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Migration /Inversion: 
Think Image Point Coordinates, Process in Acquisition 

Surface Coordinates 

Norman Bleistein,! Yu Zhang,? Sheng Xu,? Guanquan Zhang,? 
and Samuel H. Gray* 

Abstract 

We state a general principle for seismic migration/inversion (M/I) processes: think 
image point coordinates; compute in surface coordinates. This principle allows the 

natural separation of multiple travel paths of energy from a source to a reflector to 

a receiver. Further, the Beylkin determinant (Jacobian of transformation between 
processing parameters and acquisition surface coordinates) is particularly simple in 

stark contrast to the common-offset Beylkin determinant in standard single-arrival 

Kirchhoff M/I. 
A feature of this type of processing is that it changes the deconvolution structure 

of Kirchhoff M/I operators or the deconvolution imaging operator of wave equation 
migration into convolution operators; that is, division by Green’s functions is replaced 

by multiplications by adjoint Green’s functions. 

This transformation from image point coordinates to surface coordinates is also 

applied to a recently developed extension of the standard Kirchhoff inversion method. 

The standard method uses WKBJ Green’s functions in the integration process and 

tends to produce more imaging artifacts than alternatives, such as methods using 

Gaussian beam representations of the Green’s functions in the inversion formula. These 

methods point to the need for a true-amplitude Kirchhoff technique that uses more 

general Green’s functions: Gaussian beams, true-amplitude one-way Green’s functions, 

or Green’s functions from the two-way wave eqation. Here, we present a derivation of 

a true-amplitude Kirchhoff M/I that uses these more general Green’s functions. When 

this inversion is recast as an integral over all sources and receivers, the formula is 

surprisingly simple. 

1 Introduction 

Xu et al [2001] presented a 2D Kirchhoff inversion formula as an integral of input reflection 
data over all possible dip angles at an image point for each fixed value of the opening-(or 

scattering-) angle between the rays from source and receiver at an image point. They then 

recast the result as an integral over source and receiver points on the acquisition surface. 

Bleistein and Gray [2002] presented a 3D version of that formula. The transformation 
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normalization factor of the final Kirchhoff inversion with the chosen Green’s functions. If 

we did not use this approximation, then we would need to carry out a pointwise six-fold 

integration for the purposes of normalization of the amplitude of the kernel. 

An important concept about true-amplitude processing is at work here. “True amplitude” 

as applied to the output of an inversion algorithm refers to estimation of plane wave reflection 

coefficients. For anything but plane-wave reflection from planar reflectors in a homogeneous 

medium, this is a WKBJ-approximate estimate and has little or no meaning in the context 

of full wave-form solutions of the wave equation. Thus, although we image better with 

better Green’s functions, reflection coefficients are estimated via ray-theoretic asymptotic 

solutions. Hence, the normalization factors need to be no better than what is provided by 

ray theory, while the general Green’s functions used in the extended algorithm are expected 

to be numerically close to the WKBJ Green’s function when they are evaluated away from 

caustics and other anomalies. Thus, we contend that there is both heuristic and physical 

justification for this simplification. 

This full wave form Kirchhoff inversion also benefits from starting with a formula that is 

an integration over angular variables at the image point and transforming to source/receiver 

coordinates. When this is done, the WKBJ normalization is no longer explicit in the inversion 

formula. Ray theory is used in this final result only to sort the output into panels defined by 

common-opening-angle/common-azimuth-angle (COA/CAA) of the rays at the image point. 
To summarize, if we start with a Kirchhoff M/I in migration dip coordinates, the trans- 

formation to surface coordinates can be applied. As in the more classical Kirchhoff M/I, 

this will produce an output that is separated into COA/CAA gathers. The result of that 

transformation on this Kirchhoff M/I! with more general Green’s functions is described here, 
as well. 

Kirchhoff inversion of data gathered from parallel lines of multi-streamer data is both 

particularly important and particularly elusive. In 3D, the classical Kirchhoff inversion 

applies to data sets defined by two spatial parameters that characterize the source/receiver 

distribution. So for example, one might think of common-offset data in which the two 

parameters define the midpoint between source and receiver at a fixed azimuth (compass 

direction) on the acquisition surface, or one might think of common-shot data in which the 

source point is fixed and the two parameters describe the receiver location. Each shot of a 

multi-streamer survey “looks like” a common-shot data set, except that the data acquisition 

in the orthogonal direction to the streamer set is too narrow for common-shot M/I. Thus, it is 
necessary to use data from all of the shots to generate an inversion output. Consequently, we 

must work with a four spatial parameter data set: two parameters for each source location 

and two parameters for each receiver location. Kirchhoff inversion as sums over all sources 

and receivers, as presented here, provides such an inversion. We are not aware of any other 

Kirchhoff inversion that applies to this type of data acquisition. 

We present results in order of progressing complexity. We begin with a discussion of the 

recent result for true amplitude WEM where a summation over angle (in 2D) or angle pair 

(in 3D) is transformed to summation over acquisition surface source coordinate(s). We then 
consider Kirchhoff inversion in image-point coordinates and describe the transformation to 

source and receiver coordinates. Finally, we discuss the extension of Kirchhoff inversion to



  

  

Figure 1: 

Coordinates of the 2D inversion process. a; the image point. 2, and x,; source 

and specular receiver, respectively. 6; incident specular angle of the source ray, 

also the reflection angle with respect to the normal. &, and &,; unit vectors along 

the specular rays from the image point to the source and receiver, respectively. 

v, migration dip; also at specular, unit normal to the reflector. a;, a,, v; angles 

with respect to the vertical of the vectors @,, G,, V. 

Kirchhoff inversion formula for common shot data given by Bleistein et al (2001].? In turn, 
this reference contains a proof that the output has a peak value on the reflector proportional 

to an angularly dependent reflection coefficient (angle 0) at the specular angle (for which 

Snell’s law is satisfied by the ray directions at the image point). 

In the application, we have to contend with the issue of discretization in the estimate 

of R(a,6). We expect that noise due to discretization and truncation can be attenuated by 
averaging over nearby values of incidence angle around the given incidence angle, all at the 

same image point. Therefore we propose to average over a set of angles near a particular 

incidence angle 6. Varying the incidence angle at the image point is equivalent—via a 

mapping by rays—to varying the source point at the upper surface; that is, varying the 

incidence angle is equivalent to varying the shot and data set to which the WEM is applied. 
  

?The reader familiar with Kirchhoff inversion might find it mysterious that this formula — an inte- 
gral over frequency - could agree with a Kirchhoff migration formula, which is an integral over fre- 

quency and receivers. The connection becomes clearer when p,,(@,,2s5,2,w) is replaced by its Green’s 

function representation in terms of the observed data at the upper surface, that is, p,(@,,2%5,2,w) = 

f Py (@r, 25, 21w)A(xl., x) exp{iwr(x!,x)}dax’). That representation is a convolution over receivers, restoring 
the double integral character of Kirchhoff M/I.



where * denotes complex conjugate. 

We remark that the interval (9 — A@/2,6 + A@/2), centered at 6, does not map into a 
symmetric interval in sources about the central source x,(@). Below, we will denote the 
interval in source coordinates by (x, — A_,x, + A). 

By using d6’ as defined in Equation (3) in the reflectivity-averaging equation, Equation 
(2), we find that 

cos (3), py (ar, x), £,w) 

u(x) Dp (@,, £, w) 

In this equation, 6 on the left side and zw, in the limits of integration on the right are 

connected by the ray that propagates from the image point to ag. 

Recall that the concept of “true amplitude” makes sense only when the image is pro- 

duced by a single arrival and certain asymptotic approximations are valid. One of those 

approximations is 

BIT 4 tetA+ , «ft 1 R(@0) = Kp | dw [Aw )A*(a,2) de, (4) 

  

A(x,,x)A*(x5, 2) © pp(£5, 2, w)py (Xs, 2,w). (5) 

Using this approximation in the averaged reflectivity of Equation (4) yields 

tstA+ cos J _ 
R(x, 0) = 7A a fds . ve’) Dy (Ly, 2, W) py (Xp, 2, L,w) dry. (6) 

Comparing the right side here with the right side of the reflectivity definition, Equation 

(1), we see that a deconvolution-type imaging formula has been recast as a correlation-type 

imaging formula by averaging over incidence angles at the image point and then transforming 

that angular integral into an integral over source locations at the upper surface. 

We remark that whether we compute the averaged reflectivity from Equation (2), which 
is an integral over dip angle, or from Equation (6), which is an integral over sources, it is 

necessary to compute ray trajectories from the upper surface to the image point. Equation 

(6) would seem to require a further calculation of an image interval (x, — A_,z,+A4) from 
the interval (@ — A@/2,6 + A@/2). 

As an alternative, we propose the following procedure to compute the averages over all 

§-intervals. Decompose the 6-domain into intervals of length A@. For each input trace-that 

is, for each source/receiver pair-determine the angle 6’ and the angle (6). Calculate the 
integrand and add it to a running sum in the appropriate 6-interval. For sufficiently small 

Aé, even if there is multi-pathing, the separate trajectories from source to image point will 

produce values of @ that are separated by more than the width 2A0@ that defines the bin size. 

This method accumulates the average reflectivity for all @ intervals simultaneously. 

We note further that the first representation of the averaged reflectivity, Equation (2), has 

an alternative interpretation. It is the discrete form of the seemingly redundant distributional 

equation 

R(w, 0) = = [ds Pu(@r® 2) sy _ grag (7) 
Qn Pp(@s5, 2, w) 

In transforming from this result back to the discrete form of the averaged-reflectivity in 

Equation (2), A@ is the “weight” of the discrete approximation to the delta-function and the 

integral yields an estimate of the distributional integral over the interval of length AQ. 
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we find that 
cos (3), 

v(x5) 

Here, (5 is the angle between the ray direction (or normal to the ray-tube cross-section) 
and the normal to differential source area cross-section. Equation (9) should be compared 
with the differential d6’, Equation (3), which is the appropriate angular differential in 2D. 

Substituting the expression for the differential angular area element of Equation (9) into the 

averaged reflectivity result, Equation (8), leads to 

sin 6'd0’dd’ = 16n*vu(x)A(x5, 2) A* (a5, 2)   dX 51,4252. (9) 

cos J) 
ve.) dz.) dX 59. (10) 

In this equation, A is the image on the acquisition surface of the angle domain (2 in 6’ and 

p'. 
As in 2D, we do not propose determining the domain A in Equation (10). Instead, we 

discretize the angular domain on the unit sphere of directions defined by 0 and ¢. For each 

source/receiver pair, we accumulate the integrand into running sums in the appropriate 0, ¢ 

subdomain as discussed above for the 2D case. 

The 3D averaged reflectivity defined by Equation (8) has a distributional interpretation 
similar to the equivalence between the 2D reflectivity average, Equation (2), and its distri- 
butional equivalent, Equation (7). The correct identity arises from the observation that 

  FEO. 8) = To | de [v0 (4,24) Po rs BoB, 4) 

1 = Ty fpsingasad = f 3(0 a) sino (g—o)) sin taeda! = f 5(0-#)5(9 - ana 11 
Here, d6’ and sin 6’d¢’ are differential arc length variables in the polar and azimuthal di- 
rections, respectively; hence, the second equality. The third equality then follows from the 

distributional identity succinctly stated as |a|é(axr) = d(x). In this case, the reflectivity av- 
erage defined by Equation (8) is a discretization of the distributional form of the reflectivity 
expressed in either of the following two forms: 

_ 1 Dy (Xr, Ls, L,W) / : / / . i i / R(x,0,¢) = 5 | de P ~p,(@,#,w) 0° — 6')6(sin 6’(¢ — ¢’)) sin 0’ d6'dd 

(12) 
i / diy [ Pul®r®o®) 59 _ wy 5(5 — p)dbldd’ 
Qn 2 pp(@s,2,w) 

As before, these seemingly redundant identities allow us to transform between integrals 

in image domain angular coordinates and integrals in surface coordinates by proceeding with 

the change of variables described above. 

2.2 Observations 

The pattern of the discussion here will be repeated in the following sections. The objective is 

to transform integrals in image point angular variables to acquisition surface variables. The 

9



Figure 3 to the source and receiver coordinates, respectively. Here we go one step further, 

expressing those Jacobians in terms of the 3D WKBJ amplitudes of the ray theoretic Green’s 

functions connecting the image point with the source and receiver point, respectively. 

Our starting point is Equation (26) of Bleistein and Gray. However, that result was 
equivalent to the reflectivity 6 of Bleistein et al [2001], equation (5.1.21). Here we prefer 

to use the equivalent of G, (not to be confused with the dip angle 6, of Figure 2), given by 

equation (5.1.47) in the same reference, but rewritten in terms of the variables of this paper. 

Remark 

The reflectivity function ( yields a reflectivity map whose peak value on a reflec- 

tor is 
peak — R(x, 0, $) oo aa dnote) | Fl). 

In this equation, R is the geometrical wane or plane wave reflection coefficient 

at the specular reflection angles 6 and ¢, v(x) is the wave speed, and F(w) is 
the source signature. On the other hand, (; yields a reflectivity map whose peak 

value on the reflector is 

pek _ R(x, 0,6) — sf Flw)dw 

The reflectivity @ is a scaled band limited delta function in space with dimension 

1/LENGTH, while (, is a scaled band limited delta function in time with dimen- 

sion 1/TIME, both under the assumption that the source signature given by F(w) 
is dimensionless. Both functions are scaled by the geometrical optics reflection 

coefficient but they differ by a factor of cos@/v(a). Thus, the quotient provides 

an estimate of the cosine of the specular reflection angle. Parenthetically (off 

the subject of this paper), in tests of numerical accuracy of this method, our 

experience is that the percentage error in the estimates of cos @ are typically an 

order of magnitude smaller than the the error in the estimate of the reflection 

coefficient itself. We explain this by the fact that the integrands for these two 

reflectivity operators differ by only one factor and we expect that their errors will 

trend in the same direction. Consequently, when we examine the quotient that 

produces the estimate of cos 0/v(a), the form of this quotient is 

cos@ 1+€,  cosé 

va) Ite ~ oe) BFA abt 
with €, and €9 having the same sign. That is, the fractional error in the quotient 

turns about to be approximately the magnitude of the difference of the fractional 

errors of the two separate integrals and thereby smaller in magnitude than either 

of the separate errors. 

End remark 
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relates the discrete average over a patch on the unit sphere to a distributional integral over 

the same patch. 

We have now prepared the inversion formula for transformation to source and receiver 

variables. As described in the outline at the end of the previous section, this transformation 

is done in stages. With reference to the variables depicted in Figure 3, we first transform from 

Vy, V2, 0, d' to G51, Aso, Ar1, Arg and then transform these variables to surface variables 

through ray Jacobians. This derivation is carried out in Appendix C. Using the result 

Equation (C-5) from the appendix in the representation Equation (15) for the reflectivity as 
an integral over four angles at the image point leads to 

R(x, 0, ¢) = 32n7v(ax) / oy ota Dalen @e) (16) 

- A*(ax,, 2) A*(x,, 2)6(0’ — 0)d(sin 0'(¢' — $)) dx, drsodzp1dr,2. 

In this equation, as in the previous section, 6’, ¢’, G, and (, are all functions of the integration 

variables defined through the changes of variables. In the computation, these angles are 

measured by ray tracing from the source and receiver point to the image point. Thus, there 

is no need to define them explicitly in terms of the integration variables. 

In practice, this integral will be carried out discretely. To do so, we replace each of the 

delta functions with a discrete approximation and then restrict the domain of integration to 

cover the support of the discrete delta functions (domain of nonzero values of the discrete 
delta functions). Therefore, let us set 

1 

6(6 _ 6’) we Aé’ 

0, otherwise. 

6 — 6/2 < 6 < 6+ A6/2 

1 
=a? 0-Adg/2<5 $< 6+ Ad/2 

s{sine'(p— ay) 4 HBOS 
0, otherwise. 

The dual range (6 — A0/2,0 + AO/2,¢ — Ad/2,¢ + A@/2) defines a domain on the unit 
sphere, 2, with area |Q“| = sin@A@ Ag. We denote the image of Q under the mapping by 

rays to the upper surface as the range A. Then the discrete version of Equation (16) for the 

reflectivity function as an integral over all sources and receivers is 

R(x, 0,9) =   
32n?v(a) [ cos 3,1 cos G1 Ds(x, 2,, 24) 

{Q| v(xs) v(x,) 

(17) 
-A*(x,,2)A*(x,, ©)dr,)d2.od2,1d2,2. 

Here, we are justified introducing the overbar R because the result again has the form of an 
average. 
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4 Full wave form Kirchhoff-approximate modeling and 

inversion 

We change directions at this point to describe an extension of Kirchhoff modeling and inver- 

sion using full wave form Green’s functions. We remind the reader that for us “true ampli- 

tude” is meant in an asymptotic (ray-theoretic) sense. In forward modeling, that means that 

the wavefield is well-approximated by one or a sum of WKBJ contributions, with traveltime 

determined by the eikonal equation, amplitude determined by the transport equation, and 

with a possible additional phase shift adjustments provided by the KMAH index. 

For inversion, we have already described “true amplitude” to mean an output that has 

peak value proportional to the WKBJ plane-wave reflection coefficient. This is predicted 

by the theory only when the image is generated by a single specular ray trajectory from 

source to image point to receiver. When there are multiple arrivals, the image is created 

by an overlay of contributions from specular source/receiver pairs with different reflection 

coefficients. At such points, it is not important what the weighting is, except that it have 

the right order of magnitude for balancing with the output from other image points. 

After deriving the full wave form Kirchhoff inversion formula, we will specialize it to 

inversion in migration dip angles, thereby connecting this new result to the theory presented 

in the earlier sections. 

The basic steps in the method are as follows. 

(1) Start from the Kirchhoff approximation as a volume integral, but use any form of 

Green’s function, as suggested above. In this form of the Kirchhoff approximation, 

the reflectivity function appears explicitly under the integral sign and the output is 

(synthetic) model data for any source/receiver pair. 

(2) View this representation as a modeling operator operating on the reflectivity func- 

tion. Write down a pseudo-inverse operator on the data to obtain an inversion for the 

reflectivity. 

(3) Use asymptotics to simplify the operator, but preserve the more general Green’s func- 

tions where ever possible so as not to destroy the central character of the degree of 

imaging quality of the inversion. 

4,1 Kirchhoff modeling 

The forward modeling Kirchhoff approximation is derived in Appendix D. The new feature 

here is that the result uses full wave form Green’s functions. For example, we could use 

Green’s functions generated by Gaussian beams, solutions of true amplitude one-way wave 

equations or solutions of the two-way wave equation. Furthermore, we write the Kirch- 

hoff approximation as a volume integral, rather than a surface integral. This is now fairly 

standard when the forward model is used in inversion theory. 

The upward reflected wavefield from a source x, measured at a receiver 2, is 

UR(2p, B5,W) ~ —iwF(w) | Rola’ 8, ¢)|VxO|G,(x’, 25, w)G,(a,, 2’, w)dV. (18) 
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In this equation, 

(ATK) 7 | = [[ dgwraw [ aV|V.6(x,£)1G3(5, © 02)G3(w, a.) 

(22) 
-1 

|Vyb(a', €)|G.(x',x,,w)G,(a,,x2',w)}  , 

with 

T(x,€) =7(@,x2,)+7(2,2,), T(x’,€) =7(x',x,)+7(2x', 2). (23) 

4.3 Analysis of the pseudo-inverse norm ||(K'tK)~'|| 

Clearly, we do not want to carry out the six-fold integral of the norm indicated in the 

definition Equation (22). Fortunately, it is not necessary to do so. As noted above, accurate 
“amplitude” in standard Kirchhoff inversion has relevance only when the image is created by 

a single arrival. Therefore we might as well replace this norm by its asymptotic expansion 

under the assumption that there is only a single arrival. That is accomplished by using 

ray theory to approximate the Green’s functions in the integrand of Equation (22) that 

defines the norm ||(K'K)~+||: all of the more accurate Green’s functions have the same 
ray-theoretic approximation, consistent with the underlying full wave equation. This is an 

important principle that is fundamental to extracting amplitude information from inversion 

processes with more general Green’s functions than those provided by WKBJ. 

Asymptotic analysis of this norm then leads to a calculation almost identical to the 

one used to derive the Kirchhoff inversion in the first place. The details are carried out in 

Appendix E. The final result is 

1 [A(w,&)| 1 
873 [V2.7 (ax, £)|? |A, (x, x5)A,(2,, x) |?” 

  (ATK) = (24) 

In this equation, h(x, €) is the Beylkin determinant defined by equation Equation (E-4). 

4.4 Full wave form Kirchhoff Inversion 

Next, we use the approximation in Equation (24) in the representation, Equation (21), for 
Ro(x, 8, d) to obtain 

Ro(x, A, $) = : / 
813 

Gt(x5,0,w)G*(@,x,,w) |h(x,&)| 
|A.(a,25)A,(a,,2)|? |Ver(a, €)| 
  iwup(z,, 25,w)dwd7€. (25) 

When the Green’s functions here are replaced by their ray-theoretic approximations, this 

formula reduces to the general inversion formula for @ in Bleistein et al [2001], equation 

(5.1.21). This assures us that the reflectivity function produces the reflection coefficient 

times the bandlimited singular function of the reflector (with dimension 1/LENGTH) when 

17



4.5 Full wave form inversion in migration angular coordinates re- 

cast as an integral in source/seceiver coordinates. 

We are now prepared to connect full wave form Kirchhoff inversion to the theme of the 

earlier sections of the paper. As a first step, we specialize the last two representations of the 

reflectivity to the case where €, and 2 are just the polar angles v, and v2 used in the earlier 

sections of the paper. In this case, one can check that 

0&1 O€2 OV, OV,       
= sin. (31) 

Now, the reflectivity as defined by Equation (28) and Equation (30) become 

  

    
— 1 G3 (xs, z, w)G* (a, L,,W) 2.cos 6 | . . 

Red) = sa | TAiCw,a)Artersa)f? | vee) | WUNCen tae idasinnndrnden (92) 
and 

1 1 2cos@| . 

Rw, 6,4) = 813 / G.(X5,@,W)G,(x, £,, Ww) | v(a) | iwur(@,, £5, w)dwsinydrydve, (33) 

respectively. 

Equation (32) should be compared to the Kirchhoff inversion, Equation (13), derived 
using WKBJ Green’s functions, observing that in Equation (13) 

1 1 1 

(A, (a, @,)As(a, 2) nile = Ax Cw, w,)As(@,, #) As(a, ¥,)A, (a, 2) 
  sin di, dv. 

Equation (13) was recast as an integral over source/receiver coordinates in Equation (16). 
In that process, the factors 

1 2cos@ 1 
inv,d14,d 

4n? v(x) A(x, x5) A(x, x,) SAGA 
  

were replaced by 

cos 3,1 cos 8,1 u(a) 
16m u(x,) v(a,) sin 6’ 
      A*(a,,2)A*(x,,2)6(0 — 0)6(¢' — b)dz.:dr.9dz,)d2y9. 

Thus, we can recast the full wave form reflectivity in Equation (32) as an integral over 
source/receiver coordinates by making the same replacements in this reflectivity formula. 

That is, 

R(w,0, 4) =16rv(x) | G3(ws,2,w)Gz(w, a,, win a, wv) du 

(34) 
cos 3, cos (3, 5 

v(x5) v(x) (9° — 6)6(sin O'(¢' — ¢))dx..dx.odz,1dry2. 
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4 The general inversion formula that resulted was then specialized to using the image 

point migration dip polar angles as the variables of integration and recasting the result 

as an integral over sources and receivers. 

This process led to Equation (35) for full wave form reflectivity as an integral over all sources 
and receivers resulting in an output in COA/CAA panels. This is a correlation-type inversion 

formula. 

Use of the full wave form Green’s functions in the Kirchhoff approximation and then 

use of their WKBJ approximations in the estimate of the magnitude of the normal operator 

both depend on the basis of “true-amplitude” Kirchhoff inversion. Our ultimate objective as 

regards amplitude is an estimate of the non-normal incidence plane wave reflection coefficient 

at each point on the reflector. This coefficient is generalized via ray theory from plane waves 

incident on planar reflectors in homogeneous media to curved wave fronts incident on curved 

reflectors in heterogeneous media. As such, the concept only has meaning when we can speak 

of single arrivals at the reflector in media whose length scales allow the WKBJ wave form 

to make sense. Thus, the interchange between full wave form Green’s functions and their 

WKB approximations wherever amplitude issues are concerned also makes sense; we do no 

better at reflection amplitude estimates when we use the full wave form Green’s functions 

than when we use their WKBJ approximations. However, the full wave form Green’s functions 

do provide better image quality. 

5 Summary and Conclusions. 

We have considered three approaches to migration/inversion, namely WEM, traditional 

Kirchhoff migration, and an extension of the Kirchhoff method to full wave form imaging. In 

the first case, integration of image point angle(s) was introduced as an averaging process. In 

the second and third cases, we wrote the Kirchhoff M/I process as an integration over image 

point angles. In each of these cases, we recast the integrals over angles as integrals over the 

source/receiver coordinates. This procedure produced imaging/inversion formulas written 
as integrations over all sources and receivers. (Although we have only considered horizontal 

acquisition surfaces here, the extension to curved acquisition surfaces is straightforward, as 

noted in item 3 in the discussion at the end of Section 2.) We have also described how the 
processing can be organized to lead to output in common opening angle, common azimuth 

angle at the image point. 

For data gathered over parallel lines of multi-streamer cables, Kirchhoff inversion is par- 

ticularly elusive. However, the Kirchhoff inversions presented in the previous two sections 

can be applied to these data. We are not aware of any other Kirchhoff inversion for this type 

of survey. 

The full wave form Kirchhoff inversion of the previous section is also of recent derivation. 

The only elements of the full wave form inversion formula Equation (35) are only appropriate 

propagators, the differentiated observed data in the frequency domain, and dip-correction 

factors at the upper surface. 
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Appendix A 

The purpose of this appendix is to derive equation Equation (3), relating d@’ to dz,. In this 
discussion, we can dispense with the prime on @. To begin, we observe that 

dé 

das 

dé 

das 
dors 
dz, 

  da; =   do = | di,. (A-1) 
          

As noted in the text, and as can be-seen in Figure 1, 

dé 
7al = (A-2) 

    

The expression for the 2D Green’s function WKBJ amplitude can be found in Bleistein, et 

al [2001], as equation (E.4.9): 

Ato.) = pa (A-3) 
with aly) 1 la 

_ Y) | _ y 

t= locey|~ (| as   

  

  
In these two equations, y is the Cartesian coordinate along the ray and o is a standard 

running parameter along the ray for which 

  

dy 
— = V do P T; 

with 7 the traveltime along the ray. 

From Figure 2, we can see that 

Oy Ox; 
=| = . A- | 50 79 \°28 Bs (A-5) 

    

Now, we use this last result in the expression for Jop in Equation (A-4) to obtain one 
expression for this function and then solve for Jap in the amplitude expression, Equation 
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We need to carry out an integration over 9 and ¢ for fixed ». In this case, x, varies 

and we seek the Jacobian associated with the change of variables from @ and ¢ to the two 

nonzero coordinates of 2,—25, and Zp. 

It is necessary to compute the 2 x 2 Jacobian in the identity 

(9, ¢) dx51d2 59. B-4 
O(€s1,Zs2)| (B-4) 

déd¢ = | 

  

We first use the chain rule for Jacobians to set 

O(21, £2) = O(21, £2) O(51, As2) 

O(8, ¢) O(as1,Q52) O(6, d) 

The first Jacobian on the right is a cofactor of the 3D Jacobian of ray theory and therefore 

can be written in terms of the ray amplitude. The second Jacobian provides the scale between 

a differential element in (9, ¢) and a differential element in the angles (a1, @s52). Below, we 
derive those relationships in detail. 

  (B-5) 

B-1 Analysis of the first factor 0(21, r2)/O(Qs1, @s2), the space-angle 

transformation Jacobian, in Equation (B-5). 

Here we derive an expression for the first Jacobian on the right in Equation (B-5) in terms 
of the Green’s function ray amplitude. The starting point for this derivation is equation 

(E.4.2) in Bleistein, et al, [2001]. In the notation of this paper, that result is 

A(y, 2)| = Vow (B6) 

In this equation, v is the wave speed and 

d: d d 
Jgp =|. SY x SY . . B- 

do das, ddas2 (B-”) 
    

  

The variable o is a running parameter along the ray for which 

—=p=Vr, 
do» 

with 7 the traveltime along the ray. 

The cross product in Equation (B-7) is in the direction of the o-derivative, so that 

1 dy x dy dy dy   

  

  

    

  

= = . B-8 

Jsp = |V7| das, das u(y) |das, dase (B-8) 

The product, 

dy dy 
ae, x da. dars,ddas2, 
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In terms of this new coordinate system, we can write 

sin 6 cos(¢ — do) r xf 
Gs, = | sinOsin(¢ — go) xy |. (B-14) 

cos 9 x3 

In this equation and below, the superscript T’ denotes transpose. Further, ¢9 denotes a 

constant shift in ¢ because we do not know the orientation of the {”} axes with respect to 
the zero-value of ¢. It will not matter in the end because we will see that the Jacobian we 

seek is independent of ¢ — ¢o. 

Now we need to use the transformations in Equation (B-12) and Equation (B-13) to back 

substitute and write a result for @, in terms of the original coordinates where we know the 

representation of ds: 

. T . T 
sin 0 cos(¢ — ¢o) 2 SiN Gs1 COS A'52 2 

&, = | sin@sin(d—¢o) | T1To| ro | = | sings sin ase az |. (B-15) 

cos 8 x3 COS Qs] 23 

We invert this equation to solve for @;: 

sin 6 cos(¢ — ¢o) SiN Qs] COS O52 

T/T; | sinOsin(d— do) | = | sinas, sinase (B-16) 
cos 8 COS O51 

Next, we need to take the derivatives of this last equation with respect to @ and @. 

Differentiation with respect to @ leads to the equation 

  

cos 6 cos(¢ — 0) dott COS Ag] COS 52 ao | Sin 51 SIN 52 

TIT? | cos@sin(¢— ¢0) | = 30 COS Ws] SING | + ae Sin C151 COS M59 (B-17) 
—sin@ — sin @51 0 

With an appropriate matrix multiply—effectively a dot product—we can solve for the two 

derivatives here as follows. 

COS C51 COS A's9 r cos 6 cos(¢ — do) 9 

cosas; sina | TZTT | cos@sin(d — ¢) | = —2, (B-18) 
— SiN As) — sind oe 

and r 
— sin O52 cos 6 cos(¢ — ¢o) da 
COS Q's0 TIT? | cosOsin(¢ — ¢0) | = sina, ——~. (B-19) 

0 —sin@ ad 

Now, we repeat the process with the @ derivative of of the vector equality of Equation 

(B-16). As a first step, 

    

— sin @sin(¢ — ¢o) COS Ag] COS O59 — SiN 51 SIN O52 
TTTT : Oars . A052 . 

9 14 sin@cos(¢—¢o) | = 6 COS Qs] SIN@sg | + Oe SIN G51 COS W529 

0 — sin @,1 0 

(B-20) 
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as an integral in source/receiver coordinates. In this appendix, we derive the Jacobian of 

transformation that allows us effect that change of variables, that is, to rewrite the integral 

in variables 11, v2, 9, @ as an integral in the variables r,), ©s2, Zr1, Zr2. AS a first step, we 

use the chain rule for Jacobians to write 

OY, V2, 9, ?) _ O(as1, O52, Ap, Ay2) O(%4, ¥2, 9, d) 
= . (C-1) 

O(zs1, X52) Tri; Lr2) O(s1, X52, Uri, Lr2) O(as1, O52, Ari, Q,2) 

Let us consider the first factor on the right side here and observe that the direction of the 

ray from the source to the image point depends on the location of the source and not on the 

location of the receiver. Therefore, a; and a@,2 are functions of z,; and 2,2 and not functions 

of x; and 2,2. Similarly, a,; and a,2 are functions of x,; and 2,2 and not functions of 7.) 

and X32. Thus, the first Jacobian has the anti-diagonally 2 x 2 corners consisting only of 

zeroes and the 4 x 4 Jacobian is really a product of two 2 x 2 Jacobians, namely 

  

O(as1, O32) OOr1, Qr2) _ O(as1, As2) O(ar1, ro) 

O(%s1, 252) Lr, Lr2) O(Ls1, X32) O(Lr1, Lr2) 

The first Jacobian on the right side here has been rewritten in terms of Green’s function 

amplitudes in Appendix B, namely, as equation Equation (B-11). Of course, by replacing s 

by r in that fomula, we obtain the right result for the second factor. Thus, 

  (C-2) 

2 cos 3.1 CoS Gp, u(x) v(x) 

Sin Qs) Sin @,) U(#5) v(z;,) 

O(Gs1, 52, Ar; Qr2) 

O(£s1, X52, Lri,; Lr2) 

  == [167?| 

(C-3) 
-A(x,,x)A*(x,,x)A(x,,2)A*(x,, 2). 

The second Jacobian on the right in equation Equation (C-1) is more complicated. A 

formula can be found in Burridge et al. [1998]. However, we prefer a simpler representation. 

Note that this expression is independent of the background model; it only depends on the 

transformations between various coordinate systems at the image point. 

We actually calculate the inverse of the Jacobian we need for Equation (C-1). The 
individual elements of that Jacobian can all be calculated following the method of Appendix 

B. The result is surprisingly simple, namely, 

O(Qs51, M52, Or1, Ar2) 9 sin 26 sin (C-4) 

O(14, V2, 9, ) Sin G51 SIN O52 
  

We combine this result with Equation (C-3), the Jacobian relating initial ray direction 
angles to image point angles in the expression for the Jacobian relating image point angles 

and source and receiver coordinates Equation (C-1) to conclude that 

O(V1, V2, 9, ) 
sin v,d1,dv,d0dd = Dlcher Ben, Bers Bon) rede dora 

      
_ 2 cos 35; cos 3,1 v?(x) = [1677] v(a,) v(x) 2sin 20 

ce) 

-A(x,,2)A*(x5,0)A(x,, £)A*(x,, 2)dr)dr 9dr, dzr,2. 
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Here, x, is the “receiver point” at which the field is observed; G,(x,,z',w) is the Green’s 

function that evaluates the field at x,. It is important that the arguments be in the indicated 

order here. This function starts out as Gl(2’,«,,w) with ' denoting “adjoint.” While the 
acoustic wave equation with constant density is self-adjoint, that is not true in general. Thus, 

the Green’s theorem representation of the wavefield must acknowledge the general derivation 

and use the Green’s function of the adjoint equation. It is then a standard identity that allows 

us to replace the adjoint Green’s function with the Green’s function of the direct equation 

but interchanged arguments. 

The next step is to replace the surface integral in the last equation above by a volume 

integral. Before we can do that, it is necessary to remove the normal derivative in that 

equation. To do so, we first use the the WKBJ approximation Equation (D-3) to rewrite 

the upward propagating wave representation Equation (D-4) as 

Up(@,,£5,W) ~ iwF(w) | Ra-Vy7 G,(a’,v5,w)G,(x,,2',w)dS, T= T.+7Typ. D-5 S y 

Now, we further simplify this result by observing that at the stationary point(s) of the 

integration, m and V,7 are co-linear but point in opposite directions: 

n- VaIT = —|VaT|. (D-6) 

Therefore, we can rewrite Equation (D-5) as 

UR(Lr,L5,w) ~ —iwF(w) [ RIVerIG(e x,,w)G,(x,,x2',w)dS. (D-7) 

Next, we introduce the singular function of the reflection surface denoted by y(2’) in 
Bleistein et al [2001]. This is a delta function of normal distance to the surface. Further, the 
product Ry is what we mean by the reflectivity function denoted by R(x’). What matters 

to us here is that dndS = dV and [{-}ydV = f{-}dS; that is, the introduction of 7 dn and 
another integration transforms the surface integral into a volume integral in the variables, 

ax’. 

The second representation of the upward propagating wave Equation (D-4) is now recast 

as Equation (18). 

    Appendix E: Asymptotic analysis of the norm ||(K'K)~! 

We describe the asymptotic analysis of the operator norm Equation (22) in this appendix. 

First, we replace the Green’s functions by their ray-theoretic equivalents. Then, Equation 

(22) becomes 

WRK = | fede [ aVu?|Verr(a',€)1A5 (es, @)Az(@, 27) 
(B-1) 

[Ver(@,8)1As(a!, 2.) Arley, alpen] 
independent of the KMAH index. 
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Equation (E-1) becomes 

—1 

Og, w) eik (w’—2) \ 

O(k) 
2 

WwW yet t= [fk [av] Werla,)1Ade 2.) Arter       
(E-3) 

It is easier to write down the inverse of the Jacobian of transformation from the variables 

€,w to k than to calculate the indicated Jacobian under the integral sign here. For that 

purpose, we use the definition of k in Equation (E-2). The result is 

  

V.T(z, ra) 

OV.7(a, &) 
O(k) _ OMeT(® 8) | 

(E,w) 2 ot 08 = "h(x, €). (E-4) 

OV=T(@, §) 
O£2 

In this equation h(x, €) is the usual Beylkin determinant. 

Using this result in norm representation Equation (E-3) leads to the result 

-1 

(ATK) | = / @k | dV [Vor (x, €)|Aa(e@, 2), (ar z)| [h(«,€)|7 cimie'o)} . (E-5) 
  

In this integral, note that w appears in the phase in k, but no longer appears in the am- 

plitude, which then is a function of €(k&). It is a remarkable fact of the change of variables 

defined in Equation (E-2) that, except for sign(w), € is a function of the direction of k 
and independent of its magnitude. To see this, simply divide k in Equation (E-2) by its 
magnitude to determine that 

~ ok V 
k = — =sign(w 

[| ig 

with » defined in Figure 3. Both choices of k are attached to the same migration dip, hence, 

the same €; so sign(w) has no effect on the amplitude of the integrand in Equation (E-5), 
our last expression for the norm we seek. Consequently, the only dependence on k = |k| 

in the integrand is in the phase. This suggests that we would be better off analyzing this 

integral in spherical-polar coordinates. We introduce k and two spherical-polar angles, 

and 1, with v; measured from the line defined by x’ — x. In this case, 

Beal = sien(w)d, (E-6) 

a®k = k? sin Vj diy dvodk, 

and the k-domain integration in the norm representation, Equation (E-5), takes the form 

/ Bk... et (e'-2) — / k? sin v,dv,dvodk - - - et#l®— #1 e081 | (E-7) 
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equation Equation (E-4). Note that the three rows of the matrix whose determinant is to 

be calculated are merely the gradient of the travel time and its derivatives with respect to 

the coordinates that describe the source/receiver array. Let us rewrite that gradient as a 

product of its magnitude and unit direction vector: 

2cos 6 

v(x) 

The magnitude stated here is derived in Bleistein, et al, [2001], equation (5.1.45). When we 

differentiate this product, there is one term that is proportional to v and one that is not. In 

calculating the determinant, we can neglect the portion of the second and third rows that are 

proportional to », because they are in the same direction as the entire first row. Therefore, 

V2T(@,€) = 

  

p (F-1) 

    

2cos@ .. - 

v(x) ¥ 

2cos@ OV 2cos6]* ov 

h(x, &) = det (a) Ob: = | v(a) | det | 0&, | - (F-2) 

2cos6 Ov ov 

v(x) 0&2 Ob 

Since P is a unit vector, its derivatives with respect to € and €2 are both orthogonal to the 

vector ”. Thus, if we think of this determinant as a triple scalar product, the cross-product 

of the last two rows are colinear with @ and we can write 

Hence, within a sign we obtain the result Equation (27) for the Beylkin determinant divide 

by the magnitude of the gradient of traveltime. Since we require the absolute value for the 

Jacobian of coordinate transformation, the sign ambiguity is of no consequence. 

We can also see from this last expression for the Beylkin determinant in Equation (F-3) 

where the difficulty arises in computing the Beylkin determinant when (£;,€2) are parameters 

on the acquisition surface. The connection via rays, especially for the case of common- 

offset data, is particularly difficult to compute. On the other hand, when the integration 

parameters that we use are the spherical polar coordinates of k at the image point, the cross 

produce appearing in Equation (F-3) is just sin. If we were to use cylindrical coordinates 

for v, then the cross product is just equal to one! 

Equation (F-3) is the most concise representation of the Beylkin determinant in 3D. 

Ov OV 
ae x Es . (F-3) 
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