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ABSTRACT 

Leon Thomsen introduced a set of parameters that allow specialization to 

weakly transverse isotropic (TI) media without losing the capability of treating 

the general TI medium. The Thomsen parameters have proven useful in a variety 

of transverse isotropic media studies—it turns out that they also lead to an elegant 

formulation of the TI wave equations. Indeed, the TI wave equation operator 

takes the form, 
L=LO4 ye 4 6£ 4 Ll, 

The operator £® is the isotropic wave equation operator, while the “Thom- 

sen operators,” £, £), and £, characterize the anisotropic contributions. 

The isotropic operator and the three Thomsen operators are independent of the 

Thomsen parameters , 6, and €, so that the TI operator is linear in , €, and 

the modified Thomsen parameter 6. The parameter 6 reduces to Thomsen’s 6 in 

the limit of weak transverse anisotropy. The three Thomsen operators are spatial 

differential operators and the “Thomsen matrices,” M™, M®), and M® are their 

respective spatial Fourier transforms. The matrices M™ and M“) have rank one, 

while the matrix M®) is of rank two. 

Two simple applications are presented to illustrate the utility of the formulat- 

ing the TI wave equations in terms of the Thomsen operators/matrices. The first 
is a direct derivation of the phase speeds in the limit of weak TI by application of 

the standard matrix perturbation theory for the eigenvalue-eigenvector problem. 

The second application is a derivation of the exact TI Green’s tensor in the special 

case 6=e=0.       

THE TI WAVE EQUATIONS IN THOMSEN NOTATION 

Leon Thomsen (1986) introduced a set of parameters that allow specialization 
to weakly transverse isotropic (TI) media without losing the capability of treating 
the general TI medium. The Thomsen parameters have proven useful in a variety 

of transversely isotropic media studies—the following considerations show that their 

use also leads to an elegant formulation of the TI wave equations.



The Love parameters are expressed in terms of the Thomsen parameters, 7, 6, €, 

and the material parameters by the equations: 

A = pc}(1+2¢) 

C = pc 

F = —pck + pcby/f(f +26) = —pck + pce fy + 25/f (1) 
L = pe 

N = peg(1 + 27) 

Here, the quantity f is 

cp — 
f=-3 (2) 

Cp 

as introduced by Ilya Tsvankin (1994). In TI calculations, the following consequences 

of this definition are used repeatedly: 

  

2 
ch, — c2 = fed, and 1—f= > (3) 

P 

The material parameters are denoted by p for the density, and cp and cg for the 

speeds. These speeds represent the phase velocities along the distinguished axis (here 

the vertical or “3” axis)—alternately, they can be construed as the speeds that would 

prevail if the medium were isotropic. With this convention, the TI wave operators in 

Love notation are: 

Lyu = (Aa? + No + La3)uy + (A _ N)0,0ot2 + (F + L)0,03u3 _ paru, 

Lou (NO? + Ad? + LOZ)ug + (A — N)O,0qu; + (F + L)0203u3 — pO?uy (4) 
L3u = (La? + Lae + CAa?)uz + (F + L)03 (01,41 + Ozu2) _ po?us 

Observe that 6 enters the wave equations only through F, and, in turn, F enters 

the wave equations only in the combination F + L. Write this combination as 

F+L = pepfy1+26/f = pcb(f +9), (5) 

where we have introduced the modified Thomsen parameter, 

6 = f(¥1+26/f —1). (6) 

Notice that for small 6, 6 = 6 to first order. Thus, 6 and 6 are equally valid parameters 

for passing to the weak TI limit. The advantage of 6 in the present study is that the 
TI wave equations are linear in this variable. Indeed, since the TI wave equations 

are already linear in y and €, we may write the TI operators in the form, 

L= LO 4 46M + 6£ + LO, (7) 
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where the matrix operators, £®, 2%, £, and £©, are independent of the Thomsen 

parameters. Notice that this decomposition of the TI wave operator is valid for strong 

as well as for weak transverse anisotropy. Observe that a decomposition for weak TI 

using Thomsen’s 6 only requires expanding the scalar quantity 6 to the desired order 

in 6—in the usual first order case, this amounts to merely replacing é by 6. 

Remark: For other purposes, 6 is less useful that Thomsen’s 6 or other combinations 

of the Thomsen parameters, so I am not proposing a replacement of 6 by 6 in general 

TI studies. 

Explicitly, we have for the components of £©: 

Lou = (pci d? + pce 0% + pc2.03)u, + pcr, fO,Oque + pc% fO,03u3 — pO?u; 

LY ua = (pc20? + pck,O3 + pc2.02)uy + pod fO,Oqu, + pc fO,03ug — pO? uy (8) 

L3u = (pcg? + pcgdz + pcpd})us + — pepfOs(Iyu1 + Ayue) — pd? us 

After writing the speeds in terms of the Lamé parameters as 

  

eC = Pe 9 $ D (9) 

= a*%, (10) 

it is straightforward to show that these equations are just the ordinary isotropic elastic 

wave equations for a homogeneous medium. 

The new operators, which characterize the anisotropic contributions, have the 

components, 

Lu = 2pc%d,(Bu. — d,u2) 

Ly?u = 2c%d;(dyuy — Ayu) (11) 
Lu = 0, 

ce u= pepo, 033 

cy uz pcp0203uU3 (12) 

Lou = pc2,03(d,u, + dour), 

and, 

Lu = 2pchO; (Ow + deus) 
Leu = 2pepdo(Iyu1 + Aur) (13) 
LOu = 0.



The explicit matrix form of the “Thomsen operators” introduced in equation (7) 
are: 

  

ag A 0 
co” = 2pce —0,05 a? 0 ’ (14) 

0 0 oO 

0 0 20,03 
L®) = pc, } 0 0 03], (15) 

3,0; 0; 0 

and, 
a? A 0 

L! = 2pc?, [aa ae 0 (16) 
0 oO 0 

The Thomsen operators can also be written in terms of dyadic differential opera- 

tors. Indeed, £™ is the rank one operator: 

—A» 

LY = 20c2| A | (—d2 0). (17) 
0 

Thus 
—d» 

LY = 29c2.D* D+, where Dt=|] Q |. (18) 
0 

Similarly, the rank one representation of L is 

a 
L) = 2oc3,DD, where D=j] Q |, (19) 

0 

and a rank two representation of L) is 

0 
L®) = pc,(DD3+D3D), where D3=| 0 |. (20) 

03 

THE THOMSEN MATRICES 

Now study the Thomsen form of the TI wave equations in Fourier domain. Apply 
the four-fold Fourier transform, 

U(k,t) = [or dt ef t-F-7) u(y, t), (21) 

and define M, M®, MM, M®, and M) as the negatives of the transforms of the cor- 
responding differential operators in equation (7). From equations (14), (15), and (16), 
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the negatives of the transformed Thomsen operators can be written down at once in 

matrix form as 
kz —kiky 0 

M% = 2pc? | k? | , (22) 
0 0 O 

0 O kk 
M® = pc?, | 0 0 i ; (23) 

kiks kokg 0 
and, 

k2 kiky 0 
M = 2Qpc?, | kiko kz 0 | (24) 

0 oO 0 

Similarly, the transforms of equations (18), (19), and, (20) yield the dyadic rep- 
resentations of the Thomsen matrices as 

—ko 

MM = 2pc2ntnt, where K~ =| k, |, (25) 
0 

ky 
M° = 29c2,KK, where K= | ko J, (26) 

0 

and, 
0 

M® = pc2,(Kk3 + kgrs), where k3 =| 0 |. (27) 

kg 

The vector system x, «1, and As is closely related to the ordinary cylindrical unit 

vector basis, here denoted by &, @, and k3. Indeed, 

cos 

K = Kk, i= 4 , (28) 
0 

. . —sing 

Ki = KO, o= ( cos @ ’ (29) 

0 

and, 
; ; 0 

k3 = kgkz, kg =|0]. (30) 

1 

In cylindrical notation, the Thomsen matrices are 

M = 2pcgnpd, (31) 
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Mo) = 29c2,n*kk, (32) 

and, ; ; 

M® = pc2.nk3(&k3 + k3h). (33) 

To get the Thomsen matrices in terms of the spherical coordinate unit vectors, 

here denoted by k, 8, and the aforementioned @¢, observe the relations, 

; cos ¢sin 8 . 

k= | singsin# | =sin6k&+cos6 kz 

cos 6 

; cos ¢cos @ ; 

0 = | singcos@ | = cos@K — sin®# kg, 

—siné 

or, 

& = sindk +cos06 

(35) 
ks = cos6 k — sin 0 6. 

In terms of spherical coordinates, the Thomsen matrices are 

MM” = 29c2k? sin? 0d, (36) 

M() = 2pc2,k? sin? 6 (kk sin? @ + (k@ + 6k) sin 8 cos 6 + 08 cos” 0) ; (37) 

and, . ae . 
M® = pc?,k? sin 8 cos @ (kk sin 26 + (k@ + 0k) cos 20 — 06 sin 26) . (38) 

For the application given in the next section, it is convenient to also have explicit 
representations for the isotropic matrix, M: 

MO = (ck? — w+ p(c ~ 8) kk (39) 
= As + (Ap—As) hk 

As (I — kk) + Aphie (40) 
Here II denotes the identity matrix. 

Remark: The representation of M©) in terms of the Lamé parameters is 

M = (uk? — pw*)I + (\ + p)kk. (41) 

Before proceeding, review the theory of the “spectral representation” for a real 
symmetric matrix A (say 3 by 3, for simplicity). The eigenvectors of such a matrix 
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can be taken as an orthonormal basis of R%, say e,, €2, and e3. Denoting the 

corresponding eigenvalues by A;, Ap, and 43, the spectral representation of A is 

A = A e1€1 + Aze2€2 + A3€3€3. (42) 

Then, for any function f(z) defined on the 4;, we have 

F(A) = f(Arjerer + f(A2)e2€2 + f(A3)e3€3. (43) 

The form of the matrix M© in equation (40) is its spectral representation with 

the eigenvalues being Ag (double eigenvalue) and Ap. The rank two tensor I — kk 

may be replaced by a sum of dyadics based on any pair of orthonormal vectors that 

are orthogonal to k, but we have no immediate need to introduce a specific pair, so 

we allow this mild generalization of the spectral representation and write the matrix 

functions of M®) as 

f(M) = f(As)(I — kk) + f(Ap) kk. (44) 

A principal application of the spectral form of M©) is in finding the isotropic 

Green’s tensor G® satisfying the differential system 

Lg) — _15(r)6(t). (45) 

In transform domain, this is 

M°®.GO =I. (46) 

Thus, G® is just the matrix inverse of M® and we can apply the spectral theory 

with f(z) = 1/z to obtain 

kk. (47) 

APPLICATION: PHASE SPEEDS IN THE WEAK TI LIMIT 

As an application of the Thomsen matrices, seek the plane wave solutions in the 

weak TI limit. These are the solutions u of the homogeneous equation, 

Lu=o, (48) 

that have the form 
u = vei (wt—k-a) (49) 

where v is a constant amplitude vector. Insert this plane wave ansatz into the TI 

wave equation to obtain 

M-v=0. (50) 

Here, to first order in the Thomsen parameters, M is given by 

M = M® + yM + 6MO + Me, (51) 
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Again, M©) is the transform of the isotropic elastic wave operator and the remaining 

matrices on the right are the Thomsen matrices defined earlier. From equation (39), 
write 

M° = p(c2 — c3)kk + pe&k7ll — pw? I. (52) 
Thus, the plane wave problem is related to the eigenvalue-eigenvector problem by 

equating pw? to the eigenvalue A in the zero order matrix. Indeed, we consider both 

the unperturbed eigen-problem, 

N() 9900) — QO) NO = p(c2, — c2)kk + pckk* I, (53) 

and the perturbed problem with perturbation specified by the Thomsen matrices, 

Ny =v, N=N +4 .MM + 6M 4 eM, (54) 

Then, we obtain the plane wave solutions by using the eigenvectors as the amplitudes 

of the plane waves with dispersion relations obtained by setting the eigenvalues equal 

to pw”. Notice that N© and N are respectively the same as M® and M except for 
the omitted pw7I term. 

The results cited below for the perturbed eigen-problem rely on the theory ex- 

pounded in the classic Courant-Hilbert text (Courant & Hilbert, 1953). Computing 

the perturbation corrections in the present application has two complications over 

the simplest case: 

1. The eigenvalues in the unperturbed (isotropic) case are degenerate. 

2. There are three small parameters instead of just one. 

The second problem isn’t serious: the corrections corresponding to each Thomsen 
parameter can be computed separately and the total correction is just the sum of the 

individual ones. We overcome the associated notational problem by first stating the 

results for a generic small parameter @ and then applying the generic result for each 
of the perturbations y, 6, and ¢. In particular, denote the expansions to first order of 

the generic eigenvalue and eigenvector by 

d=) 4 BY, (55) 

and 
v =v + By, (56) 

For the unperturbed eigen-problem in equation (53), the eigenvectors and associ- 

ated eigenvalues are: 

ie pcpk? 
w= Ve Otegdsl , A = 4 pegk. (57) 

C19 + crop =m pcgk? 
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As expected, the second eigenvalue is repeated. Putting the eigenvalues equal to 

pw”, obtain the plane wave dispersion relations w? = c}k? and w? = c2k? with the 
associated phase speeds w/k being cp and cg, also as expected. 

As far as the unperturbed problem is concerned, the matrix C = (c;;) can be any 

orthogonal matrix. It is perhaps surprising that a consistent perturbation theory for 

the degenerate case puts the following constraint on C: 

Theorem 1 C must be chosen such that 

i-M® . si =D, (58) 

where D is a diagonal matriz, 

dy, 0O 
D= 0 dos” (59) 

Observe that equations (36-38) imply that this condition is satisfied simultaneously 
for all three Thomsen matrices with the choices |! = 8 and m = @. Thus, we can 

dispense with the matrix C and simplify the result for the unperturbed eigen-problem 

to: 
k pee peek? 

v =4G, AM =P QO =? ped? , (60) 
o AY ( pe§k? 

The theory dictates expanding the first order perturbation in the eigenvectors in 

terms of the zeroth order eigenvectors (chosen consistent with Theorem 1). In generic 
notation, specialized to the case of perturbations from our unperturbed results in 

equation (60): 

Theorem 2 The perturbations in the eigenvalues are 

1 = &-MO-k 

MM) = 6-M®.6 (61) 
1 = o-MO.¢ 

Moreover, the perturbations in the eigenvectors have the anti-symmetric form 

RO = 196 +08 > 

a = ik +0 (62) 
+ (8) ; 4 ¢ = Ok 6



with 

a a 

1 = k-M® .@ 
ko Ne _ ro 

(3) _ k: M .@ 
be = ox (63) 

  

H) (k-M® . 6) (@- MM 6) 

(Ap? — A$”) (Ao — Ax) 

Apply this generic form of the result to each of the Thomsen perturbations given 

in equations (36-38) to obtain for the 7 corrections: 

M =0, AP =0, AY? = rock? sin? 9, (64) 

and 

by =0, kp =0, bey =0, (65) 
for the 6 corrections: 

\® = 2pc2.k? sin? cos”, AS’) = —2pc2,k? sin? @cos?6, A‘) = 0, (66) 

and 

o = 7 sin 0 cos (1 — 2sin? 6), of = 0, oh? = 0, (67) 

and for the ¢€ corrections: 

\o = 2pc2,k? sin’ 0, oe — 2pci,k? sin? 6 cos” 6, ay = 0, (68) 

and 2 
ov?) = Fain’ 8cos8, o{9 =U, bi = 0. (69) 

In these equations, f is the quantity defined in equation (2). 

Adding these results gives the following first order solution to the eigen-problem: 

Ae & pcpk? (1+ 2sin?6 [6 + (e — 6) sin” 6]) (70) 

v, ®% k+q8 (71) 

Ne & pk? (c§ + 2c? sin? 0 cos” 6 (e — 6)) (72) 

vo © O-dk (73) 

Ne © pcgk?(1 + 2ysin’ 4) (74) 

Ve & dp. (75) 
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Here, the shorthand notation 

sin 8 cos@ 1= > [5 + 2(¢ — 6) sin? 4] (76) 

has been introduced. 

Equating the eigenvalues to pw? yields the phase velocities: 

Ve =Vop © cp {1 + [s + (€ — 6) sin? 6| sin? a} (77) 

2 
Vo=Vos ® Cs {1 + at — 6) sn? 0 cos?a| (78) 

Vs=Vsp & cs {1+7sin70}. (79) 

Remark: These results could also be obtained by power series expansion of the 

eigenvalues of the full TI wave equation (Thomsen, 1986). 

APPLICATION: THE GREEN’S TENSOR FOR é=e=0 

As another example of using the Thomsen matrices, derive the Green’s tensor in 

the special case when 6=e=0. Note that this case is distinctly easier than the general 

case; the calculations here should be regarded as only a “warm-up” to obtaining 
fuller results. There is a substantial literature on the TI Green’s function, however, 

most of it assumes the far field (or high frequency or ray) approximation. Some 
excellent papers on this topic are (Ben-Menahem & Sena, 1990; Ben-Menahem et al., 

1991; Buchwald, 1959; Kazi-Aoual et al., 1988; Tverdokhlebov & Rose, 1988). Here, 

although only a special case of the Thomsen parameters is treated, the near field or 

low frequency terms are included. 

Begin with the defining equation for the Green’s tensor g, 

Lg = —I16(r)d(t), (80) 

where I denotes the three by three identity matrix. After the Fourier transform 

defined in equation (21), this becomes 

M-G=I. (81) 

Here the matrix M is given by 

M = MO + mM + 6M + eM®, (82) 

where M©®) is the transform of the isotropic elastic wave operator and the remaining 

matrices on the right are the Thomsen matrices defined earlier. 

Observe that 
M.G = 7, (83) 
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where G©) represents the isotropic Green’s tensor in transform domain—given explic- 

itly in equation (47). 

Equation (83) implies that M® and G©) are inverses, thus equation (81) can be 
written as 

(1+ GO . (yM™ + 6M® + em@)).G = GO, (84) 

Hence, 

G=c?.G, (85) 

where . 
C=14 G6. (yM™ + 6M® + eM). (86) 

At this point, make the simplifying assumption that 6 and € vanish. From equa- 

tions (47) and (25), and the relation k - «+ = 0, conclude 

2 

GO MM = PS tet, (87) 
Ss 

Thus, in our special case, 

  

27 2 1 + vk —vkyk. 0 

C=14+ eB Stet = | —vkyko 1+vk2 0], (88) 
$ 0 0 1 

where oy pe? 

py = “PEs (89) 
As 

Using the block structure of C, obtain 

aK vik 2 0 

craft vkey kp a ol; (90) 

1 

where 

A = (1+ vk3)(1 + vkt) — ve? keke = 1+ ve, (91) 

On using this result in equation (85), after some calculations, find that the formula 
for G can be written 

G=G6% 46%, (92) 

where the exact “correction” for anisotropy in the special case 6 = € = 0 is given by 

GO = —— nt, 93 eA” (93) 
The factor tea expands to 

V 2c = a8 (94)   

Ash (w? — 8) (w? — w?)’ 
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where 

we = c2k?, and w? = c2(k2 + (1 + 2)K’). (95) 

It is convenient to express these quantities as 

w2 = c3 (ke + a2K?), (96) 

with 

aa = 1, and a} = 1+ 27. (97) 

The above results lead to the Fourier inversion of G® as the integral 

—2 C2 e-? (wt—k-r) 
gi) . “71s | eo 
aC ae =A) a °) 

or by use of partial fractions as 

    

1 ; 1 1 (1) _ | «Lat -i(wt-k-r) _ g (anyip dk k& & [dwe (= —uwe w= =) , (99) 

where &* denotes the unit vector «+ /«. The w integrals are done by residue integra- 

tion, yielding 

    

ett sin W,t [a Bog THO, ns O1. (100) 

The integral over k3 is done using a cosine transform result as 

  

a) t 0 i t T 
[aks eikss SRG 2 [dks cos k3|z| te H(cst—z)—Jo(ankVest — z). (101) 

Wy 0 Wy cs 

To accomplish the remaining integrations over k,, k2, introduce the plane polar co- 

ordinates « and ¢. Since &~ is just @ (see equation 29), the ¢ integration can be 

written 

x sin? d —singcosd 0) 

/ do —sin¢dcos¢ cos? ¢ 0 | ef sReose 
“* 0 0 0 

(102) 
1—cos?¢ 0 0 | 

ixRcos¢d 

0 0 

=a fis[ 0 cos?¢@ 0 

where the reduction on the right follows from elementary properties of the trigono- 

metric functions. Introducing the unit vectors & and y along the transverse axes, and 
recalling the integral representation of the Bessel function, this integral reduces to 

QnJo(KR)&* + 2(Hy — £2) I dd cos? ei *Reoee, (103) 
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The remaining angular integral can also be reduced to an explicit Bessel function as 

follows: 

x 1 @ 2 txRcosd __ ixRcosd _. — 

[4600s ge ° --3@f dpe K2 dR? Jo(xR) 

Using the defining differential equation for Jp and the relation Jj(z) 

. (104) 

i = J(z), derive 

1 @ 1 
2 dR? Ole) 23 RUCK) _ Jo(KR). (105) 

Assembling our results, we have 

gW) = Oe. -*) [avr ( Jo(aky/ cBt? — z?) — Jo(Kry ct? — )) 

a. , Lt a (Jo(xR)99 + —i(xR)(B% — 99)), (106) 
where a = ay = /1 +4 24. 

The final integration over « is accomplished with the aid of the identities 

00 6(R—S) 6(R—S) 
dk KJo(KR)Jo(KS) = = 107 [ arrdo(sR)Jo(nS) = Ta = (107) 

and HiR—S§ 

I dk Jo(KR)J\(KS) = ( zr ) (108) 

These lead to the or form result 

g) = 2_ 52) _ — ./e242 pon 2 ( [ar ay/c3t? — z?) —6(R cat | 

be - HH 
— 22 a) ; (109) 

which, using standard properties of the Dirac and Heaviside functions, may be cast 

as 

_ 6t- iV +2) _ gt H(t) 

4np cha?) H+ 22 cgr 

2 

+ jwe-2 7 +2)-H 
Cs 

r.| ee — yy 
t——)| ——— ] . 110 ne2)) 88). aw 

To complete the determination of g = g® + g@), note that the Fourier inversion 

of G is the isotropic Green’s function which may be written as 

H(t) [ (1 2t ri 0) g! ) — tarp l(a 5(t —t p) + pe Atp,ts] () Tr 

+ (galt ts) ~ 5 Arosa) OE +). 

lH — aya? — 24) — H(R- Ve 2)] 

  

b(t — 35) | oy 

  

Rk 

(111) 
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Here the indicator function Aq) is defined as 

1 a<x<b 
Xap (2) = { ; 112 

! al ) 0 otherwise (112) 

and the P-wave and S-wave arrival times at r are defined as 

tp=—, and ts=—. (113) 
Cp cs 

Discussion of results 

It should be emphasized again that the purpose of these Green’s tensor calcula- 

tions is only to suggest of the utility of using Thomsen notation as a starting point in 

TI wave equation studies. The full result would entail inverting the entire C matrix 
which would “scramble” the terms considered above. However, the result is sufficient 

to indicate that, in contrast to the phase velocity application, a perturbation expan- 

sion of the Green’s tensor in the Thomsen parameters is only valid under restricted 

circumstances—for example, the difference of the Dirac functions can only be replaced 

by a derivative of the Dirac function for small y under the restriction of small R (or 

in frequency domain under the restriction of low frequency). 
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