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ABSTRACT 

Optimization is a tool for many inverse calculations. However, in practice it 

is found that functions we wish to optimize are often highly non-convex (multi- 

modal). An example of optimizations with such difficulties is in seismic waveform 

inversion. The waveform misfit functions are generally multi-modal, partly be- 

cause of the oscillatory nature of seismic waves. 

In this paper, I show how multiresolution analysis can be used to deal with the 

multi-modal nature of objective functions arising in seismic inversion problems. 

Using residual statics estimation as an example, this paper shows that the wave- 

form misfit function is multi-modal even for the simplest case, and, indeed, MRA 

simplifies the waveform misfit function. By studying the complexity of objective 

functions on MRA decomposed data, increased understanding of the complexity 

of objective functions, such as those arising in inverse problems, can be gained.       

REALITY IN OPTIMIZATIONS 

Optimization is a tool for many inverse calculations. However, in practice it is 

found that functions we wish to optimize, objective functions, are often highly non- 

convex (multi-modal). Many optimization algorithms have been developed to handle 

different inverse problems; each of them usually works well for some situations but 

fails for the others. Therefore, it is important to understand what makes some inverse 
problems difficult, while others are not. 

The multi-modalities in optimizations are especially serious for seismic waveform 
misfit functions. This is partly caused by the oscillatory nature of seismic waves. 
When there are many local minima, the gradient-based searching methods have little 
chance of finding the correct global minimum. 

Global search methods are used by many researchers when dealing with multi- 

modal misfit functions. Rothman (1985; 1986) solved a residual statics problem by 
simulated annealing (SA). Scales et al. (1992), Smith et al. (1992), Sen and Stoffa 
(1991a; 1991b; 1992) and Gouveia (1993) studied SA and genetic algorithms (GAs)
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on a variety of multi-modal optimization problems, received satisfying results for 

problems they studied. 

Although it can be proved that SA and GAs converge to global extrema asymp- 

totically, it is not guaranteed that they would find the global extrema in a finite 
amount of computational time. Gouveia (1994) studied some hybrid methods of the 

traditional gradient-based searching and distributed-parallel GAs. They show that 

these hybrid methods are more efficient for the residual statics estimation than a 

distributed GA. 

Many researchers found other alternative ways to overcome problems of local 

minima, while keeping the computation effort relatively low. Here I describe two 

strategies. 

The first approach is to choose initial models that are close to the global extrema 

by integrating into the solution formalism a priori knowledge other than data itself. 
Although applying a priori information to inversions does not reduce the complexity 

of the objective function in global sense, it helps to confine the searches to a smaller 

range, which increases the chance of convergence to global minima (Tarantola, 1987). 
In a seismic waveform inversion, Chapman (1985; 1988) suggested using travel-time 

information to infer a smooth velocity model, which is used as the initial guess to 

the waveform inversion. Scales and Tarantola (1994) conducted statistical analysis on 

geologic and well-log information in order to obtain a priori information for waveform 

inversion. 

The second approach is to simplify the objective function of optimizations so as to 

reduce the total number of local minima. Shaw and Orcutt (1985) suggested using the 

envelope of seismic data as the fitting target for simplifying the objective function of 

waveform inversions. Unfortunately, they found that the “envelope” in seismic data 

was sensitive to noise. 

Despite the failure of “envelope inversion”, there has been significant interest in 

simplifying the waveform misfit function while not having to extract indirect informa- 

tion from the data. In waveform inversions, the success of the differential semblance 

optimization (DSO) method (Symes and Carazzone, 1991; Symes, 1993) demonstrates 
that the complexity of objective functions in inversions is significantly affected by the 

parameterization of the target models. Chevent (1994) and Symes (1994) proved 
theoretically that DSO produces almost convex objective functions in some waveform 

inversions. 

Multi-scale ideas are also used to deal with the multi-modality of objective func- 

tions in inverse calculations. Seismic waveform data can be decomposed into several 
data sets by low-pass filters, each of which contains progressively higher frequency 

data. Optimizations are applied to these data sets iteratively in order to increase the 

chance of finding the global minima (Saleck et al., 1993; Chen, 1994). This paper 

describes a similar approach by means of the multiresolution analysis (MRA). As the 

first step of studying the complexity of inverse problems, this paper studies a simple 
residual statics problem.
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MULTIRESOLUTION ANALYSIS 

What is a Multiresolution Analysis? 

Multiresolution analysis (MRA) was formulated based on the study of orthonor- 
mal, compactly supported wavelet bases. Wavelets theory and its applicatiqns are 

rapidly developing fields in applied mathematics and signal analysis. Wavelet basis 

representation of certain signals show advantages over the traditional Fourier basis 
representation both theoretically and practically. The MRA concept was initiated 

by Meyer (1992) and Mallat (1989), which provides a natural framework for the 
understanding of wavelet bases. Here, I give a brief description of orthonormal, com- 

pactly supported wavelet bases; detailed information can be found, for example, in 

Daubechies (1992) and Jawerth and Sweldens (1994). 

An orthonormal, compactly supported wavelet basis of L?(R) is formed by the 
dilation and translation of a single function (2), called the wavelet function: 

bja(e) = 292% —k); j,kEZ, (1) 

where Z is the set of integers. In equation (1), the function y has M vanishing 

moments up to order M — 1, and it satisfies the following “two-scale” difference 

equation, 
L-1 

b(2) = V2 ge(2z — k). (2) 
k=0 

The wavelet function (2) has a companion, the scaling function ¢(r), which also 
forms a set of orthonormal bases of L?(R), 

Pie (a) = 277 G(2-%a —k); j,k eZ. (3) 

The scaling function ¢(x) satisfies, 

“Foo 

/ o(x)dz = 1. 

and the “two-scale difference” equation, 

L-1 

G(x) = V2 5° hud(2e — k). (4) 
k=0 

In equations (2) and (4), two coefficient sets {g,} and {h,} have the same finite 
length L for a certain basis, where L is related to the number of vanishing moments 

M in (x). For example, L equals 2M in the Daubechies wavelets. In the wavelet 
representation of signals, {hz },=0,...,,-1 behaves as a low-pass filter and {9% }x=0,...,2—1 

behaves as a high-pass filter to signals. These two filters are related by 

ge = (—1)"ht_.;  k=0,...,L—1, (5)
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Fic. 1. Illustration of the sequence of multiresolution analysis subspaces V;. W; is 
the orthogonal complement of V; in V;_1. Space Vo represents the space that contains 
the finest resolution data, and Vo = V3 ® W3 @ W2 @ W,. 

and are called quadrature mirror filters (QMF). An extensive study of the QMF can 

be found in (Monzon, 1994). 

The MRA of L?(R) is a set of nested, closed subspaces {V;; 7 € Z}, such that 

Vg CR CVU CW... (6) 

where the basis for the subspace V; is a set of orthonormal, translated functions, and 

each of these functions sets is a fixed dilation of the scaling function, {¢;,; k € Z}. 
Therefore, these subspaces have the property 

f(c) EVy => fQ x) EV; WEL. (7) 

Defining W; to be the orthogonal complement of V; in V;_1, they are related by 

Vj-1 = Vi ® Wj. (8) 

The wavelet basis {%;.;k € Z}, as in equations (1) and (2), forms the orthonormal 
basis of the subspace W;. Therefore, for 7 < no, we can have 

Vj = Vig ® Wop ® Wag -1- ® Wy4t- (9) 

Figure 1 illustrates the nesting of subspaces V; and their orthogonal complements 
W;. In Figure 1, Vo contains the original data which has the finest resolution; the 

projection of the data on {V;; 7 = 1,2,3} has increasingly coarser resolution. In this 

paper, the data projected onto the subspace V; is referred as the decomposition of 

data at resolution level 7.
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We define the projection of a function f € Vo on V; to be fi(x). Then the jth 
resolution level of the function has the form 

f(a) = y Siu Pin(@); (10) 

where s;, is the projection of the function f(x) on the basis ¢;,; that is, 

Sik = / f(x) djn(«) dex. 

Next, define the projection of f(x) on the subspace W; to be 

dfi(x) = X dj. jn (2), (11) 

where d;, is the projection of function f(x) on the basis 7; , 

dik = [F@ Wip(z) dx. 

Then, equation (9) implies that the original function f(x) € Vo can be represented 

by 

1 

f(x) = fr(x)+ $0 dfi(c) 
J=No 

1 

= y Sno,k Pno,k(@) + > > dj k Wje(2). (12) 

j=no k 

Figure 2 shows the decomposition of a simple synthetic seismic trace at various 

resolution levels for two different wavelet functions. The original trace is a Ricker 
wavelet, i.e. a normalized second-order derivative of a Gaussian function, with a 

peak frequency of 30 Hz. The left figure shows the decomposition by a Daubechies 
orthonormal basis with 2 vanishing moments, while the right figure shows the same 
decomposition with 3 vanishing moments. The Ricker wavelet (f) is the left most 
trace in each box, while the remaining traces correspond to f! of equation (10), 

where j = 1,2,3, respectively. From Figure 2, it can be seen that the decomposed 

traces contains progressively lower frequencies with the increase of decomposition 

levels while the major features of the original signal are preserved. Comparing the 

two plots in Figure 2, we also observe that the increasing the number of vanishing 

moments increases the smoothness of the decomposed signal. 

A Symmetric and Shift-Invariant Wavelet Basis 

In many applications, it is required that the processes applied to the obtained 

signals be shift-invariant. For example, in examining the multi-scale property in 
residual statics correction problems, it is important that the error-fitting function 

5
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Fic. 2. Decomposition of a Ricker wavelet at increasingly coarser resolution levels. 
The bases of the decompositions are Daubechies wavelets with 2 and 3 vanishing 
moments for the left and right figure respectively. The first traces represents the 
signal at the finest level, which is the original signal. 

at each scale have a common — or at least close to common — global minimum. 

Therefore, we expect that the relative time-shifts among traces at each scale to be 

almost the same as it was in the original data, and that the waveforms not be deformed 

from one trace to another. However, the orthonormal wavelet bases representations 

are generally not shift-invariant. This shift-variance can be seen directly from the 

construction of their bases, equations (2) and (4), because of the change of step sizes 
among different scales in these definitions. Therefore, the Daubechies wavelet bases 

are not suitable for our purpose. Figure 3 shows ten copies of randomly shifted 

Ricker-wavelet traces, and their projections onto the subspace V3 in the Daubechies 

bases with 2 vanishing moments. The decomposed waveforms on the right of Figure 3 
are deformed to different shapes among traces with different time-shifts, and they do 
not have the same relative time shifts of those shown on the left of Figure 3. 

Saito and Beylkin (1993) suggested using the shell of an orthonormal basis when 

shift-invariant is required. Without loss of generality, let us assume that the signal 

we consider having finite length N = 27. Consider a family of functions 

{dy u(t) }icjcs,ocken-1 

and 

{bin(t) }i<jcsocken-1s 
where 

Pjn(e) = 2-9/h(2-4(a — k)), (13) 

Pix (2) = 279/4(24 (a — k)), (14) 

6
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Fic. 3. Ten traces of randomly shifted Ricker-wavelet traces (left) and their decom- 
position at resolution level 3 in the Daubechies wavelet bases with vanishing moments 
of 2 (right). 

  
  

  

  

                  
    

Level-3 Shifted Traces Level-4 Shifted Traces 

Fic. 4. The decomposition of ten copies of randomly shifted Ricker-wavelet traces, 
in the shell of the Daubechies basis with 2 vanishing moments, at resolution levels 3 
and 4. The original traces are shown on the left of Figure 3.
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Fic. 5. The decomposition of ten copies of randomly shifted Ricker-wavelet traces, 
in the auto-correlation shell of Daubechies basis with 2 vanishing moments, at 
resolution levels 3 and 4. The original traces are shown on the left of Figure 3. 

where the functions (x) and ¢({x) are a wavelet and scaling function, respectively. 
The new family of functions defined by equations (13 and (14 can also serve as bases 

for subspaces V; and W; in MRA. They are complete, but they are redundant and 

not orthonormal (Saito, 1994). Therefore, the decomposition of a function in these 
bases is not unique. However, by forcing an additional constraint to the projection, 

a function f € Vp may still be decomposed in the shell of an orthonormal basis much 

the same way as it was in an orthonormal wavelet basis itself. In this case, the basis 

functions in equations (10) and (11) are replaced by w;,(x) and $;,(x). 

The representation of signals using this family of bases are shift-invariant among 
different scales. Figure 4 shows the same numerical experiment as that in Figure 3, 
except using the shell of orthonormal bases expansion at resolution levels 3 and 4. 

The relative time-shifts among traces are preserved while the waveforms are deformed 

to the same amount. However, the original symmetric waveforms are deformed to 
asymmetric waveforms. This deformation of the waveforms is not desirable, and may 

cause problems for some applications. 

To overcome this problem, a family of symmetric, shift-invariant bases are intro- 

duced (Saito and Beylkin, 1993). Let ®(x) and U(x) be auto-correlation functions of 
scaling function and wavelet function respectively, 

B(z) = f oy) Hy -2) dy, (15) 
W(2) = [ Hy) vy -2) dy, (16) 

8
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where # and ¢ satisfy equations (2) and (4) respectively. Construct a family of bases 

{Uje(2) }icj<u,ock<n-1 

and 

{9j4(@) }icjcs,osk<n-1) 
where 

54(2) = 2-96(24(x — k)), (17) 
Wi 4(z) = 2-9/2 b(2-F(a — k)). (18) 

Now, we have an auto-correlation shell of an orthonormal basis that is both symmetric 

and shift-invariant. Figure 5 shows the expansion of shifted Ricker-wavelet traces in 
the auto-correlation shell of Daubechies basis. It can be seen that both the symmetry 

of the waveforms and the relative time-shifts are preserved at resolution levels 3 and 

4, 

There exists a fast algorithm for expanding a function f € Vo using the auto- 

correlation shell of orthonormal basis (Saito and Beylkin, 1993). I only give the 

formulas of the discrete expansion; detailed derivation can be found in (Saito and 

Beylkin, 1993). 

Suppose that si and Di are the projected signal onto the subspaces V; and W; 

at the sampled positions respectively, that is 

Si = fi(kA), Di = Dfi(kd), 

where A is the sampling interval. Then, two symmetric filters, P = {pg}—rii<e<r-1 

and Q = {qe}-1+1<k<1-1 are applied recursively to the signal we wish to decompose, 

L-1 
J jal Sh= do Pi Stain 

l=-L4+1 
. L-1 ;—1 

Di. = > qi Seyoi—ayi (19) 
l=—[+1 

(20) 

where 0 < k < N,1 <7 < J, and L is the filter length in the “two-scale dif- 

ference” equations of wavelet and scaling functions as in equations (2) and (4). In 
equation (20), N = 2/ is the number of samples of the signal and the filter coefficients 
pr and gq, are, 

2-1/2, for k = 0, 

Pe {9 Zale, otherwise; 
(21) 

and 

2-1/2 fork =0 

~ 
22 

4 —pr, otherwise. 
(22)
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In equations (21) and (22), coefficients {a,},=1,...,,-1 are the correlation of the low- 

pass filter {hy }:<0,...,,-1 in equation (4), 

_ f2re 0 hi hice, for k is odd, 9 
a= {2 for k is even. (23) 

MULTIRESOLUTION ANALYSIS FOR INVERSE CALCULATIONS 

Many inverse problems are solved by optimization methods. Mathematically, 

gradient-search optimization methods work well when the objective function is con- 

vex (e.g., a “basin”) in the searching range; and the wider the basin of attraction 
leading to the bottom, the more likely that the optimizations converge to the opti- 

mum point. Optimizations have difficulties when there exists more than one point 

with zero gradient (e.g. local minima, flat area) in the searching range. Unfortunately, 

this is usually the case in many realistic inverse problems. The complexity of objec- 

tive functions can be affected by many factors, such as noise, frequency bandwidth, 

and features of the information in the observed data. 

As studied in the above section, an MRA can decompose signals into various res- 

olution levels. The data with coarse resolutions contain less detailed information and 

lower frequencies, while keeping major features of the original signal consistent with 

the low frequency information. These less-information data can serve as a relaxation 

to optimizations. Therefore, by using data at coarser resolution levels, complexity of 

objective functions may be reduced, which increases the performance of optimizations. 

A Simple Residual Statics Problem 

Let us first consider a simple residual statics problem. Consider a trace containing 

one Ricker wavelet; duplicate the trace with an unknown shift. Figure 6 shows two 
traces as described above. Now, we look for the time-shift between the two traces 

by applying an optimization, that is, searching for the time-shift which maximally 

aligns the two traces. This is a simple residual statics estimation problem using the 
stacking power method; there is only one unknown in the optimization. The objective 
function is formulated as a least-squared error, 

N-1 

E(6) = D7 (Poli — 6) — Pa())’, (24) 
i=0 

where P(t) and P,(t) are the two data traces, N is the number of samples per trace, 
and 6 is the unknown time-shift. The goal is to find the time-shift 6 that minimizes 
the error function E(6). Figure 7 shows the error function as in equation (24) for 
the fitting of these two traces. In addition to possible problems caused by the local- 
minima, the basin of attraction leading to the global-minimum is “steep” and narrow, 

while the two areas to the sides are “flat”. The global structure of this objective 
function suggests that the global minimum point may be hard to find by traditional 

10
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Fic. 6. The observed data in the first example. Two traces contains identical wave- 
forms of Ricker wavelet with a 30 Hz peak frequency. The relative time-shift is the 
unknown we are seeking. 
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Fic. 7. The error-fitting function with respect to the relative time-shift between 
two traces. The goal is to find the optimal point where the mean-squared error is 
minimum. 
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Fic. 8. The histogram of the obtained time-shifts of 50 conjugate-gradient optimiza- 
tion experiments starting from uniformly distributed random initial models between 
—0.2,0.2] s. The horizontal axis is the number of shift-samples, where the sample 
interval is 0.01 s, and the grid size of the histogram is 4 samples. The number of 
times that found the true global minimum is 8 out of 50. 

gradient-based searching methods. Assuming that we know a priori the time-shift 

between the traces lies in the range of [—0.2,0.2] s, the searching range is restricted 

to this interval. Figure 8 shows the histogram of the obtained time-shift for 50 
optimizations by using the Conjugate-Gradient and Cubic-Line-Search tools 

provided in the CWP Object-Oriented Optimization Library (Deng et al., 1995); 

initial models are randomly chosen between [—0.2,0.2] s. As expected, the chances 

of finding the correct global minimum is small. In the case of this test, there are 8 

out of 50 experiments that the correct time-shift was found. 

Using the MRA for Optimizations 

Let us decompose the observed data into various resolution levels by representing 
them with wavelet bases. For the above example, the traces {P;(r); i = 0,1} of 
lengths N = 2/ can be represented in the form of equation (12), 

1 N-1 
P(x) = PP(x)+ 35 YO dye di x(x), (25) 

j=no k=0 

where 1 < mp < J and P;°(z) is the projection of the original data onto the subspace 
Vno- Therefore, equation (24) can be rewritten as, 

B"() = > (PR (i — 8) — PP(i))? + R"(6), (26) 

where R"°(6) is the residual error term which is related to the detailed information 
being projected onto subspaces {W;; j = 1,..., no}. 

12
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Fic. 9. The mean-squared error functions for two seismic traces at various resolution 
levels. The traces are decomposed in the Daubechies basis with 2 vanishing moments. 
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Ignoring certain levels of fine-resolution information, i.e., ignoring the residual 

term in equation (26), the resolution level no representation of the seismic traces can 
be used for optimization. Figure 9 shows the objective function £"°(6) at various 
resolution levels, no = 1,2,3,4. It shows that the global complexity of the objective 

function is reduced with the increasingly coarser level of resolution, and there are 

wider basins of attraction leading to the global minimum. However, Figure 9(d) 
shows that the global structure of the objective function is severely distorted when 

detailed information is ignored. 

This phenomenon is caused by the shift-variance nature of compactly supported, 

orthonormal wavelet bases. In the inverse problem discussed here, it is required 

that the bases used to represent the signals be shift-invariant. According to the 

discussion of the previous section, two families of bases are shift-invariant. Because 

of the symmetric feature of the auto-correlation shell of orthonormal bases, we choose 

this family of bases for this study. From this point on, the paper uses only the 

auto-correlation shell of orthonormal bases to decompose the signal, unless otherwise 

indicated. Figure 10 shows the objective function at resolution levels np = 2,3, 4,5 in 

an auto-correlation shell of the Daubechies wavelet basis with 2 vanishing moments. 

The global structure of the objective function also shows the desired simplification as 

that in Figure 9, such as a wider basin of attraction leading to the global minimum, 

less oscillations and smaller “flat” area in the searching range. Moreover, the global 

minimum is not shifted at any decomposed resolution level. Figure 10(d) show that 

the whole searching range transformed to one wide basin of attraction, which would 

lead all initial models to the global minimum. 

Figure 11 shows the same histograms as that shown in Figure 8, except the data 
used for optimizations are decomposed at various resolution levels. These results 

confirm our prediction that there are increasing chances for local-search optimizations 

to find the global minimum when coarse-resolution data are used. For Figure 11(d), 
all searches converge to the global minimum when data are decomposed to resolution 
level five. 

For the simple problem discussed above, five levels of decomposition are needed 

to reduce the objective function to a convex function in the searching range. In 

addition, the global minimum of this simplified objective function coincides with that 

of the original objective function. Therefore, the correct solution is reached when only 
coarse resolution data are used in this example. In the next example, an optimization 

applied to the coarse-resolution data will not suffice. 

More Examples 

For more complex optimization problems, further reduction of resolution may be 

needed to make objective functions convex. The severe loss of information may cause 

an erroneous global minimum of the objective function. 

Here, I show another example of residual statics correction problem for a trace 
with complex waveforms and unknown noise. Figure 12 shows a trace taken from a 

14
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Fic. 10. The mean-squared error functions for two seismic traces at various resolution 
levels. The traces are decomposed in the auto-correlation shell of the Daubechies basis 
with 2 vanishing moments. 
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Fic. 11. Histograms of the obtained time-shifts of 50 conjugate-gradient optimization 
experiments for data at various resolution levels. Initial models are chosen randomly 
between [—0.2,0.2] s. The horizontal axis is the number of shift-samples, where the 
sample interval is 0.01 s, and the grid size of the histograms is 4 samples. All 50 
experiments found the true solution when the data are decomposed to resolution 
evel 5. 
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Fic. 12. A real seismic trace and its duplication with an unknown shift. 
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Fic. 13. The mean-squared error functions for two real seismic traces shown in 
Figure 12. 
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field seismic record, and its duplication with an unknown shift. We repeat the process 

discussed in the previous section on these two traces. Figure 13 shows the objective 

function for this optimization. Due the oscillatory nature of the seismic field data and 

unknown noise, the objective function shows complicated local and global structure. 

The basin of attraction leading to the global minimum point is extremely narrow and 

steep, which makes it almost impossible for any gradient searching methods to find 

the correct solution. 

Again, the auto-correlation shell of the Daubechies basis is used to decompose the 

traces to coarse resolution levels. Figure 14 shows objective functions when applying 

various level of decomposition to traces in Figure 12. As expected, the complexity of 

the objective function is greatly reduced after the data being decomposed to coarse 

levels. 

However, it is worth noticing the global minimum point are slightly shifted in 

Figure 14(d), though the objective function shows a nice, convexity shape. This 
problem may be caused by the loss of information when too much resolution was 

discarded from the data. In this case, an iterative process similar to a multi-grid 

iteration can be used to enhance the resolution progressively; i.e. the solution of a 
coarse-level optimization is used as the initial model to the following optimization at 

a finer level (e.g., Chen 1994). 

DISCUSSION 

The MRA can be used for analyzing signals at various scales. One of these first 

studies in the field of wave propagation was conducted by Morlet et al. (1982a; 1982b). 
In recent years, many researchers have been applying the technique successfully to 

data compression and processing. Cohen and Chen (1993) gave some intuitive insight 

as well as suggestions on possible applications in seismic imaging. This paper shows 

that wavelet theory can also be used to study optimization as applied to inverse 

theory. 

Taking advantage of MRA in wavelet theory, seismic data can be decomposed to 
coarse resolution levels, while keeping major features in the original signal. This paper 

has described the first step of the study on the complexity of inverse calculations; the 

influence of MRA on objective functions has significant effects on the performance of 

optimizations. The objective functions can be simplified and they approach convexity 
when data are decomposed to a low resolution. This initial study demonstrates that 

MRA may be a useful tool for characterizing complexity of objective functions in the 

optimization approach to inverse problems. 

Using the residual statics correction as an example, I have shown in this report 
that the waveform misfit function is multi-modal even for a simple problem, and MRA 

indeed can simplify the complexity waveform misfit function. Comparing Figure 7 

and Figure 10, Figures 13 and 14, the objective functions for the wavelet decomposed 
data show a wider basin of attraction leading to the global minimum, a reduced 
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Fic. 14. The mean-squared error functions for two real seismic traces shown in Figure 
12 at various resolution levels. The traces are decomposed with the auto-correlation 
shell of the Daubechies basis with 2 vanishing moments. 
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number of local minima, but non-distorted global feature. 

As discussed in this paper, the choice of bases used to decompose the data is 

critical for this application. In addition to the time-invariance and the symmetry 

issues of the bases, the influence of vanishing moments to objective functions remains 

to be investigated, especially its tradeoff with computational intensity. 

More tests will be done for more realistic optimization problems. For example, in- 

verse problems we encounter usually have many unknown parameters to be recovered; 

the observed data may also be contaminated by noise. Therefore, it is important to 

study the influence of the MRA on these realistic problems. Results of these studies 

can be used to characterize complexities of certain inverse problems. As all the other 

inverse algorithms, the computation cost is also an issue that needs to be studied. 
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