Angular and Modal Equipartitioning of Elastic Waves in Scattering Media: A Numerical Study Based on Energy Transport

Manuel Jaimes and Roel Snieder

Center for Wave Phenomena, Colorado School of Mines, Golden, CO 80401, USA

(Dated: 7 February 2023)
We illustrate the angular and modal equipartitioning of elastic waves in scattering media using the elastic radiative transfer equations in 2-D. To solve these equations we decompose the P and S specific intensities into direct and scattered components. We handle the direct component analytically, and derive integral equations for the scattered components of the P and S specific intensities. We construct a time-stepping algorithm with which we evolve the scattered components of the specific intensities numerically in time. We handle the advection of P and S energy analytically at the computational grid points and use numerical interpolation to deal with advection terms which do not lie on the grid points. This approach allows us to reduce numerical dispersion, compared to standard numerical techniques. We test this algorithm for a pure P source, and a double couple which radiates both P and S energy. We compare our numerical solutions against known approximations, and find good agreement. We use this algorithm to numerically study the local behavior of equipartitioning over wave modes and angular directions. We find that both types of equipartitioning are a function of space and time, depending on the extent of scattering. This local behavior must be taken into account when studying diffusion and equipartitioning of elastic waves.
I. INTRODUCTION

As waves propagate through a scattering medium they lose (or gain) energy due to scattering to (or from) other directions. When dealing with elastic waves the scattering also accounts for mode conversion. In the absence of anelastic attenuation, scattering and mode conversion obey energy conservation, which one may mathematically describe using the radiative transfer equations (RTE). The RTE consist of a coupled system of integro-differential equations where one solves for the wave intensity as a function of space, time, and angular direction (and wave mode if dealing with elastic waves), assuming one knows the scattering mean free path(s), the angular dependence of the scattering pattern(s), and the speed(s) of energy propagation. Both acoustic and elastic formulations to the RTE have been studied (Gaebler et al., 2015; Margerin et al., 2016; Zhang and Sens-Schönfelder, 2022), with most of the attention devoted to the acoustic formulation. The elastic formulation is harder to study than the acoustic formulation, because there is coupling not only in the angular direction but also in the mode of propagation due to $P \rightarrow S$ and $S \rightarrow P$ mode conversions. In 2-D the acoustic RTE consists of a coupled system of N equations, where N refers to number of angular directions. In contrast, in 2-D the elastic RTE consists of a coupled system of $2N$ equations. In 3-D the elastic RTE consists of a coupled system of $5NM$ equations, where the factor of five corresponds to the size of the stokes vector, N is the number of angular directions in the azimuthal plane and M is the number of angular directions in the polar plane (Turner and Weaver, 1994).
The acoustic description to RTE has been used in astrophysics to analyze radiation transport across cosmic dust in a wide range of astrophysical objects (Steinacker et al., 2002; Narayanan et al., 2021; Wolf, 2003); in atmospheric sciences to model solar radiation across clouds to better understand the evolution of sea surface temperatures (Evans and Stephens, 1995; Aumann et al., 2018; Manners et al., 2009); in optics to develop novel optical tomographic imaging algorithms which allow diagnosis and treatment of biological tissues (Klose et al., 2002; Abdoulaev, 2003; Ren et al., 2004; Yodh and Chance, 1995); in acoustics to model the interaction of acoustic waves with the ocean bottom (Quijano and Zurk, 2009), forest acoustics (Ostashev et al., 2017), and acoustical diffractions by obstacles (Reboul et al., 2005); in geophysics to model infrared radiation across volcanic ash clouds (Prata, 1989; Francis et al., 2012; Lee et al., 2014), heat transfer in the mantle (Hofmeister, 2005), and scattering kernels in coda wave interferometry (Pacheco and Snieder, 2005; Rossetto et al., 2011; Margerin et al., 2016; Snieder et al., 2019; Duran et al., 2020; Dinther et al., 2021; Obermann et al., 2016). Several numerical techniques have been developed to solve the acoustic RTE. These include the Discontinuous Galerkin finite element method (Clarke et al., 2019; Han et al., 2010); Markov Chain Monte Carlo (Iwabuchi, 2006; Xu et al., 2011; Camps and Baes, 2018; Noebauer and Sim, 2019; Przybilla and Korn, 2008; Yoshimoto, 2000); Finite Difference (Klose and Hielscher, 1999); and Wave Equation modeling, whereby one exploits the connection between the acoustic wave equation and the acoustic RTE (Przybilla et al., 2006; Kanu and Snieder, 2015; Snieder et al., 2019; Duran et al., 2020). In addition to these numerical techniques, several authors have derived analytical approximations to the acoustic RTE. These approximations include assuming a point-like, isotropic, impulsive source of
intensity in a statistically homogeneous medium (Margerin et al., 2016); expanding the intensity and scattering function into a finite sum of Legendre polynomial and then solving a finite system of equations for the unknown coefficients appearing in a truncated expansion (Roberge, 1983); decomposing the specific intensities into a sum of partial intensities and then solving the RTE for each partial intensity assuming that scattering is angle-independent and that the source is isotropic (Paasschens, 1997); assuming a steady-state intensity field (Fan et al., 2019; Le Hardy et al., 2016); assuming azimuthal symmetry (Baes and Dejonghe, 2001; de Abreu, 2004); or assuming that the wave propagation is diffusive, which is only valid at times much larger than the transport mean free time (Rossetto et al., 2011; Planès et al., 2014).

The elastic formulation to the RTE has been mostly restricted to seismology. Wu and Aki (1985) introduce the RTE in seismology to describe the generation of seismic coda as seismic waves scatter through the heterogeneous Earth’s structure. Sato et al. (1997) use RTE to derive semi-analytical expressions of the energy density due to a point shear-dislocation source. Margerin et al. (2000) use Monte Carlo simulations to study the multiple scattering of elastic waves via the elastic RTE. Przybilla et al. (2006) solve the elastic RTE using a Monte Carlo method and compare their results to finite difference modeling of elastic waves in a 2-D random medium. Yamamoto and Sato (2010) use radiative transfer theory to study multiple scattering and mode conversions of seismic waves at Asama volcano in Japan. For a thorough overview of the analytical, numerical, and applied aspects of both the acoustic and elastic RTE we refer the reader to Sato et al. (2012). The elastic RTE has also been used to study the late time behavior of elastic waves. At late times, after many scattering events,
ratio of S to P energy equals a constant which depends on the P and S wave mean velocities
and the dimension under consideration (Weaver, 1982; Snieder, 2002). Similarly, at late
times, the angular distribution of the P and S energy homogenizes (Margerin et al., 2000).
This late time behavior is usually referred to as the equipartitioned state of elastic waves.
Khazaie et al. (2017) numerically studied the transition to the equipartitioned state in a
randomly heterogeneous elastic medium for a wide range of modeling parameters. Sánchez-
Sesma et al. (2008) theoretically studied equipartitioning as a necessary condition for the
retrieval of Green’s functions in seismic inteferometry. Hennino et al. (2001) investigated
the principle of equipartitioning using observational data of seismic coda. In this paper we
refer to the equilibration of energy between P and S modes as modal equipartitioning, and
the homogenization along the angular direction as angular equipartitioning.

Most studies have only considered the global behavior (i.e., time dependence without
regard of spatial location) of the modal equipartitioning. In this paper we investigate
both the local and global behavior of the modal and angular equipartitioning. The paper
is organized as follows: In section 2 we provide a description of the elastic RTE, and
derive a time-stepping algorithm based on an integral equation formalism that allows us
to compute the spatio-temporal-angular distribution of the P and S energies. In section
3, we show numerical simulations for an explosive source which radiates P waves, and a
double couple source which radiates P and S waves. We study the local and global behavior
of equipartitioning for both of these sources. In section 4 we discuss our findings. In
appendix A we show the diffusive approximation that we use to benchmark our algorithm.
In appendix B we show the analytical expressions for the total P and S energies which we
compare against our numerical results in section 3. In appendix C we show how we make our numerical scheme energy conserving.

II. THEORY

A. Description of the Elastic Radiative Transfer Equations

The two dimensional elastic radiative transfer equations correspond to the following coupled system of equations (Zhang et al., 2021)

\[\frac{\partial I^P(r, \hat{n}, t)}{\partial t} + \alpha_0 \hat{n} \cdot \nabla I^P(r, \hat{n}, t) = -\alpha_0 (g_{pp}^0 + g_{ps}^0) I^P(r, \hat{n}, t) \]
\[+ \alpha_0 \int g_{pp}(\hat{n}, \hat{n}') I^P(r, \hat{n}', t) d^2 \hat{n}' + \beta_0 \int g_{sp}(\hat{n}, \hat{n}') I^S(r, \hat{n}', t) d^2 \hat{n}', \]

(1)

\[\frac{\partial I^S(r, \hat{n}, t)}{\partial t} + \beta_0 \hat{n} \cdot \nabla I^S(r, \hat{n}, t) = -\beta_0 (g_{ss}^0 + g_{sp}^0) I^S(r, \hat{n}, t) \]
\[+ \beta_0 \int g_{ss}(\hat{n}, \hat{n}') I^S(r, \hat{n}', t) d^2 \hat{n}' + \alpha_0 \int g_{sp}(\hat{n}, \hat{n}') I^P(r, \hat{n}', t) d^2 \hat{n}', \]

(2)

where the superscripts P and S indicate the specific intensity of the P and S-waves, respectively. In eqns. 1 and 2 we ignore intrinsic attenuation, and \(\alpha_0 \) and \(\beta_0 \) describe the mean propagation velocity of P and S waves, respectively. The terms \(\hat{n}' = (\cos \gamma', \sin \gamma') \) and \(\hat{n} = (\cos \gamma, \sin \gamma) \), with \(\gamma' \) (or \(\gamma \)) the angle relative to the positive \(x \)-direction, denote the incident and scattered propagation directions, respectively, while \(\hat{n} \) denotes the gradient operator. The terms \(g_{ij}(\hat{n}, \hat{n}') \), with \(\{ i, j = p, s \} \), denote the scattering functions, which describe scattering between different angles and mode conversion. They
quantify the energy transfer from a wave of mode i incident in direction \hat{n}' to a wave that scatters as a mode j towards direction \hat{n}. These scattering functions assume that scattering only depends on $\hat{n}' \cdot \hat{n} = \cos \theta$, where θ is the angle between the incident and scattered directions. Therefore, $\theta = 0$ corresponds to forward scattering, and $\theta = \pi$ corresponds to backward scattering. The terms g^0_{ij} denote the total scattering coefficients and are defined as $g^0_{ij} = \int g_{ij}(\theta) d\theta$. They describe the energy transfer from a wave of mode i to a wave of mode j. The left-hand side of eqns. 1 and 2 describe the advection of the P and S specific intensities, respectively. The first term on the right-hand side of eqns. 1 and 2 describes scattering losses due to scattering to other angles and mode conversion. The integral terms describe energy gain due to scattering from other angles and mode conversion. Equations 1 and 2 follow from the ladder approximation to the Bethe-Salpeter equation assuming that $ka\epsilon \ll 1$, where k is the wavenumber, and a, ϵ^2 are the correlation length and variance of the random medium, respectively Przybilla et al. (2006). In this paper we refer to $I^m(r, \hat{n}, t)$ as the specific intensity, $E^m(r, t) = \int I^m(r, \hat{n}, t)d^2\hat{n}$ as the energy density, and $Y^m(t) = \int E^m(r, t)dxdy$ as the total energy. The superscript m indicates P or S wave mode.

For late times, when the wave propagation is almost independent of direction, and is nearly stationary in time, the elastic RTE equations 1 and 2 lead to diffusive wave transport (Sato et al., 2012). The conventional diffusion approximation to the elastic RTE describes the spatio-temporal evolution of the combined energy density $E(r, t) = E^P(r, t) + E^S(r, t)$. Describing the energies E^P and E^S independently of each other is not possible due to the coupling between wave modes (Trégourès and van Tiggelen, 2002). In the diffusive regime, after enough scattering events, the ratio of the total energy carried by S waves, to that
carried by P waves, is $2(\alpha_0/\beta_0)^3$ in 3-D (Weaver, 1982; Snieder, 2002) and $(\alpha_0/\beta_0)^2$ in 2-D (Zhang et al., 2021). Despite the coupling between wave modes, one can derive expressions for the total energy, rather than the energy density, carried by the P and S waves. Sato et al. (2012) give expressions for the evolution of the total energies $Y^P(t)$ and $Y^S(t)$. To do this, they assume the source is isotropic, that the P and S specific intensities are almost isotropic, and that the spatial gradient of the P and S energy densities vanishes at large distances. With some modifications their expressions are also valid for non-isotropic sources, under the requirement that the spatial gradient of the P and S specific intensities vanishes at large distances from the source, as we show in Appendix B. The rate at which $Y^P(t)$ and $Y^S(t)$ vary over time is only a function of the scattering properties of the medium.

B. Formulation of the Time-Stepping Algorithm

We solve the system of eqns. 1 and 2, with the P and S specific intensities subject to the following initial conditions

$$I^P(r, \hat{n}, t = t_0) = I^P_0(r, \hat{n}),$$

$$I^S(r, \hat{n}, t = t_0) = I^S_0(r, \hat{n}).$$

(3)

We carry out the simulation for times less than the propagation time for a P-wave to reach the boundary. In such case, the boundary values do not affect the simulation, as long as no energy is injected into the computational domain from the boundary. We decompose the specific intensities into the direct and scattered components
\[I^P(r, \hat{n}, t) = I^P_{dir}(r, \hat{n}, t) + I^P_{scat}(r, \hat{n}, t), \]
\[I^S(r, \hat{n}, t) = I^S_{dir}(r, \hat{n}, t) + I^S_{scat}(r, \hat{n}, t). \] (4)

Similarly, we decompose the initial conditions in eqn. 3
\[I^P_{dir}(r, \hat{n}, t = t_0) = I^P_0(r, \hat{n}); I^P_{scat}(r, \hat{n}, t = t_0) = 0, \]
\[I^S_{dir}(r, \hat{n}, t = t_0) = I^S_0(r, \hat{n}); I^S_{scat}(r, \hat{n}, t = t_0) = 0, \] (5)

where the subscripts \textit{dir} and \textit{scat} denote the direct and scattered parts of the specific intensity, respectively. This decomposition allows us to reduce numerical errors since the direct component of the specific intensity can be handled analytically. The direct components of the \(P \) and \(S \) specific intensities satisfy
\[
\frac{\partial I^P_{dir}(r, \hat{n}, t)}{\partial t} + \alpha_0 \hat{n} \cdot \nabla I^P_{dir}(r, \hat{n}, t) = -\alpha_0 (g^0_{pp} + g^0_{ps}) I^P_{dir}(r, \hat{n}, t), \] (6)

and
\[
\frac{\partial I^S_{dir}(r, \hat{n}, t)}{\partial t} + \beta_0 \hat{n} \cdot \nabla I^S_{dir}(r, \hat{n}, t) = -\beta_0 (g^0_{ss} + g^0_{sp}) I^S_{dir}(r, \hat{n}, t), \] (7)

respectively. The exact solutions to eqns. 6 and 7, for the initial conditions in 5, are
\[
I^P_{dir}(r, \hat{n}, t) = I^P_{dir}(r - \alpha_0(t - t_0)\hat{n}, \hat{n}, t = t_0) e^{-\alpha_0(g^0_{pp} + g^0_{ps})(t-t_0)}, \] (8)

and
\[
I^S_{dir}(r, \hat{n}, t) = I^S_{dir}(r - \beta_0(t - t_0)\hat{n}, \hat{n}, t = t_0) e^{-\beta_0(g^0_{ss} + g^0_{sp})(t-t_0)}. \] (9)
Inserting the decomposition in eqn. 4 into eqns. 1 and 2, with the help of eqns. 6 and 7, gives

\[
\frac{\partial I_{scat}^P(r, \hat{n}, t)}{\partial t} + \alpha_0 \hat{n} \cdot \nabla I_{scat}^P(r, \hat{n}, t) = -\alpha_0 (g_{pp}^0 + g_{ps}^0) I_{scat}^P(r, \hat{n}, t) \\
+ \alpha_0 \int g_{pp}(\hat{n}, \hat{n}') I^P(r, \hat{n}', t) \, d^2 \hat{n}' + \beta_0 \int g_{sp}(\hat{n}, \hat{n}') I^S(r, \hat{n}', t) \, d^2 \hat{n}',
\]

(10)

\[
\frac{\partial I_{scat}^S(r, \hat{n}, t)}{\partial t} + \beta_0 \hat{n} \cdot \nabla I_{scat}^S(r, \hat{n}, t) = -\beta_0 (g_{ss}^0 + g_{sp}^0) I_{scat}^S(r, \hat{n}, t) \\
+ \beta_0 \int g_{ss}(\hat{n}, \hat{n}') I^S(r, \hat{n}', t) \, d^2 \hat{n}' + \alpha_0 \int g_{ps}(\hat{n}, \hat{n}') I^P(r, \hat{n}', t) \, d^2 \hat{n}'.
\]

(11)

Note that in eqns. 10 and 11 the integral contributions still contain the total specific intensity for each of the modes. Using the work of Paasschens (1997) we transform eqns. 10 and 11 into the following integral equations

\[
I_{scat}^P(r, \hat{n}, t) = I_{scat}^P(r - \alpha_0 (t - t_0) \hat{n}, \hat{n}, t_0) e^{-(t-t_0)\alpha_0 (g_{pp}^0 + g_{ps}^0)} \\
+ \int_{t_0}^{t} \int \left[\alpha_0 g_{pp}(\hat{n}, \hat{n}') I^P(r - \alpha_0 (t - t') \hat{n}, \hat{n}', t') \\
+ \beta_0 g_{sp}(\hat{n}, \hat{n}') I^S(r - \alpha_0 (t - t') \hat{n}, \hat{n}', t') \right] e^{-(t-t')\alpha_0 (g_{pp}^0 + g_{ps}^0)} \, d^2 \hat{n}' \, dt',
\]

(12)

\[
I_{scat}^S(r, \hat{n}, t) = I_{scat}^S(r - \beta_0 (t - t_0) \hat{n}, \hat{n}, t_0) e^{-(t-t_0)\beta_0 (g_{ss}^0 + g_{sp}^0)} \\
+ \int_{t_0}^{t} \int \left[\beta_0 g_{ss}(\hat{n}, \hat{n}') I^S(r - \beta_0 (t - t') \hat{n}, \hat{n}', t') \\
+ \alpha_0 g_{ps}(\hat{n}, \hat{n}') I^P(r - \beta_0 (t - t') \hat{n}, \hat{n}', t') \right] e^{-(t-t')\beta_0 (g_{ss}^0 + g_{sp}^0)} \, d^2 \hat{n}' \, dt'.
\]

(13)
Paasschens (1997) analytically solve for the specific intensities in the acoustic version of equation 12 (i.e., they disregard the terms involving conversion from P to S waves) for a medium with isotropic scattering and constant scattering properties assuming that the initial condition for the specific intensity is isotropic. To do this, they decompose the specific intensities into a sum of partial intensities, where each partial intensity signifies a number of scattering events (i.e., direct propagation, single scattering, double scattering, and so on). In equations 12 and 13 we deal with the advection of the specific intensities exactly at the grid points, and through interpolation at points that lie within the grid points. This approach allows us to reduce the numerical dispersion, compared to standard numerical techniques. In this paper we use equation 12 and 13 to integrate the specific intensities numerically in time. This procedure allows us to use non-isotropic initial conditions and non-isotropic scattering radiation patterns.

To develop a time-stepping algorithm which depends only on the current time t, and the previous time $t - \Delta t$, we replace t_0 by $t - \Delta t$ to obtain

$$I_{\text{scat}}^P(r, \hat{n}, t) = I_{\text{scat}}^P(r - \alpha_0 \Delta t \hat{n}, \hat{n}, t - \Delta t) e^{-\Delta t \alpha_0 (g_{pp}^0 + g_{ps}^0)}$$

$$+ \int_{t-\Delta t}^{t} \int \left[\alpha_0 g_{pp}(\hat{n}, \hat{n}') I_{\text{scat}}^P(r - \alpha_0 (t - t') \hat{n}, \hat{n}', t') \right] e^{-(t-t') \alpha_0 (g_{pp}^0 + g_{ps}^0)} d^2 \hat{n}' dt',$$

(14)
\[I_{\text{scat}}^S(\mathbf{r}, \mathbf{n}, t) = I_{\text{scat}}^S(\mathbf{r} - \beta_0 \Delta t \mathbf{n}, \mathbf{n}, t - \Delta t) e^{-\Delta t \beta_0 (g_{ss}^0 + g_{sp}^0)} \]

\[+ \int \int_{t-\Delta t}^t \left[\beta_0 g_{ss}(\mathbf{n}, \mathbf{n}') I^S(\mathbf{r} - \beta_0 (t - t') \mathbf{n}, \mathbf{n}', t') \right. \]
\[\left. + \alpha_0 g_{ps}(\mathbf{n}, \mathbf{n}') I^P(\mathbf{r} - \beta_0 (t - t') \mathbf{n}, \mathbf{n}', t') \right] e^{-(t-t') \beta_0 (g_{ss}^0 + g_{sp}^0)} dt' \]

\[e^{-\Delta t \beta_0 (g_{ss}^0 + g_{sp}^0)} dt'. \quad (15) \]

We proceed by applying the discrete ordinate method (Chandrasekhar, 1960) whereby one divides the angular integral into \(N \) equal segments. In two dimensions this method corresponds to setting \(d^2 \mathbf{n} \to d\theta \) and then setting \(d\theta = \frac{2\pi}{N} \) in the angular integration.

\[I_{\text{scat}}^P(\mathbf{r}, \mathbf{n}, t) = I_{\text{scat}}^P(\mathbf{r} - \alpha_0 \Delta t \mathbf{n}, \mathbf{n}, t - \Delta t) e^{-\Delta t \alpha_0 (g_{pp}^0 + g_{ps}^0)} \]

\[+ \frac{2\pi}{N} \int_{t-\Delta t}^t \sum_{\mathbf{n}'} \left[\alpha_0 g_{pp}(\mathbf{n}, \mathbf{n}') I^P(\mathbf{r} - \alpha_0 (t - t') \mathbf{n}, \mathbf{n}', t') \right. \]
\[\left. + \beta_0 g_{sp}(\mathbf{n}, \mathbf{n}') I^S(\mathbf{r} - \alpha_0 (t - t') \mathbf{n}, \mathbf{n}', t') \right] e^{-(t-t') \alpha_0 (g_{pp}^0 + g_{ps}^0)} dt', \quad (16) \]

\[I_{\text{scat}}^S(\mathbf{r}, \mathbf{n}, t) = I_{\text{scat}}^S(\mathbf{r} - \beta_0 \Delta t \mathbf{n}, \mathbf{n}, t - \Delta t) e^{-\Delta t \beta_0 (g_{ss}^0 + g_{sp}^0)} \]

\[+ \frac{2\pi}{N} \int_{t-\Delta t}^t \sum_{\mathbf{n}'} \left[\beta_0 g_{ss}(\mathbf{n}, \mathbf{n}') I^S(\mathbf{r} - \beta_0 (t - t') \mathbf{n}, \mathbf{n}', t') \right. \]
\[\left. + \alpha_0 g_{ps}(\mathbf{n}, \mathbf{n}') I^P(\mathbf{r} - \beta_0 (t - t') \mathbf{n}, \mathbf{n}', t') \right] e^{-(t-t') \beta_0 (g_{ss}^0 + g_{sp}^0)} dt'. \quad (17) \]
We then discretize the remaining time integral using a two-point quadrature rule, with weights not necessarily equal to $1/2$, by which we obtain

\begin{align}
I_{\text{scat}}^P(r, \hat{n}, t) &= I_{\text{scat}}^P(r - \alpha_0 \Delta t \hat{n}, \hat{n}, t - \Delta t)e^{-\Delta t \alpha_0 (g_{pp}^0 + g_{ps}^0)} \\
&\quad + A_p \Delta t \frac{2\pi}{N} \sum_{\hat{n}'} \left[\alpha_0 g_{pp}(\hat{n}, \hat{n}') I^P(r - \alpha_0 \Delta t \hat{n}, \hat{n}', t - \Delta t) \\
&\quad + \beta_0 g_{sp}(\hat{n}, \hat{n}') I^S(r - \alpha_0 \Delta t \hat{n}, \hat{n}', t - \Delta t) \right] e^{-\Delta t \alpha_0 (g_{pp}^0 + g_{ps}^0)} \\
&\quad + B_p \Delta t \frac{2\pi}{N} \sum_{\hat{n}'} \left[\alpha_0 g_{pp}(\hat{n}, \hat{n}') I^P(r, \hat{n}', t) \\
&\quad + \beta_0 g_{sp}(\hat{n}, \hat{n}') I^S(r, \hat{n}', t) \right],
\end{align}

(18)

\begin{align}
I_{\text{scat}}^S(r, \hat{n}, t) &= I_{\text{scat}}^S(r - \beta_0 \Delta t \hat{n}, \hat{n}, t - \Delta t)e^{-\Delta t \beta_0 (g_{ss}^0 + g_{sp}^0)} \\
&\quad + A_s \Delta t \frac{2\pi}{N} \sum_{\hat{n}'} \left[\beta_0 g_{ss}(\hat{n}, \hat{n}') I^S(r - \beta_0 \Delta t \hat{n}, \hat{n}', t - \Delta t) \\
&\quad + \alpha_0 g_{ps}(\hat{n}, \hat{n}') I^P(r - \beta_0 \Delta t \hat{n}, \hat{n}', t - \Delta t) \right] e^{-\Delta t \beta_0 (g_{ss}^0 + g_{sp}^0)} \\
&\quad + B_s \Delta t \frac{2\pi}{N} \sum_{\hat{n}'} \left[\beta_0 g_{ss}(\hat{n}, \hat{n}') I^S(r, \hat{n}', t) \\
&\quad + \alpha_0 g_{ps}(\hat{n}, \hat{n}') I^P(r, \hat{n}', t) \right].
\end{align}

(19)

\begin{align}
A_p \text{ and } A_s \text{ denote the lower bound coefficients (corresponding to the intensity at time } t - \Delta t) \\
\text{in the quadrature rule for the time integral in eqns 16 and 17, respectively. Similarly, } B_p \\
\text{and } B_s \text{ denote the upper bound coefficients (corresponding to the intensity at time } t) \text{ in} \\
\text{the quadrature rule. For the trapezoidal quadrature rule that we use in this paper we set} \\
A_p = A_s = B_p = B_s = 1/2. \text{ In the Appendix C we show that this quadrature gives a time-} \\
\text{steppping scheme that is energy conserving, as long as the time step } \Delta t \text{ is much smaller} \\
\text{than the scattering mean free time of } P \text{ and } S \text{ waves. Eqns. 18 and 19 give the following}
system of equations

\[
\begin{bmatrix}
\sigma^{PP} & \sigma^{SP} \\
\sigma^{PS} & \sigma^{SS}
\end{bmatrix}
\begin{bmatrix}
\vec{I}^P \\
\vec{I}^S
\end{bmatrix}
=
\begin{bmatrix}
\vec{W}^P \\
\vec{W}^S
\end{bmatrix},
\]

where \(\vec{I}^P, \vec{I}^S \in \mathcal{R}^{N \times 1} \) are the solution vectors for the P and S wave intensities, respectively. \(\vec{W}^P, \vec{W}^S \in \mathcal{R}^{N \times 1} \) are

\[
\vec{W}^P(r, \hat{n}, t) = I_{scat}^P(r - \alpha_0 \Delta t \hat{n}, \hat{n}, t - \Delta t)e^{-\Delta t \alpha_0 (g_{pp}^0 + g_{sp}^0)}
\]
\[+ \ A_p \Delta t \frac{2\pi}{N} \sum_{\hat{n}'} \left[\alpha_0 g_{pp}(\hat{n}, \hat{n}') I^P(r - \alpha_0 \Delta t \hat{n}, \hat{n}', t - \Delta t) \right] e^{-\Delta t \alpha_0 (g_{pp}^0 + g_{sp}^0)}
\]
\[+ \ B_p \Delta t \frac{2\pi}{N} \sum_{\hat{n}'} \left[\alpha_0 g_{sp}(\hat{n}, \hat{n}') I^P(r, \hat{n}', t) \right],
\]

(21)

\[
\vec{W}^S(r, \hat{n}, t) = I_{scat}^S(r - \beta_0 \Delta t \hat{n}, \hat{n}, t - \Delta t)e^{-\Delta t \beta_0 (g_{ss}^0 + g_{sp}^0)}
\]
\[+ \ A_s \Delta t \frac{2\pi}{N} \sum_{\hat{n}'} \left[\beta_0 g_{ss}(\hat{n}, \hat{n}') I^S(r - \beta_0 \Delta t \hat{n}, \hat{n}', t - \Delta t) \right] e^{-\Delta t \beta_0 (g_{ss}^0 + g_{sp}^0)}
\]
\[+ \ B_s \Delta t \frac{2\pi}{N} \sum_{\hat{n}'} \left[\beta_0 g_{sp}(\hat{n}, \hat{n}') I^S(r, \hat{n}', t) \right],
\]

(22)

We define \(\sigma^{PP}, \sigma^{SP}, \sigma^{PS}, \sigma^{SS} \in \mathcal{R}^{N \times N} \) as

\[
\sigma_{ij}^{PP} = \delta_{ij} - \alpha_0 B_p \frac{2\pi}{N} \Delta t g_{pp}(\hat{n}_i, \hat{n}_j); \quad \sigma_{ij}^{SP} = -\beta_0 B_p \frac{2\pi}{N} \Delta t g_{sp}(\hat{n}_i, \hat{n}_j)
\]
\[
\sigma_{ij}^{PS} = -\alpha_0 B_s \frac{2\pi}{N} \Delta t g_{sp}(\hat{n}_i, \hat{n}_j); \quad \sigma_{ij}^{SS} = \delta_{ij} - \beta_0 B_s \frac{2\pi}{N} \Delta t g_{ss}(\hat{n}_i, \hat{n}_j).
\]

(23)
Directly solving the linear system \(20\) is expensive. For a computational domain of size \((N_x, N_y, N_t)\), one would need to perform \(N_x \times N_y \times N_t\) linear solves. To speed up the computation we compute the inverse of the matrix

\[
A = \begin{bmatrix}
\sigma_{PP} & \sigma_{SP} \\
\sigma_{PS} & \sigma_{SS}
\end{bmatrix}
\]

(24)

before-hand via LU decomposition with partial pivoting (chapter 3, Golub and Van Loan, 2013). We quantify the stability of inverting the matrix \(A\) in the linear system \(20\) with the condition number \(\kappa(A) = \|A\| \|A^{-1}\|\), where \(\|\cdot\|\) is the 2-norm. When the condition number \(\kappa(A) = 1\), the matrix \(A\) is well-conditioned. We can control this condition number with the value of the time step \(\Delta t\). For the numerical experiments in this paper we have a condition number \(\kappa(A) = 1.03\). We re-write the linear system \(20\) as

\[
\begin{bmatrix}
\bar{I}^P \\
\bar{I}^S
\end{bmatrix} = \begin{bmatrix}
\sigma_{PP} & \sigma_{SP} \\
\sigma_{PS} & \sigma_{SS}
\end{bmatrix}^{-1}
\begin{bmatrix}
\bar{W}^P \\
\bar{W}^S
\end{bmatrix}.
\]

(25)

For the numerical simulations in the next section, we use the scattering functions \(g_{pp}, g_{sp}, g_{ps}\) and \(g_{ss}\) derived by Zhang et al. (2021) for a 2-D exponential random medium. We use \(\alpha_0 = 6\) km/s, \(\beta_0 = 4\) km/s, and set the correlation distance \(a = 0.1\) km, and the variance \(\epsilon^2 = 0.0256\). We set the \(P\) and \(S\) wavenumbers to \(k_p = 2\pi v_s/(\lambda_s v_p)\) and \(k_s = 2\pi/\lambda_s\), respectively, with \(\lambda_s = 1\) km. This choice of parameters gives a scattering mean free time of \(\tau_p = 1.36\) s and \(\tau_s = 0.82\) s for \(P\) and \(S\) waves, respectively. We illustrate the angular dependence of these scattering coefficients in fig. 1.
FIG. 1. Polar plots of radiation patterns for an incident wave of mode i propagating along $\theta = 0$, which scatters to mode j. The red arrow indicates the incident direction, and the green dashed arrow indicates the direction of increasing scattering angle θ.

III. NUMERICAL SIMULATIONS

In this section we show numerical simulations for a source which releases only P energy, and a double-couple source which releases both P and S energy. For both simulations we study the local (i.e., function of space and time) and global (i.e., function of time) behavior of modal and angular equipartitioning. For both simulations we use a spatial grid $\Delta x = \Delta y = 1000$ m, with $(x, y) \in [-100, 100]$ km. We use $N = 120$ angular directions. We evolve the P and S specific intensities from $t = 0$ to $T = 16$ s, with $\Delta t = 0.1$ s.
FIG. 2. Comparison of $E(r, t) = E^P(r, t) + E^S(r, t)$ for the pure P source for different distances (shown above in each panel). We compare our numerical solution against the diffusive approximation to the 2-D RTE.

FIG. 3. Comparison of $E(r, t) = E^P(r, t) + E^S(r, t)$ for the double couple source.

A. Benchmarking of Algorithm

To benchmark the algorithm we use three different tests. First, we compare our numerical solution of the sum of the P and S energy densities, $E(r, t) = E^P(r, t) + E^S(r, t)$, to the diffusive approximation to the 2-D elastic RTE. As mentioned before, the diffusive approximation describes the spatio-temporal evolution of the energy density $E(r, t)$, rather than the individual P and S energy densities. Since most diffusive approximations to the
FIG. 4. The ratio $Y^S(t)/Y^P(t)$ for the P source (orange line) and double couple (blue line) simulation. The dashed red line shows the asymptotic ratio $\gamma_0^2 = (\alpha_0/\beta_0)^2$.

FIG. 5. Comparison of the P and S energies, $Y^P(t)$ and $Y^S(t)$. The blue and orange solid lines show the numerical P and S energy, respectively. The green and red dashed lines show the analytical P and S energy, respectively. The left and right panel show the comparison of the explosive source with a Gaussian extent and double couple source simulations, respectively.
elastic RTE are derived for a 3-D medium, we show in the Appendix A a heuristic 2-D analogous derivation. Second, we compare the global equipartitioning ratio of S to P total energy of our simulations to the theoretical value $(\alpha_0/\beta_0)^2$. This comparison allows us to test the long time behavior of the numerical simulations. Third, we compare the evolution of the P and S energies, $Y^P(t)$ and $Y^S(t)$, of our numerical simulations to analytical expressions. As mentioned before, these expressions are also valid for non-isotropic sources. We center the explosive source around $(x, y) = (0, 0)$ and set the initial condition $I^P_{\text{dir}}(r, \hat{n}, t = 0) = e^{-r^2/2\sigma^2}$ and $I^S_{\text{dir}}(r, \hat{n}, t = 0) = 0$, with $\sigma = 1.55 \times 10^3$ m and $r^2 = x^2 + y^2$. For the double couple source we set $I^P_{\text{dir}}(r, \hat{n}, t = 0) = \sin^2(2\theta)e^{-r^2/2\sigma^2}/\alpha_0^6$, and $I^S_{\text{dir}}(r, \hat{n}, t = 0) = \cos^2(2\theta)e^{-r^2/2\sigma^2}/\beta_0^6$, with $\theta \in [0, 2\pi]$ and $\sigma = 1.55 \times 10^3$ m. The constants $1/\alpha_0^6$ and $1/\beta_0^6$ correspond to the square of the constants $1/\alpha_0^3$ and $1/\beta_0^3$ appearing in the far-field component of the displacement field in an infinite homogeneous medium due to a double couple radiation pattern (Chapter 4, Aki and Richards, 2009). We evolve the P and S scattered specific intensities using eqn. 25. We compute the direct specific intensities exactly using expressions 8 and 9.

Fig. 2 shows a comparison of the explosive source numerical solution against the 2-D diffusive approximation to RTE for three different distances, $(x, y) = (2, 0), (x, y) = (5, 0)$, and $(x, y) = (8, 0)$ km. Fig. 3 shows the comparison for the double couple source simulation. For all of the panels, in both figs. 2 and 3, our numerical solution matches the diffusive approximation for times much larger than the P and S scattering mean free times ($t \gg \tau_s, \tau_p$). As one goes further away from the source it takes a longer time, relative to points close to the source, for the energy to become diffuse. This explains why, as we go from the left to the middle to the right panel, the solutions only match at late times.
To further test the long time behavior of our algorithm we study the asymptotic behavior of the modal equipartitioning ratio, which converges to \((\alpha_0/\beta_0)^2\) as \(t \to \infty\). In practice, this ratio is reached for times much larger than the \(P\) and \(S\) scattering mean free times \((t \gg \tau_s, \tau_p)\). Fig. 4 shows the equipartitioning ratio \(Y_S^*(t)/Y_P^*(t)\) for both the explosive and double couple source simulations. For times much larger than the \(P\) and \(S\) scattering times, the numerical ratio converges to the theoretical ratio. This convergence implies a stable long-time behavior of the simulations. For the double couple simulation, the numerical ratio converges to the theoretical ratio slightly faster than for the explosive source simulation. This is because at time \(t = 0\) both wave modes carry energy, which speeds up the equilibration of energy. In addition to studying the long time behavior of the energy propagation, we analyze the global distribution of the \(P\) and \(S\) energies over the whole simulation range \(t \in [0, T]\). Fig. 5 shows a comparison of the numerical and analytical evolution of the \(P\) and \(S\) energies for both the explosive (left panel) and double couple source (right panel) simulation. Overall, our simulation is able to predict the analytical values in the whole simulation range, indicating that the algorithm is accurate. At late times, the numerical solution slightly deviates from analytical values. The accuracy of the solution may be improved by decreasing the value of \(\Delta t\).

B. Local Behavior of Modal Equipartitioning

In 2-D, \(\lim_{t \to \infty} Y_S^*(t)/Y_P^*(t) = (\alpha_0/\beta_0)^2\), regardless of the source properties (Sato et al., 2012). This ratio is controlled by the repeated conversion between \(P\) and \(S\) waves, as the energy that is carried by each of the wave modes equilibrates over time. This is shown...
FIG. 6. Snapshots of the local energy ratio $E^S(r, t)/E^P(r, t)$ for the pure P source. This ratio reaches an equilibrium value of 2.34 within the expanding circle in yellow.

by the late time behavior of $Y^P(t)$ and $Y^S(t)$ in fig. 5. Locally, it also follows that

$$\lim_{t \to \infty} E^S(r, t)/E^P(r, t) = (\alpha_0/\beta_0)^2 \ (\text{Sato et al., 2012}).$$

Generally speaking, it takes a longer time to reach this local ratio than to reach the global energy ratio. This is because for the local ratio to converge to a constant, regardless of spatial position, the distribution of the energy density must be homogeneous, over space and angular direction, so that the net density flux is zero (i.e., equipartitioned state). In this section we investigate numerically the spatio-temporal dependence of the local ratio. Figs. 6 and 7 show snapshots of the local ratio of the explosive and double couple source simulations, respectively, for simulation times...
FIG. 7. Snapshots of the local energy ratio $E^S(r,t)/E^P(r,t)$ for the double couple simulation. As in fig. 6, the local ratio reaches an equilibrium value of 2.34 within the expanding yellow circle.

$t = (4, 8, 12, 16)$ s. These figures show an inner ring corresponding to S energy propagation and an outer ring corresponding to P energy propagation. In both simulations the local ratio approaches a numerical value of 2.34 at $t = 16$ s within the expanding yellow circle centered around the peak of the Gaussian. As energy propagates outwards, it scatters and starts to equilibrate over the 2 available wave modes. Fig. 6 shows that the area where the local ratio starts to converge towards $(\alpha_0/\beta_0)^2 = 2.34$ increases over time as the number of scattering events increase. However, the rate at which the local ratio converges to the theoretical value is a function of location, depending on the extent of scattering and on mode conversions. Fig. 7 shows a local behavior for the modal ratio for the double couple source.
that is similar to that of the one in Fig. 6 for the pure P-source. Even though globally the mode equilibration occurs more quickly for the double couple source than for the explosive source (see fig. 4), locally that is not the case. After $t > 8$ s there is little difference in the local behavior of the modal equipartitioning between the two numerical simulations. The last panel in figs. 6 and 7 show that even though at very late times ($t = 16$ s) the global equipartitioning ratio is reached (see fig. 4), the local ratio is not yet reached for all locations behind the ballistic wave (i.e., only the locations within the expanding yellow circle show a local ratio which approaches the global ratio). Only in locations where the energy density is homogenized with enough scattering events, does the local ratio approach the theoretical value. The last panel of figs. 6 and 7 show that at locations close to the source (inner yellow ring), the local ratio approaches the theoretical value faster than for locations far from the source. For times much larger than for which we evolve the intensities, the local ratio eventually reaches $(\alpha_0/\beta_0)^2$, but it takes significantly longer than for the global ratio to reach the asymptotic value. For such propagation times, when the local ratio stabilizes, the energy distribution enters a locally equipartitioned state for the energy distribution between P and S modes.

C. Angular Equipartitioning

For elastic waves, one usually considers the equipartitioning between wave modes, as energy equilibrates due to mode conversion (see figs. 4, 6 and 7). In addition to modal equilibration, angular equilibration occurs as the energy density homogenizes. Here, we numerically study the angular equipartitioning of the elastic energy as the number of
FIG. 8. Cross sections of the angular equipartitioning ratio \(\delta \), for the pure \(P \) source simulation, at \(y = 0 \) and \(x \in [-100, 100] \) km. The green and black arrow point to two peaks that arise in \(\delta_S \) due to mode conversion.

Scattering events increase. To quantify the degree of angular equipartitioning we use the equipartitioning index, introduced by Jaimes and Snieder (2023),

\[
\delta_{P,S}(r, t) = \frac{\sigma_{P,S}(r, t)}{\sqrt{N} \mu_{P,S}(r, t)},
\]

where the subscript indicates \(P \) or \(S \) waves. In this expression \(\sigma_{P,S}(r, t) \) is the standard deviation of the \(P \) or \(S \) specific intensities along the angular directions defined with a division by \(N - 1 \), as \(\sigma^2_{P,S}(r, t) = \frac{1}{N - 1} \sum_{i=1}^{N}(I_{P,S}(r, t, \hat{n}_i) - \mu_{P,S}(r, t))^2 \), while \(\mu_{P,S}(r, t) = \frac{1}{N} \sum_{i=1}^{N} I_{P,S}(r, t, \hat{n}_i) \) is the mean of the specific intensities along the angular direction, and
N is the number of angular directions. The quantity $\delta_{P,S}$ provides a measure of the variation of the P or S specific intensities along the angular directions as a function of space and time. We compute the standard deviation and the mean of the specific intensities along the N propagation directions for a fixed point in space and time. The constant $1/\sqrt{N}$ is included in eqn. 26 so that $0 \leq \delta_{P,S} \leq 1$. Consider an uni-directional intensity field $I_i = I_0 \delta_{i,1}$, where I_0 is the intensity along the only non-zero direction and $\delta_{i,j}$ is the Kronecher delta. The mean for this intensity field is $\mu = I_0/N$. The standard deviation for the same intensity field is $\sigma = I_0/\sqrt{N}$, which gives $\sigma/\mu = \sqrt{N}$. Hence, $\delta = 1$ for the most extreme case where all energy propagates in one direction. Thus, $\delta_{P,S} = 0$ when the intensity field (P, S) is fully
equipartitioned in the angular sense (i.e., same specific intensity along all directions) and
\[\delta_{P,S} = 1 \] when the intensity field is unidirectional (i.e., all of the specific intensities but one
are equal to zero).

Figs. 8 and 9 show horizontal cross sections of the angular equipartitioning ratio \(\delta_{P,S} \)
at \(y = 0 \), of the explosive and double couple source simulations, respectively, for times
\(t = (2, 4, 6, 8) \) s. In the first simulation we release an explosive source with Gaussian spatial
extent. Within this Gaussian we release the energy equally along all directions. Because of
the nonzero gradient of the intensity field, part of the intensity propagates away from the
initial Gaussian with a preferred propagation direction. As time progresses, this preferential
propagation of the \(P \) wave becomes more evident, as the increase in the value of the peaks
of \(\delta_P \) in fig. 8 shows. This figure shows that \(\delta_P \) takes the highest value at the location of
the ballistic wave. This value is significantly lower than one because of the spatial extent
of the source (i.e., there is a preferential direction but there is energy propagating in other
directions). The value of \(\delta_P \) decreases as one moves closer to the original source location
centered at \(x = 0 \), where more scattering events have occurred relative to locations closer
to the ballistic arrival. Some of this behavior also occurs with \(\delta_S \). However, at times \(t = 4 \)
s and \(t = 6 \) s there are two characteristic peaks in the equipartitioning index for \(\delta_S \). The
peak that is closer to the source (black arrow) corresponds to \(P \) energy within the initial
Gaussian that over time converts to \(S \) energy. The peak that is further from the source
(green arrow) corresponds to \(S \) energy at time \(t \) that propagates for most of the simulation
(up to the current time \(t \)) as \(P \) energy. This peak has a travel time that is close to that
of the ballistic \(P \) energy, and corresponds to single \(P \to S \) scattering directly behind the
ballistic P wave. Because of this scattering so close to the ballistic wave, the S energy still
has some preferred directionality and produces a maximum in δ_S. Overall, the behavior of
$\delta_{P,S}$ for the double couple simulation is similar to the one for the explosive simulation, with
the exception of two differences. The first difference is that the highest value δ_P is slightly
smaller than for the explosive source simulation. This is because this peak corresponds, not
to P ballistic energy, but to $P \rightarrow P$ energy conversion early in the simulation. The second
difference is that the values of δ_S are larger than for the first simulation. This is because
for the explosive source, all S-energy is caused by scattering (i.e., the source only releases
P-energy). This means that for the explosive source, the S-waves are excited over a range
of propagation directions as a consequence of mode conversion (see the radiation pattern for
$P \rightarrow S$ scattering in fig. 1). For the double couple source there is a ballistic S-wave (unlike
for the explosive source), which propagates at every point away from the source, and it is
thus directional (higher δ_S).

IV. DISCUSSION

We developed a time-stepping algorithm for solving the elastic RTE in expressions 1 and
2. Our approach is based on first splitting the total intensity into the direct and scattered
contributions, and then re-writing the RTE for the scattered intensities as integral equations.
With these integral equations we evolve the specific P and S specific intensities over time,
under the assumption that the time-step $\Delta t \ll \tau_p, \tau_s$ so that we can capture the scattering
of P and S waves. Here, we disregard the boundary conditions, under the assumption that
for times less than the propagation time for a P-wave to reach the boundary, the boundary conditions do not influence the solution.

Contrary to many numerical developments, we resolve the angular distribution of both P and S energies. In our algorithm we discretize the angular integral and then handle the advection of P and S energy analytically at grid points and through interpolation within the numerical grid. This approach allows us to reduce dispersion errors as compared to standard numerical techniques such as finite differences or discontinuous Galerkin finite element methods. This numerical dispersion may cause negative intensities which are non-physical. To test the algorithm, we solve the RTE for both an explosive and a double couple source. We first benchmark our results against the diffusive approximation. After many scattering events this approximation is valid for any initial condition. Figs. 2 and 3 show that, at late times, our solutions match the diffusive approximation. The double couple source simulation takes longer to reach a diffusive state, compared to the explosive source simulation, because of the radiation pattern of the double couple. Since the double couple does not release energy in all possible directions, it takes a longer time, compared to the pure P source, to redistribute the energy in all propagation directions. We test that the ratio between total S-wave energy to total P-wave energy converges to the global theoretical ratio $(\alpha_0/\beta_0)^2 = 2.25$ for the given choice of wave speeds. Fig. 4 shows that our simulations do indeed converge to the theoretical ratio, with the double couple simulation reaching it faster since at $t = 0$ the energy is already distributed among the two available wave modes. We also compare our numerical simulations to analytical expressions for the total energies $Y^P(t)$ and $Y^S(t)$ to validate the energy evolution throughout the simulation range. Fig 5
shows this comparison. Overall, our numerical results for the global equipartitioning ratio, the diffusive approximation, and the total energy as a function of time, match the known analytical expressions given by γ_0^2, eqn. A4 and eqn. B1, respectively. There is a small mismatch in the total energy at late times (fig. 5), which we can reduce by decreasing the value of Δt. We studied the local behavior of the energy equilibration between wave modes. Figs. 6 and 7 show that it takes significantly longer for the local equipartitioning to converge to the theoretical ratio, compared to the global ratio. As explained above, this is because for the local ratio to be established, the intensity field must be locally equipartitioned.

In addition to modal equipartitioning, we study angular equipartitioning. We use the equipartitioning index to study the angular randomization of the intensity fields. We find that, in general, the level of equipartitioning of an intensity field is a function of space and time. Figs. 8 and 9 show that the ballistic arrival has the highest equipartitioning index and that the trailing scattered energy becomes equipartitioned over time but not at the same rate throughout the computational domain. If we define t_b as the arrival time of the ballistic wave, one can approximate the number of scattering events as $n \approx (t - t_b)/\tau_{av}$, where τ_{av} corresponds to a weighted average between the $P (\tau_p)$ and $S (\tau_s)$ scattering mean free times. For a given propagation time t, the larger t_b is (greater distance), the smaller n is. The algorithm that we introduce, together with our numerical simulations, allow us to study the propagation of P and S waves, and to investigate the local evolution of both modal and angular equipartitioning.

Our observations about the spatial and temporal dependence of equipartitioning have implications for the retrieval of Green’s functions in seismic interferometry. The principle of
equipartition is regarded as a necessary, but not sufficient (Snieder et al., 2010), condition to retrieve Green’s functions. Because equipartition varies locally, depending on the extent of scattering, this implies that the accuracy with which one retrieves the Green’s functions is also a function of space and time (Weaver, 2010).

ACKNOWLEDGEMENTS

This work is supported by the Consortium Project on Seismic Inverse Methods for Complex Structures at the Colorado School of Mines.

APPENDIX A: 2-D DIFFUSIVE APPROXIMATION

For a 3-D infinite medium, assuming there is no intrinsic attenuation, the diffusion approximation to the elastic RTE reads (Sato et al., 2012)

\[E_{3d}(r, t) = \frac{W^P + W^S}{(4\pi D_{3d}^* t)^{3/2}} \frac{2}{H(t)e^{-\frac{r^2}{4D_{3d}^* t}}}, \]

where \(D_{3d}^* \) is the effective diffusion coefficient in 3-D, and \(W^P \) and \(W^S \) denote the \(P \) and \(S \) energy at \(t = 0 \), respectively. The diffusion coefficient is

\[D_{3d}^* = \frac{1}{3(1 + 2\gamma_0^3)} \left(\frac{\alpha_0}{g_{Pe}^0} + 2\gamma_0^3 \frac{\beta_0}{g_{Se}^0} \right), \]

where \(\gamma_0 = \alpha_0/\beta_0 \) is the ratio of mean \(P \) wave speed to mean \(S \) wave speed. \(g_{Pe}^0 \) and \(g_{Se}^0 \) are the \(P \) and \(S \) effective scattering coefficients. To obtain the diffusive approximation in 2-D we write the diffusion coefficient as

\[D_{2d}^* = \frac{1}{2(1 + \gamma_0^2)} \left(\frac{\alpha_0}{g_{Pe}^0} + \gamma_0^2 \frac{\beta_0}{g_{Se}^0} \right), \]
where we replaced the 3-D equipartitioning ratio $2\gamma_0^2$ by its 2-D counterpart γ_0^2. We also replaced the factor 3 in the denominator of expression A2 by a factor 2, and replaced the exponent $3/2$ in the denominator of eqn. A1 by the exponent $2/2$, to account for the change from 3-D to 2-D (Snieder and Wijk, 2015). The diffusive approximation in 2-D reads

$$E_{2d}(r, t) = \frac{W^P + W^S}{(4\pi D^*_{2d}t)} H(t) e^{-\frac{r^2}{4D^*_{2d}t}}.$$ \hfill (A4)

APPENDIX B: EXPRESSIONS FOR $Y^P(T)$ AND $Y^S(T)$

Sato et al. (2012) derive the following expressions for the total P and S energies in 3-D

$$Y^P(t) = \frac{(g_0^{PS} \alpha_0 W^P - g_0^{SP} \beta_0 W^S)e^{-g_0^{PS} \alpha_0 t - g_0^{SP} \beta_0 t} + g_0^{SP} \beta_0 (W^P + W^S)}{g_0^{PS} \alpha_0 + g_0^{SP} \beta_0},$$

$$Y^S(t) = \frac{(-g_0^{PS} \alpha_0 W^P + g_0^{SP} \beta_0 W^S)e^{-g_0^{PS} \alpha_0 t - g_0^{SP} \beta_0 t} + g_0^{PS} \alpha_0 (W^P + W^S)}{g_0^{PS} \alpha_0 + g_0^{SP} \beta_0}. \hfill (B1)$$

To derive these expressions, Sato et al. (2012) make three assumptions. First, they assume that the source releases P energy as $W^P \delta(r)\delta(t)$ and S energy as $W^S \delta(r)\delta(t)$, where W^P and W^S are constants. Second, they assume that the angular dependence of the P and S specific intensities is small and almost isotropic. Third, they assume that the spatial gradient of both the P and S energy density vanishes at large distances from the source. If we define $W^P = \int \int I^P_0(r, \theta)d\theta dx dy$ and $W^S = \int \int I^S_0(r, \theta)d\theta dx dy$, and then assume that the gradient of both the P and S specific intensities vanishes at large distances from the source (without assuming that the P and S specific intensities are almost isotropic), the expressions in B1 remain valid. Expression B1 is valid in 2- and 3-D, with the scattering coefficients having a different definition depending on the dimension.
APPENDIX C: CONSERVATION OF ENERGY

The choice of the parameters $A_{p,s}$ and $B_{p,s}$ in the linear system 20 determine the accuracy of the time stepping algorithm. To choose the values of $A_{p,s}$ and $B_{p,s}$ we impose energy conservation, so that the numerical algorithm conserves the energy as much as possible. We begin by re-defining expression 25 as

$$
\begin{bmatrix}
\vec{I}^P \\
\vec{I}^S
\end{bmatrix}
=
\begin{bmatrix}
\eta^{PP} \\
\eta^{PS}
\end{bmatrix}
\begin{bmatrix}
\vec{W}^P \\
\vec{W}^S
\end{bmatrix}.
$$

(C1)

We then write eqn. C1 as the following two equations

$$
I^P(\mathbf{r}, \hat{n}_j, t) = \sum_{i=1}^{N} \eta_{ji}^{PP} W^P(\mathbf{r}, \hat{n}_i, t) + \sum_{i=1}^{N} \eta_{ji}^{SP} W^S(\mathbf{r}, \hat{n}_i, t) \quad (C2)
$$

$$
I^S(\mathbf{r}, \hat{n}_j, t) = \sum_{i=1}^{N} \eta_{ji}^{PS} W^P(\mathbf{r}, \hat{n}_i, t) + \sum_{i=1}^{N} \eta_{ji}^{SS} W^S(\mathbf{r}, \hat{n}_i, t). \quad (C3)
$$

Adding equations C2 and C3 gives

$$
I(\mathbf{r}, \hat{n}_j, t) = \sum_{i=1}^{N} (\eta_{ji}^{PP} + \eta_{ji}^{PS}) W^P(\mathbf{r}, \hat{n}_i, t) + \sum_{i=1}^{N} (\eta_{ji}^{SP} + \eta_{ji}^{SS}) W^S(\mathbf{r}, \hat{n}_i, t). \quad (C4)
$$

Summing both sides of equation C4 from $j = 1$ to N, and multiplying by $2\pi/N$ gives

$$
I(\mathbf{r}, t) = \frac{2\pi}{N} \sum_{j=1}^{N} (\eta_{ji}^{PP} + \eta_{ji}^{PS}) \sum_{i=1}^{N} W^P(\mathbf{r}, \hat{n}_i, t) + \frac{2\pi}{N} \sum_{j=1}^{N} (\eta_{ji}^{SP} + \eta_{ji}^{SS}) \sum_{i=1}^{N} W^S(\mathbf{r}, \hat{n}_i, t), \quad (C5)
$$

where we assumed that the terms $\sum_{j=1}^{N} \eta_{ji}^{PP}, \sum_{j=1}^{N} \eta_{ji}^{PS}, \sum_{j=1}^{N} \eta_{ji}^{SP}, \sum_{j=1}^{N} \eta_{ji}^{SS}$ are independent of i, for sufficiently small Δt. To show that this assumption is valid consider the block matrix A in the linear system 20 and its corresponding inverse A^{-1}. As before, we write $A = I + K$. Then, we apply the matrix expansion $(I - K)^{-1} \approx I + K$, which is valid for $\|K\| \ll 1$.

33
With this expansion the elements of A^{-1} are

$$
\eta_{ij}^{PP} = \delta_{ij} + \alpha_0 B_p \frac{2\pi}{N} \Delta t g_{pp}(\hat{n}_i, \hat{n}_j); \quad \eta_{ij}^{SP} = \beta_0 B_p \frac{2\pi}{N} \Delta t g_{sp}(\hat{n}_i, \hat{n}_j)
$$

$$
\eta_{ij}^{PS} = \alpha_0 B_s \frac{2\pi}{N} \Delta t g_{ps}(\hat{n}_i, \hat{n}_j); \quad \eta_{ij}^{SS} = \delta_{ij} + \beta_0 B_s \frac{2\pi}{N} \Delta t g_{ss}(\hat{n}_i, \hat{n}_j),
$$

(C6)

which gives $\sum_{j=1}^{N} (\eta_{ji}^{PP} + \eta_{ji}^{PS}) = 1 + \alpha_0 B_p \Delta t g_{pp}^0 + \alpha_0 B_s \Delta t g_{ps}^0$ and $\sum_{j=1}^{N} (\eta_{ji}^{SP} + \eta_{ji}^{SS}) = 1 + \beta_0 B_p \Delta t g_{sp}^0 + \beta_0 B_s \Delta t g_{ss}^0$, justifying our assumption that the terms $\sum_{j=1}^{N} \eta_{ji}^{PP}, \sum_{j=1}^{N} \eta_{ji}^{PS}, \sum_{j=1}^{N} \eta_{ji}^{SP}, \sum_{j=1}^{N} \eta_{ji}^{SS}$ are independent of i, for sufficiently small Δt. We re-write the definitions for W^P and W^S from eqns. (C7) and (C8) to include both the direct and scattered energy as

$$
\tilde{W}_{tot}^P(r, \hat{n}, t) = I^P(r - \alpha_0 \Delta t \hat{n}, \hat{n}, t - \Delta t) e^{-\Delta t \alpha_0 (g_{pp}^0 + g_{ps}^0)}
$$

$$
+ A_p \Delta t \frac{2\pi}{N} \sum_{\hat{n}'} \left[\alpha_0 g_{pp}(\hat{n}, \hat{n}') I^P(r - \alpha_0 \Delta t \hat{n}, \hat{n}', t - \Delta t) \right] e^{-\Delta t \alpha_0 (g_{pp}^0 + g_{ps}^0)},
$$

(C7)

$$
\tilde{W}_{tot}^S(r, \hat{n}, t) = I^S(r - \beta_0 \Delta t \hat{n}, \hat{n}, t - \Delta t) e^{-\Delta t \beta_0 (g_{ss}^0 + g_{sp}^0)}
$$

$$
+ A_s \Delta t \frac{2\pi}{N} \sum_{\hat{n}'} \left[\beta_0 g_{ss}(\hat{n}, \hat{n}') I^S(r - \beta_0 \Delta t \hat{n}, \hat{n}', t - \Delta t) \right] e^{-\Delta t \beta_0 (g_{ss}^0 + g_{sp}^0)},
$$

(C8)

We Taylor-expand the specific intensities in eqn. (C5) to first order around $(x, y, t - \Delta t)$, and integrate over space to obtain, with the help of the vanishing boundary conditions, the following system of equations

$$
\begin{bmatrix}
\eta_0^P(B_p, B_s) \alpha_0 \Delta t g_{pp}^0 e^{-\Delta t/\tau_p} & \eta_0^S(B_p, B_s) \alpha_0 \Delta t g_{ps}^0 e^{-\Delta t/\tau_s}
\eta_0^P(B_p, B_s) \beta_0 \Delta t g_{sp}^0 e^{-\Delta t/\tau_p} & \eta_0^S(B_p, B_s) \beta_0 \Delta t g_{ss}^0 e^{-\Delta t/\tau_s}
\end{bmatrix}
\begin{bmatrix}
A_p
A_s
\end{bmatrix}
= \begin{bmatrix}
1 - \eta_0^P e^{-\Delta t/\tau_p}
1 - \eta_0^S e^{-\Delta t/\tau_s}
\end{bmatrix},
$$

(C9)
where \(\eta_0^P(B_p, B_s) = \sum_{j=1}^{N}(\eta_{ji}^{PP}(B_p, B_s) + \eta_{ji}^{PS}(B_p, B_s)) \), \(\eta_0^S(B_p, B_s) = \sum_{j=1}^{N}(\eta_{ji}^{SP} + \eta_{ji}^{SS}) \), \(\tau_p = 1/(\alpha_0(g_{pp}^0 + g_{ps}^0)) \), \(\tau_s = 1/(\beta_0(g_{sp}^0 + g_{ss}^0)) \). Notice that the matrix in expression C9 is a function of \(B_p \) and \(B_s \). Using \(A_p + B_p = 1 \) and \(A_s + B_s = 1 \), the solution vector in equation C9 is \([A_p, A_s] = [1/2, 1/2]\); hence we obtain \([B_p, B_s] = [A_p, A_s] = [1/2, 1/2]\), which corresponds to the trapezoidal rule.

