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ABSTRACT 

It is useful to think of inverse calculations as the process of quantifying states 

of information about physical systems from data. The more successful the calcu- 

lation, the more the uncertainty about the system is reduced relative to the state 

of information that existed before the data were gathered. It is impossible to do 
such a calculation without making a priori statistical assumptions about models 
and data. Typically, it is assumed that these a priori distributions are normally 

distributed, whether explicitly through the use of a priori covariances, or im- 

plicitly, with regularized least squares. Here we look at some examples of how 

one might use probabilistic ideas to quantify geophysical a priori information. In 

one case we compute covariance matrices associated with ambient fluctuations in 

seismic data, and in the other we estimate nonparametrically the a priori distri- 

bution of layered earth models directly from a well log. From the standpoint of 

inversion, the net result, whether the distributions are Gaussian or not, is a quan- 

titative comparison of the posterior versus prior uncertainty of each parameter in 

the calculation. This we regard as a complete solution to the inverse calculation.       

THE USE OF PROBABILITY IN INVERSE THEORY 

It is possible to give different interpretations to any abstract theory. Probabil- 

ity theory, for instance, can be interpreted in terms of the frequencies of outcomes 
of random events. But we also use probabilistic concepts to quantify states of in- 
formation about completely deterministic events. Suppose we ask, for example, the 

probability of encountering hydrocarbons upon drilling to a certain depth at some 

location. Presumably this is a deterministic event: either we will or we will not find 

the target. But we use probability to quantify the likelihood of various outcomes. As- 
signing a probability to such questions must take into account pre-existing geological 

and geophysical information: what is known about the geology of the area; its past 
production history; what other data are available in the area; what experts say. Such 

information is not uniquely specifiable. In the first place, some of it subjective, such 
as expertise. But different people will have different data and information at their
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disposal. Thus, the ultimate assessment of the likelihood of success in the experiment 

is not uniquely determined either. But given certain prior information, we should 

be able to work out the posterior probability of any given hypothesis concerning the 

experiment. 

Throughout this paper the terms prior and posterior are used to denote the states 

of information, respectively, before and after any inferences are made. Prior informa- 

tion is therefore any information which is independent of the data. The information 

content of a distribution is related to how broad it is. A flat distribution is relatively 

uninformative, while a delta function is perfectly informative. These qualitative ideas 

can be made quantitative by introducing more rigorous definitions of information in 

terms of entropy. 

UNCERTAINTIES IN INVERSE CALCULATIONS 

It is impossible to do an inverse calculation without making a priori assumptions. 

These assumptions may have to do with the distribution of possible models, the 

uncertainties in the data, or the nature of the mapping from the space of model 

vectors to the space of data vectors. The most common formulations are in terms of 

least-squares misfit functions. Least-squares presupposes that all uncertainties in the 

problem are Gaussian: data uncertainties, theoretical uncertainties (i.e., uncertainties 

in the forward modeling), and uncertainties in the distribution of feasible models. In 
practice, even stronger assumptions are often made, namely that the uncertainties are 

uncorrelated; an example would be damped least squares. Even if these assumptions 

are regarded as mere convenience, they have important implications for the reliability 

of the resulting calculations. 

Consider a simple example. Let’s suppose we are doing a damped least-squares 

calculation for a reflectivity series and are assuming, therefore, that the set of possible 

solutions is distributed in an uncorrelated Gaussian fashion about the starting model. 

Imagine that we have a black box that will select models from this Gaussian a priori 
distribution. We then evaluate the response of each model (synthetic data) and see 
how well it fits the observed data. We do as many iterations of this procedure as is 
necessary to find a model that agrees with the data to our satisfaction. Perhaps this 
solution looks like the top left plot in Figure 1. There’s only one problem: the top 

right plot in this figure has the same mean, standard deviation, and 1-D probability 
distribution. This means that with the same prior information of a Gaussian distri- 

bution, the black box could have been programmed to generate models that look like 
that on the left of Figure 1 rather than the right. 

The rather different look of these two pseudo-random models lies in their different 
correlation length. The model on the left is uncorrelated (white) and the model on the 
right has a correlation length of 10 samples. This can be seen from the autocorrelation 
functions shown in the middle of the figure. So both models are consistent with the a 
priori assumptions of a Gaussian distribution, yet they look completely different. We 
could carry this argument to extremes by making the pseudo-random models more 
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Fic. 1. Two pseudo-random Gaussian simulations with approximately the same 
mean, standard deviation and one-dimensional marginals, but different correlation 
lengths. The middle figures shown the correlation function (autocorrelation). 

and more correlated while still maintaining the same 1-D distribution. Of course, we 
cannot say that models with different correlation lengths would fit the data equally 

well, but they would be equally consistent with the a priori assumptions behind 
damped least squares. 

Data Uncertainties 

To see whether this is an issue in practice Figure 2 shows 25 unstacked, uncorre- 
lated vibroseis traces. For better or worse, these will be assumed to be “raw” data. 

These data were recorded with a 3 second 40-60 Hz sweep at far offset using a horizon- 
tally polarized source. To see the ambient noise, we have windowed the first second of 

data. Figure 3 shows the autocorrelation and power spectra of the first 6 traces win- 

dowed to the first second of data. Clearly these data are correlated vertically. Typical 

correlation lengths are on the order of 15-20 samples. Since we have 25 realizations 
of each sweep, we can estimate the sample covariance matrix by summing over this 

ensemble We call this Cz and it represents what we know about observational errors
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Fic. 2. Unstacked vibroseis traces. Can we regard these as independent realizations 
of the experiment? On the right, is a zoom of the 0-1 second time window. 

after the experiment (within the Gaussian approximation). Figure 4 shows a stack 
of the noise traces (in the 0-1 second window), the power spectrum and autocorre- 

lation of the stacked trace, and the first trace in the ensemble. Clearly stacking has 

attenuated the high frequency noise somewhat, but the stacked trace still shows a 

correlation length of around 15 samples. 

So far we have refrained from defining “noise”, for the very good reason that there 

is no precise definition. By windowing the vibroseis traces to a time interval before 

any energy from the source could have arrived, we hope that the resulting data gives 
a good picture of the background signal. But clearly there is coherent energy even 
in these early samples. Do we call this noise? Unfortunately there is no completely 

satisfying answer to this question. Essentially we call it noise if we have no interest in 

inferring its cause or using it directly in the inversion procedure. If the high frequency 

environmental contamination we are seeing in the traces is a nuisance, to be filtered 
out perhaps, then we shall call it noise. But who is to say that someone might not 

find interesting “signal” in this noise after all, in which case this physics would have 

to be modeled in the inversion process also. Thus any covariance matrix associated 

with unmodeled physics should add to the covariance matrix associated with the 

random fluctuations in the data themselves. We can lump these together into a data 
covariance Cp = Cqy+ Cy, where we have used T to denote theoretical errors. 

These data errors enter into the theory via the Likelihood function L, which mea- 

sures the degree to which models fit data. Tarantola (1987) shows (in exercise 1.21)
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Fic. 4. Stack of the 25 noise traces (0-1 second window), the normalized autocor- 
relation of the stacked trace and the power spectrum (abscissa in samples, 2 ms per 
sample). Trace number 1 is at the bottom for comparison. Stacking attenuates about 
80% of the energy in the 0-1 second time window. The average vertical correlation is 
15 samples.
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that the complete likelihood function, assuming Gaussian errors on both data and 

modeling is: 

1 1 _ Um) = aaa [-3(o(m) = dos)" C5'(9(m) — dops)] (2) 

where g is the forward problem, mapping elements of the model space into data space, 

dobs is a vector of observations and N is the number of observations. Notice that the 

covariance matrices Cy and Cr add together to achieve the final result even though 

we have made no assumptions about the linearity of g. In the special case that g 

is linear (i.e., a matrix A) and Cp is a constant times the identity matrix, then the 
maximum likelihood model is the solution of the ordinary least squares problems 

min || Am — d||?. If Cp is more complicated, we get a weighted least squares problem. 

The point in all of this is not to try to suppress noise, which requires some under- 

standing of its sources, but to quantify the noise. It’s not as if there are good data 

and bad data, just data with different degrees of certainty. 

Model Uncertainties 

As we observed above, doing conventional least-squares makes assumptions not 

only about the distribution of data uncertainties, but also about the uncertainties 

in the models themselves. When we “damp” a calculation, we are actually requiring 

that the computed model lie in a Gaussian neighborhood of the starting model. And 
while it may be plausible that data uncertainties (at least the “random” ones) can 
be described by a Gaussian distribution this seems harder to justify for the models 

themselves. 

Let us consider an example of how we might do an inverse calculation without 

assuming a Gaussian distribution of models. Suppose we wish to invert reflection 

seismic data with a nearby sonic log as a priori information about the distribution of 

feasible 1-D earth models. Figure 5 shows about 600 m of P-wave sonic log recorded 
in the North Sea (1 sample every 30 cm). The middle plot is obtained by applying 
a running average to the data. The bottom plot shows the fluctuations obtained by 

subtracting the trend from the data. We regard the fluctuations as representing a sin- 
gle realization of a random vector field. The trend will be assumed to be known. Our 

job now is the characterize the statistical properties of the fluctuations as generally 
as possible. 

Whereas for Gaussian or Markovian processes, marginal distributions of first and 

second order are sufficient to characterize the process completely, for a general random 

vector field one must specify the joint n-dimensional distribution function. While 

it is clearly impossible to construct the joint distribution function for anything as 

complicated as a well log, it is possible to construct enough of it to fool a standard 

statistical hypothesis test into thinking that you have computed it all. In Scales 
and Tarantola (1994) a technique is developed for computing low order marginal
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Fic. 5. North Sea P-wave sonic log, trend and fluctuations. 

distributions from data by making histograms. We then generate pseudo-random 
realizations of the process from the histograms and compare them to the data using 

the Kolmogorov-Smirnov two-sample test, the null-hypothesis being that the two 

samples are drawn from the same distribution. When we have computed enough of 

the marginals to satisfy K-S with a high degree of confidence, then we stop. The 
resulting marginals represent a non-parametric description of the statistics of the 

underlying process. Some examples of pseudo-random logs generated according to 

this procedure, as well as the original data, are shown in Figure 6. 

So, we have a method for approximating the joint distribution function of the well 
log, but how can we use this to actually solve an inverse problem? To answer this we 
need a few more tools. 

Above, we showed an expression for the Gaussian likelihood function. The general 

form of the likelihood function is 

L(m) = I ote dd (2) 
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Fic. 6. P-wave sonic log (left) and pseudo-random simulations which have the same 
marginal distributions. 

where pp(d) is the probability distribution associated with the data, .p(d) is Jaynes’ 
non-informative distribution, which acts as a normalization, and O(d|m) is the con- 
ditional distribution telling us the probability that a certain data vector could have 

been generated by a given model. Theoretical (modeling) uncertainties are described 
by O. 

Let us introduce the notation py, (m) to denote the a priori probability distribution 
quantifying the current state of information about the model space. For example, if we 

know with certainty that a parameter m has some value mo, then py(m) = 6(m—mo). 
Or, if we know that all values of m between m,,;, and mmax are equally likely, then 

pm(m) is a uniform distribution on the interval [m,,i,,™max]. A priori refers to the 
fact that this is information which is independent of the experiment. 

Combining the a priori knowledge of models py(m), with the likelihood function 
L(m), we arrive at the a posteriori probability distribution on the space of models 

o(m)  par(ma) ee) 
A posteriori here means that o(m) results from the analysis of data obtained in the 
experiment and combines all available information about the models. Comparing 

o(m) to py(m) tells us precisely what we have learned about m from the inversion. 
To the extent that o is more informative (narrower, smaller entropy), for a given 

parameter, than py, then the inversion has succeeded in resolving the parameter to a 
readily quantifiable extent. A direct derivation of Equation 3 from the classical form 

of Bayes’ theorem is given in Scales and Tarantola (1994). 

dd. (3) 

Since we can generate models at will according to the prior information, we could 
imagine simply ranking them in order according to how well they fit the data. But if 

we did this we would have no way of making a posteriori estimates of the uncertainty 

of computed parameters. I.e., all we would have would be a best-fitting model, but 

no “error bars.” The solution is to produce an importance sampling of the posterior 
itself. In other words we need a collection of models which has the following property: 

9
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if model z is twice as likely, a posteriori, as model y, than model x should appear, on 

average, twice as often as model y in the collection. Since we cannot possibly sample 

all of the points in model space, this sampling property is a sine qua non for any 

inverse method which does not involve analytic specification of the uncertainties. 

Fortunately, we can sample the posterior in a conceptually straightforward fash- 

ion. The basic result is due to Mosegaard and Tarantola (1994) and represents a 
generalization of the Metropolis technique (Metropolis et al., 1953). Let us assume 

that we are able to obtain samples m,,mp,... , of the prior probability distribution 

p(m). Then, if we wish to obtain samples of the posterior probability distribution 

o(m) = k p(m) L(m) all that we need to do is to iterate the following procedure. 

e Let m,; be the “current model.” 

e Use the rules that allow one to sample the prior probability distribution p(m) 

to obtain a new model, say m1}. 

e If L(m})) > L(m;), take mj as new current model, i.e., make m;,; = m‘. 

e If L(m{) < L(m;,), then decide randomly to take the model mas new current 
model, or to destroy it, with a probability of taking it as new current model 

equal to the ratio L(m/{)/L(m,). 

Mosegaard and Tarantola (1994) show that this procedure converges to the true 

a posteriori distribution. To estimate the the degree of convergence, we look at 
the fluctuations in the “internal energy”, i.e., the sample average of the likelihood 

functions (Scales et al. (1991); Scales et al. (1992)). 

The real power of this method cannot be over-emphasized: Since we are sampling 

from the prior distribution, we are only computing synthetic data for models which 

are a priori likely. The fatal flaw of most conventional Monte Carlo methods is that 

they waste too much time evaluating the response for models which are unlikely. 

Let us now consider a simple experiment to test these ideas. We generate a syn- 

thetic seismogram from the North Sea sonic log and use this as the “observed data” 
for a zero-offset 1-D seismic inverse calculation. To make the problem slighly more in- 

teresting, we add Gaussian pseudo-random noise (signal to noise ratio 4), bandlimited 

to the same frequency spectrum as the seismogram. Figure 7 shows pseudo-random 

models from the posterior tour. I.e., these models have been pseudo-randomly gen- 
erated according to the marginals of the well log, and then selected according to the 
Metropolis procedure. One way to make sense of this mass of information is to make 

histograms of the values of relevant parameters as they appear in the prior and poste- 

rior tours. This gives a quantitative measure of the values a parameter is most likely 

to take as well as the extent to which it has been resolved. 

Figure 8 shows the prior and posterior histograms of the P-wave velocity at three 

points (in time) along the log. The totality of these histograms is the complete 

10
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Fic. 7. Pseudo-random models sampled from the prior distribution and selected 
according to the Metropolis criterion. 

solution of the problem. In this particular example, we have estimated the prior 

distribution directly from the log, but generated a synthetic trace (acoustic, normal- 

incidence, including multiples) from the log to represent a zero-offset experiment. In 
practice we would use a log recorded in a nearby seismic survey. 

Figure 9 shows an individual trace from the posterior tour compared with the 

data. Figure 10 shows a stack of all the data traces generated by the posterior 

models compared to the data. None of the models in the posterior tour fit within all 
of the error bars of the data. Therefore the procedure has not yet managed to find 

the region of high probability in the model space. Whether this is a limitation of 

the implementation or a basic feature of Monte Carlo applied to such large problems 

(nearly 2000 parameters) remains to be seen. 

11
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CONCLUSIONS AND FUTURE DIRECTIONS 

All inverse calculations require the specification of a priori information, on the 

data, the space of feasible models, and the accuracy of the forward modeling error. 

The goal of this research is to quantify this prior information so that posterior es- 

timates of the uncertainty of computed models can be made. When dealing with 

real data it is never sufficient to simply produce an “optimal” model. It is only by 

producing distributions of models consistent with the prior information that we can 

hope to assign quantitative confidence values to the inferences we make. 

Some progress has been made in estimating these uncertainties nonparametrically 

from real data. But these seem to require expensive Monte Carlo importance sampling 

techniques. On the other hand, it is not clear to what extent nature can be well 

approximated by simpler parametric models, which are amenable to gradient-based 
methods of optimization. 
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Introduction 

Solving an inverse problem means making inferences about physical systems from 

real data. This requires taking into account three different kinds of information. 

~— What is known about the parameters independently of the data? In other 
words, what does it mean for a model to be reasonable or unreasonable? 

— How accurately are the data known? That is, what does it mean to “fit the 
data”? 

— How accurately is the physical system modeled? Does the model include all 

the physical effects that contribute significantly to the data? 

Exploration seismologists have a large amount of information available that 
could be used to refine inferences about the subsurface. In this paper I will de- 
scribe preliminary work aimed at quantifying this information in a form amenable 
to calculation. 

A Simple Example 

To motivate the discussion, let us consider first a problem of linear tomographic 
inversion. 

The Forward Problem Acoustic sources and receivers are lowered into two 
vertical boreholes as shown in Figure 1. Sources are excited, seismograms are 
recorded, and the goal is to infer the elastic properties of the medium between 
the boreholes. To some approximation the wave propagation can be treated kin- 
ematically, so the travel time of a wave (e.g., the direct arrival) is related to the 
unknown slowness between the boreholes by 

t(s(z,y, z)) =| a(x, y, z) dé. (1) 
ray(s(x,y,z))
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slowness model, and o; is the standard deviation (assumed known) of the i-th 
datum. 

Let’s see how this works in practice. Figure 2 shows an example of such a 

tomography problem. The model consists of a homogeneous background with 
slowness equal to 3, and an embedded inclusion shaped like an “E” having slow- 
ness equal to 1.5. At the right we see the “illumination” of the rays. There are 
10 sources, 20 receivers and 20? cells within which the slowness is assumed to be 

constant. 

  

  
    

  

Fig. 2. Straight rays are traced between 10 sources and 20 receivers. The goal is to be 
able to characterize the unknown inclusion (left). On the right, the ray “illumination” 
plot is shown. 

Then add uncorrelated Gaussian noise, so that the standard deviations o; are 
constant and known. The “textbook” solution to the problem is do a singular 
value decomposition (SVD) of the Jacobian matrix. Then, build up the solution 
one singular vector at a time, starting with the largest singular values and moving 
down the spectrum, until the solution just manages to fit the data. 

Figure 3 shows this truncated SVD solution as both a perspective (left) and 
contour (right) plot. Although we can just see the inclusion in the contour plot, 
one would perhaps be justified in saying this solution is rather unrealistic looking. 
It fits the data, undeniably, but surely many of the complicated looking features 
are artifacts in the sense that they are not required to fit the data. Further, there 
is almost certainly information available that would allow one to say a priori 

whether this was a realistic looking model or not. 

What’s the Point? One conclusion to be drawn from this simple experiment is 
that data fit alone is never enough to judge the solution of an inverse calculation. 
Since unrealistic models can fit the data too, one must balance the extent to which 
a model fits the data against the extent to which it conforms to our knowledge 
about what makes a model realistic or not in a particular case. This knowledge 
takes many different forms. It might be as simple as saying that a particular
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Information About Models 

In exploration seismology there is a large amount of a priori information that 
could be used to influence inverse calculations. Plausible geologic models can 
be based on rock outcrops, models of sedimentological deposition, tectonics, etc. 
There are often in situ measurements of the elastic properties of rocks from 
nearby locations (well-logs, for instance). There are laboratory measurements of 
rock properties. There are other, less quantitative, forms of information as well, 
the knowledge of experts for instance. 

There is a simple conceptual model that can be used to visualize the applica- 
tion of this diverse a priori information. Suppose we have a black box into which 
we put information about our problem. We can turn a crank or push a button 
and out pops a model that is consistent with whatever information that is put 
in. One may repeat the process indefinitely, producing a collection of models that 
have one thing in common: they are all consistent with the information put into 
the black box. Suppose we know, for example from in situ measurements, that 
the reflection coefficient r in a particular sedimentary basin almost never exceeds 
-1. What does it mean for a model to be consistent with this information? We 
can push the button on the black box and generate models which satisfy this 
requirement. Figure 4 shows some examples. 

The first model is uncorrelated with a uniform distribution on [-.1,.1]. It is 
consistent with the prior information but is rather unrealistic looking. Surely re- 
flection coefficients near .1 are much less likely than those near, say .01. So, while 
a hard constraint |r| < .1 on reflection coefficients seems reasonable, we almost 
certainly have more information than just this. Further, taking a hard constraint 
and representing it as a uniform probability distribution may not be a sens- 
ible thing to do. The next simplest thing to try is a Gaussian distribution. The 
middle plot in Figure 4 shows an uncorrelated Gaussian model with a standard 
deviation chosen such that the constraint on |r| is satisfied. This looks somewhat 
more reasonable, yet it is difficult to imagine that the underlying geologic process 
of sedimentation would give rise to a completely uncorrelated measurement such 
as this. Further, we know from having looked at many logs, that finite correlation 
lengths are ubiquitous and represent a measure of the feature size of the rocks. 
In sedimentary basins vertical correlation lengths of a few meters to a few tens of 
meters are common. So let us generate a model with the same mean and standard 
deviation, but with a finite correlation length, in this example 15 samples. This 
is shown in the bottom of Figure 4. We could continue in this fashion, building 
ever more realistic models. 

If we were able to build such a black box in practice, then a plausible strategy 
for solving the inverse problem would be to generate a sequence of models ac- 
cording to the prior information and see which ones fit the data. In the case of the 
reflectivity sequence, imagine that we have surface seismic data to be inverted. 
So for each model generated by the black box, compute synthetic seismograms, 
compare them to the data and decide whether they fit the data well enough to be 
acceptable. If so, the models are saved, if not, rejected. Repeating this proced- 
ure many times results in a collection of models that are by definition consistent
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long-wavelength trend, which is likely the result of more gradual, deterministic 
changes such as compaction. The trend and the resulting fluctuations are shown 
in Figures 6 and 7. 
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Fig. 5. Estimates of P and S wave velocity are obtained from the travel times of 
waves propagating through the formation between the source and receiver on a 
tool lowered into the borehole. 
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Fig.6. Trend of Figure 5 obtained with a 150 sample running average. 
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Fig. 7. Fluctuating part of the log obtained by subtracting the trend from the 
log itself. 

If we were willing to assume a priori that the properties of this log are sta- 
tionary and Gaussian, then it would be relatively straightforward to compute a 
Gaussian covariance matrix. For example, Figure 8 shows the first 100 lags (1 
meter per lag) of the correlation function for the fluctuating part of Figure 7, as



Uncertainties in Seismic Inverse Calculations 9 

  

  

  

  
  

"0 600 1600 2000 1000 
Depth (m) 

Fig.9. The standard deviation as a function of depth of Figure 7. 

  

Fig.10. The normalized third order cumulant and bispectrum of the fluctuating part 
of the data in Figure 7, computed for a short window of 75 lags. To account for non- 
stationarity, we can slide this window down the full length, repeating the estimates in 

each window. 

Uncertainties in the data 

In the last section we looked at characterizations of models via covariance matrices 
(or their higher order generalizations) obtained from commonly available in situ 
well log measurements. Next we look at estimating uncertainties in the seismic 
data themselves. We are used to thinking of seismic experiments as being non- 
repeatable. While this is true in earthquake seismology, it is not necessarily true 
in controlled-source seismology. Most land reflection data recorded nowadays 
uses a vibroseis source, i.e., a swept continuous wave signal. By careful stacking 
and cross-correlation with the known input signal, such data can approximate 

the results of explosive sources with high signal to noise ratio. But usually the 
raw, unstacked data are not saved; once the stacking and correlation have been 
done, the raw data are usually discarded. Figure 11 shows an example in which 
the raw traces have been saved. There are 25 unstacked, uncorrelated vibroseis
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Fig. 12. Sample covariance matrix for the ambient noise present in a reflection seis- 
mic experiment. The ensemble consists of the repeated sweeps of the vibrator (before 

stacking and correlation) and has been windowed to the first second of data, before any 
source generated energy has arrived at the receivers. 

sources and receivers in exactly the right places, so small shifts in the-assumed 
known-source and receiver locations will introduce errors into the problem. Do 

we regard these as being essentially random fluctuations which broaden the dis- 

tribution of the data, or do we look at the shifts in source and receiver locations 
as being model parameters (like station corrections) to be inferred from the data? 

Tarantola (1987) shows that as long as the uncertainties are Gaussian, we can 
still use Equation 12 to describe the likelihood function, provided we replace the 
data covariance matrix Cz, with a combined covariance matrix 

Cp = Cat+Cr 

where Cr represents the contribution due to theoretical errors. 
More often than not, theoretical errors are neglected in real applications. 

And the reason is plain, for it is not usually possible to account for a particular 
kind of unmodeled physics without incurring the additional expense that led to 
the neglect of this physics in the first place. How can one quantify the effects 
of neglecting anisotropy without doing the complete calculation anisotropically
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A The Bayesian Posterior Probability 

The Bayesian posterior probability density on the space of models must be the 

product of two terms: a term which involves the a priori probability on the space 

of models and a term which measures the extent of data fit 

o(d) = kp(m) L(m) (6) 

where k is the normalization constant and L is the likelihood function, which 

depends implicitly on the data. 
We now show how Equation (6) follows logically from Bayes’ theorem provided 

we generalize our notion of “data” to allow for the possibility that the data might 
be specified by probability distributions (Tarantola, 1987). Following Duijndam 
(1987), we begin by using the notation common amongst Bayesians, then we 
show how this relates to the more standard inverse-theoretic notation in Tarant- 

ola (1987). 
In this approach we assume that we have some prior joint distribution po(m, d). 

Further, we suppose that as the result of some observation, the marginal pdf of 

d changes to p;(d). We regard p;(d) as being the “data” in the sense that we 
often know the data only as a distribution, not exact numbers. In the special case 
where the data are exactly known, p;(d) reduces to a delta function 5(d — dogs). 

How do we use this new information in the solution of the inverse problem? 
The answer is based upon the following assumption: whereas the information on 
d has changed as a result of:the experiment, there is no reason to think that the 
conditional degree of belief of m on d has. Le., 

Pi(m|d) = po(m|d). (7) 
From this one can derive the posterior marginal p;(m):


