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Introduction

ABSTRACT

Geometrical-spreading correction is an important component of amplitude-
variation-with-offset (AVO) analysis, which provides high-resolution informa-
tion for anisotropic parameter estimation and fracture characterization. Here,
we extend the algorithm of moveout-based anisotropic spreading correction
(MASC) to mode-converted PSV-waves in VTI (transversely isotropic with a
vertical symmetry axis) media and symmetry planes of orthorhombic media.
While the geometrical-spreading equation in terms of reflection traveltime has
the same form for all wave modes in laterally homogeneous media, reflection
moveout of PS-waves is more complicated than that of P-waves (e.g., it can be-
come asymmetric in common-midpoint geometry). Still, for models with a hor-
izontal symmetry plane, long-spread reflection traveltimes of PS-waves can be
well-approximated by the Tsvankin-Thomsen and Alkhalifah-Tsvankin move-
out equations, which are widely used for P-waves. Although the accuracy of
the Alkhalifah-Tsvankin equation is somewhat lower, it includes less moveout
parameters and helps to maintain the uniformity of the MASC algorithm for P-
and PS-waves. The parameters of both moveout equations are obtained by least-
squares traveltime fitting or semblance analysis and are different from those for
P-waves.

Testing on full-wavefield synthetic data generated by the reflectivity method for
layered VTT media confirms that MASC accurately reconstructs the plane-wave
conversion coefficient from conventional-spread PS data. Errors in the estimated
conversion coefficient, which become noticeable at moderate and large offsets,
are mostly caused by offset-dependent transmission loss of PS-waves.

Key words: Mode conversions, AVO analysis, geometrical spreading, VTI
media, azimuthal anisotropy, nonhyperbolic moveout

analysis can be overcome by combining the P-wave AVO
gradient with the NMO ellipse (Bakulin et al., 20002},

AVO analysis of P-wave data can provide essential infor-
mation for anisotropic parameter estimation and frac-
ture characterization and (e.g., Riiger, 2001; Neves et
al., 2003). However, inversion of the wide-azimuth P-
wave AVO response for the pertinent anisotropy pa-
rameters is generally ambiguous even for the simple HTI
(transversely isotropic with a horizontal symmetry axis)
model formed by a system of vertical, penny-shaped
cracks in isotropic host rock (Riiger and Tsvankin, 1997;
Riiger, 2001). In principle, the nonuniqueness of AVO

but this approach has serious limitations. First, the
NMO ellipse can be reconstructed only for relatively
thick reservoirs; second, the difference in vertical reso-
lution between amplitude and traveltime methods can
lead to distorted estimates for heterogeneous reservoir
formations (Xu and Tsvankin, 2007).

For surveys with multicomponent acquisition, the
AVO response of P-waves can be supplemented with
that of mode-converted PS-waves. The main advantage
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of combining PP and PS amplitude signatures is that
they are determined by rock properties on the same
scale near the top or bottom of the reservoir. Bakulin et
al. (2000a) showed that the azimuthally varying AVO
gradients of PP- and PS-waves reflected from an HTI
medium constrain both the normal and tangential com-
pliances of the fractures. The compliances can then be
related to such physical properties as fracture density
and fluid infill. Although this technique was introduced
for boundaries between isotropic and HTI media, it re-
mains valid for the lower-symmetry orthorhombic model
that describes a vertical fracture system in a VTI back-
ground matrix (Bakulin et al., 2000b). A more general
methodology for joint inversion of the long-offset, wide-
azimuth AVO responses of PP-waves and split PS-waves
in azimuthally anisotropic media was developed by Jilek
(2002).

Since shear-wave (and, therefore, converted-wave)
amplitudes are highly sensitive to the presence of
anisotropy along the raypath, robust estimation of PS-
wave reflection (conversion) coefficients is impossible
without an accurate geometrical-spreading correction.
As discussed by Tsvankin (1995, 2005) and Xu et al.
(2005), the geometrical spreading of SV-waves in TI
media is controlled primarily by the parameter o =
(VB0 /VE) (€ — 8), which is typically much larger than
the Thomsen parameters € and § responsible for P-wave
amplitudes (Vpo and Vso are the symmetry-direction P-
and S-wave velocities, respectively).

To correct AVO signatures for amplitude distor-
tions in the overburden, it is convenient to represent
geometrical spreading through reflection traveltimes.
Following paraxial ray theory (Cerveny, 2001), Xu et
al. (2005) obtained geometrical spreading of pure reflec-
tion modes (PP or SS) in layered, arbitrarily anisotropic
media as a function of traveltime derivatives. Although
this equation is strictly valid only for laterally homo-
geneous models, it remains sufficiently accurate in the
presence of moderate dips and mild lateral velocity vari-
ation.

By combining this geometrical-spreading formula-
tion with a 3D extension of the Alkhalifah-Tsvankin
(1995) nonhyperbolic moveout equation, Xu and
Tsvankin (2006a) developed a practical and robust al-
gorithm for moveout-based anisotropic spreading cor-
rection (“MASC”). The accuracy of MASC for wide-
azimuth, long-spread P-wave data from layered or-
thorhombic media was confirmed by dynamic ray trac-
ing and full-wavefield synthetic modeling (Xu and
Tsvankin, 2006b). The synthetic tests also demonstrate
that if the azimuthal variation of geometrical spreading
is not negligible, MASC cannot be replaced by empirical
gain corrections even in qualitative AVO analysis.

Here, the methodology of MASC is extended to PS-
waves converted at the reflector (so-called “C-waves”)
in laterally homogeneous, anisotropic media. First, we
show that despite the asymmetry of the raypath of

mode conversions, their geometrical spreading is ex-
pressed through reflection traveltime in the same way as
that for P-waves. Second, by employing the Tsvankin-
Thomsen (1994) and Alkhalifah-Tsvankin (1995) move-
out equations, the MASC algorithm is adapted for PSV-
waves acquired in vertical symmetry planes of layered
TI and orthorhombic media. Finally, we conduct a full-
wavefield synthetic study to evaluate the accuracy of
MASC in estimating the conversion coefficient and com-
pare its performance with that of empirical gain correc-
tions used in practice.

1 MOVEOUT-BASED
GEOMETRICAL-SPREADING
EQUATION FOR PS-WAVES

One of the most significant differences between P- and
PS-waves is the asymmetry of the raypath and move-
out of mode conversions. If the medium is laterally het-
erogeneous or anisotropic without a horizontal symme-
try plane, the traveltime of PS-waves does not stay the
same when the source and receiver are interchanged
(Thomsen, 1999; Tsvankin and Grechka, 2000; Dewan-
gan, 2004). Because of this moveout asymmetry, PS-
wave reflection traveltime on common-midpoint (CMP)
gathers may not be an even function of offset and can-
not be described by conventional moveout equations for
P-waves. Therefore, the two key components of MASC
(i.e., the geometrical-spreading and moveout equations)
have to be revisited for converted waves.

The general traveltime-based expression for geo-
metrical spreading of pure modes is derived in Ap-
pendix A of Xu et al. (2005). Although the derivation
assumes reflection moveout to be symmetric (i.e., inde-
pendent of the sign of offset), the final result turns out
to be valid for converted waves. The ray-theory repre-
sentation of geometrical spreading at the earth’s surface
(Cerveny, 2001) includes traveltime derivatives with re-
spect to four variables — the horizontal coordinates of
the source and receiver. If the medium is laterally ho-
mogeneous, the number of independent variables can be
reduced to two (offset z and azimuth «), even for arbi-
trary anisotropic symmetries. For pure reflection modes,
the azimuth varies only from 0° to 180° because their
traveltime remains the same when the source and re-
ceiver are interchanged.

The only modification required to account for the
asymmetric moveout of converted waves is extension of
the range of azimuths to 360°. Then the definition of
azimuth (equation A-3 of Xu et al., 2005) takes the form

tan™! [—2—1;;::;] z] -z} >0,
o= (1)
tan~! [;é:—;é] +7n zi—=z{ <0,
1 1
where x{, and z], are the horizontal source and re-
ceiver coordinates, respectively. Compared to the orig-



inal definition for pure modes, equation 1 contains an
additional constant (7) for z] — z{ < 0, which does not
change traveltime derivatives.

Hence, the moveout-based geometrical-spreading
equation given by Xu et al. (2005) is entirely valid for
converted waves:

L(z, ) = (cos ¢° cos ¢”)'/?
QT OT 1 9°T °T 1 (8T)2 1]_”2
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where T is the traveltime, and ¢° and ¢" are the angles
between the ray and the vertical at the source and re-
ceiver locations, respectively. Equation 2 can be used for
any reflected wave (pure or converted) in laterally ho-
mogeneous, arbitrarily anisotropic media. Application
of this equation to events with asymmetric moveout,
however, requires certain care because the traveltime
derivatives are different for “reciprocal” source-receiver
pairs with azimuths o £ .

Note that the only source of moveout asymmetry
for converted waves in laterally homogeneous media is
the presence of anisotropic layers that do not have a
horizontal symmetry plane. Next, we verify that our for-
malism accurately describes the geometrical spreading
of PS-waves in the simplest model of this type, which
includes a single homogeneous TI layer with a tilted
symmetry axis (TTI; see Figure 1). The TTI parame-
ters used in our test are taken from the physical model
of Dewangan et al. (2006).

Figure 1 shows the traveltime surface of the fast
PS-wave computed by anisotropic ray tracing. In the
symmetry-axis plane (i.e., in the vertical plane that con-
tains the symmetry axis), the fast S-wave represents an
SV mode because it has in-plane polarization. Since the
horizontal plane in this model is not a plane of symme-
try, the traveltime surface in CMP geometry is asym-
metric with respect to the global minimum. Also, the
minimum traveltime is shifted from the common mid-
point to an offset that exceeds 0.5 km.

Since it is difficult to approximate this traveltime
surface with a Taylor series, we employed a cubic-spline
function. Substituting the traveltime derivatives ob-
tained from this spline function into equation 2, we com-
puted the spreading for the PSV-wave in the symmetry-
axis plane. Comparison with dynamic ray tracing in
Figure 2 confirms the accuracy of equation 2 for con-
verted waves with asymmetric moveout. Except for the
dicrepancies at large £ — £3 km and zero offset, which
are caused by numerical difficulties in estimating the
second-order time derivatives, the spreading computed
by our method is close to that obtained by ray tracing.

Although this test proves that MASC can handle
arbitary moveout functions, the rest of the paper is fo-
cused on models with a horizontal symmetry plane, in
which PS-wave moveout is symmetric.
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Figure 1. Traveltime surface of the fast PS-wave computed
for a horizontal TTI layer in CMP geometry. The model pa-
rameters are Vpg = 2.6 km/s, Vgo = 1.38 km/s, € = 0.46,
8 = 0.11, and <y = 0. The tilt of the symmetry axis from the
vertical is v = 70°, the layer’s thickness is 1 km. Note the
asymmetry of the surface with respect to the global travel-
time minimum, which does not correspond to zero offset.
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Figure 2. Comparison of the geometrical spreading for the
PS-wave computed from equation 2 (dashed line) and ray
tracing (solid) in the symmetry-axis plane of the model in
Figure 1. The “jitters” in the output of MASC correspond
to local errors in approximating the traveltime surface.

2 MASC ALGORITHM FOR PS-WAVES

Outside of the symmetry planes of azimuthally
anisotropic media, a P-wave incident upon a horizon-
tal reflector excites two split PS-waves which have to be
separated using polarization analysis. To avoid this com-
plication and facilitate AVO analysis, we assume that
the acquisition line is confined to a vertical symmetry
plane of the model. Then a P-wave source generates
only a P-to-SV conversion polarized in the incidence
plane. The goal of this section is to extend the MASC
methodology of Xu and Tsvankin (2006a) to PSV-waves
recorded in vertical symmetry planes of horizontally lay-
ered VTI, HTI, and orthorhombic media.

As is the case for P-waves, the key issue in im-
plementing equation 2 for mode conversions is to find a
smooth, relatively simple traveltime approximation that
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can be used for a wide range of offsets and azimuths.
Long-spread reflection moveout of P-waves in layered
VTI media is well-described by the Tsvankin-Thomsen
(1994) nonhyperbolic equation:

Asz?

2 2 2
T ($)=To + Azzx +m,

(3)
where Ty is the zero-offset time, As = V2 controls
hyperbolic moveout (Vaimo is the normal-moveout ve-
locity), and A4 is the quartic coefficient responsible for
nonhyperbolic moveout at large offsets. The parameter
A depends on the horizontal velocity and is introduced
to make T(x) convergent at z — oo. With an appro-
priate substitution of the moveout parameters, equa-
tion 3 gives sufficient accuracy for PS-wave traveltimes
in horizontally-layered VTI media (Tsvankin, 2005).

By taking into account the azimuthal variation of
the moveout parameters Az, A4, and A, Al-Dajani et al.
(1998) extended equation 3 to P-waves in orthorhombic
media:

2 _ g2 2 Aq(a)z?
T ($,a) - TO +A2(CY)$ + 1+A(a)$2 ) (4)
Az(a) = Agl) sin®a + Agz) cos’ o, (5)
As(@) = APsin*a + AP cos’a
+ AP sina cos’a. (6)

The dependence of Az on the azimuth « is described
by the NMO ellipse (Grechka and Tsvankin, 1998), and
equation 6 for A4 is derived by Al-Dajani et al. (1998)
for a horizontal orthorhombic layer. Note that HTI can
be treated as a special case of the more general or-
thorhombic model. It is assumed in equations 4-6 that
a = 0 corresponds to the symmetry plane [z1,23], so
Agl’z) and Agl’z) are the symmetry-plane moveout coef-
ficients, while A‘(f) contributes to nonhyperbolic move-
out in off-symmetry directions. Because of the difficul-
ties in treating split PS-waves outside of the symmetry
planes, equation 4 has not been applied to mode con-
versions.

Alkhalifah and Tsvankin (1995) proposed a sim-
pler nonhyperbolic moveout equation for P-waves in
VTI media that depends on only two parameters, the
NMO velocity Vamo and anellipticity coefficient =
(e —46)/(1 +26):

z? 29 *
Vll2m0 Vnzmo [TO2 VH2IHO + (1 + 21’)

Equation 7 is widely used in seismic processing to
correct long-spread data for nonhyperbolic moveout
and estimate the key anisotropy parameter 1. The 3D
version of the Alkhalifah-Tsvankin equation provides
a close approximation to wide-azimuth P-wave travel-
times in orthorhombic or HTI media (Vasconcelos and
Tsvankin, 2006):
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Figure 3. Geometrical spreading of PSV-waves reflected
from the bottom of the VTI layer in model 1 (Table 1).
Our method was applied with the Tsvankin-Thomsen equa-
tion 3 (diamonds) and with the Alkhalifah-Tsvankin equa-
tion 7 (dashed line); the solid line is computed by dynamic
ray-tracing code ANRAY (Gajewski and Psenéik, 1987).
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Equation 9, which is equivalent to equation 5 discussed
above, describes the NMO ellipse with the semi-axes
Vn(.},,)o and Vn(.r‘:,)o; 77(1'2’3) are the anellipticity parameters
in the three mutually orthogonal symmetry planes of
the model. Xu and Tsvankin (2006a, 2006b) used equa-
tions 8-10 to compute the geometrical spreading of P-
waves in horizontally layered, azimuthally anisotropic
media.

Although equations 7 and 8 were originally de-
signed for P-waves, it is worthwhile to test them for
PS-waves. While we cannot expect the analytic form
of the parameters Vimo and 7 to be the same for P-
and PS-waves, the geometrical-spreading correction op-
erates with the best-fit moveout parameters obtained
from semblance analysis. Therefore, we need to verify if
the fit provided by equations 7 and 8 to converted-wave
moveout is sufficient for accurate geometrical-spreading
computation using MASC (equation 2).

First, we apply equations 3 and 7 to approximate
the moveout of a PSV reflection from the bottom of a
VTI layer sandwiched between two isotropic halfspaces
(Figure 3 and Table 1). The best-fit moveout parame-



Layer 1 Layer 2 Layer 3
Symmetry type 1SO VTI ISO
Thickness (km) 0.5 1.0 ]
Density (g/cm3) 2.0 2.1 2.2
Vpo (km/s) 1.7 2.2 2.2
Vso (km/s) 0.8 1.1 1.0
€ 0 0.23 0
) 1] 0.10 0
¥ 0 0.10 0
n 0 0.10 0
4 0 0.64 0

Table 1. Parameters of a medium that inlcudes a VTI layer
sandwiched between two isotropic layers (model! 1). The ve-
locities and anisotropy parameters of the VTI layer are taken
from the measurements for Dog Creek shale listed in Thom-
sen (1986).

Layer 1 Layer 2 Layer 3
Symmetry type VTI ORTH ISO
Thickness (km) 0.5 1.0 0
Density (g/cm3) 2.1 2.1 2.2
Vpo (km/s) 2.2 2.2 2.2
Vso (km/s) 1.1 1.1 1.0
e 0.23 0.317 0
s 0.10 -0.054 0
eIy 0.10 0.513 0
e 0.23 0.121 0
52) 0.10 0.046 0
)] 0.10 0.138 0
53 0 0.1 0
Sy 0.1 0.42 0
72 0.1 0.07 0
73 ] 0.05 0
oV 0.64 1.48 0
o2 0.64 0.31 0

Table 2. Parameters of a medium composed of VTI, or-
thorhombic, and isotropic layers (model 2). Orthorhombic
symmetry can be described by the two vertical velocities
(Vpo for P-waves and Vgq for one of the split S-waves) and
seven anisotropy parameters ((1), (2, (1) §(2) §(3) (1)
and 'y("’)); the parameter values are based on the measure-
ments of Wang (2002). The anellipticity parameters n{1),
7(2), (2 control P-wave nonhyperbolic moveout, while o(!)
and o(?) are largely responsible for the moveout of SV-waves
in the vertical symmetry planes. For a detailed explanation
of the notation, see Tsvankin (2005).

ters are then substituted into the geometrical-spreading
equation 2. In agreement with the results of Tsvankin
(2005), equation 3 provides an excellent approxima-
tion for PSV-wave moveout and yields a geometrical-
spreading factor that is almost identical to that com-
puted by dynamic ray tracing (Figure 3). Although the
performance of the Alkhalifah-Tsvankin equation 7 is
somewhat inferior, it has the advantage of being con-
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Figure 4. Geometrical spreading of PSV-waves reflected
from the bottom of the orthorhombic layer in model 2 (Ta-
ble 2). The azimuths a = 0° and a = 90° correspond to
the symmetry planes [z1,z3] and [x2,z3], respectively. Our
method was applied with the 3D Tsvankin-Thomsen equa-
tion 4 (stars) and with the 3D Alkhalifah-Tsvankin equa-
tion 8 (dashed lines); the solid lines are computed by dynamic
ray tracing.

sistent with the P-wave formalism while still provid-
ing adequate accuracy. It should be mentioned that the
best-fit parameter n for PSV-waves is different from its
analytic definition [ = (e — 6)/(1 + 26) in a single VTI
layer] for P-waves.

Next, the moveout approximations and the
methodology of MASC are tested for the two vertical
symmetry planes of orthorhombic media {Figure 4 and
Table 2). Note that P-waves are coupled to two differ-
ent split S-waves in the symmetry planes [z1,z3] and
(2, z3] (Tsvankin, 2005). Indeed, if the fast shear wave
Si is polarized in the z;-direction at vertical incidence,
it represents the SV mode that will produce P-to-SV
conversion in the [a:l,:z:a]-plane. Then the slow shear
wave Sz will be responsible for the converted PSV-wave
in the [z2, z3]-plane.

Since the symmetry planes of orthorhombic models
are kinematically equivalent to VTI media, the travel-
time fit provided by the moveout approximations in the
incidence plane is the same as in VTI media. Geomet-
rical spreading in azimuthally anisotropic media (equa-
tion 2), however, also depends on azimuthal traveltime
variations away from the incidence plane (Tsvankin,
2005; Xu et al., 2005). Therefore, the accuracy of our
method depends on the performance of the 3D versions
of the moveout equations in the vicinity of the symme-
try planes. As was the case for VTI media, the error
of our method with the 3D Tsvankin-Thomsen equa-
tion 4 is almost negligible, while the 3D Alkhalifah-
Tsvankin equation 8 produces some deviations from the
ray-tracing result, especially at far offsets (Figure 4).
Still, given relatively a large uncertainty in amplitude
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measurements, the accuracy of equation 8 should be ac-
ceptable for purposes of AVO analysis.

3 APPLICATION TO AVO ANALYSIS OF
SYNTHETIC DATA

In addition to potential problems with moveout approxi-
mations, the accuracy of amplitude corrections for mode
conversions may be influenced by several other factors.
Here, we do not consider PS-wave amplitudes in the
anomalous areas near shear-wave cusps (triplications)
and singularities, where AVO analysis is not practical.
Still, the high sensitivity of S-waves to the presence of
anisotropy may lead to rapid amplitude variations along
PS wavefronts that are not adequately described by ray
theory and, therefore, by MASC (Tsvankin, 2005). Also,
even for models with a horizontal symmetry plane, the
asymmetry of the PS raypath (i.e., the difference be-
tween the P- and S-legs) can result in a significant an-
gular variation of transmission loss and related errors in
AVO analysis. Hence, it is essential to test the perfor-
mance of MASC for PS-waves on 3D full-wavefield syn-
thetic data, as was done by Xu and Tsvankin (2006b)
for P-waves.

The main question to be answered in this section
is how accurately MASC can reconstruct plane-wave
conversion coefficients in layered anisotropic media. An
important practical issue is whether or not MASC can
be replaced by empirical gain corrections in qualitative
AVO analysis. Finally, we evaluate the magnitude of
transmission loss (which is not included in MASC) and
the related distortions of the PS-wave AVO response.

Due to the difficulties in modeling exact PS-wave
amplitudes for layered orthorhombic media, we carried
out amplitude processing only for the VTI medium from
Table 1 (model 1). Synthetic seismograms were com-
puted with the reflectivity code (ANISYNPA), which
generates exact 3D wavefields for horizontally layered
anisotropic media (e.g., Fryer and Frazer, 1984). A shot
gather of the vertical displacement from a vertical force
for model 1 is shown in Figure 5. The processing se-
quence is similar to that for P-waves described by Xu
and Tsvankin (2006b). First, we apply the nonhyper-
bolic moveout equation 3 to the PS reflection from
the bottom of the VTI layer to estimate the parame-
ters Az, A4, and A, which serve as the input to the
geometrical-spreading correction. Second, the raw am-
plitudes are picked along the traveltime curve defined by
equation 3 with the best-fit parameters. Third, MASC
(equation 2) is applied to correct the picked ampli-
tudes for anisotropic geometrical spreading. Fourth, the
source and receiver directivity factors are removed using
the local horizontal slowness.

To calibrate the P-wave AVO response, we matched
the corrected amplitude at normal incidence with the
exact reflection coefficient (Xu and Tsvankin, 2006b).
This approach is not suitable for PS-waves because the
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Figure 5. Synthetic shot gather for model 1 (Table 1) com-
puted by the anisotropic reflectivity method. The top layer is
specified as a halfspace to eliminate the influence of the free
surface. The arrow marks the target PS-wave converted at
the bottom of the VTI layer. The ellipse highlights the area

of interference between the target event and the SS reflection
from the top of the VTIT layer.

0 0.1 0.2 0.3
Horizontal slowness (s/km)

Figure 6. Conversion coefficient at the bottom of the VTI
layer in model 1. The estimates obtained with MASC (dashed
line) and the ¢-gain correction (dotted) are compared with
the exact conversion coefficient (solid). The incidence angle of
the downgoing P-wave corresponding to the maximum hori-
zontal slowness (0.3 s/km) is 30°; for the upgoing SV-wave,
the corresponding angle is 15°.

conversion coefficient at normal incidence goes to zero.
Since the source factor should be the same for both P-
and PS-waves, we normalized the PS conversion coef-
ficient using the scaling factor estimated for the corre-
sponding P-wave reflection.

The high accuracy of MASC with the Tsvankin-
Thomsen moveout equation for the model in Figure 5
was confirmed by the test in the previous section (see
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Figure 7. Transmission loss for the target PS-wave from
Figure 5. The loss is computed by subtracting from unity the
product of the plane-wave transmission coefficients along the
raypath.

Figure 3). Still, the VTI layer has a significant value
of the parameter o, which is primarily responsible for
SV-wave velocity anisotropy and angle-dependent geo-
metrical spreading. Strong amplitude variations along
the wavefront of the PS-wave may cause errors in the
ray-theory equations employed in our method. Never-
theless, the conversion coefficient estimated by MASC
is close to the exact values for a relatively wide range of
horizontal slownesses (Figure 6).

In contrast, application of the conventional ¢-
gain correction results in unacceptable errors even for
small offsets. (The accuracy of the t2-gain correction,
not shown here, is lower.) Clearly, the influence of
anisotropy significantly distorts geometrical spreading
of PS-waves in typical TT models. Hence, AVO analysis
for converted waves cannot be implemented without a
robust anisotropic spreading correction.

The conversion coefficient reconstructed by MASC
deviates from the exact values with increasing offset.
This deviation is caused by the combined influence of
the transmission loss and interference of the target PS
event with the SS reflection from the top of the VTI
layer (see the ellipse in Figure 5). Amplitude distor-
tions caused by the interference with the SS-wave be-
come especially severe for horizontal slownesses exceed-
ing 0.3 s/km, which forced us to restrict the slowness
range used in Figure 6.

The transmission coeflicients for the upgoing and
downgoing segments of reflected PP rays compensate
for each other in such a way that their product (which
determines transmission loss) is almost invariant with
offset. For mode conversions, however, the upgoing and
downgoing ray segments correspond to different modes,
and this raypath asymmetry leads to an increase of the
transmission loss for our model with offset (Figure 7).
Since the geometrical-spreading correction does not ac-
count for transmission coefficients, this offset-dependent
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transmission loss distorts the reconstructed conversion
coefficient in Figure 6.

4 DISCUSSION AND CONCLUSIONS

Geometrical spreading of shear and mode-converted
waves typically is more strongly distorted by anisotropy
than that of P-waves. Here, we showed that
the moveout-based anisotropic spreading correction
(MASC), previously developed for P-wave data, can be
applied to PS-waves as well. For horizontally layered
models, the geometrical-spreading factor of P- and PS-
waves can be obtained from the same equation that in-
volves traveltime derivatives with respect to offset and
azimuth. This equation remains valid even for models
without a horizontal symmetry plane, such as tilted
transverse isotropy, in which reflection moveout of PS-
waves becomes asymmetric (i.e., traveltime does not
stay the same when the source and receiver are inter-
changed).

Because of the difficulty in dealing with split PS-
waves in azimuthally anisotropic media, our implemen-
tation of MASC for mode conversions is restricted to
VTI media and symmetry planes of orthorhombic and
HTI media. To compute the traveltime derivatives re-
quired by MASC, we employed the Tsvankin-Thomsen
nonhyperbolic moveout equation, which is used almost
exclusively for P-waves. Still, numerical testing proves
that this equation gives a close approximation for PSV-
wave moveout both in layered VTI media and in the
vicinity of the vertical symmetry planes of orthorhombic
media. The three best-fit parameters of the Tsvankin-
Thomsen equation serve as the input to the geometrical-
spreading computation. Comparison with dynamic ray
tracing shows that the accuracy of MASC for PS-waves
is almost as high as for P-waves.

Furthermore, for purposes of geometrical-spreading
correction PS-wave traveltimes can be adequately de-
scribed by the simpler Alkhalifah-Tsvankin moveout
equation. Whereas the analytic form of this equation
is valid only for P-waves, it can be applied to mode
conversions with fitted parameters Vimo and 7. The
Alkhalifah-Tsvankin equation has the important advan-
tage of making the MASC algorithm for PS-waves fully
consistent with that for P-waves at the expense of some-
what lower quality of the traveltime fit.

Application of MASC to full-wavefield synthetic
data from layered VTI media yields accurate estimates
of the conversion coefficients for conventional-length
spreads. The main complication in the reconstruction
of conversion coefficients from surface data is related
to offset-dependent transmission loss of PS-waves. The
product of the transmission coefficients along the asym-
metric raypath of mode conversions varies with inci-
dence angle and, therefore, with offset. This variation,
which is almost negligible for P-waves, is not accounted
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for in the geometrical-spreading correction and can pro-
duce significant distortions of the AVO response at mod-
erate and large offsets.

Our results demonstrate that even qualitative AVO
analysis of PS-waves in the presence of anisotropy in
the overburden requires application of the moveout-
based anisotropic spreading correction. A promising di-
rection for future studies is to extend MASC to split
PS-waves outside of the symmetry planes of azimuthally
anisotropic media. Such an extension is essential for de-
veloping robust azimuthal AVO algorithms operating
with wide-azimuth mode-converted data.
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1 INTRODUCTION

ABSTRACT

Conventional semblance-based moveout analysis models prestack reflection data
with events that have hyperbolic moveout and no amplitude variation with offset
(AVO). It has been shown that substantial amplitude variation and even phase
change with offset do not significantly compromise the semblance operator.
However, polarity reversal associated with a change in the sign of the reflection
coefficient may cause conventional semblance to fail. An existing modification
of the semblance operator that takes amplitude variations into account (so-
called “AK semblance”) is limited to narrow-azimuth data and cannot handle
nonhyperbolic moveout.

Here, we extend the AK semblance algorithm to long-spread (nonhyperbolic)
moveout and 3D multiazimuth data. To preserve velocity resolution in the pres-
ence of substantial AVO signature, we keep the ratio K of the AVO gradient and
intercept constant within each semblance window. In the presence of azimuthal
anisotropy, however, the parameter K has to be azimuthally dependent. In our
implementation, the modified semblance operator is combined with a nonhy-
perbolic moveout inversion algorithin devised for wide-azimuth data.

Synthetic tests confirm that the distortions in moveout analysis caused by po-
larity reversals are more common for long-spread data. Conventional semblance
produces substantial errors in both the NMO ellipse and azimuthally varying
parameter 7 not just for type 2 AVO response, but also for some models with
type 1 AVO. In contrast, the AK semblance algorithm gives accurate estimates
of the moveout parameters even when the position of the polarity reversal varies
with azimuth. The AK method not only helps to flatten wide-azimuth reflection
events prior to stacking and azimuthal AVO analysis, but also provides input
parameters for the anisotropic geometrical-spreading correction.

Key words: AVO, polarity reversal, semblance, wide-azimuth, anisotropy

The conventional semblance operator can be writ-
ten as

Semblance-based moveout analysis is routinely em-
ployed in seismic data processing to estimate stacking
(moveout) velocity Vamo as a function of the zero-offset
time to (e.g., Taner and Koehler, 1969). NMO veloc-
ity, which typically represents the most stable param-
eter constrained by surface seismic data, is then used
to build the initial velocity model and flatten reflection
events for subsequent processing.

> [Z Dv(tl,z)r

ty x
NY N Di(t,2)
t, =

where ) are the zero-offset times within a time win-
dow centered at to, = is the source-to-receiver offset,
N is the number of traces in a CMP (common mid-

S(V, to) = 1
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point) gather, and Dy represents the data picked along
hyperbolic moveout curves computed with the velocity
V= Vnmo-

Despite its general robustness, the operator in equa-
tion 1 has two serious limitations. First, it does not not
account for deviations from hyperbolic moveout, which
become significant for offset-to-depth ratios greater than
unity. To make equation 1 suitable for long-spread re-
flection events, the conventional hyperbolic moveout
equation is replaced by more complicated nonhyperbolic
functions, such as those developed by Tsvankin and
Thomsen (1994) and Alkhalifah and Tsvankin (1995).

Second, the semblance operator 1 is devised under
the assumption that reflection amplitudes are constant
and, therefore, includes no allowance for amplitude vari-
ation with offset (AVO). Still, conventional semblance
usually estimates moveout velocity with sufficient ac-
curacy even for events with relatively strong AVO, as
long as there is no polarity reversal within the recorded
offset range. In the presence of polarity reversals, how-
ever, the conventional operator often fails and gives a
strongly distorted NMO-velocity value (Sarkar et al.,
2001). Then the reflection event cannot be properly
flattened, which leads to a poor-quality, low-frequency
stack.

Figure 1 displays three common types of P-wave
AVO behavior for gas sands described in Rutherford and
Williams (1989). Classes 1 and 2 correspond to highly
or moderately compressed sands beneath shales, while
class 3 sands are overlaid by a more compressed over-
burden. Evidently, for class 1 and class 2 responses a po-
larity reversal occurs at incidence angles less than 30°.
Furthermore, the influence of anisotropy increases the
chance of observing polarity reversals on conventional-
spread reflection data. Indeed, most shale formations
are transversely isotropic (TI), and for typical positive
values of the Thomsen (1986) parameter § in shales the
AVO gradient increases by absolute value (Kim et al.,
1993; Tsvankin, 2005). As a result, the polarity reversal
for the interface between gas sands and VTI (TI with
a vertical symmetry axis) shales moves towards lower
angles from its “isotropic” position (Figure 1).

Sarkar et al. (2002} developed the so-called “AK
semblance” method to make velocity analysis suitable
for data with polarity reversals. Their approach is based
on introducing into the semblance operator a smooth
amplitude variation with offset governed by two param-
eters (A and K). The existing AK algorithm, however,
is designed for 2D data and is restricted to the hyper-
bolic portion of the moveout curve (i.e., to conventional-
length spreads).

Here, we present an extension of the AK semblance
method to nonhyperbolic (long-spread) moveout and
wide-azimuth data. Our generalized AK algorithm is
particularly important for processing of reflection data
from anisotropic media because anisotropy usually en-
hances nonhyperbolic moveout of P-waves (Tsvankin,

Table 1. Model parameters for the three types of AVO re-
sponses in Figure 1.

Vp(km/s) Vs(km/s) p (g/cm?)
Layer 1 3.00 1.32 2.4
type 1 4.40 2.80 2.0
Layer 2 type 2 3.75 2.40 2.0
type 3 2.95 1.89 2.0

2005) and moves the polarity reversal toward smaller
offsets (see above). Also, amplitude variations with off-
set and azimuth may substantially distort the results
of moveout analysis for wide-azimuth surveys acquired
above fractured formations. Vasconcelos and Tsvankin
(2006) presented an efficient technique for nonhyper-
bolic moveout inversion of wide-azimuth data from lay-
ered azimuthally anisotropic media, but their semblance
operator does not take amplitude variations into ac-
count.

We begin by reviewing the AK semblance algorithm
of Sarkar et al. (2002) and its implementation in move-
out analysis. Then we extend the AK semblance opera-
tor to long-offset data using the nonhyperbolic move-
out equation of Alkhalifah and Tsvankin (1995). To
apply the method to wide-azimuth data, we make the
AVO gradient azimuthally dependent and incorporate
it into the moveout-inversion algorithm of Vasconce-
los and Tsvankin (2006). Synthetic tests for VTI and
azimuthally anisotropic (orthorhombic) models demon-
strate the superior performance of the generalized AK
semblance for both class 1 and 2 AVO responses.

2 METHODOLOGY

As discussed above, the conventional semblance opera-
tor in equation 1 does not account for amplitude varia-
tions within the CMP gather. A more general semblance
formulation for 2D data was introduced by Sarkar et al.
(2002):

" M - Dy "2 (2)
Il Dv [

where tg, as before, is the zero-offset time at the center of
the semblance window, Dy = Dy (t1, ) is the data with
the zero-offset time ¢, after a hyperbolic moveout cor-
rection with the velocity V = Vamo, and M = M (¢1,x)
is the modeled variation of the trace amplitudes. The
amplitude parameters that govern M(t;,z) and the ve-
locity Vamo are estimated by matching the model M and
data D, which can be achieved by maximizing the sem-
blance (i.e., by minimizing || M — Dy ||?). The general-
ized semblance from equation 2 reduces to the conven-
tional semblance operator (equation 1) when the am-

Sa(V, to) =1~
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Figure 1. Three types of P-wave AVO responses (reflection
coefficients) computed from exact equations (Riiger, 2001)
for gas sands overlaid by shale. The solid lines correspond
to the three isotropic models from Table 1 (Rutherford and
Williams, 1989). The dashed lines are computed for models
with the same vertical velocities and densities, but the shale
layer is VTI with the Thomsen parameters ¢ = § = 0.2. All
three models have negative AVO gradients, which become
larger by absolute value when the shale is anisotropic.

plitudes associated with model M are independent of
offset (Sarkar et al., 2002).

The offset-dependent function M in the AVO-
sensitive semblance algorithm can be approximately de-
scribed by Shuey’s (1985) linearized equation for the
reflection coefficient:

M(ti,z) = A(t1)+ B(t1)sin?0,
2

T
T2 + V2,12’ (3)

where A(t1) and B(t,) are the AVO intercept and gradi-
ent (respectively) for the reflection event with the zero-
offset time £,, and 8 is the phase angle of incidence at
the reflector, which is expressed through offset  under
the assumption that the medium is homogeneous and
isotropic.

The exact incidence angle ; cannot be computed
without knowledge of the velocity model. It should be
emphasized, however, that there is no need for an accu-

~ A(tl) + B(tl)
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rate estimate 6., because the only role of equation 3 is
to introduce a smooth amplitude variation with offset
into the semblance operator. Note that Shuey’s (1985)
equation cannot represent measured reflection ampli-
tudes anyway because it does not include the source
directivity and such propagation factors as the geomet-
rical spreading and transmission coefficients along the
raypath.

As pointed out by Sarkar et al. (2002), equation 3
(called “AB semblance”) allows too much freedom to fit
events with various combinations of incorrect param-
eters A, B, and Vamo, which results in poor velocity
resolution. To reduce this interplay, Sarkar et al. (2002)
suggested to keep the ratio A/B = K constant inside
the semblance window, which implies that the wavelet
shape does not change with offset:

M(tl,ﬂ?):A(tl) (1+1{ ;}T%;{g) . (4)
Modeling data using equation 4 with K = const is re-
ferred to by Sarkar et al. (2002) as “AK semblance.”

The semblance window follows the traveltime tra-
jectory computed from an analytic (hyperbolic in the
work by Sarkar et al., 2002) moveout equation and has
the width close to the length of the wavelet. For a win-
dow with N sampling points, the AK semblance oper-
ator has only N; + 1 parameters (as compared to 2N,
for AB semblance), which mitigates the tradeoffs and
increases velocity resolution.

For a given zero-offset time to and a trial velocity
Vamo, the parameters A and K can be found analytically
by setting the derivatives of S¢ with respect to A and K
to zero (see Appendix A). The obtained expressions are
then substituted back into equation 2 to compute the
generalized semblance. As in conventional semblance al-
gorithms, scanning over Vymo is used to maximize the
semblance and estimate the best-fit moveout (stacking)
velocity.

A key issue in the implementation of the gener-
alized semblance algorithm is the choice of the move-
out equation t(z). Reflection moveout on conventional-
length spreads (i.e., for offset-to-depth ratios not much
larger than unity) typically is close to hyperbolic:

1:2

. 5
Vn2mo ( )
Although equation 3 is widely used in seismic process-
ing, it breaks down at longer offsets, especially if the
medium is anisotropic. A more accurate, nonhyperbolic

moveout equation for P-wave data in VTI media was
suggested by Alkhalifah and Tsvankin (1995):

tHx) =12 +

z2 . ozt (6)
Viino  Vifino [t§ Vifino + (1 + 2n) 22]
where 7 = (e — 9)/(1 + 20) is the “anellipticity” pa-
rameter, which controls P-wave time processing for ver-
tical transverse isotropy. The z*-term in equation 6 is

Bz =15+
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proportional to 7 and describes nonhyperbolic move-
out for large offsets. Below we employ the Alkhalifah-
Tsvankin equation in the AK semblance operator to per-
form moveout analysis of long-spread 2D P-wave data.

The main goal of the paper, however, is to extend
the principle of AK semblance to wide-azimuth surveys,
which are often acquired for purposes of fracture de-
tection. Reservoirs with vertical fracture sets are com-
monly described by an effective anisotropic model with
orthorhombic symmetry (Schoenberg and Helbig, 1997;
Bakulin et al., 2000; Grechka and Kachanov, 2006). Az-
imuthally dependent P-wave reflection traveltimes in a
horizontal orthorhombic layer can be well-approximated
by a generalized version of equation 6, in which both the
NMO velocity and parameter 5 vary with the azimuth
a (Xu et al., 2005; Vasconcelos and Tsvankin, 2006):

Z2

Vifmo (@)
2n(a) z*
Vitno (@) [t§ Vifmo (@) + (1 + 2n(a)) 2%]°
(7)
where Vimo is obtained from the equation of the NMO
ellipse:

t2(z,0) = i+

Here, ¢ is the azimuth of the [z1, z3] symmetry plane,
and Vi, and Vi{2), are the NMO velocities in the sym-
metry planes [r2,z3] and [z1, z3], respectively. [The su-
perscript in V.,(.L)o and Vn(,f,)o refers to the axis orthogonal
to the corresponding plane; for a detailed discussion of
notation, see Tsvankin (1997, 2005).]

The azimuthal variation of the parameter 7 is ap-
proximately given by (Pech and Tsvankin, 2004)

n(@) = 1% cos’(a—p)+n"sin*(a - p)
- 7% cos’(a - p)sin’(a - ), 9)

where 11(1) ,7?, and 1](3) are the anellipticity parameters
defined (respectively) in the [z2, z3), [z1, 23], and [z1, z2)
symmetry planes.

The accuracy of equation 7 in both vertical sym-
metry planes is the same as that in the correspond-
ing equivalent VTI medium. Xu et al. (2005) and Vas-
concelos and Tsvankin (2006) show that equations 7-9
provide a close approximation for long-spread P-wave
traveltimes recorded in all azimuthal directions, even
for strongly anisotropic orthorhombic models. Further-
more, if Vih? and 7123) are treated as effective pa-
rameters, the same formalism can be applied to P-wave
moveout from layered orthorhombic media with uniform
orientation of the symmetry planes.

Vasconcelos and Tsvankin (2006) used equations 7—
9 to develop an efficient semblance-based moveout-
inversion algorithm designed to estimate the parameters

©, V.,‘.‘,;S) and 77“'2’3) from wide-azimuth P-wave data.
Their method, however, does not account for amplitude
variation with offset and azimuth and, similar to con-
ventional 2D semblance techniques, can break down in
the presence of polarity reversals. Below, we devise a
more stable, 3D AK semblance operator by incorporat-
ing an azimuthally dependent amplitude function into
the semblance computation.

When the medium above or below the reflector is
azimuthally anisotropic, the AVO gradient and reflec-
tion amplitude as a whole vary with azimuth. For a
boundary between two orthorhombic halfspaces with
the same orientation of the vertical symmetry planes,
the AVO gradient B(ca) can be approximated by (Riger,
2001)

B(a) = B cos*(a — ¢) + BV sin’(a — p), (10)

where BY) and B® are the AVO gradients in the
[z2, z3] and [z1, z3] planes, respectively. Then the ratio
K(a) of the AVO gradient and intercept also becomes
azimuthally dependent and can be written as

K(a) = K cos®(a — ¢) + KW sin’(a — ). (11)

Substitution of K(a) from equation 11 into equa-
tion 4 yields an azimuthally dependent amplitude func-
tion that can be used in the AK semblance computa-
tion. In our method, we combine this amplitude func-
tion with the moveout equations 7-9 discussed above
to devise an AK semblance operator that can handle
polarity reversals in wide-azimuth data collected into
CMP gathers (see Appendix A). Although equation 11
does not describe geometrical spreading and some other
factors that influence recorded amplitudes, it allows us
to account for amplitude variation with azimuth K ),
K@ In particular, it helps to mitigate distortions in
the semblance computation related to the azimuthal de-
pendence of the offset that corresponds to the polarity
reversal.

Similar to the algorithm of Vasconcelos and
Tsvankin (2006), we carry out estimation of K M g@,
and the moveout parameters ¢, VL2 and 7123 in
three steps. First, we invert for the NMO ellipse de-
scribed by ¢, V,,(.},,)o, and V,.(,":,)o using conventional-spread,
wide-azimuth data with offsets limited by the reflector
depth. If there is an indication of a polarity reversal
at the near offsets, we also estimate an azimuthally-
invariant value of K along with the NMO ellipse. This
step gives initial values of the symmetry-plane azimuths,
NMO velocities, and the parameter K. Second, nonhy-
perbolic AK semblance analysis is carried out in narrow
sectors around the identified symmetry planes to find
approximate values of n), ¥, KM K@ as well as
updated estimates of Vi, and Vn(.?,,)o. Third, we carry
out 3D nonhyperbolic moveout inversion using the 3D
AK semblance operator for all offsets and azimuths in
the gather. The search starts with the initial model
obtained during the previous steps and scans over p,
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Figure 2. Shot record of a P-wave reflection from an inter-
face between VTI (top) and isotropic (bottom) media. The
model parameters are listed in Table 2. The event has a type
2 AVO response with the polarity reversal at an offset-to-
depth ratio close to 0.5.

,.‘.1.'3), 1)(1’2’3), and K2 to find the best-fit parame-
ters via Powell minimization (Press et al., 1992).

3 TESTS ON SYNTHETIC DATA

Here, the AK semblance algorithm is applied to 2D and
3D long-offset P-wave data from VTI and orthorhombic
media. In addition to type 2 AVO responses, for which
the polarity reversal is observed at relatively small off-
sets, we compare the performance of conventional and
AK semblance for type 1 AVO. All synthetic data used
below are generated by anisotropic ray tracing code AN-
RAY developed by Gajewski and Psencik (1987).

3.1 2D semblance for VTI media

For layer-cake VTI media, each vertical plane is a plane
of symmetry, and the semblance analysis can be per-
formed in 2D, for an arbitrary azimuthal direction. We
consider a model that includes an isotropic halfspace
beneath a VTI layer with relatively small absolute val-
ues of the Thomsen parameters ¢ and §. The anellip-
ticity parameter 7, however, is substantial (0.2), which
leads to pronounced nonhyperbolic moveout at offsets
approaching two reflector depths (Figure 2). The event
has a type 2 AVO response (see the discussion above),
with relatively low amplitudes at near offsets and the
polarity reversal at an offset close to half the reflector
depth.

The first test was carried out using the hyperbolic
moveout equation in both the conventional and AK
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Figure 3. Semblance for the reflection event from Figure 2
computed using the hyperbolic moveout equation 5; the
model parameters are listed in Table 2. The dashed curve
is produced by the conventional semblance algorithm, and
the solid curve is AK semblance. The vertical dotted line
marks the actual NMO velocity.

semblance operators (Figure 3). Because of the com-
bined influence of the polarity reversal and nonhyper-
bolic moveout, the conventional operator produces low
semblance values for all trial velocities, with the correct
velocity close to the semblance minimum. Although our
algorithm performs much better and yields higher sem-
blance, the best-fit NMO velocity deviates from the ac-
tual value. This error, which is caused by the inaccuracy
of the hyperbolic moveout equation, can be reduced by
muting out long offsets.

In many applications, such as nonhyperbolic move-
out inversion and wide-angle AVO analysis, it is nec-
essary to preserve and flatten the far-offset portion of
the gather. To improve the traveltime fit at long off-
sets, next we employ the nonhyperbolic moveout equa-
tion 6 in the semblance computation (Figure 4). Al-
though equation 6 provides a close approximation to
the exact traveltimes (Alkhalifah and Tsvankin, 1995;
Tsvankin, 2005), the best-fit parameters Vamo and 7 es-
timated by the conventional semblance algorithm are
severely distorted (e.g., the inverted n = 0.72, while
the actual value is 0.2). Clearly, this error is caused by
the polarity reversal because the semblance that corre-
sponds to the correct moveout parameters is relatively
low. In contrast, AK semblance gives accurate estimates
of both Vimo and 7, as well as a high semblance value
(0.94).

3.2 3D semblance for type 2 AVO

Here, we apply the 3D AK semblance operator to wide-
azimuth P-wave reflections from an interface between
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Table 2. Parameters of a model that includes VTI (top) and isotropic (bottom) media. The P-wave reflection for this model
has a type 2 AVO response. Vpg and Vgp are the vertical P- and S-wave velocities, respectively.

Vro(km/s) Vso(km/s) p (g/em®) e 5 Vamo(km/s)
VTI 2.96 1.38 2.43 0.065 -0.096 2.66 0.2
ISO 3.49 2.29 2.14 0 0 3.49 0

1.9 21 23 25
Viguo (Kmis)

2.6 27 2.8 2.9 3 3.1
Vmo (km/s)

Figure 4. Semblance scans over Vumo and 7 computed for the event from Figure 2 using the nonhyperbolic moveout equation 6.
The scans are generated by the (a) conventional and (b) AK semblance operators. The black dots mark the true model
parameters. The best-fit values are Vimo = 1.98 km/s and n = 0.72 for conventional semblance (the maximum semblance is
0.72) and Vumo=2.68 km/s, 7=0.18 for AK semblance (the maximum semblance is 0.94).

orthorhombic (incidence) and isotropic or orthorhom-
bic (reflecting) media. Since the AVO gradient for this
model is azimuthally dependent, the offset of the polar-
ity reversal becomes a function of azimuth as well. If
the polarity reversal occurs at relatively small offsets,
the corresponding phase incidence angle - can be es-
timated by setting 1 4+ K(a)sin? 8, = 0. Using equa-
tion 11 with ¢ = 0 (i.e., @ = 0 in the [z1, z3]-plane), we
find .
-1
KM sin?a + K® cos?2a (12)

If the medium above the reflector is homogeneous
and the difference between the group and phase angles
can be neglected, equation 12 provides an estimate of
the offset xp, of the polarity reversal:

- 2
sin® Opy =

Tpe(a) —~

h 2 tan Oy

V-1 + KO sin?a + K® cos?a)’
(13)

where h is the depth of the reflector.

3.2.1 Model 1

The first test was performed for a boundary between
orthorhombic (top) and isotropic (bottom) halfspaces
(Figure 5). Both media have the same vertical veloci-
ties and densities as those in the VT1I/isotropic model
analyzed above (see Table 2 and Figures 2-4). Also, the
anisotropy parameters in the symmetry plane [a:l,:va]
of the orthorhombic medium are taken from the VTI
model in Table 2. Although the medium above the re-
flector is azimuthally anisotropic, the offset of the polar-
ity reversal is weakly dependent on azimuth (Figure 5).

The initial model for 3D analysis of the long-spread
gather was obtained by first estimating the NMO el-
lipse on conventional-spread data and then processing
long-offset data (for the maximum offset-to-depth ratio
Zmax/h = 2) in narrow sectors centered at the vertical
symmetry planes. The NMO ellipse reconstructed by
the conventional semblance operator for offset-to-depth
ratios limited by unity has the correct orientation but
highly distorted semi-axes equal to 3.20 km/s and 3.44
km/s (the actual values are 2.66 km/s and 2.87 km/s);
the semblance is only 0.45. Clearly, conventional pro-



Table 3. Parameters of a model that includes orthorhombic
(top) and isotropic (bottom) media. The P-wave reflection
from this interface has an azimuthally varying type 2 AVO
response.

Layer 1  Layer 2

Symmetry type ORTH 1SO
Density (g/cm3) 2.43 2.14
Vpo (km/s) 2.96 3.49
Vso (km/s) 1.38 2.29
e 0.065 0
s -0.029 0
Ry 0.18 0
€@ 0.065 0
52 -0.096 0
¥ 0.05 0
53) -0.08 0
v 2.87 3.49

"2 2.66 3.49
7 0.10 0
7(2) 0.20 0
7(3) 0.10 0

cessing cannot be used for either stacking of the wide-
azimuth data or inversion of NMO ellipses.

The final inversion results for two spreadlengths
(Tmax/h = 2 and zmax/h = 3) are displayed in Fig-
ure 6. Note that with both conventional and AK sem-
blance, the parameters for the [z1,z3] symmetry plane
estimated from the 3D inversion almost coincide with
those obtained for the VTI model in Figure 4. Because of
the influence of the polarity reversal, conventional sem-
blance produces highly distorted NMO velocities and 7
values for both spreadlengths and the full range of az-
imuths. For type 2 AVO with small values of zpr, muting
out long offsets does not help the conventional algorithm
to reconstruct the NMO ellipse. As was the case for the
VTI model, AK semblance correctly compensates for
the polarity reversal and gives accurate estimates of the
azimuthally varying parameters Vimo and 7.

3.2.2 Model 2

For the second test we chose another type 2 AVO model,
for which the offset zp, of the polarity reversal is larger
and varies more strongly with azimuth (Figure 7). The
normalized offset zpr/h changes from 0.65 in the [z, z3]
symmetry plane (a@ = 0°) to 0.85 in the [z, z3]-plane
(a =90°).

The NMO ellipse reconstructed by the conventional
method for offsets limited by the reflector depth has
the correct orientation and the semi-axes 2.43 km/s and
2.11 km/s (the actual values are 2.53 km/s and 2.16
km/s); the semblance is 0.6. The accuracy achieved by
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the conventional method is explained by the relatively
large (for type 2 AVO) offsets zpr(e) of the polarity
reversal and low reflection amplitudes for = > zp;.

Application of the AK algorithm, however, becomes
necessary for long-offset data because conventional sem-
blance yields highly erroneous 7 values (Figures 8b,d).
As discussed above, we obtain the initial model for
3D analysis by first estimating the NMO ellipse on
conventional-spread data with K = K® = K and
then processing long-offset data near the vertical sym-
metry planes, which gives K® = 585 and K@ =
—6.21. The results of 3D nonhyperbolic AK semblance
analysis for two long spreads are shown in Figure 8.
Since the polarity reversal now occurs in the smaller-
offset half of the spread, conventional semblance pro-
duces a significant error not only in 7, but also in the
NMO ellipse. The 7 values estimated by the conven-
tional algorithm for Zmax/h = 2 even become negative
for a wide range of azimuths (Figure 8b).

The AK semblance method, which properly ac-
counts for the azimuthally dependent polarity reversal,
gives far superior results. There is practically no error
in the reconstruction of the NMO ellipse, while the mild
distortion in 7 for Zmax/h = 2 is caused by the small
bias in the nonhyperbolic moveout equation (Tsvankin,
2005) and insufficient spreadlength. Since the parame-
ter 77 controls nonhyperbolic moveout, it is better con-
strained for larger spreadlengths. When the maximum
offset-to-depth ratio is increased from two to three (Fig-
ure 8d), the errors in the function n(a) become almost
negligible.

3.3 3D semblance for type 1 AVO

Compared to the type 2 AVO response analyzed above,
type 1 AVO is typically characterized by a higher
normal-incidence reflection coefficient, and the polar-
ity reversal is observed at larger offsets (Figure 1).
As long as the polarity reversal does not occur in the
recorded offset range, the data can be processed by the
conventional semblance algorithm. However, for long-
spread reflections with offset-to-depth ratios reaching
two, the offset z,; may be close to middle of the spread.
Anisotropy, in particular, tends to move the polarity
reversal toward smaller offsets (Figure 1).

Figure 9 displays a P-wave reflection from an in-
terface between orthorhombic and isotropic media (see
Table 5). The event has a typical type 1 AVO response,
with the polarity reversal recorded at offset-to-depth ra-
tios of about 1.2. Although the conventional algorithm
performs better than it did for type 2 AVO, the er-
rors in both the NMO ellipse and parameter 7 are no-
ticeable (Figure 10). A more accurate reconstruction
of the NMO ellipse using conventional semblance can
be achieved by reducing the maximum offset-to-depth
ratio to Tmax/h < 1.2 (i.e., by truncating the spread
before the polarity reversal). Despite the presence of
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Figure 5. Shot records of a P-wave reflection from an orthorhombic/isotropic interface with a type 2 AVO response (Table 3).
The seismograms are computed for the symmetry planes [z1,z3] (@ = 0°) and [z2,z3] (o = 90°).

Table 4. Orthorhombic/orthorhombic model for which the
P-wave reflection has an azimuthally varying type 2 AVO
response. The two media have the same orientation of the
vertical symmetry planes. Compared to the model from Ta-
ble 3, the polarity reversal occurs at larger offsets.

Layer 1  Layer 2

Symmetry type ORTH ORTH
Density (g/cm?) 2.4 2.5
Vpo (km/s) 2.35 2.50
Vso (km/s) 1.41 1.83
e 0.20 0.16
& 0.08 0.09
~(1) 0.18 0.05
2 0.13 0.09
§2) -0.08 -0.07
~(2 0.05 0.03
5G) -0.08 -0.09
v 2.53 2.72
2 2.16 2.32
) 0.10 0.09
7(? 0.25 0.19
73 0.07 0.14

the polarity reversal, the error in the NMO ellipse ob-
tained by the AK semblance is almost negligible for both
spreadlengths (Figures 10a,c).

As was the case for type 2 AVO (see Figure 8),
the AK semblance operator gives a higher accuracy in n
for the longer spread (Tmax/h = 3), especially in the

Table 5. Orthorhombic/isotropic model for which the P-
wave reflection has an azimuthally varying type 1 AVO re-
sponse.

Layer 1 Layer 2

Symmetry type ORTH ISO
Density (g/cm3) 2.4 2.6
Vpo (km/s) 3.30 3.84
Vso (km/s) 1.45 2.46
e 0.20 0
51 0.10 0
(1) 0.20 0
€2 0.13 0
5 -0.10 0
~2) 0.05 0
53 0.02 0
v, 3.61 3.84

2o 2.95 3.84
sy 0.08 0
7 0.29 0
73 0.07 0

|z1, z3)-plane where n(a) reaches its maximum (Fig-
ures 10b,d). Somewhat suprisingly, the n estimate pro-
duced by the conventional semblance deteriorates with
increasing spreadlength. This reduction in accuracy is
most likely explained by the increased distortion caused
by the polarity reversal on longer spreads, as the sem-
blance becomes more influenced by traces at large (post-
reversal) offsets = > zpr.



180

180}

NMO ellipse

90

PP
i e,

3 km/s

emmmg,
Y A e
a* a3

133

AVO-sensitive semblance analysis

Parameter 7

90

eremsreal, :
L pme® A LT
- hat

. .~
e L 0.4
P '+ 0.

.

~02 ™,

180

(d)

Figure 6. Moveout-inversion results for a wide-azimuth, long-offset P-wave reflection from an orthorhombic/isotropic interface
(Table 3). The event has a type 2 AVO response with the polarity reversal at offset-to-depth ratios close to 0.5. (a) and (c) are
the NMO ellipses; (b) and (d) are the azimuthally-dependent 7 values. The maximum offset-to-depth ratio is two for the top
row, and three for the bottom row. The solid lines are the actual NMO ellipses and 7-curves, the dashed lines are estimated by
the conventional semblance algorithm, and the dotted lines by AK semblance. Since the AK semblance algorithm reconstructs
the moveout parameters with high accuracy, the dotted lines are almost invisible. The azimuth with respect to the symmetry

plane [z1, 3] is shown on the perimeter.

4 DISCUSSION

Our results demonstrate that a smooth amplitude func-
tion based on Shuey’s equation for the AVO gradient
is sufficient for removing the influence of polarity re-
versals on semblance analysis. Still, it should be em-
phasized that AK semblance should not be regarded
as a substitute for 2D or 3D (azimuthal) AVO analy-

¥

sis. Whereas the small-offset AVO equation used in our
algorithm is sufficient to correct for the phase change
of the wavelet in the presence of polarity reversals, it
gives a rather crude approximation for reflection am-
plitudes on long spreads. Also, it does not properly ac-
count for propagation phenomena, such as geometrical
spreading and transmission coefficients along the ray-
path. Therefore, the role of the AK semblance method
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Figure 7. Shot records of a P-wave reflection from an orthorhombic/orthorhombic interface with a type 2 AVO response
(Table 4). The seismograms are computed for the symmetry planes [z1,z3) (o = 0°) and [z2, 23] (o = 90°). The offset of the
polarity reversal for this model noticeably varies with azimuth.

is limited to estimating an accurate set of parameters
that control the nonhyperbolic moveout equation. The
robust moveout inversion ensures the flatness of multi-
azimuth, long-spread events prior to stacking and am-
plitude picking. The moveout parameters also serve as
the input to the anisotropic geometrical-spreading cor-
rection (Xu and Tsvankin, 2006a, 2006b) that should be
applied prior to AVO analysis.

Far-offset amplitudes needed in our algorithm of-
ten are too low to make a meaningful contribution to
the semblance operator. Therefore, it may be necessary
to gain the whole data set as a prerequisite to stable AK
semblance computation. This preprocessing step can be
accomplished with any empirical gain function. As men-
tioned above, a more accurate geometrical-spreading
correction can be implemented after the moveout in-
version.

In some of our tests for models with large veloc-
ity contrasts and type 1 AVO response, the critical an-
gle was small enough for long-spread gathers to include
post-critical offsets. As discussed in detail by Landrg
and Tsvankin (2007), the critical angle for orthorhom-
bic media varies with azimuth and can be used in
anisotropic parameter estimation. According to Sarkar
et al. (2002), the phase change with offset at the criti-
cal angle does not lead to significant errors in stacking
velocity when the hyperbolic moveout equation is used
in the semblance computation. However, our numeri-
cal tests show that the influence of the critical angle
causes severe distortions in the 7 values estimated by
the 3D AK semblance operator. Therefore, it is essen-

tial to mute out post-critical offsets in AK nonhyper-
bolic semblance analysis.

Although the numerical examples here were gener-
ated for two-layer models, the AK semblance algorithm
can be applied in the same way to multilayered VTI
and orthorhombic media. In the presence of vertical het-
erogeneity, the estimated moveout parameters represent
effective quantities for the medium above the reflector
(Vasconcelos and Tsvankin, 2006). Also, it should be
mentioned that AK semblance cannot help to resolve
the tradeoffs between NMO velocities and n parameters
discussed in detail by Tsvankin (2005) and Vasconcelos
and Tsvankin (2006).

5 CONCLUSIONS

Polarity reversals, which may be quite common for long-
spread gathers of reflection events, can produce signif-
icant distortions in velocity estimation using conven-
tional semblance analysis. Here, we presented an effi-
cient AVO-sensitive methodology designed to account
for the influence of polarity reversals on moveout in-
version for long-offset 2D and 3D (wide-azimuth) P-
wave reflection data. The 2D algorithm is based on the
Alkhalifah-Tsvankin nonhyperbolic moveout equation
that accurately describes P-wave traveltimes in vertical
symmetry planes of layered anisotropic media. Follow-
ing the so-called “AK semblance” method of Sarkar et
al., the amplitude variation with offset is approximated
by a two-parameter function that reduces to Shuey’s
AVO equation when the overburden is isotropic and
homogeneous. To minimize the tradeoffs between the
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Figure 8. Moveout-inversion results for a wide-azimuth, long-offset P-wave reflection from an orthorhombic/orthorhombic
interface (Table 4). The event has a type 2 AVO response with the polarity reversal at offsets between z/h = 0.65 and
z/h = 0.85. The maximum offset-to-depth ratio is two for the top row, and three for the bottom row. The solid lines are the
actual NMO ellipses and 7-curves, the dashed lines are estimated by the conventional semblance algorithm, and the dotted lines
by AK semblance [the dotted and solid curves in plots (a) and (c) almost coincide].

model parameters, the ratio of the AVO gradient and
intercept (K = A/B) for each reflection event is kept
constant.

Although the employed amplitude dependence does
not include geometrical spreading and higher-order
AVO terms, it proved sufficiently accurate for purposes
of moveout inversion. Synthetic tests on long-offset P-
wave data from VTI media show that conventional sem-
blance breaks down for type 2 AVO responses with the

polarity reversal at relatively small offsets-to-depth ra-
tios (less than unity). Even when combined with the
Alkhalifah-Tsvankin equation, the conventional sem-
blance operator produces errors in the NMO velocity
and completely distorts the key time-processing param-
eter 7). These errors are practically eliminated by the AK
semblance operator, which achieves the same high accu-
racy in the estimates of Vime and 7 as that for AVO-free
events.
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Figure 9. Shot records of a P-wave reflection from an orthorhombic/isotropic interface with a type 1 AVO response (Table 5).
The seismograms are computed for the symmetry planes [z1, 3] (o = 0°) and [z2,z3] (a = 90°).

Despite the addition of the amplitude parameters
(A, which is defined at each time sample, and K), the
2D AK semblance algorithm is computationally efficient
because the best-fit values of A and K are obtained an-
alytically by differentiating the semblance function. As
a result, the scanning is carried out only over the same
two moveout parameters (Vamo and 7) as in the conven-
tional method. The only difference between the AK and
conventional algorithms in terms of computational cost
is in the more complicated form of the AVO-sensitive
semblance operator.

For 3D wide-azimuth data, AK semblance needs
to handle azimuthally dependent amplitudes, which are
largely governed by the AVO gradient. The amplitude
function in our 3D AK semblance operator is based
on the azimuthal variation of the AVO gradient for or-
thorhombic media. This amplitude dependence, which is
controlled by the symmetry-plane values of K (K M and
K®), was incorporated into a nonhyperbolic moveout
inversion algorithm for wide-azimuth data that oper-
ates with a generalized form of the Alkhalifah-Tsvankin
equation. The 3D AK semblance is designed to invert
for K™ and K@ along with the moveout parameters
of orthorhombic media, which include the azimuth of
one of the symmetry planes, two symmetry-plane NMO
velocities and three 7 coefficients (7{"'%®). To start the
semblance search with an accurate initial model, the
multidimensional scan on the full 3D gather is preceded
by estimation of the NMO ellipse and by 2D inversion
of long-offset data near the symmetry-plane directions.

The improvement achieved by the 3D AK sem-
blance is especially significant for orthorhombic models
with type 2 AVO response. The conventional method

completely breaks down on long spreads and even pro-
duces 7 values that have the wrong sign. Despite the ap-
proximate nature of its amplitude function, the AK sem-
blance algorithm properly accounts for the azimuthally
varying polarity reversal in the estimation of both the
NMO ellipse and the 7-curve. For type 1 AVO, the
polarity reversal occurs at larger offsets (typically, at
offset-to-depth ratios larger than unity), which makes
the conventional method more accurate. Still, since in-
version for 7 requires offsets reaching at least two re-
flector depths, the polarity reversal distorts the out-
put of the conventional semblance operator. As is the
case for AVO-free data, the accuracy of the 7 parame-
ters computed by the AK semblance algorithm increases
for larger spreadlengths. In contrast, conventional sem-
blance for type 1 AVO gives more distorted 7 estimates
with increasing spreadlength, as the influence of the po-
larity reversal becomes more substantial.

On the whole, nonhyperbolic moveout inversion
for both type 1 and type 2 AVO response should be
performed with the AVO-sensitive semblance operator.
While it may be possible to reconstruct the NMO el-
lipse by applying conventional semblance to a truncated
gather (mostly for type 1 AVO), accurate estimation
of the 7n-parameters requires application of AK sem-
blance. Note that in combination with the symmetry-
plane NMO velocities, the parameters 7(1'2% control
time processing and geometrical spreading of P-wave
data in orthorhombic media.
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Figure 10. Moveout-inversion results for a wide-azimuth, long-offset P-wave reflection from an orthorhombic/isotropic interface
(Table 5). The event has a type 1 AVO response with the polarity reversal at offsets between 2/h =1 and z/h = 1.5. (a) and
(c) are the NMO ellipses; (b) and (d) are the azimuthally-dependent 7 values. The maximum offset-to-depth ratio is two for the
top row, and three for the bottom row. The solid lines are the actual NMO ellipses and n-curves, the dashed lines are estimated
by the conventional semblance algorithm, and the dotted lines by AK semblance. As in Figure 6, the dotted lines in plots (a,c)

are almost invisible.
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APPENDIX A: THE 2D AND 3D AK
SEMBLANCE OPERATORS

Al AK semblance in 2D

Conventional semblance operators are based on summa-
tion of trace amplitudes along moveout curves (which
usually are hyperbolic) within a certain time window.
The idea of amplitude-sensitive semblance is to replace
this summation with data modeling using a moveout
equation in combination with an amplitude function
M(t1, z), where ¢; is the zero-offset time and z is the
source-receiver offset. The amplitude function for AK
semblance is specified as (Sarkar et al., 2002)

Mz(t1) = A(t1) (1 + K sin®6z) (A1)

where A(t1) is the AVO intercept, K is the ratio of AVO
gradient and intercept (K is kept constant inside the
semblance window), and 0 is the incidence angle at
offset = approximately given by

1,2
(A2)

2
sin“ 8y, = ——— .
2
:1:2 + Vn21n0t0

Here, Vamo is the NMO velocity and ¢ is the zero-offset
time at the center of the semblance window.

Following Sarkar et al. (2002), we define the 2D AK
semblance operator as

Sc(t()) =

3757 [Alt) (1 + K sin?82) — Dy (t1,2))°

ty x

1-— )
22> Di(t2)
t x
(A3)
where Dy = Dy(t1,z) is the moveout-corrected

data at the zero-offset time t;; the summation is carried
out over all offsets = and all time samples within the
semblance window centered at to. The subscript “V”
denotes the trial NMO velocity Vimo used by Sarkar et
al. (2002) to perform the conventional hyperbolic move-
out correction. In our algorithm, the data are modeled
using a nonhyperbolic moveout equation parameterized
by Vamo and the anellipticity coefficient 7 (see the main
text).

The value of the AVO intercept that corresponds to
the maximum of the generalized semblance function can



be found by setting to zero the derivative of equation A3
with respect to A(t1):

> [Dv(ti,z) (1+ Ksin®6,)]
Alt) = = . (A4)

Z (1 + K sin? 01)2

x

Substituting A(¢:1) from equation A4 into equa-
tion A3 yields
2

Z > " Dy(ts,z) (1 + Ksin®6,)
Z(1+Ksm 0:)2 ZZDV(tl,z)

Similarly, next we differentiate S¢ (equation A5)
with respect to K and set the derivative to zero:

aK? - BK +~v=0, (A6)

Sc(to) = (A5)

where

a = Zsin2 0, Z (Z Dy (t1,z) sin? 0;)
- Zsin2 0.
X Z [Z Dv(tl,:z:)z (Dv(tl,a:) sin’ 93)] R

l (A7)

B = Zsin2 0 Z (Z Dv(tl,:z:))
- N Z (Z Dy (t1,x) sin’ 01) , (A8)

¥y = N Z [Z Dv(tl,x)z (Dv(tl,a;) sin’ 01)]
_ z:sin2 0. Z (Z Dv(tl,x)) . (A9)

The solution of the quadratic equation A6 that al-
ways maximizes the semblance for both positive and
negative values of « is (Sarkar et al., 2002)

K = B VB Ay Vg;“"” . (A10)

Substituting K from equation A10 into equation A5, we
obtain the 2D generalized semblance operator that de-
pends only on the parameters of the moveout function.
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A2 AK semblance in 3D

Here, the AK semblance operator is extended to long-
offset 3D data collected into common-midpoint (CMP)
gathers with a wide range of source-receiver azimuths.
The 3D AK semblance is computed from equation A3
where the summation is performed not only over all off-
sets, but also over all azimuths «. Setting the derivative
of S¢(to) with respect to A; to zero, we obtain the gen-
eralized 3D semblance in a form similar to equation Ab5:

Sc(to)

Z ZZDV(tl,IE @) (1 + K(a)sin® 0,)

x

ZZ(]-}—K(Q)sm 0.)? ZZZDV(tI,x @)

(A1)

The incidence angle 0, is expressed through offset
using equation A2. As discussed in the main text, the
function K(«) is based on the azimuthal dependence of
the AVO gradient in orthorhombic media:

K(a) = K@ cos’a + KV sin® a, (A12)

where the azimuth o is defined with respect to the
[1, z3] symmetry plane.

Since in the 3D case it is difficult to obtain the
best-fit values of K and K‘® analytically, they are
estimated from the semblance scan using equation All.
For orthorhombic media, we employ a nonhyperbolic
moveout equation parameterized by the azimuth of
the [z1,z3] symmetry plane, the NMO velocities Vs,
and V,,(.f,)o, and the anellipticity coefficients n(?), @,
and n®. Therefore, semblance scanning is performed
over a total of eight independent parameters. The sem-
blance algorithm, which is based on the 3D nonhyper-
bolic moveout inversion technique of Vasconcelos and
Tsvankin (2006), is described in more detail in the main
text.
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ABSTRACT

It is known that the Green’s function for non-dissipative acoustic or elastic
wave propagation can be extracted by correlating noise recorded at different
receivers. This property is often related to the invariance for time-reversal of
the acoustic or elastic wave equations. The diffusion equation is not invariant
for time-reversal. It is shown in this work that the Green’s function of the
diffusion equation can also be retrieved by correlating solutions of the diffusion
equation that are excited randomly and are recorded at different locations. This
property can be used to retrieve the Green'’s function for diffusive systems from
ambient fluctuations. Potential applications include the fluid pressure in porous
media, electromagnetic fields in conducting media, the diffusive transport of

contaminants, and the intensity of multiply scattered waves.

Key words: interferometry, diffusion, pore pressure, EM

1 INTRODUCTION

The Green’s function for acoustic or elastic waves can
be extracted by cross-correlating recorded waves that
are excited by a random excitation, see ref. (Curtis
et al., 2006) for a tutorial. Derivations of this principle
have been presented based on normal modes (Lobkis
& Weaver, 2001), on representation theorems (Wape-
naar, 2004; Weaver & Lobkis, 2004; Wapenaar et al.,
2005), on time-reversal invariance (Derode et al., 2003a;
Derode et al., 2003b), and on the principle of station-
ary phase (Snieder, 2004; Roux et al.,, 2005a; Snieder
et al., 2006b). This technique has found applications
in ultrasound (Weaver & Lobkis, 2001; Malcolm et al.,
2004; Larose et al., 2006), crustal seismology (Campillo
& Paul, 2003; Shapiro et al., 2005; Roux et al., 2005b;
Sabra et al., 2005a; Sabra et al., 2005b), exploration
seismology (Calvert et al., 2004; Bakulin & Calvert,
2004), structural engineering (Snieder & Safak, 2006;
Snieder et al., 2006a), and numerical modeling (van Ma-
nen et al., 2005). Recntly the exraction of the Green’s
function by cross-correlation has been derived for gen-
eral coupled systems of linear equations (Wapenaar
et al., 2006).

The principle of extracting the Green’s function of
a system from ambient fluctuations creates the possibil-

ity to retrieve the impulse response of a system without
using controlled point sources. This impulse response
can be used for imaging, tomography, or other methods
to determine the properties of the medium. For exam-
ple, models of the crust in California have been con-
structed using surface wave tomography based on micro-
seismic noise (Shapiro et al., 2005; Sabra et al., 2005b).
The autocorrelation of ambient seismic noise has been
used for daily monitoring fault zones (Wegler & Sens-
Schonfelder, 2006) and volcanoes (Sens-Schonfelder &
Wegler, 2006). The Green’s function extracted from am-
bient noise can also be used to model the response of a
system to a prescribed excitation without knowing the
in-situ properties of the system.

The extraction of the Green’s function from ambi-
ent noise has been described extensively for wave prop-
agation of acoustic or elastic waves without intrinsic
attenuation (e.g., (Curtis et al., 2006)-(Snieder et al,
2006b)). In the absence of intrinsic attenuation, the
wave equation is invariant for time-reversal, and several
derivations of the reconstruction of the Green’s function
are indeed based on time-reversal invariance (Derode
et al., 2003a; Derode et al., 2003b; Bakulin & Calvert,
2004).

Many physical systems are not invariant under
time-reversal. Intrinsic attenuation breaks the symme-
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try for time-reversal for acoustic and elastic wave propa-
gation. Electrical conductivity breaks the time-reversal
symmetry of Maxwell’s equations. It has been shown
theoretically (@warning Citation ‘Snieder06Atten’ on
page 141 undefined) and observationally (Snieder &
Safak, 2006; Snieder et al., 2006a) that the impulse re-
sponse of attenuating acoustic or elastic waves can be
retrieved from ambient fluctuations.

Time-reversal invariance is, however, not essential
for retrieving the Green’s function from ambient noise.
This can be seen by considering the diffusion equation

9p(r, t)
ot
where the diffusion constant D may depend on position
r. The diffusion equation is not invariant for time re-
versal because the operation t — -t changes the sign
of the first term. This equation is of practical impor-
tance because it describes conductive heat transport,
diffusive transport of tracers and contaminants, fluid
flow in porous media (Wang, 2000), electromagnetic
waves in conducting media (Jackson, 1975), and the en-
ergy transport of multiply scattered waves, e.g., (Sheng,

1995).

The derivation in this work is applicable to the fre-
quency domain, and the following Fourier convention is
used: p(r,t) = [ p(r,w) exp(—iwt)dw. With this conven-
tion, the diffusion equation is, in the frequency domain,
given by

iwp(r,w) + V- (D(r)Vp(r,w)) = —q(r,w) . 2

Time-reversal corresponds, in the frequency domain, to
complex conjugation. The time-reversed diffusion equa-
tion is thus given by

—iwp® (r,w) + V- (D(r)Vp*(r,w)) = —¢*(r,w) , (3)

where the asterisk denotes complex conjugation. The
sign difference in the first terms of expressions (2) and
(3) is due to the lack of time-reversal invariance of the
diffusion equation.

It is shown here that the Green’s function for
the diffusion equation can be retrieved by correlating
noise recorded at several locations in a diffusive sys-
tem. One application of this technique is monitoring
flow in porous media, we therefore refer to the solution
of the diffusion equation as pressure, but the results are
equally valid for other diffusive systems. In the follow-
ing all expressions are given in the frequency domain,
and the frequency-dependence is not shown explicitly.

=V (D(r)Vp(r,t)) + Q(rr t) l} (1)

2 REPRESENTATION THEOREMS OF
THE CONVOLUTION AND
CORRELATION TYPE

Following Fokkema and van den Berg (Fokkema &
van den Berg, 1993; Fokkema & van den Berg, 1996),

we consider representation theorems of the convolu-
tion and correlation types by using expressions (2)
and (3) for two solutions ps and pp with source
terms ga and gg, respectively. The representation the-
orem of the convolution type is obtained by computing
J (pB(eq. 2)a — paleq. 2)p) dV, where (eq. 2) 4 denotes
equation (2) for state A, and where [ (---)dV denotes
an integration over a volume V. This gives

[ (p5V - (DVpa) — paV - (DVpp)) dV
= /(PAIIB —ppga)dV . (4)

Note that in the subtraction the iwp-terms cancel. Ap-
plying an integration by parts to the left hand side of
expression (4), and using Gauss’s theorem gives

fD(pBVpA —paVpp)-dS = /(pAqB —ppga)dV,
(5)

where the integral § (---) - dS is over the surface that
bounds the volume V.

A representation theorem of the corre-
lation type can be obtained by evaluating
[ (pp(eq. 2)a — paleq. 3)p)dV. Carrying out an
integration by parts gives

§ D(pVpa —paVphs)-dS + 2iw / pappdV

=/(PAQZ3_P;3‘]A)‘1V~ (6)

Note that now the iw-terms in expression (2) and (3)
and do not cancel, but combine to give the volume in-
tegral in the left hand side. The presence of this term
results from the lack of invariance of time-reversal of the
diffusion equation.

In the following integration over all space is used.
The contribution of the surface integral vanishes be-
cause the solution of the diffusion equation p(r,w) van-
ishes exponentially as r — oo. Therefore, the represen-
tation theorems (5) and (6) reduce to

/(PAQB —ppga)dV =0, (7
and
/ (Pagn — Ppaa)dV = 2iw / pappdV . (8)

The contribution of the surface integral also vanishes
for a finite volume in case the solution satisfies ei-
ther Dirichlet conditions (p = 0), Neumann conditions
(8p/8n = 0), or mixed boundary conditions (9p/dn +
ap = 0) at the surface that bounds the volume.
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3 REPRESENTATION THEOREMS AND
GREEN’S FUNCTIONS

The Green’s function for the diffusion equation is the
solution to equation (2) when the forcing is a delta func-
tion:

wG(r,rg) + V- (D(r)VG(r,rg)) = —6(r—ro) . (9)

Setting ga(r) = 6(r — ro) in expression (7) implies that
pa(r) = G(r,ro). For this choice of g4, expression (7)
reduces to

p(r) = / G(r, ro)a(ro)dVe (10)

where the subscripts B are dropped. Alternatively, set-
ting

qa,(r) =&(r —ra,B) (11)
implies that
pa,B(r) = G(r,ra,p). (12)

For this choice of the states A and B, expression (7)
reduces to the reciprocity relation:

G(I‘B, l‘A) = G(I‘A, l‘B) . (13)

Inserting the states (12) into expression (8) gives

G(rp,ra) - G*(ra,rp) = 2iw/G(r, ra)G*(r,rp)}dV .
(14)

Using reciprocity, this expression can also be written as

G(rA,rB,w) - G'(I‘A,I‘B,w)
— 20w / Clra,t, )G (ra,ry0)dV . (15)

The left hand side of this expression corresponds, in
the time-domain, to the superposition of the Green’s
function and the time-reversed Green’s function. In the
following section we consider how this superposition can
be retrieved from the cross-correlation of the pressure
generated by uncorrelated sources.

4 RETRIEVING THE GREEN’S
FUNCTION

In order to show how the Green’s function can be ex-
tracted from the correlation of solutions generated by
random sources, let us consider spatially uncorrelated
sources with power spectrum |g(w)|? that does not de-
pend on location:

(a(r1, w)g” (r2,w)) = 8 (r1 ~ r2) [g(W)[* , (16)

where the brackets (- --) denote the expectation value.
In practical applications this expectation value is usu-
ally replaced by using several non-overlapping time win-
dows (e.g., (Shapiro & Campillo, 2004; Sens-Schénfelder

& Wegler, 2006)). Multiplying equation (15) with
|g(w)|?, the volume integral in that expression can be
written as

4P [ Gea )G (0, )0V

= /G(rA,r1)6 (r1 - r2)|qw)|? G* (rp, r2)dVidVa

- / Glrarr1)lg(r1,w)q" (r2,@))G" (r, r2)dVidVa

= ((/ G(rA,rl)q(rl,w)d%) (/ G(re,rz)q(rz,w)dvz)‘)-

When we use this result and expression (10), equa-
tion (15) after multiplication with |g(w)|? is given by

(G(ra,rs,w) — G*(ra,rz,w))|q(w)|’
= 2iw(p(ra,w)p(rs,w)) , (18)

where p(r,w) is the pressure at location r due to the
random forcing g(r,w).

Equation (18) states that the superposition of the
Green’s function G(ra,rp,w) and its time-reversed ver-
sion is, after multiplication with the power spectrum
of the excitation, equal to the correlation of the ran-
dom fields at locations ra and rg, respectively. The
pre-factor 2iw corresponds, in the time domain, with
—2d/dt. Since multiplication in the frequency domain
corresponds, in the time domain to convolution, expres-
sion (19) is, in the time domain, given by

(G(rp,ra,t) — G(rp,ra, —t)) * Cy(t)
= —2%(p(r,4,t) ® p(rs,t)) (19)

where * denotes convolution, ® denotes correlation, and
C,(t) is the autocorrelation of g(t).

5 DISCUSSION

The Green's function of the diffusion equation can be
retrieved by cross-correlating measurements of a dif-
fusive system that is excited by random noise. Since
the diffusion equation is not invariant for time-reversal,
this shows that invariance for time-reversal is not es-
sential for the retrieval of the Green’s function by cross-
correlation.

For elastic and acoustic waves, the Green’s func-
tion can be extracted from waves that are excited ran-
domly at the surface that surrounds the volume (Wape-
naar, 2004; Wapenaar et al., 2005). This is not the case
for the diffusion equation. For a volume of radius R,
the surface area grows with R?, but for a homogeneous
medium the solution of the diffusion equation varies

(17)
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with the radius as R™! exp(—+/w/2DR). The contribu-
tion of the surface integral therefore depends on the ra-
dius of the volume, and the derivation shown here holds
for an infinite volume (R — o0), or for a finite volume
when Dirichlet, Neumann, or mixed boundary condi-
tions hold at the surface that bounds the volume. In
contrast to the retrieval of the Green’s function for non-
attenuating acoustic or elastic waves, where one needs
random sources on a surface that bounds the volume,
one needs random sources throughout the volume for
the retrieval of the Green’s function for the diffusion
equation.

The theory presented here provides an example
that time-reversal invariance is not required for the ex-
traction of the Green’s function from ambient fluctua-
tions. The diffusion equation governs physical systems
of practical importance, and the derivation presented
here makes it possible to retrieve the impulse response
of diffusive systems from measured fluctuations.

In this work the phrase pressure is used for the solu-
tion of the diffusion equation because the pore-pressure
in a porous medium follows the diffusion equation. The
theory of this work makes it possible to retrieve the
Green’s function for fluid flow in an aquifer or hydrocar-
bon reservoir from recorded pressure fluctuations. This
Green’s function can be used to estimate parameters
such as hydraulic conductivity, and it can be used to
model the fluid transport in the subsurface without ex-
plicit knowledge of the in-situ hydraulic conductivity.
Similarly, the impulse response for the diffusive trans-
port of contaminants can be retrieved from observa-
tions of ambient fluctuations in the concentration. The
Green'’s function thus obtained can then be used to pre-
dict the diffusive transport of a localized release of the
contaminant.

Electromagnetic fields in a conducting media satisfy
the diffusion equation. This has been used in the magne-
totelluric method where the ambient fluctuations in the
electric and magnetic fields observed at one location are
used to determine the electrical conductivity (Weidelt,
1972). The theory presented here makes it possible to
retrieve the Green’s function for electromagnetic fields
for non-coincident points from observed electromagnetic
fluctuations.

The intensity of multiply scattered waves satisfies,
for late times, the diffusion equation. Controlled inten-
sity fluctuations of multiply scattered waves have been
used to create images of the spatial distribution of the
diffusion constant. This has found application in med-
ical imaging, e.g., (Yodh & Chance, 1995). Instead of
using controlled, spatially localized, sources for the in-
tensity of scattered waves, one may use the theory of
this work to use random spatially distributed sources
instead.

As always, the application of the theory to these,
and other, applications faces implementation issues.
The assumption that the sources of the ambient fluctu-

ations have a homogeneous spatial distribution may not
be satisfied in practical applications. For applications
where this condition is satisfied, the theory can be used
to extract the impulse response of diffusive systems
without using a controlled, localized, source.
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ABSTRACT

The Green’s function of acoustic or elastic wave propagation can, for loss-less
media, be retrieved by correlating the wave field that is excited by random
sources and is recorded at two locations. Here the generalization of this idea
to attenuating acoustic waves in an inhomogeneous medium is addressed, and
it is shown that the Green’s function can be retrieved from waves that are
excited throughout the volume by spatially uncorrelated injection sources with
a power spectrum that is proportional to the local dissipation rate. For a finite
volume, one needs both volume sources and sources at the bounding surface for
the extraction of the Green’s functions. For the special case of a homogeneous
attenuating medium defined over a finite volume, the phase and geometrical
spreading of the Green’s function is correctly retrieved when the volume sources

are ignored, but the attenuation is not.

Key words: interferometry, attenuation

1 INTRODUCTION

The extraction of the Green’s function by correlating
waves excited by random sources that are recorded
at two locations has recently received much attention.
There are numerous derivations of this principle that are
valid for closed systems (Lobkis & Weaver, 2001) and
for open systems (e.g., (Derode et al., 2003b; Derode
et al., 2003a; Weaver & Lobkis, 2004)). Formulations
of this principle are based either on random sources
placed throughout a volume (Lobkis & Weaver, 2001;
Snieder, 2004) or on sources that are located at a sur-
face (Wapenaar, 2004; Wapenaar et ol.,, 2005; Snieder
et al., 2006b). The extraction of the Green’s function
using random wave fields has been applied to ultrasound
(Weaver & Lobkis, 2001; Weaver & Lobkis, 2003; Mal-
colm et al., 2004; Larose et al., 2006), in seismic ex-
ploration (Bakulin & Calvert, 2004; Bakulin & Calvert,
2006; Zhou et al., 2006), in crustal seismology (Campillo
& Paul, 2003; Shapiro et al., 2005; Sabra et al., 2005b;
Paul et al., 2005}, in ocean acoustics (Roux et al., 2004;
Sabra et al., 2005a; Sabra et al., 2005c), to buildings
(Snieder & Safak, 2006; Snieder et al., 2006a), and
in helioseismology (Rickett & Claerbout, 1999; Rickett
& Claerbout, 2000; Rickett & J.F., 2001). The recent

supplement of seismic interferometry (Wapenaar et al.,
2006a) in Geophysics gives an overview of this field of re-
search. Phrases that include passive imaging, correlation
of ambient noise, extraction of the Green’s function, and
seismic interferometry have been proposed for this line
of research. Recently the theory has been developed for
the extraction of the Green’s function for more general
linear systems than acoustic or elastic waves (Wapenaar
et al., 2006b; Snieder et al., 2007; Weaver, 2006).
Many derivations of this principle are valid for
systems that are invariant under time reversal. Sev-
eral derivations invoke time-reversal invariance explic-
itly (Derode et al., 2003b; Derode et al., 2003a; Calvert
et al., 2004; Bakulin & Calvert, 2004). For acoustics
waves in a flowing medium the time-reversal invariance
is broken by the flow; this broken symmetry has been
incorporated in the theory for the extraction of the
Green’s function (Godin, 2006; Wapenaar, 2006). At-
tenuation also breaks the invariance for time reversal.
For homogeneous acoustic media (Snieder, 2004; Roux
et al., 2005) and for a homogeneous oceanic waveguide
(Sabra et al., 2005a) attenuation has been incorporated
into the theory for the extraction of the Green’s funci-
ton. Weaver and Lobkis (Weaver & Lobkis, 2004) use
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complex frequency as a tool to force convergence on an
integral over all sources.

Here I derive the principle of seismic interferome-
try for general attenuating, acoustic media, and extend
earlier formulations for homogeneous media to include
arbitrary heterogeneity in density, compressibility, and
intrinsic attenuation. In section 2 I introduce the ba-
sic equations and re-derive a representation theorem of
the correlation type for attenuating media. I show in
section 3 that for an unbounded volume, or for a vol-
ume that is bounded by a surface where the pressure or
normal component of the velocity vanishes, the Green’s
function can be extracted from waves excited by uncor-
related volume sources with a source strength that is
proportional to the local dissipation rate. In section 4
I show that for a bounded volume one needs, in gen-
eral, both volume sources and surface sources in order
to retrieve the correct Green’s function. In section 5 I
illustrate the relative roles of the volume sources and
surface sources by analyzing the special case of a homo-
geneous, attenuating medium, with a single reflector. In
this special case, when volume sources are ignored, the
phase and geometrical spreading of the Green’s function
are correctly reproduced by seismic interferometry, but
the attenuation is not.

2 BASIC EQUATION FOR ACOUSTIC
WAVES

Using  the  Fourier  convention  f(t) =
J f(w)exp(—iwt)dw, the pressure p and particle
velocity v for acoustic waves satisfy, in the frequency
domain, the following coupled equations:

Vp —iwpv =0, (1)

(V-v)—iwkp=gq. (2)

In these expressions w is the angular frequency, p the
mass density, and k the compressibility. All expres-
sions in this work are given in the frequency domain;
for brevity I do not denote this frequency-dependence
explicitly. I assume that only injection sources g are
present. Body forces would render the right hand side
of expression (1) nonzero. For attenuating media, the
compressibility & is complex, this quantity can be de-
composed in a real and imaginary part:

£ = kpr(r,w) + iki(r,w) . (3)

Because of the Kramers-Kronig relation (e.g., (Aki &
Richards, 2002; Jackson, 1975)), the real and imaginary
part of the compressibility depend on frequency. In con-
trast to the treatment of de Hoop (de Hoop, 1988), I
presume that the mass density is real. In this general
derivation the density and compressibility can be arbi-
trary functions of location and frequency.

Following de Hoop, Fokkema, and van den Berg

(de Hoop, 1995; Fokkema & van den Berg, 1993), ex-
pressions (1) and (2) can be used to derive a repre-
sentation theorem of the correlation type. The treat-
ment given here generalizes earlier descriptions of the
extraction of the Green’s function (Wapenaar et al.,
2005; Wapenaar, 2006) to include dissipation. I con-
sider two wave states, labeled A and B, that both
satisfy expressions (1) and (2), and that are excited
by forcing functions g4 and ¢p, respectively. The sub-
scripts A and B indicate the state for each quantity.
A representation theorem of the correlation type is
obtained by integrating the combination (1)4 - vB+
(1)3-va+(2)aps + (2)3pa over volume, and applying
Gauss’ theorem. (The asterisk denotes complex conju-
gation, and (1)3 stands, for example, for the complex
conjugate of expression (1) for state B.) This gives

f (pavh +phva)-dS

~ [ (@ipa+awpi)av — v [ (" = )pariav, (4

where § (--) - dS denotes the surface integral over the
surface that bounds the volume. Note that the last term
is due to the attenuation; for loss-less media k is real,
and £* — k = 0. The relative roles of the surface in-
tegral in the left hand side and the volume integral in
the last term play a crucial role in the following treat-
ment. In the following the “surface” refers to the surface
that bounds the volume. In the presence of cavities this
surface may consists of disconnected pieces.

These representation theorems can be used to de-
rive several properties of the Green’s function G(r,r)
that is the pressure response to an injection source
g(r) = &(r — ro). Setting

qa,5(r) = 3(r —ra,5) (5)

implies that the corresponding pressure states are given
by

pa,s(r) = G(r,ra,5), (6)

respectively.
Inserting the excitations (5) into expression (4), and
using equation (1) to eliminate the velocity, one obtains

G*(ra,r5) +G(rp,ra)
~ 2 [ r(n @Gl rG ro)d + f
(G*(r,rg)VG(r,ra) — G(r,ra)VG*(r,rp)) - dS .(7)

For brevity the frequency-dependene of G is suppresed.
In the presence of intrinsic attenuation, reciprocity of
acoustic waves still holds, hence

G(ra,rg) = G(rp,ra) . (8)

Expression (7) can therefore be written as
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G (rp,ra) + G(rp,ra)
= 2w/ni(r,w)G(r,4,r)G"(rB,r)dV +%$
(G*(rp,r)VG(ra,r) — G(ra,r)VG*(rp,r)) - dS .(9)

Note that for loss-less media, because of the com-
plex conjugates, the surface integral does not vanish
when the system satisfies radiation boundary conditions
at the surface. A similar relation has been derived for
electromagnetic fields in conducting media (Slob et al.,
2006).

The left-hand side of expression (9) is the sum of
the causal and acausal Green’s functions. Wapenaar et
al. (Wapenaar et al., 2005) use this expression for loss-
less media (k; = 0) to show that the sum of the causal
and acausal Green’s function can be obtained by cross-
correlating the pressure fields that are due to uncorre-
lated random sources at the surface. The pressure field
caused by these sources is transmitted to the points r4
and rp in the interior by the Green’s functions in the
surface integral in equation (9). For attenuating media
(ki(r) # 0), this analysis is complicated by the presence
of the volume integral in this expression.

3 INTERFEROMETRY WHEN THE
SURFACE INTEGRAL VANISHES

In this section I analyze the special case where the sur-
face integral in expression (9) vanishes. This is the case
when one of the following conditions is satisfied:

C1: The volume integration is over all space. For at-
tenuating media the wave field vanishes exponentially
at infinity, and the surface integral vanishes.

C2: The pressure vanishes at the surface (G = 0).

C3: The normal component of the velocity perpendic-
ular to the surface vanishes at the surface. Because of
expression (1) this implies that VG - dS = 0.

When one of the conditions C1-C3 is satisfied, the pres-
sure is related to the excitation by

p(ro) = / G(ro, P)a(r)dV (10)

and the representation theorem of the correlation type
(9) reduces to
G‘(!‘B, I‘A) + G(X'B, l‘A)

= Zw/rc,-(r,w)G(rA,r)G'(rB,r)dV. (11)

Consider the situation where random pressure sources
are present throughout the volume, and that these
sources at different locations are uncorrelated:

q(rl,w)q'(rz,w) = Ki(rl)w)‘s (1‘1 - !‘2) Is(w)|2 ' (12)

where |S{w)|® denotes the power spectrum of the ran-
dom excitation. The excitation (12) is proportional

to ki(r,w), the imaginary part of the compressibility,
which in turn is proportional to the local attenuation.
This means that the excitation (12) supplies a random
excitation of the pressure field that locally compensates
for the attenuation. Multiplying expression (11) with
|S(w)|? gives

(G*(rp,ra) + G(rp,ra)) |S(w)|?
— 2 / i (1, ) |S(@)[2 G(ra, 1)G* (3, £)dV

= Qw//ni(l‘l,w)ls (r1 —r2) |S(w)|2
G(I‘A,r1)G‘(l‘B,l‘2)dvldV2

= Zw/G(rA,rl)q(rl)dVl (/ G(rB,l‘z)q(l‘2)dV2)‘

= 2wp(ra)p’(rs) . (13)

Expression (12) is used for the 3rd identity, above, and
expression (10) for the last one. The sum of the causal
and acausal Green’s function thus follows from corre-
lating the pressure fields caused by the random volume
sources:

. 2w .
G'(rp,ra) + G(rp,ra) = —5 pra)p’(re) . (14)

|S(w)l

As in seismic interferometry for loss-less media (Lobkis
& Weaver, 2001; Weaver & Lobkis, 2004; Wapenaar
et al., 2005), one needs to divide by the power spectrum
of the excitation to remove the imprint of this excitation
on the recorded pressure p(ra) and p(rg).

4 WHEN THE SURFACE INTEGRAL IS
NONZERO

In practical applications, none of the conditions C1-
C3 might be satisfied. This is, in fact, the case in for-
mulations of seismic interferometry where the Green's
function is extracted by correlating pressure fields that
are excited by uncorrelated sources at the surface that
bounds the volume (e.g., (Wapenaar et al, 2005)). In
this section I investigate the relative roles of the surface
and volume integrals in expression (9). For simplicity, I
use, following Wapenaar et al. (Wapenaar et al., 2005),
that the surface is far from the region of interest and
that VG(r,ro) - dS = ikG(r,ro)dS = (iw/c) G(r, ro)dS.
Inserting this in equation (9) gives

G"(rs,ra)+G(rp,ra) = Iv(rp,ra)+Is(rp,ra), (15)

where the volume integral Iv(rp,ra) is given by
Iv(rg,ra) = 2w/n,-(r,w)G(rA,r)G'(rB,r)dV , (186)
and the surface integral Is(rp,ra) by

Is(rm,ra) = 2% plcc(m,r)c;'(m,r)ds . (17)

In many applications, the attenuation is weak
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(ki < Kr), and one might think that the volume in-
tegral is small compared to the surface integral. This,
however, is not the case. Because of the attenuation, the
surface integral decreases exponentially with increasing
surface area, and goes to zero while the volume inte-
gral is finite. According to expression (15) the sum of
the volume integral and the surface integral is indepen-
dent of the size of the volume. This implies that the
volume integral and the surface integral are, in general,
both needed for the extraction of the Green’s function.
The stationary phase analysis of section 5 shows that,
for the special case of a homogeneous medium, this is
indeed the case.

5 STATIONARY PHASE ANALYSIS OF
THE SURFACE INTEGRAL AND
VOLUME INTEGRAL

To better understand the relative roles of the volume
and surface integrals of expressions (16) and (17), I
analyze in this section the special case of a homoge-
neous, attenuating medium, and solve the volume and
surface integrals in the stationary phase approximation.
For a homogeneous medium, equations (1) and (2) can
be combined to give

V2p + wikpp = iwpq . (18)
The wave number is therefore given by
k=wkp. (19)

I consider weak attenuation; in this case the wavenum-
ber is to first order in k;/k, given by

k=wﬂ(1+;—z) . (20)
The phase velocity thus is given by

= =1/VRp, (21)
and the imaginary component of the wave number by
ki = wkipc/2. (22)

The Green’s function solution for expression (18) is
equal to

eik R
G(R) = —iwpexp(—k:R) oy (23)

The geometry for the stationary phase analysis is
shown in figure 1.

I use a coordinate system whose origin is at the mid-
point of the receiver positions r4 and rp and whose z-
axis points along the receiver line. The distance between
these points is denoted by R; hence r4 = (0,0, —R/2),
and rg = (0,0,R/2). I consider a volume that is
bounded by a surface at distance L from the origin. The
stationary phase analysis follows the treatment of ref.
(Snieder, 2004). The stationary phase point of the inte-
grals in expressions (16) and (17) is located on the z-axis

L.
/Ly :
: P R ] L
=(0,0-R2 p=(00R2) %}
y

Figure 1. Definition of geometric variables for the stationary
phase evaluation of integrals Iy (rp,ra) and Ig(rp,ra). The
volume is bounded by a sphere with radius L, as denoted by
the dotted line.

(z = y = 0). Following ref. (Snieder, 2004), the points
to the right of rp (for which z > R/2) give the causal
Green’s function G(rp,ra), while the points to the left
of ra (for which z < —R/2) give the acausal Green’s
function G*(rp,ra). In the following I only treat the
contribution of integration points for which z > R/2;
this gives only the causal Green’s function. Because of
this limitation, the corresponding surface and volume
integrals are denoted with the superscript (+).

Both the surface and volume integrals contain
a double integration over the transverse z- and y-
coordinates. As shown in the appendix, the stationary
phase approximation of the surface and volume integrals
gives

ikR
. e
I{,‘L)(rB, ra) = —iwp[exp (—k:R) — exp (—2k:L)] R’
(24)
and
I(+)(r3 ra) = —twpexp (—2k;L) -e—iii (25)
s ’ " 4anRC

The sum of the surface and volume integrals indeed
gives the causal Green’s function:

Ig”(l'g, l‘A) + I‘(/+)(I‘B, I‘A)
£ikR
= —iwpexp(—kiR) R G(rg,ra) . (26)

Expressions (24) and (25) show that neither the vol-
ume integral nor the surface integral gives the Green’s
function, but that the sum does. Equation (16) suggests
that for weak attenuation the volume integral can be ig-
nored, because this integral is proportional to k; << k.
Expressions (24) and (25) show, however, for the spe-
cial case of a homogeneous medium that as long as
kiL = O(1), the volume integral and the surface in-
tegral in general have comparable strength. (As shown
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Acquisition surface SBen SBiiy

Lreﬂ

Reflector

Figure 2. Two receivers (open squares) that are located be-
tween the acquisition surface and a reflector, and the station-
ary phase points SPy;r and SPrej; of the direct and reflected
waves, respectively.

in expression (A5) of Appendix A, the volume integral
I\(,+) is proportional to ;/k;, which according to ex-
pression (22) has a finite value as k; — 0.) The rel-
ative contribution of the surface integral and the vol-
ume integral is weighted by exp(—2k:L). As the vol-
ume occupies all space (L — o0), the surface inte-
gral vanishes (I_(g+) — 0) and the volume integral is
given by If,”(rg,rA) = —iwpexp(—ki:R)e* % /4nR =
G(rp,r4). This is the special case treated in section 3
because in this limit the surface integral vanishes be-
cause of the large distance L traversed by the attenuat-
ing waves that are correlated.

Equation (26) shows that in the frequency domain
the Green’s function can be retrieved from the cross-
correlation of waves excited by a combination of vol-
ume sources and surface sources. A similar result was
obtained in the frequency domain in expression (10) of
ref. (Snieder, 2004) where an infinite volume is needed.
Expression (26) of ref. (Roux et al., 2005) gives a time-
domain formulation of the retrieval of the Green’s func-
tion. In the latter studies sources in a homogeneous
attenuating medium were integrated over an infinite
volume. Because of the infinite integration region, the
surface integral (25) did not contribute in those stud-
ies. The relative role of the surface integral and the
volume integral is important because in some applica-
tions sources are present only on a finite surface (e.g.,
(Bakulin & Calvert, 2006)).

In this example, only the direct wave arrives, and
ignoring the volume integral leads to an overall am-
plitude error. Next, I consider the example of interfer-
ometry for both the direct wave and a reflected wave.
Sources are placed on the acquisition surface shown in
figure 2. Both the direct wave and a reflected wave
propagate to receivers indicated with open squares. The
points SPyir and SPres shown in that figure indicate
the stationary phase source locations for the direct and
reflected waves, respectively (Snieder et al., 2006b).

The direct wave contains contributions
exp(—kiLair)xexp(—ki(Lair + R)) from the at-
tenuation at the stationary points. Following the

stationary phase analysis of ref. (Snieder et al., 2006b),
and taking the attenuation terms into account gives a
contribution of the surface integral to the direct wave
that is given by
ikR
Ugir ox e 2Kildirg=kiR E__ (27)
R
The reflected waves has a contribution at the stationary
phase point from the attenuation exp(—k;Lresi)
xexp(—ki(Lresi + R1+ R2)), the reflected wave obtained
from the surface integral satisfies in the stationary phase
approximation (Snieder et al., 2006b)

ik(R1+Rg)
=2kiLresio—ki(R1+Ry) €
R+ R

where r is the reflection coefficient of the interface.
Both the direct and reflected waves thus obtained
have the correct phase and geometrical spreading, but
both contain an amplitude term (exp(—2kiL4ir) and
exp(—2kiLres1), respectively) that is due to neglecting
the volume integrals. Since these amplitude terms are
different for the direct wave and the reflected waves,
neglecting the contribution of the volume integrals dis-
rupts the relative amplitude of the different arrivals.

It is interesting to compare this result with expres-
sions (1) and (18) of Sabra et al. (Sabra et al., 2005a)
who show that for an homogeneous attenuating oceanic
wave guide with source placed at a surface of constant
depth that the phase of the different arrivals is correctly
produced by the cross-correlation, but the amplitude is
not in the presence of attenuation. Expressions (27) and
(28) presented here describe what happens when the
sources are placed on a surface only. It is the absence of
volume sources in ref. (Sabra et al., 2005a) that leads to
an incorrect estimate attenuation in the Green’s func-
tion estimated from cross-correlation.

Urefl X € , (28)

6 DISCUSSION

The derivation in this work shows that the Green'’s func-
tion of attenuating acoustic waves in a heterogeneous
medium can be extracted by cross-correlating measure-
ments of the pressure that is excited by random sources.
As shown in sections 3 and 4, the Green’s function can,
however, be computed from the cross-correlation when
the random pressure field is excited by sources that
are distributed throughout the volume, and that have a
source strength that is proportional to the local dissipa-
tion rate (which is proportional to ;). Volume sources
are also required for the extraction of the Green’s func-
tion of the diffusion equation (Snieder, 2006), which is
another example of a system that is not invariant for
time-reversal.

The physical reason that the excitation must be
proportional to the local dissipation rate is that the ex-
traction of the Green’s function is based on the equili-
bration of energy. This condition is necessary for the
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fluctuation-dissipation theorem, which relates the re-
sponse of a dissipative system (the Green’s function) to
the fluctuations of that system around the equilibrium
state (Callen & Welton, 1951; Kubo, 1966). Acoustic,
dissipative, waves can be in equilibrium only when the
excitation of the waves matches the local dissipation
rate. If this were not the case, there would be a net
energy flow, and the system would not be in equilib-
rium. The equilibrium of energy (Weaver, 1982), also
referred to as equipartitioning, has been shown to be
essential for the accurate reconstruction of the Green’s
function (e.g., (Malcolm et al., 2004; Snieder et al., 2007;
Sénchez-Sesma et al., 2006)).

When none of the conditions C1-C3 of section 3
is satisfied, the sum of the causal and acausal Green’s
function is, according to expression (15) given by the
sum of the volume integral and a surface integral. The
physical reason is that in equilibrium, the sources at
the surface must be supplemented with sources within
the volume that are proportional to the local dissipation
rate if the system is to be in equilibrium. In some ap-
plications this condition can be realized. For example,
Weaver and Lobkis (Weaver & Lobkis, 2001) extract
the Green’s function from the wavefield that is excited
by thermal fluctuations throughout the volume of their
sample. The need to have sources throughout the vol-
ume in addition to sources at the surface, is impractical
in applications where one seeks to extract the Green’s
function for two points in the interior by placing sources
at the bounding surface only (e.g., (Bakulin & Calvert,
2004; Bakulin & Calvert, 2006)).

Roux et al. (Roux et al, 2005) show that for a
homogeneous infinite acoustic medium one needs to
correct for a factor w™!. They note that this term is
due to their assumed attenuation mechanism (Im(c) =
constant). In the formulation of this work, such a cor-
rection term is hidden in condition (12) which states
that the power of the sources is proportional to the local
attenuation rate. In this work, &;(r,w) can be an arbi-
trary function of position and frequency, but, as long as
condition (12) is satisfied the Green’s function can be
extracted by cross correlation. In practical applications
the source spectrum may not satisfy this condition. In
that case there is no energy balance, and the Green’s
function is not correctly retrieved. This may be an im-
portant limitation in practical applications.

In practical situations, attenuation is present, and
the contribution of the volume integral is often ignored,
yet seismic interferometry seems to be able to retrieve
the Green’s function well (e.g., (Bakulin & Calvert,
2004; Bakulin & Calvert, 2006)). For the special case
of a homogeneous medium, the contribution of the
surface integral to the Green’s function is given by
expression (25). This contribution has the correct phase
and geometrical spreading (exp(ik-R)/R), but incor-
rect attenuation (exp(—2k;L) instead of exp(—kiR)).
This suggests that when seismic interferometry for

attenuating systems is used by summing over sources
at the surface only, the correct phase and geometrical
spreading are recovered, but that the attenuation is
not. According to expressions (15)-(17) one needs for
a general inhomogeneous attenating medium both
volume sources and surface sources for the extraction
of the Green’s function. It is not known that multiple
scattering by a boundary (Draeger & Fink, 1997)
or by internal scatterers (Derode et al, 1995) can
compensate for a deficit of sources needed for focusing
by time-reversal. This raises the unsolved question to
what extent multiple scattering can compensate for the
lack of volume sources.
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APPENDIX A: STATIONARY PHASE ANALYSIS OF THE INTEGRATION OVER THE
TRANSVERSE COORDINATES

The integrals Iv (rp,ra) and Is(rp, ra) of expressions (16) and (17) contain, in the geometry of figure 1, an integration
over the z- and y-coordinates. In this appendix I consider the contribution from integration points z > R/2. These
points lead to the causal Green’s function. The contribution from integration points z < —R/2 leads to the acausal
Green’s function, which can be obtained by complex conjugation of the results derived here.

For the Green’s function of the homogeneous medium of expression (23),

. 2, etkr(Lat+Llp)
Glra,r)G"(rp,r) = (%) e k.(LA+LB)T , (A1)
where L4, g = |r — ra,p|, as shown in figure 1. The phase term exp (ikr(La + L)) of expression (A1) is oscillatory
as a function of the transverse coordinates z and y. The phase is stationary along the z-axis (z = y = 0). For fixed
z, near the stationary phase point, the lengths L4 and Lp are, to second order in z and y, given by

La= VBT + G RDP R (2 + B2+ 5 i (A2)
and
L= V@21 + (= - RJ2)? z(z—R/2)+%%. (A3)

These expressions are valid for integration points z > R/2. In the stationary phase approximation (Bleistein &
Handelsman, 1975) of the integration of expression (A1) over z and y, these approximations for L4 and Lp are used in
the phase term exp (ik,(La + Lg)). In the stationary phase approximation, the attenuation and geometrical spreading
terms exp (—ki(La + L)) /LaLp are evaluated at the stationary phase point z = y = 0, where La,p = z + R/2.
The integral of expression (A1) over the transverse coordinates is, in the stationary phase approximation, given by
(Bleistein & Handelsman, 1975)

—2k;z

* € * ik ‘lkr R
Jf G(ra,r)G" (rp,r)dady = (Z(—:) ZoRAC kR [ exp (—-2— (m) (=® +y2) dzdy

2
okiz 5 5
= (2) ke (e, |21 /) (a4)
4n/ 22 — R?2/4 kR
= _Me—zkil eikrR
87 R

Inserting this result in equation (17), and setting z = L, gives expression (25) for the contribution of the surface
z = L to the surface integral Is(rp,r4). In order to obtain the contribution of the region R/2 < z < L to the volume
integral of expression (16), one needs to integrate equation (A4) over z:

.o ikeR
—ipwece L — D
I$,+)(I‘B)r.4) =2wmg—1r_R_ fﬂ/Ze 2k.zdz (A5)
_ _iptwiek: ekrf (e kiR — e=2hiL)
2k; R ’

Using equation (22) to eliminate k;/k; gives expression (24).
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ABSTRACT

It has been shown theoretically and observationally that the Green’s function
for acoustic and elastic waves can be retrieved by cross-correlating fluctuations
recorded at two locations. We extend the concept of the extraction of the Green’s
function to a wide class of scalar linear systems. For systems that are not invari-
ant under time reversal, the fluctuations must be excited by volume sources in
order to satisfy the energy balance (equipartitioning) that is needed to extract
the Green’s function. The general theory for retrieving the Green’s function
is illustrated with examples that include the diffusion equation, Schrédinger’s
equation, a vibrating string, the acoustic wave equation, a vibrating beam,
and the advection equation. Examples are also shown of situations where the
Green’s function cannot be extracted from ambient fluctuations. The general
theory opens up new applications for the extraction of the Green’s function
from field correlations that include flow in porous media, quantum mechanics,

and the extraction of the response of mechanical structures such as bridges.

Key words: interferometry, general scalar systems, energy

1 INTRODUCTION

The extraction of the Green's function from ambient
fluctuations for acoustic and elastic waves has recently
received much attention: see recent tutorials and re-
views (Curtis et al., 2006; Larose et al., 2006), and the
special supplement on seismic interferometry in Geo-
physics (Wapenaar et al., 2006a). Derivations of this
principle have been based on normal modes (Lobkis
& Weaver, 2001), on representation theorems (Wape-
naar, 2004; Wapenaar et al., 2005), on the superposi-
tion of incoming plane waves (Weaver & Lobkis, 2004;
Sianchez-Sesma et al., 2006; Sinchez-Sesma & Campillo,
2006}, on time-reversal invariance (Derode et al., 2003b;
Derode et al., 2003a), and on the principle of station-
ary phase (Snieder, 2004a; Roux et al, 2005; Sabra
et al., 2005a; Snieder et al., 2006b). The extraction of
the Green’s function has been applied to ultrasound
(Weaver & Lobkis, 2001; Weaver & Lobkis, 2003; Mal-
colm et al., 2004), to crustal seismology (Campillo &
Paul, 2003; Shapiro & Campillo, 2004; Shapiro et al.,
2005; Sabra et al., 2005c; Sabra et al., 2005b), to ex-

ploration seismology (Bakulin & Calvert, 2004; Bakulin
& Calvert, 2006; Schuster et al., 2004), to helioseismol-
ogy (Rickett & Claerbout, 1999; Rickett & Claerbout,
2000; Rickett & J.F., 2001), to structural engineering
(Snieder & Safak, 2006; Snieder et al., 2006a; Thomp-
son & Snieder, 2006), to ocean acoustics (Roux et al.,
2004; Sabra et al., 2005a; Sabra et al., 2005d), to earth-
quake data recorded in a borehole (Mehta et al., 2007),
and to monitoring of volcanoes and fault zones (Sens-
Schonfelder & Wegler, 2006; Wegler & Sens-Schonfelder,
2006).

Wapenaar et al. (Wapenaar et al., 2006b) de-
rived the extraction of the Green’s function for sys-
tems of coupled first-order differential equations that
describe general linear systems that include acoustic
and elastic waves, the Maxwell’s equations, and dif-
fusive systems. The general applicability of the ex-
traction of the Green’s function is reminiscent to the
fluctuation-dissipation theorem, e.g., (Callen & Welton,
1951; Kubo, 1966; Le Bellac et al., 2004), which states
that the response of a linear system in thermodynamic
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equilibrium to an external force is related to the fluc-
tuations in the system. The application of the fluctu-
ation dissipation theorem to macroscopic systems such
as the Earth’s crust or ocean is, however, not trivial.
The energy of macroscopic systems is large compared
to the thermal energy; hence these systems are, in gen-
eral, not in thermodynamic equilibrium. The extraction
of the Green’s function for acoustic and electromagnetic
waves was derived earlier for stationary random media
(Barabanenkov, 1969; Barabanenkov, 1971; Rytov et al.,
1989a). These treatments rely on an ensemble average,
and therefore give the Green’s function of the mean field
only. In this work we average neither over thermal fluc-
tuations, nor over an ensemble, but use an averaging
over sources instead.

In this work we explore the general formulation of
the extraction of the Green’s function for linear scalar
systems and explore the requirements that such a sys-
tem must satisfy in order to retrieve the Green’s func-
tion from fluctuations. Section 2 illustrates the central
role of the concept of equipartitioning in the extraction
of the Green’s function. We introduce linear systems
with symmetric spatial differential operators in section
3 and derive in section 4 a general theory for the ex-
traction of the Green's function from fluctuations for
such systems. Several examples are shown that are ei-
ther of a didactic nature, or because they provide new
applications. This general formalism is applied to sys-
tems that are invariant under time-reversal (section 5),
to the diffusion equation (section 6), to a string with
either an open end or fixed ends (sections 7 and 8), to
acoustic waves (section 10), to Schrédinger’s equation
(section 11), and to a vibrating beam (section 12). We
extend the general theory to anti-symmetric differen-
tial operators in section 13, and apply this in section 14
to the one-dimensional advection equation. In section 9
we show that the Green’s function cannot always be re-
trieved by cross-correlation, and relate this to the lack
of equipartitioning. We explain in section 15 why energy
transport plays such a central role in the retrieval of the
Green’s functions from ambient fluctuations. In the ap-
pendix we show that the requirement of equipartition-
ing is stronger than the condition that the net energy
current vanishes.

2 A HEURISTIC EXPLANATION OF THE
ROLE OF EQUIPARTITIONING

The concept of equipartitioning plays a central role in
the retrieval of the Green’s function. The word equipar-
titioning is often used to mean that all modes (Larose
et al., 2006; Weaver, 1982), or degrees of freedom (Gold-
stein, 1980), of the system are excited with equal energy.
It has also been used to indicate that the energy current
is equal in all directions (Malcolm et al., 2004). We use
the latter definition of equipartitioning. Figure 1 serves
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Figure 1. Left panel: a point source in a homogeneous acous-
tic medium at point A that emits equal amounts of energy
toward points B and C. Right panel: equal energy transport
along the solid and dashed arrows is needed to retrieve the
Green'’s function for the propagation from the source point
A to the points B and C.

to illustrate heuristically the central role of equiparti-
tioning. In this example we consider acoustic waves in a
homogeneous medium. A pressure source at location A
excites acoustic waves. As shown in the left panel, these
waves propagate with equal amplitude to receivers at
points B and C.

Next, we consider the retrieval of the Green'’s func-
tion from cross-correlation. In the right panel of figure
1 there is no physical source at point A, and incoming
waves turn into outgoing waves from point A as they
pass through that location. Because of the absence of a
physical source in the right panel of figure 1, the term
virtual source has been used (Bakulin & Calvert, 2004;
Bakulin & Calvert, 2006). Since the outgoing waves for
the physical source in the left panel have the same am-
plitude for all propagation directions, the same must
be true for the virtual source in the right panel. The
outgoing wave at point A in the right panel has the
same energy as the incoming wave, because the waves
simply move through point A. The equivalence of the
real source in the left panel, and the virtual source in
the right panel, implies that the incoming waves in the
right panel must have the same energy for all propa-
gation directions. In other words: the waves must be
equipartitioned. For the sake of argument we used a ho-
mogeneous acoustic medium. This is, however, not es-
sential. A scalar source in an inhomogeneous medium
also radiates waves isotropically (Chapman, 2004).

As another case consider the situation that point
B is a diffractor. The direct wave that travels from A
to C should be excited by the virtual source with the
same strength as that of the diffracted wave that trav-
els from A through the diffractor B to point C. In order
to retrieve the correct amplitude ratio of the direct and
diffracted waves from cross-correlation, the energy cur-
rents along the solid and dashed arrows in the right
panel of figure 1 must be identical.

For vector equations, such as for elastic waves, the
energy is usually not radiated isotropically. For exam-



Figure 2. Definition of the total volume V;ot (bounded by
the solid line), and the sub-volume V defined by the shaded
region.

ple, a point force in an elastic medium radiates energy
with a dipole pattern (Aki & Richards, 2002). For such
a vector problem, one retrieves the Green’s function by
cross-correlating the displacement fields recorded at two
receivers (Wapenaar, 2004). The projection of the dis-
placement field onto the component used for the cross-
correlation, gives the same dependence on the direction
of propagation as does the radiation pattern of a point
force. Therefore, one also needs the energy current to
be independent of direction for such a vector problem.

In general, the extraction of the Green’s function by
cross-correlation gives the superposition of the causal
Green’s function and its time-reversed version (usu-
ally called the acausal Green’s function.) In observa-
tional studies the causal Green’s function as estimated
by cross-correlation, and its acausal counterpart, often
have different amplitudes. This asymmetry has been
linked to the lack of equipartitioning {e.g., (Malcolm
et al., 2004; Paul et al., 2005)). We give a more quanti-
tative discussion of equipartitioning in section 15.

The requirement that the energy current is inde-
pendent of direction implies that the net energy current
vanishes. The net energy current vanishes when the en-
ergy current for every pair of opposing directions van-
ishes, but the energy current can still vary with direc-
tion. We show in the appendix explicitly that a van-
ishing net energy current does not necessarily imply
equipartitioning.

3 A GENERAL DYNAMIC SYSTEM WITH
A SYMMETRIC OPERATOR

Consider a scalar field u that is governed by the equation
oY o’ )
(aN(r,t) * N + -+ az(r, t) % e +ai(r,t) * &)
u(r,t) = H(r,t) x u(r,t) + q(r,t) . )

In this expression the asterisk denotes temporal con-
volution, q(r,t) is the forcing, and H is a symmetric
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operator with properties that are defined in equation
(3). Later we provide examples of physical systems that
are described by equation (1). For Schrodinger’s equa-
tion, the wave function is complex in the time domain,
hence u(r,t), and the time-domain Green’s function,
may be complex. In this work we analyze this system
in the frequency domain, using the Fourier convention,
h(t) = [ h(w)exp (—iwt) dw. With this convention, ex-
pression (1) corresponds, in the frequency domain, to

N
Z an(r,w) (—iw)" u(r,w) = H(r,w)u(r,w) + q(r,w) .
2

Henceforth we suppress the frequency dependence of
these quantities. The operator H(r,w) and the coeffi-
cients an(r,w) are not necessarily real.

Symmetry of H means that for any two functions

fandg
/ f(Hg)dV =
Viot

where the integration is over the total volume V;,; over
which the system is defined. For example, in seismol-
ogy the total volume could be the solid earth, which
is bounded by a stress-free surface. Because of prop-
erty (3), the system satisfies reciprocity. To show this
we derive a representation theorem of the convolution
type by considering expression (2) for two states that
we label with the subscripts A and B, by evaluating
(2)auB —ua(2)B. In this notation (2)4 denotes expres-
sion (2) for state A. This subtraction gives

(Hf)gdv . 3)
Viot

ua(Hup) — (Hua)up —qaus + gpua =0. 4)
Integrating this equation over the total volume Vio¢, and
using equation (3) gives

/ gaupdV = geuadV . (5)

Viot \

Consider an impulsive forcing at location r4 for state A
and at location rg for state B:

qa,8(r) = d(r —ra,B), (6)

The response to such a forcing is, by definition, the
Green’s function

ua,8(r) = G(r,ra,B) . )
Inserting these expressions into equation (5) gives
G(ra,rg) = G(rp,ra), (8)

which states that reciprocity is satisfied.

As stated in expression (3), the operator is sym-
metric when integrated over the total volume V. In
this work we limit the integration in several examples
to a sub-volume V of the total volume Vi, see fig-
ure 2. For example, in seismology the sub-volume may
be the region that is investigated in a seismic survey.
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Its boundary 0V is not necessarily a physical boundary
where homogeneous boundary conditions apply. For in-
tegration over this sub-volume the operator H is not
necessarily symmetric, and we define the bilinear form

L(f,9) by
[ g - gy = f L(f,g)dS . 9)
v v

Examples of the bilinear form L are shown in later sec-
tions. From definition (9), L is anti-symmetric:

L(f,9) = —L(g, f) - (10)

Integrating expression (4) over the volume V, and
using definition (9), gives

f L(uA,uB)dS+/ (gpua —qaup)dV =0. (11)
av \ %4

Consider a state B that is excited by an impulsive ex-
citation at location ro, i.e., gg(r) = &(r — ro); hence
up is given by the Green’s function: ug(r) = G(r,ro).
Dropping the subscript A, expression (11) is then given
by

7{ L{u(r), G(x, ro))dS— / G(r, ro)g(r)dV-+u(ro) = 0.
av \'4

(12)

Using reciprocity, expression (8), this gives the repre-
sentation theorem that relates the field to the excitation
and its values on the boundary

u(ro) = /V Glro, r)q(r)dV — jé; | Du(s), G(ro,x))ds .
(13)

4 GENERAL EXPRESSION FOR THE
EXTRACTION OF THE GREEN’S
FUNCTION

In this section we derive a general expression for the
extraction of the Green's function using a representation
theorem of the correlation type. Following Fokkema and
van den Berg (Fokkema & van den Berg, 1993; Fokkema
& van den Berg, 1996) we evaluate (2)aup — ua(2)5,
where (2)5 denotes, for example, the complex conjugate
of expression (2) for state B. Integrating the result over
the volume V gives

N
;/V ((—iw)" an — (iw)" ay) uaupdV
- /V (ul (Hun) — (Huh)ua)dV

+/ (qauy — qhua)dVv . (14)
v

For even values of n, an(—iw)" — aj(iw)* =
2iIm(an)(iw)™, while for odd values of n, an(—iw)"™ —

ay(iw)* = —2Re(an)(iw)™. Writing H* = H + (H* —
H) = H — 2iIm(H), and using definition (9) gives

-2 Z /V(z'w)" Re(an)uaupdV

n odd

+2i Z /(iw)"]m(an)u,qu;;dV
v

n even

= 2i/ uA Im(H)ude+j£ L(up,ua)dS
v av

+ / (gaul — qhua)dV . (15)
v

The general expression for the extraction of the Green’s
function follows by choosing expression (6) for the ex-
citations ga,B. According to expression (7), the fields
u4,B are then given by the Green functions. Using reci-
procity (equation (8)), we can write the result as

G(ra,re) — G*(ra,rg)
~2 3 ()" /V Re(an(t))G(r4,1)G" (r5, r)dV

n odd

2% 3 (iw)" /v Im(an(r))G(ra,r)G" (rs, r)dV

n even

+ ?4 L(G" (rp,1), Glra, r))dS
av
+2i /V Glra,r) Im(H)G" (rs, r)dV . (16)

In the following sections we give examples of how
this expression can be used to extract the Green'’s func-
tion from the correlation of fields. The left-hand side
is the difference of the Green’s function and its com-
plex conjugate. Since complex conjugation in the fre-
quency domain corresponds in the time domain to time-
reversal, the left-hand side corresponds in the time do-
main to G(ra,rgs,t) — G*(ra,ra, —t), the difference of
the causal Green'’s function and the complex conjugate
of the acausal Green’s function. In many applications,
such as acoustics or diffusion, the field is real in the time
domain. In quantum mechanics, the wave function, and
the associated time domain Green’s function, is com-
plex. For this reason we retain the complex conjugation
of the time domain acausal Green’s function.

The minus sign in the left-hand side of equation
(16) is a matter of convention only. Multiplying expres-
sion (16) with —iw, and defining

G = —iwG, (17)



gives
G ra,rp)+ G (ra,rp)
=23 (iw)! / Re(an(r))G® (x4, r)G™" (rp, r)dV

n odd v

~2i 3 ()™ /V Im(an(£)G (x4, £)GY" (x5, r)dV

n even

1

+—=¢ LG (rs,r),GV(ra,r))dS
W Jav
+% / G (x4, v) Im(H)G® (x5, r)dV . (18)
Vv

This equation is equivalent to expression (16), but has a
plus sign in the left-hand side, as in several other deriva-
tions, e.g., (Weaver & Lobkis, 2005; Snieder, 2004a;
Wapenaar et al., 2005). When G denotes, for example,
the displacement Green’s function, Gt corresponds to
the Green’s function for the velocity. The sign in the
left-hand side of expressions (16) and (18) is thus de-
fined by the choice of the Green’s function that one uses.
Note that the right-hand sides of these equations differ
by a factor 1/iw. Since, with the employed Fourier con-
vention, —iw corresponds, to differentiation in the time
domain, expressions (16) and (18) differ, in the time
domain, by an additional time derivative.

5 EXAMPLE: INVARIANT SYSTEMS
UNDER TIME-REVERSAL

Consider systems that are invariant under time reversal.
This invariance has explicitly been used in some deriva-
tions for extraction of the Green's function (Derode
et al., 2003b; Derode et al., 2003a). An example of sys-
tems that are invariant under time reversal is, for ex-
ample, the acoustic wave equation without attenuation:

1 0% 1
with p the mass density and c the speed of sound. In
the notation of expression (1), a2z = 1/pc?, and H =
V-p~!V. For this problem only a2 is nonzero, and both
az and H are real. Another example is Schrodinger’s
equation (Merzbacher, 1970)
2

i -

ot 2m
which is invariant under time reversal and complex
conjugation. Since the complex conjugation does not
change expectation values (Merzbacher, 1970), the com-
plex conjugate wave function corresponds to the same
physical state. In this case only a1 is nonzero, H is real,
and a; = ih is purely imaginary.

For these examples the first two terms in the right-
hand side of expression (16) vanish. Since time-reversal
corresponds, in the frequency domain, to complex conju-
gation, time reversal invariance of equation (2) implies

Vi + Ve, (20)
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that a,(—iw)™ is real. For even n this means that a,
is real, while for odd n, a, is imaginary. Under these
conditions the first two terms in the right-hand side of
equation (16) are equal to zero, while the condition that
H is real implies that the last term vanishes as well. In
this case, expression (16) reduces to

Glra,rn)—G"(ra,r5) = ]év L(G" (v8, 1), G(ra,r))dS .
(21)

This expression contains a surface integral, but no vol-
ume integral. In later sections we show that this al-
lows for the extraction of the Green’s function by cross-
correlation of fields that are excited by sources on
the surface 8V only. The general expression (16) con-
tains both a surface integral and volume integrals. The
presence of volume integrals indicates that for systems
that are not invariant under time reversal, one needs
sources throughout the volume to extract the Green'’s
function. We analyze the acoustic wave equation and
Schrédinger’s equation in more detail in sections 10 and
11.

6 EXAMPLE: THE DIFFUSION
EQUATION

The general expression (16) is also valid for systems that
are not invariant under time-reversal. As an example of
such a system consider the diffusion equation

t
QLD _ v (D) Vulr,0) +a(r,1) (22)
where the diffusion constant D(r) can vary with loca-
tion. In the notation of expression (1), a1 = 1, and

an, = 0 for n # 1. The operator H is real and is de-
fined by

H=V.DV. (23)

In this section we show how the Green’s function of the
diffusion equation can be extracted from the correlation
of fields excited by random sources. This derivation is
equivalent to an earlier derivation (Snieder, 2006b).

For operator H of expression (23), fHg = fV -
(DVg) =V -(DfVg)— DVf-Vg. Integrating this over
the volume V, applying Gauss’s theorem, and subtract-
ing the same expression with f and g interchanged, gives
Green's theorem:

[ utts—tngav - § p(s5-5Lq)as,
(1)

where 8/0n denotes the derivative normal to the bound-
ary dV. The bilinear form L for this problem is thus
given by

w9 =0 (158 -5a). (25)
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Consider the special case, where on the boundary, either
the field, its normal derivative, or a superposition of
these quantities vanishes. This means that f satisfies
one of the following boundary conditions:

of of
_6; =0 or 3
with o a real number. The same boundary condition
holds for g. In this case

L(f,9)=0, (27)

and expression (16), for the diffusion equation, is given
by

f=0 or +af=0, (26)

Glra,rs)— G (ra,r5) = 2iw / Gra, )G (r5,1)dV .
v
(28)

Also, using expression (27), representation theorem (13)
reduces to

u(re) = /v G(ro,r)q(r)dV . (29)

Suppose that the field is excited by spatially uncor-
related sources that have a power spectrum |S(w)|?:

(g(r1)g"(r2)) = |SW)[*6 (r1 — r2) . (30)

The brackets (---) denote an average of all sources.
Expression (30) states that the excitation at two dif-
ferent spatial locations is uncorrelated when averaged
over all sources. This happens for quasi-random contin-
uous sources whose source signature is uncorrelated for
sources at different locations. Equation (30) is also ap-
plicable when controlled, impulsive, sources fire sequen-
tially at different locations, and when a summation over
these sources is applied (e.g., (Bakulin & Calvert, 2004;
Bakulin & Calvert, 2006)). In practical applications the
source average for continuous sources is implemented
by averaging over multiple non-overlapping time win-
dows, e.g., (Shapiro & Campillo, 2004; Sens-Schonfelder
& Wegler, 2006). Multiplying expression (28) with
|S(w)|?, and using that [, G(ra,r)G*(rs,r)dV =
Jv [, G(ra,r1)d (r1 — r2) G*(rp,r2)dVidVa gives

(G(ra,rB) — G*(ra,rp))|S(w)|?

— 2iw / / Glra, 1) |S@)[2 6 (r1 — 12) G" (x5, r2)dVidVa
vVJv

= 2iw(/v G(ra,r1)g(r1)dVi (/v G(rB,rz)q(rz)dVZ).)

= 2iw(u(ra)u’(rp)) , (31)

where expression (29) is used in the last identity. This
result can be written as

G(ra,rp) — G*(ra,rp) = —— (u(ra)u*(rp)) . (32)

IS( )|
The difference of the causal and acausal Green’s func-
tion thus follows from the cross-correlation of fields
excited by spatially uncorrelated sources. The factor

Figure 3. A string with an open, forced, end at z = 0 and
a fixed end at z = a.

iw corresponds, in the time domain, to a (negative)
time derivative —9/8t. A stronger excitation leads to
stronger field, but the Green’s functions in the left-hand
side must be independent of the strength of the excita-
tion of the fields that are correlated. The division by
the power spectrum in the right hand side of expression
(32) provides the required normalization.

The reason why volume sources are needed for the
extraction of the Green’s function can be explained as
follows. The diffusion equation is of a dissipative na-
ture. A continuous injection of energy within a volume
is needed to overcome the dissipation inherent with dif-
fusive systems. In this way an energy balance is estab-
lished, and the system is equipartitioned when averaged
over all sources.

7 EXAMPLE: A STRING WITH MOVING
END

In order to clarify the essential role of an energy bal-
ance for retrieving the Green'’s function, we first present
a simple one-dimensional system. Consider a string ex-
tending from = = 0 to z = a with mass-density p(z) per
unit length, and is under constant tension T, see figure
3. The left end of the string is excited at = 0, while
the right end is fixed at £ = a. There is no dissipation
in the string. The motion of the string is governed by

o @), (3)

The string has a fixed end at £ = a and is being shaken
by a force F(t) at z =0
a(z,t) = F()i(c) - (34)

In the notation of expression (1), a2(z) = p(x), all other
a,, are equal to zero, and H = T'9%/9z%. Using definition

(9)
L(f,9) =T (f0:9 — 90:f) . (35)
Inserting these results into expression (16) gives
G(za,zB) — G (za,2B) = T |G (zB,2)0:G(zA,x)
~G(24,7)8:G" (z8,7)|;2, - (36)
(For one-dimensional systems the surface integral in ex-
pression (16) reduces to the difference of the integrand
at the ends of the integration interval.) The contribution

from the point £ = a on the right-hand side vanishes be-
cause the string is fixed at this point. In order to use this
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expression for the extraction of the Green'’s function, we
need to eliminate the derivative of the Green’s function
at the left endpoint (z = 0) from this expression. This
can be achieved by imposing a radiation boundary con-
dition at the left side of the string. Together with the
condition that the right side is fixed, this means that
u(z) and G(z, zo) satisfy the following boundary condi-
tions

Of(z =0) _

e —ikf(z =0) and

flz=a)=0,
(37)

with the local wave number k£ at the left side of the
string given by
w
koz—— —<
c(z=0)"

where ¢ = /T'/p. Note that for radiation boundary con-
dition (37) the parameter « in expression (26) is imagi-
nary. Inserting these results in expression (36) then gives

(38)

G(za,zB)-G"(zA,2B) = 2iTk G(za,z = 0)G* (8,2 =10) .

(39)

Using boundary condition (37) the motion of string
is according to expression (13) given by

u(xo) = G(zo,z = 0)F(w) . (40)

Multiplying equation (39) with |F(w)|?, and using ex-
pression (40), then gives

(G(za,z8) — G* (x4, 28)) | F(W)|*
= 2iTk G(za,z = 0)F(w) (G(zr,z = 0)F(w))"
= 21Tk u(za)u"(zB) - (41)

Using expression (38), this result can also be written as

G(za,z8)-G*(za,zB) = 2iwypla = 0)T ]}:‘)((:)FO)T
(42)

In expression (41), the cross-correlation is multi-
plied with Tk. The power in a vibrating string is pro-
portional to Tkju|? (Butkov, 1968). This means that the
reconstructed Green’s function depends on the power
that is injected into the string by the shaking at its end
point.

We used the radiation boundary condition (37) to
eliminate the z-derivative of the Green’s function. The
physical reason for this choice is that the radiation
boundary condition corresponds to an energy sink by
outward radiation at the same point where energy is
supplied to the system (the left side of the string that is
shaken). This creates a state of equipartitioning in the
string.

u(za)u*(zB) .
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Figure 4. A string that is fixed at both endpoints that is
forced internally.

8 EXAMPLE: A STRING WITH FIXED
ENDPOINTS AND DISSIPATION

In the previous example the string was not damped,
and the radiation from the left end provided an energy
sink. In this section we show a damped string with fixed
endpoints, where the damping acts as an energy sink.
The damped string with fixed endpoints satisfies
0%u Ou 0%u

P(E)W + al(w)a —Tez = q(z,t) , (43)
where a1(z) is the damping parameter. Because of the
fixed endpoints

ulz=0)=u(z=a)=0. (44)

According to expression (35), for these boundary con-
ditions the bilinear boundary term vanishes:

L(f,9)=0, (45)
and expression (16) is given by
G(za,zB) — G*(za,zB)

= 24w /Oa a1(z)G(za,7)G" (zB,z)dx . (46)

For a given loading, the response according to equation
(13) is given by

u(:vo)=/ G(zo,z)q{z)dx . (47)
o

Next consider a spatially uncorrelated excitation
that satisfies
(a(21)q" (x2)) = a1(z1) |SW)[* 8 (z1 — z2) . (48)

Note that this source strength locally is proportional to
the attenuation, as described by the damping parame-
ter a1(z). Multiplying expression (46) with the power
spectrum gives

(G(za,zB) — G*(za,28)) |SW)[*

= 2w T 1 2a1 1 1~ T2

=2 [ [*Ganm) 5@ 0 @)@ - o)
G*(zB, r2)dx1dz2

= 2iw(/0a G(za,71)q(z1)dT) (/oa G(zs,zz)q(mz)dmz) )

= 2iw{u(za)u*(zB)) ; (49)

hence the sum of the causal and acausal Green’s func-
tions follows from cross-correlation of the fields excited
by spatially uncorrelated sources.
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Note the presence of the damping ai1(z) in expres-
sion (48). The Green’s function can be extracted from
the cross-correlation only when the excitation is locally
proportional to the damping. This creates an energy
balance because the source of energy by the excitation
is locally compensated by the attenuation, which acts
as an energy sink. In section 15 we use the equation of
radiative transfer to show that in a state of equiparti-
tioning the excitation locally balances the dissipation
due to intrinsic attenuation. When the excitation would
not be proportional to the damping, there would be a
net energy flux from the regions with strong excitation
and weak damping to the areas of weak excitation and
strong damping. The associated net energy flux violates
the requirement of equipartitioning.

9 EXAMPLE: FAILURE TO EXTRACT
THE GREEN’S FUNCTION

In this work numerous examples are presented of the
extraction of the Green’s function by cross-correlation.
We now use the string, as presented in sections 7 and 8,
to illustrate situations where the Green’s function can-
not be extracted by cross-correlation. First consider the
string with internal excitation, as analyzed in section 8,
but now without dissipation. This corresponds to the
case a1 = 0. Inserting this value in the right-hand side
of expression (46) gives G(za,z8) — G*(xza,zB) = 0,
which implies that the Green’s function cannot be re-
trieved by cross-correlation.

The physical reason for the inability to extract the
Green’s function in this case is that energy is continu-
ously supplied by the excitation, but there is no dissi-
pation to act as a sink for this energy. The string thus
is not in equilibrium, violating equipartitioning. Conse-
quently, the Green’s function cannot be retrieved from
the fluctuations. In this case attenuation is needed to
break the invariance for time-reversal in order to re-
trieve the Green'’s function.

As a second example consider the string that is ex-
cited at one of its endpoints, and whose motion is dis-
sipative as described by a nonzero value for a,(z). Fol-
lowing expression (16), and modifying equation (39) to
include the attenuation gives

G(za,zB) — G (za,2B)

= 2iTk G(za,x = 0)G*(zB,z =0)

+2iw/ a1{r)G(za,z)G" (zB,T)dx . (50)
o

Extending the steps leading to expression (41) then
gives
(G(za,zB) — G (za,28)) |F(w)[*

= 2Tk u(za)u"(zp) + 2iw |F(w)[?

/ * 01(2)G(24,2)G" (25, 7)dx (51)

The last term prevents the Green'’s function from being
retrieved by cross-correlation. Again, this is caused by a
non-equilibrium state of this string. The string is being
supplied with energy on its left endpoint while energy is
being dissipated throughout the string. There is thus a
net energy flux from the endpoint into the string. This
net energy flux violates equipartitioning.

If in addition to the force at the endpoint, there also
is a continuous excitation within the string, then the
Green’s function can be retrieved by cross-correlation.
This can be achieved, however, only when the internal
excitation compensates for the dissipation. Experimen-
tally this may be difficult to realize.

10 EXAMPLE: THE ACOUSTIC WAVE
EQUATION

The previous examples are for one-dimensional sys-
tems. The same principles hold for more dimensions. We
show this by analyzing the acoustic wave equation (19)
in more detail. This derivation is equivalent to earlier
treatments (Wapenaar et al., 2005; Weaver & Lobkis,
2004). A comparison with expression (23) shows that
H =V - p~ 'V is the same operator as that for the dif-
fusion equation when D is replaced by p~!. Making this
substitution in equation (25) and inserting these results
in (16) gives

- 1

G(ra,rB) -G (rA,rB)=?{ -
av P
. 9G(ra,r) 0G*(rs,
(G (rs,r) on on

Note that in contrast to equation (28) for the diffu-
sion equation, this expression contains a surface integral
rather than a volume integral. Following ref. (Wapenaar
et al., 2005) we use a spherical surface far away from the
points r4 and rg and impose a radiation boundary con-
dition:
8G(ro,r)

on
Using the relation k = w/c, expression (52) is then given
by

G(I‘A,I‘B) —G'(rA,rB)
— %% f L Gea, )G (rm,1)dS . (54)
av PC

r) G(rA,r)) ds . (52)

= 1kG(ro,r) . (53)

For spatially uncorrelated sources at the boundary
that satisfy

) — 1S@
(Q( l)q ( 2)) p(rl)C(rl)

expression (54) reduces to

o(ry —r2), (55)

G(ra,rg) — G*(ra,rs) (u(ra)u(re)) . (56)

2w
|S(w)|?

In this case, energy is supplied to the system at the



boundary by the sources, and the energy loss due to
the radiation boundary condition establishes the equi-
librium condition required for equipartitioning.

The presence of the factors 1/pe in expression (55)
can be explained as follows. The power in an acoustic
medium is proportional to pv, with v the particle ve-
locity. The ratio of the pressure to the velocity is given
by the acoustic impedance (Snieder, 2004b), p/v = p¢;
hence the power is proportional to p?/pc. The excitation
of expression (55) thus dictates that the power supplied
at all points on the surface is constant, this establishes
equipartitioning.

According to expression (56) the Green’s function
can indeed be extracted by cross-correlation. A sim-
ilar problem has been formulated for acoustic waves
that are attenuated (Snieder, 2006a), as described by a
complex-valued compressibility £ = 1/pc?. In this case
Im(H) # 0, and, as a result, an additional volume inte-
gral is present in the right-hand side of expression (52).
In that case the Green'’s function can be recovered when
the volume is chosen in such a way that either the sur-
face integral vanishes (i.e., a free surface) and volume
sources are present, or the volume sources and the sur-
face sources are in the right proportion as in the case of
the string in section 9.

11 EXAMPLE: SCHRODINGER’S
EQUATION

The extraction of the Green’s function can also be
carried out for quantum systems. The extraction of
the Green's function for Schrédinger’s equation is al-
most the same as that for acoustic waves. (In quantum
mechanics, the term propagator is often used for the
Green’s function (Merzbacher, 1970).) For Schrédinger’s
equation (20), H = —(h%/2m)V? + V. A comparison
with the acoustic wave equation (19) shows that in ex-
pression (52), 1/p must be replaced by —h%/2m. Ex-
pression (54) generalizes for Schrodinger’s equation to
G(ra,rg) — G*(ra,rs)
52
__ f G(r,r)G" (rp,1)dS . (57)
av

m

Suppose that the excitation on JV is spatially uncorre-
lated, and is given by

(g(r1)g” (r2)) = |S(W)|*6(r1 ~r2) . (58)

Taking the same steps as in the derivation of expression
(56), and denoting the field by 1, the Green’s function
for Schrodinger’s equation can be retrieved by cross-
correlation:

. ikh? .
G(ra,rB) — G*(ra,rp) = — W(Tp(“)w (rs)) .

(59)

Extraction of the Green'’s function for Schrodinger’s
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x=0 X=a

Figure 5. A beam that is supported at both endpoints that
is forced internally.

equation experimentally requires that the cross-
correlation of the wave function be measured experi-
mentally and that waves are excited at the bounding
surface. The condition that sources are present on the
surface can be relaxed by using the derivation of Weaver
and Lobkis (Weaver & Lobkis, 2004), which shows for
acoustic waves in a medium that is homogeneous out-
side the surface 9V, that the sources on the surface
can be replaced by distributed volume sources outside
the surface. In the frequency domain, the acoustic wave
equation for a homogeneous medium and Schrédinger’s
equation for a free particle both reduce to the Helmholtz
equation. The arguments of Weaver and Lobkis there-
fore also are applicable for Schrédinger’s equation when
the potential vanishes outside the surface V. The con-
tinuous source distribution is more realistic than sources
on the surface for quantum-mechanical scattering prob-
lems.

The right hand side of expression (59) contains the
correlation of the fields at locations ra and rg. This
quantity can be measured when these points coincide:
ra = rg = r. In that case

2

G(e,1) = G (6,1) = = s () (60)
The right hand side is the expectation value of the in-
tensity fluctuations as a function of frequency. The left
hand side is the sum of the causal and acausal Green’s
function for waves to return to their starting point. This
quantity contains phase information that is related to
the time needed for a wave to return to the point r after
it has left this point. The counterpart of expression (60)
for elastic waves has been applied to recorded fluctua-
tions in the displacement to determine the elastic waves
that travel from a receiver into the subsurface of the
Earth and then return to the receiver (Sens-Schonfelder
& Wegler, 2006; Wegler & Sens-Schoénfelder, 2006).

12 EXAMPLE: A VIBRATING BEAM

In the previous examples, the operator H was a second-
order differential operator. This operator, however, need
not be of second order. As an example, consider an un-
clamped beam that is supported at its end points z = 0
and z = a; see figure 5. The beam satisfies a differential
equation that is of fourth order in the space variable
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(Chopra 1995)

@) 5t +a@i+ 2 (D@ 3E) =0, 61

In this expression m(:z:) is the mass of the beam per
unit length, and D(z) denotes the flexural rigidity. In
the notation of expression (1), az(z) = m(z), and
H = —0;5 (D8zz). Since the endpoints of the beam are
fixed and unclamped, the beam satisfies the following
boundary conditions
uz=0)=u(r=a)=0 and Ozzu(z = 0) =
(62)

Using repeated integration by parts, the operator
L defined in expression (9) is given by

L(f,9) = D (fzgzz — fz292)+90: (D faz)—fOz (Dgaz) -
(63)

Because of boundary conditions (62), [L(f, g)]_g = 0.
In this case, expression (16) is given by

G(za,zB) — G*(z4,7B)

= 2w /Oa ai(z)G(za,z)G"(zB,x)dT . (64)

This expression is identical to equation (46) for the
string with internal loading and attenuation. This
means that for the beam the Green’s function can be
determined from the motion excited by the spatially
uncorrelated source defined in equation (48) using the
cross-correlation of expression (49). This example is of
practical importance because the beam is a model for
mechanical structures such as bridges.

13 SYSTEMS DEFINED BY AN
ANTI-SYMMETRIC OPERATOR

The theory of the preceding sections is based on an op-
erator H that is symmetric when considered over the
volume Viot. Some systems are defined by an operator
that is anti-symmetric. This happens when H contains
an odd order of spatial derivatives, as in the flow prob-
lem presented in the next section. For such an operator

gy =- [

Viot

(Hf) gdV . (65)

Viot
Reciprocity does not hold in this case because the sym-
metry property of H is essential in the derivation of
expression (8). Equation (65) is not necessarily satisfied
when the integration is carried out over a sub-volume
V. By analogy with expression (9) we define a bilinear
form M by

/ ((HY) +(H 9 = § M(79d5.  (60)
v av

A representation theorem of the correlation type

— ¥ <«--

/\

x=0 xX=a
Figure 6. Advective transport in a single direction.
follows by considering two states labeled with the sub-

scripts A and B, and by integrating the combination
(2)aup + uA(2)B over the volume V to give

Ozzu(z =a)=0.

/ ((—iw)"™ an + (iw)™ a;) uaupdV
v
- /V (uh (Hua) + (Hulh) ua)dV

+ / (qaul + qhua)dV . (67)
v

Applying steps similar to those for the derivation of ex-
pression (16) gives

G(rB,rA) + G'(rA,rB)
=2 Y (o) / Re(an(r))G(r, 14)G" (r, r5)dV

n even

~2% S ()" / Im(an(t))G(r, £a)G" (v, r5)dV

n odd

- f M(G*(r,rg),G(r,ra))dS
ov

+2i /V G(r,r4) Im(H)G" (r,r5)dV . (68)

Note that now for real a,, only the even order coefficients
contribute. Also, because of the lack of reciprocity, the
arguments of the Green’s function differ from those in
the corresponding expression (16) for the case of a sym-
metric operator.

14 EXAMPLE: THE ADVECTION
EQUATION

As a simple one-dimensional example of the extrac-
tion of the Green’s function for a system that is de-
scribed by an anti-symmetric operator H, we study one-
dimensional advection of a fluid. In this case the gov-
erning equation is

1 du , Ou
o) Bt toz O (69)
with the field © advected by the flow. This field could
denote, for example, the temperature for advective heat
transport or the concentration of a non-reactive contam-
inant. Consider the case in which the field is determined
by its value at a point upstream, rather than by an ex-
plicit source term; hence ¢ = 0 in expression (69). As
shown in figure 6, flow is between two endpoints £ = 0



and x = a, first with flow towards the right, as shown
by the solid arrow. Because of the varying width of the
channel, as in a venturi, the flow velocity may depend
on the z-coordinate. For this system, ai(z) = 1/¢(x),
all other a, are equal to zero, and H = —3/0z. Us-
ing integration by parts, the bilinear form M defined in
equation (66) is given by

M(f,9)=—fg. (70)

We denote the Green’s function which depends on the
velocity ¢, by G(®). For this special case the general ex-
pression (68) reduces to

G(c)(:l:a,:l:A) =+ G(c)*(.’I:A,:EB)
- [c:(c)(.z-,z,,)c:(°>*(z,z3)]’: . (1)

Since H is anti-symmetric, reciprocity does not
hold. For this type of flow problem, the flow-reversal the-
orem (Lyamshev, 1961; Brekhovskikh & Godin, 1992;
Wapenaar & Fokkema, 2004) states that the arguments
of the Green’s function can be reversed when the flow
is reversed as well:

GO (z1,22) = —G ) (z2,71) . (72)
Applying this to expression (71) gives
G Nz a,z8) + G (zB,24)

- [G<-°>(zA,z)G<-°>*(zB,z)]:: . (73)

Note that the velocity c is replaced everywhere by —c.
Since the sign of the velocity is not important, we drop
the superscript —c¢, and consider a flow towards the left
as shown by the dashed arrow in figure 6. For the ad-
vection equation a source has an influence downstream
only; hence the Green'’s function for a leftward moving
flow satisfies

G(z,z0) =0 for T >7To. (74)

Consider two points between the endpoints of the
flow (0 < z4,B < a). Because of condition (74), the con-
tribution of endpoint x = 0 to expression (73) vanishes

G(za,zB)+G" (zB,z4) = —G(za,z = a)G (zB,z = a) .

(75)

Let u at the right endpoint have power spectrum
|S(w)|?. Multiplying expression (75) with this power
spectrum, and taking the same steps as those leading
to expression (41) gives
Glea,25) + G (28,%4) = ——u(za)u’ (z8) . (76)
S (w)]

This shows that the sum of the causal and acausal
Green’s functions can be found by correlating the field
recorded at two locations that are generated by a source
upstream.

For this problem, the sum of the causal and acausal
Green’s functions can be reformulated. Consider first
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the situation where x g is upstream from x 4; hence xg >
z4. Because of condition (74), the second term in the
left hand side of expression (76) vanishes, so that

G(za,zB) = _—lzu(:L‘A)u'(:I:B) (zB > z4a).

1S (w)l
(77)

When zp is downstream from z 4, the first term of ex-
pression (76) vanishes by virtue of condition (74), and

= _1 *
G*(zB,za) = ——u(za)u" (zB) (zB < z4a).
|S(w)]
(78)
Taking the complex conjugate changes this result into
-1 .
G(.’I:B,.’BA) == ———2u(:z:3)u (:Z:A) (CL‘B < :L‘A) .
1S (w)]

(79)

Expressions (77) and (79) can be combined into the gen-
eral expression

G(mdownstreamy mupstream)

—lz'u(xdownstream)ut(xupstream) ) (80)
|S(w)|

where ZTgownstream denotes the downstream point and
ZTupstream the upstream. This means that for the ad-
vection equation, the Green'’s function can be retrieved
by cross-correlating the fields generated by a source up-
stream from both observation points. The extraction of
the Green’s function for acoustic waves in a medium
with flow is described in refs. (Wapenaar et al., 2006b;
Wapenaar, 2006; Godin, 2006)

15 RECONSTRUCTING THE GREEN’S
FUNCTION AND EQUIPARTITIONING

As shown in the examples, an energy balance is nec-
essary for extracting the Green’s function by cross-
correlation. This confirms the heuristic arguments of
section ??. In this section we explore the requirement
of equipartitioning. Let us first consider why the energy
current, rather than another current such as the momen-
tum current, plays such a central role in the extraction
of the Green’s function.

In the derivation of the general expression for ex-
tracting the Green'’s function in section 4, a central step
is to multiply the field equation for state A with the
complex conjugate of field for state B, and to integrate
the result over volume, leading to expression (14). The
field equation contains the forcing q. The product of the
forcing and the field gives the power supplied by the
excitation. This means that expression (14), and subse-
quent expression, really are energy equations. Fokkema,
and van den Berg (Fokkema & van den Berg, 1993) use



166  R. Snieder, K. Wapenaar & U. Wegler

the phrase power reciprocity for the representation the-
orems of the correlation type.

For random media, a connection between the cor-
relation and the energy transport is made through the
Wigner distribution (Wigner, 1932). This distribution
is the spatial Fourier transform of the field-field cor-
relation function. Ryzhik et al. (Ryzhik et al, 1996)
show for acoustic waves, elastic waves, electromagnetic
waves, and matter waves, that in random media the
Wigner distribution leads to the equation of radiative
transfer, which governs energy transport. Other deriva-
tions also used the Wigner distribution to show that
for stationary random media, the Green’s function of
the mean field can be retrieved from the field correla-
tions (Barabanenkov, 1969; Barabanenkov, 1971; Rytov
et al., 1989a). Larose et al. (Larose et al., 2006) discuss
the relation between the Wigner distribution and the
extraction of the Green’s function in more detail.

We have stressed the importance of equipartition-
ing as defined by an energy current that is independent
of direction. The energy current J(r,t,n) satisfies the
equation of radiative transfer, which, in the time do-
main, is given by {(Chandrasekhar, 1960; OZisik, 1973;
Rytov et al., 1989b)

6.](!5:, fi) +ch - VJ(r, t,0) + (i, + fgeqe) (T, t, 1)
- / S(h, &')J(r,t, a)d*A’ + Q(r, ¢, h) . (81)

In this expression p,, and p,.,, are damping coefficients
due to intrinsic attenuation and scattering losses, re-
spectively. S(fi, i) accounts for the transfer of energy
propagating in the A’-direction to the f-direction by
scattering, and Q(r,t, i) denotes energy sources.

In our derivation of the extraction of the Green’s
function, we use source averaging. Since the source av-
erage does not depend on time, its time derivative van-
ishes. When the energy propagation is the same in all
directions, the energy current does not depend on the di-
rection of propagation: J = J(r, t). Consider the source-
averaged intensity, which is defined as

I(r) = / J(r, )d*#) = 4 (J(r, 1)) . (82)

When J does not depend on the direction of propaga-
tion, the second term of the left-hand side of expression
(81) integrates to zero; hence the average intensity sat-
isfies in this case

(i + Paca 1) = [ S8 1) + Qo) (83)

where (Q) is the source average of Q averaged over all
directions. The damping coefficient for scattering losses
follows from the requirement that for lossless media
(#;, = 0) in the absence of sources ((Q) = 0), expres-
sion (83) reduces to

ll'scat = /S(ﬁ) ﬁ’)dzﬁ’l 1 (84)

This expression relates the scattering attenuation to
S(f,n’). This relation also holds in the presence of at-
tenuation. Using the previous expression in equation
(83) gives

inI(r) = (Q(r)) - (85)

This means that for the source average in a equiparti-
tioned state, the intrinsic attenuation is balanced by the
energy sources. This is precisely the requirement that is
obtained in sections 8 and 12 for the damped string
with fixed ends and for the damped vibrating beam.
This condition is also required for attenuating acoustic
waves (Snieder, 2006a).

16 DISCUSSION

The theory presented here shows that for a general class
of scalar linear systems, the Green’s function can be ex-
tracted from field correlations. This makes it possible
to extract the Green’s function for systems other than
those for acoustic or elastic waves. Of particular interest
are Schrodinger’s equation and the diffusion equation,
because the theory accounts for the extraction of the
Green's function by cross-correlation in quantum me-
chanics, for the pore fluid pressure in porous media, the
diffusive transport of tracers and contaminants, and for
electromagnetic waves in attenuating media. The exam-
ple of the vibrating beam has applications in monitoring
bridges, buildings, and other mechanical structures.

The examples shown illustrate the importance of
equipartitioning. This condition implies, in particular,
that in systems that are not invariant under time-
reversal, the sources of the field must be distributed
throughout the volume and have a strength proportional
to the local attenuation rate. Depending on the applica-
tion, it might be difficult to realize such a distribution
of sources experimentally.

It is not clear what happens when the requirement
of equipartitioning is not satisfied. Figure 1 helps un-
derstand what happens in that case. Suppose the en-
ergy transport along the solid arrow is larger than the
energy transport along the dashed arrow. The correla-
tion of the field at the points A and B is larger than
the correlation of the fields at the points A and C. The
extracted Green'’s function for the propagation from A
to B is therefore stronger than those from A to C. The
arrival time, or phase, of the Green's function, however,
is not influenced by this mismatch in the energy flow.
This suggests that when the condition of equipartition-
ing is violated, the kinematic properties of the extracted
Green's function is correct, although the dynamic prop-
erties are not. Experiments with ultrasound (Malcolm
et al., 2004) and crustal surface waves (Paul et al., 2005)
support this conclusion. This conclusion is also sup-
ported by analytic models which show that for elastic
waves in a homogeneous medium, the amplitude of the
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Figure 7. An example in which the direct can be retrieved
by cross correlation, but the diffracted wave cannot. Solid
arrow: the direct wave propagating from A to B. Dashed
arrow: the diffiracted wave traveling from A through C to B.
Dotted arrows: direction of the the incoming ambient waves
used for the extraction of the Green’s function.

P and S-waves in the extracted Green’s function is cor-
rect only when the ratio of the P-wave energy to the
S-wave energy equals the value required by equiparti-
tioning, but the phase of the extracted P and S-waves is
correct for any value of this ratio (Sdnchez-Sesma et al.,
2006; Sanchez-Sesma & Campillo, 2006).

Two caveats should be made about the need for
equipartitioning. First, note that in the advection ex-
ample of section 14 there is no need to excite the field
on the downstream side. All transport is in the flow di-
rection only; hence equipartitioning is unnecessary in
that example. Second, the formalism for the extraction
of the Green’s function given here gives the superposi-
tion of the causal and acausal Green’s function. In some
situations, such as a homogeneous medium, one-sided
energy transport is sufficient to give either the causal or
the acausal Green’s function. This is illustrated in fig-
ure 7 showing incoherent waves are propagating towards
the left (dotted arrows). Here, the direct wave propagat-
ing from A to B, as indicated by the solid arrow, can
be retrieved by cross-correlation, but the direct wave
traveling in the opposite direction cannot. This does
not mean, however, that the full Green’s function for
wave propagation from A to B can be retrieved. Sup-
pose a diffractor is present at point C. The diffracted
wave traveling from A through C to B, as shown by
the dashed arrows, cannot be extracted from the waves
coming in from the right. Cross correlation here gives
only part of the Green’s function (the direct wave).

The words equipartitioning and ensemble average
have a well-defined meaning in statistical mechanics
that does not necessarily carry over to the macroscopic
systems considered here. Note that we have not assumed
thermodynamic equilibrium, as used in derivations of
the fluctuation-dissipation theorem (Callen & Welton,
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1951; Kubo, 1966; Le Bellac et al., 2004). In thermo-
dynamic equilibrium, a state with energy E is weighted
by exp(—BE) in the ensemble average, where 8! = kT’
is the thermal energy. In this work, the fields are char-
acterized by a power spectrum |S(w)|? that can be any
function of frequency, as long as it is known. The fact
that thermodynamic equilibrium is not required is no
surprise because the field energy in the macroscopic sys-
tems considered here is usually much larger than the
thermal energy.

This implies that source average in the context of
this paper does not refer to a thermodynamic average.
This means, in particular, that at any given moment
in time, the system need not be close to a state of
equilibrium. Consider, for example, a string that is
excited at both endpoints. It does not matter whether
the two endpoints are simultaneously excited with an
uncorrelated forcing, or one first shakes one endpoint
and then the other endpoint. In fact, in the virtual
source method (Bakulin & Calvert, 2004; Bakulin &
Calvert, 2006) one excites elastic waves sequentially by
different sources, and extracts the Green’s function by
summing over all the sources. Averaging in the context
of this work implies an averaging over all sources that
are used for the extraction of the Green’s function, and
equipartitioning is required after averaging over these
sources.
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APPENDIX A: AN EXAMPLE THAT A
VANISHING NET ENERGY CURRENT
DOES NOT IMPLY EQUIPARTITIONING

The net energy transport J (net) s the energy current
averaged over all directions

Jnet) — ?4 J(d)A d’n , (A1)

where §(---)d’n denotes an integration over all direc-
tions. At every point in space the energy current can be
expanded in spherical harmonics

J(aw ‘P) = Z Jl,myl,m(or ‘P) y (AZ)
i,m

where the angles # and ¢ are the polar angles of the
propagation direction fi:
sin @ cos
n=|{ sinfsingp | . (A3)
cosd

Rather than considering the Cartesian components of
i, we consider for brevity (Arfken & Weber, 2001)

ng £iny = sinfexp(tip) = Fy/ B%Yl,;tl((),‘l?) , (A4)

and

n; = cosf = \/%Yl,ow,(p) . (A5)

The corresponding components of the net energy cur-
rent are given by

IO T =Y T }{ Yim (6, @) sin0e**“d’n ,
l,m

(A6)

and

SO =3 g }( Yim(0, ) cos6 d®n | (A7)
i,m

Because of the orthogonality of the spherical harmonics

(Arfken & Weber, 2001)

f /4
J:gnet) :ti'];net) =F 8?7‘-‘11,;1 , Jgnet) — ?Tr‘]l,o R

(A8)

The condition that the net energy current vanishes thus
implies that

Jieim =0, m=0,+1. (A9)

A vanishing energy current thus requires only that the
coefficients Jy—1,m vanish. For a vanishing net energy
current J™t) = 0, all coefficients Ji,m with I # 1 can
be nonzero. This means that an energy current given by
expansion (A2) with nonzero coefficients Ji,m for I > 1
gives a vanishing net energy current, while the energy
current J(f) varies with direction. In this case the net
energy current vanishes, but there is no equipartition-

ing.
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ABSTRACT

It has been shown by many authors that the cross-correlation of two recordings
of a diffuse wave field at different receivers yields the Green'’s function between
these receivers. Recently the theory has been extended for situations where
time-reversal invariance does not hold (e.g. in attenuating media) and where
source-receiver reciprocity breaks down (in moving fluids). Here we present a
unified theory for Green’s function retrieval which captures all these situations
and, due to the unified form, readily extends to more complex situations, such
as electrokinetic Green’s function retrieval in poro-elastic or piezoelectric media.
The unified theory has a wide range of applications in ‘remote sensing without
a source’.

Key words: interferometry, general vector systems

1 INTRODUCTION

Since the pioneering work of Weaver and Lobkis
(Weaver & Lobkis, 2001; Weaver & Lobkis, 2002),
Campillo and Paul (Campillo & Paul, 2003) and others,
the literature on retrieving the acoustic Green’s func-
tion from the cross-correlation of two recordings of a dif-
fuse wave field has expanded spectacularly. Apart from
the many successful demonstrations of the method on
ultrasonic, geophysical and oceanographic data, many
theoretical developments have been published as well
(Lobkis & Weaver, 2001); (Derode et al., 2003); (van
Tiggelen, 2003); (Malcolm et al., 2004); (Snieder, 2004);
(Roux et al., 2005); (Weaver & Lobkis, 2005); (Sanchez-
Sesma et al., 2006). One particular branch of theory
is based on the reciprocity principle (Wapenaar et al.,
2002); (Wapenaar, 2004); (Weaver & Lobkis, 2004); (van
Manen et al., 2005). This theory applies to arbitrary in-
homogeneous anisotropic media and therefore not only
accounts for the reconstruction of the ballistic wave
but also for the primary and multiply scattered waves
present in the coda of the Green’s function. Recent de-
velopments in this branch of research are the extension
for situations where time-reversal invariance does not
hold (as for electromagnetic waves in conducting me-
dia (Slob et al., 2006a); (Slob et al., 2006b); (Slob &
Wapenaar, 2006), acoustic waves in attenuating media
(Snieder, 2006a), or general scalar diffusion phenom-

ena (Snieder, 2006b)), as well as for situations where
source-receiver reciprocity breaks down (as in moving
fluids (Wapenaar, 2006b); (Godin, 2006)). In this Let-
ter we develop a unified representation of Green’s func-
tions in terms of cross-correlations that covers all these
cases. Due to the unified formulation, the theory read-
ily extends to more complex situations, such as elec-
trokinetic Green’s function retrieval in poro-elastic or
piezoelectric media. From this extension it follows, for
example, that the cross-correlation of passive elastody-
namic and electric noise observations at two different
receivers yields the elastodynamic response that would
be observed at one of the receiver positions as if there
were an impulsive electric current source at the other.
Hence, cross-correlating passive measurements may lead
to the remote sensing response of the electrokinetic cou-
pling coefficient, which, in case of a porous medium,
contains relevant information about the permeability of
the medium under investigation.

2 GENERAL MATRIX-VECTOR
EQUATION

Diffusion, flow and wave phenomena can each be cap-
tured by the following differential equation in matrix-
vector form (de Hoop & de Hoop, 2000); (Wapenaar
& Fokkema, 2004), AZY + Bu + Dxu = s, where
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u = u(x,t) is a vector containing space- and time-
dependent field quantities, s = s(x,t) is a source vec-
tor, A = A(x) and B = B(x) are matrices contain-
ing space-dependent material parameters and Dy is a
matrix containing the spatial differential operators 0y,
92 and 93. D/Dt denotes the material time derivative,
defined as D/Dt = 8/t + v° - V, where /9t is the
time derivative in the reference frame and v° = v%(x)
the space-dependent flow velocity of the material; the
term v® - V vanishes in non-moving media. For each
application, there exists a real-valued diagonal matrix
K = K ! such that KAK = A = AT, KBK = BT
and KDK = —DT (superscript T' denotes transposi-
tion).

For mass diffusion of a species through a mixture,
u” = (Y,J1,J2,J3) (with Y denoting the mass frac-
tion of the species and J; the mass flux relative to the
mixture), sT = (&,0,0,0) (with & the mass production
rate), A = pdiag(1,0,0,0) (with p the mass density),
B = ;5 diag(0, 1,1, 1) (with D the diffusion coefficient),
K = diag(1,—1,—1,—1) and

0 & & O3

_ 0 0 0
Dx=1a, 0 0 o] M

9 0 0 0

For other scalar diffusion processes the vectors and ma-
trices are defined in a similar way.

For acoustic wave propagation in a moving atten-
uating Auid, u” = (p,v1,vs,va) (with p the acoustic
pressure and v; the particle velocity), sT = (q, f1, f2, fa)
(with g the volume injection rate and f; the external
force), A = diag(k, p, p, p) (with k the compressibility
and p the mass density), B = diag(b”,b",b",b") (with
b” and b¥ the loss terms), K = diag(1, -1, —~1,~-1) and
D, again defined by equation (1). The spatial variations
of the flow velocity v° are assumed small in compari-
son with those of the particle velocity of the acoustic
wave field (this assumption can be relaxed, but then
the equations become more involved (Godin, 2006)).

For electromagnetic diffusion and/or wave prop-
agation in a non-moving anisotropic medium, u? =
(ET,HT) (with E and H the electric and magnetic field
vectors), sT = —({J}7, {IJ™}T) (with J¢ and J™ the
external electric and magnetic current density vectors),
A = blockdiag(e, pt) (with € and p the permittivity and
permeability tensors), B = blockdiag(e®, 0™) (with o®
and o™ the electric and magnetic conductivity tensors),
K = diag(—1,-1,-1,1,1,1) and

r 0 -8 &
Dy — (1()) %’) Do=|a o -al. @
0 -9 & 0

For elastodynamic wave propagation in a solid,
u? = (v7,—7T,-7%,—77) (with v and 7; the parti-
cle velocity and traction vectors), s7 = (£T,h], hT h])
(with f and h; the external force and deformation rate

vectors), and matrices A, B, K and Dy defined in
(Wapenaar & Fokkema, 2004).

For electroseismic wave propagation in a satu-
rated porous solid (Pride, 1994), (Pride & Haartsen,
1996)1 uT = (ET, HT, {Vs}Ts _TTy _Tg‘x ~—‘r§', wTy p,)
(with w = @(v/ — v*) the filtration velocity, ¢
the porosity, and superscripts s and f referring
to the solid and fluid phase, respectively), sT =
(—{3}7, = {3™}7,£7, 07, 07,07, {£/}7,0), and matri-
ces A, B, K and D defined in (Wapenaar & Fokkema,
2004). Omitting E, H, J¢ and J™ from u and s gives
the field and source vectors for the Biot theory (Biot,
1956). On the other hand, omitting w, p/ and £/ and
reorganizing B results in the electrokinetic equations for
a piezoelectric system (Auld, 1973).

In all cases, matrices A(x) and B(x) can be re-
placed by convolutional operators A(x,t)* and B(x,t)*
to account for more general attenuation mechanisms.
We define the Fourier transform of a time-dependent
function f(t) as f(w) = [ f(t) exp(—jwt)dt, where j is
the imaginary unit and w denotes the angular frequency.
Applying the Fourier transform to all terms in the
matrix-vector equation (with A and B defined as convo-
lutional operators) yields A (jw+v°- V)u+Ba+Dyt =
S.

3 RECIPROCITY THEOREM OF THE
CONVOLUTION TYPE

In general, a reciprocity theorem interrelates two inde-
pendent states in one and the same domain (de Hoop,
1966), (Fokkema & van den Berg, 1993). We consider
two independent states that are distinguished by sub-
scripts A and B. For an arbitrary spatial domain D
with boundary 8D and outward pointing normal vec-
tor nT = (n1,n2,n3), the convolution-type reciprocity
theorem relating these two states reads (Wapenaar &
Fokkema, 2004)

/ [a%Ksp — s4Kis] d’x
D

= }{ alM,ap d®x + / i3 Maip d®x, (3)

aD D
where M; = K{N, = Aa(v4 - n)} and My =
K{Ap(jw+ v} V) - Aa(jw— v - V) + Bs — Ba},
with N, defined similar as Dy, but with 8; replaced by
n; (hence, Nx obeys the symmetry relation KNxK =
—N;"‘). We speak of a convolution-type reciprocity the-
orem because the multiplications in the frequency do-
main (G4KS$p etc.) correspond to convolutions in the
time domain.

4 GREEN’S MATRIX

In state A we replace the space- and frequency-
dependent L x 1 source vector $a(x,w) by a L x L



frequency-independent point source matrix I§(x — xa),
where I is the identity matrix. Correspondingly, the
Lx1 field vector G14(x,w) is replaced by a L x L Green’s
matrix G(x,xA,w). For example, the acoustic Green’s
matrix is given by

G crt arf e

N G"rq va GU, Gu'
G(x,xa,w) = | =} Ll L2 L3 (%, xa,w).
( y XA, ) q;,q q;:lf A!2,,’2f q;’,g ( y XA, )

Gy eyl Gy Gy
)

The superscripts refer to the type of observed wave field
at x and the source type at x4, respectively; the sub-
scripts denote the different components. Note that each
column represents a field vector at x due to one partic-
ular source type at xa.

For state B we choose the medium parameters iden-
tical to those in state A (i.e., Ap = AA, Bs = BA) and
we choose the flow velocity opposite to that in state A
(ie, v% = —v%), hence, M, vanishes. We replace the
source vector $5(x,w) and the field vector ug(x,w) by
I5(x — xp) and Gr(x,xp,w), respectively, where the
subscript r refers to the reversed flow velocity. With
these replacements, equation (3) becomes a reciprocity
relation for the Green’s matrix. The second term on
the right-hand side vanishes due to the choice of the
opposite flow velocities (flow-reversal theorem (Lyam-
shev, 1961), (Brekhovskikh & Godin, 1992), (Wapenaar
& Fokkema, 2004)). When we choose x4 and xp both
in D and assume that outside a sphere with finite radius
the medium is homogeneous, isotropic and non-flowing,
then the boundary integral vanishes as well. This leaves
the source-receiver reciprocity relation

KGT(XB,XA,w)K = Cr(xA,xB,w). (5)

Note that for non-flowing media the subscript r can be
omitted.

5 RECIPROCITY THEOREM OF THE
CORRELATION TYPE

We consider a modified version of the reciprocity the-
orem. For an arbitrary spatial domain ) with bound-
ary D and outward pointing normal vector n, the
correlation-type reciprocity theorem reads (Wapenaar
& Fokkema, 2004)

/ [a!55 +shap] d®x
D

= ¢ a\Maapdx + / af, Myiip d®x (6)

ap D
(superscript { denotes transposition and complex con-
Jugatlon) where M; = N, + Al (VA n) and My =
Ap(w+ vl -V) - AL(]W +v%-V)+Bs+ B' . We
speak of a correlation-type reciprocity theorem because
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the multiplications in the frequency domain (ﬁLéB etc.)
correspond to correlations in the time domain.

6 GREEN’S MATRIX REPRESENTATION

We use equation (6) to derive a representation of the
Green’s matrix in terms of cross-correlations. To this
end we replace the source vectors again by point source
matrices and the field vectors by Green’s matrices. We
choose x4 and xp again both in D, but other choices
are relevant as well (Slob et al, 2006a), (Slob et al.,

2006b), (Slob & Wapenaar, 2006). This time we choose
AB—AA—A BB—BA——BandVB—VOA——VO,
so the Green’s matrices in both states are defined for
the situation of reversed flow. Next we use equation (5)
as well as the symmetry relations for A, B and Ny.
Transposing both sides of the resulting equation yields

G(xp,x4,w) + Gl (x4,xp,w) =

— G(xp, x,w)MsG' (x4, x,w) d®x
ap

+/ G(xB,x,w)MsGt(xA,x,w) d*x, (7
D

with Ms = Ny + Af(v® . n) and Mg = (¥ - vo -
jw)25S(A) + B+ B!, where V acts on the quantity left
of it and S denotes the imaginary part. Note that S(A)
and B + B! account for the attenuation of the medium.
Since we used equation (5), the Green’s matrices are
now defined in a medium with flow velocity +v® (or zero
flow in case of a non-moving medium). Equation (7) is a
general representation of the Green’s matrix between x4
and xp in terms of cross-correlations of observed fields
at x4 and xp due to sources at x on the boundary 9D as
well as in the domain D). The inverse Fourier transform
of the left-hand side is G(xp,%4,t) + GT (x4, x5, —t),
from which G(xp,x4a,t) is obtained by taking the
causal part. The application of equation (7) requires
independent measurements of the impulse responses of
different types of sources at all x € DU JD. In the
following we modify the right-hand side into a direct
cross-correlation (i.e., without the integrals) of diffuse
field observations at xa and xg, the diffusivity being
due to a distribution of uncorrelated noise sources. Fol-
lowing Snieder (Snieder, 2006a) we separately consider
the situation for uncorrelated sources in I and on 9.

7 UNCORRELATED SOURCES IN D

The boundary integral vanishes when homogeneous
boundary conditions apply at dD or, in case of infinite
DD, when one or more elements of the loss matrices S(A)
or B+ B are non-zero throughout space. For these situ-
ations we consider a noise distribution §(x,w) through-
out D, where § is a vector with elements ;. We assume
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that two noise sources éx(x,w) and §;(x’,w) are mutu-
ally uncorrelated for any k # L and x # x’ in D, and that
their power spectrum is the same for all x and k, apart
from a space- and frequency dependent excitation func-
tion. Hence, we assume that these noise sources obey
the relation (8(x’,w)8(x,w)) = A(x,w)d(x — x’)S(w)
where (-) denotes a spatial ensemble average, S(w) the
power spectrum of the noise, and A(x,w) is a diago-
nal matrix containing the excitation functions. We ex-
press the observed field vector at x4 as 4° b5 (x4,w) =
fDG(xA,x w)$(x,w) d®x (and a similar expression for

1°%(xp,w)). Evaluating the cross-correlation of the ob-
served fields yields

(’°b’(xB,w){ﬁ°bs(xA,w)}f) =/G(xa,x,w)/\(x,w)
D

Gl(xa,%,w)S(w) d®x. (8)

Comparing this with the right-hand side of equation (7)
(with vanishing boundary integral), we obtain

{G(XB,XA,w) + Gt(xAyxB, w)}g(w)
— (ﬁobS(xB,w){ﬁobS(xA’w)}f)’ (9)

assuming A(x,w) = Mg(x,w). Hence, for those situa-
tions in which Mg is a diagonal matrix with one or more
non-zero elements (e.g. for scalar diffusion or acoustic
wave propagation in an attenuating medium with ei-
ther real-valued A or zero flow velocity v°, for electro-
magnetic diffusion and/or wave propagation in a non-
moving isotropic attenuating medium and, under par-
ticular conditions, for electrokinetic wave propagation
in an isotropic porous or piezoelectric medium (Wape-
naar & Fokkema, 2004)), the Green’s matrix between
x4 and xg can be obtained from the cross-correlation
of observations at those points, assuming that a dis-
tribution of uncorrelated noise sources is present in D,
with excitation function(s) proportional to the local loss
function(s) on the diagonal of M. Equation (9) is a
generalization of results obtained by Snieder for scalar
diffusion (Snieder, 2006b) and for acoustic wave propa-
gation in an attenuating medium (Snieder, 2006a).

8 UNCORRELATED SOURCES ON oD

When D is finite and no homogeneous boundary con-
ditions apply at 9D, the boundary integral in equa-
tion (7) does not vanish. Assuming the losses in ID are
small, the last integral can be ignored (see (Slob et al.,
2006a); (Slob et al., 2006b); and (Slob & Wapenaar,
2006) for a discussion of the effects of ignoring this inte-
gral). Hence, under this condition equation (7) implies
that the Green’s matrix between x4 and xp can be
retrieved from cross-correlations of responses of inde-
pendent impulsive sources on dD only (note that 9D
is not necessarily a closed surface: when the medium
is ‘sufficiently inhomogeneous’ 8D can be an open sur-
face (Wapenaar, 2006a)). To make equation (7) suited

for uncorrelated noise sources on ), matrix Ms must
be ‘diagonalized’ so that we can follow the same pro-
cedure as above. The term At(v® . n) in M is diago-
nal for scalar diffusion and for acoustic wave propaga-
tion in a flowing medium, whereas it vanishes in non-
moving media. However, Ny is not diagonal for any of
the discussed applications. Diagonalization of the inte-
gral — §,0 G(xp,x,w)NxG!(x4,%,w) d*x involves de-
composition of the sources at 9D into sources for inward
and outward propagating waves.

Following the approach discussed in (Wape-
naar, 2004), (Wapenaar & Fokkema, 2006), assum-
ing dD is far away from x4 and xp, we may ap-
proximate the integral (including the minus sign)
by §,5 G?(x5, %, w)A(X){G?*(xa,x,w)}! d®x + ‘ghost’,
where ‘ghost’ refers to spurious events due to cross prod-
ucts of inward and outward propagating waves. When
9D is irregular (which is the case when the sources are
randomly distributed) these cross products do not inte-
grate coherently and hence the spurious events are sup-
pressed (Draganov et al., 2006). When the medium at
and outside dID is homogeneous and isotropic the spuri-
ous events are absent. Superscript ¢ refers to new source
types at x € 9D and A(x) is a diagonal matrix con-
taining normalization factors. For example, for elasto-
dynamic waves in a solid (Wapenaar & Fokkema, 2006),
G%(x4,x,w) is a 16 X 4 matrix, in which the columns
represent the elastodynamic wave vectors observed at
xa due to P- and S-wave sources at x (the S-wave
sources with three different polarizations) and the diag-
onal matrix is defined as A = diag(;Z-, ;2-, .2, pes 23
where cp and cs are the P- and S-wave propagation
velocities of the medium at and outside 9D.

Hence, assuming a distribution of uncorrelated
noise sources §°(x, w) on 9D, we arrive in a similar way
as above at equation (9), but this time with the ob-
served field vector at x4 expressed as °%*(xa,w) =
$on G?(xa,x,w)5%(x,w) d?x (and a similar expression
for 1°®*(xp,w)). In this form, equation (9) is a gen-
eralization of (Wapenaar, 2004), (Weaver & Lobkis,
2004), (van Manen et al, 2005), (Wapenaar, 2006b),
(Gadin, 2006), (Slob et al., 2006a), (Slob et al., 2006b),
(Slob & Wapenaar, 2006), (Snieder, 2006a), (Snieder,
2006b) to all field vectors described earlier. For exam-
ple, for the electroseismic situation the (9,1)-element of
G(xp,xa4,t) is the vertical particle velocity of the solid
phase at xp due to an impulsive horizontal electric cur-
rent source at x4.

According to equation (9) it is retrieved by cor-
relating the 9th element of u®**(xp,t), i.e., the verti-
cal velocity noise field at xp, with the first element
of u®™(x4,t), being the horizontal electric noise field
at x4 (actually a macroscopic sensor measures vj + w3
(Pride & Haartsen, 1996), so the cross-correlation of the
measured vertical velocity and horizontal electric noise
fields gives the sum of the (9,1)- and the (21,1)-elements
of the Green’s matrix).



9 CONCLUSION

We have derived a unified representation for Green’s
function retrieval by cross-correlation, which applies to
diffusion phenomena, acoustic waves in flowing atten-
uating media, electromagnetic diffusion and wave phe-
nomena, elastodynamic waves in anisotropic solids and
electrokinetic waves in poro-elastic or piezoelectric me-
dia. The applications are found in ‘remote sensing with-
out a source’, which includes observation of parameters
such as flow, anelastic loss and the electrokinetic cou-
pling coefficient.

Note added in proof: In another paper we derive
Green’s function representations for higher order linear
scalar systems and discuss the connection with energy
principles (Snieder et al., 2006).
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ABSTRACT

The virtual source method has recently been proposed to image and moni-
tor below complex and time-varying overburden. The method requires surface
shooting recorded at downhole receivers placed below the distorting or changing
part of the overburden. Redatuming with the measured Green’s function allows
reconstruction of a complete downhole survey as if the sources were also buried
at the receiver locations. Some challenges still need to be addressed in the vir-
tual source method such as limited acquisition aperture and energy reflected
downward from the overburden. We demonstrate that up-down wavefield sep-
aration can substantially improve the quality of virtual source data. First, it
allows us to eliminate artifacts associated with the limited acquisition aperture
typically used in practice. Second, it allows us to reconstruct a response in the
absence of down-going multiples from the overburden. These improvements are
illustrated on a synthetic dataset of a complex layered model modeled after the
Fahud field in Oman, and on ocean bottom seismic data acquired in the Mars

field in the deepwater Gulf of Mexico.

Key words:

wavefield separation, multiple suppression, OBC, multi-

component, dual-sensor summation

1 INTRODUCTION

The virtual source method (Bakulin and Calvert, 2004,
2006) is a technique to image and monitor below com-
plex overburden without knowledge of overburden ve-
locities or near-surface time-lapse changes. The virtual
source method is closely related to seismic interferome-
try (Derode, et al., 2003; Schuster, et al., 2004; Snieder,
2004; Wapenaar, 2004; Wapenaar, et al., 2005); both use
cross-correlation of the recorded wavefields at a given
pair of receivers to estimate the Green’s function be-
tween them. In practical applications challenges in vir-
tual source method still need to be addressed. The goal
of this study is to identify these challenges and demon-
strate the usefulness of wavefield separation to overcome
some of them.

The simplest approach to generating virtual source
gathers is to cross-correlate the total wavefield recorded
at the virtual source location with the total wavefield
recorded at the receivers (Mehta, et al., 2006). The re-

sultant virtual source gather includes all the responses
between the virtual source and the receiver, some of
which may not be of interest for geophysical applica-
tions. The current practice is to correlate the windowed
direct arrival in the total wavefield recording at the
virtual source with the total wavefield at the receivers
(Bakulin and Calvert, 2006). This approach suppresses
some of the unwanted responses as compared to the sim-
plest approach. Neither one gives the true subsurface
response for two reasons.

According to theory (Derode, et al., 2003; Bakulin
and Calvert, 2006; Snieder, 2004; Wapenaar, 2004;
Schuster, et al., 2004; Korneev and Bakulin, 2006), we
get the true response between a given pair of receivers by
correlating the wavefields recorded at the two receivers
and summing the correlated signal over sources that
populate a closed surface enclosing the two receivers.
For geophysical applications, we cannot have sources
all around the receivers; hence simple cross-correlation
and summing over a subset of sources does not provide
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the true response. Apart from the spurious events at-
tributable to incomplete source aperture, both the ap-
proaches yield reflections from the overburden and the
free-surface because both the up-going and the down-
going waves are recorded at the receivers. These un-
wanted responses obscure the target reflections from be-
neath the virtual source and receivers.

Here, we attempt to suppress the artifacts caused
by incomplete source aperture, and the reflections from
the overburden and the free-surface. Up-down wavefield
separation shows promise for improving virtual source
data quality by removing the reflections from the over-
burden and non-physical events arising from incomplete
source aperture. Similar up-down wavefield separation
is done by Snieder et al. (2006b) in a different context
applied to structural engineering. In the next section
we illustrate this in a synthetic model, followed by an
explanation of the need for wavefield separation before
cross-correlating the recordings.

Apart from imaging below complex overburden,
virtual source is also a powerful tool for time-lapse mon-
itoring with permanently placed receivers. We apply
the virtual source method to multi-component ocean-
bottom cable (OBC) data recorded at the Mars field
(www.rigzone.com), having 120 4-C sensors perma-
nently placed on the sea-floor. We show in the final sec-
tion how wavefield separation helps suppress the strong
reflection from the sea-surface, hence unraveling the re-
flection response of the reservoir. This improves the re-
peatability for seismic monitoring by making the re-
sponse independent of variations in the sea-level, sea
temperature, source locations, and source signatures.

2 SYNTHETIC MODELING

Figure 1 shows vertical profiles of P- and S-wave veloc-
ities used for synthetic simulation by reflectivity mod-
eling (Schmidt and Tango, 1986). The density varies
between 2.1 and 2.5 g/cm®. 161 sources (vertical forces)
are placed, every 10 m, on the surface and 41 receivers
are placed, every 10 m, in a horizontal well at a depth of
250 m. The objective is to create virtual sources along
the horizonal well to suppress the distorting effects of
the upper near surface (above 200 m), when trying to
image the reservoir layers below. The complex overbur-
den (i.e., the region above the receivers) consists of lay-
ers with extremely high velocity contrasts typical of the
Middle East, and here modeled after the Fahud field in
Oman.

If ideal redatuming is to be performed with seismic
interferometry then the reconstructed response corre-
sponds to a buried virtual source at any of the receivers.
This response will contain reflections from the overbur-
den layers as well as free-surface multiples.

Bakulin and Calvert (2006) showed how gating be-
fore cross-correlation can eliminate some of the over-
burden reflections. This makes the virtual source radi-
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Figure 1. P- and S-wave velocity profiles and the acquisition
geometry for a synthetic model inspired by Middle East field
Fahud. 161 sources are spaced every 10 m on the surface, and
41 receivers are placed in a horizontal well at a depth of 250
m. Receiver spacing is 10 m.

ate predominantly downwards and provides cleaner re-
sponse from deep target reflectors. Their approach, how-
ever, cannot suppress the free-surface and overburden-
related multiples. Here we set a goal to completely elim-
inate from the virtual source data all the down-going
multiples related to the overburden.

Therefore, we benchmark the virtual source data
against the “ground truth” response computed for a new
model where all overburden above the well is replaced
by a homogeneous half-space with the same velocities
as just below the receivers (Figure 1).

We choose receiver 21 (middle receiver) as the vir-
tual source, highlighted in red in Figure 1. The virtual
source gather we generate should be equivalent to the
response obtained by putting a physical source at the
location of receiver 21. Figure 2 shows a comparison
of the two responses. Figure 2a shows the virtual source
gather generated by cross-correlating the total wavefield
at the virtual source location (receiver 21) with the total
wavefield at the receivers. Figure 2b shows the wavefield
response of the receivers to a physical source (vertical
force) at the virtual source location, after removing the
laterally propagating shear waves. The laterally propa-
gating shear waves are removed by using only the up-
going energy at the receivers. For the rest of this paper,
we refer to this response as the ground truth response.
In addition to the four P-P reflection events, labeled 1
through 4 in Figure 1, which are present in both types
of gather, the virtual source gather contains many other
events.

For easier comparison we replot the ground truth
response as shown in Figure 3. It shows the four P-P
reflections labeled 1 through 4 and also an S-to-P con-
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Figure 2. Figure (a) shows the virtual source gather gen-
erated by cross-correlating the total wavefield at the virtual
source (receiver 21) with the total wavefield at the receivers.
Figure (b) shows the shot gather generated by placing a
physical source (vertical force) at the virtual source loca-
tion (receiver 21) with a homogeneous half space above it. In
Figure (b), the laterally propagating shear waves have been
removed.
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Figure 3. Ground truth response generated by putting a
physical source (vertical force) at the virtual source loca-
tion (receiver 21). The laterally propagating shear waves have
been removed.

version. For further analysis we restrict ourselves to P-
waves only. Figure 4 shows the virtual source gather,
plotted in red, on top of the ground truth, plotted in
black. As mentioned earlier, apart from the agreement
in the reflection events, numerous other events exist in
the virtual source gathers. Some of them are of physi-
cal nature (overburden-related response) and some are
unphysical (artifacts arising from limited source aper-
ture), but both represent unwanted responses, where
the goal is to obtain only reflections from the subsur-
face. Next, we elaborate on their nature in layered media
and demonstrate how wavefield separation can suppress
both types of undesired response.
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Figure 4. Black lines show the ground truth response. Red
lines show the virtual source gather generated by cross-
correlating the total wavefield at the virtual source (receiver
21) with the total wavefield at the receivers.
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Figure 5. Depth-section cartoons explaining the need for
wavefield separation. Figure (a) shows the source location
that gives the stationary phase contribution for a physical
arrival between the virtual source and the receiver. Figure
(b) shows the source location that gives stationary phase
contribution for a non-physical arrival between the virtual
source and the receiver. Figure (c) shows the hypothetical
source below the receivers, which, if present, would cancel
the non-physical arrival. Figure (d) shows the presence of
reflections from the overburden, in particular the free-surface
multiples, here.

3 WAVEFIELD SEPARATION

Figure 5 shows depth-section cartoons for a three-layer
model to illustrate the problem arising from incomplete
source aperture and reflections coming from the over-
burden and the free-surface. In all the sub-figures, the
red triangle is the virtual source and the yellow trian-
gle is the receiver. They both are located at depth,
and physical sources are excited at the surface. Fig-
ure 5a shows the source location along the surface that
gives the stationary phase contribution (Snieder, et al.,
2006a) for a physical arrival between the virtual source
and the receivers as shown by the black arrows. By con-
stitutive interference of the contributions from all other
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sources, only this source contributes to the true response
between the virtual source and the receiver.

If, however, the source is placed as shown in Figure
5b, the virtual source and the receiver will record the
wavefield propagating along the red arrows. Snieder, et
al. (2006a) explains that even though this source gives
a stationary phase contribution, cross-correlation of the
two wavefields does not correspond to any physical ar-
rival between them. Hence this source does not con-
tribute to the true response. Such arrivals contribute to
spurious events in the virtual source gather. Snieder, et
al. (2006a) also show that if a source were placed below
the receivers, as shown in Figure 5c, the waves propagat-
ing along the blue arrows will cancel the contribution of
the waves propagating along the red arrows and hence
the spurious event will not be a part of the response. In
geophysical applications, however, we do not have the
luxury to put a source in the subsurface, as shown in
the cartoon.

In order to remove these spurious events, we re-
sort to wavefield separation. As shown in Figure 5b, the
wavefield propagating along the red arrows, recorded by
the virtual source and the receivers is up-going. By re-
stricting the wavefield at the virtual source to be only
down-going, we can suppress these spurious events.

Even though the waves at the virtual source are
only down-going, we still record reflections from the
overburden and the free-surface, as shown by the red ar-
rows in Figure 5d. These correspond to physical arrivals
and would be a part of the response if we had a physical
source at the virtual source location. We can suppress
these arrivals from the data by restricting the waves at
the receivers to be only up-going. Hence, we get the sub-
surface response by correlating the down-going energy
at the virtual source location with the up-going energy
at the receivers. The idea is similar to Noah’s decon-
volution as suggested by Riley and Claerbout (1976).
If such separation is achievable without distortions, it
would represent an improvement over the current best
practice of time-windowing the direct arrival at the vir-
tual source location and correlating that with the total
wavefield at the receivers (Bakulin and Calvert, 2006).

3.1 Windowing in time

Figure 6 shows the virtual source gather (in red) gener-
ated by cross-correlating the windowed direct arrival in
the total wavefield at the virtual source with the total
wavefield at the receivers. The windowed direct arrival
is obtained by placing a time gate of 40 ms around the
direct arrival. The reflections are preserved and com-
pared to Figure 4 many spurious events are suppressed.
The suppression results from restricting the energy at
the virtual source location to be mostly down-going
P-wave energy (in the form of direct arrival). Time-
windowing the direct arrival thus improves the virtual
source gather, although a better wavefield separation
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Figure 6. Black lines show the ground truth response. Red
lines show the virtual source gather generated by cross-
correlating the windowed direct arrival at the virtual source
(receiver 21) with the total wavefield at the receivers.

offset (m)

0.1

X

0.2

0.3F7 s

time (s)

0.4

0.5

0.6 i ji 1 ;

Figure 7. Black lines show the ground truth response. Red
lines show the virtual source gather generated by cross-
correlating the down-going waves at the virtual source (re-
ceiver 21) with the up-going waves at the receivers.

approach is to decompose the wavefield into up- and
down-going waves.

3.2 Up-down separation

As demonstrated by the cartoons in Figure 5, we
get the desired subsurface response by correlating the
down-going energy at the virtual source location with
the up-going energy at the receivers. Instead of time-
windowing, we separate the wavefields into up- and
down-going waves and use those for correlation. Figure
7 shows the virtual source gather (in red) generated by
correlating the down-going waves at the virtual source
with the up-going waves at the receivers. The spuri-
ous events are suppressed and the virtual source gather
closely matches the ground truth response. Hence, wave-
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Figure 8. Black lines show the ground truth response. Red
lines show the virtual source gather generated by cross-
correlating the direct arrival windowed in the down-going
waves at the virtual source (receiver 21) with the up-going
waves at the receivers.

field separation is indeed a promising tool for suppress-
ing down-going multiples in the process of generating
the virtual source gather.

The up-down separation and time-windowing can
also be combined to generate the virtual source gather
as shown in Figure 8. This virtual source gather is gen-
erated by correlating the direct arrival windowed in the
down-going waves at the virtual source location with
the up-going waves at the receivers. For this synthetic
model it shows an improvement over Figure 7.

For field data this improvement will become promi-
nent once we separate the recorded wavefield into up-
and down-going waves. For the synthetic modeling, the
modeling program separated the wave-field into up- and
down-going waves. For layered media, wavefield separa-
tion for field data can be done by dual-sensor summation
(e.g., Robinson, 1999). According to dual-sensor sum-
mation, given hydrophone (H) and vertical component
geophone (Z) recording of vertically propagating waves
at the same sensor location, the sum H+Z yields the
up-going energy and the difference H-Z the down-going
energy. Before we apply this to field data, we compare
the exact down-going and up-going waves, for our syn-
thetic model with waves separated by the H-Z and H+Z
approximations respectively.

Figure 9 shows the exact down-going waves for the
raw data (plotted in black) and obtained from H-Z (plot-
ted in red). Similarly, Figure 10 shows the exact up-
going waves for the raw data (plotted in black) and
from H+Z (plotted in red). In each plot, the wavefields
obtained in the two different ways are practically identi-
cal, suggesting that despite being strictly valid for zero-
offset data in horizontally layered media, dual-sensor
summation technique provides a reasonable separation
of the wavefield into up- and down-going waves for all
offsets at hand.
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Figure 9. Comparison of the exact down-going waves (black
lines) with the H-Z approximation (red lines).
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Figure 10. Comparison of the exact up-going waves (black
lines) with the H4Z approximation (red lines).

4 FIELD EXAMPLE: REDATUMING
OCEAN-BOTTOM SEISMIC AT MARS

We demonstrate the improvement in the virtual source
gathers due to wavefield separation using the data
recorded for seismic monitoring of the Mars field lo-
cated in the Gulf of Mexico. Figure 11 shows a car-
toon of the acquisition geometry. The geometry con-
sists of 364 air guns fired (spaced every 25 m) on the
sea-surface, with 120 four-component sensors (spaced
every 50 m) permanently placed on the sea floor at one
kilometer depth. Sea level, water velocity and shot lo-
cations change slightly between repeat acquisitions even
though receivers remain fixed on the seabed. This cre-
ates a problem for seismic monitoring aimed to detect
small timeshifts and amplitude changes related to field
depletion. The virtual source method allows us to re-
datum OBC data to the sea bed without knowing any
of these factors. Redatumed data should correspond to
fixed (virtual) source and fixed receiver and exhibit
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Figure 11. Cartoon showing the geometry of the Mars field
OBC data acquisition. 120 receivers are spaced every 50 m
on the sea-floor and 364 air guns (spaced every 25 m) are
fired from the sea surface. Water depth in this cartoon is 1
km, close to that for the Mars field.

recelvers receivers

Figure 12. Virtual source gathers generated with receiver
60 as the virtual source. Figure (a) shows the virtual source
gather generated by cross-correlating the total wavefields
at both the virtual source and receiver locations. Figure
(b) shows the virtual source gather generated by cross-
correlating the down-going waves at the virtual source lo-
cation with the up-going waves at the receivers. The label
“multiple” refers to the reflection from the free-surface (over-
burden) and the label “primary” refers to a reflection from
the subsurface. The “?” mark refers to the absence of the
reflection event.

greatly improved repeatability between surveys. This
was shown by Bakulin and Calvert (2006) for synthetic
and real data of repeated vertical seismic profiles (VSP)
acquired over time-varying overburden.

For the synthetic model, we demonstrated the im-
provement in the virtual source gathers by up-down sep-
aration. For the Mars field data, we use the dual-sensor
summation technique for the separation of the wavefield
into up- and down-going waves. We use these separate
up- and down-going waves to generate the improved vir-
tual source gathers.

We choose receiver 60 (middle receiver) as the vir-
tual source and sum the correlation gather over all the
sources. Figure 12a shows the virtual source gather,
for the hydrophone component, generated by correlat-
ing the total wavefield recorded at the virtual source
location with the total wavefield at the receivers. The

receivers

receivers
20 40 60 80 100

Figure 13. Virtual source gathers generated with receiver
60 as the virtual source. Figure (a) shows the virtual source
gather generated by cross-correlating the direct arrival, win-
dowed in the total wavefield at the virtual source, with the
total wavefield at the receiver locations. Figure (b) shows the
virtual source gather generated by cross-correlating the di-
rect arrival, windowed in the down-going waves at the virtual
source location, with the up-going waves at the receivers. The
label “multiple” refers to the reflection from the free-surface
(overburden) and the label “primary” refers to the reflection
from the subsurface. The “?” mark refers to the absence of
the reflection event.

most prominent reflection we see is the reflection from
the sea-surface, labeled as “multiple”. The arrow with
the “primary?” mark is the location where we expect
the strongest true reflection from the subsurface. Hence,
even for a simple overburden, correlating the total wave-
fields gives a virtual source gather dominated by the
reflection from the sea-surface.

Using the hydrophone and the vertical compo-
nent geophone recording and the dual-sensor summa-
tion technique we separate the up- and down-going
waves at all receivers. If instead of correlating the to-
tal wavefields, we correlate the down-going waves at the
virtual source with the up-going waves at the receivers,
we obtain virtual source gather shown in Figure 12b.
The free-surface multiple is suppressed (highlighted by
the arrow and “multiple?” mark). The reflections from
the deeper subsurface are now visible and the strongest
one is highlighted by an arrow and labeled as “primary.”
Although the reflections from the subsurface are visible,
the virtual source gather is still noisy.

Figure 13a shows the virtual source gather obtained
by the current best practice (Bakulin and Calvert, 2003,
2006): correlating the windowed direct arrival in the to-
tal wavefield at the virtual source location with the total
wavefield at the receivers. The windowed direct arrival
is obtained by placing a time gate of 400 ms around
the direct arrival. Correlating the time windowed di-
rect arrival makes the virtual source gather cleaner but
the strongest reflection is still the free-surface multiple
(labeled as “multiple”). To further improve the virtual
source gather quality, we combine the up-down sepa-
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Figure 14. Virtual source gathers generated with receiver
60 as the virtual source. Figure (a) shows the virtual source
gather generated by cross-correlating the direct arrival, win-
dowed in the down-going waves at the virtual source loca-
tion, with the up-going waves at the receivers. Figure (b)
shows the virtual source gather generated by summing the
virtual source gathers, generated for hydrophone and vertical
component geophone: each of which is generated separately
by cross-correlating the direct arrival, windowed in the to-
tal wavefield at the virtual source location, with the total
wavefield at the receivers. The label “multiple” refers to the
reflection from the free-surface (overburden) and the label
“primary” refers to the reflection from the subsurface. The
“?" mark refers to the absence of the reflection event.

ration and the time-windowing approach. As shown in
Figure 13b, if we correlate the direct arrival, windowed
in the down-going waves at the virtual source location,
with the up-going waves at the receiver, the virtual
source gather is cleaner and the true subsurface response
(highlighted by the arrow and labeled as “primary”) is
clearly visible in the absence of the free-surface multi-
ples. The free-surface multiple (labeled as “multiple?”)
is attenuated because we use only the up-going energy
at the receivers. The early-time reflections are crisper in
Figure 13b than in Figure 13a because we excluded any
up-going energy that may have been left in the window-
ing approach. The near-offset jitter in Figure 13b around
3 to 4 s is the result of the wave scattering near the soft
sea bottom. These scattered and mode-converted waves
are sensed by the vertical component and show up in
the virtual source gather when we include the vertical
component for up-down wavefield separation.

We conclude that the combination of wavefield sep-
aration and gating produces the best of the responses
[Figure 13b], as predicted by synthetic modeling. While
wavefield separation restricts the radiation pattern of
the virtual source to be strictly downward, additional
gating imposes the virtual source to be P-wave and
thus improves signal-to-noise ratio by eliminating un-
wanted shear-wave energy from the virtual source. This
unwanted late energy might be used to generate virtual
shear sources (Bakulin and Calvert, 2005).

Dual-sensor summation is strictly valid for zero-

offset data over horizontally layered media. Therefore
in many practical instances of large offsets or complex
overburden structures in two or three dimensions it
may fail to deliver separated wavefields with undistorted
phase as required for virtual source generation. In cases
such as for borehole observations below near surface, an
alternative approach can be attempted to unravel an im-
proved reflection response of the subsurface. First, one
can generate two virtual source datasets using the cur-
rent best practice, i.e. correlating the direct arrival, win-
dowed in the total wavefield at the virtual source (V'S),
with the total wavefield at the receivers, both for the
hydrophone (VSy) and vertical component geophone
(VSz) separately, and then extract the up-going waves
(VS +V Sz) for the downhole survey using dual-sensor
summation applied to the virtual source data. Figure
14b, generated by such an alternative approach, reveals
a gather similar in quality to our best response shown
in Figure 14a [same as Figure 13b]. In Figure 14b, how-
ever, are distortions in early times and near the direct
arrival because of windowing in the total wavefield in-
stead of windowing in the down-going waves. As shown
before, wavefield separation in the process of generating
the virtual source gathers indeed gives the true subsur-
face response. This alternative approach with wavefield
separation after generating the virtual source data, how-
ever, also gives reasonable reflection response and can
be improved further by suitable combination of three-
component (3-C) sources and 4-C geophones, i.e. by gen-
erating an elastic (vector) virtual source.

The up-down wavefield separation applied to the
virtual source method suppresses the down-going mul-
tiples shown in the Figure 5. There are, however, waves
that propagate downwards from the virtual source, re-
flect from the subsurface, propagate through the over-
burden and reflect back into the subsurface and are then
sensed by the receivers as up-going waves. Such mul-
tiples are present in the virtual source data even af-
ter applying wavefield separation to the virtual source
method.

5 CONCLUSIONS

The virtual source method as practiced to date can be
improved upon to get mainly the reflection response
from the deeper subsurface by using wavefield separa-
tion combined with gating of the direct arrival. Instead
of correlating total wavefields as suggested by theory,
in practice it is more beneficial to correlate down-going
waves at the virtual source with the up-going waves at
the receivers. In addition, time windowing or gating of
the direct arrival in the down-going response further
improves the signal-to-noise ratio.

Synthetic modeling in layered media inspired by the
Fahud field in Oman reveals the nature of these improve-
ments. Selecting down-going waves at the virtual source
eliminates the reflections from the overburden and a free
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surface; in other words it restricts the radiation pattern
of the virtual sources to downward directions only. Us-
ing up-going waves at the receivers suppresses the free-
surface multiples and spurious events arising from the
inability to put sources surrounding the receivers. Com-
bination of the two provides a response in the absence
of downgoing energy from the overburden. Additional
gating of the down-going response restricts the virtual
source radiation pattern to predominantly P-waves and
avoids contamination by shear energy. A field data ex-
ample confirms that combination of wavefield separation
and gating leads to a greatly improved signal-to-noise
ratio on virtual source data and thus a cleaner reflection
response of target horizons.
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ABSTRACT

The virtual source method has recently been proposed to image and monitor
below a complex and time-varying overburden. The method requires surface
shooting recorded by subsurface receivers placed below the distorting or chang-
ing part of the overburden. Redatuming the recorded response to the receiver
locations allows the reconstruction of a complete downhole survey as if the
sources were also buried at the receiver locations. The ability to redatum the
data independent of the knowledge of time-varying overburden velocities makes
the virtual source method a valuable tool for time-lapse monitoring. We apply
the virtual source method to the Mars field OBC data acquired in the deepwa-
ter Gulf of Mexico with 120 multi-component sensors permanently placed on
the seafloor. Applying to the virtual source method, a combination of up-down
wayvefield separation and deconvolution of the correlation gather by the source
power spectrum suppresses the influences of changes in the overburden (sea wa-
ter), thus strengthening the virtual source method for time-lapse monitoring.

Key words: ocean-bottom cable, monitoring, wavefield separation, deconvo-

lution, source power spectrum

1 INTRODUCTION

The virtual source method (Bakulin and Calvert, 2004,
2006) is a technique for imaging and monitoring be-
low a complex overburden without knowledge of over-
burden velocities and near-surface changes. The vir-
tual source method is closely related to seismic inter-
ferometry (Derode, et al., 2003; Schuster, et al., 2004;
Snieder, 2004; Wapenaar, 2004; Bakulin and Calvert,
2005; Wapenaar, et al., 2005; Korneev and Bakulin,
2006; Snieder, et al., 2006a; Larose, et al., 2006; Cur-
tis, et al., 2006). Theory states that cross-correlating the
recording at a given reference receiver with the recorded
data at any other receiver for all the sources and then
summing the correlated data (correlation gather) over
the physical sources gives a signal that represents the
recording by the other receiver as if the reference re-
ceiver acted as a source (virtual source). Apart from
imaging below a complex overburden, the virtual source
method is a useful tool for time-lapse monitoring pro-

vided that the receivers are placed permanently below
the time-varying overburden.

Time-lapse monitoring is a powerful tool for track-
ing changes in the subsurface. These changes include ge-
omechanical phenomena associated with the migration
of fluids. Conventionally, the changes can be tracked by
observing the differences between data from two seis-
mic surveys obtained over the surveillance period. Apart
from changes in the subsurface caused by fluid flow, the
difference in the two seismic surveys include changes in
the overburden along with the acquisition discrepancies,
which are both prominent and undesirable.

We apply the virtual source method to multi-
component ocean-bottom cable (OBC) data acquired
in the years 2004 and 2005 at the Mars field in deep-
water Gulf of Mexico. The Mars field data are acquired
by 120 multi-component sensors permanently placed on
the seafloor 1 km deep and air guns shooting from the
sea surface (Figure 1). A total of 364 air gun shots were
fired along a line from the sea surface with a region of 40
missing shots because of the presence of platform above
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Figure 1. Depth model showing the geometry of the
Mars field OBC data acquisition. 120 multi-component sen-
sors (triangles) are permanently placed every 50 m on the
seafloor. 364 air guns (stars), spaced every 25 m, are fired
from the sea surface with a region of 40 missing shots, due
to the presence of the platform, above receiver 80. Water
depth for this cartoon is 1 km, roughly the depth for the
Mars field.

receiver 80. The sensors are placed every 50 m and the
shots are fired every 25 m.

The virtual source method is advantageous over the
conventional seismic method in time-lapse monitoring
at the Mars field because with virtual sources generated
at each permanently placed receiver location the virtual
source gathers obtained are independent of the variation
in the overburden as well as acquisition discrepancies for
the two surveys.

In section 2 we discuss the causes of non-
repeatability in the overburden and reasons for using
the virtual source method for time-lapse monitoring. In
section 3 we compare the images obtained for the years
2004 and 2005 by migrating conventional seismic data
and compute their difference to illustrate the causes of
non-repeatability in the overburden (sea water). In sec-
tion 4 we compare the images obtained by migrating
virtual source data and study their differences. Section
5 illustrates the improvement in repeatability by in-
corporating wavefield separation in the virtual source
method. Finally, we illustrate in section 6 that decon-
volution of the correlation gather by the source power
spectrum suppresses the influence of variations in the
source power spectrum in the virtual source data.

2 WHY VIRTUAL SOURCE METHOD?

Time-lapse seismic monitoring is a useful tool for track-
ing changes in the subsurface associated with reservoir
production. Along with the changes in the data at the
reservoir level, there are prominent undesirable changes
in the overburden that mask the changes of interest in
the reservoir that one seeks to monitor. For the Mars
field, the overburden consists of sea water. The varia-
tions in the overburden, therefore, include changes in
sea water level, sea surface roughness, and sea water
temperature and salinity. Redatuming of the data down
to the receiver locations using virtual source method
makes the survey independent of these variations in the

sea water. Other causes of non-repeatability include ac-
quisition discrepancies such as variations in the source
location and source power spectrum. Source power spec-
trum varies not only for the two surveys but also with
each shot location.

Let A and B be two receivers. The wavefields
recorded by the receivers is, in the frequency domain,
given by

U(ra,rs,w) = S(w)G(ra,rs,w),
U(re,rs,w) = S(w)G(rp,rs,w), (1)

where S(w) is the frequency-domain representation of
the source wavelet, G(ra,rs,w) is the Green's func-
tion for wave propagation from the source to receiver
A, G(rp,rs,w) is the Green’s function for wave prop-
agation from the source to receiver B and rs, ra and
rg are the coordinates of the source and the two re-
ceivers A and B, respectively. Cross-correlation of the
wavefields recorded by the two receivers A and B is, in
the frequency domain,

U(rA)rS)w)U‘(errsxw) = |S(w)|2G(rA,rs,w)
G’ (I'B,l‘s,w), (2)

where the asterisk indicates complex conjugate. Along
with the correlation of the Green’s functions, the right
side of eq. (2) also contains the power spectrum of the
source-time function. The cross-correlation is, therefore,
independent of the phase spectrum of the source-time
function. The power spectrum of the source pulse can be
expected to differ for different shots as well as for differ-
ent surveys. In order to remove the influence of varying
source power spectrum, we deconvolve the correlation
gather by the power spectrum of the source wavelet, if
it is known with sufficient accuracy. We address this in
section 6 of the paper.

3 CONVENTIONAL SEISMIC IMAGING

Mars field OBC data for the baseline survey was ac-
quired October-November 2004. The repeat survey was
carried out in June 2005. We first compare the conven-
tional seismic images obtained from the two surveys.
Conventional seismic data refers to wavefield excited by
sources on the sea surface and recorded by the perma-
nently placed sensors on the seafloor. To allow compar-
ison with the seismic images generated after migrating
the virtual source data, the conventional seismic data
are downward continued to the seafloor using the water
velocity and the virtual source method is not applied.
We migrate the refocused conventional seismic data for
the years 2004 and 2005 separately using Kirchoff depth
migration. The depth images are then converted to time
images (Figures 2a and 2b) using the Mars field ve-
locity model generated by migration velocity analysis
performed on the conventional seismic data. The time
t=0 denotes the seafloor level. The gap just below the
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Figure 2. Images generated by migrating the conventional
seismic data. Figure (a) is the image for the year 2004. Figure
(b) is the image for the year 2005. Figure (c) is the difference
of the two images, after time alignment, obtained on the same
grey scale as that for Figures (a) and (b). The NRMS value
is shown in the box in Figure (c).

seafloor is due to blanking applied to the image gathers
in order to mute data for which the opening angle at the
reflection is large, which could lead to overly stretched
shallow reflections.

Figure 2c is the difference of the two images. This
difference is obtained after locally time-aligning these
images to account for any geomechanical changes in the
subsurface and to separate changes within the reservoir
from its gross movement. The local time-alignment was
done by correlating local windows of data both in time
and space. There were no production-related subsurface
changes at the reservoir level (around 3.5 s) between the
two surveys over the surveillance period. Therefore, the
differences (Figure 2c) are mainly due to variations in
the overburden and to acquisition discrepancies. After
being refocused at the seafloor, the waves propagate not
only through the subsurface (solid rays in Figure 3a),
but also through the time-varying overburden (dashed
rays in Figure 3a). Variations in the overburden and
acquisition contribute to the prominent undesirable dif-
ferences observed in Figure 2c.

We quantify the repeatability using normalized root
mean square amplitude (NRMS) of the difference of the
images for the years 2004 and 2005. The NRMS of the
difference is defined as

_ [<Oi-Bps
NRMS = \/< M2 B2

a) b)

) d)

Figure 3. Ray paths corresponding to (a) conventional seis-
mic data and virtual source data generated by correlating the
total wavefield at the virtual source with the total wavefield
at the receivers, (b) virtual source data generated by corre-
lating the direct arrival windowed in the total wavefield at
the virtual source with the total wavefield at the receivers,
(c) data generated by correlating the down-going waves at
the virtual source with the up-going waves at the receivers.
Figure (d) is the cartoon of the ray paths of the multiple
that propagates through the overburden even after applying
wavefield separation to the virtual source method.

where ‘B’ represents the base survey (2004) and ‘M’ rep-
resents the monitor survey (2005). The symbols ‘<>’
represents the average value over the region where
NRMS is calculated. Decrease in the value of NRMS
indicates improvement in the repeatability.

We calculate the NRMS for the entire seismic im-
age. For the refocused conventional seismic data, the
NRMS value is 0.2892. Table 1 shows the NRMS of the
difference for the conventional seismic image as well as
for the virtual source seismic images that will be dis-
cussed in the following sections.

4 THE VIRTUAL SOURCE METHOD

We generate different virtual source gathers with every
receiver as the virtual source and, instead of migrating
the refocused conventional seismic data, migrate the vir-
tual source data generated for the years 2004 and 2005.
For all the examples we use Kirchoff depth migration
and then convert the depth image to a time image us-
ing the Mars field velocity model generated by migration
velocity analysis on the conventional seismic data.

The simplest approach to generate a virtual source
gather is to correlate the total wavefield at the virtual
source with the total wavefield at the receivers (Mehta,
et al., 2006). The images for the years 2004 and 2005
obtained by migrating virtual source data generated us-
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Table 1. Comparison of the normalized root mean square
amplitude (NRMS) values for different seismic images.
“Tot:tot’ refers to the virtual source data generated by cor-
relating total wavefield at the virtual source with the to-
tal wavefield at the receivers. ‘Dir’ refers to the direct ar-
rival windowed in the total wavefield. ‘Down’ refers to the
down-going waves. ‘up’ refers to the up-going waves. ‘Down-
dir’ refers to the direct arrival windowed in the down-going
waves. ‘decon’ refers to the deconvolution of the correlation
gather by the source power spectrum. The corresponding fig-
ure number is mentioned in the second column.

Seismic image Figure number NRMS
Conventional seismic 2 0.2892
Tot:tot 4 0.3493
Dir:tot 5 0.3346
Down:up 6 0.2676
Down-dir:up 7 0.1770
Down:up:decon 9 0.1624
Down-dir:up:decon 10 0.1414
Free-surface multiple
receiver receiver

c)

Figure 4. Images generated by migrating the virtual source
data. Virtual source gathers are generated by correlating the
total wavefield at the virtual source with the total wavefield
at the receivers. Figure (a) is the image for the year 2004.
Figure (b) is the image for the year 2005. Figure (c) is the
difference of the two images, after time alignment, obtained
on the same grey scale as that in Figures (a) and (b). Figure
(d) is the difference of the image amplified by a factor of 10,
on the same grey scale as that in Figures (a) and (b). The
NRMS value is shown in the box in Figure (d).

ing this simplest approach are shown in Figures 4a and
4b, respectively. Figure 4c is the difference of the two
images after local time-alignment. In order to highlight
the features, we also show the difference image amplified
by a factor of 10 in Figure 4d. The differences can be at-
tributed to the waves propagating through the overbur-
den (dashed rays in Figure 3a), which change between
the two years because of the variations in the overbur-
den. The acquisition discrepancies associated with the
change in location of the source between the two years is,
however, removed. The variation caused by differences
in the source power spectrum [eq. (2)], nevertheless, still
exists.

The NRMS of the difference for the virtual source
data generated by the simplest approach is 0.3493. We
believe this value is higher than the NRMS for the con-
ventional seismic image because the pre-processing of
conventional seismic data included suppression of the
free-surface multiples. In contrast, the virtual source
data generated using the simplest approach has the mul-
tiples that propagate through the time-varying overbur-
den.

The images generated by the virtual source data
(Figure 4a) have lower frequency content than that of
the conventional seismic images (Figure 2a). The dif-
ference in frequency content is caused by the receivers
and shots being placed along a line whereas the wave-
propagation is three dimensional. Snieder, et al. (2006a)
show that for such a geometry, the virtual source data
need to be multiplied by a factor of Viw (w is the an-
gular frequency), thus restoring the true frequency con-
tent. The pre-processing on the raw data involved band-
limited spike deconvolution. In the virtual source data,
the deconvolution of the correlation gather by the power
spectrum of the source wavelet gives a zero-phase band-
limited source pulse. Due to this discrepancy, the source-
time function for the virtual source data multiplied by
Viiw has a different frequency content compared to that
of the conventional seismic data. The discrepancy be-
tween the frequency contents of the virtual source data
and the conventional seismic data will, therefore, exist
even after multiplying the virtual source data with the
Viiw term. Hence, for the virtual source images that fol-
lows, we don’t apply the viw term.

5 WAVEFIELD SEPARATION

The free-surface multiple are the response from the over-
burden and hence, are undesirable. They contaminate
Figures 4a and 4b because we correlate the total wave-
field at the virtual source with the total wavefield at the
receivers, both of which contain those multiples. The
dominant event is a simple reflection from the sea sur-
face and are mainly down-going waves. If, instead of
correlating the total wavefields, the down-going waves
at the virtual source are correlated with the up-going
waves at the receivers, the free-surface multiple along
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Figure 5. Same as Figure 4, but for virtual source gathers
generated by correlating the direct arrival windowed in the
total wavefield at the virtual source with the total wavefield
at the receivers.

with other overburden reflections can be suppressed
(Mehta, et al., 2007). Similar up-down wavefield sep-
aration is done by Snieder et al. (2006b) in a different
context applied to structural engineering.

Before we discuss the wavefield separation into up
and down-going waves, let us consider the image gener-
ated by migrating the virtual source data produced by
the current practice. That approach to generating vir-
tual source gather involves correlating the direct arrival
windowed in the total wavefield at the virtual source
with the total wavefield at the receivers (Bakulin and
Calvert, 2004). By windowing the direct arrival at the
virtual source, the virtual source is imposed to radi-
ate predominantly downward thus, removing much of
the overburden reflections but not all. The images for
the years 2004 and 2005 obtained by migrating virtual
source data, generated in that way are shown in Figures
5a and 5b, respectively. The free-surface multiple still
dominates because instead of using only the up-going
waves at the receivers, the total wavefield is used for
correlation. Figure 5c¢ is the difference of the images for
the years 2004 and 2005 and Figure 5d is the difference
image amplified by a factor of 10. Even after windowing
of the direct arrival the virtual source data generated
contain waves that still propagate through the overbur-
den after reflecting from the near-seafloor (dashed rays
in Figure 3b).

The NRMS of the difference for the virtual source
data generated by the current practice is 0.3346. Simi-
lar to the simplest approach, this value is higher than
the NRMS for the conventional seismic image because

receiver receiver

time(s)

receiver

° 20 40 60 80 100 120

time(s)

)

Figure 6. Same as Figure 4, but for virtual source gathers
generated by correlating the down-going waves at the virtual
source with the up-going waves at the receivers.

the pre-processing of conventional seismic data included
suppression of the multiples. In contrast, the virtual
source data generated using the current practice still
have some multiples propagating through the time-
varying overburden.

In order to make the virtual source data inde-
pendent of the overburden, we follow the approach by
Mehta, et al., 2007, and generate virtual source gath-
ers by correlating the down-going waves at the virtual
source with the up-going waves at the receivers. For
OBC data, up-down separation of the wavefield is pos-
sible by dual-sensor summation (e.g., Robinson, 1999).
Figure 6a and 6b are the images for the years 2004 and
2005 respectively, obtained by migrating virtual source
data generated after wavefield separation into up- and
down-going waves. Because the free-surface multiple, af-
ter reflecting from the free surface, is dominantly down-
going energy, correlation of down-going waves at the
virtual source with the up-going waves at the receivers
suppresses the free-surface multiple and highlights, for
example, reservoir events at around 3.5 s. The difference
of the images (Figure 6¢) for the years 2004 and 2005,
amplified by 10 in Figure 6d is less noisy compared to
Figures 5d and 4d.

The NRMS of the difference image after up-down
wavefield separation reduced to 0.2676 (Table 1). The
improved match in results for the two years compared
to that for the simplest approach and current prac-
tice supports the improvement in repeatability after up-
down wavefield separation. This improvement results
because the waves now are those that propagate pre-



190 K. Mehta, J. Sheiman, R. Snieder & R.

recelver receiver
20 40 60 80 100 120 20 40 6 50 100 120

time(s)

a) B b)

recelver receiver
20 40 60 80 100 120 20 4 e 0 100 120

time(s)
time(s)

[} d)

Figure 7. Same as Figure 4, but for virtual source gathers
generated by correlating the direct arrival windowed in the
down-going waves at the virtual source with the up-going
waves at the receivers.

dominantly through the subsurface (solid rays in Fig-
ure 3c). Wavefield separation applied to the virtual
source method has suppressed the down-going multi-
ples propagating through the overburden, hence making
the virtual source image less sensitive to overburden-
related changes. The difference image still has some
low-amplitude coherent events. These events could be
weaker-amplitude multiples that are down-going at the
virtual source, up-going at the receivers and yet still
have propagated through the overburden (dashed rays
in Figure 3d). These multiples cannot be suppressed
even by applying wavefield separation to the virtual
source method.

We can further reduce other sources of discrepan-
cies in the time-lapse virtual source data by windowing
the direct arrival in the down-going waves at the virtual
source, instead of using all of the down-going waves. By
windowing the direct arrival in the down-going waves,
we are imposing a P-wave virtual source, hence sup-
pressing the non-repeatability in the shear waves. The
images for the years 2004 and 2005 obtained by mi-
grating the resulting virtual source data are shown in
Figures 7a and Tb, respectively and the differences are
shown in Figures 7c and 7d. Compared to the images
generated using the refocused conventional seismic data
(Figures 2a and 2b), the images generated by the virtual
source data preserves all the coherent reflectors and are
less noisy.

Using up-down wavefield separation and window-
ing of the direct arrival at the virtual source has
reduced the NRMS of the difference image to just

Calvert

0.1770 (Table 1). Although the discrepancy in the shear
waves is suppressed by windowing the direct arrival,
the second-order multiples that propagate through the
time-varying overburden (dashed rays in Figure 3d) still
exist.

The improvement we have seen in the virtual source
method by wavefield separation applied to the Mars field
accounts for the variation in the sea water level, sea
surface roughness, sea water temperature, salinity and
source location. The variation in the source power spec-
trum [eq. (2)], however, still exist in all of the above
images. We next address the correction for variation in
the source power spectrum variation.

6 SOURCE POWER SPECTRUM
VARIATION

The cross-correlation of the wavefields recorded by a
given pair of receivers [eq. (2)] contains the power spec-
trum of the source pulse. To suppress the influence of
the source power spectrum, and in particular its varia-
tion, the cross-correlated data (correlation gather) must
be deconvolved by the source power spectrum, pre-
suming that it is known or can be well approximated
(Derode, et al., 2003; Schuster, et al., 2004; Snieder,
2004; Wapenaar, 2004; Wapenaar, et al., 2005). Typi-
cally, the source pulse varies not only between the two
surveys but also among shots in a single survey. Since we
use air guns as sources, variation in the source pulse is
mainly due to changes in the air bubble, assuming that
pre-processing of the two data sets attempted to equal-
ize the source pulses. The equalization of the source
pulse was done as follows. Small-offset traces were taken
from each shot and the waves, in a time window of 400
ms around the direct arrival, were aligned. The length
of the time window was chosen to be 400 ms to include
the bubble. These aligned traces were then averaged, af-
ter which designative filters were derived to turn these
responses into band-limited delta functions. The same
procedure was applied to both the surveys to obtain the
same desired band-limited delta function. This conven-
tional pre-processing aimed to remove variations in the
bubble sequence but was not sensitive enough to remove
them completely.

The source power spectrum corresponds, in the
time domain, to the auto-correlation of the source
wavelet. The auto-correlation of the source wavelet
present in the correlation gather varies from one shot
to another because of changes in the residual bubble
sequence. The variation of the auto-correlation of the
source pulse (for receiver 90) as a function of source lo-
cation for the years 2004 and 2005 is shown in Figures 8a
and 8b, respectively. Each of the two figures is the auto-
correlation of the direct arrival windowed in the down-
going waves at receiver 90 for all the source locations.
Down-going waves are used for correlation to avoid
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Figure 8. Variation of the auto-correlation of the source
pulse corresponding to receiver 90 as a function of source
location for 2004 (a) and 2005 (b). Figure (c) is the difference
of the gathers in (a) and (b), obtained on the same grey scale
as Figures (a) and (b). Figure (d) is the difference of the self-
decons (convolution of the source power spectrum and filter
that represents the inverse of the source power spectrum) for
the years 2004 and 2005, on the same grey scale as Figures
(a) and (b).

any near-seafloor reflection interfering with the auto-
correlation of the source pulse. The auto-correlation of
the source pulse varies not only between the two sur-
veys but also between each source location. The event
close to +£0.35 s is attributable to the residual bub-
ble sequence. Apart from the residual bubble, curved
events are present for both causal and acausal times.
These curved events correspond to the interference of
reflected and refracted waves with the direct arrival for
later times and larger offsets. Figure 8c is the difference
in the auto-correlation of the source pulse for the years
2004 and 2005. The difference in the main lobe (close to
time t=0) is negligible, suggesting that pre-processing
adequately equalized the primary source pulses. The
curved events also appear to diminish in the difference.
The event occurring around +0.35 s, however, is the
difference in the residual bubble sequence and is pro-
nounced and consistent for every source location. This
consistent difference could be due to the variation in the
water temperature between the two surveys; the base
survey was carried out in October and the repeat sur-
vey in June. Use of different air gun sources for the
two surveys, different air gun pressures, different actual
depths of source arrays (both surveys used the same
nominal source depths), and discrepancies in the sea
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Figure 9. Same as Figure 7 but with deconvolution of the
correlation gather by the source power spectrum before sum-
mation.

surface roughness could be other possible reasons for
the systematic variation in the residual bubble.

The imprint of varying source power spectrum on
the virtual source data can be removed by deconvolving
each trace of the correlation gather by the power spec-
trum of the corresponding source. This is equivalent to
applying a filter that represents the inverse of the source
power spectrum. We refer to the convolution of the fil-
ter with the source power spectrum as self-decon. Fig-
ure 8d is the difference of self-decons for the years 2004
and 2005. Apart from the curved events representing
the interference of other events with the direct arrival,
the contribution of the systematic residual bubble vari-
ation is well suppressed. Hence, deconvolving the corre-
lation gather by the source power spectrum suppresses
the source power spectrum variations.

Migrated images, for the years 2004 and 2005, gen-
erated after applying both wavefield separation and
deconvolution of the correlation gather by the source
power spectrum are shown in Figures 9a and 9b, respec-
tively with differences shown in Figures 9c and 9d. The
virtual source data for these images are generated by
correlating the down-going waves at the virtual source
with the up-going waves at the receivers. The corre-
lation gather is then deconvolved by the source power
spectrum and summed over the physical sources. The
improvement in the repeatability by combining up-down
separation and deconvolution of the correlation gather
with the auto-correlation of the source-time function is
evident by the decrease in the NRMS to 0.1624 (Table

1).
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Figure 10. Same as Figure 9 but with the direct arrival
windowed in the down-going waves at the virtual source.

The repeatability can be further improved by com-
bining up-down separation, windowing of the direct ar-
rival and deconvolution. The images in Figure 10 are ob-
tained by migrating the virtual source data generated by
combining up-down separation, windowing of the direct
arrival, and deconvolution. The NRMS, after combining
up-down separation, windowing the direct arrival and
deconvolution, reduces from 0.1624 without windowing
to just 0.1414.

7 CONCLUSION

Combination of up-down separation, windowing the di-
rect arrival and deconvolution with the source power
spectrum, improves the repeatability of the images cre-
ated with the virtual source data. This makes the virtual
source method a useful tool for time-lapse monitoring
where the goal is to image changes just in the subsurface
beneath the sources and the receivers. Up-down separa-
tion suppresses the first-order multiples from the time-
varying overburden. Windowing the direct arrival in
the down-going waves imposes a P-wave virtual source,
hence suppressing the overburden-related variations in
the shear waves. Finally, deconvolution of the correla-
tion gather by the source power spectrum further sup-
presses the non-repeatability caused by variation in the
source power spectrum. The progressively diminishing
values of NRMS in the sequence of tests support our
observation of improvement in time-lapse monitoring by
applying wavefield separation and deconvolution to the
virtual source method.
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Introduction

ABSTRACT

Estimation of the seismic source signature is an important problem in reflection
seismology. Existing methods of source signature estimation (statistical meth-
ods and well-log-based methods) suffer from several drawbacks. For example,
assumptions of whiteness of the earth response, stationarity of the data, and the
phase characteristics of the wavelet have no real theoretical justification and the
extracted wavelets may not be reliable. Here, I introduce a method of extracting
the source signature based on the theory of seismic interferometry, also known
as the virtual source method. Interferometry can be used to extract the scaled
impulse response between two receivers. This is the Green’s function scaled by
the power spectrum of the source wavelet. If a source location coincides with one
of the receiver locations (not necessarily a zero-offset receiver), the recording
at the other receiver would be the Green’s function convolved with the source
signature. The scaled impulse response, thus differs from the real recording by
having an extra source term convolved with it. Deconvolving the real recording
with the scaled impulse response gives the source signature, and so this method
is named as “Virtual Real Source”. Through modeling examples, I show that the
Virtual Real Source method produces accurate source signatures even for com-
plicated subsurface and source signatures. The quality of the extracted wavelet
can be improved by using particular time windows and stacking wavelets ex-
tracted from different time windows. Source variability within a seismic survey
does not pose any problems because interferometry averages the source signa-
tures and the individual source signatures can be extracted reliably using this
method. Source signature of each shot can be extracted reliably if they all have
similar amplitude spectra even though their phase spectra might be completely
different. This method of source signature estimation not only gives accurate
traveltimes and amplitudes of reflection events, but also has the potential to
solve other issues, such as finding source radiation patterns, measuring intrinsic
attenuation, and estimating statics.

these sources after correcting for geometrical spreading.
The recorded signal, however, might be contaminated

Seismic source signature estimation is an important
problem in reflection seismology. An accurate source
signature deconvolved from the seismic data helps to
correctly position reflectors and estimate reflection am-
plitudes. Amundsen (2000) notes that, “Areas where
this knowledge (source signature) is potentially of great
value are on board source array QC, deconvolution, mul-
tiple attenuation, tying reflection data to wells, model-
ing and inversion, AVO analysis, reservoir monitoring,
and analysis of marine multicomponent recordings.” A
direct measurement of the source signature of an air
gun (or an array of air guns) or a dynamite explosion
can be made by recording the direct far-field wave from

with scattered waves and also might not even be the
far-field signature. In offshore acquisition, air-gun ar-
rays are often used instead of single air guns for various
reasons. Dragoset (2000} points out that the disadvan-
tage of using an array-like seismic source is that measur-
ing the output is difficult. In this case, source-detector
position is crucial and should be positioned such that
it is equidistant from all the elements of the array. In
land acquisition, it is normally impossible to measure
the source signature of dynamite directly because of the
difficult task of separating the direct wave from scat-
tered waves (Ziolkowski, 1993).
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Because of the challenges and high cost in measur-
ing the source signature directly in the field, researchers
have proposed alternative methods and algorithms to
estimate the source signature. Source signature estima-
tion based on statistical methods (Robinson and Tri-
etel, 1980; Oldenburg et al., 1981; Hargreaves, 1992)
suffer from several drawbacks. These methods assume
the source signature to be minimum-phase, the earth
response to be white, and the seismic data to be station-
ary. These assumptions have no real theoretical justifica-
tion, making the extracted source sighature unreliable.
Methods based on well-logs are prone to errors as well.
Other approaches involve linear and non-linear inversion
(Landrg and Sollie, 1992; Amundsen, 1993; Landrg et
al., 1994; Amundsen, 2000). These methods, however,
need data to be recorded at a mini-streamer located be-
low the source array and also assume that the scattered
energy recorded by the mini streamer is negligible.

The above mentioned drawbacks and assumptions
involved in source signature estimation call for a method
of source signature extraction with a bare minimum of
assumptions and requirements. Here I introduce a new
and superior method for determination of the seismic
source signature which is based on the principle of seis-
mic interferometry. Through modeling examples, I show
that this method produces accurate source signatures
even for complicated subsurface structures and complex
source signatures.

1 A SIMPLE IDEA

In seismic interferometry the Green’s function be-
tween any two receiver locations can be computed by
cross-correlating the receiver recordings due to ran-
dom sources in the medium (Lobkis and Weaver, 2001;
Derode et al., 2003a; Derode et al., 2003b; Snieder, 2004;
Wapenaar, 2004; Weaver and Lobkis, 2004; Curtis et al.,
2006). This principle has been applied to exploration
seismology to remove overburden problems (Calvert et
al., 2004; Mehta et al., 2006) and in imaging the sub-
surface(Schuster et al., 2004; Vasconcelos and Snieder,
2006).

I use seismic interferometry for extracting the
Green’s function between two receiver locations. Let
us consider two receiver locations A and B as shown
in Figure la. To determine the Green’s function be-
tween these two receiver locations, the recordings at
these two locations are cross-correlated for every source
i.e. the two receiver gathers are cross-correlated. The
cross-correlations are summed for all the shots to obtain
the Green’s function between the two receiver locations.
This, however, is not the true Green’s function, since it
is scaled by the power spectrum of the source wavelet.
This is the scaled impulse response and is given by:

Uwirew) = |SW)[*G(w), (1)

where Uyir¢(w) is the scaled impulse response, S{w) is
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Figure 1. Scheme for (a) scaled impulse response and (b)
real recording between two receiver locations A and B.

the seismic source wavelet, and G(w) is the Green’s func-
tion between A and B. Note that this wave field does
not depend on the phase spectrum of the source.

Equation (1) is valid strictly for a closed source
aperture, i.e. the true scaled impulse response between
the two receivers can be obtained if there are sources on
a closed surface surrounding the two receivers. In real-
ity, the receivers are not usually surrounded by sources.
This incomplete source aperture can result in some spu-
rious events (Mehta et al., 2006) which can be removed
through some special processing (K. Mehta, personal
communication, 2007).

If location A also coincides with a shot location,
then at receiver B there is a direct recording due to the
shot at A (Figure 1b); this direct recording is given by

Ureat{w) = S(Ww)G(w). (2)

From the equations (1) and (2) it is clear that
deconvolving the real recording (equation 2) with the
scaled impulse response (equation 1) gives the true
source signature. In practice, I perform this operation
in the frequency domain by dividing the spectra of the
two recordings

where * represents the complex conjugate. To stabilize
the deconvolution in equation (3), I use the following
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Figure 2. The 3-layer model used in the study. The SH-wavefront snapshot is shown at a particular instant of time.

estimator for the deconvolution instead
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where the parameter ¢ is set to 0.01% of the average
spectral power.

Thus, deconvolving the real recording with the
scaled impulse response gives the source signature and
so this method is named as “Virtual Real Source
(VRS)”. Note that the only requirement for this method
is to have a receiver at the location previously occupied
by the shot (the shot whose source signature we are in-
terested in), but not necessarily a zero-offset receiver.
This is a common scenario and is found in most seismic
surveys. Apart from this requirement and the imperfect
scaled impulse response due to an incomplete source
aperture, there are no assumptions for this method to
work; we do not need any prior information about the
subsurface.

2 MODELING TESTS

Figure 2 shows a simple three-layer model used for test-
ing the idea described in the previous section. The top
boundary is a free-surface and the other three sides are
absorbing boundaries. The shots are on the surface at an
equal spacing of 10m spanning a total length of 7.5km.
I do SH-wave modeling for this example and for all
the examples that are to follow. The theory, however,
is valid for all components of excitation and recording.
The snapshot of the wavefront at a particular instant of
time is shown in the figure. A 30Hz dominant frequency
ricker wavelet is used as the source wavelet.

The wavelet extracted using VRS from the full
record spanning over 5 seconds is given in Figure 3a. The
true wavelet is also shown for comparison. The wavelet
is well-recovered as can be seen from the good match
in the waveform and initiation time. However, there are
some spurious events after the main lobe which might be

0 01 02 03 04 05
Time (s)
(@)

0 0.1 0.2 0.3 0.4 0.5
Time (s)
(b)
Figure 3. The true source signature (gray dashed line) and

the wavelet extracted (black solid line) using (a) the full seis-
mic record and (b) a windowing-stacking procedure.
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Figure 4. A more complex source signature (gray dashed
line) and the signature extracted using Virtual Real Source
(black solid line).

caused due to the imperfect virtual source function. Ex-
tensive testing shows that some of these spurious events
can be reduced by extracting the wavelet from a win-
dow of data. To further suppress the spurious events,
wavelets can be extracted from different windows and
then summed. Through this operation, only the true
signals are stacked while the spurious events would be
mis-stacked and thus suppressed. This is evident from
Figure 3b where stacking of wavelets extracted from
many windows has greatly improved the estimation of
the source signature. The algorithm was tested on more
complex models and in every case the source signature
was extracted with acceptable accuracy.

Conventional methods for source signature estima-
tion do not work well especially for complicated sig-
natures. So this algorithm was tested extensively on
complicated source signatures. Even for complicated
wavelets, the method produced accurate results as evi-
dent from Figure 4. Another example of estimation of a
complex source signature, similar to the air gun signa-
ture, is shown in Figure 5.

3 SOURCE VARIABILITY

Strictly this method of source signature estimation
works well if all the sources are the same, i.e. they have
the same source wavelet. But this is not usually the case
in the field where source signatures can vary widely.
What happens if the source signatures vary within the
survey? A closer inspection of the interferometry process
reveals that source variability does not pose a big prob-
lem. This is because after cross-correlations and summa-
tions, the source wavelet for the virtual source function,
denoted by Si.g in equation (5), is an average over all
source signatures (Snieder et al., 2007) which changes

i

o o 02 03 04 05
Time (s)

Figure 5. The true air-gun-type source signature (gray
dashed line) and the extracted signature (black solid line).

equation (1) to

Uuirt(w) = |Savg(w)|2G(w). (5)
Equation (3) can now be rewritten as

Uuirt(w) * _ ISuvy (w)|2 :
a5 ©

|Savg(w)|2 - ‘~ w
[WS (w)] ~Sw).  (7)

From equation (7) it is clear that if the amplitude spec-
trum of the source signature of interest does not deviate
significantly from the average amplitude spectrum of all
the source signatures in the survey (which is commonly
the case in most surveys), then the source signature
can be extracted accurately. All the phase information
comes from the phase of the source signature of the shot
we are interested in (denominator in equation 6).

3.1 Random-amplitude-spectra test

This is illustrated here with a couple of simple tests. For
these tests a more complicated ten-layer model is used.
The acquisition geometry, however, remains the same as
the three-layer model used earlier. In the first test, the
survey consists of sources differing in their amplitude
spectra but having the same phase spectra. The ampli-
tude spectra of all the sources is shown in Figure 6. Note
that there is significant variation in amplitude spectrum
of the sources. A receiver gather for the survey is shown
in Fig 7 where we can also see the variation in source
amplitude of the shots. The original and the extracted
source signatures are shown in Figure 8. The source sig-
nature is recovered with good accuracy. In this case the
amplitude spectra of all the sources gets averaged dur-
ing cross-correlation and the scaled impulse response is
given by equation (5). The closer the amplitude spec-
trum of the desired source signature is to the average
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Frequency (Hz)
Figure 6. Amplitude spectra of the sources in the random-

amplitude-spectra test. The gray dashed line is the average
amplitude spectrum of all the sources.

Source number

Figure 7. Receiver gather with the sources having different
amplitude spectra but having the same phase spectrum.

amplitude spectrum, the more accurate will be the ex-
tracted source signature.
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Figure 8. The true source signature (gray dashed line) and
the extracted signature (black solid line) for a shot in the
random-amplitude-spectra test.

3.2 Random-phase-spectra test

In the second test, the source signature changes phase
changes randomly from one shot to the next, keeping the
amplitude spectrum the same. A receiver gather from
this survey is shown in Figure 9. As proved above, as
long as all the sources have the same amplitude spec-
trum, every source signature can be extracted accu-
rately. This is evident from Figure 10. It is clear from
here that even for a complicated change in phase spec-
trum of the sources in the survey, the source signatures
can be extracted reliably as long as they all have similar
amplitude spectra.

In yet another test, the source signatures not only
differ in phase spectra but also have different ampli-
tude spectra. The survey consists of two types of sources
differing in their amplitude spectra but have the same
phase spectra. The peak amplitude of two-thirds of the
total number of shots is five times the peak amplitude
of the rest one-third of the shots. These two wavelets
also have different initiation times and so differ in their
phases. The original and the extracted source signatures
are shown in Figures 11a and 11b. Both the source signa-
tures are recovered with good accuracy. The extraction
accuracy of the source signature in Figures 11b, how-
ever, is higher than the source in Figures 11a not only
because of the larger number of sources for it but also
because of its higher peak amplitude.

4 DISCUSSION AND CONCLUSION

Apart from the limited source aperture, there are no as-
sumptions involved in source signature extraction using
the Virtual Real Source method. No prior information
about the subsurface or the seismic survey is needed.
The only requirement for the method, however, is that
the source location must coincide with a receiver loca-
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Figure 9. Receiver gather with the sources having different
phase spectra but having the same amplitude spectrum.
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Figure 10. The true source signature (gray dashed line)
and the extracted signature (black solid line) for a shot in
the random-phase-spectra test.

tion. Note that we do not need a zero-offset receiver,
rather a receiver location lie near the shot whose source
signature we want to estimate. Even though only SH-
wave propagation examples are shown in this paper, the
method is valid for all components of excitation and
recording. The Virtual Real Source method can extract

(] 01 02 03 04 05
Time (s)
(a)

0 01 02 03 04 05
Time (s)
(b)

Figure 11. Normalized true source signature (gray dashed
line) and extracted signature (black solid line) for (a) one-
third of the shots and (b) the rest two-third of the total
shots. The peak amplitude of the source signature in (b) is
five times that of the source in (a).

source signatures accurately even if the phase spectra
of the source signatures are completely different but as
long as their amplitude spectra are similar. Because of
the lack of any assumptions, Virtual Real Source works
well for complicated sub-surfaces and complex source
signatures. As already mentioned, it is important to
keep in mind is that the quality of the extracted wavelet
depends on the quality of the scaled impulse response.
The true scaled impulse response between two receivers
is obtained only when there is a full coverage of sources
surrounding the receivers. This, however, is not the case
in most seismic surveys. So for extracting the source sig-
natures accurately, we need a large survey area and ad-
equate coverage of sources and receivers. This method
of seismic source signature estimation not only gives ac-
curate traveltimes and amplitudes of reflection events,
but also has the potential to solve other issues, such
as finding source-receiver radiation patterns, measuring



attenuation, and estimating statics. The Virtual Real
Source method can also be applied in crustal seismol-
ogy to find the source signature of earthquakes. There
might also be potential applications in other fields of
science and technology dealing with wave propagation.
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ABSTRACT

Interferometry allows us to synthesize data recorded at any two receivers into
waves that propagate between these receivers as if one of them behaves as a
source. This is typically accomplished by cross-correlations. Based on perturba-
tion theory and representation theorems, we show that interferometry can also
be done by deconvolutions for arbitrary media and multidimensional experi-
ments. This is important for interferometry applications where the excitation
is described by a complicated function. First, we derive a series expansion that
proves that interferometry can be accomplished by deconvolution before source
integration. This method, unlike using cross-correlations, yields only causal scat-
tered waves that propagate between the receivers. We provide an analysis in
terms of singly and multiply scattered waves. Because deconvolution interfer-
ometry shapes the zero-offset trace in the interferometric shot gather into a
band limited spike centered at time equal zero, spurious arrivals are generated
by the method. Here, we explain the physics behind these spurious arrivals and
demonstrate the they usually do not map onto coherent structures in the im-
age domain. We also derive an interferometry method that does deconvolution
after source integration that is associated with existing interferometry tech-
niques. Deconvolution after source integration yields both causal and acausal
scattering responses, and it also introduces spurious events. Finally, we illus-
trate the main concepts of deconvolution interferometry and its differences with
the correlation-based approach through stationary-phase analysis and with nu-
merical examples.

Key words: interferometry, deconvolution, perturbation theory, scattering

1 INTRODUCTION

The main objective of seismic interferometry is to ob-
tain the impulse response between receivers, without
any knowledge about model parameters (Lobkis and
Weaver, 2001; Weaver and Lobkis, 2004a; Wapenaar et
al., 2004a). Typically, interferometry is implemented us-
ing by cross-correlations of recorded data (Curtis et al.,
2006; Larose et al., 2006). Many of the formal proofs
and arguments surrounding interferometry are based on
cross-correlations. Proofs based on correlation-type rep-
resentation theorems state the validity of interferometry
for acoustic waves (Lobkis and Weaver, 2001; Weaver
and Lobkis, 2004b), for elastic media (Wapenaar et al,

2004a and b, Draganov et al., 2006), and also for atten-
uative (Snieder, 2007) and perturbed media (Vasconce-
los and Snieder, 2007). Other proofs of interferometry
based on time-reversal were offered by Fink (2006), and
by Bakulin and Calvert (2006) in their Virtual-Source
methodology. Schuster et al. (2004) and Yu and Schuster
(2006) use correlation-based interferometry imbedded
within an asymptotic migration scheme to do interfer-
ometric imaging. Similarly, Snieder (2004) Sabra et al.
(2004) and Snieder et al. {2006a) rely on the stationary-
phase method to explain results from interferometry.
The field of interferometry expands beyond explo-
ration seismology. There are examples of interferome-
try applications in many other fields such as ultrason-
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ics (Malcolm et al., 2004; van Wijk, 2006), helioseis-
mology (Rickett and Claerbout, 1999), global seismol-
ogy (Shapiro et al., 2005; Sabra et al., 2005). Curtis et
al. (2006) and Larose et al. (2006) give comprehensive
interdisciplinary reviews of interferometry. As the un-
derstanding of interferometry progresses, finding more
applications to the method is inevitable. For example,
reservoir engineering may soon benefit from interferom-
etry, as Snieder (2006) recently found that the principles
of interferometry also hold for the diffusion equation. In
an even more general framework, interferometry can be
applied to a wide class of partial differential equations,
with the examples of the Schrodinger or the advection
equation (Wapenaar et al., 2006; Snieder et al., 2007).
These findings might bring possibilities for interferome-
try within quantum mechanics, meteorology or mechan-
ical engineering, for instance.

Our goal in this paper is to gain insight into in-
terferometry from yet another point of view. Although
interferometry is typically done by correlations, it is al-
most natural to wonder if it could be accomplished by
deconvolutions. This issue was in fact raised by Curtis
et al. (2006) as one of the standing questions within
interferometry. We claim that interferometry can in-
deed be accomplished by deconvolutions for arbitrary,
multidimensional media. In fact, there are already suc-
cessful examples of deconvolution interferometry. Tram-
pert et al. (1993) used deconvolution to extract the SH-
wave propagator matrix and to estimate attenuation.
Snieder and $afak (2006) recovered the elastic response
of a building using deconvolutions, and were able to ex-
plain their results using 1D normal-mode theory. Mehta
and Snieder (2006) obtained the near-surface propaga-
tor matrix using deconvolutions from the recording of a
teleseismic event in a borehole seismometer array.

In his early paper that spawned much of today’s
work on interferometry, Claerbout (1968) originally sug-
gested the use of deconvolution to retrieve the Earth’s
1D reflectivity response. He then turned to correlation
because it tends to be a more stable operation. Loewen-
thal and Robinson (2000) showed that the deconvolu-
tion of dual wavefields can be used to change the bound-
ary conditions of the original experiment to generate
only up-going scattered waves at the receiver locations
and to recover reflectivity. In a series of papers on free-
surface multiple suppression, Amundsen and co-workers
use inverse deconvolution-like operators designed to re-
move the free-surface boundary condition (e.g., Amund-
sen, 2001; Holvik and Amundsen, 2005). The topics of
multiple suppression and interferometry are intrinsically
related, precisely due to the manipulation of boundary
conditions. This is explicitly pointed out by Berkhout
and Verschuur (2006), by Mehta et al. (2006) and by
Snieder et al. (2006b). Consequently, previous work on
deconvolution-based multiple suppression is also related
to the practice of interferometry. Since we seek to shed
light on the physics behind deconvolution interferome-

try, we hope to bring yet another piece to the puzzle
that connects interferometry and other geophysical ap-
plications. These applications may be the manipulation
of boundary conditions for multiple suppression, passive
and active imaging, time-lapse monitoring and others.

Using a combination of perturbation theory and
representation theorems (as in Vasconcelos and Snieder,
2007), we first review interferometry by correlations.
In our discussion on correlation-based interferometry,
we restrict ourselves to key aspects which help under-
standing the meaning of deconvolution interferometry.
In the Section that follows, we go through a derivation
in which we represent deconvolution interferometry by a
series similar in form to the Lippmann-Schwinger scat-
tering series (Rodberg et al., 1967; Weglein et al., 2003).
We first analyze the meaning of series terms of leading-
order in the scattered wavefield, to then discuss the role
of the higher-order terms of the deconvolution inter-
ferometry series. Next, we also demonstrate that inter-
ferometry can be accomplished by deconvolution after
integration over sources, and compare the outcome of
this method with deconvolution before source integra-
tion and with cross-correlation interferometry. Finally,
using a single-layer model we illustrate the main con-
cepts of deconvolution interferometry, while comparing
it to its correlation-based counterpart. This is done by a
stationary-phase analysis of the most prominent terms
in deconvolution interferometry, and with a synthetic
data example.

Although it is not our intention here to discuss
a specific use for interferometry by deconvolution, we
point out the this method will be of most use for interfer-
ometry applications that require the suppression of the
source function. The paper by Vasconcelos and Snieder
(2007b) is dedicated to a specific application of decon-
volution interferometry, providing both numerical and
field data examples in drill-bit seismic imaging. In par-
ticular, an important component of the broad-side imag-
ing of the San Andreas fault at Parkfield presented by
Vasconcelos et al. (2007a) would not have been possible
without deconvolution interferometry (Vasconcelos and
Snieder, 2007b). Apart from drill-bit seismics, a compli-
cated source signal may be generated by the Earth it-
self. In the examples by Trampert et al. (1993), Snieder
and Safak (2006) and Mehta and Snieder (2006), de-
convolution is necessary to suppress the incoming Earth
signal, which contains arrivals of different modes, multi-
ply scattered waves, etc. In the method by Loewenthal
and Robinson (2000) the purpose of deconvolution is to
collapse all down-going waves into a spike at zero time,
leaving only the up-going Earth response. These are but
examples of applications where deconvolution interfer-
ometry plays an important role.



2 THEORY OF INTERFEROMETRY

In this section we describe the theory of deconvolu-
tion interferometry through a perturbation theory ap-
proach. We begin by reviewing interferometry by cross-
correlation in perturbed media. Next, we cover the
derivation of deconvolution interferometry before sum-
mation over sources. Since such a derivation is done by
a series expansion, we interpret the physical significance
of the most prominent terms of the deconvolution inter-
ferometry series. On the following subsection, we discuss
yet another option for interferometry where deconvolu-
tion is done after the summation over sources. Finally,
we illustrate the physical significance of the the most
prominent terms of the deconvolution interferometry se-
ries by providing an asymptotic analysis of these terms
for a simplified toy model.

2.1 Review of interferometry by
cross-correlations

Let the frequency-domain wavefield u(ra, s, w) recorded
at ra be the superposition of the unperturbed and scat-
tered Green's functions Go(ra,s,w) and Gs(ra,s,w),
respectively, convolved with a source function W(s,w)
associated with an excitation at s, hence

u(ra,s,w) = W(s,w) [Go(ra,s,w) + Gs(ra,s,w)] .
(1

Although here and throughout the text we call Gs the
scattered wavefield, formally Gs represents a wavefield
perturbation. In our derivations, we rely on pertur-
bation theory (Weglein et al., 2003; Vasconcelos and
Snieder, 2007a), such that the quantities Go and u (or
its impulsive version, G), respectively, represent back-
ground and perturbed wavefields that satisfy the equa-
tion for acoustic (Vasconcelos and Snieder, 2007a), elas-
tic (Wapenaar et al., 2004a) and possibly attenuative
waves (Snieder, 2007a), and may contain higher-order
scattering and inhomogeneous waves. Both the back-
ground medium and the medium perturbation can be
arbitrarily heterogenous and anisotropic. Also, W (s, w)
may be a complicated function of frequency, and may
vary as a function of s.

The cross-correlation of the wavefields measured at
r4 and rp (equation 1) thus gives

Cap =|W(s)|> G(ra,s)G"(r,s); (2)

where * denotes complex-conjugation. From equation 2,
it follows that the cross-correlation C4p depends on the
power spectrum of W (s). Note that we choose to omit
the frequency dependence of equation 2 for the sake of
brevity; we do the same with all of the other equations
in this paper. Following the principle of interferometry
(Lobkis and Weaver, 2001; Wapenaar et al, 2006), we
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integrate the cross-correlations in equation 2 over a sur-
face ¥ that includes all sources s, giving

f{: Capds = (W(s)P) [Glra,rs) + G"(ra,r8)];
3)

where (|[W (s)|?) is the source average of the power spec-
tra (Snieder et al., 2007), and G(ra,rp) and G*(ra,rp)
are the causal and acausal Green’s functions for an ex-
citation at rp and receiver at ra. Note that for equa-
tion 3 to hold G corresponds to the pressure response
in acoustic media (e.g., Wapenaar and Fokkema, 2006).
If G is the particle velocity response, the plus sign on
the right-hand side of equation 3 is replaced by a minus
sign (e.g., Wapenaar and Fokkema, 2006). Equation 3
has been derived by many other authors (e.g., Wape-
naar et al., 2004b; Draganov et al., 2006) and it is not
our intention here to restate it. Instead, we highlight the
importance of the {|W(s)|?) term in equation 3.

The source average {|W (s)|*) may be a complicated
function of frequency (or time), hence
recovering the response between the receivers at r4 and
rp through equation 3 can be difficult. In the interfer-
ometry literature, most authors suggest deconvolving
the power spectrum average (|W(s)|°) after the inte-
gration in equation 3 (Wapenaar et al., 2004a; Snieder
et al., 2006; Fink, 2006). This assumes that an indepen-
dent estimate of the source function is available. Indeed,
in some applications such an estimate can be obtained
(Mehta et al., 2007). There are many cases in which in-
dependent estimates of the source function are not a vi-
able option. The second part of this paper (Vasconcelos
and Snieder, 2007b) deals with a specific drill-bit seismic
examples for which independent estimates of the source
function are not available, and the correlation-based in-
terferometry (equation 3) does not provide acceptable
results. In the next two Sections we provide alternative
interferometry methodologies that recover the impulse
response between the receivers without the requirement
of having independent estimates of the power spectrum
of the source function.

In this paper we focus on understanding the phys-
ical meaning of interferometry by deconvolution, and
its differences with its correlation-based counterpart. To
do so it is necessary to review some of the physics be-
hind cross-correlation interferometry in perturbed me-
dia. Thus, for the moment, it is convenient to assume a
source function that is independent of the source posi-
tion s (W(s) = W) in equations 1, 2 and 3. Combining
equations 1 and 2, we can expand C4p into four terms:
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Cag =ufra,s)u’(rp,s)
= uo(ra,s)ug(rs,s) + us(ra,s)uo(rs,s) +
Chs Cis (4)

+uo(ra,s)us(rs,s) + us(ra,s)us(rs,s),

~ e

3 4
CAB CAB

where ug = WGy and us = WGs (see equation 1). The four terms, namely C} g through C4 g, can be inserted into
equation 3, giving

$.Chpds + §.Cipds + §,Cipds + §.Cipds =|W|*(Go(ra,rp) + Gs(ra,rs)+
(8)
+ Go(ra,re) + Gs(ra,re)l.

Each of the four integrals on the left-hand side of equation 5 has a different physical meaning. With the use of
representation theorems, Vasconcelos and Snieder (2007a) have analyzed how each integral in equation 5 relates to
the terms in the right-hand side of the equation. Note that for imaging purposes, we want to use only the us terms
in equation 5. The first integral relates to the unperturbed terms in the right-hand side of equation 5 to give,

fuo(r,;,s)u(‘;(rs,s)ds = |W|? [Go(ra,rs) + G4(ra,rs)] . (6)
P>

The relationship in equation 6 is not surprising because the unperturbed wavefields uo satisfy the unperturbed
wave equation. Consequently, interferometry of the unperturbed wavefields on the left-hand side of equation 6 must
yield the causal and acausal unperturbed wavefields between rp and ra (right-hand side of equation 6). A less obvious
relationship between the terms in equation 5 (Vasconcelos and Snieder, 2007a) is that the dominant contribution to
the causal scattered wavefield between rg and r4 comes from the correlation between the unperturbed wavefield at
rp and the scattered wavefield at r4, that is,

/ us(ra,S)us(rs,s) ds ~ [W|? Gs(ra,rn); )
o1

where o) is a portion of £ that yields stationary contributions to Gs{(ra,rg). Vasconcelos and Snieder (2007a) argue
that this relationship holds for most types of experiments in exploration seismology (surface seismic, many VSP
experiments, etc.). Equation 7 is an approximate relationship because it neglects the influence of a volume integral
that provides a correction for medium perturbations that sit in the stationary paths of the unperturbed waves that
propagate from the sources s to the receiver at rg (Vasconcelos and Snieder, 2007a). In the context of seismic imaging,
the extraction of Gg(ra,rg) is the objective of interferometry. Equation 7 is not only important for the separation of
the scattered waves that propagate between rp and ra, but also because it can be used to show that deconvolution
interferometry is capable of recovering the response between any two receivers.

An important requirement for the successful application of interferometry is that there must be waves propagating
at all directions at each receiver location. Many authors refer to this condition as equipartioning (Weaver and Lobkis,
2004; Larose et al, 2006), while others simply mention the necessity of having many sources closely distributed
around a closed surface integral, such as in equation 3. In real-life exploration experiments, however, it is impossible
to surround the subsurface with sources. As a consequence we end up with only a partial source integration, instead
of the closed surface integration necessary for equation 3 to hold. As was pointed out by Snieder et al. (2006) for
simplified 1D models, truncation of the surface integral may lead to the introduction of spurious events in the final
interferometric gathers. This holds for general 3D models as well, and it can be easily verified provided that

/ Capds + / Capds = |W|* [G(ra,rB) + G*(ra,rs)], (8)
a1 o2

where o1 and o2 are surface segments of 3, such that 0, U 02 = 3. Now, suppose that in an actual field experiment
we could only acquire data with waves excited over the surface o; (such as in equation 7). Then, as we can see from
equation 8, the integration over all available sources (the integral over o) results in the desired response (right-hand
side of equation 8) minus the integral over g2. In this case, if the integral over o2 is non-zero (i.e., there are stationary
contributions associated with sources placed over o3), then the data synthesized from interferometry over o, would
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contain spurious events associated the missing sources over o2. Although this at first glance may seem like a practical
limitation of the method of interferometry, in reality the lack of primary sources in the subsurface is somewhat
compensated by multiple scattering, or by reflections below the region of interest (Wapenaar, 2006; Halliday et al.,
2007). In field experiments, some of the desired system equipartioning may be achieved with longer recording times,
making up for some of the missing sources over o2. Because this is a model-dependent problem, it is impossible in
practice to pre-determine what the influence of missing sources will be, and to what extent longer recording times
make up for these sources.

2.2 Deconvolution before summation over sources

As we have seen in the previous Section, the cross-correlation of the wavefields u(ra,s) and u(rg,s) contains the
power spectrum of the excitation function (equation 2). Instead deconvolution of u(r4,s) with u(rg,s) gives

u(ra,s)  u(ra,s)u’(rs,s) _ G(ra,s)G*(rs,s) )
u(rs,s) [u(rs,s)|® IG(rs,s)|®>

Now the source function W (s) (equation 1) is canceled by the deconvolution process. Although no multidimensional
deconvolution interferometry approach has been presented to date, it is intuitive to proceed with the integration

Dap =

Glra,s)G*(rs,5)
Dapds = —_— s, 10
fi e s |G(ra,s)P (1)

to mimic the procedure of interferometry by cross-correlation (equation 3). The existing proofs for the validity of
interferometry by cross-correlation (equation 3) are not immediately applicable to interferometry by deconvolution.
For example, the use of representation theorems (e.g., Wapenaar et al., 2004a; Wapenaar et al., 2006; Vasconcelos and
Snieder, 2007a) is unpractical for the spectral ratio of wavefields. Also, stationary-phase evaluation of the integral in
equation 10 for a specified model (such as in Snieder et al., 2006) is compromised by the presence of |G(rg,s)|? in the
numerator. Despite being zero-phase, |G(rg,s)|? contains cross-terms between unperturbed and scattered wavefields
(see below) which make the denominator in equation 10 a highly oscillatory function that cannot be accounted for
by the stationary-phase method (Bleistein and Handelsman, 1975).

Our solution to evaluating the integral in equation 10 is to expand the denominator in a power series, which
then allows us to give a physical interpretation to deconvolution interferometry. The next two Sections cover the
derivations of this series expansion and the subsequent interpretation of its physical significance.

2.2.1 Contributions to first-order in the scattered wavefield

We focus our discussion on the terms that make the most prominent contributions to the deconvolution interferometry
integral in equation 10. First, we rewrite the deconvolution in equation 9 as

Das = IG(fgg)P = IG(r;.s)I2 [Go(ra,s)Go(rs,s) + Gs(ra,s)Go(rs,s) + a1
+ Go(ra,s)Gs(rs,s) + Gs(ra,s)Gs(rs,s)|;

where we explicitly identify the relationship between deconvolution and the cross-correlation of G(rg, s) with G(rs, s),

here denoted by Cap. As in equation 4, the numerator in equation 9 yields four terms as shown in the right-hand

side of equation 11. The next step in our derivation is to express |G(rg,s)| 2 as

1 B 1
|G(rg,s)]*  [Go(rs,s) + Gg(ra,s)] [Gi(rr,s) + Gi(ra,s)]

(12)
1

 [IGo(rs,8)* + Go(rs,s)Gy(rs,s) + Gs(rs,s)Gy(rs,s) + |Gs(ra,s)*]’
which shows that the numerator in equation 10 contains the power spectra of the unperturbed and scattered wavefields,

as well as cross-terms between these two wavefields. If we assume the wavefield perturbations to be small (|Gs|* <<
|Go|?), the last term in the denominator of equation 12 can be dropped, hence
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Figure 1. Representation of the wavefields that result from (a) deconvolution and (b) correlation interferometry. We refer
to this representation as light cones. The medium is 1D with a wavespeed ¢. x¢ is the location of the pseudo-source. The
grey-shaded areas represent the regions where the wavefields are nonzero. Away from these areas the wavefields are equal to
zero. The wavefield produced by deconvolution interferometry in (a) is zero also along the dashed white line, for t # 0. In the
time-domain, the excitation in (a) is given by &(t), while in (b) it is given by (|W(s,t)|?). The white text boxes indicate what
type of wavefields propagate in the causal and acausal light cones of (a) and (b).

1

2 Go(rp,s) G5(rp,s) Ggs(rp,s)Gg(rp.s)]’
|Go(rs, )| [1+ Gotrp a2 T~ [Golen )P ]

|G(rp,s)|"* ~ (13)

By inspecting the denominator, it follows that equation 13 can be expanded in a power series in Gs/Go + G5/Gp.
From this expansion, taking terms only up to first order in the wavefield perturbations gives

|G(rp,s)|7* ~

1 [ _ Gs(rs,s) Gg(ra,s)] (14)
|Go(rs,s)|? Go(rs,s)  Ggl(rs,s)

After inserting equation 14 into the integral in equation 10 and keeping only the terms which are linear in the
wavefield perturbations Gs, we get

Go(ra,s)Gg(rs,s) GS(I‘A,S)G'o(rB,S) ?{ Gs(rp,s)Go(ra,s)Go(rs,s)
Dapds = ds + ds . 15
?{ e |Go(rs,s)[* z  |Go(rs,s) Go(rs,s) (15)

3
Dl D% . Dip

Equation 15 shows that, to leading order in the scattered wavefield, the deconvolution integral in equation 10
can be represented by the integrals D4p through D3 5. In fact, equation 15 is a Born-like approximation (e.g.,
Weglein et al., 2003) of equation 10. In contrast with the term |G(rs,s)|? in equation 10, the term |Go(rs,s)|* in
equation 15 does not contain cross-terms between unperturbed and scattered wavefields. Therefore, |Go(rp,s)|” is a
slowly-varying zero-phase function of s. This means that only the numerators determine the stationary contributions
to the integrals in the right-hand side of equation 15. This property allows the direct comparison between the phases
of the integrands in equations 15 and the terms in equation 5.

Physical insights into deconvolution interferometry come from observing that the integrands of the D) g and
D%p terms (equation 15) have the same phase as the Chp and C5p terms in equations 4 and 5. Based on these
observations, and on equation 6 (Vasconcelos and Snieder, 2007a), we can conclude that D) p provides the causal
and acausal unperturbed wavefield that propagates from rp to r4. More importantly, since the integrand of D%z
and C%p have the same phase, the term D%p gives the causal scattered waves that are excited at rp and recorded
at ra.

In the process of deriving equation 15 from equations 10, 11 and 14, the terms that carry the same phase as
C35 and C4p cancel with the products of Cipg and C%g with the G%/G{ term. This cancelation implies that
interferometry by deconvolution does not recover the acausal scattering response between the two receivers.



Note that the acausal scattered waves are attenu-
ated in deconvolution interferometry even for a closed
surface integral (equation 15), or for an equipartioned
system. This is a difference with what is obtained with
interferometry by cross-correlation, which does recover
the acausal scattering response between the receivers
(equation 3).

The term D3z has no counterpart in correlation
interferometry. In a zero-offset interferometric experi-
ment, that is r4 = rg, the integrands of D3 g and D% g
have the same phase. In that case, the stationary trav-
eltimes that come from integrating D% g are the same
as the ones coming from D% 5. These traveltimes corre-
spond to scattered waves for a zero-ofiset experiment at
ra. Given that D% g and D% g have opposite sign (equa-
tion 15), their contributions cancel when ra = rp. As
the offset between the two receivers increases, the sta-
tionary traveltimes from D3 5z and D% 5 become increas-
ingly different. As we shall discuss in more detail in Sec-
tion 2.4, the stationary traveltimes from D35 at finite
offsets does not correspond to physical events for real
wavefields excited at rg and recorded at r4. Because of
this we refer to terms such as D3 as spurious events.
Next, we explain the origin of the spurious arrivals in
deconvolution interferometry.

Indeed, setting ra = rp in equation 10 yields, in
the time domain, a delta function at zero time. In de-
convolution interferometry, scattered waves must cancel
at zero-offset. This is a boundary condition imposed on
the interferometric experiment where we excite waves
at rp and record them at r4. The consequence of this
boundary condition is the creation of spurious events
such as D3%p that cancel scattered waves that arrive
at zero-offset with finite traveltimes. Note that these
spurious arrivals are different from the ones that may
result from the truncation of the surface integral (equa-
tion 8), and exist even for a closed surface of sources or
in an equipartioned system (equation 15). Truncation
of the surface integral in deconvolution interferometry
will have the same effect as in interferometry by cross-
correlation (see previous Section).

In Figure 1, we summarize the physical meaning
of deconvolution interferometry and compare it to the
correlation-based approach. The type of wavefield rep-
resentation in Figure 1 comes from the theory of spe-
cial relativity (Ohanian and Ruffini, 1994). According
to the causality principle, no wave in Figure 1 can move
faster than the medium wavespeed ¢ (which for the sake
of argument we assume to be constant). Hence, an ex-
citation that occurs at z¢ and ¢ = 0 influences only
the causal grey-shaded regions in Figure 1, and it is
influenced by the acausal grey-shaded regions. In spe-
cial relativity theory, these grey-shaded areas are called
light cones: the causal grey-shaded regions are the fu-
ture light cones, while the acausal ones are the past light
cones. From equation 9, it follows that Dgp = 1 (i.e.,
when ra = rp). In this case, deconvolution interferome-
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try yields G(rg, rg) = 1 in the frequency domain, which
translates to

G(I‘B,I‘B,t) =(5(t) (16)

in the time domain. Hence, in deconvolution interfer-
ometry, the time-domain excitation is given by 4(¢)
(Figure 1a). This excitation influences all of the causal
light cone of interferometry by deconvolution, except at
z = zo for t > 0, where the wavefield is zero (equa-
tion 16). Likewise, the condition given by equation 16
states that the pseudo-source in deconvolution interfer-
ometry is influenced by all events of the past light cone,
except for the ones at £ = z¢9 and t < 0. The pseudo-
source in deconvolution interferometry generates the un-
perturbed impulse response Go(z, zo,t) and the impul-
sive scattered waves Gs(z, o, t), as indicated in the fu-
ture light cone of Figure la. This pseudo-source, ob-
tained by deconvolution, is influenced only by unper-
turbed waves in its past light cone, which pertain to
impulsive wavefield Gg(z, zo,t). This observation holds
for terms from the deconvolution interferometry series
(after the expansion of equation 10) of any order in the
scattered wavefield, as we demonstrate in the next Sec-
tion.

In correlation interferometry (Figure 1b), the ex-
citation at t = 0 is given by (|W(s,t)|?), where s =
xo for the pseudo-source synthesized by interferome-
try. This excitation generates the unperturbed wave-
field wo(z, zo,t) and the perturbation us(x,zo,t) in the
future light cone in Figure 1b. The acausal waves in
up(z, zo,t) and us(z,zo,t) present in the past light
cone of correlation interferometry influence the excita-
tion at x = zo and t = 0. Therefore, unlike in decon-
volution interferometry (Figure 1b), zo is influenced by
the acausal scattered waves in correlation interferome-
try (Figure 1b). Note that uo(z, zo,t) and us(z,xo,t)
(and their acausal counterparts) are not impulsive. An-
other difference with the deconvolution approach is that
correlation interferometry influences x = z¢ for ¢ > 0,
and is influenced by waves at £ = zo for t < 0 (Fig-
ure 1b). Although the light cone representations in Fig-
ure 1 are valid for one-dimensional homogeneous media,
it can be generalized to higher dimensions (Ohanian and
Ruffini, 1994) and to inhomogeneous media. These gen-
eralizations, however, are not necessary to our discus-
sion on the physics of interferometry.

Finally, we rely on Figure 2 to summarize the
physics of the extra boundary condition imposed by
deconvolution interferometry (equation 16). From this
condition {equation 16), it follows that G(rg,rp,t) =0
when ¢ # 0, which is represented by the dashed white
line in Figures la and 2a. If G is the pressure response,
we refer to this boundary condition in the interfero-
metric experiment as the free point boundary condition.
We use this term because the physical meaning of this
boundary is analogous to that of a free surface bound-
ary condition (where pressure is equal to zero), but in-
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Figure 2. Illustrations of the free point boundary condition in deconvolution interferometry. (a) provides an interpretation
of the free point boundary condition for 1-dimensional media with wavespeed ¢, using the light cone representation (as in
Figure la). zo is the location of the pseudo-source (and of the free point) and zg is the location of a point scatterer. The
arrows represent waves, excited by the source in zg, propagating in the medium. Waves denoted with solid arrows propagate
with opposite polarity with respect to waves represented by dotted arrows. The wavefield is equal to zero at the dashed white
line, and the black vertical line indicates the region of influence of the medium perturbation at xg. (b) illustrates the free
point boundary condition in a 3D inhomogeneous acoustic medium. The pseudo-source, located at rg, is shown with the white
triangle. The receiver is represented by the grey triangle at r4. The medium perturbation is a point scatterer at xg, here
denoted by the black circle. The solid arrow depicts a direct wave excited at rg. This wave is scattered at xs and propagates
toward r4 and rpg, as shown by the dashed arrows. The dotted arrow denotes a free point scattered wave that is recorded at
ra. Waves represented by dashed and dotted arrows have opposite polarity. ¢ through t3 are the traveltimes of waves that
propagate from rp to xg, xg to r4, and rg to r 4, respectively.

stead it only applies to a point in space (in this case,
rg). When G stands for the particle velocity response,
the condition in equation 16 has the effect of clamp-
ing the point rg, so that it cannot move for ¢ # 0. In
that case, we refer to equation 16 as the clamped point
boundary condition. Throughout this paper, we use the
term free point when referring to the condition given by
equation 16, since in previous equations G is represents
pressure waves (e.g., equations 3 and 6). The boundary
condition imposed by deconvolution interferometry in
elastic media is different than that we discuss here, as
shown by Vasconcelos and Snieder (2007b).

The effect of the free point boundary condition in
a 1D homogeneous medium is illustrated by Figure 2a.
The medium is perturbed by a scatterer at zs. Accord-
ing to our interpretation of Figure 1a, the medium per-
turbations occurs at ¢ = 0, so the black dashed line in
Figure 2a shows that the medium perturbation only in-
fluences the future light cone in Figure 2a. Starting at
z = x9 and t = 0, the arrows in Figure 2a describe the
path of a wave that propagates toward the scatterer at
xs, bounces off the scatterer to be then scattered again
at the free point at * = xo. This wave keeps on scat-
tering infinite times between zs and xo. As in the free
surface boundary condition, the free point at zo reflects
waves with a reflection coefficient equal to -1. Note that
the waves in Figure 2a change polarity at each bounce
off the free point at zo.

The extension of the free point concept to 3D inho-
mogeneous media is shown in Figure 2b. In this exam-
ple, deconvolution interferometry is conducted for re-
ceivers at r4 and rg, as in equation 10. The receiver at
rp acts as a pseudo-source (white triangle in the Fig-
ure). The medium perturbation is the point scatterer
at xs. The pseudo-source at rp sends a direct wave
(solid arrow in Figure 2b), with traveltime ¢ toward
the scatterer. After this direct wave scatters at xg, it
propagates back to rg and toward r4 (dashed arrows),
where it is recorded. This recorded singly scattered wave
corresponds to the D% g term in equation 15, with trav-
eltime ¢ = {1 + t2. When it arrives at rp, the wave
backscattered at xs scatters once more because of the
free point boundary condition. The free-point scattered
wave (dotted arrow) then travels directly to ra, where
it is recorded at t = 2t; + 3. This arrival corresponds to
the DiB term in equation 15. When r4 = rp, tz = t
and t3 = 0, and the singly scattered and free-point scat-
tered waves have the same traveltime. This agrees with
our previous discussion on the phase of the terms in
equation 15. For a fixed rp and varying ra, the travel-
time of the free-point scattered wave is only controlled
by t3, since t; stays constant. Note that ¢3 is also the
traveltime of the direct wave that travels from rg to
ra, which is in turn given by the D} term in equa-
tion 15. Since the term D%y is controlled by the direct
wave traveltime t3 for a fixed rp, it has the same move-
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Figure 3. A simple model gain intuitive understanding about the physical meaning of the terms in equation 15. Receivers are
imbedded in an acoustic homogeneous space containing a single reflector, bounded by a perfectly absorbing surface. Only direct
and single-scattered waves are considered. Sources are depicted by circles on the surface, the two receivers are represented by
triangles. L4, Lg and L; through L4 are the lengths of the ray segments. The reflection coefficient r is constant with respect

to both position and incidence angle.

out as the direct wave in an interferometric shot gather
with a pseudo-source at rp. Figure 2b illustrates only
one of the many free point scattered waves produced by
deconvolution interferometry.

Although the presence of spurious events such as
D3 g (equation 15) may appear to be a problem for
imaging interferometric gathers that result from decon-
volution, we show in the Sections to come that these
spurious events typically are not mapped onto coherent
reflectors. What is most important is that interferom-
etry by deconvolution is capable of successfully recov-
ering the causal scattering response between any two
receivers, as shown by the D% g term.

2.2.2 Higher-order terms

In the previous section we limited our analysis to the
terms of first order in Gs. Here, we analyze the higher-
order terms. The full deconvolution series resulting from
the expansion of equation 11 is

Casn S Gs(rs,s)

Dap = ————
A8 |Golrm, o) ,;, ( Go(rs,s)  Gi(rs,s)
(17)
As shown in Appendix A, a physical analysis of the

terms in equation 17 allows us to simplify it to

Das =~ g(“’s) PR/ B Z(— )" (Gs(m’s))
o(rs,s) |Go(rs,s)|” & Go(rs,s)
(18)
In this equation, the first term yields physical unper-
turbed and scattered waves that propagate between rp
and ra, while the second term accounts for the effect
of the free point boundary condition in deconvolution
interferometry. The objective of the simplification in

GE(ra,s))n

equation 18 is to keep only the terms that have non-
zero phase which bring the most prominent contribu-
tions to the series in equation 17. The approximation
that leads to equation 18 involves neglecting terms from
equation 17 which are zero-phase or that yield arrivals
with negligible amplitudes (see Appendix A). Note that
the acausal terms proportional to (G%/Gg)" in equa-
tion 17 are not present in equation 18 because they
cancel in the n — oo limit (see Appendix A). This can-
cellation determines that the point z¢ in Figure la is not
influenced by acausal scattered waves (see discussion in
Section 2.2.1). The first term in equation 18 gives the
terms DY4p and D%p in equation 15. The term D3p
is obtained by the product of C4g and the first term
of the sum in equation 18. It is important to note that
terms of a given order in the scattered wavefield come
from different values of n in equation 18. Let us take,
for example,

lend _ _Gs(l‘A,S)Ga(rB’S) (gs((:31s))) (19)

and

nd Gs(rB S) 2
T2 = Go(ra,s)Gy(rp,s) { ———2—2 20
P = Golran) Gateo,s) (G ) (20)
where T represents a given term T; from equation 18
nd nd
of order o in the scattered wavefield Gs. Tf  and T2
are the most prominent terms which are of second-order

nd
in the scattered wavefield, where T2 comes fromn = 1

while T2
Tzznd will give rise to arrivals with twice the traveltimes
of Gs(ra,rg). Since these two terms have opposite po-
larity (equations 19 and 20), their contributions cancel.
Likewise the terms

nd
comes fromn = 2. Whenrg =rp, T12 and
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Figure 4. Depths obtained by shot-profile migration of stationary traveltimes of deconvolution interferometry terms with
varying receiver-to-receiver offset. Black lines correspond to the terms that are of leading order in the scattered wavefield (see
Section 2.2.1). The black solid line represents migrated depths from traveltimes associated to the D?q g term (equation 15);
whereas the black dashed line pertains to the Df‘q g term (also equation 15). The curves colored in blue, red and green are
associated respectively to terms which are quadratic, cubic and quartic with respect to scattered waves. For a given order in the
scattered waves, we show only the two terms that have strongest amplitude. Of the blue curves, the solid curve relates to the Tf"d
in equation 19 and the dashed one pertains to Tzzml (equation 20). The imaged depths computed from the T{’"‘ (equation 21)

d
and T23' (equation 22) stationary traveltimes are shown by the solid and dashed red lines, respectively. Although the quartic
terms related to the green curves are not explicitly shown in the text, they come from the deconvolution interferometry series
in equation 18 for n equal to 3 and 4.
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Figure 5. Common receiver gathers for receivers placed at (a) 1500 m and at (b) 3000 m.

tion 18; e.g., equations 19 through 22) can be physi-

v Gs(rs,s) 2 cally explained by the interactions of the free point at
T = Gs(ra,s)Go(rp,s) (W’S)) (21) rg (equations 10 and 16) with the waves scattered by
0B, the medium perturbation. In the example of Figure 2b,
and the higher-order spurious multiples arise from multiple
3 scattering between the scatterer at xs and the free point
rd . Gs(rs,s
T3 = — Golra,s)Gi(rs,s) (M) (22) at rp.

Go(rB,S)

result in traveltimes that are three times those of
Gs(ra,rp) whenrs =rp. TY and T3 are the most
prominent terms from the series in equation 18 which

As we demonstrate with our numerical example,
some of these higher-order spurious terms (such as in
equations 19 through 22) may be present in the decon-
volution interferometry integrand. Hence, it is impor-

are of third-order in the wavefield perturbations. They
come respectively from setting n = 2 and n = 3 in
equation 18. The phase of of any the higher-order terms
in deconvolution interferometry (second term in equa-

tant to understand to what extent these terms present
a challenge to the proper imaging from interferometry
by deconvolution. We investigate this in the next Sec-
tions.
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Figure 6. Deconvolution and cross-correlation gathers for the first and last receivers, whose lateral positions are, respectively,
1500 and 3000 m. (a) displays the deconvolution gather obtained from deconvolving the modeled common-receiver gathers,
whereas (b) shows ray-theoretical traveltimes for the terms in equation 15, computed according to integrands in equation 15 in
Section 2.4. Analogous to (a), (c) is the cross-correlation gather generated from source-by-source correlation of the two receiver
gathers. (d) shows the asymptotic traveltimes corresponding the phase of the integrands in equation 5.

2.3 Deconvolution after summation over sources
Using the deconvolution approach described by equation 10 is not the only option for doing interferometry without
independent estimates of the source function. The deconvolution of u(ra,s) and u(rg, s) is equal to
u(ra,s) u*(rs,s) Cas

= , (23)
'u.(rA,s) u“(l‘B,S) Cgp
where Cpp is the auto-correlation of u(rp,s). In the previous Section we summed this result over all sources.
Interferometry can be done as in the previous Section, or we can first integrate over sources, and then compute the
spectral ratio

Dap =

$.Capds _ G(ra,rs) + G*(ra,ra) (24)
$:Cspds $-Cppds ’

The ratio on the left-hand side of the equation cancels the contribution of the wavelet (|W(s)|?) (equation 3). No
independent estimate of the source function is required. Other authors have suggested approaches similar to the
one in equation 24. The pilot-trace approach used in drill-bit seismology (e.g., Poletto and Miranda, 2004; Rector
and Marion, 1991) uses auto-correlations of the accelerometer recordings or geophone data to built a deconvolution
operator (Vasconcelos and Snieder, 2007b). The Virtual Source method (Bakulin and Calvert, 2006; Schuster and
Zhou, 2006) also relies on a deconvolution analogous to the one in equation 24.

As we did with the cross-correlation in equation 4, we can expand Cgp and integrate it over sources, giving:

chBds = }{c}mds + fcga ds + f Cipds + ?f Chpds (25)
z = P = =
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Figure 7. Deconvolution interferometry terms which are nonlinear in the scattered wavefield. The left panel shows the integrand
of the deconvolution interferometry integral (equation 10),computed from finite-difference modeling (same as in Figure 6a). In

b), the traveltimes corresponding to the second order terms 72" and T2™ equations 19 and 20) are shown respectively
1 2

with solid and dashed blue curves; while the solid and dashed red curves come from Tl3rd and T.frd (equations 21 and 22),
respectively. The curves in (a) correspond to the curves of the same color and type in Figure 4.

From the integration of the four terms on the right-hand side of equation 25, we can write

1 1
= ; 26
$:Cepds  [|Go(rs,rB)|* + $§,Chpds + §,Cypds + |Gs(rs,ra)|’] (26)

where the denominator contains zero-phase terms (the power spectra), as well as the causal and acausal zero-offset
scattered wavefield us(rp,rg). Using the weak perturbation approximation (|Go|> >> |Gs|?), we can approximate

—2
1
I:f CBB ds] = 2 1
= (Goea,vo)” [1 + woszsy $o Cha 45 + [aopirmye $o Cho ds]

IGo(rp.rB)l Go(rp,rp)|

(27)

which gives us an expression of the same form as equation 13. Hence, we can expand equation 27 in a power series of
the same form as in our previous discussions (see equations 13, 14 and 17). Considering only the very first term of
the series expansion, it gives

$.Capds _ G(ra,rg) + G*(ra,ra) (28)
$.Cppds |Go(rs,rB)|? ’

This expression shows that deconvolving the integral over Cap by the integral over Cep recovers both the causal
and acausal response at ra for waves excited at rg. This response is scaled by the power spectrum of the zero-offset
unperturbed wavefield. Note that equation 28 is approximate. Other terms of the series expansion of equation 27 yield
cross-correlations and convolutions between causal and acausal u(ra,rg) and us(rp,rg). Since, after Vasconcelos
and Snieder (2007a),

/ Chpds = / Gs(rs,s)Gy(rs,s)ds =~ Gs(rp,rs), (29)
o) oy

and
/ Cipds = / Golrs,s)G5(ra,s)ds ~ G(rs,ra). (30)
-3 o

Other terms arising from the expansion of equation 27 are bound to be small because not only they are products
between G and Gs terms, but also because they are divided by |Go(rs,rg)|*" (with n = 2,3,4,...).



2.4 Example: asymptotic analysis of
deconvolution interferometry

In Section 2.2 we discussed some of the physics be-
hind the terms in deconvolution interferometry based
on their integral representation. Here we illustrate the
ideas in the previous Sections using asymptotics. We use
these asymptotic methods to investigate the spurious
arrivals in imaging gathers produced by deconvolution
interferometry (see Section 2.2). Although it is neces-
sary to restrict this type of analysis to simple models,
the observations provide useful insight into the physics
of our problem. Snieder et al. (2006) used the same kind
of asymptotic analysis to study the terms arising from
interferometry by cross-correlations (e.g., equation 4).
They also characterized spurious multiples that come
from a limited source integration (see discussion con-
cerning equation 8). Since our approach is analogous to
that in Snieder et al. (2006), we do not reproduce all
steps in their derivation. Some of these steps are repro-
duced in Appendix B.

The toy model we use is that of a single reflector
in a homogeneous medium (Figure 3). The unperturbed
wavefields uo(ra,s,s) consist of the direct waves while
us(ra,s,s) are the single-reflected waves. We use the
far-field acoustic Green’s functions in equation Bl to
represent the ray-geometric arrivals in Figure 3. If we
rewrite the term DY g in equation 15 according to equa-
tion Bl we get

ik(La—Lp)

Dk L= 1 i / e A—Lp

(4nLp) LaLp

where the integral over s (equation 15) has been con-

verted to the integration over the lateral coordinates =

and y (representing the surface plane). The stationary-

phase evaluation (see Appendix A) of the integral in
equation 31 gives

dzdy , (31)

ne Go(ra,rp)
32m2 LY cosyp  (—iw) (32)

with the acoustic wavespeed ¢, and n representing
sources per unit area (Snieder et la., 2006). A straight
raypath connecting ra, rp and the surface determines
the stationary source position that gives equation 32.
The angle defined between this stationary ray and the
vertical defines the angle 9. Go(ra,rp) is the unper-
turbed Green'’s function, in this case a direct wave, prop-
agating from rp to ra. Equation 32 is consistent with
our interpretation of the term DY g in Section 2.2.1. The
(—iw) ! in equation 32 indicates that after interferom-
etry it is necessary to perform a time-domain differen-
tiation to obtain the Green’s function (Snieder et al.,
2006). This is a correction factor commonly found in
interferometry (e.g., Wapenaar et al., 2004a; van Wijk
et al., 2006): it compensates for the source integration,
and it depends on which type of Green'’s function is con-
sidered (Wapenaar et al, 2004b). Although for simplicity

1
DAB =
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we have not explicitly kept the iw factors in the inte-
grals in previous Sections, the exact forms of those ex-
pressions also have iw factors (Vasconcelos and Snieder,
2007a).

The term D? g of equation 15 for our model reduces
with equation B1 to the integral

D r eik(L1+L2—LB)d J

= T y 33
4B = ia? ) v Lois % ¥
which is has a form similar to that of equation 31. This
integral can also be evaluated with the stationary phase
method, giving

nc Gs(rA, rB) .
3272 LY cosyy  (—iw)

where 7 is the constant reflection coefficient at the inter-
face in Figure 3. The stationary source point that results
in equation 34 is associated with a raypath that starts
at the surface, passes through rg, specularly reflects off
the interface and is recorded at ra. Since the station-
ary raypaths that give equations 32 and 34 are different,
the corresponding values of the obliquity factor cosy are
also different. The stationary-phase evaluation of D%g
(equation 33) results in Gs(ra,rs): a causal singly re-
flected wave excited at rg and recorded at rg4.

Next, we consider the asymptotic behavior of the
D% p term (equation 15). Using the Green’s functions
in equation B1, D3y is given by

Dis = (34)

ik[(La+La—Lp)—(La—Lp)]

(L3 + L4) LAL%

Dy = ——— / ¢ drdy .
AB (47|'LB)2 Y
(35)

If ra = rp, the phase of the integrand in equa-
tion 35 is the same as in equation 33, so the resulting
stationary-phase evaluation of D35 is proportional to
Gs{rs,rg). This supports the physical interpretation of
D3 g provided in Section 2.2.1, where we argue that for
ra = rp the terms D% and D) g have the same phase
and give the zero-offset scattered-wave traveltimes. For
ra # re, Dap is not associated to any stationary paths
that would exist for a real excitation placed at rg with-
out the free point boundary condition (equation 16).

The main objective in studying the spurious terms
such as D35 is to determine their influence in imaging
data from deconvolution interferometry. Hence, we pro-
ceed with a numerical asymptotic analysis of the spuri-
ous arrivals. Once we specify a model such as the one
in Figure 3, we compute the ray-based traveltimes of
each spurious arrival for all source positions, according
to equation 18. From the maxima of the phases of each
spurious event, we determine their corresponding sta-
tionary traveltime and source position. We did this for
a fixed position rp as a function of a laterally-varying
ra. Given the receiver positions, stationary traveltimes
and model parameters, we predict the migrated depth
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of any given term (e.g., D% ) through common-shot mi-
gration (Bleistein et al., 2001). The result of this anal-
ysis is shown in Figure 4. The geometry and model pa-
rameters used in the computations in Figure 4 are the
same as in the numerical model we discuss in the next
Section. For these computations, r4 and rp are kept at
the same constant depth level.

Only the term D%p represents physical scattered
waves in Figure 4. As expected, D% is mapped at the
same depth for all offsets, as shown by the solid black
line in the Figure. On the other hand, the spurious terms
in Figure 4 map to depths that increase with increas-
ing offset. This suggests that when a sufficiently large
range of offsets is used, most spurious events interfere
destructively when imaged. The only exception is the
term le"d, whose mapped depth varies slowly with off-
set. We suspect that this might be because the phase of
Tf"d is equivalent to twice the phase of the integrand of
D35 (equation 15), thus representing artifact multiples
arising from convolving ug(ra,rg) with itself.

If only a short offset aperture is available ( e.g., in
the offset range 0 to 500 m in Figure 4), the spurious
multiples may add constructively in the final image. We
argue that even if spurious events in Figure 4 map to
image they will not be very prominent because they are
of higher order in the scattered wavefield. In addition,
these terms should cancel close to zero-offset because of
the free point boundary condition imposed by deconvo-
lution interferometry (see discussion in Section 2.2.1).
This boundary condition requires the zero-offset wave-
field to be zero at finite times (see Section 2.2.1). Indeed,
solid and dashed lines of a common color in Figure 4
pertain to terms that have opposite polarity.

Note that at zero-offset (Figure 4), 2"4-order spuri-
ous events map at twice the depth of the physical reflec-
tor relative to the receivers (receiver depth is 750 m);
3" order events map at three times that depth, and so
on. This observation relates to the remarks made about
the zero-offset traveltimes expected for the higher-order
terms in Section 2.2.2.

3 NUMERICAL EXAMPLE

The model we use is composed of a water layer with
a wavespeed of 1500 m/s. A flat, horizontal interface
was placed at 2500 m depth. The contrast at the inter-
face is produced by a velocity step from 1500 to 2200
m/s, with a constant background density of 1000 kg/m3.
The receivers were positioned in a horizontal line at
750 m depth, starting at lateral position £ = 1500 m
and ending at 3000 m, with increments of 25 m. The
source line was also horizontal at a depth of 400 m,
ranging from z = 500 m to 4500 m, with increments
of 50 m. The data was modeled by 2D acoustic finite-
differencing with absorbing boundary conditions. Fig-
ure 5 shows that the data consists of direct and single-

reflected waves. As in the previous Section, we refer to
these waves as uo(ra,B, s) and us(ra,s,s), respectively.

First, we use the data in Figure 5 to analyze the in-
tegrands in equations 3 and 10. The deconvolution of the
wavefield in Figure 5a with the wavefield in Figure 5b
yields Figure 6a, while the cross-correlation yields Fig-
ure 6c. The deconvolution gather (Figure 6a) displays
causal term D% g, while both causal (C%z) and acausal
(C3 g) contributions are present in the cross-correlation
gather (Figure 6c¢). This confirms our claim that decon-
volution interferometry gives mostly causal scattering
contributions (see Section 2.2.1). The term C%pg also
does not have a corresponding term in the deconvo-
lution gather, as was predicted by equation 15. Also,
the waveforms in Figure 6a are sharper than those in
Figure 6¢c because deconvolution suppresses the source
function. We use a water-level regularization method to
do deconvolutions. For a brief discussion on this method
see Appendix A in Vasconcelos and Snieder (2007b).

The arrival times predicted with perturbation the-
ory (bottom plots in Figure 6) provide an accurate rep-
resentation of the modeled results in the top panels of
Figure 6. In particular, the deconvolution series (equa-
tion 18, Figure 6b) describes well the most prominent
terms in deconvolution interferometry (equation 10, Fig-
ure 6a). As predicted by theory, the terms D%p and
D3 g have opposite polarity. The extrema of the curves
in Figure 6 are stationary source positions. Thus, the
stationary traveltime of each term is the time associ-
ated to the extremum of its curve in Figure 6. The sta-
tionary traveltimes from D% g and Chp are t = £1 s,
representing causal and acausal direct waves. D% g and
C%p result in a stationary time of approximately 2.5 s,
which coincides with the traveltime of a causal single-
scattered wave. In previous Sections we showed that the
stationary traveltimes given by D% g and D35 only co-
incide when rs = rg. Since in Figure 6 r4 # rp, the
stationary time of D3 g is different from that of D% 5.

There are other events present in the lower left-
hand corner of Figure 6a which are not present in Fig-
ure 6b. These events are described by higher-order terms
of the deconvolution series (equation 18). Figure 7 shows
how the events are described by terms of second and
third order in the scattered wavefield. The events corre-
sponding to third-order terms have considerably smaller
amplitude than the ones related to second-order terms.
Second-order terms are in turn weaker than the leading-
order terms (Figure 6a). A decrease in the power of the
events with increasing order in the perturbed wavefield
is expected, given the form of equation 18. These exam-
ples confirm the accuracy of the deconvolution series in
describing the character of the integrand in deconvolu-
tion interferometry (equation 10).

The integration over sources (e.g., equations 3
and 10) corresponds to the horizontal stack of the plots
in Figures 6a and c. Stacking, for example, Figure 6¢
results in a single trace that represents a wavefield ex-
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Figure 8. Pseudo-shot (interferometric) gathers with the shot positioned at the receiver at 1500 m. The gather in (a) is
obtained by deconvolution before stacking (equation 10), (b) is generated by cross-correlations (equation 3) and (c) is given by
deconvolution after summation over sources (equation 24). Source integration of the gathers in Figures 6a and ¢ yield the last

trace in (a) and (b), respectively.
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Figure 9. Shot-profile wave-equation migrated images of the virtual shot gathers in Figure 8. In this figure, (a), (b) and (c)
are the images obtained from migrating the gathers in Figure 8a, b and c, respectively. The true depth of the target interface
is 2500 m. The shot is placed at 1.5 km and receivers cover a horizontal line from 1.5 to 3.0 km.

cited at a lateral position of 1500 m and recorded at
3000 m. We create an interferometric shot gather with
a pseudo-shot placed at 1500 m by computing and stack-
ing all of the deconvolution and cross-correlation gathers
(Figures 6a and c) for the receiver fixed at 1500 m but
varying the lateral position of the other receiver from
1500 to 3000 m. The interferometric shot gathers are
shown in Figure 8.

All gathers in Figure 8 show both causal and
acausal direct waves. Only the gathers produced from
cross-correlation (Figure 8b) and deconvolution after
stack (Figure 8c) show causal and acausal reflections,
agreeing with equations 3 and 28. The interferomet-

ric gather produced from deconvolution interferometry
(Figure 8a) indeed only shows the causal scattered wave.
The first-order term D3 g (equation 15) can be seen in
Figure 8a with opposite polarity and slower moveout
compared to the physical reflection. The reflection and
the D3 spurious events converge at zero-offset where
they cancel. As observed in Figure 8a, this is due to
the effect of the free point boundary condition (equa-
tion 16) imposed by the deconvolution of wavefields be-
fore source integration (see Section 2.2.1). As in Fig-
ure 8a, the zero-offset trace of the gather in Figure 8¢
consists of a band-limited spike at 0 s. This can be ver-
ified by setting Cap = Cgp in equation 24. In contrast
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to Figure 8a, Figure 8c does not contain the spurious
events produced by the free point boundary condition
present when deconvolving the wavefields before source
integration. There are other events which are related to
the truncated source integration (see Section 2.1). These
are, for example, the upward-sloping linear events ap-
pearing between the direct arrivals and the reflections
in all three gathers.

The images obtained by shot-profile migration of
the gathers in Figure 8 are shown in Figure 9. The shot-
profile migration was done by wavefield extrapolation,
with a split-step Fourier extrapolator. The reflector is
placed at the correct depth in all three images. Also, all
three images are remarkably similar, despite the differ-
ences between the gathers in Figure 8. The similarity
between the images comes from the fact that the spuri-
ous events in deconvolution interferometry have a negli-
gible effect in images made from offset-dependent data.
Based on Figure 4, we argue in Section 2.4 that the spu-
rious events produced by deconvolution interferometry
typically do not map onto coherent reflectors. This jus-
tifies the absence of spurious reflectors in Figure 9a. In
Figure 9, we can also appreciate the effect of deconvo-
lution (Figures 9a and ¢) in compressing the waveform
relative to cross-correlation (Figure 9b).

4 DISCUSSION AND CONCLUSIONS

By representing recorded wavefields as a superposition
of direct and scattered wavefields, we derived a series
expansion yielding terms that follow from performing
deconvolution interferometry on receiver gathers before
summing over sources. This derivation suggests that
interferometry by deconvolution before stacking over
sources gives only the causal scattered wavefield as if
one of the receivers acted as a source. Because decon-
volution interferometry requires the zero-offset wave-
field to be zero at nonzero times, it generates spuri-
ous events to cancel scattered arrivals at zero-offset. We
refer to this condition as the free point boundary condi-
tion at the pseudo-source location. With a simple model
we illustrate this by using asymptotic approximations
to the terms in deconvolution interferometry using the
stationary-phase method. We also argue that interfer-
ometry can also be accomplished by deconvolution af-
ter summation over sources, which would yield terms
analogous to correlation-based interferometry.
Numerical examples with impulsive source data
showed that deconvolution interferometry can success-
fully retrieve the causal response between two receivers.
This response can be used to build interferometric shot
gathers which in turn can be imaged. Imaging of decon-
volution interferometric shot gathers proved to practi-
cally eliminate the spurious arrival generated by the de-
convolution method. Indeed, our numerical asymptotic
analysis suggests that the deconvolution-related spuri-
ous events add destructively in the imaging of offset-

variable data. It may be possible to create a reverse-time
imaging scheme that results in an image free of spuri-
ous artifacts. We believe this could be done from the
proper manipulation of boundary conditions in nurmer-
ical modeling by the finite-difference method (Biondi,
2006). Although our assessment of the spurious events
is model dependent, we believe that our observations
also hold for more complicated models (see Part II of
this article).

Ideally, we want interferometry to give us the best
possible representation of the impulse response between
two given receivers. Cross-correlation interferometry
yields an accurate representation of the waves propa-
gating between the receivers, but it requires an esti-
mate of the power spectrum of the wavelet for it to
give an impulsive response. Deconvolution interferome-
try yields an impulsive response, but it does so at the
cost of generating artifacts. Another option is to design
an inverse filter to do interferometry (Sheiman, personal
communication, 2006). For example, the inverse filter
may require the zero-offset trace in the pseudo-shot with
a pre-determined band-limited pulse. This inverse fil-
ter does not require any knowledge about the model,
and its output would be described the deconvolution
series discussed here. If there is some knowledge about
the model, the inverse filter may be designed to repli-
cate an estimate of a desired wavefield (e.g., Amundsen,
2001). In this case, the output of the inverse filter will
approximate an irhpulsive version of cross-correlation
interferometry. We associate the form of the deconvo-
lution interferometry series to that of scattering series
such as the Lippman-Schwinger series (Rodberg et al.,
1967; Weglein et al. 2003). Forward and inverse scat-
tering series serve, for instance, as the basis to method-
ologies in imaging and multiple suppression (Weglein et
al., 2003). In analogy to scattering-based approaches,
it is possible to express the deconvolution interferome-
try series in forward and inverse forms as well. Hence,
an inverse deconvolution interferometry series may be
designed for the imaging of pseudo-shots generated by
deconvolution interferometry.

The results we present here are consistent with
previous deconvolution interferometry results. Although
there is no explicit source integration in the work of
Snieder and Safak (2006) and of Mehta et al. (2007a),
their results agree with our representation of deconvo-
lution interferometry before integration over sources. In
the 1D models, such as used by Snieder and Safak (2006)
and Mehta et al. (2007a), the excitation produced by
teleseismic events was naturally in the stationary path
between the receivers. This excludes the need for a full
3D source integration as in equation 10. Moreover, we
argue that the application commonly referred to as re-
cewver function (e.g., Shen et al. 1998, Mehta et al.,
2007b) in global seismology is a direct application of de-
convolution interferometry. With the same type of 1D
layered model as in Snieder and Safak (2006) and of



Mehta et al. (2007a), the receiver functions consist on
the deconvolution of a radial receiver component with
the vertical component of the same receiver. This, in
interferometry terms, yields a zero-offset trace that cor-
responds to an excitation in the vertical direction whose
wavefield is recorded in the radial direction. Also, like in
Snieder and Safak (2006) and Mehta et al. (2007a), no
source integration is required because in the 1D model
all incoming waves are in the stationary wave-path.

It is important to point out other perhaps less
obvious relationships between our work and that of
other authors. With an elegant derivation and exam-
ples, Loewenthal and Robinson (2000) show that de-
convolutions between measured dual wavefields (e.g.,
particle velocity and pressure) can be used for model-
independent redatuming and for recovering reflectiv-
ity. Their derivation, in fact, is a proof of the appli-
cation of deconvolution interferometry for dual wave-
fields. Amundsen (2001) designs deconvolution-type in-
verse operators to strip the influence of the water layer
in marine data, at the same time performing free-surface
multiple attenuation and estimating reflectivity. In a
companion paper, Holvik and Amundsen (2005) use rep-
resentation theorems of the same type as discussed in
Section 2.1 along with deconvolution for elastic wave-
field decomposition and multiple elimination. These pa-
pers are intimately related to deconvolution interfer-
ometry as we propose it. We advocate that the proper
choice and manipulation of the wavefield pair uo and ug
give rise to different applications, with the example of
dual wavefields by Loewenthal and Robinson (2001) or
the boundary-condition approach by Amundsen (2001)
and Holvik and Amundsen (2005). We also use these ex-
amples to highlight the potential of deconvolution-based
interferometry in recovering data with amplitudes con-
sistent with the subsurface reflectivity function.

There are other important potential applications
for deconvolution interferometry. As we summarized in
Figure 1, deconvolution interferometry gives only causal
wavefield perturbations, while unperturbed waves are
present at both positive and negative times. For an ideal
source coverage, the subtraction of the acausal wavefield
from deconvolution interferometry from its causal re-
sponse results only in wavefield perturbations. This idea
may be useful for processing data from time-lapse ex-
periments, as well as for pre-processing procedures such
as direct- or surface-wave suppression. In the context of
imaging, we highlight that in the cross-correlation imag-
ing condition (Claerbout, 1985; Sava, 2006), the corre-
lation serves the purpose of reproducing a zero-offset
pseudo-shot experiment placed on top of a reflector (af-
ter extrapolating data to the reflector position). This is
a direct application of the concept of correlation inter-
ferometry (e.g., Wapenaar and Fokkema). We believe
that deconvolution interferometry can also be used to
impose deconvolution imaging conditions (e.g., Muijs et
al., 2007) that help to construct images whose ampli-
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tudes are an estimate of subsurface reflectivity (Bleis-
tein et al., 2001).

Our goal here was to demonstrate the feasibility
of using deconvolutions to recover the impulse response
between receivers. Nonetheless, deconvolution interfer-
ometry has proven to be an important tool for inter-
ferometric imaging from complicated excitation. The
Earth itself may be the cause of complicated source
functions, as in the case of Snieder and Safak (2006) and
of Mehta et al. (2007a). When using internal multiples
for imaging, Vasconcelos et al. (2007b) found deconvo-
lution interferometry to be necessary. In other applica-
tions the complicated character of the excitation may be
related to the source itself. One such example is drill-bit
seismology. When independent measures of the drill-bit
stem noise are not available, deconvolution interferom-
etry is necessary. This is the focus of the next part of
this manuscript (Vasconcelos and Snieder, 2007b). Here,
we highlight the physical differences between three in-
terferometric methods: 1) deconvolution before source
integration, 2) cross-correlations and 3) deconvolution
after source integration. The comparison between meth-
ods 1) and 2) serves the purpose of providing the reader
with information that allows one to relate the new con-
tent in this manuscript to much of the existing literature
about interferometry. The understanding of the meth-
ods 2) and 3) provides the basis for the discussion about
the specific use of deconvolution interferometry in drill-
bit seismic imaging, which is the subject of the second
part of our study (Vasconcelos and Snieder, 2007b).
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APPENDIX A: PHYSICAL ANALYSIS OF THE DECONVOLUTION INTERFEROMETRY
SERIES

According to the derivation in Section 2.2.1, the deconvolution in equation 9 can be expressed in series form

__ Cas o~ ( _Gs(rs,s)  Gi(rs,s)\"
DAz = Gt s)P > (- Gomsy - et (A1)

n=0

The objective of this appendix is to reproduce the steps and physical approximations that simplify the series in
equation Al. Let us first consider the n = 2 term in the summation in equation A1, which is

_ _GS(I‘B,S) _ Gs(rg,s) 2
5 ‘( Golrs,5) c;,(r,;,s)) (A2)

Substituting this term in the expansion of |G(rp,s)|”? (equation 13) gives, to second order in Gs,

|G(r5,s)|

1 [1 _ Gs(rs,s) Gg(rg,s)]
|Go(rs,s)|* Go(r,s)  Gi(rs,s)

1 Gs(rs,s)\* | (Gi(rs,s)\*  |Gs(rs,s)’
+ |Go(rs,s)|* [(Go(rs,s)) + (G’S(rs,s)) + 2|Go(r3,s)|2] ’

(A3)

where the very last term is zero-phase. When IGo|2 >> |Gs|2, the zero-phase term in equation A3 can be neglected
because it does not contribute with any new arrival. Equation A3 thus simplifies to

IG(ra,s)| % ~ 1 [1 Gs(rs,s)  Gs(rs,s) 4 (Gs(rB,s))2+ (Gg(ra,s))z] : (A4)

IGO(rB, S)|2 a GO(rB:S) GS(I‘B:S) GO(rB)S) GS(rB)S)
for which the actual contribution from n = 2 to the sum in equation Al is
S, =~ (us(rB,s)>2+ (UE(rB:S))2 (A5)
* 7 \uolrs,s) uj(rs,s)/

instead of the full S term in equation A2. Applying the same rationale for the simplification of S, to the n = 3 term
from the summation in equation A1l gives

_ Gs(rs,s)  Gi(rs,s) 3
8 = (_ Go(rs,s) G{,(rB,s)) ’ (A6)

S3 can be expressed in terms of Sz, such that

_ _ GS(rB!S) _ G;(rB:S)
Sz = 52 X ( Go(rs,s) G(‘,(rB,s)) ’ (A7)

Using the simplified S2 (equation A5) in evaluating Ss gives

S~ — (Gs(ra,s))“ _ (Gs<rs,s))3 _ [Gs(vs,5)I” Gs(rp,8)Gi(rn,5) _ |Gs(rm,s)|” G5(rp,8)Go(rn,s)

Go(rs,s) Gi(rs,s) |Go(re,s)]*  |Go(rs,s)|* |Go(rs,s)*  |Golrs,s)|® (48)

8

The last two terms of S3 in the above equation are not zero-phase. Note also that despite being nonzero phase, the

phase of these terms is the same of other terms of lower order. For example, the term (|Gs|2 / IGOI") Gs Gp has

the same phase as the integrand in the D% g term in equation 15, but with weaker amplitude and opposite polarity.

Because they do not result in new arrivals and have weak amplitudes, we drop the last two terms in equation A8 and
reduce S3 to
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som - (Grlmdy' - (Giemay”. a9

Any S, term of the summation in equation Al can be written in terms of S,_; in the same form of equation A7.
Analogously to equation A8, any Sy will yield four terms from which two terms can be dropped according to the same
rationale we use to neglect the last two terms in equation A8. Thus, by induction, the summation in equation Al
simplifies to

(- Getenn Genmy oy Sy [(Geled)" s (Se2dY]. o)

Using this simplified summation in the deconvolution series gives

= e (0 S [(Gd) () T) - e

The term-by-term expansion of the equation above is such that for any given value of n, the terms

n G‘ b} " * *
Dag terms = (—1) (M) Go(ra,s)Gs(rp,s) + Gs(ra,s)Gs(rg,s) (A12)
Golrs,s)) | LA SZSIB 8T )
Cin Cip
cancel, for n + 1, with the terms
n+1 G:g(l'B, S) mH - *
DAB,tcrms = (_1) el N Go(l‘A,S)Go(!'B,S) + GS(rA>S)G0(ers) 3 (A13)
Gy(ra,s) . ~ N ~
c}48 CiB

which in the limit n — oo leaves only the contribution of the causal ratio Gs/Gop to Dap in equation All. The can-
celation of the terms proportional to the acausal ratio G5/Gg (highlighted by equations A12 and A13) is responsible
for the absence of acausal terms having the same phase as C3 g and C4 5 (equation 4) in deconvolution interferometry
(equation 15). Because of these successive cancelations, we arrive to

Go(ra,s)Gy(rs,s) | Gs(ra,s)Gj(rs,s) Ca n (GS(FB,S))n
Dap =~ + + -1 B , Al4
a8 |Go(rs,s)? |Go(rs,s)? |Go(rs,s)? 2 (D Go(rs,s) (AL)
which, in compact form, gives
G(ra,s) Cap & n (Gs(rs,s))"
D ~ -1 — L . Al5
AB ™ Gor,s) | [Golrs,s)] ;( " Colenns) (A15)

We present this approximate deconvolution series as a tool to identify the most prominent events within the
integrand of the deconvolution interferometry integral (equation 10). Equation' A14 is also useful in the description
of the kinematics of deconvolution interferometry terms, as we discuss in the main text. If one seeks to describe the
result of deconvolution interferometry with a more accurate dynamic behavior, the original series in equation Al is
more appropriate.
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APPENDIX B: STATIONARY-PHASE EVALUATION OF LEADING ORDER TERMS

The wavefields shown in Figure 3 can be described by the ray-geometric impulse responses

eikl"A,B —sl
uo(I‘A,B,S) o= G()(I'A'B,S) = —mw—_sl’, and
(B1)
G(* —ra|+ e -rApl)
R PR R R

where ry g are the specular reflection points for the receiver-source pairs (rs,s,s). Go and Gs are the far-field
acoustic Green’s functions we use to describe uo and us, respectively. In our model, s = (z,y,z =0) and ra,p =
(za,B,ya,B = 0,24,8). The distances in the phases and denominators in equation Bl can be expressed in terms of
the corresponding ray-lengths in Figure 3. Using the Green’s functions in equation Bl to express D} g (equation 15)
we get

us(ra,s,s) = Gs(ra,s,s) =

; ! M e B2
Dap = / x
AB (47rLB)2 Lals Y, (B2)
where ¢ = ik (La — Lp) is the phase of the integrand. The source position that gives a stationary contribution to
the integral in equation B2 satisfies

o y
e B3
0 3y "L Ls’ (B3)

and

_Op x—-T4 xT—2B

" Oz La Lp

where 14 and 9p is the angle defined between the direct wave and the vertical at receivers A and B. It follows from
equations B3 and B4 that the stationary point for the source in the D} g term satisfies (Snieder et al., 2006)

=sinya —sinyp , (B4)

1/).4 ='(/}B=‘¢ and y—_—O (B5)

It is expected that the stationary contribution for all terms comes from sources at y = 0 because y4,5 = 0 and the
model is a flat reflector in a homogeneous and isotropic medium. The condition ¥4 = 1B (equation B5) states that
the stationary source is the one that sends a direct wave which is first recorded at rg and goes straight to ra. This
is the same stationary condition as for the C} 5 term of Snieder et al. (2006).

To approximate the integral in equation B2 with the stationary-phase method we must evaluate, at the stationary
point, the second derivatives

¢ _zh s _zal zp 1
0z L% LYy I4La L% Ls
(B6)
sy (L L
—cos¢(LA Is )’
and
2 2 2

8y L3 LYy La Ls’
Based on these second derivatives, the stationary-phase approximation (Bleistein and Handelsman, 1975) to equa-
tion B2 is
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1 exp(ik(La— L)) — 27 1
Dl = n X im/4 [&7
AB = (4nLp)? (4n)° Lals ¢ k —
cos 27 (—— - —)
LB LA (BS)

; [2m 1
Xe—nr/4 " ,
B
Lp La

where k = 2. At the stationary source point, where ¥4 = g, the distance La — Lg is equivalent to the distance
|[ra — rp|. Thus, in the stationary-phase approximation, D} is given by

nc Go(rA,rB) (Bg)

Dhg =
AB T 32 [L cosy  (—iw)

From the derivation above, the stationary-phase evaluation of D} is completely analogous to the evaluation of
Ch 5 (equation 4) in Snieder et al. (2006). Since the same occurs with the term D?%g, we refrain from reproducing
the steps of its stationary-phase approximation in this paper, and refer the readers to Snieder et al. (2006) for these
steps.
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1

INTRODUCTION

ABSTRACT

In the practice of Seismic-While-Drilling (SWD), the goal is to determine the
subsurface impulse response from drill-bit noise records. Most of the existing
SWD technologies rely on pilot sensors and/or models to predict the drill-bit
source function, which is then removed from the data. Deconvolution interfer-
ometry successfully recovers the impulse response between receivers from drill-
bit noise without the need for an independent estimate of the drill-bit source
function. We give a general review of current SWD methods in the context of
cross-correlation interferometry, followed by a comparison of these methods with
deconvolution interferometry. Unlike other SWD processing methods, interfer-
ometry does not require knowledge about the drill-bit position. We heuristically
extend the concept of interferometry by deconvolution to multi-component data
in elastic media. In elastic media, the radiation pattern of the interferometric
pseudo-source are influenced by the radiation properties of the bit. This depen-
dence is a function of the medium properties and of the distance between the
bit and the recording sensors. Interferometry by deconvolution is of most use to
SWD applications where pilot records are absent or provide unreliable estimates
of the bit excitation. With a numerical SWD subsalt example, we show that de-
convolution interferometry provides an impulsive image of the subsurface that
cannot be obtained by correlations without an estimate of the source autocorre-
lation. This numerical example also illustrates the potential of SWD and decon-
volution interferometry for passive imaging in deep-water subsalt environments.
Finally, we validate the use of deconvolution interferometry in processing field
SWD data acquired at the San Andreas Fault Observatory at Depth (SAFOD).
Since no pilot records were available for these data, deconvolution outperforms
correlation in obtaining an interferometric image of the San Andreas Fault zone
at depth.

Key words: seismic-while-drilling, deconvolution interferometry, borehole seis-
mics

data without any knowledge of the drill bit position.
Recently, Poletto and Petronio (2006) used interferom-

The recording of drilling noise can be used for seismic
imaging (Rector and Marion; 1991). In the majority of
seismic-while-drilling applications (e.g., Poletto and Mi-
randa, 2004) the data acquisition and imaging geome-
tries fall under the category of reverse VSP (RVSP)
experiments, where knowledge of the position of the
drill-bit is required. With the autocorrelogram migra-
tion method, Schuster et al. (2004) and Yu et al. (2004)
recognized that interferometry could be applied to SWD

etry to characterize fault zones ahead of a tunnel being
drilled.

Interferometry is a proven methodology for the re-
covery of the impulse response between any two re-
ceivers from measurements of uncorrelated noise. This
can be accomplished in diffuse fields by cross-correlating
the data recorded by two receivers (Lobkis and Weaver,
2001; Larose et al., 2006). Wapenaar (2004) and Wape-
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naar et al. (2004) provided general proofs that cross-
correlations of deterministic wavefields excited by un-
correlated noise result in the impulse response be-
tween receivers for arbitrary media. When the mea-
sured data is excited by correlated noise sources, the
result from cross-correlation interferometry contains the
source power spectrum (Snieder et al., 2006a; Wapenaar
and Fokkema, 2006; Vasconcelos and Snieder, 2007a). In
the specific case of SWD applications, the drill-bit noise
signal (and its power spectrum) is a long and compli-
cated source-time function with a narrow band signa-
ture (Poletto and Miranda, 2004). Hence, the extrac-
tion of an impulsive response from the application of
cross-correlation interferometry to SWD data requires
an additional processing step. This is the removal of the
source signature {Wapenaar and Fokkema, 2006).

As shown by Vasconcelos and Snieder (2007a), in-
terferometry can also be accomplished by deconvolu-
tion. One advantage of deconvolution interferometry
over its correlation counterpart is that it removes the
source function without the need for an extra process-
ing step. The main objective of this paper is to validate
deconvolution interferometry as a method to recover im-
pulsive signals from drill-bit noise without the need for
an independent estimate of the drill-bit excitation func-
tion.

There are many existing examples of successful ap-
plications of SWD technology. Most of the SWD meth-
ods rely on the so-called pilot sensors to independently
estimate the drill-bit excitation (Rector and Marion,
1991; Haldorsen et al. 1994; Poletto and Miranda, 2004).
Without relying on pilot records, Miller et al. (1990) de-
sign multichannel weighting deconvolution filters based
on statistical assumptions about the source function.
The monograph by Poletto and Miranda (2004) pro-
vides a comprehensive description of pilot deconvolution
technologies. Some pilot-based SWD methods decon-
volve the bit excitation directly from the recorded data
(e.g., Haldorsen et al.,, 1994) while most methodolo-
gies rely on cross-correlations (e.g., Rector and Marion,
1991; Poletto and Miranda, 2004). There is a close con-
nection between correlation-based SWD methods and
cross-correlation interferometry, which we highlight in
this paper. Pilot-based SWD technologies can be elab-
orate; the more sophisticated pilot recordings may use
dual-field sensors (Poletto et al., 2004) or accelerome-
ters mounted close to the drill-bit (Poletto and Miranda,
2004). Recognizing that pilot records are imperfect es-
timates of the drili-bit excitation, Poletto et al. (2000)
present a statistical technique that further optimizes pi-
lot deconvolution. We promote the use of deconvolution
interferometry for the cases where pilot signals are ab-
sent or provide poor estimates of the drill-bit excitation.
As described by Poletto and Miranda (2004), examples
of data for which pilot deconvolution can be unsuccess-
ful are those excited by deep drilling wells, deviated

wells, or when the drill-bit is below strong geologic con-
trasts (e.g., below salt).

The majority of SWD experiments constitute
RVSP geometries (Rector and Marion, 1991; Poletto
and Miranda, 2004). Drilling noise has also been used
for imaging ahead of the drill-bit (i.e., “Look-Ahead”
VSP) as shown by Armstrong et al. (2000) and Malusa
et al. (2002). Armstrong et al. (2000) showed examples
of drill-bit imaging in the deep-water Gulf of Mexico.
Most SWD experiments are conducted onshore with
roller-cone drill-bits (Poletto and Miranda, 2004). Deep-
water offshore applications of SWD technology, such as
described by Armstrong et al. (2000), are rare. One of
the reasons why deep-water offshore SWD is uncom-
mon is that pilot records yield poor representations of
the bit excitation in these conditions (Poletto and Mi-
randa, 2004). With the numerical experiment in this pa-
per we demonstrate the potential of interferometry by
deconvolution for treating passive recordings of drilling
noise in deep-water subsalt environments.

We first review SWD methods based on correla-
tions and pilot deconvolution in the context of inter-
ferometry. Next, we describe the role of deconvolution
interferometry (Vasconcelos and Snieder, 2007a) in ex-
tracting the impulse response between receivers from
drilling noise. Within this description, we discuss the
applications of the concepts presented by Vasconcelos
and Snieder (2007a) to elastic media, and elaborate on
how the drill-bit radiation properties influence the re-
covered elastic response. With a numerical example us-
ing the Sigsbee salt model, we compare the performance
of deconvolution and correlation interferometry in pas-
sive drill-bit imaging. Finally, we present the results of
using deconvolution interferometry for the imaging of
the San Andreas Fault zone from SWD data acquired
at Parkfield, CA.

2 DRILL-BIT SEISMIC IMAGING AND
DECONVOLUTION INTERFEROMETRY

2.1 The practice of seismic-while-drilling

The frequency-domain wavefield measured at r 4 excited
by a working drill-bit at s is given by

u(ra,s,w) = W(s,w) G(ra,s,w), (1)

where G(r 4, s,w) is the impulse response between s and
ra, and W(s,w) is the drill-bit excitation function. For
brevity, we omit the dependence on the angular fre-
quency w in subsequent equations. As in most explo-
ration imaging experiments, the objective of drill-bit
seismology is to image the subsurface from its impulse
response, G, which needs to be obtained from equa-
tion 1. The main issue for successful imaging from drill-
bit noise is removing the imprint of the source function



W (Rector and Marion, 1991; Haldorsen et al., 1994;
Poletto and Miranda, 2004). The first complication im-
posed by drill-bit excitation is that the source is con-
stantly active; in other words, the source pulse is as long
as the total recording time of the data. Additionally,
the drill-bit is a source of coherent noise that is domi-
nated by specific vibrational modes associated with the
drilling process (Poletto, 2005a). These strong drilling-
resonant modes give the time-domain drill-bit signature
a predominantly monochromatic character. Apart from
the coherent vibrations, weaker random vibrations that
occur during drilling make the drill-bit signal wide-band
(Poletto, 2005a). We illustrate these issues in our sub-
salt example, where we provide a numerical model for
the drill-bit excitation.

Current interferometric approaches to processing
drill-bit noise records rely on correlations (e.g., Schuster
et al.; 2004, Yu et al., 2004; Poletto and Miranda, 2004).
The cross-correlation of wavefields measured at rq and
rp is, in the frequency domain, given by

CAB =u(r,4,s)‘u."(r3,s) (2)
= |W(s)|* G(ra,s) G*(rs,s);

where * stands for complex conjugation. It follows from
this expression that the cross-correlation is influenced
by the power spectrum of the drill-bit source func-
tion. In the time domain, the power spectrum in equa-
tion 2 corresponds to the autocorrelation of the drill-bit
source-time function. This autocorrelation, despite be-
ing zero phase, is similar in character to the excitation
W (s, t): a long, complicated waveform with a monochro-
matic appearance.

In the majority of drill-bit processing methods pre-
sented to date, the removal of the drill-bit source func-
tion in equation 1 (or of its autocorrelation, equation 2)
relies on an independent estimate of the drill-bit ex-
citation. This estimate typically comes in the form of
the so-called pilot record or pilot trace (e.g., Rector and
Marion, 1991; Poletto and Miranda, 2004). The pilot
records are the data acquired by accelerometers placed
in the rig/drill-stem structure. The most common form
of pilot sensor mount is at the top of the drill-string.
Pilot sensors may also consist of dual-wavefield sensors
that measure displacement and strain waves (Poletto et
al., 2004). The positioning and the type of sensors used
in acquiring pilot records depends on the specific SWD
application. Poletto and Miranda (2004) provide a de-
tailed explanation of the different types of pilot sensor
technologies and their applications.

Within the literature on SWD, there are different
descriptions of the signal acquired by the pilot sen-
sors. Most of these descriptions are based on deter-
ministic physical models for wave propagation in the
rig/stem/bit system (Rector, 1992; Rector and Hardage,
1992; Haldorsen et al., 1994; Poletto and Miranda,
2004). Poletto et al. (2000) and Poletto and Miranda
(2004) propose a statistical approach for the description
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of the drill bit signal. Since for the purpose of decon-
volution interferometry we do not require a particular
description of the pilot signal, it is convenient to express
it in the general form

P(rq,s) = W(s) Tu(ra,s); 3)

Ta is the transfer function of the drill-stem and rig as-
sembly, and rg is the location of the pilot sensor in
the assembly. This transfer function includes reflection
and transmission coefficients of the rig/stem/bit system,
drill-string multiples, etc (Poletto and Miranda, 2004).
The autocorrelation of the pilot signal in equation 3
gives

Cpp = |W(s)I* [Ta(ra,s)|? - @

From this autocorrelation, and with additional knowl-
edge about Ty, it is possible to design a filter F, of the
form

L
W)

We use the notation F (Cpp) to indicate that F is a
function of the autocorrelation Cpp. The determinis-
tic (Rector, 1992; Rector and Hardage, 1992; Haldorsen
et al., 1994; Poletto and Miranda, 2004) or statistical
(Poletto et al., 2000; Poletto and Miranda, 2004) de-
scriptions of Ty aim to remove its influence (equation 3)
in the design of the filter 7. We present F as an approx-
imation of |W (s)| ™2 in equation 5 because the theories
that are used to eliminate the influence of Ty are ap-
proximate (e.g., Rector and Hardage, 1992; Poletto and
Miranda, 2004). Multiplying the filter F (equation 5)
by the cross-correlation in equation 2 gives

F(Cpp) = (5)

F Cap ~ G(ra,s)G*(rp,s). (6)

According to this equation, F removes the power spec-
trum of the drill-bit excitation from the correlation in
equation 2. The application of F is what is referred
to as pilot deconvolution (Poletto and Miranda, 2004).
The SWD RVSP methods rely on the cross-correlations
of geophone data (equation 1) with the pilot signal
(equation 3) to determine the time delay of waves that
propagate between the drill-bit and the receivers (e.g.
Rector and Marion, 1991; Poletto and Miranda, 2004).
Note that for these methods it is necessary to know the
drill-bit position s. Although the most common applica-
tions of SWD RVSP correlate pilot and geophone signals
(equation 2 correlates geophone signals), the removal of
the drill-bit source function is done by pilot deconvolu-
tion in a manner analogous to the one presented here.
Following the principles of interferometry (e.g.,
Lobkis and Weaver, 2001; Wapenaar and Fokkema,
2006), the source average of the cross-correlations in
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equation 2 gives

}iCAB ds = (W(s)|’) [G(ra,rB) + G"(ra,rs)];
(7)

the integration is done over a closed surface ¥ that in-
cludes all sources s (Vasconcelos and Snieder, 2007a).
According to equation 7, the source average of the cross-
correlations gives the superposition of the causal and
acausal impulse responses between r4 and rg. This re-
sponse is shaped by the source average of the excita-
tion spectrum {[W(s)|?). When using the noise from a
single drill-bit, source integration reduces to a line in-
tegral, rather than an integration over a surface. This
is not necessarily an issue for interferometry from drill-
bit noise for two reasons. The first reason is that the
desired response (right-hand side of equation 7) is ob-
tained if the drill-bit samples the stationary source
points that give rise to the target arrivals (Snieder et
al., 2006a; Wapenaar and Fokkema, 2006). The sec-
ond reason is that the long recording times employed
in drill-bit acquisition can help sampling multiply scat-
tered waves. These waves may make up for some of the
missing sources that are required by the integration in
equation 7 (Wapenaar, 2006; Vasconcelos and Snieder,
2007a), depending on the scattering properties of the
medium.

The processing of SWD data with correlation inter-
ferometry as in equation 7 does not require knowledge
of the drill-bit position s. This was observed by Schus-
ter et al. (2004), who, along with the companion paper
by Yu et al. (2004), first proposed the use of interfer-
ometry by correlation for imaging from drill-bit noise.
Although not explicitly referring to interferometry, Po-
letto and Miranda (2004) promote the stack of cross-
correlations over long listening times. In the context of
drilling, listening times in the order of days translate to
varying the drill-bit position s. Hence, in general, the
stack of long listening times mentioned by Poletto and
Miranda (2004) is equivalent to an integration over s
(equation 7).

The term (|W(s)|?) in equation 7 plays the same
role |W(s)|? in equation 2. The average of the excita-
tion power spectra constitutes, in the time domain, a
long zero-phase waveform with a monochromatic char-
acter. The removal of this waveform can also be achieved
using the pilot record (equation 3). Poletto and Miranda
(2004) recognize that pilot deconvolution can be done
before or after stacking over long time records (which
is equivalent to stacking over s). From integrating the
pilot autocorrelation (equation 4) over sources s we get

}{; Cepds = (IW(s)[*)(|Tu(ra,s)I*) . 8)

{|Tu(ra,s)|?) is the source average of the transfer func-
tion Ty (equation 3). Given that a model that describes
T4 is available (e.g., Rector and Hardage, 1992; Poletto

and Miranda, 2004), the result of integral in equation 9
can be used to build a filter such as

1
Fav {CPpP)) = ——;
(IW(s)*)
where (Cpp) is the source average represented by the
integral in equation 9. Applying the filter g, to the
integral in equation 7 gives

9)

Fav [?{ CABds] ~ G(ra,rg) + G*(ra,re); (10)
>

where the influence of the drill-bit source signature is
removed. This is a general representation of pilot de-
convolution for the correlation-based interferometry of
drill-bit noise records. After pilot deconvolution, inter-
ferometry by correlations of SWD data yields the causal
and acausal impulse response for waves excited at rgp
and recorded at r4. Poletto and Miranda (2004) give a
comprehensive review of pilot deconvolution methods.
Note that the filtering of equation 7 by F,, involves
deconvolving the source integral of Cap by the source
integral of Cpp. This approach is similar in concept
to deconvolution interferometry after source integration
described by Vasconcelos and Snieder (2007a).

There are a number of different approaches to
processing SWD data. Most of them rely on cross-
correlation (e.g. Rector and Marion; Poletto and Mi-
randa, 2004). Some of these correlation-based process-
ing techniques (e.g., RVSP techniques) require knowl-
edge of the drill-bit position s, and apply pilot deconvo-
lution in a manner similar to that in equations 5 and 6.
Another approach to treating drilling noise records is
to use a source average of the cross-correlations (Po-
letto and Miranda, 2004; Schuster et al., 2004; Yu et
al., 2004) as in equations 7 through 10. Although we
describe SWD processing by the correlation of record-
ings made by geophones at two arbitrary locations r4
and rp, some SWD applications rely on correlations
between pilot and geophone signals (Poletto and Mi-
randa, 2004). Methods based on pilot trace correlations
are affected by the drill-bit source function in the same
way it affects methods based on geophone correlations.
Therefore, the pilot deconvolution discussion above also
applies to SWD processing by correlating pilot and geo-
phone traces (Poletto and Miranda, 2004). The major-
ity of SWD technologies rely on the acquisition of pilot
records to remove the drill-bit source function.

2.2 Deconvolution interferometry

We present interferometry by deconvolution as an alter-
native to processing drill-bit noise records. A detailed
description of the method and physics of deconvolu-
tion interferometry is given by Vasconcelos and Snieder
(2007a). Here, we rely on the key concepts of that work
to highlight the differences between interferometry by



deconvolution and other techniques in SWD data pro-
cessing. We extend the physical interpretation of de-
convolution interferometry given by Vasconcelos and
Snieder (2007a) heuristically to elastic media for the
special case of single-scattered waves. This extension is
necessary for the discussion on the processing of the
SAFOD SWD data.

Consider the deconvolution of the wavefield mea-
sured at r4 (equation 1) with the wavefield recorded at
rg, given by

u(ra,s)  u(ra,s)u’(rs,s)

D = =
a8 u(ers) |'ll.(l'B,S)|2

(11)
_ G(r4,5)G™(rs,s)
|G(rs,8)*

This deconvolution cancels the drill-bit source spectrum
|W (s)|?, present in cross-correlation (equation 2). Note
that this cancelation occurs without the need for an
independent estimate of W(s). The next step in de-
convolution interferometry is to mimic its correlation-
based counterpart (see equation 7) and integrate equa-
tion 11 over all sources s. The impulsive wavefields G
are taken as a superposition of an unperturbed wave-
fields Go and wavefield perturbations Gs (Vasconcelos
and Snieder, 2007a). The perturbations Gs can be inter-
preted as the waves scattered by the medium (Vascon-
celos and Snieder, 2007a; Weglein et al., 2003). In this
context, Vasconcelos and Snieder (2007a) expanded the
deconvolution in equation 11 into a power series over
Gs{rs,s)/Go(rg,s). After integrating over s and keep-
ing the terms that are linear in the scattered waves G,
we get

Go(ra,s)Gi(rs,s)

DAB ds =
s s |Go(ra,s)
pi,
+ GS(I‘A,S)GS(I‘B,S) ds
Js |Go(rs,s)|*

v

Dip
_f Gs(rp,8)Go(ra,s8)Gi(rs,s)
Jz GO(rByS) )

3
Dap

(12)
Following the interpretation of Vasconcelos and
Snieder (2007a), the term DY g recovers Go(ra,rs) and
Go{ra,rg), which are the causal and acausal unper-
turbed impulse responses for waves excited at rg and
recorded at r4. The term D% g yields Gs(ra,rs) that
describes causal scattered waves propagating from rg
to ra. Recovering Gs(ra,rp) from D%p is the objec-
tive of deconvolution interferometry with the purpose of
imaging scattered waves. The last term in equation 12
describes a spurious arrival that arises from the clamped
point boundary condition imposed by deconvolution in-
terferometry (Vasconcelos and Snieder, 2007a).
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As noted above, using deconvolution according to
equation 11 to process SWD data does not require an
independent estimate of the drill-bit source function.
This is the first and main difference between deconvo-
lution interferometry and the majority of correlation-
based methods used in SWD data processing. Apart
from being an alternative method for treating data from
standard SWD experiments, interferometry by deconvo-
lution would be particularly useful when pilot records
are either unavailable or are poor estimates of the drill-
bit excitation function. Poletto and Miranda (2004) pro-
vide examples of when pilot recordings yield unreliable
estimates of the drill-bit source function. This is the
case, for example, when transmission along the drill-
string is weak, when the drilling well is deep (in the
order of several thousands of feet), or when the drilling
well is deviated or when two or more nearby wells are
drilling simultaneously with the well that is equiped
with pilot sensors. From the standpoint of removing the
excitation function, none of these cases is an issue for
deconvolution interferometry, as they are for pilot de-
convolution. This is because equation 11 holds regard-
less of the complexity of the excitation (equation 1).

As in interferometry methods based in correlation
(Schuster et al., 1994; Yu and Schuster, 2004), knowl-
edge of the drill-bit position s is not necessary for the
processing of SWD data by deconvolution interferome-
try. The only requirement for the successful application
of deconvolution interferometry is that the drill-bit must
occupy the stationary source locations that give rise to
targeted scattered waves propagating between the re-
ceivers (Vasconcelos and Snieder, 2007a; Snieder et al,
2006). Analogously to the method originally proposed
by Schuster et al. (2004) for the imaging of drill-bit
noise, it is possible to use deconvolution interferometry
to reconstruct primary arrivals from free-surface ghost
reflections.

So far we have only discussed SWD processing and
deconvolution interferometry for acoustic media. Now
we extend some of these concepts to elastic media, with
the objective of applying interferometry by deconvolu-
tion to multicomponent data. The conclusions drawn
in our previous discussions on removal of the drill-bit
source function, pilot deconvolution and deconvolution
interferometry also hold for elastic media. Here, the goal
is to understand what is the result of combining dif-
ferent receiver components when performing deconvo-
lution interferometry. We start by defining G%*)(r 4, s)
as the elastic frequency-domain impulse response ex-
cited by the k-th component of the source at s, and
recorded by the i-th component of the receiver at ra.
For our purposes it is not necessary to specify whether
the Green’s functions G*"*) pertain to stress or to strain
waves (Wapenaar, 2004; Wapenaar and Fokkema, 2006).
We refer to component orientations according to the 1-,
2- and 3-directions in Figure 1. Next, we take the de-
convolution
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’U.(i'k)(I'A,S) _ G(i’k)(rms) G(j'k)'(rB:S)
uGR(rp,s) —  |GUR(rp,s)?

Dyipi = )

(13)
where u*) = W G®F) s the recorded data. As in
equation 11, the source function W cancels. It follows
from equation 13 that D,ig; is the deconvolution of
the i-th component of the receiver at ra with the j-
th component of the receiver at rg. We treat G(*) as
the superposition of the unperturbed wavefield G((,i’k)
and the scattered waves G(Si’k) (as in Vasconcelos and
Snieder, 2007a). The source integral of equation 13 can
be expressed in the same three-term form of equation 12.
We call Dii gi the elastic term analogous to D%p. The
is term can be expressed as

pr. . _ [ G8Yas)GI (rs,8)
AiBJI - Gok) 2
o1 |G0]’ (rs,s)

~ KGS$?P(ra,rp). (14)

where K is a constant. Following the reasoning given by
Vasconcelos and Snieder (2007a) in interpreting equa-
tion 12, ng’k)(rB,s) ? is a slowly varying function of
s, and its source average effectively gives a constant. The
phase of the integrand in equation 14 is controlled by the
numerator (Vasconcelos and Snieder, 2007a). In equa-
tion 14, o, is a segment of ¥ that contains the station-
ary source locations that give rise to the desired waves
in G(s'”)(r,q,rg) (Vasconcelos and Snieder, 2007a and
2007b). Analogously to D%z (Vasconcelos and Snieder,
2007a), the term Df‘.‘BJ‘ yields causal scattered waves
that propagate from rp to ra. Equation 14 states that
the scattered waves described by Gg’] Y(ra,rp) are ex-
cited by j-th component of a pseudo-source at rg and
are recorded by the i-th component of the receiver at
rp. As in the acoustic case (equation 12), the scattered
waves in the second line of equation 14 are the objective
of interferometry.

According to the Green’s function representation of
Wapenaar and Fokkema (2006), the full elastodynamic
reconstruction of G¥)(ra,rp) using cross-correlations
requires a summation over the index k when integrat-
ing over sources, and the separation of P- and shear-
wavefields at the surface of integration. Draganov et
al. (2006) validate the elastodynamic interferometric
reconstruction described by Wapenaar and Fokkema
(2006) with a numerical example for a heterogeneous
model. Although deconvolution interferometry (Vascon-
celos and Snieder, 2007a) has not been formally extend
to elastic media, we expect that the elastodynamic re-
construction of Gg’j ) (ra,rB) by deconvolution interfer-
ometry also requires a summation over the index k.
Note that in equation 14, we do not perform a sum-
mation over the index k as in the approach by Wape-
naar and Fokkema (2006). In practice, this means that

the integral in the first line of equation 14 only yields
a partial reconstruction of G'f;” )(ra,rs) (second line of
equation 14). In the case of single-scattered waves recon-
structed from the interference of transmission and reflec-
tion responses (such as the data examples we provide in
this paper), the partial reconstruction of Gg’j)(r,g, rg)
by the use of equation 14 can yield events with cor-
rect kinematics but distorted amplitudes (Draganov et
al., 2006). As we discuss here with our field data exam-
ple, a kinematically-consistent reconstruction of single-
scattered waves using equation 14 is sufficient for the
structural delineation of fault reflectors at the San An-
dreas fault zone (Vasconcelos et al., 2007a).

It is known that the deconvolution of any signal
with itself results in a delta function (6(t)) in the time
domain. For the acoustic case in equation 11, this is ac-
complished by setting ra4 = rg, which in turn gives the
zero-offset trace in deconvolution interferometry. Vas-
concelos and Snieder (2007a) showed that the time-
domain zero-offset response in deconvolution interfer-
ometry is given by G(rg,rp,t) = §(t) in arbitrary me-
dia. Since deconvolved waves satisfy the same homoge-
neous wave equation as the original waves (Snieder et
al., 2006b), spurious arrivals are generated by decon-
volution interferometry to cancel scattered waves that
arrive at zero-offset at nonzero times. This represents
the effect of an extra boundary condition in deconvolu-
tion interferometry experiments: the point rg behaves,
for the particle velocity impulse response, like a clamped
point in the medium (see discussion in Vasconcelos and
Snieder, 2007a). In our elastic case, settingra =rp and
1 = j in equation 13 results in unity, this translates to
the time-domain condition

Dgigi(t) =46(t). (15)

This condition does not hold if the receivers at rg
and ra measure different field quantities, i.e., one
receiver measures stress while the other measures
strain. Equation 15 holds for arbitrarily inhomoge-
neous and anisotropic media. The condition in equa-
tion 15 sets a different type of boundary condition than
those discussed by Vasconcelos and Snieder (2007a) for
the acoustic case. While deconvolution interferometry
clamps the point rp for t # 0 in acoustic media, in elas-
tic media only the i-th component of the wavefield de-
convolution is clamped for ¢ # 0. Clarifying the physical
meaning of the boundary condition imposed by decon-
volution interferometry in elastic media is beyond the
scope of this paper, and is the subject of future research.

Analogously to interferometry by correlation
(Wapenaar and Fokkema, 2006; Draganov et al., 2006),
it follows from equations 13 and 14 that the orientation
of the pseudo-source in deconvolution interferometry is
dictated by the choice of component of the receiver at
rp that is used for deconvolution. The choice of compo-
nent of the receiver at r4 controls the orientation of the
recording component in the interferometric experiment.
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Figure 1. Illustration of drill-bit interferometry in elastic
media. The red dot indicates a drill-bit position that yields
a stationary contribution to waves that propagate between
the receivers (light blue triangles). Red arrows shows the ray-
paths of pure-mode stationary arrivals. The blue arrow rep-
resents the oscillatory point-force excitation that describes
the drill-bit source function. Solid and dashed blue circles
denote the P- and S-wave radiation patterns, respectively.
These radiation patterns follow the description of drill-bit ra-
diation by Poletto (2005a). Receiver components, numbered
1 through 3, are oriented according to the vectors in the
lower left-hand corner of the Figure. The medium consists
of a homogeneous and isotropic half-space with an irregular
reflector

From elastic wave theory (Aki and Richards, 1980), the
analysis of point-source radiation shows that a single
source component generates impulse responses in all
three receiver components, depending on the medium
properties and on the source/receiver geometry. Because
deconvolved waves satisfy the same homogeneous wave
equations as the original experiment (Snieder et al.,
2006b), the radiation pattern of the pseudo-source syn-
thesized from deconvolution interferometry is controlled
by the radiation pattern of the original physical exper-
iment.

In SWD experiments, the drill-bit can be approxi-
mately described by an oscillatory force oriented in the
local direction of the well (Rector and Hardage, 1992;
Poletto, 2005a). Figure 1 portrays a schematic 2D rep-
resentation of the drill-bit far-field radiation pattern in
homegeneous and isotropic media. The radiation pat-
tern shown in Figure 1 is similar to the point-force ra-
diation pattern (Aki and Richards, 1980), except that
the amount of drill-bit energy that converts into shear-
waves (mostly SV-waves) is considerably larger than
that from a traditional point-force source (Rector and
Hardage, 1992; Poletto, 2005a). In Figure 1, we depict
a drill-bit and instrumented well geometry that is con-
sistent with the SAFOD case study, which we discuss
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in one of the next Sections. The receiver that acts as
a pseudo-source in Figure 1 radiates waves according
to the its recorded transmitted wavefield (see red ar-
rows in the Figure). The wave modes and polarizations
of the transmitted waves are dictated by the bit radia-
tion pattern and the source/receiver geometry (Poletto,
2005a; Aki and Richards, 1980). The physical excita-
tion in Figure 1 is associated to a vertically-oriented
drill-bit point-force, whose radiation pattern (Rector
and Hardage, 1992; Poletto, 2005a) is illustrated in
the Figure. According to the geometry and bit radia-
tion pattern in Figure 1, the direct waves recorded by
the top receiver are P- and S-waves polarized in the
source/receiver plane. Hence, using the same notation as
in equations 13 through 14 and assuming the receivers
measure only the far-field response, interferometry in
the context of Figure 1 recovers G(S”z)(r,q,ra). Also,
the response Gg'z)(rA,rB) is zero for i = 3 because
SH-wave excitation (polarized in the 3-direction) from
a drill-bit source is negligible in the conditions of Fig-
ure 1. From the drill-bit radiation pattern, we see that
waves propagating along the stationary path depicted
by Figure 1 (red arrows) carry both P- and shear-wave
energy. The discussion surrounding Figure 1 illustrates
how the radiation properties of the pseudo-source recov-
ered from interferometry depend on the drill-bit excita-
tion in SWD experiments. This dependence is model-
dependent, and becomes more complicated with the in-
troduction of heterogeneity and anisotropy.

3 SUBSALT NUMERICAL EXAMPLE

The drill-bit imaging numerical experiment we present
here is conducted with the 2D Sigsbee salt model (Fig-
ure 2). In this experiment, we place a long 100-receiver
downhole array below the salt canopy, in a 45° deviated
well. The first receiver is placed at £ = 14630 m and
z = 4877 m , and the last receiver is at x = 16139 m
and z = 6385 m. The receivers are evenly spaced; and
z and z translate to the lateral and depth coordinates
in Figure 2, respectively. The borehole array records the
drilling noise from a vertical well placed at z = 14478 m
(Figure 2). The drill-bit noise is recorded for a drill-
bit depth interval that ranges from z = 4572 m to
z = 6705 m. The objective of this numerical experi-
ment is to show interferometry can recover, from drill-
bit noise, up-going single-scattered waves that propa-
gate between the receivers, such as the one represented
by the raypath in Figure 2 (represented by the dashed
arrow). The up-going scattered waves recovered by in-
terferometry of drill-bit noise can be used to image the
Sigsbee structure from below.

To replicate drill-bit wave excitation in the nu-
merical experiment, we first modeled 200 evenly-spaced
shots within the drilling interval of interest. These shots
were modeled by an acoustic finite difference method
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Figure 2. Structure of Sigsbee model and schematic acqui-
sition geometry of the drill-bit experiment. The colors in the
model denote acoustic wavespeed. The dashed black line indi-
cates a well being drilled, which excites waves in the medium.
The waves are recorded in a deviated instrumented well, in-
clined 45° with respect to the vertical direction. The solid line
with triangles represents the instrumented well. The dashed
arrow illustrates a stationary contribution to singly reflected
waves that can be used to image the salt flank from the
drilling noise.

(Claerbout, 1985). Next, we convolved the shots with
a 60 second-long model of the drill-bit excitation (Fig-
ure 3). The model for the drill-bit excitation is that of
a roller-cone bit (Polleto, 2005a). We add band-limited
noise (see Figure 3) to the model by Poletto and Mi-
randa (2004) to make the drill-bit signal wide-band.
Similar to the numerical example in Poletto and Mi-
randa (2004), the bit and drilling parameters we used
in our model are listed in the caption of Figure 3. The
excitation function in Figure 3 represents the portion of
the drilling energy that is radiated in the rock formation
(Poletto 2005a, Poletto and Miranda, 2004).

Figure 3a shows the power spectrum of the modeled
bit signal, while Figure 3b shows a portion of the drill-
bit source function in the time-domain. As discussed in
the previous Section, the time-domain drill-bit excita-
tion has a narrow-band character (Figure 3b) because
the source power spectrum is dominated by vibrational
drilling modes (Poletto, 2005a; Poletto and Miranda,
2004). This behavior is also present in the data recorded
by the borehole receivers. The common receiver gather
from receiver 50 in Figure 4a shows that the simulated
data is dominated by the character of the drill-bit ex-
citation function (Figure 3b). The records in Figure 4a
depict a moveout that characterizes the direct-wave ar-
rival from the drill-bit. The weak events with positive
slopes in the left-hand portion of Figure 4a are salt-
bottom reflections from when the drill-bit is close to
the bottom of the salt (see geometry in Figure 2).

Interferometry of recorded data such as in Figure 4a
results in pseudo-shot gathers as in Figures 4b and c.
The use of deconvolution interferometry as shown in the
left-hand side of equation 12 (Vasconcelos and Snieder,
2007a) for a fixed rp at receiver 50 results in Figure 4b.
The pseudo-shot gather in Figure 4c is obtained from
correlation interferometry (equation 7; e.g., Draganov
et al., 2006) for the same geometry as Figure 4b. Al-
though both Figures 4b and c represent waves excited
by a pseudo-source at receiver 50, the wavefield in Fig-
ure 4b is approximately impulsive, while the data in
Figure 4c is dominated by the autocorrelation of the
drill-bit source function. Because the excitation function
is canceled in deconvolution interferometry (Vasconce-
los and Snieder, 2007a; equation 11), the pseudo-source
in Figure 4 is impulsive. The source power spectrum in
equation 2 results, in the time-domain, in the dominant
reverberation in the pseudo-shot generated by correla-
tion (Figure 4c). When pilot sensors are available, pilot
deconvolution methods (e.g., Rector and Marion, 1991;
Poletto and Miranda, 2004) can be employed to remove
the source autocorrelation from data such as in Fig-
ure 4¢ (equation 10).

Many of the features of the deconvolution pseudo-
shot gather in Figure 4b are explained by the theory
presented by Vasconcelos and Snieder (2007a); the in-
terferometric shot gather generated by deconvolutions
shows causal and acausal direct waves, and causal scat-
tered arrivals. According to Vasconcelos and Snieder
(2007a), the zero-offset trace obtained by deconvolu-
tion interferometry is a band-limited delta function at
t = 0. This can also be observed in Figure 4 for the
trace at receiver 50 (i.e., the zero-offset trace). The pres-
ence of this delta function at zero-offset imposes the
so-called clamped point boundary condition in acoustic
media (Vasconcelos and Snieder, 2007a). Because of this
boundary condition, the gather in Figure 4 contains spu-
rious arrivals. The visual identification of these arrivals
in the gather is not straightforward because the recorded
wavefield is complicated, given the model complexity
(Figure 2). These spurious arrivals, however, typically
do not translate into image artifacts (Vasconcelos and
Snieder, 2007a).

Given the acquisition geometry in this numerical
experiment (Figure 2), there is a point, to the left-hand
side of the receivers, where drill-bit position aligns with
the array direction. This drill-bit position samples a
source stationary point for the direct waves that travel
between the receivers. At this stationary position, the
drill-bit excites waves that travel straight down the re-
ceiver array. These waves are responsible for the recov-
ery of the direct-wave events with positive slopes in Fig-
ure 4. With the drilling geometry shown in Figure 2 the
drill-bit never reaches a position where it aligns with the
receivers to the right-hand side of the array. Therefore,
the drill-bit does not sample a stationary source point
that emits waves that travel directly upward along the
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Figure 3. Numerical model of the drill-bit excitation. (a) shows the power spectrum of the drill-bit source function. Note that
although it is wide band, the power spectrum of the source function in (a) has pronounced peaks that correspond to vibrational
drilling modes. (b) is the drill-bit source function in the time-domain. We show only the first 4 s of the 60 second-long drill-bit
source function used in the modeling. The assumed drill-bit is a tri-cone bit an outer diameter of 0.35 m, an inner diameter of
0.075 m and a density of 7840 kg/m3. Each cone is comprised of three teeth rows as in the example by Poletto and Miranda
(2004). Drill-string P-wave velocity is of 5130 m/s. The drilling was modeled with a weight on bit of 98 kN, torque on bit of 6
kNm, 60 bit revolutions per minute, a rate of penetration of 10 meters per hour and four mud pumps with a rate of 70 pump
strikes per minute.
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Figure 4. (a) Synthetic drill-bit noise records at receiver 50. Only 5 s out of the 60 s of recording time are shown. The narrow-
band character of the records is due to influence of specific drilling modes (Figure 3a). (b) Deconvolution-based interferometric
shot gather with the pseudo-source located at receiver 50. (¢) Pseudo-shot gather resulting from cross-correlation with same
geometry as (b). Receiver 1 in (a) and (b) is the shallowest receiver of the borehole array (Figure 2).

receiver array. Hence, the direct-wave events with neg-
ative slopes in the pseudo-shot gather (Figure 4b) have
a distorted curved moveout instead of the correct linear
moveout shown by the direct waves that have positive
slopes. A similar phenomenon was observed by Mehta
et al. (2006), who show that the distortions caused by
poor source sampling over stationary source positions
can be attenuated by tapering the ends of the integrand
in equation 7.

We generate interferometric shot gathers such as
the ones in Figures 4b and ¢ for pseudo-sources at each

of the receivers in the array. This yields 100 pseudo-
shots, which are recorded by the 100-receiver array. We
use shot-profile wave-equation migration to image the
interferometric data. The migration is done by wave-
field extrapolation with the spilt-step Fourier method
(Biondi, 2006). The wavefield extrapolation is done in a
rectangular grid conformal to the receiver array, where
the extrapolation steps are taken in the direction per-
pendicular to the array. Figure 5 displays the images
obtained from migrating the pseudo-shot gathers from
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(a)
Figure 5. Images obtained from drill-bit noise interferometry. The images, in grey scale, are superposed on the Sigsbee model
in Figure 2. Panel (a) is the image obtained from shot-profile wave-equation migration of pseudo-shot gathers generated from
deconvolution interferometry (such as in Figure 4b). The image in (b) is the result of migrating correlation-based interferometric
shot gathers. The red lines in the images represent the receiver array.

deconvolution interferometry (Figure 5a), and from the
correlation-based method (Figure 5b).

In interferometric experiments, the image aperture
is dictated by the geometry of the receiver array (red
lines in Figure 5). The positioning of physical sources
that are used in interferometry along with the medium
properties control the actual subsurface illumination
that is achieved by interferometry. When the sources
completely surround the receivers, the interferometric
pseudo-source radiates energy in all directions, similarly
to a real physical source (Wapenaar and Fokkema, 2006;
Larose et al., 2006). When the physical excitation gener-
ated by the sources is one-sided (Wapenaar, 2006; Vas-
concelos and Snieder, 2007a), pseudo-source radiation
is uneven. Therefore, that the subsurface illumination
in the images in Figure 5 is controlled by the illumina-
tion given by the original drill-bit/receiver geometry. In
our case, the illumination given by interferometric shots
is different from that obtained by placing real physical
sources at the receiver locations; hence, the resulting im-
age from these active shots would be different, in terms
of illumination, from those in Figure 5. This is an im-
portant distinction between the imaging interferometric
pseudo-shots and imaging actual shots placed at the re-
ceiver locations. We have to make this distinction be-
cause the physical sources in the experiment (Figure 2)
do not constitute the closed surface required for equa-
tions 7 and 12 to hold.

Comparing the images in Figure 5 with the Sigs-
bee model in Figure 2, shows that the image from de-
convolution interferometry (Figure 5a) provides a bet-

dept!l (km)

(b)

ter representation of the subsurface structure than does
the image from correlation interferometry (Figure 5b).
The salt reflectors (top and bottom) are better resolved
in in Figure 5a than they are in Figure 5b. Also, it is
possible to identify subsalt sediment reflectors in Fig-
ure 5a which are not visible in Figure 5b. The reflec-
tors in Figure 5a are well resolved because deconvo-
lution interferometry successfully suppresses the drill-
bit source function when generating pseudo-shot gath-
ers (Figure 4). The image from deconvolution interfer-
ometry does not present severe distortions due to the
spurious arrivals characteristic of deconvolution pseudo-
shot gathers (Vasconcelos and Snieder, 2007a). As dis-
cussed by Vasconcelos and Snieder (2007a), these spuri-
ous events typically do not map onto coherent reflec-
tors on shot-profile migrated images like the one in
Figure 5a. The image from correlation interferometry
(Figure 5b) portrays a distorted picture of the Sigs-
bee structure (Figure 2) because the correlation-based
pseudo-shot gathers are dominated by the power spec-
trum of the drill-bit excitation (Figure 4c; equation 7).
The narrow-bandcharacter of the drill-bit source (Fig-
ures 3b, 4a and 4c) is responsible for the “ringy” ap-
pearance of the image in Figure 5b.

Drill-bit imaging technology based on pilot record-
ings (e.g., Rector and Marion, 1991; Haldorsen et al.,
1994; Poletto and Miranda, 2004) provides images that
are accurate representations of subsurface geology, such
as the image in Figure 5a. In the context of SWD,
deconvolution interferometry is an alternative process-
ing methodology that does neither require an inde-
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Figure 6. Panel (a) shows the large-scale structure of the P-wave velocity field (velocities are colorcoded) at Parkfield, CA.
The circles in (a) indicate the location of the sensors of the SAFOD pilot-hole array used for the recording of drilling noise. The
SAFOD MH is denoted by the triangles. The location of the SAFOD drill site is depicted by the star. Depth is with respect to sea
level, the altitude at SAFOD is of approximately -660 m. Panel (b) shows the schematic acquisition geometry of the downhole
seismic-while-drilling (SWD) SAFOD dataset. Receivers are indicated by the light-blue triangles. The structures outlined by
black solid lines to the right-hand side of the figure represent a target fault. As indicated by (b), receivers are oriented in the
Z-(or downward vertical), NE- and NW-directions. (b) also shows a schematic stationary path between the drill-bit and two
receivers. Both panels represent Southwest to Northeast (from left to right) cross-sections at Parkfield.

pendent estimate of the drill-bit source function, nor
any assumptions of wave propagation within the drill-
string. We present the Sigsbee SWD numerical example
with the intention of modeling a situation where pilot
recordings are absent or would yield a poor represen-
tation of the drill-bit excitation. Our numerical exam-
ple also demonstrates that deconvolution interferometry
can also be used for passive drill-bit imaging, where no
knowledge about the drill-bit position is required.

4 SAFOD DRILL-BIT DATA

The San Andreas Fault Observatory at Depth (SAFOD)
is located at Parkfield, CA. Its objective is to actively
study the San Andreas Fault (SAF) zone from bore-
hole data, as well as to monitor the fault zone activity.
SAFOD consists of two boreholes, the Pilot-Hole (PH)
and the Main-Hole (MH). The geometry of the PH and
MH relative to the to surface trace of the SAF is dis-
played in Figure 6a. The data we analyze consists of the
noise excited by the drilling of the MH, recorded by the
32-receiver array permanently placed in the PH. The ge-
ologic context of this experiment and the full interpre-
tation of the results we show here, along with active-
shot seismic data, are presented in Vasconcelos et al.
(2007a). We focus here on the use of deconvolution in-
terferometry to obtain an image of the SAF, and on the
differences between the deconvolution- and correlation-
based approaches in the processing of the SAFOD SWD
data.

The main objective of the SAFOD borehole SWD
experiment is to provide broadside illumination of the

SAF that is not possible from surface measurements.
Figure 6b illustrates how single reflections from the SAF
can potentially be recovered by the drilling noise records
measured at the SAFOD PH array. The stationary path
indicated by the red and black arrows in Figure 6b shows
that the interference between the drill-bit direct arrivals
with fault-scattered waves can be used to reconstruct
primary fault reflections propagating between the re-
ceivers. Because the distance between the MH and PH
is only in the order of 10 meters (Boness and Zoback,
2006), the drill-bit only gives stationary contributions
to waves emanating from a given receiver when drilling
next to that receiver. This is an important considera-
tion in identifying which portion of the recorded data is
useful for processing (see below).

The acquisition of the SAFOD PH drill-bit noise
records began in June 2004, and continued until late
August 2004 (Taylor et al., 2006). The MH intersected
the PH on July 15*" (Figure 6a). The drill-bit noise
recorded after the MH crossed the PH is not of inter-
est for our interferometry purposes because, unlike the
drill-bit positions illustrated by Figure 6b, it does not
yield stationary contributions that give primary fault
reflections that propagate between the receivers. Due to
field instrumentation issues (S. T. Taylor, 2006; personal
communication), most of the data recorded by the PH
array before July 15'" consists of electrical noise only. A
window of approximately 20 hours prior to the intersec-
tion of the PH by the MH coincides with the portion of
the PH data for which the instrumentation problem was
fixed. The data acquired within this window are used in
the analysis we show here.
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Figure 7. Drill-bit noise records from the SAFOD Pilot-Hole. Because the drill-bit is closest to receiver 26, the data recorded
at this receiver, shown by panel (a), is not contaminated by electrical noise. For the same drill-bit position, panel (b) shows
the data recorded at receiver 23. Panel (c) shows the result of filtering the electrical noise from the data in panel (b). These
data show the first 3 s of the full records (which are 60 s long). For the records shown here, the drill-bit position is practically
constant. These data are from the vertical component of recording.

According to the MH drilling records, the depth
interval that was sampled by the usable drill-bit data
extends from approximately 350 m to 450 m (in the
scale in Figure 6a). We use the data recorded in this
interval to generate interferometric shot records. Within
the 350-450 m bit interval, the drill-bit passes by the
PH receiver 26. Since the stationary contributions of
the sources to recovering primary reflections from the
SAF only occur when the bit is next to a receiver, the
data recorded by receiver 26 in the depth interval of
350-450 m can be used as the filter for interferometry.
This translates to setting rp in equations 7, 12 or 13
to the coordinates of receiver 26. Hence, out of the 32
receivers of the SAFOD PH array, it is only possible to
create interferometric shot gathers with a pseudo-source
at receiver 26.

A small portion of the recorded data is shown in
Figure 7. The data in Figure 7a are from the vertical
component of receiver 26, while the data in Figures 7b
and c correspond to receiver 23. Since the records shown
in Figure 7 are subsequent recordings of the drill-bit
noise of 1 minute duration (of which only the first 3
s are shown in Figure 7), the drill-bit position for the
records in the Figure is practically constant. The data
recorded by receiver 26 shown in Figure 7a are low-pass
filtered to preserve signal up to 75 Hz. A similar filter,
preserving frequencies up to 55Hz, is applied to the orig-
inal data from receiver 23 in Figure 7b, resulting in the
data in Figure 7c. The data recorded by receiver 23 (Fig-
ure 7b) is heavily contaminated by electrical noise, at
frequencies of 60, 120 and 180 Hz. This electrical noise
is practically negligible in the data from receiver 26,

as shown by Figure 7 where the 60 Hz monochromatic
oscillation cannot be seen. Because the bit is close to
receiver 26, the drilling noise is louder than the electri-
cal noise in Figure 7a. After low-pass filtering, the data
from receiver 23 (Figure 7c) shows a similar character to
that from receiver 26 (Figure 7a). As discussed in previ-
ous sections (and illustrated by Figure 3), the SAFOD
drill-bit noise data shows a narrow-band character, typ-
ical of the vibrational modes from drilling. The drilling
of the SAFOD MH was done with a roller-cone bit.

A critical issue with the processing of the SAFOD
SWD data is that pilot records are not available. Drill-
string accelerometers were not placed in the SAFOD rig
until August 2004 (Taylor et al., 2006), after the acqui-
sition of the SAFOD PH data we process here. Since no
pilot records are available, pilot-based SWD processing
(Rector and Marion, 1991; Haldorsen et al., 1994; Po-
letto and Miranda, 2004) cannot be applied to the PH
drill-bit data. Thus, these data are a natural candidate
for the application of deconvolution interferometry. Fig-
ure 8 shows four pseudo-shot gathers derived from de-
convolution interferometry using different combinations
of receiver components (see equations 13 through 14).
We only display the traces for receivers 15 through 32
in Figure 8 because electric noise in receivers 1-14 pre-
vents the recovery of coherent signals. Before comput-
ing the pseudo-shots in Figures 8 and 9, all data were
low-passed to preserve frequencies up to 55 Hz. For the
interferometry, we divide each minute-long record into
two 30-second long traces. With approximately 20 hours
of recording time, the resulting traces in the pseudo-shot
records are the result of stacking in the order of 2000 de-
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Figure 8. Pseudo-shot gathers from deconvolution interferometry. In these gathers, receiver 26 acts as a pseudo-source. Each
panel in the Figure is the result of deconvolving different combinations of receiver components: the deconvolution of the Z- with
Z-components yields (a), Z- with NE-components give (b), NE- with NE-components result in (c), and NW- with Z-components
yield (d). Physically, panel (a) shows waves recorded by the vertical component for a pseudo-shot at receiver 26, excited by a
vertical point-force. (b) is also the vertical component for a pseudo-shot at PH-26, but unlike the wavefield in (a), it represents
waves excited by a point-force in the NE-direction. Likewise, (c) pertains to both excitation and recording in the NE-direction,
while waves in (d) are excited by a vertical point-force and are recorded in the NW-direction. The red arrows show reflection
events of interest. Note that receiver 32 is the shallowest receiver in the SAFOD PH array (Figure 6). Receiver spacing is of 40
m. The component orientations we use here are the same as those in Figure 6b.
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Figure 9. Pseudo-shot gathers from correlation interferometry. Here, each panel is associated to the correlation of the same
receiver components as in the corresponding panels in Figure 8. The physical interpretation of excitation and recording directions
is the same as for Figure 8. Unlike the data in Figure 8, the source function in these data is given by the autocorrelation of the
drill-bit excitation.
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convolved or correlated traces (see equations 7 and 12).
For a discussion on our numerical implementation of
deconvolution, see Appendix A.

The panels in Figure 8 show that combining differ-
ent components in deconvolution interferometry yields
different waveforms. Scattered arrivals, indicated by red
arrows, can be identified in Figures 8a and b, but not
in ¢ and d. The first reason for the difference between
the results in the four panels of the Figure lies in equa-
tions 13 through 14. According to these equations, de-
convolving data recorded in the i-component with data
recorded by the j-component results in the interferomet-
ric impulse response recorded by the i-component and
excited by the j-component. This means that the data
in Figure 8a represents a vertical excitation at receiver
26 recorded by the vertical component at all receivers.
Likewise, Figure 8b represents a vertical excitation and
the recording of data in the Northeast direction (NE-
component). Similar interpretations follow for the other
two panels in the Figure, and are given in the Figure
caption.

In Section 2.2, we discuss the influence of the drill-
bit radiation properties on the radiation pattern of the
pseudo-source synthesized by interferometry. The radi-
ation characteristics of the pseudo-source together with
signal-to-noise ratio in different recording components
of the receiver away from the drill-bit (and from re-
ceiver 26) is also responsible for the differences between
the panels of Figure 8. Because coherent arrivals can be
seen in Figures 8a and b, two conclusions can be drawn.
First, the signal-to-noise ratio in the vertical compo-
nent (Z-component) of the receivers is sufficiently high
to record scattered waves. Second, Figure 8a shows that
the recorded drill-bit direct wave has nonzero polariza-
tion in the Z-direction. This is caused by the fact that
the pseudo-source radiation is controlled by the radia-
tion pattern of the bit (Section 2.2), and this case most
of the energy radiated by the bit is polarized in the ver-
tical direction.

Since Figure 8b shows coherent events (indicated by
red arrows) that are reconstructed from energy recorded
by the Northeast component, it follows that the direct-
wave response from the bit excitation has a nonzero
polarization component in the NE-direction as well. In
these data, receiver 26 records drill-bit direct waves po-
larized both in the Z- and NE-directions because the
receiver is in the bit’s near-field (the PH and MH are
a few meters apart). The measured near-field response
to an excitation in the Z-direction (the drilling direc-
tion is close to vertical) is polarized both in the vertical
and in-plane horizontal components (Aki and Richards,
1980; Tsvankin, 2001). The waves scattered from the
SAF have far-field polarization because the fault zone
is approximately 2 km away from the PH. The lack of
scattered signals in Figures 8c and d are mostly have
a poor signal-to-noise ratio in the the Northeast and

Northwest components (NE- and NW-components) of
the receivers far from the bit.

The zero-offset trace (the trace at receiver 26) in
Figures 8a and c is a band-limited delta function cen-
tered at ¢ = 0. This is a demonstration of the deconvolu-
tion interferometry boundary condition in equation 15.
The acoustic counterpart of this boundary condition
generates introduces spurious arrivals in the pseudo-
shot gathers (Vasconcelos and Snieder, 2007a). In Fig-
ure 8a, we do not observe pronounced spurious arrivals
associated with the scattered events (marked by red ar-
rows). As highlighted in Section 2.2, the boundary con-
dition in equation 15 does not have the same physi-
cal meaning as in the acoustic case (Vasconcelos and
Snieder, 2007). A thorough understanding of the phys-
ical meaning of equation 15 is beyond the scope of this
paper.

The pseudo-shot gathers in Figure 8 were gener-
ated by deconvolution interferometry while the ones
in Figure 9 are the result of correlation interferometry
(e.g., Wapenaar, 2004; Draganov et al., 2006). Analo-
gously to the observations made in the previous Sec-
tion, the correlation-based interferometric shot gathers
(Figure 9) are influenced by the autocorrelation of the
drill-bit source function, giving them a monochromatic
appearance. The scattered events seen in Figures 8a and
b cannot be identified in Figures 9a and b. In a more
standard SWD processing routine, the autocorrelation
of the source function could be removed from the data
in Figure 9 by means of pilot deconvolution (Rector and
Marion, 1991; Poletto and Miranda, 2004). We reiterate
that this type of processing is not possible in our case
because pilot records are not available.

Together with geologic information from the MH
data and with an active shot acquired by sensors in the
MH, Vasconcelos et al. (2007a) associated the event ar-
riving with a zero-offset time of approximately t = 1.0 s
(second arrow from top) in Figures 8a and b to the pri-
mary P-wave reflection from the SAF. The event at 0.5 s
(marked by top arrow) is the reflection from a blind fault
zone that was intercepted by the SAFOD MH (Solum et
al., 2006; Boness and Zoback, 2006). The bottom arrow
in Figure 8a indicates a an event with approximately 2.0
s of zero-offset time that whose slope is determined by
shear-wave velocity. We interpret this arrival as a pure-
mode shear-wave reflection from the SAF. Since only
the pseudo-shots in Figures 8a and b present physically
meaningful arrivals, we only show migrated images from
these two panels.

The migration of the pseudo-shot data was done
with the same methodology as in the Sigsbee numer-
ical example. We use shot-profile migration by wave-
field extrapolation (Biondi, 2006), where the extrapola-
tion steps are taken in the horizontal coordinate away
from the SAFOD PH (Figure 6). Migrated images are
shown in Figure 10. The images of the pseudo-shots
from deconvolution interferometry (left panels) show
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Figure 10. Shot-profile wave-equation images of interferometric shot gathers with a pseudo-source at receiver 26. The left
panels are the result migrating pseudo-shot gathers from deconvolution interferometry while the panels on the right result from
cross-correlation. The migration of the data in Figure 8a and b gives panels (a) and (c), respectively. Analogously, panels (b) and
(d) are obtained from migrating the data in Figures 9a and b. The yellow boxes outline the subsurface area that is physically
sampled by P-wave reflections. The data were migrated with the velocity model in Figure 6a.

reflector-like features that cannot be identified on the
images from correlation interferometry (right panels).
The images from correlation-based pseudo-shots have
a narrow-band character that is similar to that of the
pseudo-shots themselves, caused by the presence of the
autocorrelation of the drill-bit excitation function (Fig-
ure 9). This is the same phenomenon we show in the
images from the Sigsbee model (Figure 5), with the dif-
ference that the Sigsbee images are produced from 100
pseudo-shots. Because the SAFOD images result from
migrating a single shot, the reflectors are curved toward
the edges of the images (top and bottom of images in
Figure 10) due to effect of the migration operator and

the relatively small aperture of the receiver array used
to reconstruct the data.

The final image from the SAFOD SWD data was
obtained by stacking the top images with the bottom
ones in Figure 10. We do this with the intention of en-
hancing the reflectors that are common in both images.
The final SAFOD images are shown in Figure 11. Fig-
ure 11 only shows the portion of the images that yield
physically meaningful reflectors, which is highlighted by
the yellow rectangles in Figures 10a and c. The image
from deconvolution interferometry (Figure 11a) shows
reflectors that cannot be seen in the image from cor-
relation interferometry (Figure 11b). Vasconcelos et al
(2007) show that the reflector at z =~ 2000 m indicated
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Figure 11. Final images from the interferometry of the SAFOD drill-bit noise recordings. The image in (a) is the result of
stacking the images from deconvolution interferometry in Figures 10a and ¢. The right-hand side arrow shows the location of
San Andreas Fault reflector. The other arrow highlights the reflector associated to a blind fault zone at Parkfield. The stack of
the images from correlation interferometry in Figures 10b and d gives the image in (b). We muted the portion of the stacked
images that is not representative of physical reflectors. The area of the image in (a) and (b) corresponds to the area bounded

by yellow boxes in Figure 10.

by the right arrow coincides with the contact of the
SAF with metamorphic rocks to the Northeast. The re-
flector at x =~ 1600 m coincides with a possibly active
blind fault zone at Parkfield. The observations made
by Vasconcelos et al. (2007) are based on the data we
present here together with active-shot data measured at
the MH and with fault intersection locations from the
MH (Solum et al, 2006; Boness and Zoback, 2006).

5 DISCUSSION AND CONCLUSIONS

We present the method of interferometry by deconvolu-
tion, described by Vasconcelos and Snieder (2007a), as
an alternative to the processing of seismic-while-drilling
(SWD) data. In these types of datasets, the signature
of the drill-bit source function complicates the recovery
of the subsurface response (e.g., Poletto and Miranda,
2004). Most SWD processing methods rely on the so-
called pilot sensors to obtain an independent estimate
of the drill-bit excitation that is used to remove the drill-
bit source function (Rector and Marion, 1991; Haldorsen

et al., 1994; Poletto and Miranda, 2004). Here, we re-
view SWD methods based on pilot recordings in the
context of seismic interferometry by cross-correlations
(e.g., Poletto and Miranda, 2004; Draganov et al., 2006).
The method of deconvolution interferometry is capable
of recovering the subsurface response from SWD data
without the need for an independent estimate of the
drill-bit excitation. Additionally, the knowledge about
the drill-bit position is not a requirement for the appli-
cation of interferometry (see also Schuster et al., 2004),
as it is for other SWD applications (e.g., Poletto and
Miranda, 2004). Interferometry requires, however, that
the drill-bit must sample the source stationary points
that give rise to the target scattered waves (Vasconce-
los and Snieder, 2007a; Snieder et al, 2006).

Extending concepts presented by Vasconcelos and
Snieder (2007a), we discuss the application of decon-
volution interferometry in elastic media. With physical
arguments we state that the interferometric response
obtained by the deconvolution of the i-component of a
given receiver by the j-component of another receiver re-
sults in single-scattered waves that propagate between



these two receivers. These waves are the impulse re-
sponse from a j-oriented point-force excitation at one
of the receivers, recorded by the i-component at the
other receiver. Because the deconvolved data satisfies
the same wave equation as the original physical exper-
iment, the radiation properties of the drill-bit (Poletto,
2005a) determine the radiation pattern of the pseudo-
source synthesized by interferometry. In the case of re-
ceivers positioned far from the drill-bit and highly het-
erogeneous media, deconvolution interferometry can po-
tentially extract a response that is closer to a full elas-
tic response, as discussed by Wapenaar and Fokkema
(2006).

Our numerical experiment with the Sigsbee model
seeks to reproduce a passive subsalt SWD experiment
where pilot recordings are absent. Using modeled drill-
bit noise (Poletto, 2005a), we produce images of the
Sigsbee salt canopy from the receiver array sitting be-
low the salt. The image from deconvolution interferom-
etry provides a reliable representation of the structure
in the model because the deconvolution removes the
drill-bit excitation function from the data. When dis-
torted by the dominant vibrational modes of the drill-
bit source function, the image from correlation inter-
ferometry gives a poorer representation of the model
structure when compared with the deconvolution image.
The choice of the Sigsbee model shows the feasibility of
the passive application of drill-bit imaging in subsalt
environments. SWD typically is not done in such en-
vironments because the wells are deeper than they are
onshore, and the transmission through the drill-string
is weaker which makes rig pilot records unreliable esti-
mates of the drill-bit excitation (Poletto and Miranda,
2004). Additionally, many subsalt wells are drilled with
PDC bits, which radiate less energy than the roller-cone
bit (Poletto, 2005a). The signal from PDC bits is thus
difficult to measure from the surface or from the sea
bottom. This difficulty can be overcome with downhole
receiver arrays, as in our example. Although we used a
model for a roller-cone bit, we expect results of decon-
volution interferometry of noise records from PDC bits
(Poletto 2005a) to be similar to ours .

Using field data acquired at the Pilot Hole of the
San Andreas Fault Observatory at Depth (SAFOD),
we validate the method of deconvolution interferome-
try in recovering the impulse response between receivers
from drill-bit noise records. The SAFOD SWD data are
ideal for the application of deconvolution interferom-
etry because pilot recordings are not available. From
interferometry by deconvolution, we synthesize scat-
tered waves that propagate from receiver 26 toward the
other receivers that are not visible in pseudo-shot gath-
ers from correlation interferometry. Single-scattered P-
waves were obtained mostly by the deconvolution of the
vertical component of recording of the PH receivers,
with the vertical and Northeast components of receiver
26. Shot-profile migration of the interferometric shots
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generated by deconvolution yield coherent reflectors.
From the images presented here together with active-
shot data and fault intersection locations from the MH,
Vasconcelos et al. (2007a) identified the San Andreas
Fault reflector as well as a possibly active blind fault at
Parkfield, CA. Their conclusions rely on the processing
we describe here, where interferometry by deconvolution
plays an important role in imaging the fault reflectors
(Vasconcelos and Snieder, 2007a).

More than just an alternative to processing SWD
data as it is typically acquired, deconvolution inter-
ferometry opens possibilities for using passive mea-
surements of drill-bit or rig noise for imaging. Poletto
(2005b) provides a thorough comparison between drill-
bit and conventional seismic sources. The fact that seis-
mic interferometry techniques do not require knowledge
about the source position allows for pseudo-acquisition
geometries that cannot be accomplished by standard
SWD experiments. The geometries in of the Sigsbee and
SAFOD datasets presented in this paper are examples
of non-conventional acquisition that can be treated by
interferometric techniques. The use of the free-surface
ghosts to reconstruct primary reflections that propagate
between receivers (Schuster et al., 2004; Yu et al., 2004)
is another example where deconvolution interferometry
can also be applied. Interferometry of internal multiples
(Vasconcelos et al., 2007b) can potentially be accom-
plished from SWD as well. The passive imaging from
working drill-bits could help in the monitoring of fields
in environmentally sensitive areas, where active seismic
experiments are compromised. These areas now become
more of a concern as the search for unconventional reser-
voirs increases. One such area is the Tempa Rossa field
in Italy (D’Andrea et al., 1993). While active seismic
activity in this field is hindered by environmental regu-
lations, its future production is expected to reach 50000
oil barrels per day. Environment-friendly seismic mon-
itoring of oil fields like Tempa Rossa could potentially
be accomplished with recordings of the field’s drilling
activity and with deconvolution interferometry.
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APPENDIX A: SHORT NOTE ON
DECONVOLUTION

Our numerical application of deconvolution is based on
the so-called water level deconvolution (Clayton and
Wiggins, 1976), given by

u(ra,s) u(ra,s)u’(rs,s)

Das = u(rp,s)  |u(rs,s)® + e(lu(rp,s)?)’

where (Ju(rg,s)|?) is the an average of the power spec-
trum of the data measured at rp. The factor € is a
free-parameter that we choose by visually inspecting the
output of the deconvolution in equation Al. When € is
too large, the denominator becomes a constant and the
result of the deconvolution approximates the result of
cross-correlation (equation 2). When € is too small the
deconvolution becomes unstable. An optimal value of ¢
results in the desired deconvolved trace with weak ran-
dom noise associated to the water level regularization
(Clayton and Wiggins, 1976).

There are other deconvolution approaches that
yield better results than the water-level deconvolution
method. For deconvolution references in the exploration
geophysics literature, we refer to the article collection
edited by Webster (1981) and to the work of Porsani
and Ursin (Porsani and Ursin, 2000; Porsani and Ursin,
2007). In the signal processing field, the work of Bennia
and Nahman (1996) and Qu et al. (2006) are examples
of deconvolution methods that are relevant to SWD pro-
cessing.
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ABSTRACT

The San Andreas Fault Observatory at Depth provides perhaps the most com-
prehensive set of data on the structure and dynamics of the San Andreas fault.
We use two independent experiments recorded by the seismometer arrays of
the SAFOD Pilot and Main Holes to resolve the localized structure of the San
Andreas fault zone and of an intermediate fault zone at depth. From Pilot Hole
recordings of the drilling noise coming from the Main Hole, we reconstruct the
waves that propagate between the Pilot Hole sensors and use them to image
the fault zone structure. The use of correlated drilling noise leads to a high-
resolution image of a major transform fault zone. Another independent image
is generated from the detonation of a surface explosive charge recorded at a
large 178-sensor array placed in the Main Hole. The images reveal the San An-
dreas fault as well as an active blind fault zone that could potentially rupture.
This is confirmed by two independent methods. The structure and the activity
of the imaged faults is of critical importance to understanding the current stress
state and activity of the San Andreas fault system.

Key words: San Andreas Fault, VSP, seismic-while-drilling, deconvolution
interferometry, reverse-time migration

1 THE SAFOD PROJECT

The San Andreas Fault Observatory at Depth (SAFOD)
was conceived to closely study and monitor the
earthquake dynamics and structure of the San An-
dreas Fault (SAF) at Parkfield, CA (http://www.icdp-
online.de/sites/sanandreas/index/index.html). Charac-
terizing the structure and dynamics of the SAF strike-
slip system is crucial for understanding the geodynam-
ics of transform plate boundaries and their associated
seismicity. In particular, the SAF at Parkfield has his-
torically been seismically active, with seven catalogued
earthquakes of magnitude six approximately (Bakun
and McEvilly, 1984; Roeloffs and Langbein, 1994); the
latest one occurred in September 2004 (Kerr, 2006).
Consisting of a vertical borehole, the Pilot Hole
(PH), and of a deviated well that intersects the SAF,
the Main Hole (MH), SAFOD is designed to sample and

monitor the SAF system from within the subsurface at
Parkfield. Together with surface observations, data from
SAFOD already contributed greatly to the understand-
ing of the SAF system at Parkfield. Figure 1a is a scaled
schematic cartoon that summarizes and connects results
from several publications that analyze data from the
SAFOD site. Much of the information on the surface
geology and on the basement and sedimentary struc-
tures at Parkfield comes from geologic mapping (Rymer
et al., 2003) and from surface refraction (Catchings et
al., 2003) and reflection (Hole et al., 2001; Catchings et
al., 2003) seismic data. The lateral delineation of the
Salinian granite to the SW of the SAF has also been
inferred from magnetotelluric (Unsworth et al., 2000;
Unsworth and Bedrosian, 2004) measurements and from
joint inversion of gravity and surface seismic data (Fig-
ure 1b; Roecker et al., 2004; and Thurber et al., 2004).
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Analysis of PH rock samples (Solum et al., 2004) and
of their in-situ physical properties (Boness and Zoback,
2004) helped determine the lithology and the stress state
around the PH. Likewise, recent studies of rock samples
from drilling (Solum et al., 2006) and well-logs (Boness
and Zoback, 2006) from the MH have shed light on the
subsurface geology along the SAFOD MH. It was not
until 2006 that the SAFOD MH first intersected the
SAF (Figure la), and the upcoming coring of the SAF
system during the Phase 3 drilling of the MH (summer
2007) promises to bring important information on the
internal composition of the SAF.

Previous to the drilling of the SAFOD MH, micro-
seismic events along with surface active-shots recorded
at the PH seismometer array were used to make some of
the first images of the SAF at depth (Chavarria et al.,
2003) which also contributed much to our understanding
of the subsurface geology at Parkfield (Figure 1a). As a
continuation of the subsurface imaging at Parkfield, we
use drilling noise recorded at the PH and an active-shot
experiment recorded at the SAFOD MH to obtain high-
resolution images of the SAF system between depths of
0 to approximately 1.5 km (from sea level; this corre-
sponds to approximately 0.6 to 2.1 km from the sur-
face). These images help to resolve the wave-scattering
structures associated to the SAF as well as at least one
other heavily faulted zone between the SAFOD drilling
site and the SAF. Images such as the ones we present
here are critical for the development of detailed models
of the SAF plate and earthquake dynamics.

2 IMAGING THE SAF FROM PASSIVE
AND ACTIVE SEISMIC DATA

The SAFOD data we use were acquired in two ex-
periments. The first experiment was carried out in
July 2004, when the SAFOD PH receiver array (Fig-
ure 1b) was switched on to constantly monitor the
drilling noise during the early stages of the drilling of
the SAFOD MH. We used the drill-bit noise record-
ings of the SAFOD PH array to create an image of the
SAF. In a second independent experiment, conducted
in 2005, a large 178-receiver array was placed in the
SAFOD MH (Figure 1b) to record the active shooting
of an 80-pound explosive charge placed at the surface
near the SAFOD MH. We also used this shot record to
image the SAF. These two experiments differ not only
on the geometry of the data acquisition (i.e., source and
receiver positioning), but also in the physical character
of the excitation that generates the recorded waves. To
account for the differences between the PH and the MH
data, we applied different processing to each dataset and
to subsequently produce the images. Figure 2 provides
schematic representations of the data acquisition geom-
etry for the PH drill-bit noise recordings and for the MH
active-shot experiment.

To create an image of the SAF zone from the drill-
bit noise records we rely on the concept of seismic in-
terferometry (Curtis et al., 2006; Larose et al., 2006).
Interferometry recovers the response between any two
receivers in an arbitrarily heterogeneous and anisotro-
pic medium as if a source was placed at one of the re-
ceiver locations(Lobkis and Weaver, 2001; Snieder et al.,
2006). We only briefly highlight the issues of interfero-
metry that are of particular concern to the processing
of the SAFOD PH drilling noise records.

Typically, interferometry makes use of cross-
correlations between recorded data to recover waves
propagating between receivers (Lobkis and Weaver,
2001). By doing so, the recovered receiver response in-
cludes an average of the power spectra of the excita-
tions(Lobkis and Weaver, 2001, Snieder et al., 2006).
Removing the contribution of the source power spec-
trum is an issue when recovering signals from drill-bit
noise because in this case the wave-generation mecha-
nism is constantly active, and the spectrum is heavily
dominated by specific vibration modes associated to the
drilling process (Poletto and Miranda, 2004). An exam-
ple of this behavior from SAFOD PH-array records can
be found in Figure 4a.

It is possible, however, to remove the drill-bit source
signature from drilling noise records (Poletto and Mi-
randa, 2004). The standard industry practice is to esti-
mate the drill-bit signature by placing accelerometers on
the drill-stem (Poletto and Miranda, 2004; Rector and
Marion, 1991). This estimate is then used to extract the
drill-bit noise signature from the cross-correlations of
the recorded data, leaving only the approximate impulse
response of the Earth (Lobkis and Weaver, 2001; Poletto
and Miranda, 2004). Following this accelerometer-based
approach, drill-bit imaging has been previously applied
to surface recordings of MH drilling noise at Parkfield
(Taylor et al., 2005). In our case, such accelerometer
recordings are not available. As an alternative to inter-
ferometry by cross-correlations, we used an interferome-
try technique based on deconvolutions (Vasconcelos and
Snieder, 2007). This technique synthesizes the response
between receivers from incoherent excitations as if one
of the receivers acted as a pseudo-source, while cancel-
ing the effect of the drill-bit source signature without
the need for drill-stem accelerometers.

In Figure 3a we show the result from processing ap-
proximately 17 hours of drilling noise records into a shot
record with a pseudo-source at receiver PH-26. With the
pseudo-source centered at 0 s, PH-26 acts as the pseudo-
shot responsible for the excitation of waves (Vasconce-
los and Snieder, 2007). Figure 3a shows the direct wave
that propagates from receiver PH-26 and is recorded
at the other receivers. The reflection events highlighted
in Figure 3a are caused by faults in the SAF system.
The data in Figure 3a represents waves excited by a
vertically-oriented force (see Figure 4). In addition, we
are also able to recover the excitation at receiver PH-26
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Figure 1. Panel (a) shows our current knowledge of the structure of the San Andreas fault system at Parkfield, CA. The main
geologic formations are indicated by different colors and by their corresponding acronyms, these are: the Tertiary Ethegoin (Te),
Tertiary Ethegoin-Big Pappa (Tebp), Tertiary undifferentiated (Tund), Cretaceous Franciscan rocks (Kfr), Cretaceous Salinian
Granite (Ksgr), and the pre-Cretaceous Great Valley (pKgv). The SAFOD main-hole (MH) is indicated by the blue solid line.
Black solid lines in (a) represent faults. BCFZ refers to the Buzzard Canyon Fault zone. The areas where the finer-scale structure
of the SAF system were unknown are indicated by question marks. The red triangles, numbered 1 through 5, show approximate
locations of intersections of the MH with major zones of faulting (Solum et al., 2006). Triangle number 5 represents the point
where the MH penetrated the SAF in 2006. Panel (b) shows the large-scale structure of the P-wave velocity field (velocities
are colorcoded) that approximately corresponds to the schematic representation in (a). The circles in (b) indicate the location
of the sensors of the SAFOD pilot-hole array used here for the recording of drilling noise. The SAFOD MH array, used in the
active-shot experiment, is indicated by the triangles. The location of the active shot is depicted by the star. Depth is with
respect to sea level, the altitude at SAFOD is of approximately —660 m.
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Figure 2. Schematic acquisition geometries of SAFOD data. Receivers are indicated by the light-blue triangles. The structures
outlined by black solid lines to the right-hand side of the figure represent a target fault. (a) shows the acquisition geometry of
the downhole seismic-while-drilling (SWD) dataset. It consists of multiple 60 second-long recordings of drill-bit noise excited
at different depths, recorded at 32 3-component receivers in the PH. As indicated by (a), receivers are oriented in the Z-(or
downward vertical), NE- and NW-directions. (a) also shows a schematic stationary path between the drill-bit and two receivers.
Interferometry recovers only the portion of the propagation path represented by black arrows in (a). The active-shot geometry in
(b) is comprised of 178 3-component receivers placed in the MH. The dashed red arrow in (b) represents all waves that propagate
towards the NE (right-hand side of the figure), while the solid red line represents all waves going toward SW (left-hand side of
(b)). The inclination of the deviated portion of the MH is of about 45° with respect to the vertical. The receiver components
of the SAFOD MH array are co-oriented with those of the PH array, whose orientations are shown in (a).

associated to a Northeast-oriented force (see Figure 4c). Unfortunately, out of almost two months of record-
The SAFOD interferometric image we will discuss here ing drilling noise at the PH array, only about a day and
is a product from imaging the pseudo-shots at PH-26 a half of the data is useable for interferometry purposes
excited by forces oriented both in the vertical and in due to data acquisition problems. Within this time win-

the Northeast (NE) directions. dow, the drill-bit is closest to receiver PH-26 (the dis-
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tance between the MH and PH at that depth is of only
a few meters). It is at this drill-bit position that we find
the most prominent contribution from the waves excited
by the drill-bit for the reconstruction of the waves that
propagate between receiver PH-26 and the remaining
receivers. We refer to this point as a stationary posi-
tion for the drill-bit source (Snieder et al., 2006). To
recover signals propagating between receivers, it is nec-
essary to have physical sources at the stationary points
that link a pair of receivers to a target reflector (Snieder
et al., 2006). The only drill-bit stationary point sampled
within the good-quality PH records recovers waves that
emanate from receiver PH-26. This restriction limits the
area of the SAF zone from which we can produce a phys-
ically meaningful image to the area shown in Figure 6a.

The shot gather from the SAFOD MH active-shot
experiment (Figure 3b) shows a reflection as a left-
sloping event arriving at main-hole receiver MH-98 at
approximately 1.0 s (indicated by the top-most arrow).
Another weaker left-sloping event that arrives at ap-
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Figure 3. (a) Vertical component of the interferometric shot gather for a pseudo-shot position at pilot-hole receiver PH-26. Red
arrows indicate reflections of interest. The reflection event that arrives at approximately 1.0 s at receiver PH-24 is interpreted to
correspond to a P-wave reflection from the SAF zone. Due to the noise levels, only a subset of the 32 receivers of the PH array is
sensitive to the incoming signals from the SAF zone. (b) Data recorded by the vertical component of motion in the SAFOD MH
array from the active-shot experiment. The red arrows indicate two left-sloping events that are associated to P-wave reflections
from faults within the SAF system.

proximately 1.2 s at receiver MH-98 (lower-most arrow)
is associated with a P-wave reflection from the SAF
zone. Since the receivers MH-98 to MH-178 are in the
deviated, deeper-most portion of the SAFOD MH (see
Figure 1b), right-sloping events are mostly associated
with right-going waves, whereas left-sloping events are
associated with left-going waves (see also Figure 2b).
This observation only holds for a subset of the receivers
of the large 178-receiver MH array: the ones which lie
in the deviated portion of the MH. These would be re-
ceivers MH-98 through MH-178 (Figure 3b), whose lo-
cations are shown in Figure 1b. For the purpose of ima-
ging the SAF system from the MH array, it is important
to discern between right- and left-going waves in the
data because fault reflection information for this acqui-
sition geometry is predominantly contained in left-going
waves. With frequency-wavenumber filtering (Biondi,
2006), we extract only the left-sloping events from Fig-
ure 3b. We use only these events to image the SAF zone.

The process of mapping data such as in Figure 3
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Figure 4. (a) Short sampl(gs) of sequential recordings of drilling noigl«;)from the receiver PH-26. Tlge visually monochromatic
character of the records is due to drilling vibrational modes. (b) Vertical component of the interferometric shot gather for
a pseudo-shot position at pilot-hole receiver PH-26. The recording at (b) represents waves excited by a vertical point-force.
(c) is also the vertical component for a pseudo-shot at PH-26, but unlike the wavefield in (b), it represents waves excited by
a point-force in the NE-direction. The complicated character of the drilling noise in (a) is attenuated by the interferometry
procedure that produces the data in (b) and in (c). Note that receiver PH-32 is the shallowest receiver in the SAFOD PH array

(see Figure 1b in main text).

into a subsurface image (Figure 6) is what we refer to as
imaging or migration. Imaging typically requires a velo-
city model of the subsurface; the one we use is shown in
Figure 1b. This model was estimated from surface seis-
mic tomography (Thurber et al., 2004). We do the ima-
ging of the PH and MH data (Figure 3) with two differ-
ent methodologies. For imaging from the PH data we use
the technique of shot-profile migration by wavefield ex-
trapolation (Biondi, 2006). The wavefield extrapolation
is done by the split-step fourier phase-shift plus inter-
polation method. The MH active-shot data in Figure 3b
is imaged by reverse-time migration (Biondi, 2006).

3 HIGH-RESOLUTION IMAGES AND THE
SAF

The images from the SAFOD PH and MH arrays are
shown in Figures 6a and b (also in Figures S3a and b).
The interferometric image from PH array (Figures 6a
and S3a) provides a different area of “illumination” of
the subsurface than the active-shot image from the MH
array (Figures 6b and S3b). This is a consequence of
the differences in the acquisition geometry of these two
experiments. The images displaying all subsurface posi-
tions corresponding to the velocity model in Figure 1b

are shown in the support Figure 5. A numerical model
was build for the MH active-shot data to aid us in un-
derstanding what is the subsurface area that could be
illuminated by the active-shot experiments, as well as
what would be the character of image artifacts caused
by waves diffracted by the Salinian granite. From the
portion of the synthetic image that showed physically
meaningful reflectors we chose the area of illumination
of the SAFOD MH image in Figure 6b. The support
Figure 7 shows the results from the numerical modeling
of the SAFOD MH active-shot data.

Since both images are built from single-shot data
(a pseudo-shot in the PH interferometric data and the
active-shot in the MH data), they are prone to arti-
facts associated with the limited illumination (Biondi,
2006). Additionally, the method of interferometry by de-
convolutions may produce image artifacts (Vasconcelos
and Snieder, 2007). It is thus critical to establish which
reflectors in the images in Figure 6 (and in Figure 5)
pertain to actual faults or interfaces in the subsurface.

We rely on two independent criteria to gain insight
into which reflectors in Figure 6 (and in Figure 5) rep-
resent real faults and/or interfaces. The first criterion
is based on the consistency of events between different
images. Note that all of the available images were gener-
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Figure 5. (a) Image obtained from stacking the results of migrating the SAFOD interferometric shot gathers in Figures S4c
and d. After migrating only the left-going waves from the SAFOD MH active-shot data (Figure 2b in main text), we obtain the
image in (b). The red arrows point to features that are common to both images. These features are the same as indicated by the
red arrows and numbers 1 through 3 in main-text Figure 3. The dashed yellow boxes in (a) and in (b) highlight the portions of
the images that are shown in main-text Figures 3a and 3b, respectively. Both yellow boxes in fact represent the subsurface area
that is physically sampled by P-wave reflections, which in turn depends on the acquisition geometry of each experiment (see
Figure S2). The red triangles show the approximate locations where the SAFOD MH intersected major fault zones (see main
text Figure 1b). Distances in the x-axis in (a) and (b) are with respect to the location of the SAFOD drill site at the surface.

The surface trace of the SAFz is at approximately x = 2000 m.

ated from independent experiments. In our case, on one
hand we have the drilling noise recordings at the PH
array, and on the other hand we have the the active-
shot MH data. The images from Chavarria et al. (2003)
(Figure 6) come from PH recordings of both surface ac-
tive shots and microseismicity from the SAF. Not only
were the data in these three experiments different, but
also the corresponding images were generated by dis-
tinct methodologies. Consequently, reflectors that are
consistent in two or more images are likely to be repre-
sentative of actual subsurface structures.

The second criterion for interpreting reflectors in
Figure 6 is the correlation between the location of fault
zone intersections at the SAFOD main-hole (Solume et
al., 2006) and the position of reflectors which are consis-
tent in two or more images. The position of the five main
fault zones intersected by the MH are shown schemati-
cally in Figure 1a and are superposed on the full images
from the SAFOD PH and MH arrays in the support
Figure 5. The comparison between MH fault intersec-
tions (Solum et al., 2006;Boness and Zoback, 2006) and
reflectors in the images (Figure 5) is not always straight
forward because the subsurface area illuminated by the
images does not coincide with the MH well-path. De-
spite this difficulty, we provide our interpretation of the
correlation between the MH fault intersections and im-
aged reflectors based on the overlay of these data (Fig-
ure 5) and on our current conceptual geologic model of
the subsurface at SAFOD (Figure 1a).

In the interferometric image from the PH drilling

noise records (Figure 6a) we highlight four distinct re-
flection events. The events 1 through 3 coincide both in
the interferometric and active-shot images (Figures 6a
and b, respectively; see support also Figure 5). Reflec-
tor 2 (Figure 6) is associated with the SAF, because its
lateral position coincides with the lateral position of the
surface trace of the SAF (marked by a vertical solid line
at 0 km in the background images in Figure 6). In both
the PH and MH images, the position of reflector 2 is
consistent with the scattering zone associated with the
SAF zone from Chavarria et al. (2003). Even though
our images of the SAF (reflector 2, Figure 6) do not il-
luminate the fault all the way to its point of intersection
with the SAFOD MH, the change in dip of the SAF in
the active-shot image at approximately 1100 m depth
is consistent with the intersection of the MH with fault
zone 4 (Figures la and S3b). Since the anomaly that
represents the SAF in the image by Chavarria et al.
(2003) is caused by direct-wave energy coming from mi-
croseismicity within the SAF, the relative positioning
between the SAF reflector in the MH active-shot image
and the corresponding reflector in the background image
suggests that reflector 2 may be due to P-wave energy
scattered at the contact of the Franciscan rocks to the
NE with the SAF zone to the SW (Solum et al., 2006;
Boness and Zoback, 2006). The PH interferometric and
MH active-shot images resolve structures larger than
approximately 75 to 100 m in size, presenting higher
resolution when compared to the previous images of the
SAF at Parkfield (Hole et al., 2003; Chavarria et al.,
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Figure 6. Images from the drill-bit noise recordings and from the active-shot experiment (in grey-scale, outlined by black-
boxes). These images are overlayed on the result obtained from Chavarria et al. (2003). The overlay in (a) is the interferometric
image from the SAFOD PH array, compiled after synthesizing drilling noise records into a pseudo-shot at the location of receiver
PH-26. (b) shows an overlay of the image obtained from reverse-time imaging of the active-shot recorded at the SAFOD MH.
The arrows mark the most prominent reflectors in the images. The reflectors numbered 1 through 3 coincide in both images.
Reflectors 2 and 3, and possibly 4 are associated with fault zones. The SAF zone is visible at reflector 2 in both images. The
location of the SAFOD MH in the background color images is schematic, since the MH was drilled after the work by Chavarria
et al. (2003) was published. See also Figures S3a and S3b for the full images from the drill-bit noise recordings and active-shot

data.

2003). The geometry of our experiments (especially of
the PH drill-bit records) is ideal for the broadside ima-
ging of the SAF, complementing the previous Parkfield
experiments (Hole et al., 2003; Chavarria et al., 2003).

Although the reflector 1 is consistent between the
PH interferometric image and the MH active-shot im-
age, we do not associate it to any known faults. The
reason for this is that there is no surface trace of a fault
at the location of reflector 1; nor has a major fault zone
yet been intersected by the SAFOD MH after the SAF.
If reflector 1 is indeed an artifact produced from the
imaging procedures applied to both the PH and the MH
data, it was not reproduced by the numerical modeling
of the SAFOD MH data. Since the modeling in Figure 7
was acoustic (accounting only for P-wave propagation),
reflector 1 could be due to erroneous imaging of recorded
P-to-S converted waves. Note that our imaging proce-
dures also assume that the medium is acoustic, so any
recorded converted waves will be imaged as artifact re-
flectors placed farther than their P-wave counterparts.
This, we believe, is what happens to reflector 1; a P-to-S
converted reflection perhaps related to the SAF P-wave
reflector at reflector 2 (Figure 6).

The fact that reflector 4 can only be seen in the
PH interferometric image is not necessarily inconsistent
with the MH image because even if the reflector per-

tained to a physical event, its location makes it mostly
invisible for the MH active-shot image (the reflector is
located between the shot and most of the receivers in the
MH array). The location of reflector 4 in Figure 5a sug-
gests a possible correspondence with the SAFOD MH
intersection with fault zone number 2 (Figures la and
S3a). If such a correspondence is true, then reflector 4
is likely to represent the contrast between the Salinian
granite and the sediments, which is bordered by fault
zone 2 (Figure 1a).

Reflector 3 in Figure 6 is also associated with a
fault zone. It is present in both the PH interferomet-
ric and in the MH active shot images, and its location
coincides with the scattered energy observed by Chavar-
ria et al. (2003) in their P-wave migration images (see
Figure 3C and 3B of their paper). We associate this re-
flector with fault intersection number 4 (Figure 1a) in
the SAFOD MH array (Solum et al., 2006; Boness and
Zoback, 2006). The location of the fault intersection is
close to the portion of the fault illuminated by the MH
active-shot image (see Figure 5b). Also, the fault image
dips in the SW direction towards the point of intersec-
tion between the SAFOD MH and fault number 4 (Fig-
ures la and S3b). The location of this fault zone at re-
flector 3 coincides with a well-resolved localized cluster
of microseismic events detected both by surface records
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Figure 7. Acoustic numerical modeling of the SAFOD MH active-shot data. (a) shows the structure of the reflectivity model
used to generate the synthetic data. The velocity model used is the same as the one used for imaging (Figure 1b in main text).
The black block in the reflectivity model in (a) represents the Salinian granite (see Figure la in main text), whereas the grey
structures to the left of the model generate two vertical fault-like features. After applying the same imaging procedure as for the
field SAFOD MH data (Figure 5), we end up with the image in (b). The red arrows mark the position of the target reflectors
both in the model (a) and in the image (b). The reflections of waves generated by the diffraction of energy in the corner of
the granite block appear as image artifacts (marked by yellow arrows). Without the numerical model, these artifacts could
potentially be misinterpreted as dipping fault structures. The objective of the numerical modeling is not to closely replicate
all features of the data (Figure 2b in main text). Instead, the objective of the model is two-fold: it helps us understand which
portion of the subsurface is “illuminated” by P-wave reflections in the active-shot experiment, and it gives us an idea of how

P-waves that are diffracted and/or guided by the granite structure may appear in the image.

(Nadeau et al., 2004) and by the PH array (Oye et al.,
2004). The images in Figure 6 show considerably higher
resolution than the previous images from Chavarria et
al. (2003) in imaging the intermediate fault zone corre-
sponding to fault number 4 (Figure la). The imaging
of this intermediate fault zone (and its subsequent in-
tersection at the SAFOD PH) is important to the un-
derstanding of the structure of the SAF system, espe-
cially because there is no trace of this fault system at
the surface. Since it is a blind fault (Yeats and Hutfile,
1995; Talebian et al., 2004), determining the activity
status of fault 3 is critical in assessing its seismogenic
risk. The existence of this feature interpreted from two
independent observations provides the basis for a bet-
ter fault zone understanding and its hazard assessment.
Unknown blind faults have been the cause of major fa-
tal earthquakes, such as the 1994 Northridge earthquake
(Yeats and Hutfile, 1995) and the 2003 Bam earthquake
in Iran (Talebian et al., 2004).

The dip of the SAF reflector and of the interme-
diate fault reflector support the interpretation of the
SAF system being structurally characterized by a flower
structure (Figure 1a). Previous surface seismic profiling
also suggested the presence of intermediate fault zones
(Hole et al., 2001) such as the one confirmed here. It re-
mains to be understood whether this intermediate fault-
ing is associated with the same flower structure as the
SAF, potentially representing an earlier trace or an ac-

tive branch of the SAF, or if these secondary faults be-
long to a separate flower structure (Chavarria et al.,
2003). According to Solum et al. (2006), well casing de-
formation was only observed at fault intersection 5 (as-
sociated to the SAF, Figure la). The other four fault
zones showed no signs of fault activity since so far there
was no casing deformation associated to them. If the
imaged intermediate fault zone (reflector 3, Figure 6) is
indeed an inactive fault zone, it might well represent an
earlier trace of the SAF. On the other hand, the clusters
of microseismic activity previously observed (Nadeau et
al., 2004; Oye et al., 2004) are likely associated to the
imaged blind fault zone (reflector 3, Figure 6), which
suggests that this fault zone is likely to be an active
part of the current SAF system.

Other important factors for understanding fault ac-
tivity and seismogenic potential are fault zone mineral-
ogy, fluid content and pore-pressure. It has been previ-
ously suggested that there may be high-pressured fluids
within the SAF zone at Parkfield (Unsworth et al., 2000;
Unsworth and Bedrosian, 2004; Chavarria et al., 2003).
Both the SAF reflector and reflector 3 in Figure 6 are
consistent with the lateral positioning of the known low
resistivity anomaly inferred by magnetotelluric sound-
ings at Parkfield (Unsworth et al., 2000; Unsworth and
Bedrosian, 2004). Indeed, the analysis of the inferred
fault material from the SAF and from the imaged in-
termediate fault zone (Solum et al., 2006) shows a high



concentration of clay minerals, which are typically as-
sociated with low resistivity materials and with fluid-
rich rocks. Furthermore, the analysis of rocks from the
deeper SAF Solum et al. (2006) also showed the presence
of serpentine, a mineral that could potentially generate
fluid seals within the SAF leading to the creation of
high-pressured fluid pockets inside the fault (Unsworth
et al., 2000; Unsworth and Bedrosian, 2004). From the
available seismic data, it is not yet possible to deter-
mine if the observed fault reflections are caused by fault-
trapped fluids, by the contrast in material properties
across the faults (Solum et al., 2006) or by a combina-
tion of these factors.

Nonetheless, the understanding of the structure of
the SAF system has gained much from the imaging from
the PH drill-bit noise and the MH active-shot experi-
ments conducted at SAFOD. Our current images from
these experiments not only provide better resolution in
the structural definition of the faults within the SAF,
but were also played a decisive role in the characteriza-
tion of a blind fault zone between the SAFOD PH and
the SAF. The high-resolution structural characteriza-
tion of the SAF system is critical to the understanding
of fault-growth and earthquake mechanics at Parkfield.
The results we present here prove that imaging from
noise can be crucial for illuminating complex fault zones
in areas where observations from active experiments are
insufficient. With the help of further continuous cor-
ing and analysis of fault material from the SAFOD MH
Phase 3 drilling (to be conducted Summer 2007), the
nature of the observed fault reflections will be perhaps
better understood.
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Seismic anisotropy of a building
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ABSTRACT

The Department of Geophysics at the Colorado School of Mines has an in-
ternational exchange program for undergraduate students with the University
of Leeds, Delft University of Technology, Imperial College, and the Univer-
sity of Leoben. Exchange student David Thompson from Leeds carried out a
brief research project with Roel Snieder to investigate the anisotropic mechan-
ical properties of a building using seismic interferometry. The results of this
project, which are largely of a didactic nature, were published in The Leading

Edge, September 2006.
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Introduction

The Robert A. Millikan Library is a reinforced concrete
building located on the campus of the California Insti-
tute for Technology in Pasadena, CA. The building has
been frequently studied by earthquake engineers since it
was first instrumented in the late 1960. The recording
system inside the library has been periodically improved
ever since, until the current setup was achieved in 2000.
At present, 19-bit real-time seismometers record contin-
uous measurements at 200 Hz on each of the 10 floors
and also in the basement. These seismometers measure
the response of the library in the North-South direction
(on both the east and west side of the building) and in
the East-West direction.

Seismic Anisotropy

The phenomenon of shear-wave splitting occurs when a
linearly polarized shear- wave passes through a seismi-
cally anisotropic medium. When this occurs, the wave
is split into slow and fast shear-waves which are po-
larized orthogonal to each other. Splitting is typically
observed in global seismology, occurring in the upper
mantle due to the crystal lattice structure of olivine. It
is not confined to this area though, and any medium of
seismic anisotropy has the potential to cause shear-wave
splitting. By looking at the cross section of the Library
and noticing its structural differences in the two orien-
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Figure 1. Cross section of the Millikan Library with location
of seismometers.

tations, it was speculated that seismic anisotropy may
be present in our investigation.

Applying Seismic Interferometry

Previous studies have used actual earthquakes, and also
a synchronised shaker permanently located on the roof,
to study the response of the building due to excitation.
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Figure 2. Response of the building due to excition.
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Figure 3. Deconvolved waveforms for the North-South di-
rection on the East side of the building (Red) and East-West
direction (blue).

In our studies, we use seismic interferometry to analyze
the data in the 3 orientations due to the Yorba Linda
earthquake of 3rd September, 2002. A typical approach
using this method would be to analyze the correlations
of the recorded traces, but our approach is to look at
the deconvolution of recorded traces at different floors.

It is possible to deconvolve all of the floors with any
single floor, each giving a different type of waveform.
We concentrate on the deconvolutions with respect to
the trace at the top floor (floor 10). This simplifies the
problem by making the building response independent
of its ground coupling at the base. By deconvolving all
floors with respect to the trace at the 10th floor, sur-
prisingly simple waveforms are produced. These decon-
volved waveforms are acausal (non-zero for ¢ < 0) and
comprise of a single up-going and down-going wave. By
picking the peaks of the waveforms and plotting them
against time, an estimate of the shear wave velocity in-
side the building can be obtained.

The hypothesis that shear-wave splitting would be
present was proved correct by the contrast between
shear wave velocities in the East-West direction and in
the North-South direction. Below are the results for each
of the orientations:

e North-South direction, East side of building = 385
ms-1
e East-West direction = 286 ms-1.

This corresponds to a splitting coefficient of 15 percent.

Seismic anisotropy is clearly a characteristic of the
Millikan Library. The waves produced by excitation ap-
pear to travel faster in the North-South direction as op-
posed to the East-West direction. The symmetry axes
of the building align with the orientations of the ac-
celerometers (East-West and North-South respectively),
hence there is no need to perform an Alford rotation to
decompose the split shear waves into their fast and slow
directions.

Studying Abroad

Deciding to study abroad for a year at the Colorado
School of Mines has opened up several new doors for
my geophysical career. The school provides a number of
different opportunities, and greatly encourages, under-
graduate research. The teaching style and environment
promoted by the Department of Geophysics allows un-
dergraduates to pursue research topics in several differ-
ent areas, and in many cases, studies which they have
chosen and designed themselves.

The study which we have carried out gave me an ex-
cellent insight into how post-graduate research is done.
The experience which I have gained during my time in
the United States will serve me well when making deci-
sions regarding my future after graduation.

For students of geophysics the opportunity to study
abroad, like the one which the University of Leeds has
given me, would be highly recommended. The field is
truly an international community, and an experience
like this provides an excellent head-start to becoming
part of it.

Suggested Reading

Snieder, R. and E. Safak, Extracting the building re-
sponse using seismic interferometry: Theory and appli-
cation to the Millikan library in Pasadena, California,
Bulletin of the Seismological Society of America, 96,
586-598.



