gradient with respect to
Vior,p When the wavefield propagates predominantly in the
horizontal direction. The gradient for Vpo, however, is negli-
gible, which would result in an undesired change in the pa-
rameter €. However, for the same Vpg anomaly, but a different
source-receiver geometry, when waves travel close to the ver-
tical, the dominant gradient in the one with respect to Vpo.
For the same source-receiver configuration with near-vertical
wave propagation, an anomaly in the S-wave vertical velocity
produces a large gradient with respect to Vso. The maximum
gradient, however, is observed at oblique incidence because
the source polarization is vertical. Increasing the number of
shots should improve illumination and result in gradients that
are more consistent with the anomaly. Multiple shots are also
expected to reduce the artifacts in the gradient fields.

The obtained gradients should be combined with an ap-
propriate line-search technique to make meaningful model up-
dates. In addition, it is necessary to investigate if the same step
length can be used for all model parameters.
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Figure 10. Gradients of the objective function with respect to (a) V3, (b) VZ,. (¢) Vnzmo, p»and (d) Vh2°r’ p for the model with an anomaly in Vpg
from Figure 9.
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Figure 11. VTI model with a Gaussian anomaly (o = 300m) in the S-wave vertical velocity Visp. The background and maximum values of Vgo
are 1500 m/s and 1640 mVs, respectively. The other parameters are Vpg = 3000m/s, § = —0.1,and ¢ = 0.1.
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APPENDIX A: APPENDIX A: GRADIENT COMPUTATION FOR VTI MEDIA USING THE ADJOINT STATE
METHOD

As discussed in Plessix (2006) and Liu and Tromp (2006), the objective function in equation 1 is minimized under the constraint
that the modeled displacement u(x_, t) satisfies the elastic wave equation,

Pu D dur)
P ~ oz, (C.sz e ) =fi, (AD)

where p is the density, c;;x: are components of the stiffness tensor and f is the body force per unit volume. All indices change from
1 to 3 and summation over repeated indices is implied. The displacement wavefield is subject to the initial conditions,

u(x,0) =0, % —o, (A2)
and the radiation boundary condition,
u(x, )|, o — 0. (A3)

The method of Lagrange multipliers (Strang, 1991) is used to define the Lagrangian A:
0%u; K2 0
=3 Z / lu(x,,t) - d(x,, t)|*dt — / / A [ S5 - 32 (Cukl a“") f,] dvdt, (A%)

where (2 is the domain of integration, 9 is the surface of 2, and A(x,t) is the vector Lagrange multiplier that needs to be
determined. Note that when u(x, t) satisfies the wave equation, the second term in the above equation disappears and A reduces to
the objective function in equation 1. Each of the model parameters (c; ;4 in this case) and the state variable u are perturbed. After
integration by parts and application of the Gauss divergence theorem, we obtain the change in the Lagrangian,

A = /T / EN: (u,.(x, t) — di(x, t))a(x — x,)0u; dVdt

6uk 6)\, a)\k
/ /qukl dth—/ /[ 6t2 —7 (Gijkt 8—:1:,)] 0u; dVdt
8(0ui) o] |*
J oG oo )

T Ouy, O(dux) T Ok
i 0ciin —= - dS dt — Sus cige 2F ndS dt AS
+~/0. /zm [ Cigkl oz + Cijkt Oz ] e [; 50 Ui Cijkl oz 5 (AS)

where n is the vector normal to the surface Q and = 1, 2 ... N denotes the receivers. Perturbing u(x, t) in equations A2 and
A3 yields the initial and boundary conditions for du(x, t):

dv

du(x,0) =0, %‘5(—:(’—” =0, du(x,t)lx—sc0 — 0. (A6)
The wavefield A is constrained by the ‘final’ conditions (i.e., those at time T),
A(x,T) =0, ‘”‘—(a’;@ —o, A7)
and the boundary condition,
A%, 1) |xyoo = 0. (A8)

Equation AS then reduces to

6A = /OT /ﬂ z’;: (u,-(x, £) — di(x, t)) 8(x — x,)0u; dVdt
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0 i P A
/ / 6%:::& O - v - / / [ S (cuk, %_'“>]5 ,dvdt . (A9)

According to Plessix (2006), the condition A/ = 0 leads to the “state equations” (in this case, the elastic wave equation); this
can be verified from equation Ad4. The adjoint state equations are obtained by setting A /8u = 0. Taking the derivative in equation
A9 gives the adjoint state equation,

#x 0 AN
P ~ Ba; (kal Oz l) = ; [ui(xr,t) —d,(xr,t)], (A10)

subject to the conditions at time T (equation A7) and boundary conditions (equation A8). In addition, JA/dm = 8F /Om, where
m are the model parameters (Plessix, 2006). Hence, the change in the objective function  F caused by perturbations of the stiffness
coefficients is given by:

6F = —/ /6%“ Gui -a-ﬁ dvidt. (All)

Ox;

This is a general result for an anisotropic medium described by the complete stiffness tensor c;;xi. Expressions for models with
specific symmetries can be derived from equation A11 by substituting the appropriate stiffness tensors or matrices.

Note that the boundary conditions for u(x, t) and A(x, ¢) can be modified to include a free surface where the tractions due
to u and X go to zero. However, the addition of the free surface causes complications in finite-difference modeling and produces
surface multiples. Instead, we impose the radiation condition to create absoring boundaries on all sides of the model.

To simulate the Lagrange multiplier wavefield, it is convenient to define an “adjoint wavefield” ) (Liu and Tromp, 2006):

P(x,t) = Ax, T —t). (A12)
The wavefield 1) satisfies the wave equation A10 but with the source function reversed in time:
S 8 o _ v
P " B (C‘J‘“a_z, = ; [u,(x,,T —t) —di(x, T — t)] . (A13)

The initial conditions for 4 (using equations A7 and A12) are as follows:

B(x,0) =0, w ~o. (A1)
The wavefield 1 also satisfies the radiation boundary condition:
WYX, t)lxs00 — 0. (Al5)

Note that defining the adjoint wavefield makes it possible to simulate the Lagrange multiplier wavefield (which starts at time T and
propagates backward in time).

From equations A11 and A12, we can find the gradient of the objective function with respect to the stiffness coefficients:

OF T 6ui 31/)k
= - dt. Al6
Ocijn o Ox; Oz (Al6)

If, instead of c¢; k1, the model is described by parameters m,,, the gradient of F can be found from the chain rule:

F 3.7'- acijk,[
_ . Al7
; Ocijrt Omn (AlD

Here, we parameterize the model in terms of the squared velocities Vi3, V%, Vi2,o,p» and ViZ, p. The stiffness coefficients (written
in the two-index notation) represent the following functions of the velocities (Tsvankin, 2012):

Ci1 = p Vit Py (A18)
Cas = pVio, (A19)
013 = p J(VIZO 0)( nmo, P V820) - p V320) (A20)

Css = pVio. (A21)
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Using equations A16, A17, and A18 — A21, we obtain the following gradients of the objective function with respect to V;2:

_oF_ __/T s 0us | 1 [Vimo,p — Vo (01 Bus | O 0w
dWVE) ~ Jo P |0z bz "2\ V2 — V2 \Bz1 0125 ' Bxs 0z
oOF _ _/Tp 2V5?0 - VIEO - ‘/n2mo,P _1 <%% +
0050 o 7| [2/(Voop ~ VB (VR —VE) | \O%1 0%
61/)1 81/)3 Bul 6u3
+ (3:1:3 + aTu) (3_1:3 + 6:1:1) }dt’
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ABSTRACT

Reverse-time migration can accurately image complex geologic structures in
anisotropic media. Extended images at selected locations in the earth, i.e. at common-
image-point gathers (CIPs), carry rich information to characterize the angle-dependent
illumination and to provide measurements for migration velocity analysis. However,
characterizing the anisotropy influence on such extended images is a challenge. Ex-
tended CIPs are cheap to evaluate, since they sample the image at sparse locations
indicated by the presence of strong reflectors. Such gathers are also sensitive to ve-
locity error which manifests itself through moveout as a function of space and time
lags. Furthermore, inaccurate anisotropy leaves a distinctive signature in CIPs, which
can be used to evaluate anisotropy through techniques similar to the ones used in con-
ventional wavefield tomography. It, specifically, admits a “V”-shape residual moveout
with the slope of the “V” flanks depending on the ellipticity anisotropic parameter 7
regardless of the complexity of the velocity model. It reflects the fourth-order nature of
the anisotropy influence on moveout, as it manifests it self in this distinct signature in
extended images after handling the velocity properly in the imaging process. Synthetic

and real data observations support this assertion.

Key words: imaging, wave-equation, angle-domain, wide-azimuth, anisotropy

1 INTRODUCTION

Wave-equation depth migration is powerful and accurate for
imaging complex geology, but its potential can only be
achieved with high quality models of the earth (Gray et al,,
2001). Imaging using reverse-time migration (Baysal et al.,
1983; McMechan, 1983), addresses this challenge, although
this technique is still fairly computationally intensive, espe-
cially in anisotropic media.

Imaging with reverse-time migration can be described as
a sequence of two main steps. The first step consists of wave-
field reconstruction from known quantities on the surface, i.e.
the wavelet known at the source position, and the data known
at the receiver positions. The wavefields are reconstructed ev-
erywhere in the medium as a solution of the wave-equation.
This reconstruction makes use of an earth model which can
be, for example, anisotropic. The second step represents an
imaging condition, i.e. a procedure that identifies places in the
subsurface where the reconstructed wavefields coincide. The
imaging condition is often implemented by cross-correlation
of the wavefields. A general imaging condition preserves in
the output the space and time correlation lags, and thus it can
be named an extended imaging condition for which the con-
ventional cross-correlation is a special case.

Assuming that the wavefields are accurately recon-

structed in the subsurface, the correlation maximizes at zero
lag, both in space and in time. Accurate reconstruction implies
not only that we use a correct earth model, but it also implies
that the recorded data illuminates completely the subsurface
in the area under investigation. Good illumination requires not
only that we collect data with wide azimuth and long offsets,
but it also means that the geologic structure does not obstruct
our imaging target inside the earth through, for example, shad-
ows caused by salt bodies.

Typically, the problem of large output can be addressed
by analyzing subsets of the image. For example, we can con-
sider common-image-gathers (CIGs), which are subsets of ex-
tended images constructed for various lags at fixed horizontal
coordinates in the earth. For example, we can consider space-
lag CIGs (Rickett and Sava, 2002), or time-lag CIGs (Sava and
Fomel, 2006) , which can be transformed into angle-gathers
(Sava and Fomel, 2003) for easier analysis for even anisotropic
media (Sava and Alkhalifah, 2012; Alkhalifah and Fomel,
2011). Alternatively, we can construct common-image-point-
gathers (CIPs), which are subsets of extended images con-
structed for all lags at fixed coordinates in the image. The
points where we construct the gathers can be identified auto-
matically using image features, e.g. reflectivity strength, spa-
tial coherency, etc. (Cullison and Sava, 2011) .

In anisotropic media, the extrapolation of the source and
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receiver fields need to take anisotropy into account. This re-
quires that we have access to proper anisotropic parameter de-
scription of the medium. For transversely isotropic (TI) media,
this implies that we need to know the anisotropy model param-
eter, 7, responsible for the anellipticity behavior of the phase
velocity. This parameter, together with the normal moveout ve-
locity described along the symmetry axis direction, enables us
to perform accurate imaging in TI media (Alkhalifah et al.,
2001). The axis of symmetry velocity, v, ,, for a medium with
vertical symmetry axis is mainly responsible for placing re-
flections at their accurate depth positions. Thus, for anisotropic
media the key parameter for proper imaging and focussing is
7. Ignoring 7 yields residual moveout in subsurface offsets
and angle gathers (Alkhalifah and Fomel, 2011); it yields even
more distinct features in extended images.

In this paper, we analyze the extended images in
anisotropic media, and specifically transversely isotropic (TI)
media. These extended images provide image point extensions
as a function of space- and time-lags. Embedded in these lag
sections is valuable image focusing information, which can be
used to analyze the model accuracy used in the wavefield ex-
trapolation. As a result, we use such lag sections to character-
ize the response of the extended images to ignoring anisotropy
in RTM. We find that the anisotropy error leaves a distinc-
tive signature in migrated extended images. We restrict our
attention to the analysis of migrated images, and explore in
detail the specific information provided by such images for
anisotropic wavefield tomography.

2 THEORY

Conventional wavefield-based imaging consists of two major
steps: the wavefield reconstruction and the imaging condition
(Berkhout, 1982; Clzrbout, 1985). The major driver for the ac-
curacy of this technique are the source and receiver wavefields
which depend on space x = {x,y, 2} and time ¢. Wavefield
reconstruction in tilted TI anisotropic medium, requires nu-
meric solutions to a pseudo-acoustic wave-equation (Alkhal-
ifah, 2000), e.g. the time-domain method of Fletcher et al.
(2009) and Fowler et al. (2010), which consists of solving a
system of second-order coupled equations:

6217 2 2
oz = VeaH2[pl+vp Hilg], )
azq 2 2
a2 = VenHa[pl+vp Hi[g] . )

Here, p and q are two wavefields depending on space x and
time ¢, H; and H; are differential operators applied to the
quantity in the square brackets Alternative formulations, e.g.
Duveneck and Bakker (2011) and Zhang et al. (2011) provide
expressions for stable extrapolation in more general cases, in-
cluding TTL. The velocities vy, vp,, and vp,, are the verti-
cal, horizontal and “NMO” velocities used to parametrize a
generic TTI medium. If we describe the medium using the
parameters introduced by Thomsen (2001), the velocities are
related to the anisotropy parameters € and & by the relations

Up, = Up,V1+ 26 and vy, = vp,/1+ 2¢. Thus, the quan-
tities H, and Hs depend on the medium parameters, as well
as 6, which describes the angle made by the TI symmetry axis
with the vertical and ¢, the azimuth angle of the plane that
contains the tilt.

A conventional imaging condition based on the recon-
structed wavefields defines the image as the zero lag of the
cross-correlation between the source and receiver wavefields
(Clzrbout, 1985). An extended imaging condition is a gener-
alization of the conventional imaging condition in that it re-
tains in the output image acquisition or illumination parame-
ters. For example, we can generate image extensions by corre-
lation of the wavefields shifted symmetrically in space (Rickett
and Sava, 2002; Sava and Fomel, 2005) or in time (Sava and
Fomel, 2006). This separation is simply the lag of the cross-
correlation between the source and receiver wavefields (Sava
and Vasconcelos, 2011):

R(x,A,7) = Z ZWs(x—A,t-—'r)Wr(x+A,t+T) .
shots t
(€))

Here R represents the migrated image which depends on po-
sition x, and the quantities A and 7 are cross-correlation lags
in space and time, respectively. The source and receiver wave-
fields used for imaging, W, and W,. are the main wavefields
indicated by p in equations 1-2. The conventional imaging
condition represents a special case of equation 3 for A = 0
and 7 = 0.

Various techniques have been proposed to convert the
space- and time-lag extensions into reflection angles (Sava and
Fomel, 2003, 2006; Sava and Vlad, 2011; Sava and Alkhal-
ifah, 2012), thus facilitating amplitude and velocity analysis
in complex geologic structures. In this paper, we do not fol-
low this route, but instead concentrate on the interpretation of
the moveout observed as a function of lags directly. A similar
analysis can be done in the angle domain, but in this paper we
disregard this possibility.

As indicated earlier, CIPs constructed using a correct
earth model (and good subsurface illumination) reveal reflec-
tions as focused events at zero space- and time-lags. This
shape has a straightforward physical interpretation. Follow-
ing the discussion in Sava and Vlad (2011), the wavefield at
a reflection point can be conceptually decomposed in planar
components, each corresponding to a different propagation di-
rection. We emphasize that we use the word “decomposition”
only with a conceptual meaning, and not a practical one. Other
researchers have proposed actual decomposition of the wave-
fields in elementary planar components with different direc-
tions, but we do not follow that path which is costlier and more
difficult to implement in practice.

Nevertheless, the source and receiver wavefields at a re-
flection point where we construct a CIP gather behave as if
they were strictly planar. Other planar components of the same
non-planar wavefield exist, but they are located elsewhere in
space, and thus do not contribute to the CIP under considera-
tion. By simultaneously shifting the source and receiver wave-
fields in space and time, we obtain non-zero images only when
the space- and time-lags are related to one-another by a rela-



tion which depends on the 3D angles of incidence and local
material properties, (Sava and Vlad, 2011). It turns out that
each direction of illumination is described in a CIP by a pla-
nar event in the A — 7 space. This observation is true both for
isotropic and anisotropic media, but the physical interpreta-
tion is different: in isotropic media, the planar events identify
directions corresponding to group angles, while in anisotropic
media the planar events identify directions corresponding to
phase angles, (Sava and Alkhalifah, 2012).

The most relevant property for velocity model building is
that the planar events corresponding to different illumination
directions overlap at zero space and time lag, i.e. at the ori-
gin of the extended space of each CIP. This is simply because
we choose, by construction, points on reflectors, so ideally we
form an image at zero lag from all propagation directions at
the same place on the reflector. This is just a restatement of
the semblance principle which says that the imaged geologic
structure does not depend on the direction of illumination, as-
suming that the model used for wavefield reconstruction is cor-
rect. If the reconstruction is incorrect, then not all planar events
in a CIP go through zero lag in space and time, thus indicating
that not all illumination directions produce the image at the
same depth. This information can be used for velocity analy-
sis.

In anisotropic media, wavefield reconstruction depends
on more than one parameter. For TI media, one simple way to
describe the model parameters is through velocity v and the
anisotropic parameter 7. Reconstructed wavefields can be in-
accurate due to inaccuracies in both parameters, so the effects
observed in extended CIPs are simultaneously due to both.
As for other domains, it is not trivial to differentiate between
the effects of velocity and anisotropy error on the model. It
is, nevertheless, interesting to understand how each param-
eter controls the observed moveout, which is a pre-requisite
for tomography. Thus, we concentrate on the moveout due to
anisotropy, assuming that the velocity has already been up-
dated using other conventional methods. This is natural since
the common velocity model building procedure starts with an
isotropic assumption of the Earth.

Alkhalifah and Fomel (2011) show using anisotropic pa-
rameter continuation that the residual anisotropic response for
post stack imaging in homogeneous media, and specifically
residuals corresponding to the anisotropy parameter 7, has a
“V”-like shape. This response stems from the fourth-order na-
ture of the 7 influence on travel-time as a function of offset.
A residual reconstruction of such travel-time maps the fourth
order influence to a mostly linear moveout, rather than a resid-
ual hyperbolic moveout, as shown in Figure 1. The slope of
the V depends on the value of 7, with negative 7 reverting its
signature. A similar response characterizes the prestack case
even in complex media.

The V-shape signature in the extended images exists re-
gardless of the complexity of the background isotropic (or el-
liptically anisotropic) velocity model. Thus, such a behavior
also characterizes the extended images for pre-stack data in
complex anisotropic media. This is because the major wave-
field complexities are compensated during the wavefield re-
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construction in anisotropic media. Most of what remains are
the influence of anisotropy which resembles the established
behavior of poststack depth images. This property could be
used to separate the effects of anisotropy from those of veloc-
ity, with applications to anisotropic earth model building.

3 EXAMPLES

The model for our first example, Figure 2(c), consists of a
horizontal reflector in a 3D constant velocity model. Fig-
ures 2(a)-2(b) depict one snapshot of the wavefields for a
source located on the surface in VTI and TTI models, re-
spectively. The models are characterized by the parameters
€ = 0.30, 6 = —0.10 and, for the TTI model, by 8, = 35°
and ¢, = 45°. Figures 3(a)-3(b) depict extended CIPs at
{z,y,2z} = {4,4,1} km for many sources distributed uni-
formly on the surface and correct earth models. All CIPs show
focusing at zero lags in space and time, thus indicating wave-
field reconstruction with a correct earth model. However, the
CIPs constructed with isotropic migration, Figures 3(c) and
3(d), are not focused, thus indicating that the CIPs are sensi-
tive to anisotropy inaccuracy.

The next examples illustrate the behavior of the extended
images as a function of anisotropy inaccuracy in constant and
laterally heterogeneous models, respectively. The models are
shown in Figures 4(a) and 6(a). The data, exemplified in Fig-
ures 4(b) and 6(b), are constructed with anisotropy character-
ized by parameter 7 = 0.25. Figures 7(a)-7(c) show the ex-
tended images for different shot locations obtained by reverse-
time migration with the correct salt model. The figures indicate
a dependency of the CIPs with the angle of illumination which
can be exploited for angle decomposition. The summation for
all shots leads to the CIP shown in Figure 7(e) which shows
focusing of the image at zero space and time lags. This is due
to the fact that all shots leave an imprint on the CIPs at zero
space and time lags, but at different slopes which depend on
the illumination angle, Figures 7(a)-7(c).

For incorrect 7, the resulting response has an overall “V”
shape similar to that seen for residual poststack migration. The
slope of the “V” flanks, as illustrated in Figures 7(d)-7(f), de-
pend on 7. For 7 close to the correct value, the “V”” energy
tends to approach the apex, and for correct 7 it focuses at its
apex, Figure 7(e). This general behavior is consistent regard-
less of the complexity of the medium, especially with respect
to the portion of the signature that is near the apex. For com-
parison, Figures 5(d)-5(e) show extended gathers correspond-
ing to the same values of 7 as in Figures 7(d)-7(e). Despite the
fact that the background velocity model is significantly differ-
ent, constant vs. salt, the CIPs are comparable, thus indicating
that they are mainly influenced by the anisotropy parameters.
Of course, for a varying 7, such signatures reflect an effective
value under the effective medium theory. This property can be
exploited for anisotropic migration velocity analysis.

Flnally, Figures 8(a)-8(b) illustrate the behavior of 3D
anisotropic extended CIPs for a North Sea field dataset. Fig-
ure 8(a) shows the velocity model and Figure 8(b) shows
the corresponding conventional image. Although the earth is
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2.004

Figure 1. Image point defocusing corresponding to  2.003
isotropic poststack migration with the correct velocity of 5 2002
2 km/s in an anisotropic medium with (a) n = 0.1 (grey § ©
curve), n = 0.2 (black curve), (b) n = —0.1 (grey curve),  2.001
and n = —0.2 (black curve).
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Figure 2. 3D model used to illustrate wide-azimuth extended images in anisotropic media. Panels (a) and (b) show the wavefields corresponding to
asingle source at {x, y} = {4, 4} km for VTI and TTI media, respectively. The model (c) consists of a horizontal reflector in constant velocity.

known to be anisotropic in this region, the image shown in
Figure 8(b) uses isotropic migration, and thus it is partially
inaccurate.

Figure 9 shows the same image as the one shown in Fig-
ure 8(b), but in a perspective view and with three slices se-
lected at a fixe inline, cross-line and depth, respectively. Over-
lain on the figure are also the locations of the CIPs constructed
to analyze the accuracy of the image. CIPs are indicated by
small ellipsoids instead of points, (Cullison and Sava, 2011).
The flat ellipsoids represent the structure tensor constructed at
each point, and the orientation of the ellipsoids in 3D space
indicates the orientation of the reflectors at each position. We
construct extended CIPs at each of these 5000 locations, which
represents an enormous cost reduction relative to CIGs con-

structed for all depths at many regularly-spaced positions on
the surface.

Figures 10(a)-10(b) depict different locations in the im-
age, corresponding to CIPs automatically using the method
discussed earlier.

In Figure 10(b), the CIP is selected in the middle of the
image, therefore the inline illumination is good, although the
cross-line aperture is more limited. In the inline direction, we
observe the characteristic V, indicating that the model cur-
rently used for imaging is actually accurate, but the anisotropy
is not accurate. The inline behavior should, in principle, repeat
in the cross-line direction, although this is not what happens in
this case due to the limited aperture. Partial illumination is also
visible in Figure 10(b). In this case, we see a CIP located at the
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Figure 3. Extended CIPs at {z,y, 2} = {4,4,1} km for many sources distributed uniformly on the surface. The images are obtained by (a)-(b)
isotropic migration, and (c)-(d) anisotropic migration of the VTI data (left) and TTI data (right).
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Figure 4. (a) 2D constant model used to study the dependence of the extended CIPs with anisotropy, and (b) one shot gather for a source located
at {, z} = {3.4, 0} km. The earth model is anisotropic and characterized by parameter 7 = 0.25.
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Figure S. 2D extended CIPs at {z, 2} = {4, 0} km for the constant model, Figure 6(a). The extended images (a)-(c) correspond to individual shots
at surface coordinates = {3.2,4.0,4.8} km and are obtained from wavefields reconstructed with the correct 1n = 0.25. The extended images
(d)-(f) correspond to anisotropy characterized by parameter n = {0.15, 0.25, 0.35}.
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Figure 6. (a) 2D salt model used to study the dependence of the extended CIPs with anisotropy, and (b) one shot gather for a source located at
{z,z} = {3.4,0} km. The earth model is anisotropic and characterized by parameter 7 = 0.25.

edge of the model, where the illumination is mainly from one tures, which allows for direct anisotropy analysis. The slope of
side even in the inline direction. the residual moveout in extended CIPs mainly depends on 7,
which simplifies parameter estimation in anisotropic media. A
comparison of extended images between simple and complex
4 CONCLUSIONS models supports our assertion.

The distinct anisotropic signatures, needed for parameter es-
timation, tend to get lost in the mist of the complexity of the
velocity in the medium. Extended images preserve such signa-
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Figure 7. 2D extended CIPs at {z, 2} = {4, 0} km for the salt model, Figure 6(a). The extended images (a)-(c) correspond to individual shots at
surface coordinates z = {3.2,4.0, 4.8} km and are obtained from wavefields reconstructed with the correct 7 = 0.25. The extended images (d)-(f)

correspond to anisotropy characterized by parameter n = {0.15,0.25,0.35}.
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ABSTRACT

Surface microseismic data is being increasingly used in monitoring hydraulic-
fracturing. Here, we suggest changes in the acquisition as well as processing
stages to improve microseismic imaging and source characterization. Improved
microseismic hypocenter imaging and reliable source mechanism estimation can
be achieved by illuminating the hypocenter evenly from all directions. We intro-
duce methodologies for designing optimized surface arrays for 2D and 3D acqui-
sitions. Accurate microseismic imaging also requires the exact Green’s function
between the image point and the receivers. An inaccurate Green’s function leads
to poor focusing and numerous spurious microseismic hypocenters. We also in-
troduce imaging conditions that can yield accurate source signatures even if
they are extended in space and time. Such source signatures can yield the time
history of fracture propagation in space and might be used to infer the time-
varying slip along pre-existing fractures. These imaging conditions also reduce
spurious events in the image. All conclusions are supported with numerical ex-

amples.
1 INTRODUCTION

Microseismic monitoring using surface arrays is becom-
ing increasingly popular because of its reduced cost and
increased aperture compared to borehole monitoring.
Surface microseismic data is commonly acquired using
a star-shaped array (Duncan & Eisner, 2010, Figure 1)
or on a regular grid. These receivers can be placed on
the surface or can be buried in the ground to improve
the signal-to-noise ratio. Little attention is paid towards
designing the array to optimize imaging using a fixed
number of receivers. Therefore, optimizing a survey de-
sign can not only lead to better microseismic charac-
terization but also result in cost savings. In fact, it is
nowadays routine to perform illumination studies in or-
der to design the best acquisition surveys in conven-
tional reflection seismology. Here, we discuss how sur-
face microseismic arrays can be designed to yield better
hypocenter imaging.

Other important aspects of microseismic imaging
involve the choice of imaging condition and the knowl-
edge of the exact Green’s functions between the im-
age point and the receivers. The recorded data are
imaged through a Kirchhoff-summation based algo-
rithm (Gajewski et al., 2007) or a reverse-time approach
(McMechan, 1982; McMechan et al., 1983; Fink et al.,

2000; Lu, 2002) with the primary aim being the loca-
tion of microseismic hypocenters. Reverse-time imaging
and Kirchhoff-summation based algorithms commonly
use a smooth velocity model for imaging and therefore
might not yield an accurate Green’s function. We dis-
cuss the importance of an accurate subsurface model
and its impact on imaging microseismic data.

Recent developments by Ulrich et al. (2013),
Douma et al. (2013) and Bazargani & Snieder (2013)
show that better temporal and spatial focusing can be
achieved by designing optimal inverse-filters from the
recorded data which are then back-propagated through
a velocity model. Here, instead of optimizing the focus-
ing of the microseismic data, we compute the source
signature of the microseismic events. Imaging of mi-
croseismic data commonly refers to the reconstruction
of the hypocenters of the microseismic sources. There-
fore, microseismic images are usually displayed only as a
function of the spatial axes. Microseismic sources, how-
ever, are functions of time as well. For example, it is
most likely that the opening of a fracture is not instan-
taneous; instead different portions of the fracture likely
open at different times resulting in a microseismic source
extended both in space and time. Another example of
such sources would be microseismic tremors that occur
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Figure 1. Plan-view of star-shaped surface microseismic
array. The blue lines represent the receiver arrays. Source:
Duncan & Eisner (2010).

due to the slow slippage along a fault or fracture plane.
Hence, by microseismic imaging we refer to the process
of finding the microseismic source signature as a func-
tion of both space and time. By computing the source
signatures as a function of time and space, we can infer
the time history of fracture propagation in space and
the time-dependent slip along natural fractures. There-
fore, we introduce and analyze different imaging condi-
tions that look for coherence in time as well as space be-
tween the computed Green'’s functions and the recorded
data and test their effectiveness in imaging microseismic
data. Our approach is particularly useful for microseis-
mic sources that are extended in time and space.

2 SURFACE ACQUISITION

In order to obtain the best possible focus through imag-
ing and also decipher the source radiation pattern ac-
curately, one needs to sample the hypocenter evenly
from all angles. In other words, the hypocenter must
be evenly illuminated from all directions. If the mi-
croseismic source is imaged using plane waves evenly
spaced in angle (Figure 2a), one can obtain an evenly
illuminated image. However, neither a star-shaped sur-
face array nor a regular-grid array would illuminate the
hypocenter evenly from all directions. Instead, such re-
ceiver arrays will lead to the preferential illumination of
certain angles (Figure 2b) thereby resulting in X-shaped
hypocenter images. More importantly, such uneven an-
gular sampling of the hypocenter might lead to an in-
correct estimation of the source radiation pattern.

(b)

Figure 2. Hypocenter reconstruction using plane waves (a)
evenly incident from all directions and (b) incident from re-
ceivers evenly spread along a line on the surface.

(a)

v v

(b)
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Figure 3. 2D surface array for optimized design (a) and
conventional design (b). The optimized array is designed for
a hypocentral depth of 1800 m, maximum offset of 6000 m
and a constant velocity gradient of ~1.3 s~ 1.

2.1 Optimal design

Here, we suggest using a modified surface array de-
signed with the aim of illuminating the microseismic
hypocenters evenly from all directions. To design such
an array one needs an approximate smooth velocity
model of the subsurface, approximate center of the
zone of microseismicity, maximum receiver offset, and
the number of receivers. A practical solution would
be to use a constant vertical velocity-gradient of the
subsurface being monitored. Since most unconventional
reservoirs undergoing hydraulic fracturing are fairly
laterally-homogeneous, a well-log could be used to find
the best-fit vertical velocity gradient. The mid-point of
the hydraulically-fractured zone can be used for the cen-
ter of the microseismicity-zone. By knowing the maxi-
mum offset and the number of receivers, one can shoot
rays from the microseismicity-zone-center at equally-
spaced (in angle) takeoff angles. The intersection of
these rays with the surface determine the optimal lo-
cations of the surface receivers. For such simple ve-
locity models, one can use analytic ray-path formula-
tions for determining the location of the surface re-
ceivers; for more complicated models, one can use ray-
tracing. Such a modified design was also proposed by
Foulger & Julian (2011); Miller et al. (1998) with the
above aim in mind (sampling the hypocenter evenly
in angle). Miller et al. (1998) used ray-tracing to op-



(b)

Figure 4. (a) Geodesic grid used in sampling the
imaginary sphere surrounding the hypocenter. (b) Icosa-
hedron that is divided to construct a geodesic grid.
Source: Geodesic polyhedra, René K. Miiller

timally place receiver stations on the surface to monitor
a geothermal site.

The computation of these evenly-spaced (in takeoff
angle) rays is straightforward in 2D where the polar an-
gle at the hypocenter has to be divided into n—1 angular
sectors with n being the number of surface receivers. An
example of an optimal 2D surface receiver array is shown
in Figure 3a; a conventional array (equally spaced on
the surface) is also shown in Figure 3b for comparison.
For 3D acquisition design, however, the computation of
the equi-spaced takeoff angles is more involved because
the whole sphere around the hypocenter needs to be
evenly sampled (instead of the circular aperture in 2D).
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Figure 5. Plan view of the optimized surface acquisition in
3D. The optimized array is designed for a hypocentral depth
of 1800 m, maximum offset of 6000 m and a constant velocity
gradient of ~1.3 1.

Miller et al. (1998) and Foulger & Julian (2011) use the
intersection points of the latitudes with the longitudes of
a sphere to determine the azimuth and take-off angle of
each ray. Their approach, however, will not sample the
sphere evenly; it will lead to finer sampling of points
near the poles and sparse-sampling of points close to
the equator. Here, we use a geodesic grid (Figure 4a) to
determine the azimuth and takeoff angles of the rays be-
cause the sphere surrounding the hypocenter is sampled
evenly on a geodesic grid. Depending on the number of
receivers, an icosahedron (Figure 4b) is divided evenly
to yield a geodesic grid. The vertices of the geodesic grid
yield the azimuth and takeoff angles of the rays. As de-
scribed above, intersection of these rays (shot from the
hypocenter at the computed azimuth and takeoff an-
gles) with the surface determines the optimal locations
of the receivers. An example of such an optimal 3D mi-
croseismic survey is shown in Figure 5. Note the marked
difference in the optimal receiver pattern from that of a
star-shaped array and a regular-grid array.

The instrumentation of borehole receiver strings
prevents me from suggesting the above optimized re-
ceiver spacing for borehole acquisition. However, if mul-
tiple strings are used in monitoring microseismicity, one
could still use the above optimization scheme to design a
borehole acquisition geometry that illuminates the zone
of microseismicity evenly from all directions.
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(a)

(d)

Figﬁre 6. (a,b) Hypocenter images obtained using the optimized (Figure 3a) and the conventional (Figure 3b) 21-receiver
array, respectively. (c,d) Images obtained from increased number of receivers (161).

2.2 Imaging

An acquisition design optimized to illuminate the
hypocenter evenly from all directions should yield bet-
ter images of the microseismic source. Images in Fig-
ures 6a and 6b are obtained using reverse-time imaging
of the microseismic data acquired on an optimized ar-
ray (Figure 3a) and a conventional array (Figure 3b),
respectively. Note that the event focusing is better in
Figure 6a than in Figure 6b. The individual plane waves
forming the focus at the hypocenter are also visible. As
expected, the plane waves in Figure 6a are evenly spaced
in angle while in Figure 6b, they are unevenly spaced
and concentrated at specific angles. Increasing the num-
ber of receivers increases the image quality (Figures 6c
and 6d) for both acquisitions; however, the uneven illu-
mination of the conventional acquisition still leads to an
X-shaped image in Figure 6d. Note the similarity of Fig-
ures 6¢ and 6d to the plane-wave schematic in Figure 2a
and 2b, respectively.

3 IMPORTANCE OF THE SUBSURFACE
MODEL

Reverse-time imaging (McMechan, 1982;
McMechan et al., 1983; Lu, 2002) of microseismic
data involves time-reversal of the data and their
re-injection into a smooth velocity model. Following
back-propagation, an imaging condition is applied
which is usually some snapshot of the back-propagated
wavefield at some time that is thought to be the
initiation time of the microseismic source. Reverse-time
imaging can, therefore, be written as

T(wixs) = [Zd*(w;xr)cs(w;xs,xr)]

*

= l:z S* (w; Xa )G (w; Xr, Xs ) G's (w; Xs, x,.)]

= S(w; xs) [Z G* (w; Xr, X5 )G s (w; Xa, x,)]
' o)
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Figure 7. (a) The layer-cake velocity model used in generating borehole microseismic data. The pentagram represents the
hypocenter of the microseismic source and the red triangles represent the borehole receivers. The borehole receivers are emplaced
as two vertical receiver arrays. Each array comprises of 11 receivers evenly spaced at 20 m intervals. (b) Smoothed version of

(a)-

where Z(w; xs) is the image at image point xs, Xr repre-
sent the receiver coordinates, w is the frequency, * repre-
sents complex conjugation, d is the microseismic data, G
is the true Green’s function, G, is the Green’s function
computed during back-propagation in a smooth back-
ground velocity, and S is the source signature at image
point Xs.

Ideally we would like equation 1 to yield the true
source signature at location xs i.e. Z{w;Xs) = S{w; Xs).
This means that in order to get the best possible im-
age, G, should be equal to G. This can be achieved
by using the exact velocity (and density) model for
back-propagation of the recorded data. For example, the
well-log derived velocity (and density) could be used
for back-propagation in laterally-homogeneous media.
If a smooth model is used instead, the image (Fig-
ure 8a) could be substantially different from the true
image (Figure 8b). In the absence of a detailed and ac-
curate velocity model, an alternate approach suggested
by Behura & Snieder (2013) could be used. It is note-
worthy that even if the true Green’s function is used

in equation 1, reverse-time imaging will yield a source
signature that is scaled by 3_|G|?; therefore, the image

Xyr
obtained using reverse-time imaging will not be accu-
rate unless the subsurface velocity and density are ac-
tually slowly varying such that |G|* = &, where & is the

Kronecker delta.

4 IMAGING CONDITIONS

In order to obtain accurate source signatures of micro-
seismic sources, we need to modify the imaging condi-
tion used in reverse-time imaging (equation 1). The mi-
croseismic data recorded at receiver xr due to a source
at some location Xs is given by

d(w; Xy, Xs) = S(w;xs) G(w; Xr, Xs), (2)

where w is the frequency, d(w;Xr,Xs) is the data at re-
ceiver X, S(w;xs) is the source signature at xs, and G
is the Green'’s function between the source location xs
and the receiver location x,. Note that equation 2 is de-
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(a)

Figure 8. Reverse-time images of the microseismic source in Figure 7a using (a) the smoothed model (Figure 7b) and (b) the

correct velocity model (Figure 7a).

fined only for a single microseismic source for simplicity;
use of multiple sources will introduce undesirable cross-
talk in the images. The source signature can then be
computed from equation 2 using

d(w1 Xr, xS)

S(w;xs) = G(w; Xr,Xs)

®)
S(w; xs) in equation 3 is the source signature estimate
using data from only a single receiver. In the case of
multiple receivers, one can sum over the estimates from
all the receivers:

S(w Xs) _ Z d(w Xr, Xs) (4)

G(w;Xr, Xs)

Equation 4 is a deconvolution operation followed by a
summation over all the receivers. One needs to perform
a stabilized deconvolution in equation 4 such as the
water-level deconvolution (Aster et al., 2012). Examples
of the image resulting from the imaging condition 4 ap-
plied to the data in Figure 7a are shown in Figure 9a.
Note that the above methodology is different from that
of Ulrich et al. (2013) and Douma et al. (2013) who de-
sign inverse-fiters using deconvolution that improve the
focusing of the time-reversed data in time and space.

To avoid the deconvolution operation, equation 4
can be modified to

S(w;xs) = Zd(w; Xr, Xs )G (w; Xr, Xs), (5)
Xy
where * represents complex conjugation. Equation 5

represents a cross-correlation operation between d and
G. Note that |G|? has been omitted going from equa-
tion 4 to equation 5 for stabilization purposes. Omission
of |G|? will incorporate inaccuracies in the amplitude

spectrum of the source signature; therefore, although
imaging condition 5 might yield the correct phase of
the microseismic source, its amplitude will be inaccu-
rate unless |G|? = 4. If a smooth velocity model is used
for back-propagation, equation 5 becomes the cross-
correlation imaging condition 1 used in reverse-time
imaging. Figure 9b shows the image resulting from the
cross-correlation imaging condition 5.

In the presence of multiple microseismic sources ex-
tended in space, imaging conditions 4 and 5 will re-
sult in cross-talk between the various sources and might
yield degraded images. Also, in the above two imag-
ing conditions (equation 4 and 5), the source signa-
tures are computed for each receiver independently and
then stacked. In other words, imaging conditions 4 and
5 use only the temporal coherence between the data
recorded at a receiver with the computed Green’s func-
tion. It might be possible to reduce cross-talk and im-
prove imaging by exploiting spatial coherence in ad-
dition to temporal coherence. Hence, we modify equa-
tions 4 and 5 by performing a Fourier transform on the
spatial receiver axis to obtain

e

and

S(wixa) = 37 d(w; kr, Xa) G (w5 kr, Xa), (7)
kr

respectively; k, is the wavenumber computed over the
receiver coordinates. Images resulting from imaging con-
ditions 6 and 7 are shown in Figures 9c and 9d, respec-
tively.



Equation 2 can also be written as a linear system
of algebraic equations

d=GS. )

The least-squares solution (Aster et al., 2012) for S
from the equation 8 is given by

S., = (GTG) 'GTd, 9)

where GT represents the conjugate transpose of G.
Equation 9 is solved for each frequency independently to
obtain S(w) at every image point of interest. [Note that
the above inversion approach in equation 9 is different
from that of Bazargani & Snieder (2013) who design in-
jection sources (to be injected at the receiver locations)
that optimally focus the microseismic event at a prede-
fined time and space.] The image obtained from imaging
condition 9 is shown in Figure 9e.

Note that the above imaging conditions result in
images that are extended in time; images extended in
space can be obtained by varying the image point Xs.
This is different from conventional imaging conditions
where a zero-time imaging condition is applied to the
back-propagated wavefield. Such an imaging condition
assumes that we know the initiation time of the micro-
seismic source and that the source is compact in time.
However, as discussed above, microseismic sources can
be extended both in space and time (for example, mi-
croseismic tremors); therefore, the imaging conditions
introduced above should lead to a better characteriza-
tion of microseismicity.

We also demonstrate the above imaging conditions
on the Sigsbee model (Figure 10a). The microseismic
survey comprises of 367 receivers spread on the surface
at an equal spacing of 75 ft. Two microseismic sources
(Figure 10a) are used for generating the data; the initi-
ation times of the left- and the right-source are 0.096 s
and 3.36 s, respectively. Also, the left source has a higher
amplitude than the right source. For imaging, we use
the smoothed velocity model shown in Figure 10b. The
exact Green’s functions necessary for imaging are gen-
erated using the algorithm of Behura & Snieder (2013).
The resulting images obtained from the above five imag-
ing conditions are shown in Figure 11. The images corre-
spond to a depth of 5700 ft. All five imaging conditions
reconstruct the source accurately at their correct times
and spatial location. However, imaging condition 7 con-
tains the least artifacts (Figure 11d). Overall, Figures 9
and 11 show that imaging conditions 6, 7, and 9 yield
the best images while minimizing false positives.

5 DISCUSSION AND CONCLUSIONS

Microseismic imaging can be improved by evenly illumi-
nating the hypocenters from all directions. The modi-
fied surface acquisition suggested here results in uniform
sampling of microseismic hypocenters and better images
as corroborated by synthetic examples.
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The optimized surface acquisition design intro-
duced has to be designed with a specific imaging zone in
mind. Subsequently, microseismic hypocenters located
far away from this imaging zone might not be opti-
mally illuminated using the modified design. Still, most
of the microseismicity is confined to the vicinity of the
hydraulically-fractured zone which makes the optimized
design useful.

The time-space imaging conditions discussed here
yield good images and minimize spurious events on the
image at the same time. These time-space imaging con-
ditions exploit the similarity of the acquired data with
the computed Green’s function in both time and space.
An accurate and detailed velocity model is also ex-
tremely important in imaging and reducing false pos-
itives in microseismic analysis.
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Figure 11. Images of the microseismic source in Figure 10a obtained using imaging condition 4 (a), 5 (b), 6 (c), 7 (d), and 9
(). The images correspond to a depth of 5700 ft. (f) Depiction of the image slices displayed in (a)-(e).
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ABSTRACT

Similar to surface reflection data, microseismic data also contain multiply-
scattered events. They are especially prevalent in borehole microseismic data
because of low attenuation. These scattered events, if not imaged accurately, can
lead to the spurious microseismic hypocenters. Here, we introduce an imaging
algorithm that accurately images not only the primary arrivals but also the mul-
tiply scattered events. The algorithm uses the exact Green’s function computed
using an iterative scheme based on inverse-scattering theory. Extraction of the
Green’s function, however, requires surface reflection data and a background
velocity model. Imaging of surface microseismic data involves computation of
the Green's function between the image point and the surface receivers and
the application of an imaging condition to the data. Borehole-microseismic-
data imaging, however, requires two additional steps — first, computation of the
Green’s function between the borehole receivers and the surface and second,
computation of the Green’s function between the image point and the bore-
hole receivers using seismic interferometry. Tests on synthetic data show that
our imaging algorithm not only locates the microseismic hypocenters accurately

but also substantially reduces the number of spurious events.

1 MULTIPLE ISSUES

As seismic waves propagate through the subsurface,
they undergo scattering because of the presence of het-
erogeneities (in velocity and density). In reflection seis-
mology, events undergoing more than one episode of
scattering are commonly referred to as multiples. Since
multiples can result in spurious reflectors on images, the
common practice is to predict and suppress them prior
to imaging. However, since multiples also contain infor-
mation about the subsurface heterogeneities, there is an
increased effort towards using them in imaging instead
of just discarding them.

Data recorded by passive sensors and during
active microseismic monitoring also contain singly-
and multiply-scattered events in addition to the di-
rect arrival. Such data are commonly used to lo-
cate the sources of these hydraulic-fracturing induced
microseismic events and thus compute an estimate
of the stimulated reservoir volume and the evolution
and geometry of induced fractures. Kirchhoff migra-
tion (Gajewski et al., 2007) and reverse-time imag-
ing (McMechan, 1982; McMechan et al., 1983) are the
imaging algorithms commonly employed to locate the
microseismic sources. Under Kirchhoff migration, the

image at any location is computed by first computing
the direct-arrival traveltime from the image point to the
receivers and then stacking the recorded data along this
traveltime-curve. In reverse-time imaging, the recorded
data is reversed in time and then injected into a smooth
estimate of the subsurface velocity. If the velocity model
is accurate, the direct arrivals will focus at the correct
microseismic hypocenters.

In the above imaging algorithms, the scattered ar-
rivals, however, will also focus at times and locations
that do not correspond to the true initiation time of the
microseismicity and the true hypocenters, respectively.
They will result in numerous false positives particularly
for large reflection coefficients. Many of the unconven-
tional reservoirs with underlying/overlying sand-shale
sequences can aggravate this issue. Scattering can be
problematic for borehole monitoring, in particular, be-
cause of the large magnitudes of the multiples. Unfor-
tunately, such false positives will not only lead to an
overestimation of the stimulated reservoir volume but
also result in a poor correlation of microseismicity with
production. An example of this is clearly evident in the
work of Roundtree & Miskimins (2011) where a sand-
stone is hydraulically fractured in a controlled exper-
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iment. The microseismic data, when imaged, resulted
in numerous hypocenters outside the sandstone block
(Jennifer Miskimins, personal communication).

1.1 Exact Green’s function necessary

One possibility to addressing the above scattering issue
in microseismic data is to predict and suppress the scat-
tered events on data prior to imaging. Unfortunately,
this requires the complete knowledge of the velocity and
density model; no data-driven approaches exist for pre-
dicting multiples in microseismic data. A comparison of
reverse-time imaging with smoothed versus true velocity
model is shown in Behura et al. (2013). The alternative
approach is to use all the data and image the scattered
arrivals (along with the direct arrivals) such that they
focus at the correct hypocenters. This approach neces-
sitates either the detailed and accurate knowledge of
the velocity (and density) model or the knowledge of
the Green’s function. It is extremely challenging to ob-
tain detailed information of the subsurface velocity and
density. Well-logs can provide such detailed models but
only locally. Seismic-inversion-derived subsurface mod-
els most commonly depict only the low-wavenumber
background.

1.2 Inverse-scattering theory to the rescue

Wapenaar et al. (2011) propose a methodology for re-
constructing the 3D Green’s function between any “vir-
tual source” in the subsurface and any location on the
surface using only surface reflection data and a back-
ground velocity model. Their proposal is the 3D ex-
tension of the 1D iterative algorithm of Rose (2002b,a)
who shows that in layered media, it is possible to fo-
cus all the energy at a particular time (or depth if the
velocity is known) by using a complicated source signa-
ture. Rose’s algorithm was also implemented on 1D seis-
mic data by Broggini & Snieder (2012) who again show
that a ’virtual source’ response can be generated from
surface reflection data alone. The background velocity
model is used to compute the direct arrivals between
the “virtual source” and the surface which are subse-
quently fed into an iterative algorithm to compute the
Green’s function. Details of the 1D algorithm are given
in Rose (2002b,a); Broggini & Snieder (2012); the 3D
algorithm can be found in Wapenaar et al. (2011) with
the derivation given in Wapenaar et al. (2013).

Here, we propose to use the above iterative algo-
rithm to reconstruct Green’s function between the sub-
surface image points and the surface and use them in
imaging the direct as well as the scattered events in mi-
croseismic data. We also introduce a methodology to im-
age borehole microseismic data by combining the com-
puted Green’s functions with seismic interferometry.

Figure 1. Schematic of the imaging algorithm applied to
surface microseismic data. d represents the microseismic data
recorded at the surface receivers (triangles) and G is the
Green’s function between any image point (denoted by the
star) and the surface receivers obtained from the iterative
algorithm.

2 SURFACE DATA IMAGING

The data recorded at a receiver x, due to a source at
some location x is given by

d(w; Xr, X) = Sx(w) G(w; xx, X), (1)

where w is the frequency, d is the data, Sx is the source
signature at x, and G is the Green’s function. Note that
Sx is not necessarily compact in time but can be com-
plicated and of long duration. The source signature can
therefore be computed by the application of an imaging
condition to the data. A detailed description of the var-
ious imaging conditions used in microseismic imaging is
given in Behura et al. (2013). Here, we use the 2D space-
time cross-correlation imaging condition (Behura et al.,
2013):

Sx(w) =Y d(w, kr) G* (w, kr), 2)
kr

where k. is the wavenumber over the receiver coordi-
nates and * represents complex-conjugation. Note that
Sx obtained from equation 2 is a function of time which
is different from the zero-time imaging condition com-
monly used in reverse-time imaging of microseismic
data.

2.1 Sigsbee test

We test our imaging algorithm on the Sigsbee model
(Figures 2) as it generates strong internal multiples. All
the boundaries in the velocity model are absorbing.
The microseismic survey comprises of 367 receivers
spread on the surface at an equal spacing of 75 ft. Two
microseismic sources (Figure 2a) are used for generating
the data; the initiation times of the left- and the right-
source are 0.096 s and 3.36 s, respectively. Also, the left
source has a higher amplitude than the right source.
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Figure 2. (a) The Sigsbee velocity model used in generating the microseismic data and the reflection seismic data. The two
pentagons represent the microseismic hypocenters and the triangles represent the receivers. There are a total of 367 receivers
spread on the surface at an equal spacing of 75 ft. (b) The smooth model used in imaging.

A fixed-spread receiver geometry is used for acquir-
ing the surface reflection data; this spread coincides with
the receiver geometry of the microseismic survey. Shot
locations for the surface reflection data also coincide
with the fixed-receiver spread. Thus, the surface reflec-
tion data comprises of 357 shot gathers, with each shot
gather containing 367 traces.

Figure 3a shows the image of the two microseismic
sources obtained using the imaging methodology intro-
duced here. Behura et al. (2013) argue that the image
of microseismic data should be displayed as a function
of space as well as time because the sources can be ex-
tended in both space and time. The images in Figure 3
correspond to specific depth slices of the 2 —x —t image
cube. Note that both microseismic sources have been
imaged at the correct time and also the right location;
even the relative amplitudes of the two sources are pre-
served. More importantly, there are no spurious events

in the image. The reverse-time image (Figure 3b), on the
other hand, contains numerous events most of which are
spurious. The left source is faintly visible, albeit its am-
plitude is much smaller than the spurious events; the
right source is barely discernible. Some of these spu-
rious events can be eliminated by smoothing the salt
body; this will, however, lead to mis-positioning of the
microseismic hypocenters (in time and space). There-
fore, in the presence of multiples, reverse-time imaging
can yield numerous false positives in identification of
microseismic sources. For such data containing multi-
ples, the inverse-scattering imaging method introduced
here should be the algorithm of choice.

3 BOREHOLE DATA IMAGING

Like surface microseismic data, borehole data can also
be imaged using the Green’s function G;; between the
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(2)

10

Figure 3. Images of the microseismic sources shown in Figure 2a obtained using the inverse-scattering-theory (a) and reverse-
time imaging (b). The images correspond to a depth of 5700 ft. Two iterations were used in computing G using the iterative
algorithm.
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Figure 4. Schematic of the borehole microseismic data imag-
ing algorithm based on Green’s function retrieval using the
iterative scheme. The triangles represent borehole receivers
and the star is the microseismic hypocenter. d is the bore-
hole microseismic data, G;s represents the Green’s function
between the image point and the surface, Gps represents the
Green’s function between the borehole receivers and the sur-
face, and G is the Green’s function between the image point
and the borehole receivers. G;; and Gpg are computed from
the surface reflection data using the iterative scheme, while
Gy is retrieved from G;; and Gy using seismic interferom-
etry.

image point and the borehole receivers. Giy, however,
cannot be directly computed using the iterative algo-
rithm of Rose (2002b,a) because the borehole receivers
are in the interior of the medium and because of the
absence of reflection data with both shots and receivers
in the borehole.. To compute G;, we use the following
algorithm:

(i) compute Gps, the Green’s function between the
borehole receivers and the surface receivers using the
iterative algorithm

(ii) similarly, compute G;s, the Green’s function be-
tween the image point and the surface receivers using
the iterative algorithm

(iii) obtain Gi from Gjs and Gps using seismic in-
terferometry (Wapenaar & Fokkema, 2006) based ei-
ther on cross-correlation, deconvolution, or multi-
dimensional deconvolution (Wapenaar et al., 2008).

Thereafter, we obtain the microseismic image by appli-
cation of the following imaging condition to the data:

Se(w) = don(w, kr) Giy(w, kr), 3)
kr

where dp;, is the borehole microseismic data and Sx is
the source signature at x.

3.1 Layer-cake test

We test the above borehole-microseismic-data imaging
algorithm on a layer-cake velocity model (Figure 5a).
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The velocity model is constructed by extrapolating
laterally a well-log velocity profile from Pennsylvania
(Trenton Black River Project — Appalachian Basin).

Similar to the Sigsbee example above, all the
boundaries are absorbing. The microseismic data is gen-
erated for a single source location shown in Figure 5a
and recorded at the 22 borehole receivers (Figure 5a).
The initiation time of the source is 0.2 s. The surface re-
flection data is acquired on a fixed-receiver spread with
461 receivers equally spaced at 25 m intervals. The shot
points coincide with the receiver spread.

In order to perform imaging using our methodol-
ogy, we compute G;s, Gps, and Gjp as described above.
Two iterations were used in computing Gis and Gps us-
ing the iterative scheme. Thereafter, we apply imaging
condition 3 on the borehole microseismic data. The re-
covered image for the true source depth level is shown
in Figure 6a. Note that the focusing is better than that
for reverse-time imaging (Figure 6b). In addition, the
spurious events have been largely eliminated.

4 ROLE OF BACKGROUND VELOCITY

The background velocity model is used to com-
pute the direct arrivals which are thereafter in-
put into the iterative algorithm to calculate the
Green’s function Wapenaar et al. (2011). As suggested
in (Wapenaar et al., 2011), microseismic events visible
on the data can also be substituted for direct arrivals.
However, since we neither know the hypocenters of such
events and nor are there microseismic sources every-
where, it is impractical to use visible events for direct
arrivals.

A viable solution would be to use arrivals from per-
foration shots as direct arrivals because we already know
the perforation locations. If the medium is laterally ho-
mogeneous (commonly true for unconventional reser-
voirs), one could use a well-log-derived velocity profile to
compute direct arrivals for other image points from the
perforation-shot events using upward/downward wave-
field continuation. Such an approach would alleviate the
need for a background velocity model.

As mentioned above, Green’s function retrieval
using the iterative algorithm of Rose (2002b,a);
Wapenaar et al. (2011); Broggini & Snieder (2012) uses
surface reflection data. Since the density information is
already contained in the reflection data, the events cor-
responding to the scattered waves in the reconstructed
Green’s functions will have accurate amplitudes. This
greater accuracy should further help in reducing false
positives in microseismic imaging and also yield more
accurate source signatures.
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(b)

Figure 5. (a) The layer-cake velocity model used in generating borehole microseismic data and the surface reflection data. The
pentagon represents the hypocenter of the microseismic source and the triangles represent the borehole receivers. The borehole
receivers are emplaced as two separate arrays — one horizontal and the other vertical. Each array comprises of 11 receivers that
are evenly spaced at 20 m intervals. (b) The smooth velocity model used in imaging.

5 DISCUSSION

Microseismic imaging using conventional imaging algo-
rithms uses only the recorded data and a background
velocity model. The imaging technique described here,
however, needs surface reflection data in addition.
Nonetheless, it is becoming common practice to ac-
quire both surface reflection data and microseismic data
for detailed characterization of unconventional plays.
Moreover, the iterative algorithm requires an accurate
knowledge of the source signature in the surface reflec-
tion data. The source function is known in many cases
(e.g. vibroseis acquisition) or can be recorded in oth-
ers (e.g. air-gun source). Where, the source signature is
unknown, deterministic methods such as Virtual Real
Source (Behura, 2007) should be used to compute it.
The iterative algorithm of Rose (2002b,a);
Wapenaar et al. (2011); Broggini & Snieder (2012)
can successfully recover the Green’s function when
all the scattering is in the interior of the medium. In
the presence of a free-surface, however, the algorithm
fails to compute the exact Green’s function. Using

a modified algorithm, Singh et al. (2013) show that
the exact Green’s function can be extracted even in
the presence of free-surface reflections. This modified
algorithm might be used for imaging microseismic data
containing free-surface multiples.

The imaging algorithm introduced here is substan-
tially more computationally intensive than conventional
algorithms such as reverse-time imaging and Kirchhoff
imaging. Computation of the direct arrivals is the pri-
mary driver of the cost. There are two strategies for
computing the direct arrivals between the image points
and the surface receivers. First — the direct arrivals for
each image point can be computed on the fly while the
code is being executed. The number of forward com-
putations will equal the number of image points. This
will require significant processor power but have min-
imal disk input-output costs. Second — since there are
far fewer receivers than image points, one could compute
the direct arrivals for all image points from each receiver
location independently and then store them to the disk.
Thus the number of forward computations will equal
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Figure 6. Images of the microseismic source shown in Figure 5a obtained using the inverse-scattering-theory based algorithm
(a) and reverse-time imaging (b). The images correspond to the true depth of the microseismic hypocenter (1800 m). The event
at t =0.3 s and = =6 km in (a) corresponds to the location of the vertical receiver array. The same event manifests as a linear
moveout in (b).
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the number of receivers. Because of reciprocity, one can
then read the direct arrivals from the disk for each im-
age point; this, however, involves substantial disk input-
output operations. Based on the number of receivers
versus the number of image points, one can choose ei-
ther of the above two strategies.

The iterative algorithm of Rose (2002b,a);
Wapenaar et al. (2011); Broggini & Snieder (2012) is
applicable to only acoustic wave propagation. In the
presence of strong shear waves in microseismic data (es-
pecially in borehole recordings), all imaging algorithms
will fail to properly characterize the microseismicity.
Therefore, shear waves should be suppressed in the data
before imaging. Shear-wave suppression is more critical
for borehole data and less so for surface acquisition
because of the strong near-surface attenuation.

6 CONCLUSIONS

Imaging of microseismic data in the presence of multi-
ples will result in numerous false positives i.e. identi-
fication of spurious microseismic hypocenters. In order
to image such data accurately, we have developed an
algorithm that uses exact Green’s function derived us-
ing an iterative scheme based on inverse-scattering the-
ory. Both surface- and borehole-microseismic data can
be imaged using our approach. Tests on synthetic data
show that our approach can reduce false positives sig-
nificantly as well as improve the focusing of the micro-
seismic hypocenters.
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Locating a microseismic event using deconvolution
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ABSTRACT

We demonstrate a technique to enhance the ability of imaging the location of
a microseismic event by improving both spatial and temporal focusing. The
technique improves locating a microseismic event in a velocity model for which
the interface boundaries are approximate but where it has the correct mean
slowness. Our method designs a signal to be rebroadcasted from the receivers,
using only the waves recorded at each receiver, such that the wave field has an
optimal temporal focus at the source location. Additionally, this procedure leads
to an improved spatial focus of the wave field. The numerical test shown include
additive noise. This proposed technique only involves a simple preprocessing
step to the recorded data and its cost is hence negligible compared to the total

cost of microseismic imaging.

Key words: Microseismic, Time reversal, Deconvolution

1 INTRODUCTION

Microseismic events occur naturally or as a result of
production or hydraulic stimulation (Duncan, 2005;
Kendall et al., 2011). Clusters of microseismic events
delineate faults and the formation of fractures and can
indicate new or reactivating regions of failure. As hy-
draulic fracturing is becoming increasingly widespread,
operators are aiming to monitor the induced events in
order to characterize a reservoir. This has lead to a need
from the industry to develop more accurate ways of lo-
cating and monitoring microseismic events (Foulger and
Julian, 2012).

A standard processing method is based on pick-
ing arrival times of P and S waves. This process is,
however, difficult when significant noise is present in
the data and thus can require extensive user interaction
(Bancroft et al., 2010; Bose et al., 2009; Hayles et al.,
2011; Kummerow, 2010; Song et al., 2010). An alter-
native approach to locate events is by imaging the time
reversed signal to focus microseismic signal at the source
position (Artman et al., 2010; Lu and Willis, 2008; Lu,
2008; Steiner et al., 2008). The advantage of imaging
the time reversed signal is that it does not require pick-
ing of arrival times, this is of particular importance for
noisy data. In the imaging approach, one usually uses
time reversal to focus the recorded waves at the source
location in space and time (Artman et al., 2010).

If one time reverses the waves at every point in

space, the wavefield will focus onto the original source
location. If, however, the wavefield is sampled at only

a limited number of locations, then it is not obvious
that time reversal is the optimal way to focus energy on
the original source. Much research has been carried out
on focusing sparsely sampled wavefields (Aubry et al.,
2001; Bertaix et al., 2004; Fink, 1997; Gallot et al.,
2011; Jonsson et al., 2004; Larmat et al., 2010; Mon-
taldo et al., 2004; Parvulescu, 1961; Roux and Fink,
2000; Tanter et al., 2001, 2000; Vignon et al., 2006).
In this letter, we explore a simple extension to time
reversal, based on deconvolution, as previously derived
by Ulrich et al. (2012), to improve our imaging for lo-
cating a microseismic event. This method is a robust,
though simplified, version of the inverse filter (Gallot
et al.,, 2011; Tanter et al., 2000, 2001). It calculates a
signal to be rebroadcast from the receiver such that the
output at the focal location becomes an approximate
delta function &(t) and uses only the recorded signals at
each receiver.

As with all imaging methods, reverse time imaging
is unable to locate the microseismic event to a point
location when the velocity model isn’t the true veloc-
ity model or the aperture is poor; it causes the spatial
image to defocus. We propagate the deconvolved wave-
forms through a smoothed version of the true slowness
model. The local average of the slowness for this incor-
rect velocity model is equal to local average slowness of
the true velocity model.
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2 THEORY-DECONVOLUTION

Time reversal states that for a given recorded impulse
response, a simple reversal in time of that signal followed
by rebroadcasting the reversed signal from the receivers
focuses an impulsive function §(t) at the source location,

@) = Z:Ti(t)*n(—t) ~ §(t) (1)

where x denotes a convolution operator, r;(t) is the
recorded impulse response at receiver 3, and r;(—t) its
time reversed counterpart. Equation (1) states that the
autocorrelation of the recorded signal is ideally equal
to a delta function. In practice, however, time reversal
(TR) experiments are unable to recreate a true delta
function focus as one or more conditions necessary to
satisfy equation (1) are typically violated. For example,
if attenuation is present in the medium, time reversal
(TR) can not create a true delta function focus. Addi-
tionally, if the aperture is finite, TR experiments can
not create a true delta function focus. Given these lim-
itations, we introduce deconvolution to achieve a more
impulsive focusing in time.

Let us assume that time reversal is not able to cre-
ate a Dirac delta focus after rebroadcasting the time
reversed impulse response. We aim to find a signal such
that after rebroadcasting we get a temporal focus that
is approximately equal to a Dirac delta function. Thus,
we change equation (1) to

78 = S ru(t) % 9i0) 808 @

where f(t) is the back propagated signal at the source,
ri(t) is the recorded impulse response at receiver 4, and
gi(t) is the signal that is back propagated to the source
from receiver . We determine the backpropogated signal
gi(t) from the requirement that the right hand side of
the equation (2) approximates a delta function as well
as possible. In the frequency domain, this corresponds
to the requirement,

Z ri(w)gi(w) ~ 1. ®3)

This condition defines the signal that optimizes the tem-
poral focus at the source location. Equation (3), applied
to each receiver states that

1, riw)
ri(w) (W) +¢€’

gi(w) = ©
where r(w)r*(w) = |r(w)|*>. We introduce a regulariza-
tion parameter € to stabilize the deconvolution that sat-
isfies

€ =7 x mean(|r:(w)|?) . (5)

where 1y is a constant, which is sometimes referred to as
the waterlevel parameter (Clayton and Wiggins, 1976),
and the mean is calculated for each receiver over the
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Figure 1. Velocity models of the numerical experiment. Top
panel indicates the correct velocity model and represents
the velocity model used to propagate the source wavefield
through the medium. Bottom panel indicates the smoothed
velocity model with correct mean slowness. This model is
used for back propagation of the time reversed signal and
optimized inverse signal. The plus symbols represent the re-
ceivers, the circular dot represents the source.

frequencies for which the power spectrum differs signif-
icantly from zero. For small values of v, the deconvo-
lution may be sensitive to additive noise, whereas for
larger values of « the deconvolution reduces to time re-
versal. We choose the value of v by maximizing the en-
ergy in a 80m by 80m region around the source. This
process is similar to the time-domain procedure devel-
oped by Clayton and Wiggins (1976). We used a value of
v = 0.272 in all experiments shown. An inverse Fourier
transform takes g{w) back into the time domain. One
can then directly rebroadcast g(t) and does not have to
apply a time reversal operation on g().

3 MICROSEISMIC EVENT LOCATING

The purpose of this study is to optimize microseismic
event location using deconvolution. We use the velocity
model shown in the top panel of Figure 1 to propagate
the source wavefield to the receivers. The model consists
of horizontally continuous layers whose velocities range
from approximately 5 km/s to 6.6 km/s. In practice, one
does not know the true velocity model. For this reason,
we used the smoothed velocity model, shown in the bot-
tom panel of Figure 1, for the back propagation. The
velocity model is smoothed by using a two-dimensional
triangle smoothing with a smoothing radius of .185 km
in the z, and x direction (Fomel, 2007). This smoothed
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Figure 2. Wavefield excited by the source in figure 1 after
propagation through the true velocity model (top panel of
figure 1). Bandlimited noise is added to the data, the signal
to noise ratio is .89

velocity model has the same mean slowness as the cor-
rect velocity model.

The location of the source is at (z, z) = (0.51 km,
2.68 km). The source wavelet is a Ricker wavelet with
dominant frequency of 150 Hz. We use 56 receivers dis-
tributed over 2 vertical boreholes in our model. The z-
locations of the receiver boreholes are 0.74 km and 0.88
km. The receivers range from a depth of 2.36 km to 2.86
km with a spacing of 18.5 m.

We find the focus time without knowing the trig-
gering time. We do so by rebroadcasting our calculated
inverse signal, producing an image every time step, and
then calculate the energy of the spatial focus in a region
around the source location until it reaches a maximum.
In order to make the numerical simulation more realis-
tic, we added noise to our recorded data at the receivers
before running the time reversal or deconvolution pro-
cess. Thus, both processes deal with the same noise.
The additive noise only contains frequencies within the
bandwidth of the data. The energy ratio of the signal
to noise, defined as the ratio of the sum of the absolute
values of the signal and noise squared, is equal to 0.89.
The noise-contaminated data thus produced are shown
in Figure 2.

As shown in Figure 3, deconvolution produces bet-
ter spatial focusing than does time reversal. This allows
one to find the location of the microseismic event with
higher accuracy. This is possible because deconvolution
suppresses the temporal sidelobes of the refocused sig-
nal and thus compresses more of the wave energy into
the focus at the event time (¢ = 0). In order to com-
pare the spatial focusing of each method, we show in
figure 4(c) and (d) horizontal slices of the spatial im-
age at the depth of the source at the time of the focus
(t = 0). Figure 4(d) illustrates that deconvolution im-
proves spatial focusing compared to simple time reversal
(Figure 4(c)). We quantify this improved spatial focus-
ing by computing the ratio of the energy near the focus
and the total energy. Using a window centered at the
source location with a width of 20 m, we calculated the
energy of the focus. Dividing the energy of the focus
by the total energy gives us the spatial energy ratio of

x (km)
08 0.8

Figure 3. Wavefield p(x,t = 0) for deconvolution (top
panel) and time reversal (bottom panel). The plus symbols
represent the receivers, the circular dot represents the source.
These images were created by back propagating the time re-
versed and inverse optimized signal through the incorrect
velocity model (bottom panel of figure 1).

the focus. Deconvolution yields a spatial energy ratio of
48% while time reversal has a spatial energy ratio of only
31%, which indicates quantitatively that deconvolution
improves the spatial focus of a microseismic event.

We next consider temporal focusing. Figure 4(a)
and (b) show improved temporal focusing for the decon-
volution method compared to time reversal. We quan-
tify the temporal focusing by computing the ratio of the
energy near focus and the total energy. Using a window
centered at t = 0s with width of .003s, we calculated
the energy of the temporal focus. Dividing this focused
energy by the total energy gives us the temporal energy
ratio of the focus. Deconvolution has a temporal energy
ratio of 49% while time reversal has a temporal energy
ratio of 40%. Thus, deconvolution improves temporal
focusing.

In conclusion, deconvolution improves both tem-
poral and spatial focusing for our model. This allows
one to locate microseismic events with greater accuracy,
even when the velocity model is not the true model and
additive noise is present. Deconvolution improves spa-
tial focusing even though the method we introduced is
designed to improve temporal focus. It was shown by
Ulrich et al. (2012) that improved temporal focusing
improves spatial focusing for the spherically symmetric
part of the focused wave field..
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Figure 4. Temporal and spatial focused images produced by
back propagating the calculated time reversed signals using
time reversal and deconvolution for vertical borehole array.
(a) Temporal focus at the source location obtained for time
reversal, (b) Temporal focus at the source location obtained
for deconvolution, (c) Horizontal cross section through the
source depth at ¢t = 0 obtained for time reversal, (d) Horizon-
tal cross section through the source depth at ¢ = 0 obtained
for deconvolution.

4 IMPROVED TEMPORAL FOCUSING
LEADS TO IMPROVED SPATIAL
FOCUSING

In this section, we show that better temporal focusing
implies better spatial focusing for the spherical average
of the focus. We begin by first considering the wave field
near its focal spot at » = 0 and consider the medium
to be locally homogeneous in that region. The solution
of the Helmholtz equation in an acoustic, homogeneous
medium can be written as

oo m=l
p(r,0,0,w) = Z Z almjl(kr)ylm(e; ), (6)
=0 m=-1
see Table 8.2 of Arfken and Weber (2001). In this ex-
pression j; denotes the spherical Bessel function, Y}, the
spherical harmonics, and k = w/c, where c is the wave
speed. According to expressions (11.144) and (11.148)
of Arfken and Weber (2001), 5:(0) = 0 for I > 1 and
Jo(0) = 1. This means that at the focal point r = 0 only
the terms | = m = 0 contribute. Using Yoo = 1/v4w
(Table 12.3 of Arfken and Weber (2001)), this means
that at the focal point

Q00

p(r =0,0,p,w) Jas (7)
The properties of the wave field at the focal point thus
only depend on the coefficient agg. Since the l =m =0
component of the spherical harmonics expansion gives
the spherically symmetric component of the wave field,
the properties of the wave field at the focal point can
only bear a relation to the spherically symmetric com-

ponent of the wave field. The properties of temporal fo-
cusing can thus be related to the spherically symmetric
component of the spatial focusing only.

Because of this, we restrict ourselves to the spher-
ically symmetric component (I = m = 0) of the wave
field at the focal point. Using that jo(kr) = sin(kr)/kr,
the spherically symmetric component of Eq. (6) is given
by

—ikr eikr

p(r,w) = po “———, (®)

with po = —ago/(2ikv4r). The coefficient ps depends
on frequency. Using the Fourier convention f(t) =
[ po(w)e **dw, and using that k = w/c, Eq. (8) cor-
responds, in the time domain, to

t+r/c)— f(t—r/c
fer/o = ft=r/d) o

r

p(r,t) =

In this equation, f(t + r/c) denotes the wave that is
incident on the focus, and f(t —r/c) the outgoing wave
once it has passed through the focus.The field at the
focus follows by Taylor expanding f(¢+r/¢) in r/c and
taking the limit » — 0, this gives

pr=0,t) = 2f(¢). (10)

In this expression and the following, the prime denotes
the time derivative. Equation (10) states that the wave
field at the focus is the time derivative of the incoming
wave field and provides the temporal properties of the
focus.

In order to get the spatial properties, we consider
the wavefield near the focal point at time ¢ = 0. Setting
t =0 in Eq. (9), gives

=)= L1 ICri

Equation (11) states that the wave field at the time of
focus is the difference between the incoming and outgo-
ing wave and gives the spatial properties of the focus.

A improved temporal focus implies that f'(t) is
only nonzero for values of ¢ close to ¢ = 0. It follows
from Eq. (11) that if that is the case, then p(r,t = 0)
is localized near r = 0. Note that if a constant was
added to f when going from f'(t) to f(t), our conclu-
sion would not change because the constant would be
subtracted and cancelled out in Eq. (11).

5 CONCLUSION

We have introduced a method that improves temporal
focusing of a microseismic event. The method can be
beneficial for locating a microseismic event because it
also improves spatial focusing compared to the standard
time reversal method. We have shown how this tech-
niques improves the locating for a microseismic event
using synthetic data contaminated with additive noise.
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The simplicity and robust nature of this method al-
lows for a simple incorporation into existing reverse-
time imaging methods. The cost of the deconvolution
is minimal compared to running the finite difference
model. Thus, it can be added as a preprocessing step
without significant additional cost. Further research in-
volves extending this method to elastic waves excited
by a double couple source.
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microseismic data in VTI media
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ABSTRACT

Source locations are usually estimated from microseismic data using kinematic tech-
niques. Full-waveform inversion (FWI) can potentially provide more accurate source
parameters along with an improved velocity model by incorporating information con-
tained in the entire trace including the coda. Here, we address one of the key issues in
implementing FWI for microseismic surveys — efficient calculation of the gradient of
the objective function with respect to the model parameters. Application of the adjoint-
state method helps obtain closed-form expressions for the gradients with respect to the
source location and moment tensor. Computation of the forward and adjoint wavefields
is performed with a finite-difference algorithm that handles elastic VTI (transversely
isotropic with a vertical symmetry axis) models. Numerical examples illustrate the
properties of the gradients for the wavefield from a moment-tensor source in homoge-
neous and layered VTI media.

Key words: full-waveform inversion, adjoint-state method, anisotropy, transverse

isotropy, dislocation source, moment tensor

1 INTRODUCTION

Microseismicity has developed in recent years as an effi-
cient technique for reservoir monitoring (Maxwell, 2010;
Kendall et al., 2011). Microseismic experiments typically in-
volve recording the seismic response to hydraulic fracturing of
tight reservoirs, most often shales. The location of the induced
microfractures, as well as the origin time of the correspond-
ing seismic events can be inferred from the data acquired in
an observation borehole or at the surface. Usually only a sin-
gle borehole is available, but it is highly beneficial to record
microseismic data in several boreholes.

Accurate location of microseismic events requires knowl-
edge of the background velocity model. This initial model is
usually obtained from sonic logs and traveltimes of the di-
rect P- and S-waves excited by perforation shots and recorded
by geophones deployed in a monitor borehole. Afterwards,
the model can be updated using the traveltimes of microseis-
mic events. Velocity analysis without adequately accounting
for seismic anisotropy may lead to significant errors in event
location. In particular, shales are known to be transversely
isotropic and may become orthorhombic or possess an even
lower symmetry due to fracturing (Tsvankin and Grechka,
2011; Tsvankin, 2012). Van Dok et al. (2011) highlight the
sensitivity of estimated event locations to the anisotropy pa-
rameters of TI media. Grechka et al. (2011) demonstrate that

anisotropic velocity models constructed while locating micro-
seismic events provide more accurate source locations than
those obtained with models based solely on sonic logs and per-
foration shots.

It is also important to study the source mechanism asso-
ciated with microseismic events because it can reveal impor-
tant information about the rupture process. Earthquake point
sources are described by the second-rank symmetric seis-
mic moment tensor M;; with six independent elements. As
discussed by VavryCuk (2007), all components of the mo-
ment tensor for microseismic events can be retrieved from the
amplitudes of P-waves recorded in three boreholes or from
P- , SV-, and SH-wave amplitudes measured in two bore-
holes. For events located in the [x;, x3]-plane of a 2D az-
imuthally isotropic model, the in-plane polarized waves de-
pend on the moment tensor elements M;, M3, and M33,
which can be found from P- and SV-waves recorded in a single
borehole. Depending on the receiver geometry and distribution
of sources, microseismic data potentially can help estimate the
pertinent anisotropy parameters (Grechka and Duchkov, 2011)
and the source location (Grechka et al., 2011).

Most existing methods of event location are based on
kinematic inversion that replaces a seismic trace with the band-
limited §-functions corresponding to the direct arrivals, which
restricts the resolution according to the Rayleigh criterion (i.e.,
two sources appear as one if the distance between them is
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smaller than one-half of the predominant wavelength). Consid-
ering the increasing usage of back-projection techniques and
the rich information content of microseismic data, improved
results can be expected from full-waveform inversion (FWI).
Indeed, FWI operates with the entire trace including scattered
waves, 5o the results are not subject to the Rayleigh criterion.
Hence, for typical wavelengths in downhole microseismic sur-
veys, one can expect substantially reduced event-location er-
rors. Another potential benefit of FWI is an improved accuracy
of the velocity model.

FWI is used to build high-resolution velocity models
from seismic data using phase and, sometimes, amplitude in-
formation (Tarantola, 1984; Gauthier et al., 1986; Mora, 1987;
Pratt, 1999; Virieux and Operto, 2009). Recently FWI has
been extended to elastic and anisotropic media (Lee et al.,
2010; Kamath and Tsvankin, 2013), which makes it suitable
for multicomponent reflection and microseismic data.

The objective function in FWI quantifies the difference
between observed and predicted data in the time or frequency
domain. Efficient inversion requires application of iterative op-
timization schemes such as the conjugate-gradient method,
which involves calculation of the gradient of the objective
function with respect to the model parameters. In principle, the
gradient can be found from the Fréchet derivatives obtained
by differentiating the wavefield with respect to each model pa-
rameter. However, if the number of unknowns is large, compu-
tation of the Fréchet derivatives becomes prohibitively expen-
sive.

A computationally efficient alternative for computing the
gradient and model updating without the Fréchet derivatives is
the adjoint-state method (Plessix, 2006; Fichtner et al., 2006;
Fichtner, 2009; Kohn, 2011). This method makes it possible
to calculate the gradient using just two forward-modeling sim-
ulations: first to generate the forward wavefield, which yields
the predicted data, and second to compute the adjoint wave-
field.

There has been significant progress in applying ad-
Jjoint methods to tomographic velocity analysis and source-
parameter inversion in global seismology. Tromp et al. (2005)
and Liu and Tromp (2006) employ an adjoint formulation
based on the Lagrangian-multiplier method to derive the gradi-
ents for the P- and S- wave velocities in isotropic media. They
also analyze the sensitivity (Fréchet) kernels for 2D and 3D
velocity models. Kim et al. (2011) obtain gradient expressions
for the source parameters using the adjoint-state method and
implement conjugate-gradient inversion to estimate the mo-
ment tensor, location, and source time function for an earth-
quake in Southern California using a known isotropic veloc-
ity model. Morency and Mellors (2012) follow the same ap-
proach to evaluate the moment tensor and source location of a
geothermal event.

Here, we discuss the gradient computation for full-
waveform inversion of microseismic data. The current algo-
rithm is designed to estimate only the source location and mo-
ment tensor from 2D microseismic experiments.

We start by describing elastic finite-difference modeling
for dislocation-type sources in VTI media. The adjoint-state

method is then employed for efficient gradient calculation by
adapting to our problem the general expressions for the gradi-
ents obtained by Kim et al. (2011). Although we plan to esti-
mate the interval Thomsen parameters of layered VTI media
as well, the current formulation is limited to the gradients for
the source parameters. The performance of the algorithm is il-
lustrated by synthetic examples for homogeneous and layered
VTI media which include the wavefields obtained by forward
and adjoint finite-difference modeling and the gradients calcu-
lated for the source location and moment tensor.

2 FORWARD MODELING
2.1 Implementation

The wave equation for a homogeneous anisotropic medium
can be written as (Tsvankin, 2012):

2, 2
P%_Cijkl%=fh M
where u(x,t) is the displacement field, ¢;;; is the stiffness
tensor (i, j,k,I = 1,2,3), p (x) is density, £(¢) is the body force,
and ¢ is time.
Dislocation-type sources are described by the seismic
morment tensor,

My Mp Mg
M=| M Mxpn My |, ¢
M3 My My

which can be incorporated into the source term of equation 1
by using the notion of equivalent force (Aki and Richards,
1980; Dahlen and Tromp, 1998):

azu; azuk 8[8()( - xs)]
P oz~ CiM oxjox; Mij ox;

where X; is the source location, S(¢) is the source time func-
tion and 8(x — X;) is the spatial 3-function. A common numer-
ical approach for solving equation 3 exactly is finite differ-
ences (FD) (e.g., Graves, 1996). To describe 2D dislocation-
type sources in a FD algorithm, Coutant et al. (1995) develop
a formulation based on stress discontinuities.

S50, 3

2.2 Modeling examples

We carry out forward modeling for gradient computation
in VTI media with moment-tensor sources using the elastic
finite-difference code sfewe in MADAGASCAR . The model
is described by the Thomsen parameters (Thomsen, 1986;
Tsvankin, 2012) — the P- and S-wave vertical velocities Vpg
and Vso and the anisotropy coefficients €, 8, and y. In the
case of P- and SV-waves propagating in the [x,x3]-plane, the
wavefield is not influenced by . An important combination of
Thomsen parameters is the coefficient 6 = (Vpy/Vgg)? (e — 8),
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Figure 1. Vertical displacement generated by different moment-tensor sources in a homogeneous VTI medium. The medium parameters are p =2
g/cm?, Vpy = 4047 m/s, Vsp = 2638 m/s, € = 0.4, and 8 = 0 (6 = 0.94). The source moment tensor is defined in the coordinate system rotated by
the angle 8 with respect to the horizontal (x| ) axis. The source parameters are: (a) My; = 4-10'° Nm, M3 = 0, and M3 = 4-10'% Nm; (b) M1y =0,
M3 =4-10!° Nm, M33 =0, and 6 = 0°; (c) M = 0, M;3 = 4-10'* Nm, M33 = 0, and @ = 45°; and (d) M| = 0, M3 = 4:10'° Nm, M33 =0, and

0 =90°.

which is largely responsible for the kinematic signatures of
SV-waves in TI media.

The wavefields generated by explosive and dislocation-
type sources in a homogeneous VTI medium are shown in Fig-
ure 1. The moment tensor is defined under the assumption that
the medium around the source is locally isotropic. Due to the
influence of anisotropy, a purely explosive source generates in-
tensive S-waves in addition to P-waves (Figure 1 (a)). Figure 1
(b), (c), (d) display the wavefields excited by double-couple
sources with different orientation (the corresponding rotation
of the moment tensor is described in Appendix A). Rotation
of the source causes pronounced changes in the radiation pat-

tern of both P- and S-waves, which indicates the possibility of
constraining the source orientation using FWI.

3 GRADIENTS FROM THE ADJOINT-STATE
METHOD

3.1 Inverse problem

A mentioned above, the P- and SV-waves recorded in the
[x1,%3]-plane depend on the components My, M3, and M33
of the moment tensor. Originally, we invert just for these three
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moment-tensor elements and the source coordinates x; and x3
assuming that the velocity model and origin time are known.

The observed data dobs and predicted data dpre are pro-
duced by two forward simulations, where dp is obtained af-
ter modifying the source parameters used to generate dops. In
both cases, the elastic displacement field u(xs,x;,,) excited
by a source located at x; is recorded by N receivers located at
Xr, (n = 1,2,...,N). Note that the source locations for the ob-
served and predicted data may be different. The data residuals
are measured by the least-squares objective function, which
has to be minimized by the inversion algorithm:

1
F(m) = ) [l dobs — dpre(m)”2 . 4

3.2 Application of the adjoint-state method

The objective function depends on the model parameters
through the state variables, which represent the solution of the
forward-modeling equations. In our case, the state variable is
the elastic displacement field u(x, ) generated by a microseis-
mic source and governed by equation 3.

The conjugate-gradient method involves calculation of
the model update at each iteration. The update direction is de-
termined by the derivatives of the objective function with re-
spect to the model parameters, dF (m)/dm. The adjoint-state
method allows us to find this gradient for the entire set of
model parameters in just two modeling simulations. However,
because this method does not calculate the Fréchet derivatives,
it is impossible to evaluate the sensitivity of the solution to
measurement errors.

The adjoint-state method involves four main steps (Per-
rone and Sava, 2012):

(i) Computation of the state variable (forward wavefield).

(ii) Computation of the adjoint source.

(iii) Computation of the adjoint-state variable (adjoint
wavefield).

(iv) Computation of the gradient of the objective function.

In addition to equation 3, the method requires solving the
adjoint wave equation:

%u! Ru!

N
p Tzl — Cijkl Vakxl = n;](dobs —dpee) (T — ) 3(x —xr,) ,
&)
where u' is called the adjoint wavefield. The so-called adjoint
source on the right-hand side of equation 5 is obtained by dif-
ferentiating the objective function ¥ (m) with respect to the
forward wavefield u, and consists of the time-reversed data
residuals. Therefore, the adjoint simulation can be carried out
with the same modeling code by “injecting” the adjoint source
at the receiver locations and then running the forward simula-
tion.
The gradients of the objective function with respect to the
moment-tensor elements and source coordinates can be found
as (Kim et al., 2011):

3F _

T
OF _ [Tet -
;= Jp ST 0ar, ©®

0F (T oM:el(xs,1)]
a_xi_/o D s -nar, %)

1

where T is the recording time, e" = }[Vuf + (Vu®)T] is de-
fined as the adjoint stress tensor, and M : £ is the double inner
product of the tensors M and €. Equations 6 and 7 applied to
the 2D problem yield the gradient vector g for the five source
parameters:

(3 og oF a_za_f}
- oMy’ oM3’ OM33’ ox; Ox3 |

It is interesting that in contrast to the gradients for
velocity-related parameters (Liu and Tromp, 2006), which de-
pend on the interaction between the forward and adjoint wave-
fields, equations 6 and 7 include only the adjoint wavefield.
Therefore, there is no need to store the forward wavefield or
to recalculate it during the adjoint simulation performed for
computing the gradients.

In application of FWI to velocity analysis, the adjoint
wavefield is supposed to “illuminate” the erroneous parts of
the velocity model. Likewise, for the source-inversion prob-
lem, the adjoint wavefield should reveal the portion of the
model that causes the differences between the observed and
predicted data. The discrepancy, however, is attributed to er-
rors in the source parameters. In principle, the number of
sources in the adjoint problem is unrestricted. If the forward
wavefield is excited by multiple sources, the adjoint wavefield
may focus at each source location, and application of equa-
tions 6 and 7 is supposed to enhance the focusing.

®

4 NUMERICAL RESULTS

Next, we present the results of synthetic tests for a homoge-
neous VTI medium and a stack of three constant-density VTI
layers, with the wavefield modeled using the FD code men-
tioned above.

In the first experiment (Figure 2), the observed and ini-
tial predicted data (Figures 3 and 4) are generated for a sin-
gle microseismic event recorded in a vertical “borehole” by
receivers located at each grid point. The large number of re-
ceivers helps to reduce artifacts due to the sparse receiver cov-
erage. Whereas the observed field is generated by a double-
couple source, the predicted field is computed with an explo-
sive source. Next, the adjoint source “injected” at the receiver
locations is used to compute the adjoint wavefield (Figure 5).
This wavefield focuses at the time 7 = 0.462 s near the actual
source, where the model perturbation is located. The focusing
time corresponds to the raypath between the source and the
receivers located at the end of the array.

After applying equations 6 and 7, we obtain the gradi-
ents for the five source parameters shown in Figure 6. As ex-
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Figure 2. Source (white dot) and a vertical line of receivers at x; = 1.2 km embedded in a homogeneous VTI medium. The receivers are placed
at each grid point (every 0.6 m). The medium parameters are p = 2 g/cm?, Vpo = 4047 m/s, Vso = 2638 m/s, £ = 0.4, and 8 = 0. The source is

located at x; = 0.3 km, x3 = 0.75 km.
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Figure 3. Snapshots of the vertical displacement for the model in Figure 2 at 1 = 0.175 s. (a) The observed wavefield produced by a double-couple
source with My, = 0, Mj3 = 4-10'° Nm, M33 = 0, and © = 0°. (b) The predicted waveficld from an explosive source with My, = 4-10'° Nm,

M3 =0, and M33 =4:10'0 Nm.

pected, the major contribution to the gradients comes from the
focusing of the adjoint wavefield near the source location. The
additional anomalies are artifacts, likely due to the finite dura-
tion of the signal and limited number of sources and receivers
(Fichtner et al., 2006). The significant magnitude of the gradi-
ents for x| and x3 seems to be surprising because the locations
of the observed and predicted sources coincide. However, the
gradients for the source coordinates depend on the components
of the moment tensor (equation 7), which produces the anoma-
lies in Figure 6 (a), (b).

The second test is performed for the three-layer VTI

model in Figure 7. The data are generated for a microseismic
event occurring in the middle layer and recorded in a verti-
cal “borehole”. The gradients calculated using the forward and
adjoint simulations are shown in Figure 8. As expected, layer
boundaries create a number of reflected and mode-converted
waves. However, the main contribution to the gradient still
comes from the model perturbation at the source location.

For the third experiment, we keep the actual source at the
same place as in the previous tests and use the homogeneous
model from Figure 2. However, the initial predicted source is
moved to a different location (Figure 9), which causes signifi-
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Figure 4. Vertical displacement of the (a) observed and (b) predicted data for the model in Figure 2 generated with the source parameters from
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Figure 5. Snapshots of the vertical component of the adjoint wavefield for the model in Figure 2 at times (a) f = 0.280 s and (b) r = 0.462 s. The

adjoint wavefield focuses at the actual source location on plot (b).

cant changes in the gradients (Figure 10). In particular, shifting
the predicted source generates pronounced gradient contribu-
tions at both source locations. It is encouraging, however, that
the largest gradients are observed near the predicted source.
Although both sources have the same moment tensor, the gra-
dients for My, M3, and M3 do not vanish because the wave-
field substantially changes with source location.

5 CONCLUSIONS

The adjoint-state method provides a computationally effi-
cient way to calculate the gradients of the objective function.
Here, we implemented adjoint-wavefield modeling and gradi-

ent computation of the FWI gradient for the source location
and moment tensor using a known VTI velocity model.

Synthetic tests were carried out for a single source and
a dense array of receivers in a vertical “borehole.” The first
experiment was performed for a trial source with a distorted
moment tensor correctly positioned in a homogeneous VTI
medium. The adjoint wavefield focuses near the source loca-
tion, which identifies the perturbed area. Although the source
position was not changed, the gradients for the source coordi-
nates do not vanish because they depend on the moment-tensor
elements. The gradients are contaminated by artifacts, which
can be suppressed by adding receivers in another borehole or
at the surface.

The second test was performed for a three-layer VTI
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Figure 6. Gradients for the source parameters for the model in Figure 2: (a) M|, (b) M\3, (c) M33, (d) x;, and (e) x3.
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Figure 7. Three-layer VTI model used in the second experiment. The source-receiver geometry is the same as in Figure 2. The distance between
receivers is 2.5 m. The parameters p =2 kg/m’. € = 0.4, and 8 = 0 are the same in all three layers. The velocities in the first layer are Vpg = 4047
m/s and Vo = 2638 m/s; for the second layer, Vpp = 4169 m/s and Vsy = 2320 m/s; for the third layer, Vpp = 4693 m/s and Vgo = 2682 m/s.
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Figure 8. Gradients for the source parameters for the model in Figure 7: (a) M}, (b) M3, (c) M33, (d) x1, and (e) x3.
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Figure 9. Actual source (white dot), predicted source (black dot) and a vertical line of receivers (spacing is 2.5 m) embedded in a homogeneous VTI
medium. The medium parameters are the same as in Figure 2. The actual source is located at x; = 0.3 km, x3 = 0.75 km and the predicted source

is atx; = 0.8 km, x3 = 0.9 km. The moment tensor for both sources corresponds to a horizontal (8 = 0) double-couple with My; =0, M3 =4- 10'°
Nm, and M33 =0.
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Figure 10, Gradients for the source parameters for the model in Figure 9: (a) My, (b) My, (c) M33, (d) x;, and (e) x3.

model, which produces a number of reflected and converted
waves. Although the gradients are more noisy, the anomaly at
the source location is better focused due to the contribution of
the additional events.

In the last test, the predicted wavefield was generated
by a source with the correct moment tensor but erroneous
location. The gradients for all source parameters, including
the moment-tensor elements, exhibit pronounced anomalies,
which are most intensive at the location of the trial source.
These results indicate potential trade-offs between the source
parameters in model updating using the conjugate-gradient
method.
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APPENDIX A: 2D ROTATION OF THE MOMENT
TENSOR

Dislocation-type events often occur along nonhorizontal fault
planes. Here, we rotate the tensor M from the natural coor-
dinate system associated with the fault to the [xi, x3] coordi-
nates.

The 2D rotation matrix a that produces a counterclock-

wise rotation is given by
—sin®
cos9 ’

X

where 0 is the angle between the x-axis in the natural coor-
dinate system and the horizontal. The waves polarized in the
[x1,x3])-plane are governed by the 2D moment tensor:

M- ( ).

cos0

sin® (Al

My,
M3

M3

A
M (A2)
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The moment tensor in the rotated coordinate system is then
obtained as:

M = aMa', (A3)

where aT is the transpose of a. The explicit expressions for
each element of the rotated moment tensor are:

M’“ =M”cos29—2M,3 sinecos9+M3gsin29 , (A4

Mll3 = M} sin@cos @+ M3 (cos® 8 — sin® 8) — M33 sinBcosH,
(A5)

M;3 =M sin26+2M|3 sin©cos 6+ M33c0s2 0 . (A6)

Here, this rotation is used to obtain the predicted data for
dislocation-type sources with different orientations.
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ABSTRACT

Transversely isotropic models with a tilted symmetry axis (TTI media) are
widely used in depth imaging of complex geologic structures. Here, we present
a modification of a previously developed 2D P-wave tomographic algorithm
for estimating heterogeneous TTI velocity fields and apply it to synthetic and
field data. The symmetry-direction velocity Vpg, anisotropy parameters ¢ and
8, and symmetry-axis tilt v are defined on a rectangular grid. 'To ensure sta-
ble reconstruction of the TTI parameters, reflection data are combined with
walkaway VSP (vertical seismic profiling) traveltimes in joint tomographic in-
version. To improve the convergence of the algorithm, we propose a three-stage
model-updating procedure that gradually relaxes the constraints on the spa-
tial variations of the anisotropy parameters, while the symmetry axis is kept
orthogonal to the reflectors. Only at the final stage of the inversion the param-
eters Vpo, €, and § are updated on the same grid. We also incorporate geologic
constraints into tomography by designing regularization terms that penalize pa-
rameter variations in the direction parallel to the interfaces. First, we examine
the performance of the regularized joint tomography of reflection and VSP data
for two sections of the BP T'TI model that contain an anticline and a salt dome.
All three TTI parameters in the shallow part of both sections (down to 5 km)
are well-resolved by the proposed model-updating process. Then the algorithm
is applied to a 2D section from 3D OBS (ocean bottom seismic) data acquired at
Volve field in the North Sea. The inverted TTI model produces well-focused re-
flectors throughout the section and accurately positions the key horizons, which
is confirmed by the available well markers.

Key words: reflection tomography, inversion, P-waves, prestack migration, ve-
locity analysis, borehole data, transverse isotropy, TTI, case study

1 INTRODUCTION be found in our previous paper (Wang and Tsvankin,

Prestack depth imaging for complex geologic envi-
ronments (including subsalt plays and fold-and-thrust
belts) requires anisotropic velocity models such as trans-
verse isotropy with a vertical (VTI) or tilted (TTI)
axis of symmetry.* A stable velocity-analysis tool for
prestack migration is reflection tomography in the mi-
grated domain (Stork, 1992), which has been extended
to heterogeneous TI media (Campbell et al., 2006;
Woodward et al., 2008). A review of published migration
velocity analysis (MVA) algorithms for TTI media can

*This paper, which will be published in Geophysics, includes
some material from the 2012 Project Review report by the
authors.

2013; hereafter, referred to as Paper I).

P-wave velocity in TTI media is controlled by the
velocity Vo in the symmetry-axis direction, anisotropy
parameters ¢ and J, and the orientation of the symme-
try axis (in 2D defined by the tilt v from the verti-
cal). Most current parameter-estimation techniques ei-
ther rely on relatively simple model representation (e.g.,
layer- or block-based models employed by Behera and
Tsvankin, 2009) or simplify the inversion by keeping the
anisotropy parameters € and d fixed and updating only
the symmetry-direction velocity Vpo on a grid (Huang
et al., 2008, Charles et al., 2008). Because P-wave reflec-
tion traveltimes do not provide sufficient constraints for
resolving all relevant T'TI parameters, it is necessary to
use additional information to reduce the nonuniqueness
of the inverse problem (Morice et al., 2004, Tsvankin,
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2005, Bakulin et al., 2010b). However, there are few pub-
lications on such joint inversion of P-wave reflections
and other data (e.g., VSP traveltimes) for anisotropic
media.

Nonuniqueness of the inversion of reflection data
can also be mitigated by regularization, which imposes
a priori constraints on the estimated model (Engl et al.,
1996). In Paper I, we employ Tikhonov (1963) regular-
ization to smooth the velocity field with equal weights
in the horizontal and vertical directions. Fomel (2007)
develops so-called “shaping regularization” designed to
steer velocity variations along geologic structures (e.g.,
layers). His mapping (shaping) operator is integrated
into a conjugate-gradient iterative solver. Using the
steering-filter preconditioner (Clapp et al., 2004) sim-
ilar to shaping regularization, Bakulin et al. (2010c)
perform joint tomographic inversion of horizontal and
dipping P-wave reflection events and check-shot travel-
times for VTI media. They conclude that in the vicinity
of the well it is possible to resolve the vertical varia-
tion of all three relevant parameters (Vpo, €, and §).
In a case study, Bakulin et al. (2010a) compare sev-
eral techniques for building VTI and TTI models us-
ing borehole-calibrated profiles of anisotropy parame-
ters. They find that the TTI velocity field obtained by
interpolation that conforms to several key horizons pro-
duces the smallest well misties and minimizes residual
moveout in common-image gathers (CIGs).

In Paper I, we develop a 2D ray-based tomographic
algorithm for iteratively updating the parameters Vpo,
€, and 6 of TTI media defined on rectangular grids
(the symmetry axis is set orthogonal to the imaged
reflectors). Synthetic tests for models with a “quasi-
factorized” TTI syncline (i.e., € and § are constant in-
side the TTI layer, while the tilt v may vary spatially)
and a TTI thrust sheet demonstrate that stable parame-
ter estimation requires strong smoothness constraints or
additional information from walkaway VSP traveltimes.

Here, we first introduce the objective function that
includes the residual moveout in CIGs and the VSP
traveltime misfit supplemented by regularization terms.
The regularization is designed to smooth the parameters
in the direction parallel to the interfaces, while allowing
for more pronounced variations in the orthogonal direc-
tion. Next, we present a three-stage inversion method-
ology in which gridded tomography is preceded by two
partial parameter-updating steps designed to stabilize
the inversion. Then the tomographic algorithm is tested
on two sections of the 2D TTI model devised by BP and
a line from 3D OBS (ocean bottom seismic) data pro-
vided by Statoil.

2 METHODOLOGY

Basic elements of the tomographic algorithm employed
here are described in Paper I. The residual moveout in
common-image gathers produced by prestack Kirchhoff

depth migration is minimized during iterative parame-
ter updates. If walkaway VSP surveys (check shots rep-
resent zero-offset VSP data) are available, VSP travel-
times are computed for each trial model and included
in the following objective function F:

F(AX) = [[AAX-b]*+(7, [|E AX—d| >+ R(AN) (1)

where A is a vector composed of the parameter up-
dates (AVpo, A¢, and AJ) at each grid point, the el-
ements of the matrix A are the traveltime derivatives
with respect to the medium parameters at each grid
point (A is computed analytically along the raypaths),
b is a vector containing the residual moveout in CIGs,
the matrix F includes VSP traveltime derivatives, and
the vector d is the difference between the observed and
calculated VSP traveltimes for each source-receiver pair.
The regularization term R in equation 1 has the form:

R(AX) = AN + ¢ [ Ly (AX + A%)|?
+G [L2(AX+X%)2, 2)

where ¢? | AA||? restricts the magnitudes of parameter
updates that have small derivatives in the matrices A
and E, A is the vector of model parameters obtained in
the previous iteration, the operators L1 and L2 are de-
signed to make parameter variations more pronounced
in the direction normal to the interfaces, and ¢, (i,
and (> are the regularization coefficients/weights. The
choice of the weighting coefficients depends on the data
volume, number of grid points, and desired strength of
regularization. In 2D, the normal direction of a reflec-
tor is defined by the dip angle with the vertical, which
is computed from the depth image using Madagascar
program “sfdip.” Then the symmetry-axis tilt v at each
grid point is set to be equal to the corresponding dip.

To construct the matrix L., we first compute two
components of the gradient V) from a finite-difference
approximation:

where A is the parameter (Vpo, ¢, or §) at the grid point
with the coordinates  and z, and dz and dz are the
cell dimensions. Since the dip field yields the vector
n orthogonal to reflectors, we minimize the norm of
the cross-product ||n x V| at all grid points, which
is equivalent to aligning the direction of the largest pa-
rameter variation with n and restricting the variations
along interfaces. More cells can be included by using a
higher-order finite-difference approximation:

by (x) = [-Mz + 2dz) + 8\(z + dz) — 8A(z — dx)

+ Mz — 2dz)]/(12dz) + O[(dx)"], (5)
X (2) = [-A\(z + 2dz) + 8A(z + dz) — 8A(z — d2)
+ Mz — 2dz)]/(12dz) + O[(d2)*]. (6)
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Figure 1. Section of the BP TTI model that includes an anticline (the grid size is 6.25 m x 6.25 m). The top water layer is
isotropic with velocity 1492 m/s. (a) The symmetry-direction velocity Vpo. The black line marks a vertical “well” at ¢ = 51.4 km.
(b) The symmetry-axis tilt v. The anisotropy parameters (c) € and (d) 6.

Similarly, the operator Ly is built from the cross-
product of n and the following two-component vector
formed by second-order derivatives:

)\ (@) Mz +dz) — ?(;\S:g + Az — dz) ’ G
5\ () = Az +dz) - %(;\Sz) + Az — dz) . (8)

Then we minimize the norm of the cross-product to
smooth the parameter variations in the direction par-
allel to the interfaces.

Defining the TTI parameters on a relatively small
grid results in a large number of unknowns, and the
Fréchet matrices A and E in equation 1 are sparse (i.e.,
only nonzero or relatively large elements are stored due
to the limited computer memory). To solve such a large
sparse linear system of equations in an efficient way,
we employ a parallel direct sparse solver (PARDISO,
Naumann and Schenk, 2011).

The anisotropic velocity field is iteratively updated
starting from an initial model that may be obtained
from stacking-velocity tomography at borehole locations
(Wang and Tsvankin, 2010). In the first few iterations,
the symmetry-direction velocity Vpo is typically inaccu-
rate and simultaneous inversion for all TTI parameters
may result in unacceptably large updates for ¢ and 4. If
the anisotropy parameters are moderate (in the test be-
low, € < 0.25 and 6 <0.15), it is convenient to fix them
temporarily at the initial values (typically small) and
limit the updates to the velocity Vpo. When iterations

no longer significantly reduce the data misfit, we move
on to the second stage of parameter updating. At that
stage, the model is divided into several layers based on
the picked reflectors, and the anisotropy parameters are
assumed to be spatially invariant within each layer. The
velocity Vpo is then updated on a grid, while the inver-
sion for € and § is layer-based. Such a “quasi-factorized”
assumption is equivalent to strong smoothing of € and
& and may help resolve all TTI parameters if Vpo is a
linear function of the spatial coordinates and at least
two distinct dips are available (Behera and Tsvankin,
2009). At the third and last stage of velocity analysis,
the anisotropy parameters are updated on the same grid
as that for Vpo to allow for more realistic treatment of
heterogeneity. Still, because P-wave kinematics are less
sensitive to anisotropy than to the symmetry-direction
velocity, the e- and é-fields in equation 2 are typically
regularized with larger weights.

3 BP ANTICLINE MODEL

First, we test the joint tomography of P-wave long-
spread reflection data and walkaway VSP traveltimes
on a section of the TTI model produced by BP. That
section contains an anticline structure surrounded by
gently dipping anisotropic layers. The velocity Vpo in
the actual model is smoothly varying (Figure 1(a)), ex-
cept for a small jump at the water bottom. The sym-
metry axis is set perpendicular to the interfaces (Fig-
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Figure 2. Depth image of the BP anticline model produced with the actual parameters from Figure 1.

ure 1(b)), and the anisotropy parameters ¢ and § change
from layer to layer. Note that the lateral variations of
€ and § are relatively weak compared to those of Vpg
(Figure 1(c) and 1(d)). The depth image produced by
Kirchhoff prestack depth migration with the actual ve-
locity model is shown in Figure 2.

The tomographic algorithm is applied to CIGs from
z = 40 km to 61 km with an interval of 150 m (the
maximum offset is 10 km). Synthetic VSP data were
generated by BP in a vertical “well” placed at location
ZTygp = 51.4km with 24 receivers spanning the interval
from z = 4756.25 m to 5043.75 m every 12.5 m and
24 more receivers evenly placed between 7837.5 m and
8125 m. The VSP sources were located at the surface
every 50 m from 2 = 41.4km to 61.4 km (the maxi-
mum offset is also 10 km). In addition, check-shot trav-
eltimes were recorded every 50 m from z = 943.5 m to
9493.75 m.

To build an initial model, we compute a 1D pro-
file of Vpo from the check-shot traveltimes and then ob-
tain the 2D velocity field (Figure 3(a)) by extrapola-
tion that conforms to the picked interfaces. The initial
model is isotropic, with both € and § set to zero. The
exact position of the water bottom is assumed to be
known, and the velocity of the water layer is fixed at
the correct value. The noticeable residual moveout in
the CIGs (Figure 3(b)) indicate that the velocity field
contains significant errors.

Velocity analysis is performed using the three-stage
parameter-estimation procedure described above, which

operates with reflection and VSP data. First, we up-
date only the velocity Vpo defined on a rectangular
200 m x 100 m grid, while keeping the model isotropic
(i.e., e = 6 = 0). Then € and § are taken constant in
each layer (delineated by the interfaces picked on the
image) and updated simultaneously with Vpo. With this
“quasi-factorized” T'TI assumption, the inverted model
(Figure 4) reduces the residual moveout in CIGs (Fig-
ure 5) and the VSP traveltime misfit.

However, the residual moveout in Figure 5 is not
completely removed, mainly because the assumption
about the anisotropy parameters does not conform to
the actual e- and 4- fields (Figures 1(c) and 1(d)). To
allow for more realistic spatial variations, at the last
stage of parameter updating we estimate the parame-
ters € and ¢ on the same grid as the one used for the
velocity Vpo. However, because the trade-offs between
the parameters may cause large errors in € and é de-
fined on fine grids, the anisotropy parameters should be
more tightly constrained, so the corresponding regular-
ization coefficients are larger than those for Vpg.

After application of the joint tomography, the ve-
locity Vpo above z = 7 km is relatively well-recovered
with percentage errors in most areas smaller than 4%
(Figure 6(a)). The spatial variations of € and & are par-
tially resolved from the water bottom down to z = 5 km
(Figure 6(c) and 6(d)). The coverage of VSP rays, how-
ever, becomes more sparse with depth. Also, the offset-
to-depth ratio of P-wave reflections is insufficient to con-
strain the parameter ¢ below 7 km, although the maxi-



2D TTI tomography 115

Vpo (m/s)

Figure 3. (a) Initial isotropic model with the velocity Vpo defined on a 200 m x 100 m grid. The velocity in the water is set
to the correct value. (b) CIGs (displayed every 3 km from 41 km to 62 km) computed with the initial model from Figure 3(a).

mum offset reaches 10 km. Therefore, the accuracy in €
and 6 decreases in the deep part of the section. Still, the
final inverted model (Figure 6) practically removes the
residual moveout in the CIGs (Figure 7(a), except for
locations close to the left and right edges due to poor
ray coverage), and the reflections are well focused (Fig-

ure 7(b)), especially those above z = 7 km. Comparison
with several interfaces imaged using the actual model
(Figure 2) shows that the reflectors are accurately po-
sitioned in depth, with the misties smaller than 40 m
near the well.

An important parameter that influences the ac-




116 X. Wang & I. Tsvankin

v (deg)
" Iflso
£9 Iio
N
100 : 1§50
40 60
é
0

0.15
0.1
0.05

10
50 55 40 45 50 56 60 005
x (km) x (km)
(o) (d)

Figure 4. Anticline model from Figure 1 updated using the “quasi-factorized” TTI assumption. (a) The symmetry-direction
velocity Vpo estimated on a 200 m x 100 m grid. (b) The tilt v obtained by setting the symmetry axis perpendicular to the
reflectors. The inverted interval parameters (c) € and (d) 4, which are kept constant within each layer.
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Figure 5. CIGs obtained with the “quasi-factorized” TTI model from Figure 4.
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Figure 6. Inverted TTI parameters (a) Vpo, (c) €, and (d) & after the final iteration of tomography. (b) The symmetry-axis
tilt v computed from the depth image obtained before the final iteration. The parameters Vpo, €, and § are estimated on a

200 m x 100 m grid.

curacy of the reconstructed velocity model is the
symmetry-axis tilt v, which is computed directly from
the depth image. Poorly constrained TTI parameters
in the deep part of the model yield a distorted image,
which produces large errors in the estimated values of
v. The obtained tilt field is used for the next itera-
tion of tomography, which further distorts the other es-
timated TTI parameters. Therefore, without sufficient
constraints from deep reflection events and VSP rays,
the trade-offs between the tilt v and the other TTI pa-
rameters increase the uncertainty in velocity analysis at
depth.

4 BP SALT MODEL

Next, the joint tomography is applied to another section
of the BP TTI model that includes a salt dome (Fig-
ure 8). The top of the salt and the flanks right beneath
it produce strong reflections and are clearly imaged by
Kirchhoff depth migration, but the deeper segments of
the flanks are blurred even when the actual model is
used (Figure 9). The image quality can be improved
with a wavefield-based imaging algorithm, such as re-
verse time migration (RTM).

The maximum offset (10 km) and the source and
receiver intervals (50 m) are the same as in the previous
test. The CIGs used for MVA are computed every 150 m
from z = 16 km to 46 km. The BP data set contains a
vertical “well” at location z,s, = 29.9km to the left of

the salt body (Figure 8(a)). Two sets of evenly spaced
24 receivers (one between z = 5275 m and 5562.5 m
and the other between z = 8400 m and 8687.5 m) were
placed in the well to record a walkaway VSP survey. The
maximum offset for the VSP data is also 10 km with a
source interval of 50 m. The input data also include
check-shot traveltimes obtained every 50 m from z =
1743.75 m to 9093.75 m.

During the inversion, the water layer and salt body
are kept isotropic with the velocities fixed at the actual
values. Also, the positions of the top and flanks of the
salt dome are assumed to be known, and the update is
performed only for the sedimentary formations around
the salt body. Since ray tracing becomes unstable in
the presence of sharp velocity contrasts, we apply 2D
smoothing to the velocity model to find the raypaths
crossing the salt and then calculate the traveltimes and
their derivatives in the original (unsmoothed) model.

Similar to the previous test, an initial isotropic
model (Figure 10(a)) is built using check-shot travel-
times and extrapolation along interfaces. Because the
symmetry-direction velocity (and other parameters) is
different on the two sides of the salt body, the residual
moveout in the CIGs (Figure 10(b)) is larger to the right
of the salt (i.e., further away from the well).

As in the first test, the joint tomography is per-
formed using the three-stage parameter-estimation pro-
cedure. For the VSP sources to the left of the well, the
corresponding rays pass through the relatively simple
sedimentary section. The VSP rays originated to the
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(b)

Figure 7. (a) CIGs and (b) the migrated section computed with the final inverted model from Figure 6.
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Figure 8. Section of the BP TTI model with a salt dome (the grid size is 6.25 m x 6.25 m). The top water layer and the salt
body are isotropic with the P-wave velocity equal to 1492 m/s and 4350 m/s, respectively. (a) The symmetry-direction velocity
Vpo. The vertical “well” at & = 29.9km is marked by a black line. (b) The tilt of the symmetry axis, which is set orthogonal
to the interfaces. The anisotropy parameters (c) € and (d) 4.
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Figure 9. Depth image of the BP salt model produced with the actual parameters from Figure 8.




120 X. Wang & I. Tsvankin

(b)

Figure 10. (a) Initial isotropic model with Vpg defined on a 200 m x 100 m grid. The P-wave velocities in the top water layer
and salt body are set to the actual values. (b} CIGs (displayed every 3.25 km from 18 km to 44 km) computed with the initial
model from Figure 10(a).
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Figure 11. Inverted TTI parameters (a) Vg, (c) €, and (d) & after the final iteration of joint tomography. (b) The symmetry-
axis tilt ¥ computed from the depth image obtained before the final iteration. The parameters Vpg, €, and § are estimated on
a 200 m x 100 m grid.
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(b)

Figure 12. (a) CIGs and (b) the migrated section computed with the final inverted model from Figure 11.
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right of the well, however, cross the high-velocity salt
body, and errors in the velocity field near the salt bound-
aries may cause large perturbations of the ray trajecto-
ries. Therefore, we assign smaller weights in the objec-
tive function to the VSP traveltimes for the sources lo-
cated to the right of the well. As a result, the anisotropic
velocity field on the right side of the salt dome has to
be determined mostly from the P-wave reflection data,
which leads to larger uncertainty in the TTI parameters.

After all three parameters were updated on the
same grid at the last stage of the updating procedure,
the velocity Vpo (Figure 11(a)) above z = 7 km to the
left of the salt body is relatively well-resolved (errors in
most areas do not exceed 3%). However, the errors in
Veo on the right side of the section are higher because
of the limited constraints from VSP data, as described
above. The spatial variations of ¢ and § are partially
recovered from the water bottom down to z = 5 km
(Figure 11(c) and 11(d)). Because of the smaller offset-
to-depth ratio and poor coverage of VSP rays (especially
for the right part of the model) at depth, the anisotropy
parameters for most grid points below 5 km could not
be updated.

Despite these problems, the final model flattens
most CIGs (Figure 12(a)) and practically eliminates the
VSP traveltime misfit. As a result, the migrated image
(Figure 12(b)) reproduces the actual section with suffi-
cient accuracy, except for the steep segments of the salt
boundaries.

5 VOLVE OBS DATA

Volve field is located offshore Norway in the
gas/condensate-rich Sleipner area of the North Sea (Fig-
ure 13(a)). It is a small oil field with a dome-shaped
structure formed by the collapse of adjacent salt ridges
during the Jurassic period (Szydlik et al., 2007). The
reservoir in the Middle Jurassic Hugin sandstone for-
mation is a structural trap bounded by faults which are
mainly associated with salt tectonics (Figure 13(b)).

In 2002, a 3D ocean-bottom seismic (OBS) sur-
vey was acquired over a 12.3 km X 6.8 km area. of the
field (Figure 14). Six swaths of four-component (4C)
data were recorded using inline shooting geometry. Each
swath includes two 6 km-long cables placed on the
seafloor (about 92 m below the water surface) with 400
m spacing (Figure 14), and a cable contains 240 receivers
with an interval of 25 m. In each swath, flip-flop shoot-
ing was conducted along 25 dual source sail lines with
100 m separation. The sail line is 12 km long with a shot
interval of 25 m (50 m between the flips).

The acquired 3D PP and PS data were prepro-
cessed by Statoil. Preprocessing included noise suppres-
sion, multiple attenuation, and other standard steps de-
scribed by Szydlik et al. (2007). Only traces with off-
sets less than 5 km were kept, and a layer-stripping
technique was employed to construct a 3D VTI model

UK ;. NORWAY

1l oas rELD
M o rELD

l?BLWK 189

(b)

Figure 13. (a) Location of Volve field in the North Sea
(figure courtesy of Statoil) and (b) a representative geologic
cross-section of Volve field (after Akalin et al., 2010).
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Figure 14. Geometry of the Volve 3D OBS survey. Two
cables (black lines) are placed on the seafloor, and 25 sail
lines parallel to the cables are shot with flip-flop sources in a
12 km X 2.4 km rectangular area (gray). After one swath of
data is recorded, the cables and source lines are moved 800
m along the inline (y) direction.

for prestack depth imaging. The P- and S-wave verti-
cal velocities Vpo and Vgo and the anisotropy parame-
ters € and J in each layer (Figure 15; Vgo is not shown)
were updated by flattening common-image gathers (Fig-
ure 16(a)), minimizing misties between seismic and well
data, codepthing the key horizons on PP (Figure 16(b))
and PS migrated sections, and incorporating compres-
sional sonic logs (Szydlik et al., 2007). However, com-
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Figure 15. Cross-sections along the line with y = 2.8km (Figure 14) of the 3D VTI model built by Statoil. (a) The P-wave
vertical velocity Vpg and the anisotropy parameters (b) € and (c) 4.

plete information about Statoil’s VTI model-building
process is not available to us.

Here, we use a 2D section from the 3D P-wave
(vertical component) data recorded by the cable laid
along y = 2.8 km (Figure 14). Two adjacent source lines
(y = 2.8 £ 0.025km) provided 481 shots with a shot
interval of 25 m. The tomographic MVA algorithm de-
scribed above is applied to the CIGs from z = 2.7 km
to 9.5 km with an interval of 50 m, under the assump-
tion that out-of-plane propagation can be ignored. As
before, the symmetry axis is assumed to be perpendic-
ular to the interfaces; the parameters Vpo, €, and & are
defined on a 100 m x 50 m grid.

There are two deviated wells (Figure 17) in the
vicinity of the chosen line, and P-wave reflections are
combined in the joint inversion with vertical check-shot
(normal-incidence VSP) data recorded in the wells. Al-
though the wells lie outside the vertical plane (y =

2.8 km), only the x and z coordinates of the check shots
are used to place each check-shot measurement. The
provided data set also includes the well markers (i.e.,
depth measurements in the well) of several key horizons
(e.g., the top and base of Utsira formation, top of Shet-
land Group, and base of Cretaceous). To evaluate the
accuracy of velocity analysis, these well markers were
compared with the migrated reflector depths (see be-
low).

To build an initial model, the section is divided into
eight layers based on key geologic horizons. The interval
velocity Vpo in each layer is computed from the check-
shot traveltimes in well 1, whose surface projection is
closer to the chosen line than the projection of well 2
(Figure 17). Assuming the check-shot raypaths and the
symmetry axis at the well to be vertical, the velocity is
found as Vpo = Az/At, where Az is the depth inter-
val, and At is the check-shot traveltime difference cor-
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Figure 16. (a) CIGs (displayed every 0.6 km from 3 km to 9 km) and (b) the depth image produced by Kirchhoff prestack

migration with the parameters from Figure 15.

responding to Az. The interval NMO velocity (Vamo)
and parameter 7 in each layer are estimated using non-
hyperbolic moveout inversion (Tsvankin, 2005) applied
to a CMP gather near the well. In combination with the
velocity Vpo estimated along the well, Vomo and 7 yield
initial guesses for the parameters ¢ and § at the well
location.

Because of the limited offset-to-depth ratio (smaller
than 1.2 for z > 3 km), the accuracy of the effective pa-
rameters 7 and ¢ estimated from nonhyperbolic moveout
analysis decreases with depth. Also, the interval values
of € and § may be strongly distorted by layer stripping
in the bottom part of the section. Therefore, we have to
assume the deeper layers to be isotropic and set € and
§ below 3 km to zero (Figures 18(b) and 18(c)). The
initial TTI model (Figure 18) is obtained by extrapo-
lating the 1D profiles of Vpg, €, and § at well 1 along
the picked interfaces. As expected, the CIGs obtained
after Kirchhoff migration with the initial model exhibit
noticeable residual moveout (Figure 19).

Using the same three-stage parameter-estimation
procedure as in the synthetic tests, we gradually re-
lax the constraints on the spatial variation of ¢ and 4,
while updating Vpo at each grid point in all iterations
and setting the symmetry axis orthogonal to the reflec-
tors. Each iteration aims to simultaneously minimize the

residual moveout in the CIGs and the check-shot trav-
eltime misfit in both wells. In addition, the anisotropic
velocity field is regularized by the structure-guided op-
erators defined in equation 2.

The TTI model obtained after 10 iterations of to-
mography (Figure 20) yields relatively flat CIGs (Fig-
ure 21(a)). The remaining residual moveout in CIGs
below z = 3km is partially due to internal multiples
that were not completely removed in the preprocess-
ing. As mentioned above, the deeper part of the sec-
tion (2 > 3km) is kept isotropic because of insufficient
constraints on the anisotropy parameters provided by
reflection data.

The average velocity Vpo (Figure 20(a)) in the Cre-
taceous Unit (approximately between z = 2.5km and
3 km) is reduced after MVA to about 4300 m/s from
its initial value 4500 m/s obtained from check shots.
In the layer-based VTI model provided by Statoil (Fig-
ure 15(a)), Vpo in the Cretaceous Unit is larger, reaching
4900 m/s in some areas. Although the joint tomography
used here minimizes the check-shot traveltime misfit in
both wells and the structure-guided regularization helps
propagate the borehole constraints along the interfaces,
the depth scale of the section may not be sufficiently
accurate. It is possible that the high velocity in the Cre-
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Figure 17. (a) Trajectories of two deviated wells near the line (y = 2.8km, dashed) used for velocity analysis. (b) Well
projections onto the horizontal surface. The maximum deviations (Ay) of the two wells from the vertical plane (y = 2.8km)

are 477 m and 603 m, respectively.

taceous Unit obtained by Statoil came from sonic logs
or other information not available to us.

The inverted model helps image several reflectors in
the Cretaceous Unit (Figure 22(a)), which are difficult
to identify on the sections computed with both the ini-
tial model and Statoil’s VTI model (Figure 22(b)). Also,
some reflectors beneath the high-velocity Cretaceous
Unit look more coherent than those imaged with Sta-
toil’s model (compare Figures 22(a) and 22(b)), which
is important for structural interpretation of the reser-
voir. The key horizons on the final image (Figure 21(b))
are close to the well markers with the maximum mistie
not exceeding 20 m, which confirms that the migrated
section has an accurate depth scale near the wells.

There are several possible reasons for the above im-
provements. One is that the T'TI model used here allows
the symmetry-axis direction to vary spatially according
to the reflector dips. Although the dips are gentle, such
a model is more geologically plausible than VTI and
should produce more accurate anisotropy parameters.
In addition, our joint tomography simultaneously in-
verts for the T'TI parameters defined at all grid points,
which helps avoid error accumulation typical for layer
stripping.

As any other 2D method, the algorithm applied
here is based on the assumption that waves propagate in
the vertical incidence plane. However, recorded events
may correspond to out-of-plane reflection points; also,

the check-shot raypaths in the nearby deviated wells lie
outside the incidence plane. Moreover, the symmetry
axis, even if it is orthogonal to dipping reflectors, may
not be confined to the incidence plane. These 3D phe-
nomena. likely explain some remaining residual move-
out in CIGs after application of the 2D TTI inversion.
To construct a more robust TTI model and make use
of the whole OBS data set, our tomographic algorithm
should be extended to 3D and, preferably, wide-azimuth
data. For the 3D algorithm, which has to ensure flatten-
ing CIGs along different azimuthal directions, the main
challenge is the efficient construction of the Fréchet ma-
trix in the objective function.

6 CONCLUSIONS

Although most migration techniques have been ex-
tended to TTI media, accurate reconstruction of the
anisotropic velocity field remains a difficult problem.
Previously we developed an efficient 2D tomographic
algorithm for heterogeneous TTI models, with the pa-
rameters Vpo, €, 8, and the symmetry-axis tilt v defined
on a rectangular (in most cases square) grid. While Vpo,
¢, and & are updated iteratively in the migrated domain,
the tilt field is computed from the depth image by set-
ting the symmetry axis perpendicular to the reflectors.

To resolve the TTI parameters in the presence of
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Figure 18. Initial TTI model for line y = 2.8 km. (a) The symmetry-direction velocity Vpg and the anisotropy parameters (b)
€ and (c) 6. All three parameters are defined on a 100 m x 50 m grid.

spatial velocity variations, here we combined reflection
data with walkaway VSP and check-shot traveltimes.
Our tomographic algorithm also incorporates geologic
constraints by appropriately designed regularization.
The objective function includes regularization terms
that allow for parameter variations across layers, but
suppress them in the direction parallel to boundaries.
Such structure-guided regularization also helps propa-
gate along interfaces the most reliable parameter up-
dates corresponding to large derivatives in the Fréchet
matrix (e.g., those in the cells crossed by dense VSP
rays).

To improve the convergence of the algorithm, we
proposed a three-stage parameter-updating procedure.
In the first several iterations, only the velocity Vi is
updated on a grid, while the anisotropy parameters ¢
and ¢ are fixed at their initial values. This operation
eliminates potentially large distortions in € and é caused

by the parameter trade-offs. At the second stage of the
inversion, € and § are taken spatially invariant in each
layer and updated together with the grid-based velocity
Vpo. Finally, all three TTI parameters are estimated
simultaneously on the grid with the constraints provided
by the regularization terms described above.

First, the joint tomography of reflection and VSP
data was tested on two sections of the BP TTI model,
one with an anticline and the other with a salt dome. In
both tests, a purely isotropic velocity field, which was
obtained from check-shot traveltimes and extrapolated
along the horizons, served as the initial model. With
constraints from P-wave reflection and VSP data, the
TTI parameters in the shallow part (above 5 km) of
both sections are well resolved. However, the errors in
€ and 6 increase with depth due to the small offset-
to-depth ratio and poor coverage of VSP rays. For the
model with the salt dome, the anisotropic velocity field
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Figure 19. CIGs computed with the initial TTI model from Figure 18.

is recovered with higher accuracy to the left of the salt,
where the inversion is tightly constrained by VSP data
from a nearby well.

The tomographic algorithm was also applied to
OBS data from Volve field in the North Sea. Iterative
updating of Vpo, €, and é was performed by joint inver-
sion of P-wave reflection and check-shot data with the
structure-guided regularization. An initial anisotropic
model was built by combining check-shot traveltimes
with nonhyperbolic moveout analysis at the well loca-
tions. Then, the three-stage parameter-estimation pro-
cedure was employed to produce the final gridded TTI
velocity field. The inverted TTI model made it possible
to focus reflectors within and below the Cretaceous Unit
and accurately position several key horizons in depth.
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Figure 22. Segment of the migrated section between z = 2km and 4 km computed with (a) the inverted model from Figure 20
and (b) the VTI model provided by Statoil (Figure 15).
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ABSTRACT

Mode-converted PS-waves can provide valuable information for anisotropic parame-
ter estimation that cannot be obtained from compressional waves alone. In a previous
paper, we developed an efficient tomographic methodology for 2D joint velocity anal-
ysis of PP and PS data from VTI (transversely isotropic with a vertical symmetry axis)
media. The algorithm is designed to flatten image gathers of PP-waves as well as of
pure SS reflections computed using the PP+PS =SS method. An important additional
constraint is provided by codepthing of the migrated PP and SS sections. The model
is divided into square cells, and the parameters Vpo, Vso, €, and § are defined at each
grid point. Here, this methodology is applied to multicomponent data recorded on a
2D line from an OBS (ocean bottom seismic) survey acquired at Volve field in the
North Sea. Although the parameter-updating procedure did not include any borehole
information, the VTI model obtained by joint tomography of the recorded PP-waves
and constructed SS-waves produced generally well-focused PP and PS depth images.
The depth consistency between the migrated PP and PS sections also corroborates the

accuracy of the velocity-analysis algorithm.

Key words: velocity analysis, PS-waves, VTI, codepthing, OBS data

1 INTRODUCTION

Multicomponent data can improve reservoir imaging and pro-
vide useful information for lithology, fluid, and fracture char-
acterization. For example, shear waves help in imaging of
reservoirs beneath gas clouds, where P-waves suffer from high
attenuation (Tsvankin, 2005).

PS-waves are usually more sensitive to anisotropy than P-
waves and can be used to constrain not just the vertical shear-
wave velocity but also the subset of the medium parameters
responsible for P- and S-wave propagation. In particular, com-
bining PP and PSV reflections in VTI media may help estimate
all four pertinent Thomsen parameters — the P- and S-wave
vertical velocities (Vpo and Vso) and the anisotropy coeffi-
cients € and § (Tsvankin and Grechka, 2011).

Joint tomographic inversion of PP and PS data has been
discussed in several publications (Stopin and Ehinger, 2001;
Audebert et al., 1999; Broto et al., 2003; Foss et al., 2005).
However, velocity analysis of mode convertions is hampered
by the asymmetry of PS moveout (i.e., PS traveltimes gener-
ally do not stay the same when the source and receiver are
interchanged) and polarity reversals of PS-waves.

The methodology proposed in our previous publication

(Cai and Tsvankin, 2012) overcomes the problems caused by
the moveout asymmetry of PS-waves and takes advantage of
efficient MVA (migration velocity analysis) algorithms de-
signed for pure modes. Instead of using PS-waves directly for
parameter estimation, we employ the PP+PS =358 method of
Grechka and Tsvankin (2002) to generate the traveltimes of
the corresponding pure SS reflections, which have symmmet-
ric moveout. Then the computed SS-waves are combined with
the recorded PP-waves to build a 2D VTI velocity model. Our
algorithm for updating the parameters Vpo, Vso, €, and éis
based on the gridded reflection tomography developed for P-
waves by Wang and Tsvankin (2013). In addition to remov-
ing residual moveout in image gathers, the algorithm penal-
izes depth misties between the migrated PP and SS sections
and regularizes the solution using a finite-difference approxi-
mation of the Laplacian operator.

Here, the methodology of Cai and Tsvankin (2012) is ap-
plied to OBS data from Volve field in the North Sea (cour-
tesy of Statoil). We start by briefly describing the algorithm
for joint tomographic inversion of PP and PS data, the geo-
logical setting of the field, and the acqusition parameters of
the survey. Registration of the PP- and PS-waves on a 2D line
from the survey produces five events used for computing the
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traveltimes of the pure SS-waves. The VTI velocity model for
the line is obtained by tomographic velocity analysis of the PP
and SS data that includes codepthing of the five picked reflec-
tors on the migrated PP and SS sections. Finally, the images
of the recorded PP- and PS-waves are compared to those com-
puted with the velocity model previously obtained by Statoil.

2 METHODOLOGY

The algorithm of Cai and Tsvankin (2012) operates with
2D PP and PS reflection data. The first processing step is
event registration (correlation) followed by application of the
PP+PS =SS method to construct the pure SS reflections with
the correct kinematics. The velocity model is built by extend-
ing the P-wave MVA algorithm of Wang and Tsvankin (2013)
to multicomponent (PP and SS) data. The parameters Vpq,
Vso, €, and § are defined on a grid by dividing the section
into square cells. For purposes of migration velocity analysis,
we apply prestack Kirchhoff depth migration to the recorded
PP and constructed SS data. The initial model may be ob-
tained from stacking-velocity tomography at borehole loca-
tions (Wang and Tsvankin, 2010) or nonhyperbolic moveout
analysis (as done in the case study below).

The objective function used in the joint MVA of PP- and
SS-waves is defined as follows:

F(AX) = wl||Ap AX+bp||® + p2]|As AX + bg||?
+  pslDAX+y| + ¢ILAX|?, )

where AM is the update of the vector A of medium parame-
ters, the matrices Ap and Ag include the derivatives of the
PP and SS migrated depths with respect to the elements of
A (medium parameters), the vectors bp and bg characterize
the residual moveout in PP- and SS-wave CIGs, the matrix
D describes the differences between the derivatives of the PP
and SS migrated depths with respect to the medium parame-
ters, and the vector y contains the differences between the mi-
grated depths on the PP and SS sections. Flattening PP and SS
common-image gathers (CIGs) minimizes the first two terms
(|ApAX + bp||? and ||AsAX + bs]|?), and codepthing is
achieved through minimizing the third term (||DAX + y/||?).
The regularization term (||LAM||) helps stabilize the inver-
sion. The coefficients j1, y12, 13 and ¢ determine the weights
of the corresponding terms.

The objective function is minimized by a least-squares
algorithm. Since the VTI parameters are updated at each grid
point, which makes the inversion time-consuming, we paral-
lelize our algorithm. Common-image gathers for each reflec-
tor are computed on different cores, and flattening of PP and
SS events is performed simultaneously.

3 APPLICATION TO FIELD DATA
3.1 Description of Volve field and OBS survey

Volve field is a Middle Jurassic oil reservoir located in the
southern part of the Viking Graben in the gas/condensate-rich

Sleipner area of the North Sea. It is a small dome-shaped struc-
ture formed by the collapse of adjacent salt ridges during the
Jurassic (Szydlik et al., 2007). The reservoir is in the Middle
Jurassic Hugin Sandstone Formation and the deposition was
controlled by salt tectonics.

An ocean-bottom seismic (OBS) survey at Volve field
was acquired in 2002 over a 12.3 km x 6.8 km area. It is com-
prised of six swaths of four-component (4C) data and each
swath includes two 6 km-long cables placed on the seafloor.
The cables have a 400 m spacing and move up 800 m after
each swath. There are 240 receivers with an interval of 25 m
on each cable. Dual-source flip-flop shooting gave a 25 m shot
separation and 100 m separation between sail lines.

The PP and PS OBS data were preprocessed using a stan-
dard sequence including wavelet shaping, noise and multiple
attenuation techniques (Szydlik et al., 2007). The VTI model
produced by Statoil for prestack depth imaging is built using
a layer-stripping approach. Each layer is updated by apply-
ing layer-based tomography and fitting check-shot data (Szy-
dlik et al., 2007). The algorithm involves iterative flattening
of common-image gathers and minimization of the misties be-
tween seismic and well data. However, complete information
about the VTI model-building process employed by Statoil is
unavailable to us.

3.2 Processing/inversion of PP and PS data

We use a 2D section from the 3D PP- and PS-wave data
recorded by the cable laid along y=2.8 km. PP-waves from
the same line were processed by Wang (2012), who built a TTI
model using reflection tomography. Two adjacent source lines
(y=2.8+0.025 km) include 481 shots with a shot interval of
25m.

The joint MVA of PP- and PS-waves described above is
applied to the CIGs from =3 km to 9 km with an interval
of 100 m. The initial model for the parameters Vpg, ¢, and §
is taken from Wang (2012), who divided the section into eight
layers based on key geologic horizons and applied nonhyper-
bolic moveout analysis in combination with check shots in
two nearby wells. Since check-shot data for shear waves were
not available, a smoothed version of the shear-wave vertical-
velocity model provided by Statoil is used here as the initial
Vso-field. The parameters Vpg, Vsq, €, and & are defined on a
100 m x 50 m grid (Figure 1).

The PP and PS images migrated with the initial model
are shown in Figure 2. There is a clearly visible mistie be-
tween the PP and PS sections for a reflector at a depth close to
2.5 km (top of the Cretaceous Unit); the depth of that reflector
is smaller on the PS image. As expected, the CIGs of PP- and
SS-waves obtained with the initial model parameters exhibit
substantial residual moveout.

To apply the PP+PS=SS method, we registered (corre-
lated) five events on the PP and PS stacked sections. For each
of these five events pure shear data were constructed by con-
volving the computed SS traveltimes with a Ricker wavelet.
The codepthing term in the objective function (equation 1) in-
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Figure 1. Initial VTI model for line y=2.8 km from the Volve sur-
vey. The vertical velocities (a) Vpo and (b) Vo and the anisotropy
parameters (c) € and (d) 6.
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Figure 2. (a) PP- and (b) PS-wave images generated by Kirchhoff
prestack depth migration with the initial model from Figure 1.

cludes the depths of these five reflectors on the PP and SS sec-
tions.

Because of the limited offset-to-depth ratio (smaller than
1.2 for z >3 km), the accuracy of the effective parameters 7
and e estimated from nonhyperbolic moveout (i.e., long-spread
CIGs) decreases with depth. Therefore, the deeper part of the
section (z > 3 km) is kept isotropic during model updating.
The VTI model obtained after eight iterations of joint MVA of
PP- and PS-waves (Figure 3) yields relatively flat PP and SS
CIGs and depth-consistent PP and SS images.

3.3 [Images obtained with the inverted VTI model

The PS-wave depth image generated with the estimated VTI
model is displayed in Figure 4. Compared with the section ob-
tained using the initial model (Figure 2(b)), reflectors on the fi-
nal image are better focused, especially at depths around 3 km
(Cretaceous unit). However, the image quality below the Base
Cretaceous unconformity is still lower than that for PP-waves
(Figure 4(a)). This is probably because the deeper layers were
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Figure 3. Estimated VTI model for line y=2.8 km from the Volve
survey. The vertical velocities (a) Vpg and (b) Vgg and the anisotropy
parameters (c) € and (d) d.

Figure 4. (a) PP- and (b) PS-wave depth images generated with the
estimated model from Figure 3.

kept isotropic during MVA, and PS-waves are more sensitive
to anisotropy than PP-waves.

The final PP image (Figure 4(a)) does not differ much
from that obtained by Wang (2012) using P-wave tomography.
However, the reflectors in the Cretaceous unit look somewhat
less coherent than those imaged by Wang (2012). One possible
reason is that we used a smaller number of reflectors in build-
ing the velocity model. Also, although the dips are gentle, the
TTI model employed by Wang (2012) is more geologically
plausible than VTI and may yield more accurate anisotropy
parameters. It is likely that better PP and PS depth images can
be obtained with a TTI model, but the current version of the
algorithm does not allow for a tilt of the symmetry axis.

We were able to tie the PP depth image with the PS depth
image down to Base Cretaceous unconformity (the deepest
event used to generate SS data). These depth-consistent PP
and PS images provide a robust estimate of the Vipo /Vsp ratio,
which can be used for reservior characterization.

The final PP- and PS-wave images in Figure 4 are sim-
ilar to those obtained with the VTI model provided by Sta-
toil. It should be mentioned, however, that Statoil’s parameter
fields have a higher spatial resolution than the model in Figure
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3 because our updating procedure operated only with reflec-
tion data. Clearly, there is still depth uncertainty in our im-
ages, which can be reduced by including borehole (e.g., VSP)
information.

4 CONCLUSIONS

We carried out anisotropic processing of PP and PS data from
Volve field in the North Sea using reflection tomography and
Kirchhoff prestack depth migration. To avoid problems caused
by the moveout asymmetry and other inherent features of
mode conversions, PS-waves were replaced in velocity anal-
ysis with pure SS reflections generated by the PP+PS=SS
method.

Registration (correlation) of the PP and PS sections
helped identify five events that were used to compute the trav-
eltimes of the corresponding SS-waves. Model updating was
performed by flattening PP and SS image gathers and tying
the five interfaces in depth on the migrated PP and SS images.
The inverted sections of the parameters Vg, Vso, €, and &
have a somewhat lower resolution than the corresponding sec-
tions obtained by Statoil with the help of borehole data. Nev-
ertheless, the quality of the migrated images computed with
our and Statoil’s models is similar. The limited offset range of
the survey did not allow us to estimate the anisotropy param-
eters below 3 km, which hampered the focusing of the deeper
reflectors. It should be emphasized that the PP and PS sections
are tied in depth down to the Base Cretaceous unconformity
(the deepest event used to construct SS data).

Further improvement can be achieved by including walk-
away VSP or other borehole data in the tomographic inversion
and taking into account a possible tilt of the symmetry axis.
On the whole, however, this case study demonstrates that com-
bining PP-waves with mode conversions in anisotropic tomog-
raphy results in depth-consistent PP and PS images, increases
the accuracy of VTI velocity models, and provides estimates of
the Vipo/Viso ratio for lithology prediction and reservoir char-
acterization.
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Kirchhoff modeling for attenuative anisotropic media

Bharath Shekar & Ilya Tsvankin

Center for Wave Phenomena, Colorado School of Mines, Golden CO 80401

ABSTRACT

Seismic wave propagation in attenuative media can be efficiently modeled with
ray-based methods. Here, we present a methodology to generate reflection data
from attenuative anisotropic media using the Kirchhoff scattering integral and
summation of Gaussian beams. Green’s functions are computed in the reference
elastic model by Gaussian-beam summation, and the influence of attenuation is
incorporated as a perturbation along the central ray. The reflected wavefield is
obtained by substituting the approximate Green’s functions into the Kirchhoff
scattering integral. Numerical examples for P-waves in transversely isotropic
(TI) media with a horizontal reflector demonstrate the accuracy of the method.

Key words: attenuation, anisotropy, Kirchhoff modeling, Gaussian beams

Introduction

Attenuation analysis can provide seismic attributes sen-
sitive to the physical properties of the subsurface. Re-
liable attenuation measurements have become feasible
with acquisition of high-quality reflection and borehole
data.

A prerequisite for estimating attenuation coeffi-
cients from seismic data is accurate and efficient mod-
eling of wave propagation in attenuative media. The
stiffness tensor in attenuative media is complex, which
leads to amplitude decay along seismic rays and veloc-
ity dispersion. In the presence of attenuation, stress is
obtained by convolving the time domain stiffness ten-
sor (called the relaxation tensor) with the strain ten-
sor (Carcione, 1990), which complicates time-domain
finite-difference modeling of wave propagation. Fur-
ther, to simulate a frequency-independent quality fac-
tor (“constant-Q” model, e.g., Kjartannson, 1979) it
is essential to superimpose various relaxation mecha-
nisms (Xu and McMechan, 1998; Ruud and Hestholm,
2005), thus increasing the cost of finite-difference model-
ing. The approach based on the Fourier pseudospectral
method proposed by Carcione (2011) avoids the compu-
tation of relaxation functions, but it is restricted to vis-
coacoustic media. The reflectivity method (e.g., Schmidt
and Tango, 1986) is limited to calculating exact syn-
thetic seismograms for laterally homogeneous (elastic
or attenuative) models with plane interfaces.

A computationally efficient alternative is ray trac-
ing, which can generate asymptotic Green’s functions
in both elastic and attenuative models (Cerveny, 2001).
So-called “complex” ray theory developed for attenua-

tive models treats ray trajectories and parameters com-
puted along the ray as complex quantities (Thomson,
1997; Hanyga and Seredyiiska, 2000). However, numer-
ical implementation of “complex” ray theory in seismic
modeling is not straightforward. Ray tracing in the pres-
ence of attenuation can also be performed using pertur-
bation methods, which involve computation of rays in a
reference elastic medium with the influence of attenua-
tion included as a perturbation along the ray (Gajewski
and Psencik, 1992; Cerveny and PSentik, 2009; Shekar
and Tsvankin, 2012).

Synthetic seismograms of reflected waves in het-
erogeneous media can be computed using the Kirch-
hoff scattering integral (Chapman, 2004). However,
this method typically requires two-point ray tracing,
which does not properly describe multivalued trav-
eltimes (multipathing). Alternatively, the asymptotic
Green’s functions required in the Kirchhoff scattering
integral can be generated by summation of Gaussian
beams (Bleistein, 2008; éerveny, 2001). Gaussian-beam
summation can accurately handle multipathing and pro-
duce finite-frequency sensitivity kernels for amplitude
inversion (Yomogida and Aki, 1987).

Here, we present an algorithm for computing 2.5D
ray synthetic seismograms from attenuative anisotropic
media. First, we describe the Kirchhoff scattering inte-
gral for purely elastic models and show how it should
be modified in the presence of attenuation. Then we re-
view the method of summation of Gaussian beams and
its application to computation of the asymptotic “two-
point” Green’s functions in attenuative media. Finally,
this methodology is implemented for TI media and its
accuracy is illustrated with numerical examples.
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Methodology
0.1 Kirchhoff scattering integral

For simplicity, here we describe the computation of syn-
thetic seismograms for a single reflecting interface. Our
treatment is restricted to P-waves and does not include
P-to-S mode conversions. The sources and receivers are
assumed to be distributed on the same surface, which
lies above the reflector. Suppose the wavefield is excited
by a point force located at x, and aligned with the z-
axis, and the receiver is located at x,. The nth compo-
nent of the displacement field in the frequency domain
is given by (Cerveny, 2001):

Gnk(xr; XS,OJ) =—iw / Wiq(xl)
bH

X Gin(x', X5, w) Ggr(x', %r,w) d,

M

where x’ are points on the scattering surface X,
and the source- and receiver-side Green’s functions,
Gin(x',%s,w) and Ggk(x', %, w), are computed for a
smoothed medium. The weighting function Wi,(x') is
represented as:

Wio(x') =al}), (n;pf —mpl) 1+ R), (2

where ag}t),, is the local density-normalized stiffness ten-

sor in the medium above the reflector, n; is the nor-
mal to the reflector, p® and p” are the source- and
receiver-side slowness vectors (respectively) at the scat-
tering point, and R is the PP-wave reflection coefficient.

Equation 1 is valid for an arbitrary scattering sur-
face, and all Green’s functions have to be computed in
3D. However, if the medium properties do not vary in
the z2-direction, and the plane [z, z3] is a plane of sym-
metry, equation 1 can be represented in a 2.5D form.
Then the surface integral in equation 1 can be reduced
to a line integral by the method of stationary phase
(Bleistein, 1984).

Here, we use the results of Bleistein (1986), who
evaluates an integral similar to that in equation 1 by the
stationary-phase method. The 2.5D version of equation
1 can be obtained as:

Gk (X, X0, w) = — V2T w L Wig(x)
C,z2=0 o
X Gin(x', X5, w) Ggr(X', X, w) ds,

@)
where the Green’s functions are defined in 2.5D, the
scatterer is reduced to the curve C that lies in the [z,
z3]-plane, ds is an elementary arc-length along C, and
function ¢ accounts for out-of-plane phenomena:

_10°T(x',xs) | &°T(x',x,)
7= [ Oz2 8x2 ]12=0 ! “)
T(x',x,) is the traveltime from the scatterer to the

source and T'(x’,x,) is the traveltime from the scat-
terer to the receiver. The second-order spatial deriva-

tives of the traveltime functions may be calculated from
dynamic ray tracing.

Equations 1-4 can be extended to attenuative me-
dia by making the stiffness tensor complex and replac-
ing the elastic Green’s functions with their viscoelas-
tic counterparts. Although the reflection coefficient and
slowness vector also become complex in attenuative me-
dia, we compute these quantities for the reference elastic
medium. With the exception of anomalously high atten-
uation, plane-wave reflection coefficients are not signifi-
cantly distorted by attenuation (Behura and Tsvankin,
2009). While the complex-valued slowness vectors at the
reflector can somewhat alter the weighting function de-
fined in equation 2, they do not significantly contribute
to the displacement computed from equation 3 because
attenuation is mostly a propagation phenomenon.

0.2 Asymptotic Green’s function as a sum of
Gaussian beams

Although the Green’s functions in equation 3 can be
computed by two-point ray tracing (Bulant, 1996), that
method cannot accurately handle multipathing. A more
rigorous approach to modeling asymptotic Green’s func-
tions involves summation of Gaussian beams (Cerveny,
2001). Here, we start with the computation of 2.5D elas-
tic Green’s functions and then describe the modifica-
tions needed for extending the methodology to attenu-
ative media.

The Green’s function G(x’,x,,w) can be found as
the following sum of Gaussian beams (Cerveny, 2001):

G(X,x5,w) = / ®(11)uee(Ro(v1))dm, (5)

where ugn(Ro(y1)) represents a single Gaussian beam
concentrated around a central ray Ro(v:1), ®(m) is a
weighting function, and +,; is an initial value of a certain
ray parameter (e.g., of the phase angle). Suppose that
the ray Ro(v{) illuminates a point close to x’. The range
of integration is then chosen to be symmetric over ~?,
and the Green'’s function is obtained by summation over
a fan of beams that originate at the source location x,
and illuminate a region around x’.

To evaluate the contribution of ugp(Ro(11)) to
G(x',xs,w), we consider the point x” closest to x’
on the central ray Rp. Then the contribution of
ues(Ro(m)) to G(x',xs,w) is (Cerveny and Pgengik,
2010):

c(x
uce(x”’,x,,w) = c((x,s,; g(x")
1 iw T’
x e iwT(x",xg) ,

y/det W(x", x,)
(6)

where c is the phase velocity, g is the polarization vector,



and T(x',x) is the complex traveltime:
)T p(x")
_ x//)T Mz (x/ _ x/l) , (7)

T(x', %) =T(x", %) + (x" — x"

1 .,

=(x

+5(

where the superscripts “7” denotes the transpose, p
is the slowness vector, and M? is the complex-valued
matrix of the second derivatives of the traveltime in
the Cartesian coordinates. The matrix M?® is found
by transforming the matrix M defined in Appendix A
(equation 11) to the Cartesian coordinates (Cerveny

and Psencik, 2010). The matrix W(x",xs) depends on
the initial value Mg of the complex-valued matrix M:

W(x", %) = Q(x",%s) + Qa(x", %) Mo,  (8)

where the matrices Q; and Q2 are computed by dy-
namic ray tracing in the ray-centered coordinates (see
Appendix A). The matrix My is given by:

_
T lw?
where I is the identity matrix, and [ represents the beam

width. In anisotropic media, the beam width can be
chosen as (Alkhalifah, 1995):

Vavg
f min ’
where V,,g represents the average of the horizontal and
vertical phase velocities over the entire model, and fmin
is the minimum frequency of the source signal.

The weighting function ®(y1) (equation 5) can be
found from the matrices Q2, M, and M (Cerveny,
2001):

(1) =1 5 |det Qa(x", %)

X \/;et [M(x”,xs) - M(x",xs)] . (1)

The real-valued matrices Q2 and M are computed by
dynamic ray tracing with point-source initial conditions
(Appendix A), and the complex-valued matrix M is
computed from equation 11, Appendix A.

In attenuative media, equation 5 can be modified to
obtain the viscoelastic Green’s function G***(x’, xs,w)

(Cerveny, 1985):

IC/IO I 3 (9)

l =

(10)

G (' 30y ) = / B(n) ults(Ro(m)) dm - (12)

The weighting function ®(-y;) remains unchanged (equa-
tion 11), whereas the Gaussian-beam displacement
u¥s(Ro) becomes

ults (Ro(m)) = ugs(Ro(m)) e " ®*) (13)

where ugs(Ro(71)) is the Gaussian beam computed for
the reference elastic medium. The real-valued quantity
t*(x', x;), called the “dissipation factor” (Gajewski and
Psencik, 1992), accounts for the attenuation-induced
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amplitude decay along the central ray. The dissipa-
tion factor can be calculated using perturbation meth-
ods (Cerveny and P3encik, 2009; Shekar and Tsvankin,
2012).

0.3 Implementation

The reflected wavefields in attenuative heterogeneous
media are calculated using equation 3 with the source-
to-scatterer and scatterer-to-receiver Green’s functions
obtained from equation 6. The Gaussian beams (equa-
tion 7) are computed in the reference elastic medium
with the dissipation factor found as a perturbation along
the central ray (Cerveny and Pgenéik, 2009; Shekar and
Tsvankin, 2012). The weighting function ®(v,) for the
summation of Gaussian beams is also calculated in the
reference elastic medium. Likewise, the weighting func-
tions ¢ and Wiq for the Kirchhoff integral (equation 3)
are found from the quantities stored during the mod-
eling of Gaussian beams in the elastic background. For
TI models, the reflection coefficient R in equation 2 is
obtained from the weak-contrast, weak-anisotropy ap-
proximation presented by Riiger (1997).

The outlined method involves a number of ap-
proximations. The Kirchhoff scattering integral itself is
an asymptotic solution that ignores multiple scattering
(Chapman, 2004). The method of summation of Gaus-
sian beams is limited to computing asymptotic Green’s
functions in smooth media. The influence of attenua-
tion is modeled using perturbation theory, which is valid
for weakly-to-moderately dissipative media. Numerical
examples illustrating the accuracy of the perturbation
approach can be found in Shekar and Tsvankin (2012).

Numerical examples

First, we verify the accuracy of the Gaussian beam sum-
mation method in constructing the asymptotic Green’s
function. Figure 1 compares the displacements com-
puted from perturbation ray theory (Uarr) and Gaus-
sian beam summation (Ugg) for a homogeneous VTI
model. Even though the medium is strongly dissipative
with the P- and S-wave vertical quality factors equal to
10, perturbation theory is sufficiently accurate (Shekar
and Tsvankin, 2012), and the two displacements are
close to one another.

Next, we test the accuracy of the Kirchhoff scat-
tering integral combined with the Gaussian beam sum-
mation method in generating reflection data. Table 1
displays the velocity and attenuation parameters for a
laterally homogeneous VTI medium above a horizontal
reflector. The exact reflected wavefield (Figure 2a) was
generated using the reflectivity method (Mallick and
Frazer, 1990). The data computed by the Kirchhoff scat-
tering integral (Figure 2b) have a similar amplitude but
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Figure 1. Comparison of the vertical displacement component computed using perturbation ray theory (Uagr, red line) and
Gaussian-beam summation method (Ugg, black line) for group angles with the vertical of (a) 0°, (b) 30°, (c) 60°, and (d) 90°.
The model is homogeneous VTI with the P-wave vertical velocity Vpg = 2.0 km/s, S-wave vertical velocity Vgg = 1.0 km/s,
and anisotropy parameters ¢ = 0.4 and § = 0.25. The P-wave vertical quality factor is Q pg = 10, S-wave vertical quality factor
Qso = 10, and the attenuation-anisotropy parameters (defined in Zhu and Tsvankin, 2006) are €g = —0.45 and JQ = —0.50.
The wavefield is excited by a vertical point force; the source signal is a Ricker wavelet with a central frequency of 10 Hz.

lower frequency content than the seismograms in Fig-
ure 2a because the Gaussian beam summation method
yields finite-frequency Green’s functions. The Kirchhoff
scattering integral also produces spurious events near
both ends of the receiver array, so these traces have
been muted out.

Conclusions

We introduced a ray-based methodology for comput-
ing synthetic seismograms of reflected waves from at-
tenuative anisotropic media. The wavefield is generated
with the Kirchhoff scattering integral that includes 2.5D
asymptotic Green’s functions computed using Gaussian
beam summation and perturbation theory.

The accuracy of the Gaussian-beam summation
method in producing Green’s functions was verified for

highly attenuative TI media. We also compared the
Kirchhoff scattering integral with the exact seismograms
computed using the reflectivity method. The examples
confirm that the proposed technique adequately mod-
els P-wave reflections even in the presence of strong
anisotropic attenuation. However, the frequency content
of the data produced by the Kirchhoff scattering inte-
gral is lower than that of the exact seismograms.
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Figure 2. Vertical displacement for the model in Table 1 generated using (a) the reflectivity method and (b) the Kirchhoff
scattering integral. The wavefield is excited and recorded on top of the model. The source is a vertical force at X = 3.0 km and
the receivers are placed between X = 0.5 km and X = 5.5 km with a 50 m increment. The source signal is a Ricker wavelet

with a central frequency of 10 Haz.

Top layer Bottom half-space

Thickness (km) 2.00 -

Vpo (km/s) 3.00 3.20
Vso (km/s) 1.50 1.60
€ 0.20 0.10

) 0.10 0.05
Qpo 10 10
Qso 10 10

o 0.0 0.0

8o 0.0 0.0

Table 1. Synthetic VTI model used to test the Kirchhoff
scattering integral. The P-wave is reflected from a horizontal
interface between the two media.
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Appendix A
Dynamic ray tracing and Gaussian beams in anisotropic media

In this section, we briefly review dynamic ray tracing in anisotropic media and introduce the quantities necessary for
the construction of Gaussian beams.
The eikonal equation in elastic, anisotropic, heterogeneous media can be written as (Cerveny, 2001):

G((Di,p,‘) =1, (1)

where z; are the spatial coordinates and p; are the components of the slowness vector. The solutions of equation 1
represent the eigenvalues of the Christoffel equation:

det [[ix — Gdik] = 0, (2)
where Tz = aijr p; pi are the components of the Christoffel matrix and a;jx form the density-normalized stiffness

tensor.
The kinematic ray-tracing equations are given by (éerven)", 2001):

d(l:i _ 1 6G

dr - 2 6pi ’ (3)
dp; 190G
ar 20w “@

where 7 represents the traveltime (eikonal) along the ray.
The dynamic ray tracing system in ray-centered coordinates can be represented as (Cerveny and Klimes, 2010):

d
'% =Ann Qur + By Puis
dP
E’u =—Cnr Qur — Dynt Puts (5)

where the indices N, M, and I vary from 1 to 2. Explicit expressions for matrices A, B, C, and D can be found in
Cerveny and Klime§ (2010). The matrices Q,, and Py, are defined as
Qun: = dqn _ 9y
NI a’y] 'Y ENT a’YI ?

where 77 is a certain “ray parameter” (e.g., the initial phase angle of the ray), gn are the coordinates tangent to the
wavefront, and py denotes the slowness vector in the ray-centered coordinate system:

or
Ban (6)

qN
The solution of system 5 for plane-wave initial conditions (Q = I, P = 0; I is the identity matrix) is denoted by Qi
and P;, and for point-source initial conditions (Q = 0, P =I) by Q2 and P».

It is convenient to introduce the real-valued matrix M of the second-order traveltime derivatives:

M=PQ’. (7)

as discussed in the main text (equation 7), the matrix M is used for computing the paraxial traveltime. For point-
source initial conditions, M is

PN =

M=P:Q;'. (8)

A Gaussian beam is a solution of system 5 with complex-valued initial conditions (Bleistein, 2008):
B I P=_1, 9
Q= p” (9)

where [ is the initial value of the beam width, w is the angular frequency, and co is the phase velocity at the take-off
point. The matrix M becomes complex-valued:

M = [Py + Mo P2][Q1 + Mo Q2] ', (10)

where P1, Q1, P2, and Q> are found by dynamic ray tracing. Since M is complex-valued, the traveltime is complex-
valued, which leads to amplitude decay in the direction perpendicular to the central ray. The initial value of M
is

~ i

R 11
Mo T2 (11)
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ABSTRACT

Important insights into point-source radiation in attenuative anisotropic media
can be gained by applying asymptotic methods. Here, we derive the asymptotic
Green’s function in homogeneous, attenuative, arbitrarily anisotropic media us-
ing the steepest-descent method. The saddle-point condition helps describe the
behavior of the slowness and group-velocity vectors of the P-, S;-, and Sp-waves
in the far field. We test the accuracy of the asymptotic analysis by comparing it
with the ray-perturbation method for P-waves in transversely isotropic media.

Key words: attenuation, anisotropy, aysmptotic analysis, inhomogeneity angle

Introduction

Velocity and attenuation anisotropy significantly influ-
ence the radiation pattern of seismic waves excited by
a point source. A proper correction for the source di-
rectivity can help improve the robustness of AVO (am-
plitude variation with offset) and attenuation analysis.
Point-source radiation in homogeneous anisotropic me-
dia has been mostly studied for nonattenuative materi-
als using both asymptotic and numerical methods (e.g.
Cerveny, 2001; Tsvankin, 2012; Gajewski 1993; Wang
and Achenbach, 1994). Zhu (2006) presents an analytic
and numerical study of point-source radiation in 2D
homogeneous attenuative TI media. Vavryéuk (2007)
derives the asymptotic Green’s function for arbitrarily
anisotropic, homogeneous, attenuative models by for-
mally extending the results of Wang and Achenbach
(1994).

In attenuative media, the Christoffel matrix be-
comes complex-valued because the stiffness tensor is
complex. Although many results derived for elastic me-
dia can be generalized for attenuative media, there are
several important differences. In asymptotic analysis for
attenuative media, the saddle-point condition involves
complex-valued slowness and group-velocity vectors,
whose properties have to be clearly defined. Also, the
expression for the eigenvalue of the complex Christoffel
matrix in Vavryéuk (2007) is inaccurate, which distorts
the analytic expression for the Green’s function. Here,
we present a rigorous derivation of the saddle-point con-
dition and the eigenvalue of the complex Christoffel ma-
trix.

We start by reviewing the definitions of the atten-
uation coefficient, group velocity, and other key signa-

tures in attenuative media. Then the integral expression
for the Green’s function in homogeneous attenuative
anisotropic media is evaluated by the steepest-descent
method. The saddle-point condition is used to study the
properties of the far-field P-wave. Finally, we compare
the P-wave group velocity, polarization, and slowness
vectors obtained from our asymptotic analysis for VTI
(transversely isotropic with a vertical symmetry axis)
media with those found from ray perturbation theory
(Cerveny and Psentik, 2009).

Basic Definitions

In attenuative media, the wave vector is complex-valued
(complex quantities are denoted by the tilde sign on

top):
k =k +ik',
=w(p®+ip’), (1)

where p® and p’ are the real-valued propagation and
attenuation vectors, respectively, which form the slow-
ness vector p = pR+i p’. The orientations of k® and k!
(or equivalently, of p™ and p’) can be different, and the
angle between k™ and k! is called the “inhomogeneity
angle” £ (éerven)’l et al., 2008; Behura and Tsvankin,
2009; Tsvankin and Grechka, 2011). Plane waves sat-
isfy the wave equation with arbitrary values of £, ex-
cept for certain “forbidden directions” of p’ (Krebes
and Le, 1994; Cerveny and P#encik, 2005; Carcione,
2007). Hence, the angle £ is treated as a free param-
eter in plane-wave propagation (Behura and Tsvankin,
2009).
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However, for waves excited by point-sources, the in-
homogeneity angle is determined by medium properties
and boundary conditions (Vavryéuk, 2007; Zhu, 2006).
In reflection/transmission problems for plane waves,
the inhomogeneity angle is constrained by Snell’s law
(Hearn and Krebes, 1990; Behura and Tsvankin, 2009).

Zhu and Tsvankin (2006) define the phase attenu-
ation coeflicient A as

|k’

A= KA )
The angle-dependent quality factor Q is given by
1
Q= A" (3)

Cerveny and Pgenéik (2008) show that the group at-
tenuation coefficient responsible for attenuation-related
amplitude decay along seismic rays can be written as:

pI . FR (4)

egr _
A —pR,FR’

where F# denotes the real part of the Poynting vector.
The complex-valued Poynting vector characterizes the
direction of energy flux, and its real part coincides with
the group velocity vector:

F = s Relaiu 71 §; 3], (5)
where k is a constant, d;jx are the complex-valued
density-normalized stiffness coefficients, and §; are the
components of the complex-valued polarization vector
g that satisfies g* - § = 1; the asterisk “*” denotes the
complex conjugate. Behura and Tsvankin (2009) prove
that the group attenuation coefficient is practically in-
dependent of the inhomogeneity angle and coincides
with the phase attenuation coefficient for ¢ = 0, ex-
cept for the vicinity of the forbidden directions. Similar

results follow from the perturbation analysis presented
by Cerveny and Pienéik (2009).

Asymptotic Green’s function in homogeneous
attenuative anisotropic media

Here, we derive the asymptotic Green’s function for P-
and S-waves in a homogeneous, attenuative, arbitrarily
anisotropic medium. The analysis is valid for all three
wave modes (P, S, S2), but breaks down in the vicinity
of shear-wave singularities where the Christoffel equa-
tion has degenerate (coincident) eigenvalues.

The exact Green’s function can be found from the
wave equation as (Appendix A, equation 30):

Gron(x, %%, w) = (277)2 / / m]m—”a
x e B dp; dp, , (6)
where
é = —i(p121 + p2d2 + Pais), ]

V(@1 — 29)? + (w2 — 29)? + (z3 — 23)?] is the
source-receiver distance, &; is the unit vector in the
source-receiver direction, p; are the slowness compo-
nents, [y = aijkt pj pi, and Sk, are the cofactors of
the matrix I' — I, I is the identity matrix. The solution
of the equation det [@ijki pj ot — dix] = O is denoted as
ﬁg = ﬁ3(p1’ ;02)

The components of the slowness vector satisfy the
following equation:

det(@;jupjpt — Gdik] =0, (8)

where
G(pi, z:) =1 9

is the eigenvalue of the matrix it = @ijup;pr. Equa-
tions 8 or 9 represent the eikonal equation in anisotropic
media (Cerveny, 2001). The eigenvector U; correspond-
ing to the eigenvalue G is the polarization vector that
satisfies the following equation:

Tie Ux = GU;. (10)

If we assume that wR/v (where v is a certain av-
erage of the group velocity) is a large parameter, G
(equation 6) can be evaluated by steepest-descent in-
tegration near the saddle point (Bleistein, 1984). The
saddle-point condition is

¢ _ 99
= 2— =0, 11
1 = s (11)

P [apa(pl,pz)]p =0,
P2

6p1

+ |~ [9P3(p1,p2) _
T2 + Zx3 [—ap2 :Iﬁ 7 - 0 ) (12)

where (ﬁi, ﬁ;) denotes the saddle point. The partial
derivatives in equation 12 can be calculated from the
function G (equation 9) using the implicit function the-
orem (Courant, 1988). Then equation 12 becomes:

oG 118G B
= [apa]Pl,pz 3[%{]1;?,5; )
. [0G _[8G
zz[gp—a]iq,ﬁ; B 3[6_;;2]5;,,-,5 =0 (13)
a ~‘l, ~1
65 aarz;k Sgk ' (14)

The derivatives 81'ix/dp; and Six/S can be found by
substituting the complex-valued stiffness tensor in the
definitions of OT'it/dp; and S;x/S given in Cerveny
(1972). Since G is a homogeneous function of second de-
gree in p;, Euler’s homogeneous function theorem yields:

oG

Pi gpy 2 (15)



Next, we introduce the vector E as

~ 1 0G
E; = 2 3p;° (16)
In elastic media, equation 16 defines the components
of the group-velocity vector. In attenuative media, E
has been termed “energy velocity” (Vavrycuk, 2007),
with its real part contributing to the traveltime and
the imaginary part to energy dissipation. Since the unit
vector in the source-receiver direction X is real-valued,
equation 13 implies that at the saddle point the vector
E = 3%, where 3 is a complex constant. Hence, the
real and imaginary parts of the energy-velocity vector
are parallel to the vector connecting the source and the
receiver (i.e., Re[E] || % and Im [E] || %).

Evaluating the integral in equation 6 by the method
of steepest descent (Bleistein, 2012), we find:

1 1
Gkn(x,xo’w) = ToN T
(27|') A /det P

gkn 7
X ——————— exp(—wR¢), (17

Blden(T - Djjops P WRA), (17)
where all quantities are obtained at (i, p3, P3), and
®" is the Hessian matrix of the partial derivatives of
¢ with respect to p1 and ps. The matrix ®” can be
computed from equation 8 using the implicit function
theorem. The phase function at the saddle point can be
found from equations 7, 13, and 15:

i

E}

3=

(18)

In the next section, we show that the real part of E;
contributes to the traveltime and the imaginary part to
attenuation. For 2D VTI media, equation 17 reduces to
the expression for the Green’s function derived by Zhu
(2008).

Although the asymptotic analysis carried out above
is similar to that presented by Vavryéuk (2007), we
proved (rather than assumed) that at the saddle point
the real and imaginary parts of the “energy-velocity”
vector are parallel to each other. To derive expressions
for the “energy-velocity” vector and the Gaussian curva-
ture of the slowness surface (which is related to the Hes-
sian matrix obtained by the steepest-descent method),
Vavryéuk (2007) uses the following expression for the
eigenvalue G:

G = aijrp; o Ui Uk, (19)

where U is the polarization vector (equation 10). Equa-
tion 19, however, is not valid for complex symmetric ma-
trices (Horn and Johnson, 1990). Instead, we employed
the implicit function theorem to evaluate the “energy-
velocity” vector and the Hessian matrix.
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Model 1 2 3 4

Vpo (km/s) 3.00 3.00 3.00 3.00

Vso (km/s) 150 150 150 1.50

€ 0.10 0.40 040 0.40
5 0.005 025 025 0.25
Qpro 100 100 10 100
Qso 60 60 10 10
€ -0.20 045 0 0
5o -0.10 -0.50 O 0

Table 1. Homogeneous TI models with anisotropic velocity
and attenuation functions. The parameters Vpg and Vgg are
the vertical P- and S-wave vertical velocities, @pg and Qso
are the vertical P-wave and S-wave quality factors, and €,
and §,, are the attenuation-anisotropy parameters defined in
Zhu and Tsvankin (2006).

Numerical Examples

In this section, the analytic results presented above are
used to study the behavior of the inhomogeneity angle
and the group-velocity and polarization vectors in ho-
mogeneous, attenuative VTI media. Table 1 shows the
parameters of the velocity and attenuation functions for
four VTI models defined in Zhu (2006).

First, we analyze the energy-velocity vector defined
in equation 16. Cerveny et al. (2008) demonstrate that
the perturbed group velocity U in attenuative media is
given by

= (1- iA)Us, (20)

where U is the group-velocity vector in the reference
elastic medium and A is the phase attenuation coeffi-
cient computed for a zero inhomogeneity angle in the
phase direction that corresponds to the given group di-
rection. The complex-valued energy-velocity vector E is
compared with the perturbed group velocity U in Fig-
ure 1. Both the real and imaginary parts of the vectors
coincide, so our solution for E accurately describes both
the traveltime and attenuation along the ray.

Equation 8 and the saddle-point condition (equa-
tion 13) can be used to compute the complex-valued
slowness vector p and, hence, the corresponding inho-
mogeneity angle. For the purpose of numerical computa-
tions, it is convenient to parametrize p in the following
way (Cerveny and Pgencik, 2005):

P=odn+iDm, (21)

where the vector n specifies the phase direction and m
is chosen to be perpendicular to n (i.e., n - m = 0).
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Figure-l. Comparison of the magnitudes of the energy-velocity vector E (equation 16) and perturbed P-wave group velocity
vector U (equation 20) for model 2 from Table 1. The magnitudes of (a) real and (b) imaginary parts of [/| and |E[; ¥ is the

group angle with the vertical.
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Figure 2. Inhomogeneity angle £ computed from the asymptotic analysis in this paper (red stars) and ray perturbation theory
(black circles) for models (a) 1, (b) 2, (c) 3, and (d) 4.
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Figure 3. Comparison of the complex-valued polarization
vectors U and g for model 2. The (a) X-component and (b)
Z-component of the real parts of U and g. (c) The phase of
U (¢2Y™) and g (¢P°r).

Point-source radiation 149

The quantity D is called the inhomogeneity parameter
(Cerveny and Psentik, 2005). In our examples with VTI
models, we can assume that n is confined to the [z, z3]-
plane, and we can choose m to lie in the same plane. To
find the parameters & and D corresponding to the saddle
point, we solve the constrained optimization problem:

E 2
MinimizeH E__ )‘(H , subjectto G=1. (22)
L
3

=

Therefore, the objective function is the difference be-
tween the orientation of E and % (equation 13), with
equation 8 serving as a constraint.

Figure 2 compares the inhomogeneity angle £
computed from our asymptotic analysis and the ray-
perturbation approach (see Appendix B, equation 10).
The values of £ obtained by the two methods are close to
one another for models 1, 3, and 4. The discrepancy for
model 2 can be expected because P-wave attenuation for
that model is strongly anisotropic. Indeed, the perturba-
tion method assumes the magnitude of attenuation and
attenuation anisotropy to be small. Although model 3
has substantial attenuation and an anisotropic veloc-
ity function, the inhomogeneity angle for that model
vanishes because the quality-factor components Q;; are
identical (see Appendix B).

The polarization vector U for the plane wave that
corresponds to the saddle-point condition can be com-
puted from equation 10. Using ray perturbation the-
ory, an approximate polarization vector g can be ob-
tained from equation 6. Figure 3 shows the real parts
and phases of the complex-valued vectors U and g for
model 2. While the real parts practically coincide, there
is a small difference between the phase terms. Clearly,
our analysis accurately describes the direction of the P-
wave particle motion. The imaginary parts of Uand g
vanish for model 3 because the attenuation function is
isotropic.

Conclusions

We presented a rigorous derivation of the Green’s
function in homogeneous, attenuative, arbitrarily
anisotropic media using the steepest-descent method.
Application of the saddle-point condition helps identify
the plane wave that makes the most significant contribu-
tion to the displacement field of each mode. Our results
make it possible to evaluate the inhomogeneity angle
and describe the behavior of the group-velocity vector
in the high-frequency approximation.

P-wave signatures obtained from our asymptotic
analysis for TI media were compared with the same
quantities computed by ray perturbation theory. The
asymptotic energy-velocity vector is close to the per-
turbed group-velocity vector and, therefore, correctly
predicts the traveltime and attenuation along the ray.
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The inhomogeneity angles computed from the saddle-
point condition and perturbation theory differ only for
strongly attenuative models. The polarization vector is
complex, and both the real and imaginary parts are well-
described by our asymptotic expressions.
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Appendix A
Exact Green’s function for attenuative anisotropic media

The wave equation in the frequency-wavenumber domain for a homogeneous, attenuative, anisotropic medium can
be written as (Zhu, 2006):

(@sjxe(w)ksks — w?oir) Un(k,w) = fi(k,w), (23)

where w is the frequency, Gi;x are the components of the density-normalized stiffness tensor, k; are the wavenumbers,
U is the displacement vector, and f(k,w) is the body force per unit volume (source). All indices vary from 1 to 3.
The frequency-domain displacement can be found as the Fourier integral:

ﬁk(x,w)=(2—71r)—3 /_ : /_ Z /_ o:o Uy (k, w) €573 dk, (24)

where

Bkt fl(khw)

Oi(k,w) = det D

(25)
and dk = dk; dkz dks. The matrix D (D = Gijrikjki — w?dix) with cofactors By is closely related to the Christoffel
matrix. The source in equation 25 can be defined as a point impulsive force applied at location xo¢ parallel to the
ZTn-axis:

filw, k) = 6ine"ik"zg . 26
i

The particle displacement from this source is the Green’s function:

> Bz in i (s —x0

_ The integral over k3 in equation 27 can be extended into the complex plane

ks = Reks + iImks. The closed contour includes the real axis and a semicircle with an infinitely large radius in
the upper half-plane. The integral can then be evaluated by the residue theorem (i.e., by computing the residues at
the poles), as described in Aki and Richards (1980) and Tsvankin (1995). The poles correspond to the roots of the
following equation for ks:

detﬁ = det[dijklkjkl - w26ik] =0. (28)

Equation 28 is a sixth-order polynomial in k3 that can have at most six distinct roots that correspond to up- and
downgoing P-, S;- and S;-waves.

In nonattenuative media, the roots of k3 lie on the real ks-axis, and the integral can be evaluated by introducing
small attenuation, moving the roots into the complex plane, and applying the residue theorem (Tsvankin, 1995).
Alternatively, the integral over k3 can be evaluated using Cauchy’s principal value (Bleistein, 1984). In the presence
of attenuation, the roots of equation 28 lie in the complex plane. The pole k:3 = k‘3(k1,k2), which corresponds to
a certain mode (e.g., P-waves) and is located inside the integration contour, yields the residue for that mode. The
integral over k3 in equation 24 reduces to the residue at the pole, and the Green’s function becomes:

0 i o0 o0 ékn
Gkn(x’x ’w) = _5 / / ['—..——] ~
(27)? J_o0 J-oo LO(detD)/Bks ) ka=k5
eilbr =D thar—a+Ri@a-aD] gp, gk, (29)
Substituting k; = wpj, where p; denotes the components of the slowness vector, yields detD = w det’,(I‘l;c dik),

where [k = aijup;pi. The cofactors of I' — I (I is the identity matrix) are denoted by Skn, and Bin = w 4 Sken.
Equation 29 can then be written as

Sn
Gkn(xx w) (21r / _/ a[det(l" I)]/apg]Ps =pj

x el[m(wl—zl)+P2(fvz—zz)+l>3(=r3—13)] dp: dpa. (30)
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Appendix B
Perturbation analysis for anisotropic attenuative media

In this section, we present approximate expressions for the propagation and attenuation vectors (and, hence, the
inhomogeneity angle) in homogeneous, attenuative, anisotropic media using the method of perturbation Hamiltonians
introduced by éerveny and PSencik (2009). We also derive the conditions under which the inhomogeneity angle
vanishes.

In their methodology, éerveny and PSencik (2009) treat the traveltime as a complex-valued quantity, with the
real part contributing to the phase and the imaginary part to the dissipation along the ray. The complex-valued
traveltime and traveltime gradients can be computed as a perturbation of the corresponding real-valued quantities
found along the ray. The density-normalized stiffness tensor is given by a;jx = aﬁk, — ia{jk,, with the real part
corresponding to the reference nonattenuative medium, and the imaginary part to the perturbation that makes the
medium viscoelastic.

We consider the linear perturbation Hamiltonian H(x, p, @) defined in Cerveny and Pgenéik (2009):

H(x,p, @) = H'(x,p) + a AH(x,p), 1)
with
AH(X) p) = ’Ft(x’ p) - Ho(x’ p)a (2)

where H® and H correspond to the (elastic) reference and (viscoelastic) perturbed medium, respectively, p is the
slowness vector, and a is the perturbation parameter. The reference Hamiltonian H° can be expressed through the
slowness (p) and polarization (g) vectors computed for the reference medium:

H(x,p) = % [afpipigign]™?, (3)
where N is an integer. The polarization vector g satisfies the equation
ik g = [afii ps il 9k = Agi, (4)
where ) represents the eigenvalue of the Christoffel matrix for the mode of interest. The perturbed Hamiltonian H
is given by

]N/2, (5)

where the complex polarization vector § is computed as the eigenvector of the complex Christoffel matrix ['ik:

Lik G = [@ssmps pi) Gk = (A + AN) gi, (6)
where ) is the eigenvalue that corresponds to the reference elastic medium and A\ is the perturbation of A. The
slowness vector p in equations 5 — 6 corresponds to the reference elastic medium and is real-valued.

The traveltime gradient, which corresponds to the perturbation Hamiltonian defined in equation 5, can be
expanded in the perturbation parameter o (Cerveny and Pgenéik, 2009):

~ 1 - i
H(zm,pn) = [@ijke Pi D1 Gi G

or _or° &*r

~ 9 . 7
55~ 65 T Baralace T (™)
where 97°/8z; = p{ is computed in the reference medium. An approximation for the the traveltime gradient in

attenuative media can be obtained by substituting & = 1 and retaining the first two terms of the expansion in
equation 7. Then the real part of the traveltime gradient corresponds to p® and the imaginary part to p’:

R o1 .0 &r
Pi = Re [89:1] ~Pi + Re [6:1:, aa]a=0’ (8)
pi=tm[gn]~im ] ®)
The inhomogeneity angle can be computed from
I _R
) L
cosf = . 10
= prlpA] (1)

The second-order partial derivative in equation 7 is evaluated using quadratures along the reference rays. Detailed
derivations and the methodology can be found in Klimes (2002) and Cerveny and Pgencik (2009). Here, we will only
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provide the expressions corresponding to the perturbation Hamiltonian defined in equation 1 for a homogeneous
medium. The relevant expressions are

6 T ray) - -
with the vector Tx(c) given by
Tr(a) = Tr(e) + Wi P, K =1,2, (12)
P oH  oH°
W= (o~ aor) 03)
Ts3(a) =H® — H. (14)

The upper-case index “K” changes from 1 to 2, and the lower-case index “k” from 1 to 3. The real-valued matrices
Q:YY (not to be confused with the quality-factor matrix) and P;;” are computed during dynamic ray tracing in the
reference elastic medium. They are defined as:

Ox;
ray __ 7
Q‘,,k a’yk ¥
ap?
PR =g (15)

'yk denotes a certain “ray parameter” (e.g. the initial phase angle or the traveltime along the ray). In equation 12,
T%(a) = 0 for a point source, however, for plane-wave propagation the values of T% () (initial conditions) may be
chosen arbitrarily (Klimes, 2002).

We now derive the conditions under which the inhomogeneity angle vanishes in homogeneous media. Substituting
equations 3 and 5 into equation 13 yields:

Wi = Gajut Pr §5 Gt — Giget P 95 91- (16)
For weakly dissipative media, we can use the approximation § ~ g and reduce equation 16 to
Wi = —iafjupe g 9i- a7

For the special case of identical ) components (i.e., a{jk[ = af}k, /Q), we have

Wi = — (18)

) agkl —1 %
Q Q’
where U; are the components of the group-velocity vector in the reference elastic medium. Substituting equation 18
into equation 12, we obtain
T s 0 U; ray __ .
Ka(’Ys)——l(’Ya—’Ys)aPm =0, K=12, (19)

because the group-velocity vector is orthogonal to the first two columns of the matrix P™Y, i.e.,U; Pix = 0 (éerveny,
2001). Then, equations 8 and 9 for p”? and p’ take the form:

pit = p? + Re [Tsa PY, (20)
and
pi = Im [Tsa) p?, (21)

where p? = [Q5Y]! (Cerveny, 2001). From equations 20 and 21, it follows that p? is parallel to p’. Hence, the
inhomogeneity angle vanishes in the case of identical Q components, i.e., when the attenuation coefficients of all three
wave-modes are isotropic. Note that the velocity function may still be anisotropic. Further, the inhomogeneity angle
also vanishes for isotropic velocity and attenuation functions. This can be proved by substituting the expressions for
the Hamiltonian in isotropic media into equation 16.
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ABSTRACT

Pressure drops associated with reservoir production generate excess stress and
strain that cause traveltime shifts of reflected waves. Here, we invert time shifts
of P-, S-, and PS-waves measured between baseline and monitor surveys for
pressure reduction and reservoir length. The inversion results can be used to es-
timate compaction-induced stress and strain changes around the reservoir. We
implement a hybrid inversion algorithm that incorporates elements of gradi-
ent, global/genetic, and nearest-neighbor methods, and permits exploration of
the parameter space while simultaneously following local misfit gradients. Our
synthetic examples indicate that optimal estimates of reservoir pressure from
P-wave data can be obtained using the reflections from the reservoir top. For
S-waves, time shifts from the top of the reservoir can be inverted for pressure if
the noise level is low. However, if noise contamination is significant, it is prefer-
able to use S-wave data (or combined shifts of all three modes) from reflectors
beneath the reservoir. Reservoir length can be estimated using the time shifts of
any mode from the reservoir top or deeper reflectors. Numerical testing shows
that a potentially serious source of error in the inversion is a distortion in the
strain-sensitivity coefficients which govern the magnitude of stiffness changes.
We conclude by illustrating the differences between the actual strain field and
those corresponding to the best-case inversion results obtained using P- and
S- wave data. This feasibility study suggests which wave types and reflector
locations may provide the most accurate estimates of reservoir parameters from
compaction-induced time shifts.

Key words: geomechanics, seismic modeling, inversion, stress-induced aniso-
tropy, converted waves, shear waves, time-lapse, compacting reservoir, trans-
verse isotropy, VTI

INTRODUCTION son et al., 2007; Wikel, 2008). Pressure inversion may
also identify regions of elevated stress and strain where
existing wells may fail, or additional drilling should be
avoided.

Most existing publications on modeling and estima-
tion of production-induced strains and time shifts have
focused on vertical strain formulations (Hatchell and
Bourne, 2005; Janssen et al., 2006; Roste, 2007; Hodg-

Pressure variations inside a petroleum reservoir influ-
ence drilling and production decisions throughout the
life of the field. Inversion for the pressure distribution
in multicompartment reservoir models permits identi-
fication of depleted zones and isolated compartments
sealed off by geologic formations (Greaves and Fulp,
1987; Landrg, 2001; Lumley, 2001; Calvert, 2005; Hodg-
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son et al., 2007; Staples et al., 2007; De Gennaro et al.,
2008). However, several studies have shown that model-
ing of triaxial strains/stresses is necessary because shear
strains contribute significantly to stiffness perturbations
and, thus, time shifts (Schutjens et al., 2004; Sayers and
Schutjens, 2007; Herwanger, 2008; Fuck et al., 2009;
Sayers, 2010; Fuck et al., 2011; Smith and Tsvankin,
2012).

Time shifts and reservoir pressure estimated from
seismic data can be highly dependent on processing
methods, geomechanical model, and the quality of the
recorded waveforms. A process known as “cross equal-
ization” (Rickett and Lumley, 1998, 2001) is typically
applied to field data for the purpose of making them
suitable for time-lapse inversion. Time-shift computa-
tion from synthetic data still requires post-processing
of the modeled reflected wavefields designed to sup-
press artifacts caused by interfering arrivals (Smith and
Tsvankin, 2012).

Using geomechanical modeling and time-shift anal-
ysis, Fuck et al. (2009) demonstrated that it is essential
to account for triaxial stress and stress-induced aniso-
tropy in describing offset-dependent P-wave time shifts.
Smith and Tsvankin (2012) extended time-shift model-
ing to multicomponent data and studied the variation
of P-, S-, and PS-wave time shifts with reservoir pres-
sure and reflector depth (here, by S-waves we mean the
SV-mode). Because stress-induced anisotropy is close to
elliptical, the velocity of SV-waves and of the SV-leg
of PS-waves is almost independent of direction. Large
compaction-induced strains inside the reservoir gener-
ate S-wave time shifts for deep reflectors that are 2-3
times larger than those for P-waves. A sensitivity study
by Smith and Tsvankin (2013) demonstrates that S-
wave time shifts for reflectors beneath the reservoir be-
come nonlinear in pressure for relatively large stiffness
changes corresponding to pressure reductions exceed-
ing approximately 10%. Their results suggest that time
shifts of shear-wave reflections may be large enough to
invert for reservoir pressure when P-wave shifts (which
are smaller) are obfuscated by noise.

Here, we present integrated 2D geomechani-
cal/seismic inversion of compaction-induced time shifts
obtained from multicomponent seismic data generated
for simple, single-compartment reservoir models. The
reservoir is embedded in a homogeneous, isotropic back-
ground medium that becomes heterogeneous and aniso-
tropic after the pressure reduction. The time shifts are
estimated using P-, S-; and PS-wave reflections from
three interfaces around the reservoir. Qur inversion al-
gorithm combines global and gradient techniques with
the goal of both exploring the error space and ensur-
ing convergence toward a global minimum. Inversion for
reservoir pressure and length is performed for each mode
(P, S, PS) separately, as well as for the combination of
time shifts of all three wave types. We also examine

the differences between the strain field of the reference
reservoir and those of the best inverted models.

THEORETICAL BACKGROUND
Geomechanical and time-shift modeling

The far-field stress and strain fields of a subsurface in-
clusion undergoing pressure or thermal changes (Hu,
1989; Downs and Faux, 1995) can be expressed through
the Green’s function. A closed-form equation describing
the pressure-dependent vertical strain in a half-space
with a free surface is given by McCann and Wilts (1951)
and Mindlin and Cheng (1950). In what has become
a standard method, Hodgson et al. (2007) invert time
shifts for the vertical strain €,, using the “R-factor”
equation of Hatchell and Bourne (2005):
A_(+Re., (M
where At is the estimated P-wave time shift, t is the P-
wave traveltime, and R is a coeflicient empirically deter-
mined from field-survey time-shift measurements. Then
pressure reductions can be estimated from ¢, by incre-
mentally updating rock-physics and geologic properties
with the help of well logs and seismic data.

However, rocks both inside and outside a producing
reservoir are subject to varying combinations of vertical
and horizontal stress (e.g. Herwanger, 2008), indicat-
ing the need to account for triaxial stress/strain. A nu-
merical example showing the equivalence of time shifts
produced by single-compartment and two-compartment
reservoirs of identical dimensions is given in Smith and
Tsvankin (2013), who model a complete compaction-
induced strain tensor.

Here, we invert for reservoir pressure and length
using time shifts estimated from coupled geomechanical
and seismic modeling (Smith and Tsvankin, 2012). The
strain field around the compacting reservoir of Figure
1 is computed with triaxial, plane-strain finite-element
modeling (COMSOL AB, 2008). The section is com-
posed of a homogeneous unstressed material, and the
effective pressure of the region designated as the reser-
voir is given by

Peﬁ‘ == Pc - aPﬂuid = Pc - a({Pﬁ’uid) N (2)

where P, is the confining pressure of the overburden col-
umn, Phjug is the pressure of the fluid in the pore space,
and Pgj.q is the initial fluid pressure. The coefficient £
is is responsible for reservoir depressurization, and « is
an effective stress coefficient describing the response of
the aggregate fluid and rock matrix.

Pore-pressure (P, = Payia) reduction within the
reservoir block (Figure 1) results in an anisotropic ve-
locity field due to the excess stress and strain. The re-
sulting 2D model is transversely isotropic with a tilted
axis of symmetry (TTI) (Tsvankin, 2005; Fuck et al.,
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Figure 1. Compacting reservoir and reflectors (marked A, B,
and C) used to measure traveltime shifts. AP is the change
in the initial reservoir fluid pressure given in equation 2.
The reservoir is at a depth of 1.5 km, and measures 2.1
km in length (L), and 0.1 km in thickness (h). The reser-
voir is embedded in a homogeneous medium with density
p = 2140 kg/m3, velocities Vp = 2300 m/s and Vg = 1640
m/s and the third-order stiffness coefficients C111 = —13,904
GPa, C112 = 533 GPa, and Ci55 = 481 GPa (Sarkar et al.,
2003).

2011). The coefficient & can change with reservoir prop-
erties, making equation 2 nonlinear in pressure for large
compaction/porosity changes. However, for the range
of effective pressures in this study, o is approximately
constant (Hornby, 1996). The depressurization of the
reservoir compartment and fluid type are assumed to be
uniform, and the reservoir material is taken to be homo-
geneous. We do not consider large production-induced
changes of bulk moduli, which can occur when gas bub-
bles out of pore fluids (i.e., the pressure drops below the
“bubble-point”) (Batzle and Han, 2009), or the replace-
ment of oil by water.

Strain-induced changes in the second-order stiff-
nesses cijki, which serve as input to seismic modeling,
are computed using the so-called nonlinear theory of
elasticity (Hearmon, 1953; Thurston and Brugger, 1964;
Fuck et al., 2009):

Ociji
Oemn

Cijkl = Cojkt + Aemn = jgt + Cijhtmn Demn , (3)
where cfjy, is the stiffness tensor of the background (un-
perturbed) medium, ¢;jximn is the sixth-order “strain-
sensitivity” tensor and Aep,, is the excess strain tensor.
Index pairs of the tensor ¢;jrimn can be contracted into
single indices changing from 1 to 6 using Voigt notation
(e.g., Tsvankin, 2005), which results in the matrix Cog,-

We employ a 2D elastic finite-difference code (Sava
et al., 2010) to generate multicomponent P-, S- and PS-
wave data for baseline (AP = 0) and monitor (AP > 0)
surveys. Reflectors measuring one grid point in thickness
are inserted into the model as density anomalies (for
details, see Smith and Tsvankin, 2012).

Time shifts for P-waves are estimated using the
vertical (Z) displacement component, while those for

S(SV)- and PS-wave data are estimated on the horizon-
tal (X) component. Shot gathers from baseline and mon-
itor surveys are windowed and FK-filtered to isolate the
arrivals of interest, and crosscorrelated trace-by-trace
to measure the time shifts. The data are smoothed to
remove spurious or sharp/high-frequency variations in
the time-shift curves. The smoothing represents a form
of regularization that improves inversion stability while
sacrificing a degree of fit to the data (Aster et al., 2005).
This process produces smooth time-shift curves for P-,
S-, and PS-waves as a function of the lateral coordi-
nate at reflectors A, B, and C (Figure 1). Similar post-
processing including resampling/interpolation, filtering,
stacking, amplitude matching, etc. (referred to as cross-
equalization) would be applied to field data prior to
time-shift estimation (Rickett and Lumley, 1998, 2001;
Magnesan et al., 2005).

INVERSION METHODOLOGY
Properties of multicomponent time shifts

Time shifts are estimated from synthetic data gener-
ated for the depressurized reference reservoir in Figure
1. Figure 2 shows time shifts of P-, S-, and PS-waves
for a fluid-pressure drop of 20% with the source lo-
cated above the reservoir center. The spatial patterns of
compaction-induced time shifts remain consistent over
a range of pressure drops, and reflectors A, B, and C
are positioned to sample these distributions for inver-
sion purposes. Compaction-induced strains in the reser-
voir volume are 1-2 orders of magnitude larger than
those in the surrounding medium (Smith and Tsvan-
kin, 2012). The resulting velocity increases inside the
reservoir cause time shifts to change from lags in the
overburden to leads beneath the reservoir. Therefore,
the reservoir essentially behaves like a high-velocity lens
for all wave types.

P-wave time shifts (Figure 2a) exhibit pronounced
offset variations around the reservoir due to the stress-
induced anisotropy. While SV-wave anisotropy is weak,
shear-wave time shifts from reflection points beneath
the reservoir are 2-3 times larger than those of P-waves
(Figure 2b). PS-wave time-shift trends (Figure 2c) de-
pend on the reflection (conversion) point, and for reflec-
tors beneath the reservoir are governed by the combi-
nation of P-wave lags in the overburden and larger S-
wave leads accumulated inside the reservoir. For reflec-
tors in the overburden, S-wave leads practically cancel
P-wave lags, and time shifts of PS-waves are generally
small (Smith and Tsvankin, 2012). Variations in these
time-shift patterns occur with source location, and the
proximity of the reservoir to the free surface.

Multicompartment reservoirs exhibit time-shift dis-
tributions similar to those in Figure 2, but with
strain and time-shift perturbations caused by the inter-
compartment pressure differences or variations in shape
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(Smith and Tsvankin, 2012; Smith and Tsvankin, 2013).
The results for a single-compartment reservoir presented
here highlight the general properties of time shifts of dif-
ferent wave types for a wide range of reflector depths.
Making the model more complicated by introducing a
multicompartment reservoir or a heterogeneous back-
ground would result in a loss of generality, making the
results specific to a certain geologic section.

Model properties and inversion constraints

As in our previous publications, the reservoir is com-
prised of and embedded in a homogeneous material with
the properties of Berea sandstone (Figure 1). The effec-
tive stress coefficient o for the reservoir is 0.85 (equa-
tion 2). Velocities are reduced by 10% from the labora-
tory values to account for the difference between static
and dynamic stiffnesses in low-porosity rocks (Yale and
Jamieson, 1994).

For geomechanical modeling, the reservoir is lo-
cated in a finite-element mesh measuring 20 km x 10 km,
which allows us to obtain stress, strain, and displace-
ment close to those for a half-space. The pressure re-
duction in the reference (actual) reservoir is 17.5%, with
pressure drops of the inversion models constrained to
be between 10% and 20% (0.8Pguiq < Pauia < 0.9Pg4,
with the actual value 0.825Pg,;q). The reservoir length
is varied between 1.5 and 2.5 km; the actual value L =
2.1 km. Such ranges are not considered unrealistic be-
cause the reservoir pressure and length typically can be
estimated from well pressure at depth and seismic im-
ages, respectively. Due to the high computational cost
of forward modeling and post-processing, it is currently
impractical to run inversions for a wider range of these
parameters.

Objective function

Both the reference reservoir and trial inversion mod-
els are depressurized from an initial zero-stress/strain
state. Misfits (objective functions) for P-, S-, and PS-
wave time shifts At for a trial reservoir model computed
as the L2-norm,

N
p= a0 (A - An)?, (4)

k=1

where At™f are the time shifts for the reference reser-
voir, and k = 1,2, ..., N are the individual traces in the
shot record. For both the baseline and monitor surveys
we use a single source located above the center of the
reservoir (Figure 2). Time-shift trends for sources dis-
placed with respect to the reservoir center are discussed
in Smith and Tsvankin (2012). In principle, the metho-
dology employed here can be implemented for multiple
shot records and reflector/wave type combinations.
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Figure 2. Typical two-way time-shift distributions for (a)
P-waves, (b) S-waves, and (c) PS-waves measured using 22
reflectors around the reservoir (white box) from Figure 1
(Smith and Tsvankin, 2012). The time shifts correspond to
hypothetical specular reflection points at each (X,Z) location
in the subsurface. Positive shifts indicate lags where moni-
tor survey reflections arrive later than the baseline events;
negative shifts are leads. Source location is indicated by the
white asterisk at the top.
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The joint misfit for all three wave types (P, S, PS)
is the L2-norm of the individual wave-type misfits,

Bioint = A/ up + pd + pds - (5)

Misfits discussed below have not been normalized to fa-
cilitate comparison of results for different wave types
at specific reflectors. The smoothing of time shifts in
post-processing amounts to an unspecified regulariza-
tion term added to equation 4.

To evaluate the stability of the inversion algorithm,
time shifts for the reference reservoir are contaminated
by Gaussian noise with standard deviations of 5 ms and
10 ms (we also present results for noise-free data). This
noise corresponds to moderate (5 ms), and significant
(10 ms) levels of time-shift errors with respect to the P-
wave shifts in Figure 2a. Although average noise of 10
ms may be comparable to P-wave time shifts measured
in the field, it amounts to about 50% of the P-wave shifts
directly beneath the reservoir, and only 25% of the S-
wave shifts below the reservoir. While low levels of noise
can mask and smooth out only short-length features in
the time-shift curves, too much noise can distort time-
shift behavior at all scales. The influence of noise on
misfit characteristics is discussed in Appendix B.

Inversion algorithm

While here we invert for reservoir pressure drop and
length, potentially it may be possible to simultaneously
estimate other reservoir parameters (i.e., the elastic
properties, effective stress coefficient, etc.), or the pres-
sure distribution in several compartments. In fact, the
methods described here can be applied to more compli-
cated reservoir geometries by employing multicompart-
ment modeling. Obviously, this could greatly expand the
parameter space and complicate the inversion.

As mentioned above, changes in time shifts with
respect to pressure-induced stiffness perturbations are
generally nonlinear (Smith and Tsvankin, 2013). Time
shifts become increasingly nonlinear for shorter reser-
voirs with large stress/strain anomalies at the corners.
Therefore, we have devised a hybrid inversion technique
(Appendix A) that combines the convergence character-
istics of a gradient algorithm with the ability of global
inversion to identify and avoid local minima.

Our method is based on the “nearest neighbor”
algorithm of Sambridge (1999) that samples the pa-
rameter space, dividing the objective function into so-
called Voronoi cells. Nearest neighbor selects a subset
of minimum-misfit models to update, and divides those
cells by inserting new models via a random walk or
Gibbs-sampler within the cell. This procedure helps ob-
tain a discrete (compartmentalized) estimate of the mis-
fit but it does not give any gradient information. Thus,
model updates may be located up-gradient from local
or global minima, reducing the rate of convergence. To

update the existing set of inversion models, our algo-
rithm estimates the local gradient using some of the
minimum-misfit models. The global portion of the algo-
rithm is designed to fill unsampled voids in the param-
eter space, preventing the search from getting trapped
in local minima. Therefore, multiple gradient-trackers
can simultaneously converge toward local minima or, if
found, the global minimum.

Evolution of the misfit surface

Figure 3a-e demonstrates the ability of the algorithm to
reconstruct the structure of the misfit surface (2D slice
in multiparameter inversions), while converging to lo-
cal/global minima. The surfaces are interpolated using
the misfits for all forward models run through the cur-
rent iteration. Figure 3f shows how the objective func-
tion that includes joint-wave type misfits (equation 5)
from reflector C changes during five inversion iterations.
Gaussian noise with a standard deviation of 5 ms was
added to the time shifts of the reference reservoir.

Four initial models (black circles in Figure 3a) were
placed in the parameter space using a pseudo-regular
distribution, which ensures that they are not equidistant
from one another. Thus, the step sizes of all the initial-
model updates are different, and the parameter space is
well-sampled prior to the next iteration. At each itera-
tion, a single minimum-misfit model was used for gra-
dient estimation and model updates (see Appendix A).
In addition to updated models inserted near the current
low-misfit models, ten “exploration” models per itera-
tion were added to better sample the parameter space.
The maximum number of computed models was set to
100.

By the third iteration (Figure 3c), the general struc-
ture of the misfit surface is reasonably well-defined by
the exploration models. The normalized joint misfit
drops by approximately 25% in only five iterations (Fig-
ure 3f), resulting in an inverted pressure drop of 16.5%
and reservoir length of 2.19 km (both are reasonably
close to the actual values). Additional misfit reductions
can be achieved by adjusting the termination conditions
(Appendix A). Increasing the number of minimum-mis-
fit/gradient-estimation models will further reduce the
minimum misfit and improve the rate of convergence.

ANALYSIS OF NUMERICAL RESULTS

For the entire set of inversion results, the reference reser-
voir parameters and constraints are the same as those
in Figure 3. While only one minimum-misfit model was
used for gradient tracking in the joint-misfit inversions,
two gradient trackers were employed for the P-, S-,
and PS-wave inversions to increase convergence rates
and resolve multiple minima. The maximum number of
allowed forward models for the individual modes was
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Figure 3. Evolution of misfit surfaces for the inversion of joint-misfit data (equation 5) from reflector C. Plot (a) shows
the locations of the initial inversion models (circles). Five iterations (a-e) were completed employing 57 forward models. The
normalized minimum joint misfit (f) falls by approximately 25%, and the sub-tolerance change in misfit between iterations 4 and
5 terminated the inversion. Reference reservoir time shifts were contaminated with Gaussian noise having a standard deviation
of 5 ms. The surfaces are interpolated between the misfit values for all models computed through the specified iteration. The
reference reservoir pressure drop and length (marked by the cross) are 17.5% and 2.1 km, respectively. The location of the
minimum-misfit model at each iteration is marked by a diamond, with a final solution (plot e) of AP = 16.5% and L = 2.19
km.
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also increased from 100 to 200. A minimum of 80 for-
ward models and three iterations were required before
tolerance-based termination was permitted.

Inverted pressure and length

All pressure-inversion results arranged by wave type are
displayed in Figure 4. Because P-wave time shifts in the
overburden are small (Figure 2a), they are easily masked
by noise. Thus, P-wave inversion for reflector A is suc-
cessful only for noise-free data (Figure 4a). However,
the magnitude of the P-wave shifts accumulated in the
overburden increases with depth and reaches maximum
values at the top of the reservoir (reflector B). Further,
these elevated P-wave shifts extend laterally across the
entire reservoir (Figure 2a). Consequently, inversion of
P-wave shifts for reflector B yields accurate pressure
estimates even for 10 ms noise. P-wave time-shift mag-
nitudes are largest immediately beneath the reservoir
due to elevated strains inside it (Figure 2a; see Smith
and Tsvankin, 2013) but decrease to 6-8 ms at reflector
C (Figure 5a). Thus, P-wave time shifts for reflector C
with 5 ms noise still retain the trend of the noise-free
data. (Figure 5b). That pattern, however, is severely dis-
torted by 10 ms noise (Figure 5¢), which results in a
large null space in the inversion for AP and L (Figure
5d, see Appendix B). Therefore, the accurate pressure
estimate obtained from P-wave data for reflector C with
Onoise = 10 ms should be considered fortuitous. In gen-
eral, inversion for any reflector may be possible when
the standard deviation of the noise does not exceed the
range of the time-shift variation.

The conclusions drawn for the P-wave time shifts
for reflector C also apply to the S-wave shifts for reflec-
tors A and B, which do not exceed 9 ms in magnitude
(Figures 2b and 4b). In contrast, the higher-magnitude
S-wave time-shift curve for reflector C retains a distinct
trend even after contamination with 10 ms noise (Fig-
ure 5e), and the misfit surface possesses a well-defined
global minimum (Figure 5f). Because time shifts of PS-
waves above the reservoir are mostly controlled by P-
wave lags, low-noise PS results for reflector A are similar
to those for P-waves. The low-noise PS-wave shifts (Fig-
ure 2c) from reflector B and those from reflector C with
all noise levels give acceptable (albeit 3-6% too low) es-
timations of AP (Figure 4c).

Noise-free joint-misfit (P, S, and PS) inversions for
all reflectors produce accurate pressure values (+3% of
the reference AP). The best results using joint misfits
for noisy data are achieved at the reservoir top, with
AP estimates for reflector C being somewhat inferior
(Figure 4d).

Inverted reservoir length for P-, S-, and PS-waves
(and their combination) from all reflectors is shown in
Figure 6. Due to the pronounced variations of time shifts
beneath the reservoir with length, accurate inversion re-
sults for L (+£0.1 km of the actual value) are obtained

for all wave types and noise levels at reflector C. As
discussed above, P-wave time shifts at reflector A are
masked by 5 ms noise, and practically obliterated by
10 ms noise (Figure 6a). Thus, similar to the inver-
sion for AP, the seemingly accurate estimates of L for
high-noise (10 ms) P- and PS-wave shifts for reflector
A should be considered fortuitous. The P-wave time-
shift magnitude increases near the reservoir top, and
the length is well-constrained by the P-wave reflections
from interface B for all levels of noise. Optimal esti-
mates of length from S- and PS-waves are obtained for
reflectors B (except for data with oneise = 10 ms) and

C.

Perturbations in the strain-sensitivity
coefficients

There are few available measurements of the third-order
stiffnesses C111 and C112, and most published values cor-
respond to dry core samples at room temperature. Also,
stress applied in the laboratory typically is not triaxial.
Hence, laboratory experiments cannot reproduce in situ
conditions, and the third-order stiffnesses will likely vary
with temperature and saturation. Figure 7 displays the
inversion results obtained with the stiffnesses C1;; and
Ch12 perturbed by +20%. In agreement with the sensi-
tivity study of Smith and Tsvankin (2013), a 20% in-
crease in C111 causes a 15-20% reduction in the inverted
pressure (see the cluster on the left of plot). Inverted
pressures for Ci11 reduced by 20% are approximately
15% higher. The perturbations of the coefficient Chi2,
whose magnitude is relatively small, have negligible in-
fluence on the inversion. The estimated length is less
sensitive to errors in C111 than is pressure, with almost
all results falling within 5% of the actual value.

Accuracy in reconstructing the strain field

In Figure 8, we illustrate the differences in the hori-
zontal, vertical, and shear strains between the refer-
ence reservoir and the models corresponding to the
best-case S- and P-wave inversions. In identifying the
best inversion models, we consider only the results for
noise-contaminated data. The strain fields have been
smoothed to remove numerical singularities at the sharp
corners of the reservoir, and reveal the nearby field
structure where wells may be located or planned. Al-
though the maximum strain differences reach about
20%, the average strains for the inverted models deviate
from the reference values by only 1-2%.

Interestingly, the model obtained from P-wave in-
version (Figure 8g,h,i) provides a better approximation
for the strain field than that derived from S-waves (Fig-
ure 8d,e,f). For both models the largest vertical-strain
differences are inside the reservoir and near the endcaps,
whereas the most significant differences in the horizontal
and shear strain are observed at the endcaps. It should
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Figure 4. Inverted reservoir pressure drop using time-shift misfits of (a) P-waves, (b) S-waves, (c) PS-waves, and (d) the
combination of all three modes (joint misfits). The actual reservoir pressure drop is 17.5%, and is marked by the solid line.
Plot legends indicate the standard deviation of Gaussian noise added to the time shifts of the reference reservoir. The inverted
AP = 10.4% for PS-waves from reflector B with op0ise = 10 ms is located outside the plot.

be emphasized that the best-case S- and P-wave mod-
els have close values of the pressure drop (differing by
2.5%). Hence, the errors in the estimated strains are
confined to the vicinity of the reservoir, where the strain
field is quite sensitive to small changes in reservoir pres-
sure.

DISCUSSION

The results shown here may be considered optimistic
compared to those that may be obtained by applying
this method to field data. First, we use a known, sim-
ple model geometry consisting of a single-compartment
reservoir with flat boundaries embedded in an initially

homogeneous background, so the compaction produces
well-understood stress and strain fields of low complex-
ity. Second, when generating seismic data and comput-
ing time shifts for inversion, we have the ability to place
strong reflectors at locations of our choosing. Conse-
quently, we generate high signal-to-noise reflections and
clean time-shift data (except where arrivals interfere).
Hence, the inverse problem discussed here is better con-
ditioned than that for typical field sets, although we did
study the influence of noise on the inversion results.
For example, when dealing with field seismic data,
only sections of reflectors may be available for time-shift
measurements. In that case, employing joint misfits (i.e.,
equation 5) for multiple reflectors and arrivals (P, S, PS)
may be necessary. Note that while we have used only a
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norm misfit, normalized

Figure 5. Measured P-wave time shifts vs offset [At(z)] from reflector C for (a) noise-free data (Figure 2a), (b) noise = 5 ms,
and (c) opoise = 10 ms. (d) The misfit surface for P-waves from reflector C with oy4ise = 10 ms; the actual parameters are
marked by the cross, and inverted parameters by the diamond. (e) S-wave time shifts from reflector C with opoige = 10 ms
(Figure 2b), and (f) the misfit surface for the S-wave shifts from plot (e).

single shot record for each reflector, improved results than than those published in the literature for field time-
should be expected for multiple sources located both lapse data. Modifications to the modeling process such
above and to the side of the reservoir. as adding a pressure-dependent effective stress coeffi-

The P-wave time shifts for our models are larger cient o (equation 2) will reduce changes in the stiff-
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Figure 8. Reservoir length (L) estimated from time-shift misfits of (a) P-waves, (b) S-waves, (c) PS-waves, and (d) the com-
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nesses, and thus the overall time-shift magnitudes (Fig-
ure 2). Further, the strain-sensitivity coefficients used
here (Sarkar et al., 2003) were measured at room tem-
perature on dry rock, and are likely to be different
from in situ values. Adjusting the geomechanical model-
ing to incorporate in situ reservoir rock physics should
reduce the modeled strains and time shifts. However,
the spatial patterns of time shifts around the reser-
voir (Figure 2) will remain essentially the same, as will
the time-shift variations with wave type. For example,
the P-wave shift pattern of Figure 2a is similar to the
lower-magnitude time shifts measured for the Shearwa-
ter North Sea reservoir (Staples et al., 2007). Thus, the
dependence of the inversion results on the input data
and signal-to-noise ratio is adequately addressed by the
presented study.

CONCLUSIONS

We applied a hybrid global/gradient algorithm to evalu-
ate the feasibility of inverting compaction-induced time
shifts of P-, S-, and PS-waves for reservoir pressure
and length. The time shifts were measured for three re-
flectors around a single-compartment reservoir embed-
ded in an initially homogeneous, isotropic medium. The
hybrid inversion algorithm presented here extends the
“nearest-neighbor” method by estimating the local gra-
dient at a subset of low-misfit models in the parameter
space. This makes the developed technique applicable
to more complicated inverse problems, including those
for multicompartment reservoirs.

Our numerical analysis helps identify the reflector
locations and wave types that should be used to invert
for the reservoir parameters for different levels of noise.
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Figure 7. Inversion results obtained with distorted third-order stiffnesses C111 and Cii2. Each coefficient was perturbed by
4-20%, as shown in the legend. The time shifts for the reference reservoir were obtained with the correct values of C131 and
Ci12. Inversions were performed using noise-free joint misfits (equation 5) from each reflector (black markers - reflector A, blue

markers - reflector B, and green markers - reflector C).

Reflectors in the overburden generate small time shifts
that are suitable for inversion only when the data are es-
sentially noise-free. The magnitude and lateral extent of
time shifts increase near the reservoir, making it possible
to invert even noisy P-wave reflections from the reservoir
top for pressure changes. The most accurate pressure es-
timates for noise-contaminated S-and PS-wave data are
obtained using reflections from interfaces beneath the
reservoir, where the shear-wave time shifts reach their
maximum values. Reservoir length is well-constrained
by the time shifts of all modes from the reservoir top (ex-
cept for high-noise S and PS data) and from reflectors
beneath the reservoir. It should be also noted that inver-
sion of reflections from deep interfaces typically requires
computing fewer forward models. Inversion of joint (P,
S, PS) time shifts using models with +20% errors in
the strain-sensitivity coefficients resulted in comparable
distortions in the pressure drop, but insignificant errors
in reservoir length.

The results of this work can be used to model ex-
pected strain and stress changes around the depressur-
izing reservoir. The maximum differences between the
strain values computed for the reference reservoir and
the best inverted models are limited to about 20% of
the reference strain.
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APPENDIX A: INVERSION ALGORITHM

Because time shifts are generally nonlinear in pressure
(Smith and Tsvankin, 2013), we have developed a hy-
brid inversion algorithm that combines the advantages
of global and gradient methods. Gradient inversion algo-
rithms (Gaussian, Levenberg-Marquardt, conjugate gra-
dient, etc.; see Gubbins, 2004; Aster et al., 2005) require
the inversion to begin with a model close to the global
minimum (true solution). However, the structure of the
misfit function is unknown, and may be complicated.
Also, gradient algorithms typically need several forward
models per iteration to compute the gradient and curva-
ture (Jacobian, Hessian) of the objective function and
estimate the update step size in the parameter space.
Misfit data for all generated models typically are not
retained, and cannot be used in later iterations.

The gradient portion of our algorithm is based on
the “nearest neighbor” method of Sambridge (1999).
The inversion begins with a regular distribution of ini-
tial models in parameter space that have been randomly
perturbed to assure that they are neither equidistant to
each other or the center of the parameter space (Figure
3a). At each iteration the algorithm computes the misfit
for each forward model and selects a subset of minimum-
misfit models to update. Nearest-neighbor method di-
vides parameter space into Voronoi cells and updates
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Figure 8. Comparison of the strain fields for the actual and inverted models. (a,d,g) The horizontal strain €11; (b,e,h); the
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minimum-misfit models using a Gibbs’s sampler or ran-
dom walk in each cell. In contrast, our algorithm esti-
mates local gradients of the objective function in the
region around the minimum-misfit subset, and places
updated models along the gradient direction.

Figure 9 illustrates the method used for estimating
the local gradient for the designated N, minimum-misfit
models in the parameter space (equations 4 or §). Each
of these N, models (point M in Figure 9) is assumed
to reside in a local minimum of the misfit surface, and
that assumption must be tested using the K nearest
models in the K-dimensional parameter space (points
N and Q in Figure 9). If the K nearest models possess
larger misfits, the direction of the gradient is estimated
as the sum of the vectors between the minimum-misfit
model and those neighbors. Model updates are inserted
in the direction of the estimated gradient; one is located
up-gradient, and one down-gradient. At least one addi-

tional model is added orthogonal to the gradient, should
the current model reside at a saddle point. In the two-
parameter inversions shown here, four update models
were added at each iteration (two parallel and two or-
thogonal to the gradient) near the current misfit model.
Each of the N, update models is inserted at one-half the
distance to the nearest model used to estimate the gra-
dient direction, thus sampling the local parameter space
around the N. minimum-misfit models. Should none of
the updated models possess a lower misfit, their data
are simply incorporated into the gradient estimation at
the next iteration. This results in a sequence of updates
that converges down-gradient toward the local minima
(see Figure 10a).

Note that computing Jacobians and Hessians is not
required, and the method is computationally simple
enough so that one can run many simultaneous gradient-
tracking updates (i.e., gradient trackers). Further, this
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technique reduces convergence time compared to that
of a standard global algorithm because models located
in basins of convergence descend along the gradient in
a systematic fashion (Figure 10a, also see Appendix B).

Global inversion algorithms (Monte-Carlo,
Metropolis, genetic; see Sen and Stoffa, 1995) can
explore the entire parameter space and avoid local
minima, but typically require many more models than
gradient techniques. Here, the goals are to sample
parameter space efficiently to delineate the structure of
the objective function, and differentiate between local
and global minima. In addition to the N. *x N, gradient
estimation/tracking models, N. “exploration” models
are inserted into parameter space. The exploration
models are sequentially inserted into voids in the
parameter space. These voids are identified by locations
having the most common value of an N-dimensional
potential function of the form 3~ 1/|r|”, where |r| is
the distance from the ith model in the current set, and
7 is a constant. If a smaller misfit value occurs at one
of the exploration models, that model is incorporated
into the subset of N. convergence/update models, and
gradient estimation/tracking shifts to that region of
parameter space. Therefore, estimating and tracking
the local gradient moves the search toward a local min-
imum, while the global/exploration models potentially
make it possible to find the global minimum. As the
inversion progresses, data from all computed forward
models are saved in memory, which helps build the
misfit surface by interpolation (Figures 10a,b and 3).

The inversion is typically terminated when changes
in the user-specified misfit value fall below a specified
tolerance level. It is necessary to specify a minimum and
maximum number of iterations (or models) run before
terminating the inversion. In some cases, the inversion
halts when the total number of iterations or forward
models passes a limit specified by the user. However,
should the algorithm become trapped in one or more
local minima, the user may increase the number of ex-
ploratory models per iteration (N), the number of gra-
dient trackers (N.), the minimum or maximum number
of models to be run before termination, or all of these
parameters.

In the examples shown here, the algorithm is im-
plemented in a 2D parameter space, but the extension
to higher-dimension parameter sets is straightforward.
While not done here, interpolating the N-dimensional
misfit surface may allow for an additional, and poten-
tially more accurate update model to be placed in pa-
rameter space at the minimum of the interpolated misfit
function. This provides an estimate of the global mini-
mum, and placing a model there may increase the rate
of convergence.

Estimated
gradient

’

L2-norm misfit

Figure 9. Local gradient estimation using nearest models
in a two-dimensional (K = 2) parameter space [P1, Py].
Each minimum-misfit model (point M) is assumed to be
in a local minimum. The gradient direction is estimated by
summing the vectors MN and MQ, where N and Q are
the nearest models. If the misfits at N and Q are greater
than that at M, new models are placed along and orthog-
onal to the estimated gradient vector at distances equal to
+(1/2)min(|MN/|, IMQY).

APPENDIX B: MISFIT SURFACES AND
THE PERFORMANCE OF THE INVERSION
ALGORITHM

The misfit curve in Figure 3f illustrates the convergence
characteristics of the hybrid algorithm. It is typical for
the misfit to drop substantially in the first iteration
when the misfit surface is simple and smooth. As the
gradient-tracking part of the algorithm reduces the step-
size over iterations, misfit functions generate traditional
“L-shaped” curves. However, the global portion of the
algorithm may locate new local minima in the parame-
ter space, or a gradient-tracker may turn down a sharp
slope. In this case, the misfit curve experiences a signif-
icant drop (e.g., between iterations 3 and 4 in Figure
3f).

An example of the gradient-tracking behavior of the
algorithm is clearly seen in Figure 10a where a series
of models descends the misfit surface toward the ac-
tual AP = 17.5%. The misfit surface is interpolated
using the entire set of inversion models (black circles)
from the current and all prior iterations (no models are
chosen/interpolated from the misfit surface). Note that
the parameter space is well-sampled by the global por-
tion of the algorithm.

It is useful to study the misfit surfaces to gauge how
well a multiparameter inversion is conditioned, and de-
termine whether or not the algorithm converges toward
the global minimum. Figure 10a shows a “bow!-shaped”
misfit surface computed using noise-free P-wave time
shifts from reflector A. The addition of noise to the time




168 S. Smith and I. Tsvankin

shifts for the reference reservoir not only increases the
misfit magnitude, but also smoothes the misfit surface
by flattening the data’s power spectrum. This reduces
the complexity of the misfit surface (improves condition-
ing) and allows the gradient portion of the algorithm
to perform more efficiently. However, as the noise level
increases, coherent/desired data become masked and
the misfit surfaces become over-smoothed (Figure 10b).
This flattens out local minima, creates an extended null
space, and causes the inversion for noisy data from shal-
low reflectors to fail. In over-smoothed, failed inversions,
the minimum misfit is typically located away from the
actual solution at the edges of the parameter space (di-
amond marker), as the global portion of the algorithm
has not located any additional minima with a lower mis-
fit.

A well-sampled parameter space with a complex
misfit surface indicates poor conditioning, and the true
solution cannot be found without employing the global
portion of the algorithm. An example is given in Figure
10c, which corresponds to the best inversion result for
PS-waves. Although there is a well-defined basin of at-
traction, the misfit surface is generally complicated, and
there is the potential for multiple local minima. This re-
quires a global algorithm to locate the neighborhood of
the actual model.
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apparent image displacements
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ABSTRACT

Hydrocarbon production modifies the stress conditions in the subsurface and changes
the model parameters previously estimated from the prospect. The capability to re-
motely monitor the changes in the reservoir using seismic data has strategic importance
since it allows us to infer fluid movement and evolution of stress conditions, which are
key factors to enhance recovery and reduce uncertainty and risk during production.
A model of the subsurface parameters is necessary to reconstruct the seismic waves
traveling through the medium and thus correctly image reflectors in the subsurface.
Geomechanical changes in the subsurface can be measured by changes of seismic im-
ages obtained from the recorded data of multiple time-lapse surveys. In this work, we
estimate changes of subsurface model parameters using the apparent shifts between
migrated images obtained by 4D time-lapse seismic surveys. We assume that the shift
between the time-lapse images of the same reflectors is completely due to the pertur-
bation of the model parameters, and we use the image from the first (baseline) survey
as a reference to estimate this perturbation. The apparent shifts are measured using
penalized local correlations in the image domain, and they are exploited using wave-
field tomography with an objective function minimized using the adjoint-state method.
Our time-lapse monitoring method is efficient due to the fact that inversion can be
conducted for pairs of seismic experiments, which eliminates the need to construct
costly gathers. Since relatively small amounts of data are needed, our method can be
used to invert for model changes at short intervals, thus increasing the resolution of 4D

monitoring.
1 INTRODUCTION

Production of a hydrocarbon reservoir changes the physical
parameters of the subsurface. Oil and/or gas extraction modi-
fies the bulk modulus of the rocks and affects the geomechan-
ics of the area. Stress changes induced by hydrocarbon pro-
duction represent a key issue for constructing a geomechan-
ical model of the reservoir. Monitoring these changes using
remote sensing techniques is crucial for the oil and gas indus-
try to design wells, predict recovery, and mitigate hazards and
risk (Lumley, 2001).

Seismic waves are sensitive to the elastic properties of
the subsurface. The propagation velocities of the elastic waves
are directly related to to the stress state in the subsurface (Aki
and Richards, 2002). By repeated seismic surveys over a reser-
voir at the various production stages, we can track changes
in the propagation velocity in the subsurface and reconstruct
the perturbation with respect to an initial model. This analysis
exploits the sensitivity of the seismic waves to the elastic pa-
rameters of the subsurface. Inversion maps the changes in the
recorded waveforms into a perturbation of the velocity model,
which can then be related to stresses in the subsurface for ge-
omechanical applications.

Time-lapse analysis is usually performed in the time do-

main (Hatchell and Bourne, 2005) and assumes small pertur-
bations with respect to the background (baseline) model. Great
care must be taken to match the baseline and monitor survey, a
process called cross-equalization (Rickett and Lumley, 2001),
in order to remove from the data all the differences that are
not related to changes in the model parameters (e.g., differ-
ences in acquisition geometry). Similarly, time-lapse analysis
can be done in the image domain, which is less sensitive to
differences in the acquisition geometries and thus more robust
against repeatability issues than the data domain. Shragge and
Lumley (2012) propose a linearized inversion approach in the
depth-domain based on the wave-equation migration veloc-
ity analysis algorithm developed by Sava and Biondi (2004).
Shragge et al. (2012) apply the methodology developed by
Yang and Sava (2011) to 4D seismic monitoring and uses the
adjoint-state method (Fichtner et al., 2006), which removes the
linearity assumptions. By operating directly in the depth do-
main without linearity assumptions, this inversion can handle
strong errors in the velocity model.

Wave-equation MVA (Sava and Biondi, 2004) and image-
domain waveform tomography (Yang and Sava, 2011) require
complete aperture to correctly construct the image perturba-
tion that drives the tomographic procedure and to evaluate fo-
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cusing in the subsurface, respectively. The requirements for
the acquisition geometry can be relaxed using the approach
proposed by Yang and Sava (2012); nonetheless, a large aper-
ture is necessary for resolution purposes. We advocate the use
of local image correlations (Hale, 2007) to measure the rela-
tive displacement between shot-migrated images and then use
the inversion technique of Perrone and Sava (2012) to evalu-
ate a model update following production. Local image corre-
lations allow us to estimate the velocity model errors shot by
shot. The image-domain approach is robust against repeatabil-
ity issues, such as errors in the shot and receiver positions, and
the adjoint-state method allows us to implement a nonlinear
inversion procedure, which is effective for large and complex
model updates.

2 THEORY

Perrone and Sava (2012) restate the semblance principle con-
sidering locally coherent events in the image domain: the ve-
locity model is correct when the images from different neigh-
boring experiments show conformal features, that is, when the
dips of the reflectors in the two images are point-wise con-
sistent. This criterium can be applied to migration velocity
analysis using local image correlations to evaluate the relative
movement of the two images with respect to their structural
dips. We can use the same idea for 4D time-lapse seismic and
compare the images obtained from the baseline and monitor
survey. In this case, we measure shifts of the monitor image
with respect to the baseline, which represents the reference.
The shift is measured along the normal to the reflector (in the
dip direction).

We set an optimization problem by defining the objective
function

T =3I PN
A

where c(x,A) = [, Rost (§ = 3) Rmon (§+ 3) d€ is
the local correlation of the baseline image Rps: (x) and the
monitor image Rmon (x), and P (x, A) is a penalty operator
that highlights features which are related to velocity errors.
The correlations are computed in local seamless overlapping
windows w (x), and the variable m (x) denotes the model,
which is slowness squared in our implementation to simplify
the expression of the gradient of the objective function. When
the velocity model is correct, the two images are perfectly
aligned and the residual }_ P (x, A) c(x, A), a proxy for the
by

relative displacement, is at minimum.

While we assume that the shifts between the migrated
baseline and monitor survey are related to the errors in the ve-
locity model, this is not necessarily true since changes in the
stress conditions can cause compaction of the reservoir and
lead to subsidence, that is physical movement of all the reflec-
tors above the reservoir. Although subsidence up to 12 m due
to hydrocarbon production has been observed and reported in
the literature (for example, in the Ekofisk field in the North
Sea), shifts in the subsurface are usually negligible compared

to the wavelength of the seismic signal (typically these move-
ments can be in the order of a meter between the top and bot-
tom of the reservoir (Hatchell and Bourne, 2005)); it is thus
safe to assume that the estimated shifts in the reflector posi-
tions are due to changes in the migration model and not to
changes of the positions of the interfaces. This is especially
true when monitor surveys are performed at short intervals, as
advocated in this paper.

We compute the gradient of the objective function in
equation 1 using the adjoint-state method (Fichtner et al.,
2006). The migrated images are defined as the zero-lag time-
correlation of the source and receiver wavefield u, (x, t) and
ur (X, t), which are extrapolated in a model m (x) of the sub-
surface. The wavefields are computed by solving the wave-
equations

L(m)us = fs, LM)ur = fr, 2)

where £(m) = mdy — V? is the d’Alambert operator,
fs (xs,t) and fr (x,,t) are the source and the seismic re-
flected data, respectively, and x, and x, indicate the source
and receiver positions. In this formulation, m (x) represents
slowness squared and since £ (m) is linear in m, this choice
simplifies the expression of the gradient of the objective func-
tion (Fichtner et al., 2006). The gradient of the objective func-
tion is

YV = / (ddsas + trar)dt, 3)

where the adjoint wavefields a; (x, t) and a, (x, t) are solu-
tions to the wave-equations

yal (m)as = gs, yal (m)a, = gr. @

L' (m) is the adjoint of the d’ Alambert operator, and the ad-
joint sources gs (x,t) = V,,J and g, (x,t) = V,,.J are
given by the Frechét derivatives of the objective function with
respect to the background wavefields. The double dot indicates
the second derivative with respect to time.

From the perspective of time-lapse analysis, the gradient
VmJ indicates which parts of the model must change in order
to reduce the mismatch between the baseline and monitor mi-
grated images. Through inversion, we can localize the areas in
the model that experienced a perturbation in physical param-
eters and eventually relate that perturbation to geomechanical
effects, such as stress changes induced by the reservoir pro-
duction.

3 SENSITIVITY TESTS

‘We run a set of sensitivity tests to verify the behavior of the
gradient computation in presence of anomalies with different
signs and different sources of noise for time lapse monitor-
ing. We verify that the gradient computation is stable when
the source wavelet used for imaging is phase shifted with re-
spect to the correct one: we use a minimum phase wavelet
to image data obtained using a zero-phase wavelet. We sim-
ulate a non-repeatable survey by perturbing the positions of
both sources and receivers, and we check the gradient is not
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Figure 1. (a) Velocity model used to generate the data and (b) the model perturbation.

affected by source repeatability. Finally, we test the robustness
of our method for errors in the baseline velocity model, and
we verify that we are able to recover the relative perturbation
between the baseline and monitor model.

3.1 Sensitivity to velocity variations

We generate full-acoustic finite-difference data using the ve-
locity model in Figure 1(a). Figure 1(b) represents the velocity
model perturbation due to a change in the physical parameters
of the medium. The anomaly is confined to a layer and may
be caused by fluid substitution or stress changes due to com-
paction. From an imaging perspective, these different physical
phenomena translate into changes in the wave propagation ve-
locities. The anomaly has a maximum amplitude of 0.1 km/s,
which corresponds to about 5% of the background value. The
vertical and horizontal sampling is 10 m and 20 m, respec-
tively. The source function is a 15 Hz Ricker wavelet. Absorb-
ing boundary conditions are applied so that no surface-related
multiples are present in the data. We smooth the model verti-
cally with a 10-sample triangular filter to obtain the baseline
migration model.

We test the sensitivity of the algorithm to different values
of the perturbation. By computing the gradient of equation 1
with the adjoint-state method from the monitor images com-
puted using the models in Figure 2, we obtain the kernels in
Figure 3. Notice that the signs of the kernels reflect the signs
of the anomaly.

In a real case, the size of the anomaly would depend on
the geology and geomechanics of the subsurface and also on
the production activity. The link between seismic velocities
and pressure in the reservoir is nonlinear, and thus it is dif-
ficult to give bounds on the minimum and maximum size of
the anomaly that can be observed in the field. Also, the evo-
lution of the anomaly as a function of time depends on the
geomechanics of the area and the production activities, and
these pieces of information are necessary to schedule repeated
acquisition to monitor the 4D time-lapse effects.

3.2 Sensitivity to wavelet accuracy

We test the robustness of the methodology to small changes
of the wavelet used for imaging. Wavelet estimation is a key
step in data domain inversion techniques, but it is also quite
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Figure 2. Velocity models with (a) positive and (b) negative anomaly with respect to a constant 2 km/s background velocity.

important when we want to estimate shifts between images of
different surveys. Keeping fixed the migration velocity model,
we can shift the position of the peak and trough of the wavelet
superimposed on the imaged reflector by simply applying a
phase-shift to the source wavelet. These shifts are unrelated to
errors in the velocity model and can bias the estimate of the
apparent shift between baseline and monitor image and then
influence the computation of the gradient of the objective func-
tion.

Figure 4 shows (a) the wavelet used to generate the base-
line and (b) the monitor data. The baseline wavelet is obtained
by bandpassing the original 15 Hz Ricker wavelet using a zero-
phase filter with cut-off frenquecy 15 Hz. The monitor wavelet
is obtained by filtering the original Ricker wavelet in the same
frequency band but using a minimum phase-filter instead. The
minimum-phase filter introduces a phase shift in the wavelet
that can be clearly observed in Figure 4(b).

We migrate the data with the baseline wavelet in Fig-
ure 4(a) and the two models in Figure 2. The computed gra-
dients in Figure 5 show that for this simple case, the algorithm
is robust against errors between a zero-phase and a minimum-
phase source wavelet. The image shift due to errors in the

source wavelet adds to the shift due to velocity errors. It is
possible that the model error is small and the phase error dom-
inates the image shift. In this latter case, the gradient would be
biased. A thorough study of these possible scenarios is neces-
sary to assess the trade-off between different sources of image
displacement.

3.3 Sensitivity to survey positioning errors

Repeatability is one of the major problems in 4D time-lapse
seismic processing because it is practically impossible to re-
produce the same acquisition conditions over multiple surveys,
and this inconsistency translates directly into differences in the
acquired data that are not associated with 4D effects. We test
the robustness of our inversion procedure to non-repeatability
issues by randomly perturbing the positions of the source and
receivers used to model the monitor data with respect to the
baseline survey. The source position in the baseline survey is
atz = 3.9 km. We record data at 100 locations evenly spaced
20 m apart starting from the source position. Figure 6 shows
the baseline data, the monitor data, and their difference. No-
tice that the earliest events at 1.2 s and 1.3 s in the data do
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Figure 4. Wavelet for (a) the baseline and (b) the monitor survey.
not cancel because of the error in the shot position. From vi- depth is not affected by the anomaly, and our shift estimate
sual inspection, it is impossible to assess the quality of the correctly returns a near zero value at that location. We com-
baseline model for the monitor image; nonetheless the penal- pute the gradient using the adjoint-state method and after 60
ized local correlations highlight the shifts between the twoim-  steepest-descent iterations, we obtain the estimated perturba-

ages (Figure 7). Observe that the shallow reflector at 1 km tion shown in Figure 8. Because of the limited aperture of the
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Figure 5. Gradients obtained using the minimum phase-wavelet to image zero-phase data for (a) the positive and (b) the negative anomaly in
Figure 2.
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Figure 6. (a) Baseline data, (b) monitor data, and (c) data difference. Notice that because of the positioning error the events above the anomaly (at
at 1.2 s and 1.3 s) do not cancel.

survey, only a portion of the anomaly is reconstructed, but the 3.4 Sensitivity to baseline model accuracy

anomaly is building up in the correct layer.
Since we measure the displacement of the monitor with re-
spect to the baseline image, we actually estimate the relative
error between the monitor and baseline model. This allows us
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Figure 7. (a) Baseline image, (b) monitor image obtained using the baseline velocity model, and (c) relative shifts between the two images. Black
indicates positive (downward) shifts and white represents negative (upward) shifts. The baseline migration model is kinematically accurate and the

error is due only to 4D effects in the monitor survey.

to use a somewhat incorrect baseline model and still recon-
struct the 4D changes between surveys. Figure 9 shows the
baseline image, monitor image, and their relative shift if the
baseline velocity model is 5% faster than the model used in
Figure 7. The interfaces in both migrated images Figure 9(a)
and 9(b) are mispositioned because of the bias in the baseline
model. Nonetheless, the shifts only depend on the relative er-
ror between the baseline and monitor model, Figure 14(a).The
result of the inversion is analogous to the case of correct base-

line model, although slightly shifted in depth because of the
bias in the baseline model (Figure 10).

4 SYNTHETIC RESERVOIR DEPLETION MODEL

When a reservoir is produced, the depletion causes geome-
chanical effects both inside and outside the reservoir. Because
of the drop in pore pressure, the reservoir rock compacts and
the effective stress (and seismic velocity) increases; outside
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Figure 8. Estimated perturbation after 60 tomographic iterations with a correct baseline velocity model.

the reservoir the rock is strained and the seismic velocity de-
creases. This observed phenomenon can be analyzed using
time-shifts (Hatchell and Bourne, 2005; Hale et al., 2008;
Smith and Tsvankin, 2012) and describes the complex changes
in subsurface stress conditions caused by oil and gas produc-
tion.

In order to test our velocity estimation procedure in a
more realistic scenario, we use a geomechanical model de-
signed by Smith and Tsvankin (2012) to obtain the model pa-
rameters for a reservoir under depletion. We generate data with
acoustic finite-differences using density reflectors at various
depths and with absorbing boundary conditions on each side
of the model (Figure 11(a)). The initial velocity model is ho-
mogenous and equal to 2.07 km/s velocity. Figure 11(b) shows
the model of the reservoir undergoing a 15% depletion. Ob-
serve the complex pattern of the velocity anomaly outside the
reservoir. The velocity model perturbation inside the reservoir
is about 4-15% with respect to the baseline model. Figure 12
shows the data obtained for the baseline and monitor surveys.
Observe the internal multiples arriving after 2.5 s and follow-
ing the strong deeper reflection. From visual inspection, it is
difficult to notice any shift in the waveform. However, because
of the opposite sign of the velocity anomaly, the early arrivals
(around 1.2 s) are delayed and the late waveforms (after 1.5 s)
are advanced in time.

Our inversion experiment uses a single shot gather with
the source located at z = 1.5 km and with a streamer 3.2 km
long. The length of the cable is about the same as the lat-
eral extent of the reservoir. The streamer carries 300 evenly
spaced receivers and the receiver spacing is 8 m. The gradient
of the objective function is smoothed using a triangular filter
with radius 2 samples vertically and 5 samples horizontally.
The model is updated using a steepest descent algorithm. We
implement regularization through triangular smoothing. The
smoothing procedure acts as regularization in the inversion by
removing spurious high wavenumber sidelobes in the gradi-
ent. More sophisticated and structure oriented regularization
approaches can be used for more complex subsurface scenar-
ios.

Figure 13 shows the true perturbation and the result of our
single-shot inversion after 60 tomographic iterations. Because
of the limited aperture of the acquired data, the wavefields are
not sensitive to the complete extent of the anomaly. Nonethe-
less, the imaged portion of the model allows us to constrain the
size and location of the anomaly. Notice that the inversion is
able to recover the weaker perturbation outside the reservoir of
opposite sign with respect to the perturbation within the reser-
voir, and observe that we are also able to correctly image the
left side of the anomaly thus correctly constraining its lateral
extent.

Figure 14 shows the shifts between the baseline and mon-
itor migrated images before and after inversion. Black indi-
cated a downward shift whereas white indicate an upward
whift. Before inversion the shallower and deeper reflectors are
shifted in opposite direction because of the different sign of the
anomaly inside and outside the reservoir (see Figure 13(a)).
After inversion the reflectors are better aligned and the shifts
for all reflectors approach zero. Inversion warps the monitor
image into the baseline image and returns the velocity anomaly
that corrects the shifts of the imaged interfaces.

5§ DISCUSSION

The change of physical properties (such as wave propagation
velocity) due to reservoir production leads to apparent shifts in
the migrated images obtained from repeated time-lapse seis-
mic surveys of the field. Because the velocity model used in
migration is calibrated on the baseline survey, the monitor sur-
vey reflectors are slightly mispositioned since we are not tak-
ing into account the perturbation of the model due to the pro-
duction of the field. By matching the baseline and monitor mi-
grated images for single shots, we can translate the apparent
image shift into a model perturbation. This approach is fully
shot-based since the basic building blocks of the inversion pro-
cedure are the single-shot migrated images. This feature is ad-
vantageous in a real production scenario when it is difficult to
repeat a complete survey because of physical obstructions in
the field (such as platforms) which can cause big illumination
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Figure 9. (a) Baseline image, (b) monitor image obtained using the baseline velocity model, (c) relative shifts between the two images. Black
indicates positive (downward) shifts and white represents negative (upward) shifts. Here, the migration velocity model is 5% faster than the correct

one.

holes in the images. Conducting a complete survey over a pro-
ducing field is also costly because production must be stopped
during acquisition in order to reduce the noise in the seismic
data. Our technique addresses this practical problem and can
potentially allow for fast and frequent surveys over a produc-
ing reservoir.

The advantage of our technique over methods based on
wavefield focusing (Girard and Vasconcelos, 2010; Shragge
et al., 2012) comes from the reduced implementation cost (no
extended images are needed) and the robustness against poor

illumination. By analyzing single-shot migrated images, we
are automatically taking into account the illumination pattern
of those experiments; on the contrary, focusing measures re-
quire full aperture or point-spread function compensation to
equalize the complex illumination patterns due to the geologic
structures and/or acquisition geometry. In this work, we re-
cover a portion of the anomaly from a single migrated shot,
which would be impossible using any technique based on fo-
cusing.

In general, velocity anomalies due to reservoir stimula-
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Figure 11. (a) Density model used to simulate the reflecting interfaces. (b) Velocity model of the depleted reservoir. The original model is homoge-
nous with 2.07 km/s velocity. Observe the characteristic shape of the anomaly with increasing velocity inside the reservoir (because of compaction)

and decreasing velocity outside the reservoir (because of strain).

tion or production are small relative to the velocity error in the
initial stages of model building. Moreover, the baseline veloc-
ity model should already be calibrated and thus be expected to
produce a high-quality migrated image. Therefore, our tech-
nique based on apparent image shifts is more robust for time-
lapse seismic monitoring than for the original migration veloc-
ity analysis, when we match a set of inaccurate images.

6 CONCLUSIONS

Local correlations evaluated in the image domain allow us to
assess the quality of the velocity model from a limited num-
ber of migrated images. In 4D seismic applications, we can
quickly estimate a perturbation of the migration model by
comparing shot images from baseline and monitor surveys. In
the image domain, we measure the consistency and similarity
of locally coherent events, like the local dip of the reflectors;
these features are weakly sensitive to differences in the acqui-
sition geometry and make our approach more robust against
survey repeatability issues as compared to alternative strate-
gies in the data domain. The method is able to recover the rel-
ative error in the model and does not require separate velocity

analysis for baseline and monitor surveys in order to estimate
-the differences between the models inverted independently.
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ABSTRACT

The Wasatch fault region is an actively deforming region characterized by
prominent seismicity and has the potential for large magnitude events in the
near future. The present day deformation of the region, which extends into the
Basin and Range, motivates the need for continuous monitoring of the region.
One of these continuous monitoring is a time-lapse characterization of velocity
properties of the region. In this study we monitor time-lapse velocity changes
within Utah and eastern Nevada using coda waves generated by explosive events.
This monitoring characterizes velocity changes within the region from June to
September of 2007. We observe, both temporally and spatially, variable velocity
changes within the monitored region, with a maximum path-average velocity
changes of 0.2%. This suggests a significant change in the velocity within the
region given the short monitoring duration and provides enormous implications

to the characterization of the deformation within the region.

Key words: time-lapse monitoring, coda wave interferometry

1 INTRODUCTION

Coda wave interferometry is an effective tool to moni-
tor time-lapse changes within a medium, especially for
weak changes within the medium (Snieder et al., 2002).
Coda wave interferometry allows us to extract subsur-
face changes from scattered seismic waves generated
from repeated sources. With identical sources and neg-
ligible noise, differences within the seismic coda (such
as time shift and amplitude decay) provide informa-
tion about the changes within the monitored medium
through which the coda wave travels. Due to the redun-
dancy in the coda waves and possibly increased illumi-
nation of the subsurface by the scattered waves, the sen-
sitivity of the scattered waves to perturbations within
the subsurface usually increases with increasing travel
time. This sensitivity of the multiply scattered waves
has allowed for monitoring weak changes in velocity, in
the order of 0.1% (Snieder, 2006). Coda wave interfer-
ometry has successfully been used to monitor velocity
changes along fault regions (Schaff and Beroza, 2004;
Poupinet et al., 1984), detect in situ velocity changes
due to stress changes in mining sites {(Grt et al., 2006),
characterize near-surface velocity changes (Nakata and
Snieder, 2012), monitor temporal changes within vol-
canic regions (Matsumoto et al., 2001), and detect far-
field stress-induced velocity changes (such as solid earth
tide) (Spane, 2002).

The monitored region in this study covers west-
ern and central Utah, eastern Nevada, and the south-
ern part of Idaho. Some of the notable features within
this region include most of the Wasatch fault region,
the north-western Colorado plateaus, the eastern part
of the Great Basin, and the southern Rocky Mountain
region (Prodeul, 1970) (figure 1). The Great Salt Lake
and the Wasatch front are situated in the eastern sec-
tion of the monitored region. The Wasatch fault sys-
tem is a 370-km normal fault system (Armstrong et al.,
2004) cutting across Utah from the north to the south-
ern part of Utah. The fault defines the eastern bound-
ary of the Basin and Range province of western North
America. With a northward striking direction and a dip
range of 45°-60° toward the west, the Wasatch fault
characterizes a broad area of active deformation which
consists of more than 10 segments, and the regions con-
necting the fault segments are characterized by gaps
in seismicity (Simpson and Richards, 1981; Gori and
Hays, 1992). The Wasatch fault separates the Wasatch
Range to the east and Salt Lake Basin to the west. The
Wasatch range consists of the Rocky Mountains char-
acterized by late Paleozoic and Mesozoic rocks (Hunt,
1956). To the west of the fault is the Salt Lake Basin
which is an extension of the Basin and Range. Unlike
the Wasatch range, this section of the western US is ac-
tively deforming which has been attributed to a variety
of factors including crustal shearing due to the north-
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western relative movement of the Pacific Plate (Wise,
1963; Hamilton and Myers, 1966) and the elevated heat
characteristics of the Western US (Eaton, 1982). Some
places within the Salt Lake Basin consist of soft sed-
iments which are more than 1-km deep (Roten et al.,
2011). The soft sediments are potentially susceptible to
both near-field and far-field stress loadings.

In this study, we monitor temporal velocity changes
within the crustal sub-surface around the Wasatch fault
region. We use coda waves generated by time-lapse ac-
tive sources conducted in the summer of 2007. These
coda waves were recorded by the equally spaced US-
Array stations which cover most of the Wasatch fault
cutting across Utah. In the following section, we de-
scribe in detail the data processing routine we use in this
study. In sections 3 and 4 we present the results from
the time-lapse monitoring of the Wasatch fault region
and interpretation of the results, respectively. Section 5
both concludes and discusses the assumptions we made
in this study.

2 DATA PROCESSING

We process coda signals generated by 10 rocket mo-
tor explosions, occurring between June 4 and Septem-
ber 10 2007, which were surface rocket explosions at
the Utah Test and Training Range (UTTR) of Hill Air
Force Base, Utah (Stump et al., 2007). Each of the ex-
plosions was carried out at the same location with lat-
itude and longitude of N41.141° and W112.9065°, re-
spectively. These explosions are identical. The similarity
in the source properties of the monitoring signals pre-
vents errors in the estimated fractional velocity changes
due to changes in the properties of the sources (such as
shift in source location or source mechanism) generat-
ing the coda signals (Weaver et al., 2011; Kanu et al.,
2013). The onset times of the explosions are given in

Table 1. The blast signals were recorded on the USAr-

ray transportable array (TA) shown in Figure 1 and the
TA consists of 54 stations surrounding the blast location
(red star) shown in Figure 1.

2.1 Processing of blast doublets for velocity
changes

In this study we process three (N-S, E-W and vertical)
components of the recorded explosive signals. Figure 2
shows an example of the three-component blast signals.
The signals in figure 2 are unfiltered having an ampli-
tude spectrum shown in Figure 3. We use a 1-5Hz fre-
quency band in this time-lapse monitoring and the blast
signal for the 1-5Hz frequency band is given in Figure
4.

In this time-lapse study we use the coda section of
the signals (i.e. the section of the signal with exponen-
tial amplitude decay) (Figure 5). The onset time of the
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Figure 1. USArray transportable array given by the green
squares. The locations of the stations are given relative to
the blast location (red star).
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Figure 2. Typical recordings of the blast events. The three
components, N-S (blue), Vertical (red) and the E-W (black)
are all used in the time-lapse analysis.



Table 1. Descriptions for the blast events used in this stud-
ies.

Event
(Data name) Month Day Hour Minutes Seconds
Reference
(20070604) 06 04 19 52 21.22
Signal 1
(20070611) 06 11 19 49 24.10
Signal 2
(20070626) 06 26 19 43 19.78
Signal 3
(20070709) 07 09 21 38 37.13
Signal 4
(20070716) 07 16 17 33 31.13
Signal 5
(20070801) 08 01 20 01 24.26
Signal 6
(20070806) 08 06 - - -
Signal 7
(20070813) 08 13 19 38 30.56
Signal 8
(20070827) 08 27 20 43 11.45
Signal 9
(20070910) 09 10 17 33 01.56

1010

10°

f=w/2n

Figure 3. Typical amplitude spectrum of the blast events.
The three components, N-S (blue), Vertical (red) and the E-
W (black) are all used in the time-lapse analysis. The gray
rectangle bounds the used frequency range.
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Figure 4. Typical recordings of the blast events (filtered)
bandpass filtered between 1-5Hz. The three components, N-
S (blue), Vertical (red) and the E-W (black) are all used in
the time-lapse analysis.
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Figure 5. The coda section of the blast signals. The three
components, N-S (blue), Vertical (red) and the E-W (black)
are all used in the time-lapse analysis. The gray rectangle
bounds the coda section of the signal

coda section after the S-waves varies between stations.
We filter the signals between 1-5Hz. We also normalize
each signal with its maximum amplitude and resampled
each of the signals from a time interval 8¢ of 0.025s to
0.001s. The resampling increases the resolution of the
estimated velocity changes. The data is processed using
three signal referencing cases. Case 1 consists of compar-
ing each of the recorded signals to the first blast signal
(Signal 20070604 - Table 1). In Case 2, each signal is
compared to the previous signal (in time). For Case 3,
we use only the signals from 08/01/2007 to 09/10/2007.
Each of the signals in this Case is compared to the blast
signal on 08/01/2007 (Signal 20070801 - Table 1). The
purpose for these three cases is to check for consistency
in our estimate of velocity change.

To extract the fractional velocity change from the
time-lapse data, we use the stretching method (Hadzi-
ioannou et al., 2009). However rather than using the
maximum correlation as the misfit function for the time-
lapse misfit, we use the L norm as the misfit function
(Kanu et al., 2013). We initialize the time of the sig-
nals to the onset times of the explosive events in order
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to apply the stretching algorithm. A doublet consists of
time-lapse signals from two explosive events. The source
properties of the explosive signals are the same; there-
fore any difference in the signals results from either
changes along the propagation path of the signals or
differences in noise properties of the signals. The major
challenge we encountered while analyzing this explosive
data was accounting for missing data. In some cases the
data were either missing one of the components or all
three of the components. We only used explosive sig-
nals that are recorded on all three components of the
stations. Table 2 shows the stations with their missing
data.

Because of the presence of noise in the data and
because the noise becomes prominent with increasing
coda time, we only use the codas where the correlation
of the early part of the coda is greater than 0.75 and
the correlation of the end of the coda is greater than 0.5
(similarity criterion). This section of the coda is submit-
ted to the stretching algorithm. In cases where this cri-
terion is not met, we assign zero to the relative velocity
change and its error. We compute the error associated
with the estimated velocity change using the method of
Kanu et al. (2013) (equation 14).

The fractional velocity changes estimated in Cases
1 and 3 are cumulative velocity changes from the refer-
ence signals. However in Case 2, the changes estimated
are interval velocity changes for each monitored time pe-
riod. In order to express the estimated velocity changes
of Case 2 in a way that is consistent with the other two
cases, we sum the estimated velocity changes and their
associated error values using the following equations:

CARS WY W

and

2

where <6 v/ V> is the estimated average velocity change,
e is the error of the relative velocity change, and i and j

denote the time intervals we are monitoring with values
1to9.

3 TIME-LAPSE VELOCITY CHANGE
3.1 Average velocity changes

Figure 6 shows the cumulative estimates of the average
relative velocity changes for Case 1, Case 2 and Case
3. We compute the average velocity change using all
the monitoring stations with non-zero estimated veloc-
ity change. In Case 2, we have zero velocity changes in
the first two time periods (doublets) because the time-
lapse doublets do not meet our similarity criteria in the

Table 2. The stations with missing data and their missing
data

USArray Station  Missing Data

L15 20070604
20070611
20070626
20070709

L16 20070604
20070611
20070626
20070709

M16 20070604
20070611
20070626
20070709

N16 20070604
20070611
20070626
20070709

015 20070604
20070611
20070626

016 20070604
20070611
20070626

data processing (section 3.1). This inability to meet our
criteria is because the signal resulting from the explo-
sion of June 11 (Signal 20070611 - Table 1) is different
from the rest of the signals due to the presence of noise.
In Case 3 only signals after August 1 are processed, and
the reference signal for the estimation of velocity change
in Case 3 is the signal of August 1 (Signal 20070801 -
Table 1). Each of these cases show significant velocity
changes between June 4 and July 9. However the sub-
sequent estimated velocity changes (6V/V (%)) for both
Cases 1 and 2 are below the error-level while in Case
3 these estimated velocity changes are well above the
error values. The error values are standard deviations
of the estimated velocity changes.

Comparison of the estimated velocity changes from
all three cases reveals that the estimated velocity
changes for each of the components follow a consistent
trend. The average velocity increases within the moni-
tored region from the June 4 to June 26. This increase
in velocity remains fairly constant until August 1 after
which the average velocity decreases. The reduction in
velocity occurs between August 1 and 6. As is indicated
in Case 3, the average velocity remains constant between
the August 6 and 13. After the August 13, the average
velocities increases and decreases for the following time
periods: August 13 to 27 and August 27 to September
10, respectively.
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Figure 7. Percentage velocity changes estimated from the 9 blast doublets using vertical compenent of the stations. The first
two doublets have missing estimates. The red points are the surface stations. The source location is the point where are the
colored lines meet. The color lines are the estimated percentage velocity changes for each source-receiver pair. The velocity
changes are estimated from the vertical component of the coda wave generated by the blast.

3.2 Spatial distribution of velocity change

Figure 7 shows a trend in velocity change similar to what
is observed in the average velocity changes computed
using all the stations. These average changes are the
estimated velocity changes in Case 2 for each time-lapse
period. The first two time-lapse periods (06/04/2007 -
06/11/2007 and 06/11/2007 - 06/26/2007) are missing
due to presence of noise in signal 20070611 (Table 1).
Figure 7, shows the spatial distribution of the velocity
changes as changes seem to vary with source-receiver
pairs; and the region of dominant velocity changes also
varies from one time period to the other.

The estimated velocity changes generally decrease
with increasing source-receiver distance (Figure 8). The
dependence of the estimated velocity change on the
source-receiver distance explains the high error levels
in the average of the estimated velocity change shown
in section 3.1. The spread in the velocity changes esti-
mated at the stations is not due to random error but
due to variations in the estimated velocity change with
the source-receiver distance. The spatial distribution of
the velocity changes and the dependence of the veloc-
ity change on the source-receiver distance might sug-

gest that the velocity changes in the medium are local-
ized. During some of the time intervals shown in Figure
8, the estimated velocity changes are distributed over
broad values of velocity changes for the same source-
receiver distance (for example, for period 07/16/2007 -
08/01/2007 at the source-receiver distance of 100km).
This might be an indication of lateral variation of the
velocity change within the monitored region.

3.3 Parameter Estimation:

The travel time shifts (and therefore the estimated ve-
locity changes) depend on the magnitude of the sub-
surface velocity change Av, the volume of the velocity
change AV, the diffusion coefficient D of the scattered
wave intensity (Pacheco and Snieder, 2005), and the
source-receiver distance R. Assuming a uniform lateral
velocity change which extends to the earth’s free surface
(Figure 9), we can formulate the parametric dependence
of the estimated relative velocity change () as follows:

{¢) = F(Av/v,h,D,r), (3)

where h is the depth extent of the velocity change.
The function F can be found from the theory of




190  Kanu, Snieder and Pankow

02 06/26-07/09
0.15| ¢
® E-W i
0.1 Lo
® N5 : T
0.05 i Hls IS
¢ Up-Down 0 '
0 200 400
g 01— - —— 0.15 0 -
° 07/09 - 07/16 07/16 - 08/01 R
2 0.05 0.1} , -0.05 PRt !
g t LT
G 0 0.05| iy -0.1 I
Fry o o i
S -0.05 ;. ¢ ‘N 0 -0.15
2 Wy . 08/01-08/06
> -0. 02— |
o 01 200 400°%% 200 400 %% 200 400
8 0.05 0.15 0
T g e 08/13 - 08/27 : ]
0 - 4 0.1 ~ -0.05} |
005 - {008 P dun | o]
ewyoow
-0.1 0 -0.15 |
08/06 - 08/13 | i |
015 200 400°%% 200 400 %% 200 400

Source—Reciever distance (km)

Figure 8. The relative velocity change estimated for each of the time periods as a function of source-receiver distance. The
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The black horizontal line corresponds to zero velocity change.

Pacheco and Snieder (2005), which relates the estimated

relative velocity change (¢) to the model parameters
(Av/v, h,D,r) as follows:

()t = /V K(e,6: D)2 (r) av. (4)

The estimated relative velocity change seems to de-
pend directly on the parameter ¢, which is defined as

C=p > (5)
Figure 10 shows the apparent (estimated) velocity
changes using the source-receiver distance of station
J13 for values of ¢ from 0 to 0.1 using equation (4).
These values of ¢ correspond to values of Av/v, h, and
D ranging from 0-10%, 0-10km, 1-10x10®m/s?, respec-
tively. Figure 10 suggests that the three parameters -
the magnitude of the subsurface velocity change Awv,
the depth of the velocity change h, and the diffusion co-
efficient D - only influence the estimated velocity change

through the combination that defines ¢ in equation 5.
The diffusion coefficient, however, shows a weaker trade-
off with the other two parameter, the magnitude of sub-
surface velocity change Av/v and the depth of velocity
change h. Station J13 is chosen arbitrarily because the
trade-off of the three model parameters applies to all
the stations.

The strong trade-off between the Av/v and h sug-
gests that determining each of these parameters inde-
pendently will be difficult. According to equation (A12)
in Appendix A, we can use a power law relation to de-
scribe the estimated velocity changes (Figure 11) as:

(€) = aR’, (6)

where a = 32425 and b = -1 (See Appendix A). Zisa
dimensionless constant of the monitored region. Table 3
gives the estimated parameters for the fitting solutions
of the estimated velocity changes, the qualities of the fit-
ting solutions in the adjusted R squared (a measure of
regression) values, and the inverted values of hAv/v. We
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Figure 9. Schematic description of the layer of near-surface
fractional velocity change. The red star is the source and the
black triangles are the receivers.
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Figure 10. Dependence of the estimated velocity change on
the dimensionless parameter ¢. The definition of { is given
in equation 5. The green region corresponds to the range of
velocity changes estimated with station J13.

use the weighted nonlinear least-squares method with
the inverse of the estimated errors as weights. We ignore
estimated velocity changes less than 0.02% for period
07/16-08/01 in the fitted solution, because the values do
not fit the power law relation. Using the diffusion model
of scattered intensity in the 3D semi-infinite medium we
can only invert for values of hAv/v from the estimated
velocity changes. Based on the surface layer model, the
inverted hAv /v values are in the order of 1%km, which
implies that the percentage velocity change is of the or-
der 1% over a depth in the order of 1km. These values
seem large for a region such as Utah with negligible
precipitation and given that the durations of the moni-
toring are on about 2 weekly basis.
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Figure 11. Power law fitting of the estimated velocity changes in Utah Wasatch fault region. Fit 1, 2, and 3 are the fitting
solutions for the estimated velocity changes of E-W, N-S, and Z-U components, respectively.

4 CAUSES FOR THE VELOCITY
CHANGES

4.1 Rainfall and groundwater level

Utah is a region that receives little precipitation. Figure
12 shows the amount of precipitation observed within
the time period we are monitoring using the follow-
ing two stations: Salt Lake County Government Center
(N40.7284 W111.8877) (Figure 12.1A and 12.2A) and
Magna Station (N40.7109 W112.1002) (Figure 12.1B
and 12.2B). The figures show that the amount of precipi-
tation is small (amounting to a cumulative precipitation
of less than 2 inches) during the monitored period. This
may explain why there is negligible relation between the
precipitation and estimated velocity changes.

The groundwater level can vary temporally, not
only due to precipitation but also to stress loading
resulting from large earthquakes (Montgomery and
Manga, 2003) and solid earth tides (Spane, 2002). Fig-
ure 13 shows the cumulative groundwater subsidence

over the monitored period in this study. The recording
wells of the groundwater subsidence are shown in Figure
14. Figure 13 shows that the cumulative groundwater
subsidence generally increases and decreases with the
average estimated velocity change. However, the max-
imum cumulative groundwater subsidence is less than
10m. This amount of groundwater subsidence is unlikely
to totally explain the observed velocity changes.

4.2 Local seismicity

Figure 15 shows the peak horizontal acceleration (PHA)
due to local seismicity and the estimated velocity
changes. We compute peak horizontal acceleration using
the PHA relationship with event magnitude proposed by
Campbell (1981) based on world-wide data (equation 7):

In PHA(g) = —4.141+0.868M —1.09 In[R+0.606 exp(0.7M)],

(M
where M is the event magnitude, R is the distance to
the fault rupture location in km, and g is the accelera-
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Table 3. Estimated model parameters using the inverse R relation.

Event period

a (%okm)

Adjusted R2

h% (%okm)

Period 1 (06/04-06/11)

Period 2 (06/11-06/26)

Period 3 (06/26-07/09)
EW
N-S
Z-U

8.272 +0.6536
8.223 +0.6651
8.450 +£1.1125

Period 4 (07/09-07/16)
EW

N-S

Z-U

-3.382 £0.3990
-3.342 +0.4005
-3.574 +0.5839

Period 5 (07/16-08/01)
E-W

N-S

Z-U

4.677 £0.3941
4.677 £0.3941
4.382 +0.4513

Period 6 (08/01-08/06)
E-W

N-S

Z-U

-9.001 +0.6926
-8.932 +0.7020
-7.889 +0.8625

Period 7 (08/06-08/13)
EW
N-S
ZU

-0.2111 £7.7143
0.2761 +£9.6735
-4.062 +33.2908

Period 8 (08/13-08/27)
E-W
N-S
Z-U

4.003 +0.5133
3.937 +0.4923
4.019 £0.4722

Period 9 (08/27-09/10)
EW

N-S

YA

-5.143 +0.9411
-5.602 £1.1110
-6.328 +3.2270

0.3448 1.9144 +0.1514
0.3593 1.9030 +0.1541
-0.3393 1.9556 +0.2576
0.2096 -0.7827 +£0.0924
0.2440 -0.7734 +£0.0927
0.2823 -0.8271 +£0.1352
0.4538 1.0824 +0.0913
0.4538 1.0824 +0.0913
0.2150 1.0141 +0.1045
0.09855 -2.0831 +0.1605
0.1131 -2.0671 +0.1626
-0.0293 -1.8258 +0.1997
-0.07994 -0.0489 +£1.7853
-0.2961 0.0639 +2.2387
-0.05158 -0.9401 £7.7045
-0.3547 0.9264 +£0.1188
-0.4684 0.9111 +0.1140
0.06362 0.9301 +0.1093
0.118 -1.1902 +£0.2178
0.1414 -1.2965 +0.2572
-0.355 -1.4645 +0.7469

tion due to gravity. We compute the PHA values using
magnitude and hypocenter parameters of the detected
seismic events during the monitored time period for sta-
tion L11A. Station L11A is selected arbitrarily.

The following durations have anomalous PHA
events: 06/04/2007 - 06/11/2007, 06/26/2007 -
07/09/2007, 08/01/2007 - 08/06/2007, 08/13/2007 -
08/27/2007, and 08/27/2007 - 09/10/2007. Among
these time periods, only the following time periods —
06/04,/2007 - 06/11/2007, 06/26/2007 - 07/09/2007 and
08/01/2007 - 08/06/2007 — have the anomalous PHA
events occurring near the end of the period. Apart from
the period 06/04/2007 - 06/11/2007 — in which we do
not have the estimate of velocity change — these three
periods correspond to periods with highest velocity
changes (Figure 14). However, the periods 06/26/2007 -
07/09/2007 and 08/01/2007 - 08/06/2007 with anoma-
lous PHASs show different signs in the velocity changes.
To make a closer comparison of the PHA and veloc-

ity changes, we might need to incorporate the local site
effects of the monitored region into the PHA computa-
tion and compute the spatial PHA across the monitored
region.

The effect of the local seismicity is expected to be
constrained near the Wasatch fault which is situated in
the eastern section of the monitored region. This section
of the monitored region is close to the source location
and might in part explain the source-receiver depen-
dence of the estimated velocity change.

4.3 Crustal deformation

A critical assumption we made in the estimation of
hAv/v is that the velocity changes are uniformly lim-
ited to a surface layer, which may be unrealistic. The
monitored region covers the eastern flank of the Basin
and Range, which has been shown to have elevated heat
characteristics (Eaton, 1982) that might be responsible
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Figure 12. Precipitation recorded during the time period
monitored in this study. A. The amount of precipitation per
period and B. The cumulative amount of precipitation. 1.
Salt lake county government center station and 2. Magna
station.

for broad active deformation in the region. A tectonic
deformation of the region will induce velocity changes
within the crust; however, these velocity changes will
be deeper, broader and more gradual than the changes
due to other physical mechanisms such as changes in
groundwater level or regional seismicity. Because of the
broad and gradual properties of the crustal deformation-
induced velocity changes, we expect larger values of h
(volume of change) and lower fractional velocity changes
Av/v. With a larger value in h, crustal deformation due
to stress changes or elevated heat deep within the crust
might explain, at least in part, the inverted values of
hAv/v of an order of 1%km, however, discerning the
depth profile of the observed velocity changes is chal-
lenging using the coda waves and the surface receivers.

5 DISCUSSIONS AND CONCLUSIONS

The estimated velocity changes and the inverted values
of hAv/v suggest that the Wasatch front and, in ex-
tension, the eastern flank of the Basin and Range, are
undergoing small but significant velocity changes within
a short period of time. We observe path-averaged veloc-
ity changes that depend on the distance between the
monitoring source and receivers. The magnitude of the
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Figure 13. Groundwater level in meters from the land sur-
face.

estimated average velocity change varies from one time-
lapse period to the other. The maximum of the absolute
value of the estimated velocity change is 0.2%. To re-
solve the magnitude of the localized velocity change and
the location of the observed velocity changes using the
coda waves, we need to make some assumptions about
the monitored region. In this study, to resolve the mag-
nitude of the velocity changes and the region of change,
we have made the following simplifying assumptions:
First, we assume that the coda waves we use for
the time-lapse monitoring are described using the dif-
fusion approximation of multiply scattered waves. This
approximation is usually an over-simplification of the
scattered waves especially in the early part of the coda.
This approximation is likely to result in an overestima-
tion of the inverted values of hAv/v. Also we assume
a uniform diffusion model for the monitored area de-
fined by an average diffusivity constant. This diffusivity
constant is related to the distance between source and
receivers using the diffusion model of the recorded in-
tensities. If the average diffusivity constant is unchar-
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Figure 14. Groundwater monitoring stations. The red tri-
angle are the locations of the groundwater subsidence wells
used in Figure 13.

acteristic of the variation of the diffusion property of
the monitored region, the inverted hAv/v will also be
erroneous.

Second, we use a semi-infinite 3D subsurface with a
fully reflecting free surface to invert for hAv/v. The fully
reflecting free surface may be a fair approximation of the
free surface, but we ignore the presence of Moho discon-
tinuity. This boundary will change the magnitude of the
sensitivity kernel (equation A2) of the coda because the
crustal thickness is much less than the source-receiver
distance of the estimated velocity changes. Keller et al.
(1975) suggest that the crustal Great Basin-Colorado
Plateau transition has a thickness of about 25km with
a crustal thickness of 30km for the Basin and Range
(Gilbert and Sheehan, 2004). Assuming an absorbing
boundary at the crust-upper mantle interface will likely
increase the magnitude of the sensitivity kernel (equa-
tion A2) (Rossetto et al., 2011). This will result in a
reduction of the value of the inverted hAv/v.

Third, we made a 2D approximation of the equa-
tion Al in equation A6. This is a valid approximation for
h/R <« 1. Therefore, the inverted hAv/v represents the
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Figure 15. Peak horizontal acceleration (PHA) estimated
from the local seismicity that occurred during the monitored
period. The PHA are estimated using relationship between
PHA and the magnitude of an earthquake in equation 7.

true hAv/v within the subsurface if the velocity changes
are restricted to the near surface. If the observed veloc-
ity changes result from a deeper region of the subsur(ace,
then the true values of hAv/v might deviate from the
inverted values. Because of the large values of R (several
hundred kms), the h/R approximation is not likely to
significantly affect the inverted values of hAv/v.
Fourth, due to the extent of the monitored region,
the recorded explosive signals are expected to gener-
ate surface waves. The surface waves can arrive within
the coda wave time window especially for short source-
receiver distances. In the recorded explosive signals, the
surface waves mostly arrive after the coda waves, how-
ever the relative arrival times of the coda wave and the
surface wave are dependent on the source-receiver dis-
tances and the surface wave can contaminate the coda
signal. In this study we have restricted the velocity
changes analysis to the coda wave. However the presence
of surface wave or surface dominated scattered waves
will increase the sensitivity of the scattered waves to lo-
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calized velocity change. This will result to lower values
of hAwv/v. Therefore the inverted AAv/v values can be
considered as the upper limit of the real hAv/v changes
within the monitored region.

Finally, we assume a uniform lateral velocity change
in a layer of velocity change across the monitored region.
The reality is that the velocity changes are localized in
space both laterally and in depth. The inverted hAv/v
can be seen as the average hAv/v of the true hAv/v
within the monitored region. This means that in some
areas of the monitored region the true changes will be
higher or lower than the inverted values.

The above assumptions notwithstanding, the esti-
mated velocity changes suggest that the crust under-
neath the region around Wasatch fault is undergoing a
significant velocity change within a short period of time.
These velocity changes will have significant implications
for the characterization of both the seismicity and de-
formation of the region. It would be useful to discern if
these velocity changes are seasonal, i.e., if they might
be linked to seasonal loadings (such as tides and precip-
itations) in both near- and far-fields.

ACKNOWLEDGMENTS

We are grateful for the financial support of the Depart-
ment of Energy (DOE) through grant DE-EE0002758.



Timelapse monitoring in Utah 197

APPENDIX A: ANALYTICAL APPROXIMATION OF EQUATION 4:

The timeshift (r(t)) extracted from repeating coda (assuming the diffusion model) can be related to the localized
velocity changes by the model of Pacheco and Snieder (2005) as

_<TE§t)) = (e(t)) = /v K(s,—xto,rﬁ%(xo) dv, (A1)

where V in the integration volume and s, xo, and r are the source, arbitrary, and receiver locations, respectively. The

sensitivity kernel K(s,xo,r,t) is

J5 P(s,%o,t')P(Xo,r,t — t') dt’
P(s,r,t) ’

and P(x1, X2, t) is the normalized intensity recorded at a receiver location z2 due to a source at x1. Using the diffusion

approximation for the normalized intensity in a 3D semi-infinite inhomogenous medium with a full reflecting surface
boundary and where the source and receivers are located on the boundary, the normalized intensity is

K(s,Xo,1,t) = (A2)

PRY) = —2 exp (- F (A3)
Y= Gnbeyer P\ Tape )
Then the sensitivity kernel K (s, %o, r,t) in a 3D medium with a full reflecting surface boundary is given by (Rossetto
et al.,, 2011)
1 R? — (r+s)? 1.1
K(s,%o,r,t) = o Dexp( 1Dt ;+; ) (A4)

where R is the source-receiver distance, and r and s are distances from the receiver and source to x,, respectively.
Therefore from equation (Al),

) gy =

CH
h 2 2
1 R —(r+s) 1 1\ Av
/3/1]/0 27rD(t)exP< 0] ) (s + r) . (x0)dzdydz. (A5)
Assuming h/R << 1 and that the fractional velocity change is constrained to the near surface slab such that
8%(xo) = 4%, then
(@) _ / / 1 R® — (r +s)? 1.1
= ~ —— —_ - . A

= L], zpm ™\ e s Trp)dvde (AS)

The travel time (t) associated with the estimated average velocity {(e(t)) is

J, wt)tdt’

- AT

where w(t) is the intensity of the scattered waves. Because the intensity is higher in the early part of the coda rather
than in the later, then the weighted average time (t) lies close to the peak of the intensity. At the intensity peak,
OP(R,t)
=AY 0. A
5 0 (A8)
Based on equation (A3), R?/6D(t) = 1.
To express the variables as dimensionless quantities, let ' = z/,/6D(t), ¥ = y//6D(t), R’ = R/\/6D(t) = 1,

v =1/\/6D(t), and s’ = s/,/6D(t). Then,

(T((t?) = (et = hAv\/;/x, ,eXP Sa-0 4 )) (—+%> dy’ da’. (A9)
-/a:" /y, exp (g (1-¢"+ s')z)) <$ + %) dy' dz’ = 2. (A10)

() _ hAv 3
O =25

Let

Therefore,

(A11)
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Using R? /6D({t) = 1, equation All follows that
_<_ 7(8) = ~3n _Av l
(t) <E(t)) ~3 RE. (A12)

Equation (A12) allows for a parametric description of the apparent velocity change (e(t)) in terms of the model
parameters h, %’i, and R. ¥ is a constant dimensionless parameter and is equal to 4.52 £+ 0.02. The error in ¥ is a

numerical error.
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Smooth dynamic warping
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Figure 1. Subsets of a PP image and a corresponding PS image warped using time shifts estimated automatically by smooth
dynamic warping. Contour lines (at 10-sample intervals) highlight the smoothness of the estimated time shifts.

ABSTRACT

Dynamic time warping is a simple classic method for aligning two sampled
functions of time. The sequence of time shifts computed by this method are
a globally optimal solution to a non-linear optimization problem with linear
inequality constraints that may be directly related to subsurface properties. In
applications to seismic traces, the time shifts may increase or decrease rapidly in
time (and space). However, when related to integrals of subsurface parameters,
such variations in time shifts are often smooth. A new method for smooth
dynamic warping exploits this inherent smoothness to increase the accuracy
of time shift estimates, especially where differences between seismic traces to
be aligned are not limited to time shifts. The new method requires only a
few simple modifications to the classic method, and can be easily extended to
multidimensional image warping as well. In an application to registration of PP
and PS images, we used smooth dynamic warping to compute times shifts that
vary smoothly in both time and space, and are significantly more accurate than
those computed using the classic method.

Key words: seismic image dynamic warping

1 INTRODUCTION

Dynamic image warping is a method for shifting features
in one image to align them with corresponding features
in another image. In applications to seismic images, the
shifts are often in time or depth, and the correspondence
is rarely exact.

Figure 1 illustrates one example, the registration
of PP and PS seismic images. Here we have warped a
PS image to align reflections with those in a PP image.

The time shifts, while increasing rapidly with time, vary
smoothly in time and space. We computed these time
shifts using a new method for smooth dynamic warping
proposed in this paper.

Clearly, differences between the PP and PS images
in Figure 1 are not limited to time shifts. Other differ-
ences include noise, which is most apparent in the PS
image, as well as differences in reflection amplitudes and
waveforms related to differences in PP and PS reflection
coefficients.
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The PP and warped PS images shown in Figure 1
are subsets of the PP and (not yet warped) PS images
shown in Figure 2. The images are displayed with differ-
ent vertical scales so that reflections in the PP image are
visually and approximately aligned with corresponding
reflections in the PS image. The time shifts shown in
Figure 1 are a subset of the time shifts we computed
from the entire PP and PS images shown in Figures 2a
and 2c.

Again, differences in noise and reflection amplitudes
and waveforms are apparent in the PP and PS images.
We compensated somewhat for amplitude differences by
applying a time-variable gain to each trace in the PP
and PS images. This gain normalizes amplitudes within
seamlessly overlapping windows so that the rms ampli-
tude within each window is one. Because the windows
approximate a Gaussian with half-width 100 samples,
the applied gain varies slowly with time.

Remaining differences complicate our estimation of
time shifts. Yet we often estimate time differences, as in
this example, because (1) they are related to subsurface
properties, such as the ratio of P-wave and S-wave veloc-
ities Vp/Vs, and (2) after compensating for differences
in reflection times, we can more readily analyze differ-
ences in reflection waveforms. So it is important that we
estimate time shifts using methods that are accurate in
the presence of noise and other such differences.

Several authors, including Gaiser (1996), Fomel
et al. (2003), Nickel and Sonneland (2004), Fomel et al.
(2005), and Liang and Hale (2012) have described meth-
ods for registration of PP and PS images and the corre-
sponding estimation of Vp/Vs ratios. For this and simi-
lar problems, the dynamic warping method (Sakoe and
Chiba, 1978; Anderson and Gaby, 1983; Hale, 2013) has
two important advantages. First, dynamic warping hon-
ors specified bounds on time shifts and on the rate at
which time shifts may vary with time. Second, using the
computational method of dynamic programming, dy-
namic warping finds a globally optimal solution to an
error minimization problem that may have many local
minima.

The first advantage is important because the con-
straints are often related to geophysical parameters. For
example, because Vp > Vs, we know that PS reflection
time is never less than the corresponding PP reflection
time, and that the differences between PS and PP re-
flection times can never decrease with time.

The second advantage improves the accuracy of dy-
namic warping in the presence of noise and reflection
waveform differences. Such differences, which are unre-
lated to time shifts, imply that we often want a locally
sub-optimal but globally optimal image registration.

In this paper we propose an improved method for
smooth dynamic warping that enables control of a trade-
off between accuracy and resolution of estimated time
strains, changes in time shifts with time. The trade-off
is important because estimates of time strain may corre-

spond directly to subsurface parameters, such as Vp/Vs
ratios. In addition, this new warping method improves
robustness in the presence of noise and other differences,
while requiring significantly less computer memory in
applications to 2D and 3D images.

We first describe a basic dynamic time warping al-
gorithm that is equivalent to one developed by Sakoe
and Chiba (1978), but is most similar to one developed
by Hale (2013). We then describe our improved algo-
rithm, and extend the improvement to image warping,
in which we compute shifts that are smooth in all sam-
pled image dimensions (time and space), as illustrated
in Figure 1. Throughout this paper we use the registra-
tion of PP and PS images shown in Figure 2 as just one
example of the application of our improved method for
smooth dynamic warping. The improvements extend to
other applications as well.

2 DYNAMIC TIME WARPING

The problem in dynamic warping is to find a sequence
of time shifts u[0 : n; — 1] = {u[0], v[1],...,u[n; — 1]}
that aligns two sequences (time series) f and g so that

fel = gli+uli]], i=0,1,...,mi -1 1)

More precisely, dynamic time warping computes time
shifts
n;—1
ul0:n; — 1] = airg min Z e[z, U[7]] (2)

mi—l =0

subject to constraints
w<ufi] Suyy, m<uli] —ufi—1<r, (3)
where
efi, ] = (f[i] - gl +1))*. (4)

In the inequality constraints 3, u; and u, are lower and
upper bounds on shifts u[¢], and r; and r,, are lower and
upper bounds on time strain, the rate at which time
shifts change with time sample index i. As noted above,
these lower and upper bounds may sometimes be related
to bounds on geophysical parameters.

The 2D array e[, !] contains alignment errors com-
puted for all sample indices ¢ and lag indices [. These
alignment errors could be computed in alternative ways.
For example, we could use an absolute value of differ-
ences instead of the square of differences in equation 4;
we used the latter to obtain all of the results shown in
this paper.

The bounds [u;,u.] on shifts u[i] imply that we
must compute e[i,!] only for lags ! that satisfy w <
! < uy. For simplicity in array indexing, we instead use
the bounds 0 < ! < my — 1, where ny = 1 + 4y — w
is the number of lags I for which we compute e[¢,!]. In
practice, if u; # 0, then we simply add u, to [ on the
right-hand side of equation 4 as we compute alignment
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Figure 2. PP (a) and PS (c) images to be aligned, with subsets (b and d) corresponding to the white rectangles. The vertical
scales for the PS images are different from those for the corresponding PP images, and were chosen to approximately align

reflections in the two images.

errors. If we let f denote one trace from the PP image in
Figure 2a and g denote a corresponding trace from the
PS image in Figure 2c, then the lower bound on shift
is in fact u; = 0 because, as noted above, PS reflections
never appear before corresponding PP reflections.

It is important to recognize that the sequence of
shifts © defined by equation 2 is the globally optimal so-
lution to a non-linear least-squares problem with linear
inequality constraints 3. In practice, the oscillatory na-
ture of seismograms represented by the sequences f and
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g causes this minimization problem to have many local
minima. As noted above, the ability to find the glob-
ally optimal solution to this problem is a key advantage
of the dynamic warping method, when compared with
alternative methods.

Given a 2D array of alignment errors e[z,!] and
bounds on strain 7, and r,, we compute the optimal
shifts u[i] using a dynamic programming algorithm.
This algorithm has four phases, which are highlighted
in the pseudocode for Algorithm 1.

Algorithm 1 Find shifts u[]

1: procedure FINDSHIFTS(r, 7y, €, u)
2 fori=0ton; —1 > initialize
3 d[0,!] = e[0,]
4 fori=1ton; —1 > accumulate
5: forl=0ton; —1
6 di = o0
7 q = max([r],l —n + 1)
8 gu = min(|r.],?)
9: for g = qi to q.
10: dg =dli— 1,1 —q] +€[i,!]
11: ifd, <d
12: dy =dg
13: my=q
14: dfi,l] = di
15: mi, 1] = my

16: i=n; —1 > minimize d
17: di = o0

18: fori=0ton; —1

19: if d[i,l) < d;

20: d; = d[i, l]

21: uli] =1

22: while i > 0 > backtrack
23: uli — 1] = uli] — mfi, u[d]]

24: 1=1—-1

Lines 2-3 initialize the first column, the one for
sample index ¢ = 0, of a 2D array of accumulated errors
d[, 1.

Lines 4-15 perform a non-linear accumulation of
alignment errors eli,[], and store the accumulated er-
rors in d[i,l]. The accumulation is recursive, in that we
compute accumulated errors for sample index 7 from
those for sample index i — 1. Also, while accumulating,
we record in a separate 2D array m/t, [] the lags { for the
accumulated errors dfi — 1,1] used to compute d[i,!]. We
think of the array mfi,[] as recording the error mini-
mizing moves that are made while accumulating. These
moves are constrained by the bounds [r;, 74]; [r;] in line
7 denotes the smallest integer not less than r;, and [r.]
in line 8 denotes the largest integer not greater than .
Accumulation, the most costly of the four phases, ends
with the computation of the last column of accumulated
errors d[n; — 1,1].

Lines 16-21 then search this last column for the lag

! that minimizes d[n; —1,1]. This lag is the optimal shift
u[i] for sample index ¢ = n; — 1. The accumulated error
d[n; — 1,u[n; — 1]] is the minimized sum in equation 2.

Finally, lines 22-24 use the moves recorded in m|i, ]
to backtrack, computing the optimal shift u[n; —2] from
u[n; —1], u[n; — 3] from u[n; —2], and so on, until finally
computing u[0] from u[l].

Our improved Algorithm 2 is similar, but differs
from Algorithm 1 in two ways.

Algorithm 2 Find subsampled shifts u;[j] = u[i[j]]

1: procedure FINDSHIFTSI(r, 74, €,1,u;)
2 forl=0ton;—1 > initialize
3 d[0,!] = €[0,]]
4 forj=1ton; —1 > accumulate
5: h =i[j] —i[j — 1]
6: forl=0ton;—1
7 di =00
8 q = max ([hr],l - n; + 1)
9: qu = min (| hry],1)
10: for g =q to qa.
11: dy=d[j —1,l —q]
12: forp=0toh-1
13: dg = dq + €[i[j] — p, 1 — pg/h]
14: if dg < d;
15: di =dq
16: my =q
17: dij,l]=d
18: mlj,l] = my

19: j=mn;j—1 > minimize d
20: dj = o0

21: forl=0ton —1

22: if d[j,1) < d;

23: d; =d[j,!]

24: ui[j] =1

25: while j > 0 > backtrack
26: wi[j — 1] = wij] — mj, us[4]]

27: ji=3—-1

The first difference is that Algorithm 2 computes
shifts u;[j] = u[i[j]] for only a subset of sample indices
i[0 : n; — 1] = {¢[0],[1],...,i[n; — 1]}. Note that an
array of indices 4 in this subset must be specified as in-
put to the procedure in Algorithm 2. To compute shifts
u[i] for all sample indices 7, we must later interpolate
the subsampled shifts u;[j] = u[¢[j]] computed by Algo-
rithm 2.

The second difference lies in the accumulation step,
where lines 11-13 in Algorithm 2 have replaced line 10 in
Algorithm 1. The additional inner loop for p = 0 to h—1
accumulates h = i[j] —¢[j — 1] (line 5) alignment errors
e[4,1]. Lines 4-18 compute and store accumulated errors
d[4,!] and moves m[j,!] corresponding to the indices i[j]
in the subset ¢[0 : n; — 1].

Figure 3 illustrates how subsampling in Algorithm 2
can produce smoother sequences of shifts. This figure



shows a closeup view of shifts u[¢] computed from e[z, {]
obtained by averaging alignment errors for all traces
in the PP and PS images shown in Figure 2. For this
example, we chose strain limits r; = 0 and r, = 2, so
that with A = 1 only three values of strain u[f] —u[i — 1]
are possible: 0, 1, or 2. In other words, as we increase the
sample index %, shift u[f] must either remain the same or
increase by one or two lags. This restriction explains the
rough sequence of shifts for h = 1 shown in Figure 3a.

In contrast, for the same strain limits, subsampling
with h = 50 yields 51 possible values of strain and the
smooth sequence of shifts shown in Figure 3a. These
shifts were obtained by interpolating subsampled shifts
u;[j] = u[i[j]] computed using Algorithm 2.

Figures 3b and 3c show computational stencils used
for h = 1 and h = 5, again for strain limits r, = 0
and r, = 2. Lines 8 and 9 of Algorithm 2 determine
which previously accumulated errors are accessed when
computing the accumulated error d[j,!] set in line 17.
For h = 1 (Figure 3b), Algorithm 2 will access only three
previously accumulated errors, d[j — 1,1], d[j — 1,1 — 1],
and d[j — 1,1 — 2], as it computes d[j, ].

For h = 5 (Figure 3c), Algorithm 2 will access 11
previously accumulated errors (corresponding to 11 dif-
ferent lags l), and for each of them it will sum h =5
alignment errors e[t, ], as it determines which change in
shift minimizes accumulated error d[j,].

Note that the expression [ —pq/h in line 13 of Algo-
rithm 2 may not have an integer value. For some sam-
ple indices 7, the lines representing the computational
stencil shown in Figure 3c lie between two integer lag
indices [. This means that interpolation of alignment
errors e[t,l] for non-integer lags [ is required in line 13.
In practice, we find that linear interpolation or simply
choosing the alignment error e[z,!] for the nearest inte-
ger lag [ is sufficient.

When the spacing between consecutive subsample
indices i[j] is h = 1 (so that i[j] = j and n; = n;), then
Algorithm 2 is equivalent to Algorithm 1. The ability
in Algorithm 2 to sample shifts with larger subsampling
intervals enables us to increase accuracy in estimated
time strains (and shifts), by sacrificing temporal resolu-
tion of those same strains.

3 ACCURACY VERSUS RESOLUTION

Such a trade-off between accuracy and resolution is com-
mon in signal processing, and is unavoidable when esti-
mating time shifts from two time series.

Figure 4 illustrates this trade-off for shifts u[é] esti-
mated from the PP and PS images of Figure 2. In Fig-
ure 4a, the sequence of shifts u[] is the globally optimal
solution to the optimization problem of equations 2-4.
We computed these shifts from alignment errors e[z, (]
using Algorithm 2 for h = 1.

Figures 4b and 4c show smoother sequences of shifts
u[i] computed using the same algorithm for h = 50 and
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Figure 3. Closeup views of alignment errors e[t, l] and shifts
u[i] (a) computed without subsampling (A = 1) and with
subsampling by a factor of h = 50. For strain limits 0 <
ufi] — ufi — 1] < 2, the computational stencil for h = 1 (b)
can represent only two changes in lag; at each sample, lag
must either remain constant or increase by one or two. In
contrast, the stencil for h = 5 (c) represents 10 changes in
lag, and a stencil for h = 50 (not shown) represents 100
changes in lag.

h = 100, respectively. With Algorithm 2, we first com-
puted subsampled shifts u[¢[j]] at the highlighted points,
and then interpolated those shifts using piecewise-cubic
polynomials to obtain finely sampled shifts u[i]. We
used polynomials that preserve monotonicity (Fritsch
and Carlson, 1980) to ensure that u[i] — u[i — 1] > 0,
as required by the strain constraints for PP-PS image
registration. A simpler alternative, one more consistent
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Figure 4. Alignment errors and shifts computed without
subsampling (a) and with subsampling by factors of h = 50
(b) and h = 100 (c). Subsampled shifts are both smoother
and more accurate, and cannot be computed by simply
smoothing the shifts obtained without subsampling (h = 1).
In the background images of alignment errors, white vertical
features correspond to reflections in the PP image, and di-
agonal features correspond to (shifted) reflections in the PS
image.

with the accumulation of alignment errors along linear
paths like those shown in Figure 3¢, would be piecewise-
linear interpolation.

The sequence of shifts u[i] obtained without sub-
sampling for A = 1 exhibit much more detail than those
obtained with subsampling for either h = 50 or h = 100.
In other words, for h = 1, changes in time shifts with
time are well-resolved. However, in this example the

shifts obtained for h = 1 are useless. We show below
that the shifts obtained for A = 50 are much more accu-
rate. Moreover, the shifts computed for h = 50 cannot
be obtained by simply smoothing the shifts computed
for h = 1.

For h = 100 (Figure 4c) Algorithm 2 computes
shifts for only six samples. Except near sample index
¢ = 0, the interpolated shifts u[z] well approximate those
computed for h = 50.

To demonstrate that the shifts u[i] computed for
h = 50 are more accurate than those for h = 1, Fig-
ure 5 shows closeup views of results obtained for three
different arrays of alignment errors e[z, []. Figures 5a—c
show averages of 1 (no averaging), 5, and 721 alignment
errors computed from pairs of traces in the PP and PS
images in Figure 2. Figures 5d—f show the same align-
ment errors with shifts computed for A = 1 and h = 50.

Figure 5a shows a closeup view of alignment er-
rors eft,l] computed from only the middle pair of traces
in the PP and PS images. Because differences between
traces in the PP and PS images are not limited to time
shifts, a unique path of minimum error is not apparent
in this 2D array, and the shifts computed for A = 1 and
h = 50 differ significantly, as shown in Figure 5d.

Recall that we can compute a 2D array of alignment
errors e[i, l] from each pair of corresponding traces in the
PP and PS images. By averaging alignment errors com-
puted for the five pairs of traces nearest the middle of
these images, we obtain the results shown in Figures 5b
and 5e. Again, the shifts computed for h = 1 and h = 50
differ significantly, but in this case the shifts for h = 50
are more accurate.

We know this because of the results shown in Fig-
ures 5¢ and 5f, which were obtained by averaging align-
ment errors for all 721 pairs of traces in the PP and
PS images. In Figure 5¢, the path of minimum error
is obvious, and shifts computed using both A = 1 and
h = 50 are well-aligned with this path, which we may
assume corresponds to a lateral average of the correct
relationship between PP and PS reflection times.

Although the path of minimum error is clearly ap-
parent in Figure 5c, other nearly parallel paths with
small error are apparent as well. These other paths are
caused by cycle skipping, subtracting one cycle of a re-
flection waveform in the PS image from a different cycle
of the corresponding waveform in the PP image. Recall
that one of the advantages of the dynamic warping al-
gorithm is that it will always find the globally optimal
and constrained path that minimizes the sum of align-
ment errors, and will never be trapped in nearby local
minima caused by cycle skipping.

While more accurate, shifts u[i] for A = 1 shown
in Figure 5f are still not as smooth as those for h =
50. In fact, the alignment errors and shifts shown in
Figure 3a are closeup views of those shown in Figure 5f.
Again, the roughness of shifts for h = 1 is due to coarse
sampling of only three values (0,1 or 2) of time strain
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Figure 5. Closeup views of alignment errors e[i,!] obtained from a single pair of PP and PS traces (a) and by averaging
alignment errors computed for 5 (b) and all 721 (c) pairs of traces, displayed with (a, b and c¢) and without (d, e and f) shifts
u[i] computed for h = 1 and h = 50. In this example, the correct shifts (lags) are most apparent in (c), because lateral variation
in shifts is small. With subsampling (h = 50) the correct shifts can be found by averaging alignment errors computed for only

5 pairs of traces (b and e).

u[i] —u[¢ — 1]. The smoothness of shifts for h = 50 is due
to a much finer sampling of 101 values of time strain.
Such fine sampling may be useful in this application to
PP-PS image registration, because a value of time strain
corresponds directly to a value for

Vi . .
VZ. =1+ 2(uli] — ufi — 1]). (5)

For sample indices 7 in the closeup view shown in Fig-
ure 3a, we observe that Vp/Vs =~ 2, but this value cor-

responds to none of the three time strains sampled for
h=1.

The results shown in Figure 5 demonstrate an im-
provement in accuracy that comes from computing sub-
sampled shifts as in Algorithm 2. This improvement is
due to the fact that, in this application, the correct shifts
are smooth, because they are directly related to the in-
tegral of a subsurface property, Vp/Vs. This inherent
smoothness implies that shifts u[f] can be subsampled
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without aliasing, and then later reconstructed with in-
terpolation.

The results of Figure 5 also demonstrate the dif-
ficulty in estimating time shifts from time series that
have differences unrelated to time shifts, such as noise
and reflection waveform differences. Using just one pair
of PP and PS traces (Figures 5a and 5d) it may be im-
possible to obtain an accurate estimate of the correct
shifts u[é]. In this example, lateral averaging of align-
ment errors computed from many pairs of PP and PS
traces helps to improve accuracy, but only because lat-
eral variations in time shifts are small. However, while
small, lateral variations can be significant, as shown be-
low. By accounting for these variations we can further
improve the accuracy of smooth dynamic warping.

4 SMOOTH IMAGE WARPING

‘We do this using the method for dynamic image warping
proposed by Hale (2013). In that method, we first recog-
nize that lines 4-14 of Algorithm 1 perform a recursive
non-linear smoothing of alignment errors e[z,1]. We then
repeatedly apply this smoothing filter — top-to-bottom,
bottom-to-top, left-to-right, right-to-left, and so on, for
all image dimensions — to alignment errors computed
for all pairs of traces in two images. The result is a
multi-dimensional array of alignment errors that have
been smoothed both vertically and horizontally. Finally,
we apply Algorithm 1 once more to the smoothed align-
ment errors to obtain shifts that vary both vertically
and horizontally.

To extend this method to Algorithm 2, we recognize
that lines 4-17 of this algorithm perform both a smooth-
ing and subsampling of alignment errors. Accumulation
of alignment errors e along linear paths like those shown
in Figure 3c is equivalent to a smoothing filter, a form
of anti-alias filter that enables accumulated alignment
errors d to be subsampled. Let €5 denote a 2D array of
these forward-accumulated and subsampled errors, the
values d stored in line 17 of Algorithm 2. We can ap-
ply the same filter in the opposite direction to obtain
a different 2D array é, of reverse-accumulated and sub-
sampled errors. Finally, we can construct symmetrically
smoothed and subsampled alignment errors

&l 1] = (s, 1] + &-[4,1] — eli[s], 1. (6)

Each €[j,1] is a sum along piecewise linear paths (Fig-
ure 3c) of alignment errors e[z,]. In equation 6, &[],
is the forward sum for sample indices 0 to i[j]], é-[4,(]
is the reverse sum for sample indices i[j] to n; — 1, and
subtraction of e[i[j],!] prevents this value from being
included twice in the sum €[4, .

By repeating this smoothing and subsampling pro-
cess for each array of alignment errors e[, ] (i.e., for all
pairs of traces in two images), we obtain a collection
of arrays of smoothed and subsampled alignment errors
€[4,1]. In typical applications, the number of samples n;

after smoothing and subsampling will be much smaller
(say, by a factor of A = 50) than the number of sam-
ples n; input to this process. This means that we will
typically be able to keep the entire collection of &[4,!] in
fast computer memory, as we apply the same smoothing
and subsampling process along other (horizontal) image
dimensions.

Finally, as in Hale (2013), we apply a simple dy-
namic warping (with no further subsampling) to the
smoothed and subsampled alignment errors € to obtain
shifts u that are subsampled in all image dimensions. We
then interpolate these coarsely sampled shifts to obtain
smoothly varying shifts for every image sample.

We applied this method (using bilinear interpola-
tion) for smooth dynamic image warping to the PP and
PS images shown in Figure 2 to obtain the time shifts
shown in Figure 1. We used these time- and laterally-
varying time shifts to warp the PS image.

To illustrate the significance of the lateral variation,
in Figure 6 we compare PS images after both 1D and
2D warping. We performed 1D warping using time shifts
computed from the average of alignment errors of all 721
pairs of traces in the PP and PS images. These shifts
were computed for h = 50 and are identical to those
displayed in Figure 5f.

Figure 6a shows a subset of the PS image after 1D
warping, and Figure 6b shows the sample-by-sample dif-
ferences between this warped PS image and the PP im-
age subset shown in Figure 2b. The images shown in
Figures 6¢c and 6d show comparable results obtained for
2D warping.

While differences between the warped PS images
in Figures 6a and 6c may be difficult to see, reflections
in the latter appear at slightly earlier times near the
middle of the image, consistent with the upward bend in
the contours of constant time shift apparent in Figure 1.

This slight lateral variation in time shifts explains
the differences apparent in Figures 6b and 6d. After
2D warping, significant differences remain between the
warped PS image and the PP image, but the differences
are weaker and are less spatially correlated than for 1D
warping. These differences suggest that the time shifts
computed with smooth dynamic 2D warping are more
accurate than those for 1D warping.

5 CONCLUSION

With a simple modification to the dynamic time warp-
ing algorithm, we enable a trade-off between accuracy
and resolution in estimates of time strains. Our im-
proved dynamic warping algorithm computes smoothly
varying shifts by smoothly interpolating shifts that have
been coarsely subsampled. While decreasing our ability
to resolve rapid variations in time strains, this coarse
subsampling increases the accuracy with which smooth
time shifts can be estimated.

In registration of PP and PS images (and in other
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Figure 6. Subsets of the PS image after 1D (a) and 2D (c) warping. For 1D warping (a), shifts were subsampled vertically by a
factor of h = 50. For 2D warping (c), shifts were subsampled by the same factor both vertically and horizontally. Corresponding
sample-by-sample differences (b and d) indicate that 2D warping more accurately aligns the PS image with the PP image.

applications not discussed in this paper), smooth dy-
namic warping has enabled us to significantly improve
the accuracy of time shift estimates, especially where
differences between sequences or images to be aligned
cannot be attributed entirely to time shifts. In a sep-
arate report, we use smooth dynamic warping to es-
timate Vp/Vs ratios that correspond directly to time

strains computed using smooth dynamic warping of 3D
images.

The only disadvantage we have found in smooth dy-
namic warping is an increase in computation cost that
is proportional to h, the nominal subsampling inter-
val. The computational complexity of simple dynamic
warping via Algorithm 1 is O(n; x n;). The computa-
tional complexity of smooth dynamic warping via Algo-
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rithm 2 is O(n; x n; x h). In practice we have found
this increase in cost to be worthwhile, especially for
multidi