
CWP-175 
May 1995 

OP 
Moveout analysis for transversely isotropic media 

with a tilted symmetry axis 

Ilya Tsvankin 

Center for Wave Phenomena 

Colorado School of Mines 

Golden, Colorado 80401 

303/273-3557



Moveout analysis in transversely isotropic media 

with a tilted symmetry axis 

I. Tsvankin 

ABSTRACT 

The transversely isotropic model with a tilted axis of symmetry may be typical, for 

instance, for sediments near the flanks of salt domes. Here, I use the exact normal- 

moveout (NMO) equation of Tsvankin (1995a) to study reflection moveout in the 
symmetry plane of this medium that contains the symmetry axis. While for vertical 

and horizontal transverse isotropy zero-offset reflections exist for the full range of 

dips up to 90 degrees, it is no longer the case for intermediate axis orientations. 

For typical homogeneous models with a symmetry axis tilted towards the reflector, 

wavefront distortions make it impossible to generate specular zero-offset reflected 

rays from steep interfaces. These “missing” dipping planes can be imaged only in 

vertically inhomogeneous media by using turning waves. In another situation, typical 

for asymmetry axis tilted away from the reflector, specular zero-offset reflections from 

overhang structures can be recorded in the absence of velocity gradient. Implications 

of these unusual phenomena in salt and sub-salt imaging deserve a special study. 

In elliptically anisotropic media with any orientation of the elliptical axes the de- 

pendence of the P-wave NMO velocity on the ray parameter p (the “dip-moveout 

signature”) was proved to be identical to the isotropic equation used in conven- 

tional constant-velocity dip-moveout (DMO) algorithms. Not just DMO, but all other 

isotropic time-processing methods including time migration are entirely valid for ellip- 

tical anisotropy. In nonelliptical TI media the tilt of the symmetry axis has a drastic 

influence on moveout from horizontal reflectors, as well as on the dip-dependence of 

NMO velocity. The DMO signature retain the same character as for vertical trans- 

verse isotropy only for near-vertical and near-horizontal orientation of the symmetry 

axis. For this relatively narrow range of tilt angles the P-wave NMO velocity is tightly 

controlled by the parameter 7 introduced by Alkhalifah and Tsvankin (1995) and, for 

typical 7 > 0, increases with p much faster than in isotropic media. The behavior 

of NMO velocity rapidly changes if the symmetry axis is tilted away from vertical, 

with a tilt of 420 degrees being sufficient to practically eliminate the influence of the 
anisotropy on the DMO signature. For larger tilt angles and typical positive values of 

the difference between the anisotropic parameters € and 6, the NMO velocity increases 

with p slower than in homogeneous isotropic media ~ a dependence usually caused 

by vertical velocity gradient. Dip-moveout processing for a wide range of tilt angles
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requires application of anisotropic DMO algorithms, such as the Hale-type method 

by Anderson and Tsvankin (1995). 

The strong influence of tilt on the P-wave moveout can be used to constrain the 

tilt angle using P-wave moveout data in the plane that includes the symmetry axis. 
However, if the azimuth of the axis is unknown, the inversion for the axis orientation 

cannot be performed without a 3-D analysis of reflection traveltimes on lines with 

different azimuthal directions. 

INTRODUCTION 

The behavior of reflection moveouts has a strong influence on most seismic process- 

ing steps, such as velocity analysis, normal-moveout (NMO) correction, dip-moveout 

(DMO) removal and migration. In seismic exploration, recording is conventionally 
carried out on common-midpoint (CMP) spreads with the length close to the depth of 
the target horizon. For these moderate offset-to-depth ratios, P-wave reflection move- 

out is usually close to hyperbolic and is adequately described by the normal-moveout 

velocity calculated in the zero-spread limit (Taner and Koehler, 1969; Tsvankin and 

Thomsen, 1994). 

If the medium is anisotropic, normal-moveout velocity is generally different from 

the vertical velocity. The influence of anisotropic parameters on NMO velocity rep- 

resents a fundamental problem in the velocity analysis for anisotropic media. This 

problem has attracted considerable attention in the literature, but most existing work 

is restricted to a relatively simple (although common) model - transversely isotropic 

media with a vertical symmetry axis (VTI). Beginning with the work by Lyakhovitsky 

and Nevsky (1971), several authors gave analytic expressions (in different notation) 
for NMO velocities of pure modes (P-P, SV-SV, SH-SH) from a horizontal reflector 

(I will omit the qualifiers in “quasi-P-wave” and “quasi~SV-wave”). For P-—waves, 

NMO velocity in a VTI layer depends just on the vertical velocity and parameter 6 

introduced by Thomsen (1986): 

Vamo |P—wave] = Vpp V1 + 26. (1) 

Hake et al. (1984) showed that NMO velocity in layered VTI media is equal 
to the root-mean-square (rms) of the NMO velocities in the individual layers; they 

also presented the corresponding equations for the quartic moveout term of pure 

modes. Normal-moveout velocity in homogeneous VTI models formed by interbed- 

ding of isotropic layers was studied numerically by Levin (1979). Banik (1984) demon- 
strated on North Sea data that the deviation of the P-wave moveout velocity from 

the rms vertical] velocity in anisotropic media may lead to substantial errors in time- 

to-depth conversion. Normal-moveout velocity for converted P-SV-—waves was ex- 

pressed through the moveout velocities of P-P and SV~—SV~-waves by Seriff and 

Sriram (1991). Tsvankin and Thomsen (1994) gave an analytic description of reflec- 
tion moveout in layered VTI media valid for both the short-spread moveout and the 
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nonhyperbolic (long-spread) portion of the moveout curve; their treatment can be 

extended in a straightforward way to symmetry planes of any anisotropic medium. 

Anisotropy distorts not only the moveout in horizontally-layered media, but also 

the NMO velocity for dipping reflectors. In isotropic, homogeneous media the dip- 

dependence of NMO velocity in the dip plane of the reflector is given by (Levin, 

1971) 

Vamo(0) 
cos @ 

Vamo(¢) = ’ (2) 

where ¢ is the dip angle. Deviations from the cosine-of-dip dependence are of pri- 

mary importance in DMO processing, as well as in the inversion for the anisotropic 

parameters. Analytic expressions for the dip-dependent NMO velocity in elliptically 

anisotropic media were presented by Byun (1982) and Uren et al. (1990); however, 
elliptical models are no more than a subset of transversely isotropic media that is not 

typical for subsurface formations (Thomsen, 1986). Levin (1990) carried out a numer- 
ical study of the P-wave NMO velocities for dipping reflectors beneath homogeneous 

TI media and showed that there is no apparent correlation between the magnitude of 

velocity anisotropy and errors in the cosine-of-dip dependence. The same conclusion 

was drawn by Larner (1993) in his modeling study of the P-wave NMO velocities in 
VTI media with vertical-velocity gradient. 

Tsvankin (1995a) derived an equation for NMO velocity from dipping reflectors 

valid for pure modes in any symmetry plane in anisotropic media. He also transformed 

this exact equation into a much simpler expression for weakly anisotropic VTI media 

and gave an analytic explanation for the results of Levin (1990) and Larner (1993). 
Deviations from the cosine-of-dip dependence [equation (2)] in VTI media turned 
out to be primarily controlled by the difference between the Thomsen’s anisotropy 

parameters € and 6. Alkhalifah and Tsvankin (1995) used the moveout equation of 
Tsvankin (1995a) to study NMO velocity for dipping reflectors as a function of the 

ray parameter — the quantity that is easier to obtain from reflection data than the 

dip angle. They showed that for P—waves in VTI media, the dip-dependent NMO 

velocity is described by just two parameters — the zero-dip NMO velocity Vamo(0) 

[equation (1)] and the anisotropic parameter denoted as 7: 

e—6 

1426" (3) 

Alkhalifah and Tsvankin (1995) proved that in VTI media the parameters Vamo(0) 
and 7 are sufficient to perform all time-related processing steps, such as NMO cor- 

rection, dip-moveout (DMO) removal, prestack and poststack time migration. Fur- 

thermore, both parameters can be reliably recovered from P-wave surface data using 

NMO velocities and ray parameters measured for two different dips. Alkhalifah and 

Tsvankin (1995) also generalized the NMO equation of Tsvankin (1995a) to models 
consisting of a stack of anisotropic horizontal layers above a dipping reflector. A more 

  7 
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detailed overview of the moveout analysis in VTI media can be found in Tsvankin 

(1995b). 

The papers mentioned above are focused on the behavior of NMO velocity in trans- 

versely isotropic media with a vertical symmetry axis. The only non-VTI (azimuthally 

anisotropic) model examined by Tsvankin (1995a) is the one with an in-plane sym- 
metry axis normal to the reflector; in this case, in agreement with the numerical 

results of Levin (1990), the isotropic cosine-of-dip dependence remains entirely valid. 

Another type of azimuthal anisotropy discussed in the literature is TI media with 

a horizontal symmetry axis (Thomsen, 1988; Sena, 1991). Reflection moveout for 

horizontal transverse isotropy is studied in detail in a companion paper (Tsvankin, 

I., Inversion of moveout velocities for horizontal transverse isotropy: this volume). 

Here, the NMO equation of Tsvankin (1995a) is used to examine moveout velocity 
in transversely isotropic media with a tilted in-plane axis of symmetry. I demonstrate 

that the tilt of the symmetry axis may lead to the disappearance of specular zero-offset 

reflections from steep interfaces. For the symmetry axis tilted at an arbitrary angle, 

the NMO velocity is studied both analytically and numerically with the emphasis 

on implications for DMO processing and anisotropic inversion. The analysis shows 

that the zero-dip NMO velocity Vimo(0) and parameter 7 are sufficient to describe 
P-wave NMO velocity in a limited range of tilt angles that includes near-vertical and 

near-horizontal orientations of the symmetry axis. 

NMO VELOCITY AND PARAMETRIZATION FOR TI MEDIA 

Normal moveout velocity of pure modes in symmetry planes of any anisotropic 

homogeneous medium is given by (Tsvankin, 1995a) 

_ Vd) Vit vay er 
Vamo(¢) — cos b 1— tan@dV ° (4) 

V() 40 
where V is the phase velocity as a function of the phase angle 6 with vertical, and ¢ is 
the dip angle of the reflector; the derivatives of phase velocity should be evaluated at 

the angle ¢. Equation (4) is valid if the incidence plane coincides with the dip plane 

of the reflector. This assumption makes the problem two-dimensional by eliminating 

out-of-plane components of phase- and group-velocity vectors of the reflected waves. 

If the medium is transversely isotropic (hexagonal), equation (4) can be applied 
in the vertical plane that contains the symmetry axis and, if the symmetry axis is 

horizontal, in the isotropy plane. For an arbitrary mutual orientation of the symme- 

try axis and the incidence plane in TI media, equation (4) can be used only under the 

assumption of weak azimuthal anisotropy. Here, our goal is to study the dependence 

of NMO velocity on the anisotropy parameters and reflector dip for TI media with a 

symmetry axis confined to the incidence plane. To cover all possible mutual orienta- 

tions of the reflector normal and the symmetry axis, the tilt angle v spans the range
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—90° < v < 90°, while the dip ¢ is restricted to positive angles 0° < ¢ < 90°. Thus, 

positive values of vy mean that the axis is tilted towards the reflector, while v < 0 

corresponds to the axis tilted away from the reflector. 

The transversely isotropic model will be described by the Thomsen (1986) param- 

eters defined in the coordinate system associated with the symmetry axis. 

C33 
Vpo = ,/— , 5 PO i , (5) 

C55 
Vso =,/—, 6 50 i| , (6) 

  

_ C11 — C33 ee (7 
2. _ 2 

$= (c13 + C55) (c33 — 55) (8) 

2c33(¢33 — C55) 

_ 66 — C44 

where p is the density, and the elastic constants c;; correspond to the coordinate 

frame with the x3 axis pointing in the symmetry direction. Vpp and Vgo are the P- 

wave and S—wave velocities, respectively, along the symmetry axis; the dimensionless 

anisotropic coefficients €, 6, and -y go to zero in isotropic media. A detailed description 

of notation for transversely isotropic media is given by Tsvankin (1995b). 

P — SV propagation for vertical transverse isotropy is determined by four coeffi- 

cients — Vpo, Vso, €, and 6. P-wave velocities and traveltimes in VTI media depend 

largely on Vpo, €, and 6, while the influence of the shear-wave velocity Vso is prac- 

tically negligible (Tsvankin and Thomsen, 1994; Tsvankin, 1995b). Hence, for TI 

media with a tilted axis of symmetry, P-wave normal-moveout velocity is determined 

by Vpo, €, 6, and the tilt angle v. 

EXISTENCE OF DIPPING EVENTS IN SYMMETRY PLANES OF 
ANISOTROPIC MEDIA 

Before studying the dip-dependence of NMO velocity, we have to find out whether 

it is possible to record dipping events for the full range of dips in anisotropic models. 

The wavefront excited by a point source in homogeneous, isotropic media is spherical 

with the rays normal to the wavefront. This means that for any dip from 0 to 

90 degrees there exists a section of the wavefront parallel to the reflector. This 

section generates the normal-incidence (zero-offset) reflection that will be recorded 
at the source location; likewise, there always exists a specular reflection for non-zero 

source-receiver offsets. For a vertical reflector that extends all the way to the surface, 
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the raypaths of the reflected waves are horizontal, and the traveltimes in the CMP 

geometry are independent of offset, which implies that the normal-moveout velocity 

becomes infinite. For any other dip in the range from 0 to 90 degrees NMO velocity 

has a finite value. This is corroborated by the familiar cosine-of-dip dependence of 

NMO velocity in isotropic media [equation (2)] that can be obtained from equation (4) 
by setting V(0) = const. 

Angular velocity variations in anisotropic media distort the shape of the wavefront 

and the angular distribution of the wavefront normals. However, for the special cases 

of vertical (VTI) and horizontal (HTI) orientations of the symmetry axis in TI media, 
we still have no “gaps” in the dip coverage of reflection data. Since the phase- and 

group-velocity vectors coincide with each other in the vertical and horizontal direction, 

the wavefront contains the full range of phase angles, despite all wavefront distortions 

at oblique angles of incidence (SV-wave cusps are not discussed here). Also, as for 
isotropic media, NMO velocity in VTI and HTI models becomes infinite for a vertical 

reflector. Indeed, the denominator in expression (4) for normal-moveout velocity can 
be represented as 

va ae) = cos sing dV 

Since for both vertical and horizontal symmetry axes the derivative of phase velocity 

at ¢@ = 90° goes to zero, the denominator D vanishes for a vertical reflector. 

The situation becomes much more complicated if the symmetry axis is tilted 

(within the incidence plane) at an arbitrary angle. It is still true that the wavefront 
from a point source in a homogeneous anisotropic halfspace contains the full 90- 

degreee range of group (ray) angles in any quadrant, but not necessarily the full 

range of phase angles that determine the direction of the wavefront normal. As a 

result, for some anisotropic models there are no wavefront normals perpendicular 

to dipping reflectors within a certain range of dips and, therefore, no corresponding 

zero-ofiset and small-offset reflections. Of course, this argument is based on the 

geometrical-seismics approximation; even in the absence of the specular reflection, 

the seismogram at the source location will contain some reflected energy that does 

not travel along the geometrical raypath. However, unless the reflector is close to the 
surface, we cannot expect this non-specular reflection energy to be significant. 

Figure 1 shows a typical P—wavefront for a symmetry axis tilted towards the 

reflector. Due to the increase in the phase and group velocity from the symmetry axis 

towards horizontal, the maximum angle between the wavefront normal and vertical in 
the lower right quadrant is limited to dna, — the value corresponding to the horizontal 

ray. There are no wavefront normals in the angular range dmax < ¢ < 90° and, 

therefore, no specular reflections for dips larger than ¢max. 

To find the maximum dip that would generate a specular reflection, let us express 

the group-velocity vector in the incidence [z, z] plane through the phase velocity and 
phase angle (Berryman, 1979):
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Fic. 1. The wavefront for a transversely isotropic medium with a symmetry axis 
tilted towards the reflector. The increase in phase and group velocity away from the 
symmetry axis in this model reduces the angular range of the wavefront normals. The 
maximum phase (wavefront) angle in the right lower quadrant is @nax < 90°. 

Vip = (V sind + cos6)i + (V cosd —  sind)z. (11) 

The ray direction is horizontal if the vertical (z) component of group velocity is 
zero: 

cos 9 — —_—_ =0. (12) 

In the absence of cusps, equation (12) has two solutions (different by +180 de- 

grees) corresponding to the phase angle for the horizontal ray. For typical wavefronts 

with a monotonic change in the phase angle from the horizontal to the vertical ray, 
equation (12) determines the maximum phase angles for the two lower quadrants. 
Thus, we can use equation (12) to find the largest dip @max for which we can record 

a specular reflection in the medium with the phase-velocity function V(6) (assuming 
that the reflector starts at the surface). 

In terms of NMO equation (4), the absence of phase angles corresponding to a 
certain range of dips results in the zero and negative values of the denominator and, 
consequently, in infinite or non-existent NMO velocity. To understand the physical 

meaning of the denominator D [equation (10)], note that it becomes identical to 
the left-hand side of equation (12) if we substitute 9 = ¢. This implies that D is 
proportional to the vertical component of the group-velocity vector corresponding to
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the phase angle ¢ equal to the reflector dip. Therefore, D vanishes if the zero-offset 

ray that corresponds to the phase-velocity vector normal to the reflector is horizontal 

(as for dip ¢max in Figure 1). In other words, NMO velocity becomes infinite if the 

zero-offset reflected ray (along with non-zero-offset rays) travels along the horizontal 

(common-midpoint) line. For larger dips, as explained above, specular reflections do 

not exist at all. 

An example of a wavefront that contains the full range of phase angles in the 

quadrant of interest is shown in Figure 2. Although the wavefront in Figure 2 has the 

same shape as in Figure 1, the symmetry axis is now tilted away from the reflector; we 

would have had the same situation in Figure 1 had the reflector been located to the 

left of the source. For the case displayed in Figure 2, the phase-velocity vector of the 

horizontal ray [¢max is a solution of equation (12)] points upwards, and it is possible 

to record specular reflections not only from any dip in the 0-90 degree range, but also 

for dips between 90 degrees and ¢max, if the aperture is sufficient. We conclude that 

anisotropy can make it possible to record reflections from overhang structures even 

in the absence of velocity gradient. 

2, @e
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Fic. 2. The wavefront for the same TI medium as in Figure 1 but with a symmetry 
axis tilted away from the reflector. The direction of the wavefront normal in the 
lower right quadrant not only spans the full 0-90 degree range but also includes 
angles beyond 90 degrees. The angle v between the symmetry axis and vertical is 
taken to be negative if the symmetry axis is tilted away from the reflector. 

In the above discussion we assumed a homogeneous anisotropic medium. Some 

of our conclusions are still valid for the so-called factorized anisotropic media (e.g., 

Larner, 1993) with a vertical velocity gradient. In factorized models the ratios of the 

elastic constants are independent of spatial position and, consequently, the shape of 
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the slowness surface and the relation between the phase and group velocity remains 

the same throughout the medium. As a result, for factorized TI media with the same 

shape of the slowness surface as for the model in Figure 1, the downgoing wavefield 

in the lower right quadrant still cannot contain phase (wavefront) angles exceeding 

¢max- However, the upgoing wavefield formed due to the ray bending does include the 

missing phase angles in the range ¢max < 9 < 90°, as well as phase angles beyond 90 

degrees. Therefore, in such a medium zero-offset reflections for dips ¢max < ¢ < 90° 

represent turning rays that exist only for appropriate spatial positions of the reflector 

with respect to the source. 

NMO VELOCITY AS A FUNCTION OF DIP ANGLE 

The results of Tsvankin (1995a) and Alkhalifah and Tsvankin (1995) indicate 
noticeable differences in the dependence of normal-moveout velocity for dipping re- 

flectors on the dip angle and ray parameter. Although for the purposes of seismic 

processing it is more convenient to use the ray parameter as the argument, the de- 

pendence of NMO velocity on the dip angle still deserves a separate discussion. I 

begin with considering the special case of elliptical anisotropy, which is relatively 

easy to treat analytically. Then, NMO equation for general (non-elliptical) trans- 

verse isotropy with the axis of symmetry rotated at an arbitrary angle is simplified 

by means of the weak-anisotropy approximation. Comparison of the weak-anisotropy 

and exact numerical results elucidates the dip-dependence of NMO velocity for a 

range of TI models with a tilted symmetry axis. 

Elliptical anisotropy 

Transverse isotropy always means elliptical anisotropy for the SH—wave, while for 

P — SV-waves elliptical media represent just the subset of TI models that satisfy 

e = 6. Although existing data indicate that elliptical anisotropy is not typical for 

TI formations, such as shales (Thomsen, 1986; Sayers, 1994), it is still instructive to 

examine this special case separately. 

As shown in Appendix A, NMO velocity for P—waves in elliptical media with tilted 

elliptical axes is given by 

. . -1 

Vamo(}) = 122 VT496 1 + 26sin%(o —v) f ~ 26 se sg) . (13)   

cos cos d 

Equation (13) coincides with the normal-moveout equation by Uren et al. (1990) 
obtained using a different approach and presented in a different notation. 

For a vertical symmetry axis (v = 0) equation (13) reduces to the expression 
discussed by Tsvankin (1995a): 

/ a) Vemno() = Vpp V1 4+ 26 1/1 + 26sin e (14) 

cos ¢
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Substituting the P-wave phase velocity Vp, equation (14) can be rewritten as 

Vamo(¢) cos og _ Vp() 

Vamo(0) Vpo 

Equation (15) shows that if the elliptical axes are not tilted, the error in the cosine- 
of-dip dependence is determined directly by the phase-velocity variations. 

(15) 

If the reflector is horizontal (¢ = 0), equation (13) reduces to 

V¥1+26 26 cos? v 
0. == = Veo 1+ —~— : 
V1 + 26 sin? v 1+ 26 sin“ v 

Let us compare NMO velocity from equation (16) with the horizontal phase ve- 

locity 

Vamo(0) = Vp (16) 

Vhaor = Veo V1 + 26 cos? v. (17) 

Equations (16) and (17) confirm the well-known fact that for a model with a 
vertical (or horizontal) elliptical axis (v = 0 or vy = 90°), NMO velocity from a 
horizontal reflector is equal to the horizontal velocity. Although this is no longer 

strictly true for elliptical models with tilted axes, the difference between the two 

velocities is small since they coincide in the weak-anisotropy approximation. Indeed, 

for weak anisotropy (6 < 1) we can drop the terms quadratic in 6, and 

Vamo(0) = Vpo (1 + 6 cos? v) = Vior « (18) 

Thus, in elliptical media NMO velocity from a horizontal reflector remains close 

to the horizontal phase velocity, whether the elliptical axes are tilted or not. 

Equation (13) for an arbitrary tilt of the symmetry axis can also be simplified 

under the assumption of weak anisotropy (6 < 1): 

Vpo 
cos d 

sin sin(? — v) 
Vamo(¢) = 14+64+6 sin?(¢ —v) +26   

cos } (19) 

Figure 3 shows that the tilt has a significant impact on the dip-dependence of 

NMO velocity. To separate the influence of the anisotropy, the curves in Figure 3 are 

normalized by the isotropic equation (2). When one of the elliptical axes is vertical 
(v = 0 or v = 90°), deviations from the cosine-of-dip relationship are entirely con- 
trolled by the phase-velocity variations [equation (15)]. Since the difference between 
the vertical and horizontal velocity for the model in Figure 3 is close to 20 percent, the 

anisotropy-induced error in the cosine-of-dip relationship for both v = 0 and v = 90° 

is relatively small. In contrast, for the symmetry axis tilted at 45 and —45 degrees 

the anisotropic signature is much more pronounced. Note that at v = 45° the NMO 

10
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e=6=0.2 (Elliptical) 
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Fic. 3. The dip-dependence of P-wave moveout velocity for elliptical anisotropy 
(e=5=0.2). The dotted curve is the exact NMO velocity calculated from equa- 
tion (13); the dashed curve is the weak-anisotropy approximation from equation (19). 
Both curves are normalized by Vimo(0)/cos¢, where Vamo(0) is the exact NMO ve- 
locity for a horizontal reflector. 

velocity goes to infinity at dips below 90 degrees since the section of the wavefront 

propagating towards the reflector does not contain the full range of the phase angles; 

this was discussed in detail in the previous section. 

In general (non-elliptical) VTI media with e 4 6, equations for elliptical anisotropy 

are valid only for the SH-wave. Our moveout analysis for the elliptical P-wave 

remains entirely valid for the SH—wave if we replace Vpg with Vso and 6 with y. For 

instance, the exact NMO equation (13) for the SH—wave takes the form 

  Vs 
cos 

sinv sin(¢ — v) 7 
Vamo(¢) [SH] = cos d 

  gvit% 1 + 2ysin*(¢ — v) 1 — 27 

(20) 
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For SV—waves, the elliptical condition (« = 6) implies that the phase and group 
velocity are independent of angle (however, SV—wave amplitudes can still be distorted 

by the anisotropy). Therefore, the NMO velocity for the SV—wave in elliptical media 

is described by the familiar isotropic cosine-of-dip dependence (2). 

Weak transverse isotropy 

The exact normal-moveout equation (4) is too complex (especially, when the sym- 

metry axis is tilted) to separate the contributions of the anisotropy parameters to 

the NMO velocity. For the sake of qualitative moveout analysis, it is convenient to 

assume that the anisotropic coefficients are small and apply the weak-anisotropy ap- 

proximation. The P-wave NMO velocity, linearized in the parameters € and 6, is 

derived in Appendix B: 

Vamo(¢) cos = Vpo{1+6+ dsin? 6 + 3(€ — 5) sin? ¢(2 — sin? }) 

2sinv sind oT 
cosh [6 + 2(e _- 6) sin oj}, (21) 

where 6 = o—v. 

For v = 0, equation (21) reduces to the expression given by Tsvankin (1995a) for 
vertical transverse isotropy: 

Vamo(¢) cos(¢) = Vpo[1 + 6 + dsin? ¢ + 3(e — 6) sin? ¢(2—sin?¢)]. (22) 

The terms on the first line of equation (21) have the same form as VTI equa- 
tion (22) but with the dip angle ¢ replaced by the difference ¢ — v. The last term 
of equation (21) is a pure contribution of the tilt of the symmetry axis; note that 
it goes to zero not only for vy = 0, but also for the dipping reflector normal to the 

symmetry axis (¢ = 0). In the latter case, as demonstrated by Tsvankin (1995a), the 
dip-dependence of NMO velocity is described by the isotropic cosine-of-dip equation. 

For another special case of a horizontal symmetry axis (v = 90°), NMO veloc- 

ity (21) reduces to the following equation discussed in detail in the companion paper 

(this volume): 

Vamo(¢) cos(¢) = Vamo(0) [1 — 6 sin? ¢ + 3(e — 6) sin? ¢d ( —sin’?¢)]. (23) 

For a horizontal reflector (¢ = 0) and an arbitrary tilt angle, the P-wave NMO 
velocity becomes 

Vamo(0) = Vpo [1 + 6 — 6sin® v + (€ — 6) sin? v (7cos? v — 1)}. (24) 

12
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Equation (24) shows that the contribution of tilt to the expression for the zero-dip 

NMO velocity is mostly controlled by the difference e—6. The ratio of the cosine-of-dip 

corrected NMO velocity [equation (21)] and the zero-dip value Vimo(0) determines the 
error in the dip-dependence of NMO velocity caused by the anisotropy. The presence 

of a separate “tilt” term in equation (21), as well as the form of the argument (¢— v) 
in other terms, are indicative of a strong influence of tilt on the dip-dependence of the 

P-wave NMO velocity. Since the “tilt” term depends on € and 6 separately, we can 

no longer expect that deviations from the cosine-of-dip dependence will be controlled 

just by the difference between ¢€ and 6, as was the case in VTI media. This conclusion 

is supported by the numerical results below. 

To study the SV—wave NMO velocity, it is convenient to introduce parameter o 

(Tsvankin and Thomsen, 1994): 

o= 2) («—6) (25) 
Vso 

Then the weak-anisotropy approximation for SV—waves can be obtained from P- 

wave equation (21) by making the following substitutions (Tsvankin, 1995a): Vso = 
Vso, 6 = 0, and € = 0: 

Vamo(¢) coed = V9 {1+o + csin? 6 — 3csin? d (2 — sin’ ¢) 

sin v sin ¢ cos 2¢ 
20 ——_—_—_—_—__ } . 26 + 20 cos b } (26) 

As discussed above, for the SH-—wave anisotropy is elliptical, and the NMO ve- 

locity is given exactly by equation (20). 

Numerical results for general transverse isotropy 

Figures 4 and 5 show the comparison between the exact P-wave NMO velocity (4) 
and the weak-anisotropy approximation (21) at different tilt angles for two media with 
small and moderate values of the anisotropic parameters € and 6. For both models, 

as expected, the accuracy of the weak-anisotropy approximation is quite satisfactory 

at all tilt angles. 

It is interesting that for the model parameters used in Figure 5 the NMO velocity 

is identical for vy = +45, and also for vy = 0 and v = 90°. This is explained by the 

vanishing € for this model; if € = 0, the P and SV phase velocities are symmetric with 

respect to the 45-degree angle with the symmetry axis. In this case the phase velocity 

and, consequently, the NMO velocity do not change when we rotate the symmetry 

axis by 90 degrees. 

Figures 4 and 5 also demonstrate that the behavior of P-wave NMO velocity is 
strongly dependent on the sign of e—6. For vertical transverse isotropy, the difference 

13
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Fic. 4. Cosine-of-dip corrected P-wave normal-moveout velocity for e=0.2 and 6=0.1. 
The dotted curve is the exact NMO velocity calculated from equation (4); the dashed 
curve is the weak-anisotropy approximation from equation (21). 

€— 6 is believed to be predominantly positive (Sayers, 1994; Tsvankin and Thomsen, 

1994). The same is true for TI media with a horizontal symmetry axis due to a 

system of vertical parallel cracks (see the companion paper, this volume). Thus, we 

can assume that ¢€ — 6 is typically positive for intermediate tilts as well. Note that 

€ — 6 > 0 for transverse isotropy due to the interbedding of thin isotropic layers 

(Berryman, 1979), whether the layers are horizontal or tilted. 

Figure 6 illustrates the influence of tilt on the P-wave NMO velocity for three 
models with a typical positive « — 6. As predicted by the weak-anisotropy approx- 

imation, the tilt causes profound changes in the character of the NMO curves. If 

the symmetry axis is tilted towards the reflector (v > 0), the cosine-of-dip corrected 

NMO velocity remains almost flat in the range 0 < ¢ < v and then increases for 

steep dips. A “negative ” tilt v < 0 that corresponds to the symmetry axis tilted 

away from the reflector reverses the NMO curve and makes the cosine-of-dip corrected 

NMO velocity decrease with dip. This type of behavior for a vertical symmetry axis 
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FIG. 5. Cosine-of-dip corrected P-wave normal-moveout velocity for e=0 and 6=0.1. 
The dotted curve is the exact NMO velocity [equation (4)]; the dashed curve is the 
weak-anisotropy approximation (21). 

can be caused by a negative value of e — 6. Also, when the symmetry axis is tilted, 

the dip-dependence of the P-wave NMO velocity is no longer fully controlled by the 

difference ¢—6; the influence of the individual values of € and 6 is especially significant 

for a tilt of 45 degrees. 

Deviations of the P-wave NMO curves from those for vertical transverse isotropy 

become pronounced at relatively mild tilts (Figure 7). Only for tilt angles up to 

+(10-—15) degrees the dip-dependence of NMO velocity is close to that for VTI media. 
A tilt of +20 degrees is sufficient to cause substantial changes in the NMO curves, 

with negative v leading to a decrease in Vjmo with angle at steep dips. For v = 20° 
the NMO velocity increases sharply at ¢ > 50° as the dip approaches the maximum 

phase angle ¢,,2x contained in the wavefront for this model (see the discussion above). 
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Fic. 6. The dip-dependence of the exact cosine-of-dip corrected P-wave NMO ve- 
locity for models with « — 6=0.2: e=0.1, 6=—0.1 (black); e=0.2, 6=0 (gray); e=0.3, 
6=0.1 (dashed). 

NMO VELOCITY AS A FUNCTION OF RAY PARAMETER 

Since reflection data do not carry explicit information about the dip angle, for 

application in seismic processing equation (4) should be rewritten as a function of the 

ray parameter p(¢) corresponding to the zero-offset reflection: 

1 dtp sing 
p(?) -=57. ’ 

2dtq V(¢) 

where to(xq) is the two-way traveltime on the zero-offset (or stacked) section, and 29 
is the midpoint position. The dip angle in equation (4) can be replaced by the ray 

parameter in a straightforward fashion using phase-velocity equations for transverse 

isotropy. 

  (27) 

Let us begin by considering the simplest elliptically anisotropic model. In the 
previous section it was demonstrated that the tilt of the elliptical axes has a significant 
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influence on the dip-dependence of normal-moveout velocity. However, if represented 

through the ray parameter, the NMO velocity for elliptical anisotropy takes exactly 

the same form as in isotropic or VTI media (Appendix A): 

_ __Vamo(0) 
Vee) VB) " 

It is somewhat surprising that the dependence of NMO velocity on the ray param- 

eter in elliptically anisotropic models remains exactly the same as in isotropic media 

irrespective of the tilt of the elliptical axes. The contribution of anisotropy (including 

the tilt) in equation (28) is hidden in the values of the zero-dip NMO velocity Vamo(0) 
[equation (16)] and the ray parameter p. Since the moveout for elliptical anisotropy 
with any orientation of the axes is purely hyperbolic (Uren et al., 1990), all isotropic 

time-related processing methods (NMO, DMO, time migration) are entirely valid in 
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elliptical media. These conclusions, as well as equation (28), are fully applicable to 

the SH-—wave because S H-—wave anisotropy in transversely isotropic media is always 

elliptical. 

Equation (28) also implies that deviations from the isotropic Vamo(p) dependence 
for any tilt should be primarily controlled by the difference e — 6 that quantifies the 

degree of “nonellipticity” of TI media. It is clear, for instance, that the anisotropic 

term in the weak-anisotropy approximation for Vamo(p) should contain € and 6 only in 

the combination e — 6. Otherwise, this term would not vanish for elliptical anisotropy 

that corresponds to € = 6. 

Next, I consider the parameters that control the dependence of the P-wave NMO 

velocity on p. The P-wave phase velocity can be represented as a product of the 

velocity in the symmetry direction (Vpo) and an anisotropic term dependent on the 

tilt vy and the anisotropic parameters € and 6. Then, according to equation (27), the 
phase angle ¢ can be written as 

& = f(pVro, €, 6, v) , 

and the list of the parameters of Vamo from equation (4) can be represented as 

Vamo = Vpo fi(?, €, 5, ¥) = Veo fa(pVeo, €, 4, v). 

Therefore, the NMO velocity divided by the zero-dip value can be represented by 

Vamo(P) 

Vamo(0) 

Equation (29) shows that the normalized NMO velocity is independent of Vpo, while 
the contributions of the ray parameter and the zero-dip NMO velocity are absorbed by 

the term pVjmo(0). Essentially, changes in Vimo(0) (for fixed anisotropic coefficients 

and tilt) just stretch or squeeze the NMO velocity curve expressed through the ray 

parameter. Therefore, in the calculations below I use pVamo(0) as the argument and 

study the influence of the parameters ¢, 6 and vy on the NMO velocity. 

= f3(pV po, €, 6, v) = f4(pVamo(0), €, 6, v) . (29) 

Since the function Vamo(p) is of primary importance in DMO processing, in the 

following I will call the dependence of the P-wave NMO velocity on the ray parame- 

ter “the dip-moveout (DMO) signature.” Hereafter, the NMO velocity is calculated 
as a function of pVamo(0) from equation (4) and is normalized by the isotropic ex- 
pression (28) to demonstrate the distortions in the DMO signature caused by the 

anisotropy. 

Figure 8 proves that the influence of the shear-wave velocity Vsg on the P-wave 

normal moveout, ignored in equation (29), is indeed small. Some difference between 

the NMO velocities for the two models that span a wide range of Vpo/Vso ratios is 

noticeable only for a horizontal symmetry axis (v = 90°). However, this separation 
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Dependence on S-wave Velocity 
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between the curves is mostly caused by a small influence of Vso on the zero-dip NMO 

velocity Vamo(0). The difference in Vimo(0) leads to a small horizontal shift between 

the curves which gets amplified when the NMO velocity is divided by the isotropic 

equation (28). 

The normalization by equation (28), equivalent to the replacement of the true dip 
with an “apparent” dip angle (Larner, 1993; Tsvankin, 1995a), leads to substantial 
changes in the character of the NMO curve. Comparison of Figure 9 with Figure 6 
shows that these changes are especially pronounced for positive vy that correspond to 

the symmetry axis tilted towards the reflector. For instance, at a tilt of 45 degrees 

and the 45-degree dip, the value of pVamo(0) that represents the sine of the apparent 
dip angle is close to 0.9, which is far different from sing = 0.71. With a further 

increase in dip, pVamo(0) approaches unity (both for vy = 45° and v = —45°), and the 
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isotropic expression (28) goes to infinity at dips well below 90 degrees, leading to the 

small values of the normalized NMO velocity (Figure 9). 

Note that the influence of the anisotropy on the P-wave NMO velocity is almost 

the same for vertical (v = 0) and horizontal (v = 90°) orientations of the symmetry 
axis, if the ray parameter is used as the argument. Another important feature of 

the NMO curves in Figure 9 is the reversal of the P-wave signature at intermediate 
tilt angles (v = 445°). Even a tilt of + 20 degrees is sufficient to eliminate a sharp 
increase in the normalized NMO velocity typical for vertical transverse isotropy (Fig- 

ure 10). This conclusion holds for other transversely isotropic models with typical 

small and moderate values of « and 6. Therefore, mild tilts of the symmetry axis in 

both directions reduce the influence of the anisotropy on Vamo(p). For a tilt of + 20 
degrees, the DMO signature is almost isotropic for a wide range of reflector dips. 
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PARAMETER 7 FOR TILTED AXIS OF SYMMETRY 

For vertical transverse isotropy, the dependence of the P-wave NMO velocity on 

the ray parameter is controlled by a combination of the anisotropic coefficients that 

Alkhalifah and Tsvankin (1995) denoted as 7 [equation (3)]. This result makes it 
possible to reduce the number of parameters in time-related P—wave processing to 

just two (Vamo(0) and 7), which greatly facilitates the practical implementation of 
processing and inversion algorithms in VTI media. 

If the symmetry axis is tilted, the function Vamo(p) (for the P-wave) depends on 
PVamo(0), €, 6, and the tilt v [equation (29)]. The question to be addressed next 
is whether the influence of € and 6 on the NMO velocity is still absorbed by the 

parameter 7. Note that for small 6 the parameter 77 is close to the difference € — 6, so 

the plots for constant « — 6 given in the previous section contain a partial answer to 
this question. For instance, in Figure 9 we do see some separation between the curves 
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with the same € — 6, but the general behavior of the NMO velocity for fixed € — 6 is 

similar. Figure 11 reproduces the result from Figure 9, but this time the values of 6 

were adjusted to make 7 = 0.2 for all three models. Evidently, the curves moved much 

closer to each other, although a perfect coincidence of the NMO velocities for the full 
range of dips was achieved only for VTI media (v = 0). Since a detailed discussion of 

the signature for horizontal transverse isotropy is given in the companion paper (this 

volume), in the following I focus on intermediate tilt angles. 

Figure 12 shows the normal-moveout velocity at the same tilt angles as in Fig- 
ure 11 but for variable values of 7. While for vertical and horizontal orientations 

of the symmetry axis 7 has a pronounced influence on the NMO-velocity curves, at 

intermediate tilt angles the resolution in 7 is considerably lower. For v = +45° the 
difference between the curves corresponding to 7 = 0.2 and 7 = 0.3 is relatively small 

(Figure 12). 

As discussed above, for weak anisotropy deviations of the P-wave NMO velocity 
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from the isotropic dependence (28) are proportional to the difference « — 6, which 

is close to 7 for small € and 6. This is illustrated by Figure 13 that shows that at 

intermediate tilts the normalized NMO velocity is almost proportional to 7 for small 

values of this parameter. However, with increasing 7 this is no longer the case, and 

the curves for 0.15 < 7 < 0.3 are relatively close to each other (Figures 12 and 13). 

Apparently, at v = +45° the influence of the terms quadratic in the anisotropic 

coefficients leads to a more complicated relation between NMO velocity and 7. We 

conclude that with increasing 7 the NMO velocity at intermediate angles becomes 

much less sensitive to this parameter, as well as to the coefficients « and 6. While for 

relatively small 7 the inversion of the NMO velocity for 7 and dip-moveout processing 

can be performed in same fashion as in VTI media (provided the tilt is known), the 

approach developed for vertical transverse isotropy cannot be used for values of 7 on 

the order of 0.15 and higher. 

The profound differences between the dip-dependence of NMO velocities for verti- 

cal transverse isotropy and TI media with a tilted axis of symmetry makes it necessary 

to study the transition between the two signatures at mild tilt angles. As we have 

seen in the previous section, a tilt of 20 degrees is sufficient to completely eliminate 

the increase in the normalized NMO velocity typical for vertical transverse isotropy. 

Figures 14 and 15 show that the tilt should not exceed 10-15 degrees for the character 

of the normalized P-wave NMO velocity to be close to that in VTI media. For small 

tilt angles within this range, the NMO velocity grows with p much faster than in 

isotropic media, and this increase is largely governed by 7. However, it should be 

mentioned that even for vy = £10° the anisotropic signature is less pronounced than 

for VTI media and the 7 control over the DMO signature is less tight. At tilt angles 
of about +20 degrees, Vamo(p) becomes even less dependent on 7 with the DMO sig- 

nature being relatively close to isotropic for a wide range of dips. For larger tilts, the 

signature gets reversed, and the normalized NMO velocity decreases with p. 

DISCUSSION AND CONCLUSIONS 

Transverse isotropy with a tilted axis of symmmetry may be typical, for instance, 

for sedimentary formations near the flanks of salt domes. Here, the behavior of 

normal-moveout velocity was studied in the plane of TI media that contains the 

symmmetry axis. In addition to distorting the values of NMO velocities, the influence 

of tilt leads to profound changes in the structure of the reflected wavefield. For 
homogeneous TI models with a symmetry axis tilted towards the reflector and typical 

values of the anisotropic parameters, it is impossible to generate specular zero-offset 

reflections for a certain range of steep dips that depends on the shape of the wavefront. 

If the medium is factorized with vertical velocity gradient, the “missing” dips can be 

imaged only using turning rays, although the corresponding reflectors are sub-vertical. 

In a different situation, typical for the symmetry axis tilted away from the reflector, 

anisotropy can produce specular zero-offset reflections from overhang structures in 

the absence of velocity gradient. These phenomena may cause serious complications 

26



Tsvankin Moveout in TI media with a tilted axis 

in the imaging of such steep structures as salt domes or volcanic intrusions. 

The dependence of normal-moveout velocity on the tilt angle was studied using the 

equation of Tsvankin (1995a) valid for any strength of the anisotropy. A concise NUO 

approximation, obtained from the exact equation in the limit of weak anisotropy, 

helps to understand the influence of the tilt and anisotropic parameters on the NUO 

velocity for all wave types. While the “tilt” term in the expression for the normal- 

moveout velocity from horizontal reflectors is mostly determined by the difference 

between ¢€ and 6, the influence of tilt on the dip-dependence of NMO velocity is much 

more complex. 

For purposes of seismic inversion and processing, NMO velocity from dipping re- 

flectors should be studied as a function of the ray parameter p (we call the dependence 

Vamo(p) the “DMO signature”). For vertical transverse isotropy, the P-wave DMO 
signature is controlled by just two effective parameters — the zero-dip NMO velocity 

Vamo(0) and the anisotropic parameter 7. The same two coefficients determine the 

time-migration impulse response and, therefore, are sufficient for all time-related pro- 

cessing methods (Alkhalifah and Tsvankin, 1995). The reduction in the number of 
independent parameters made it possible to develop practical and efficient methods of 

P-wave velocity analysis and time-domain processing in VTI media (e.g., Anderson 

and Tsvankin, 1995). Therefore, it is important to find out whether 7 or another 

effective parameter still absorbs the influence of the anisotropic coefficients for TI 

models with a tilted symmetry axis. 

If the medium is elliptically anisotropic (« = 6, 7 = 0) with tilted elliptical 
axes, the dependence Vjmo(p) is shown to be described by the same equation as 

in isotropic media. Since the reflection moveout in elliptical media is purely hyper- 

bolic, all isotropic time-related processing methods (NMO, DMO, time migration) 
are entirely valid for elliptical anisotropy with any orientation of the elliptical axes. 

Time-to-depth conversion, however, requires knowledge of the vertical velocity that 

cannot be found from moveout data alone. It should be mentioned that the NMO 

velocity from horizontal reflectors in elliptical models remain close to the horizontal 

phase velocity. 

Since for equal values of € and 6 the function Vimo(p) is the same as for isotropy 

or elliptical anisotropy, deviations from the isotropic DMO signature in the weak- 

anisotropy approximation are determined by the difference € — 6 & n. The numerical 

results confirm that for relatively small values of € and 6 the P-wave DMO signature 

depends just on 7 and the tilt angle. However, due to the inflence of the higher- 

order anisotropic terms at intermediate tilt angles, this conclusion does not hold if 

the coefficients €, 6, or 7 exceed 10-15 percent. 

On the whole, the dependence of the NMO velocity on the ray parameter has the 

same character as for vertical transverse isotropy only for a narrow range of tilt angles 

corresponding to near-vertical and near-horizontal orientations of the symmetry axis. 

As shown in the companion paper (this volume), for horizontal transverse isotropy 

the NMO velocity is controlled by the parameter 7 of the “equivalent” VTI medium, 

27



Tsvankin Moveout in TI media with a tilted axis 

which is relatively close to the generic value of 7. For mild tilts away from vertical, the 

behavior of the P-wave NMO velocity is similar to that in VTI media: Vimo increases 

with p much faster than in isotropic (or elliptically anisotropic) media and is tightly 

controlled by 7 (at a fixed tilt v). However, the comfortable limit for applying the 

approaches developed for VTI media is only about v = +10°. A tilt of +20 degrees is 

sufficient to eliminate the anisotropic DMO signature almost entirely and make the 

NMO velocity much less dependent on 7. At larger tilts of +(30 — 55)°, the signature 

gets reversed, with Vimo(p) increasing slower than in isotropic media. Although at 

these “intermediate” tilt angles the NMO curves for a fixed 7 are relatively close to 

each other, with increasing 7 the NMO velocity becomes much less sensitive to this 

parameter, as well as to the coefficients € and 6. 

Provided that the tilt angle is known, the dependence Vimo(p) can be reliably 

inverted for 7 only for the the symmetry axis close either to vertical or to horizontal. 

Also, 7 can be obtained in the +(30 — 55)° tilt range, but only for small values 
of the anisotropic parameters. An interesting implication of the above results is 

the possibility to use the DMO signature in the inversion for the orientation of the 

symmetry axis. In general, this inversion would require a 3-D azimuthal analysis of 

reflection traveltimes on survey lines with different direction. However, if the plane 

that contains the symmetry axis has been determined, the strong dependence of the 

P-wave NMO velocities on the tilt angle sometimes can be used to constrain the 

tilt. For instance, if the formation has a known value of 7 (say, a typical positive 

value for shales), the disappearance of the anisotropic DMO signature is indicative 

of a tilt of about +20 degrees. If the signature gets reversed (i.e., the normalized 

NMO velocity decreases with p), the tilt should be on the order of +30 degrees or 

more. Note that the influence of the anisotropy on the P-wave function Vamo(p) 

can also be reduced by a positive vertical-velocity gradient (Larner, 1993; Tsvankin, 

1995). Hence, the estimation of the tilt angle would be impossible without properly 

accounting for vertical inhomogeneity. 

The substantial magnitude of deviations of the P-wave DMO signature from 
the isotropic one in several ranges of tilt angles means that conventional isotropic 

DMO cannot be applied to many typical transversely isotropic models. Some exist- 

ing anisotropic dip-moveout algorithms based on the exact NMO equation (4) can 
be directly used in the symmetry plane of TI media with a tilted symmetry axis. 

For instance, the Hale-type DMO method of Anderson and Tsvankin (1995) is de- 
signed for any symmetry plane in arbitrary-anisotropic media. The main problem in 

the application of anisotropic DMO to TI media with a tilted axis of symmetry is 

estimation of the anisotropic parameters. Although the DMO signature is not fully 

controlled by 7 and the tilt may not be exactly known, it may still be possible to 

find an “effective” transversely isotropic model by fitting measurements of Vimo(p) to 
the theoretical curves computed from equation (4). The anisotropic parameters and 

the tilt angle provide extra degrees of freedom in the NMO equation, thus making 

this approach feasible. However, the parameters recovered from the fitting procedure 
would represent just one possible anisotropic model that would be suitable for DMO 
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processing but not necessarily for poststack migration, or for interpretation of the 

amplitude variation of offset (AVO) response. 

Although the above analysis was performed for a single transversely isotropic 

layer, the results can be extended to vertically inhomogeneous media by using the 

generalized Dix equation of Alkhalifah and Tsvankin (1995). This equation is valid in 
symmetry planes of any anisotropic model that consists of a dipping reflector beneath 

a vertically statified overburden. Each layer, for instance, can be transversely isotropic 

with an in-plane symmetry axis tilted at an arbitrary angle. The normal-moveout 

velocity for such a model will be represented by a combination of the single-layer 

NMO velocities that were discussed in this paper. 
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APPENDIX A: NMO VELOCITY FOR ELLIPTICALLY 
ANISOTROPIC MEDIA 

Here, we obtain normal-moveout velocity for elliptically anisotropic media with 

tilted in-plane elliptical axes using equation (4). To satisfy the assumptions behind 
equation (4), we also assume the incidence plane to be the dip plane of the reflector. 

For elliptical anisotropy, P-waves are described by a single anisotropic parameter 

6 (« = 6). If the symmetry axis makes the angle v with vertical, the P-wave phase- 
velocity function is given by 

Vp(0) = Veo ¥1 + 26sin? 6, (A-1) 

6 = 0 — v, Vpo is the P-wave phase and group velocity along the symmetry axis. 

Note that both @ and v may be either positive or negative; we will assume that the 

positive direction is counterclockwise from the vertical axis that points downward. 

The derivatives of the phase velocity needed to evaluate the NMO velocity (4) are 
obtained from equation (A-1) as 
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dVp(6) _ Vpo 6 sin 20 
  

dO (1+. 26 sin? 9)1/2’ (A-2) 

d?Vp(0) cos 20 — 26sin* 8 

dpe NP 25 sin a8) 
Substituting equations (A-1)—(A-3) into NMO formula (4) yields 

  

. . -1l 

Vemo() = +2. J+ 26 y/1 + 26 sin?(4 — v) f — 26 sav sie 2) _ (A-4) 
cos @ cos @ 

Next, let us express NMO velocity as a function of the ray parameter p. The 

function Vimo(p) for elliptical anisotropy with a vertical symmetry axis has the same 

form as in isotropic media (Tsvankin, 1995a; Alkhalifah and Tsvankin, 1995): 

Vamo(p) = ——veme(®)_ (A-5) 
V 1— p?V2.10(0) 

Vamo(0) = VppV1+26. 

with 

Here, we will prove that the isotropic relationship (A-5) between NMO velocity 

and the ray parameter holds in elliptically anisotropic media irrespective of the tilt of 

the elliptical axes. It is easier to carry out this proof by transforming equation (A-5) 
into equation (A-4) rather than the other way around. 

Using the phase-velocity equation (A-1), we represent the ray parameter as 

p= sing _ sing (A-6) 
V(9) — Vpo y/1 + 26 sin?(d — 8) 

The zero-dip NMO velocity Vimo(0) for arbitrary tilt of the symmetry axis can be 
found from equation (A-4): 

Vimo(0) = Vpo V1 4+ 26 

nme V1 4 26sin2 v | 

Substituting equations (A-6) and (A-7) into the isotropic equation (A-5) for 

Vamo(p), we get 

(A-7) 

Veo V1 + 26 1/1 + 26sin?(¢ — v) 
d ’ 
  

Vamo() = (A-8) 
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d = {14 26 sin? v + sin?(¢ — v)] + 467 sin? v sin?($ — v) — (1 + 26) sin? g}/”. 

The denominator d can be simplified further: 

d= cos¢ — 26 sinv sin(¢ — v) , 

and equation (A-8) reduces to expression (A-4) for Vamo(¢). 

APPENDIX B: WEAK-ANISOTROPY APPROXIMATION FOR 
NMO VELOCITY 

For weak transverse isotropy (« < 1,6 « 1,7 « 1), the NMO equation (4) 
can be significantly simplified by retaining only the terms linear in the anisotropic 

coefficients €, 6 (for the P- and SV-—waves), and y (for the SH-wave). First, we 
expand equation (4) in the anisotropic terms va ae and toy which turn to zero 

in isotropic media. Dropping the quadratic and higher-order terms in this expansion, 

we get 

V(#) [,,_1_ dV, tang av” (B-1) Vamo($) = 2V (4) “doz V(¢) do\~ 
~ cosd 
  

For P-waves, the phase-velocity function, fully linearized in the anisotropic co- 

efficients € and 6, was given by Thomsen (1986). In the case of the symmetry axis 

tilted at the angle v from vertical, the weak-anisotropy approximation for the phase 

velocity becomes 

Vp(0) = Vpo (1 + bsin? 6 cos? 6 + esin* 8) , (B-2) 

6=0-v. 

The derivatives of Vp (B-2) to be used in the NMO equation (4) are 

we) = V(0) = Vpo sin 26 (6 cos 26 + 2esin” 6) , (B-3) 

evel) = V (0) = 2Vpo [6 cos 46 + 2esin? 6 (1 + 2cos 26). (B-4) 

Since the phase velocity and its derivatives [equations (B-2) — (B-4)] should be 
evaluated at the angle 6 = ¢, they become functions of the variable ¢ = ¢ — v. It is 

convenient to rewrite equation (B-1) as 
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Vamo(¢) cos ¢ = V(¢) f + aah + tan ¢ via + (tan ¢ — tan ¢) ris .  {(B-5) 

The term 

Cc =v@ f + wh + tan J mel (B-6) 

has exactly the same form as [Vamo(¢) cos(¢)] for a vertical axis of symmetry (v = 0, 
¢ = ¢). The weak-anisotropy approximation for VTI media was obtained by Tsvankin 

(1995a): 

Vamo(¢) cos 6 = Vpp [1+ 6 + 6sin? d + 3(e — 6) sin? (2 — sin? ¢)]. (B-7) 

Replacing ¢ with ¢ in equation (B-7) allows us to represent C(¢) from equation (B- 
6) as 

C(¢) = Veo [1 +6 + 6sin? 6 + 3(€ — 5) sin? ¢ (2 — sin? ¢)]. (B-8) 

Using equations (B-2) and (B-3), we find the weak-anisotropy approximation for 
the remaining term in equation (B-5). 

(ng — tang) 9) = 2sinvSn (5 + 2(¢~6)sin? dl. (B-9) 

Substituting equations (B-8) and (B-9) into (B-5) yields 

Vamo(?) cos@ = Vpy {1+6+6sin? d+ 3(e — 6) sin? d (2 — sin? ¢) 
2sinvsin ¢d OT 
ob [6 + 2(e — 6) sin’ ¢]}. (B-10) 

Equation (B-10) is the weak-anisotropy approximation for the P-wave NMO ve- 
locity fully linearized in the anisotropic parameters ¢€ and 6. 
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