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ABSTRACT

The presence of the air-water interface (or free-surface) creates two major problems in

marine seismic data; free-surface multiples and ghost reflections. The attenuation of free-

surface multiples remains one of the most challenging noise attenuation problems in seismic

data processing. Current solutions su↵er from the removal of the primary event along with

the multiple events especially when the primary and multiple events overlap (e.g., adap-

tive subtraction). The e↵ective attenuation of ghost reflections (or deghosting) requires

acquisition- and/or processing-related solutions which generally address the source-side and

receiver-side ghosts separately. Additionally, an essential requirement for a successful im-

plementation of free-surface multiple attenuation and dehosting is the requirement of dense

seismic data acquisition parameters which is not realistic for 2D and/or 3D marine cases.

We present a convolutional neural network (CNN) approach for free-surface multiple at-

tenuation and for seismic deghosting, simultaneously. Unlike the existing solutions, our

approach operates on a single trace at a time, and neither relies on the dense acquisition

parameters nor requires a subtraction process to eliminate free-surface multiples, and it

removes both the source ghost and receiver ghost simultaneously. We illustrate the e�cacy

of the free-surface multiple attenuation and seismic deghosting technique using the Mobil

AVO Viking Graben field data set. The application of our algorithm demonstrates that our

CNN-based approach removes di↵erent orders of free-surface multiples (e.g., 1st and 2nd

orders) and recovers the low-frequency content of the seismic data (which is essential for,

for instance, full-waveform inversion applications and broadband processing) by successfully

removing the ghost reflections while preserving and increasing the continuity of the primary

reflections.
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INTRODUCTION

The occurrence of multiples arises when waves interact with a strong impedance contrast. In

marine seismic data, the free-surface (or air-water interface) and water bottom are the two

main impedance contrasts. Although the water bottom can be soft (e.g., weak impedance

contrast) depending on the geology of the area, the free-surface always is a perfect reflector

(e.g., strong impedance contrast). This strong impedance contrast creates two main issues

in the recorded seismic data; free-surface multiples and ghost reflections.

Free-surface multiples have at least one downward reflection at the free-surface and

are the most dominant set of multiples in marine seismic data. Free-surface multiples

can have di↵erent numbers of orders which define the multiples’ number of bounces from

the free-surface. With a higher number of orders, free-surface multiples become harder

to attenuate later during the processing stage. Figure 1 shows an example of a 1st-order

free-surface multiple (black line). The red star in Figure 1 denotes the source location at

depth and the white triangle denotes the receiver location at depth. One of the widely used

techniques to address free-surface multiples is called surface-related multiple elimination

(SRME) (Verschuur et al., 1992). This technique e↵ectively predicts and iteratively sub-

tracts the multiples (also known as adaptive subtraction) from the seismic data but does

not always guarantee perfect solutions. During the subtraction step, the primary reflec-

tions might be removed from the seismic data along with the unwanted multiple reflections

because of the overlapping primary and multiple events. Additionally, with a complex sub-

surface, SRME techniques fall short and require dense spatial distribution of source and

receiver distribution (Dragoset et al., 2010). This condition becomes even more di�cult to

fulfill in 3D surveys.

3



[Figure 1 about here.]

Ghost reflections create notches in the frequency content of the seismic data through de-

structive interference (Amundsen and Zhou, 2013). It is important to attenuate the e↵ects

of ghost reflections, especially for broadband data processing and full-waveform inversion

applications (Tarantola, 1984; Plessix, 2006; Kragh et al., 2010). The ghost reflections are

recorded in the seismic data as the delayed version of the primary seismic signal with an

opposite polarity (Dondurur, 2018). There are three types of ghost reflections that are

present in the seismic data; source ghost, receiver ghost, and source & receiver ghost. Fig-

ure 1 shows an example of the source & receiver ghost reflection (red line). Removing the

ghost reflections from seismic data (or deghosting) is mainly performed in two di↵erent

categories; acquisition-based solutions and processing-based solutions. Acquisition-based

solutions include, but not limited to, slanted streamer acquisition (Soubaras and Whiting,

2011), over/under streamer acquisition (Moldoveanu et al., 2007), and dual-sensor streamer

acquisition (Carlson et al., 2007). Processing-based solutions include, but not limited to,

deriving a low-frequency deghosting filter (Amundsen and Zhou, 2013), and joint deconvo-

lution (Soubaras, 2010). Recently, Hu et al. (2019), Almuteri and Sava (2021), and Vrolijk

and Blacquière (2021) have also utilized machine learning applications for removing ghost

reflections from seismic data.

Seismic migration techniques assume that the input data only contain primary reflections

and an example of a primary reflection is shown in Figure 1 (blue line). Therefore, it

is imperative for the seismic data to be free from the events caused by the presence of

free-surface (red and black lines in Figure 1). We propose a CNN-based solution that is

designed to remove the e↵ects of free-surface, namely, attenuating the free-surface multiples
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and seismic deghosting, simultaneously. We only use synthetic data set for training and

make predictions using the field data set. We first introduce the CNN architecture we use

in Section 2, then we illustrate the e↵ectiveness of our CNN-based solution with a 2D Mobil

AVO Viking Graben field data set acquired in the North Viking Graben (Keys and Foster,

1998) in Section 3. The application of our CNN algorithm to field data demonstrates that

we can attenuate free-surface multiples and remove ghost reflections simultaneously from

the seismic data using the CNN. The CNN-based solution we propose requires neither dense

source/receiver distribution nor is a↵ected by the missing traces in the recorded data. We

also show that during the simultaneous multiple attenuation and seismic deghosting using

CNNs, primary reflections have been preserved and their continuity has been increased.

CNN ARCHITECTURE AND TRAINING

Recently, di↵erent machine learning (ML) and/or convolutional neural network (CNN)

methods have been proposed to attenuate free-surface multiples or remove ghost reflec-

tions from seismic data (Siahkoohi et al., 2018, 2019; Hu et al., 2019; Ovcharenko et al.,

2021; Zhang et al., 2021; Liu-Rong et al., 2021; Almuteri and Sava, 2021; Vrolijk and Blac-

quière, 2021). In this paper, we propose a CNN that predicts a single trace at a time,

making our algorithm insensitive to the data gaps in the acquisition and does not require a

meticulous data-filling pre-processing step, unlike the current techniques.

CNN is a subset of ML and is based on the mathematical and statistical methods that

let machines and computers improve specified tasks with experience (Bishop, 2006; Géron,

2019; Ekman, 2021). CNNs consist of layers of filters and as the number of layers increases,

the network extracts more complex information, and the networks with many layers are

called “deep neural networks”. Every sample in a layer is called a neuron and the output
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value of a neuron is obtained by

akj = �
⇣ NX

i=1

(a(k�1)
i wk

ij) + bkj
⌘
, (1)

where N denotes the number of neurons in the previous layer, akj denotes the value a to be

calculated of the jth neuron in the kth layer, a(k�1)
i denotes the value a of the ith neuron

in the (k� 1)th layer, wk
ij denotes the weight w of the ith neuron which is connected to the

jth neuron in the kth layer, bkj denotes the bias b of the jth neuron in the kth layer, and �

denotes the activation function. The activation function is a nonlinear function so that the

action of the neural network is nonlinear as well.

The process in which we adjust the weights, w, and biases, b, by an iterative data-fitting

process is called training. During the training, once an output of a network is obtained, we

define an error function to compare the output of the network to the desired output. The

most commonly used error function is the mean-squared error (MSE) metric that measures

the di↵erence between the predicted and the ground truth results,

MSE =
1

m

mX

i=1

(ŷi � yi)
2 , (2)

where ŷi is the output of the network, yi is the ground truth data for a given input data

during the training, and m is the number of training examples. We minimize the MSE

function by using the gradient descent method by calculating the gradient of the error

function with respect to the weights. Training a CNN is commonly done by backpropagation

where the choice loss function and gradient descent optimization algorithm are essential

(Bishop, 2006; Géron, 2019; Ekman, 2021).

In this study, we use the network architecture proposed by Kiraz et al. (2023) for simul-

taneous free-surface multiple attenuation and deghosting. Our CNN architecture consists

of an input layer, 9 1D convolutional layers, and an output layer. The first and second,
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fourth and fifth, and seventh and eighth layers have 32 filters (Géron, 2019; Kiraz et al.,

2023); the third, sixth, and ninth layers have 8 filters. The length of the 1D convolutional

window for the first 3 layers is 1110 samples; for the following 5 layers is 101 samples; and

for the last layer is 51 samples. Overall, the network consists of 1,754,017 total parame-

ters all of which are trainable. For the input layer and the convolutional layers, we use

the rectified linear unit (ReLU) activation function, �, (Ekman, 2021) which computes the

function �(x) = max(0, x). We use a stochastic gradient descent optimization algorithm

with momentum along with the mean-squared loss function as the objective function Géron

(2019). To prevent the network from over-fitting, we split the input data into training data

set, testing data set, and validation data set using 60%, 20%, and 20% ratios, respectively.

For the training model selection, we use the Marmousi (Versteeg, 1994) and Pluto

(Stoughton et al., 2001) velocity models. For the training source and receiver geometry,

we use the source and receiver geometry of the field data set. We extract sub-models from

the Marmousi and Pluto models and add a water layer to the top of each model using the

water column depth of the field data set. For each velocity model, we use a density model

that is a scaled version of the velocity model by a factor of two (and the units are converted

from km/s to g/cm3) and has the same water layer as the velocity models. Scaling the

velocity model by two and adding the water layer into the density model creates a range

of reflection coe�cients for training purposes that helps generalize the network applicabil-

ity. We use 52 input shot gathers with free-surface multiples and ghost reflections each of

which consists of 100 traces (total of 5,200 input traces) using 2D finite-di↵erence forward

modeling, and 52 output shot gathers without free-surface multiples and ghost reflections

each of which consists of 100 traces (total of 5,200 output traces) using 2D finite-di↵erence

forward modeling.
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FIELD DATA EXPERIMENT: THE MOBIL AVO VIKING GRABEN

DATA SET FROM THE NORTH VIKING GRABEN

The Mobil AVO Viking Graben data set was acquired in the North Sea over the Viking

Graben (Keys and Foster, 1998). The initial purpose of this data set was to test di↵er-

ent AVO methods using a single data set, however, when the results were presented at a

workshop at the 64th SEG International Exposition and Annual Meeting in 1994, this data

set was also used to cover problems related to geology, inversion, data processing, wave

propagation, rock properties, and AVO (Lumley et al., 1998; Keys and Foster, 1998).

The seismic line consists of 1001 shot gathers each of which has a 6 s recording length

with a 4 ms sampling rate. For each shot gather, 120 receivers are used, and the near-o↵set

receiver is located at 262 m and the far-o↵set receiver is located at 3,237 m. Both the shot

and receiver group interval is 25 m. The receivers are placed at a 10 m depth, and the

air-gun array is placed at a 6 m depth (Keys and Foster, 1998).

The study area has a water depth of approximately 350 m. Strong water-bottom and

interbed multiples contaminate the data and are a major source of noise (Keys and Foster,

1998; Madiba and McMechan, 2003). We use a CNN-based algorithm to attenuate free-

surface multiples and ghost reflections, simultaneously, from this data set.

[Figure 2 about here.]

As part of the pre-processing of the seismic data for the CNN application, we first

account for the geometric spreading in both the field data set and the synthetic data set

used for training. The 3D e↵ects of geometric spreading (Liner, 2016) can be accounted for

by
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A3D / 1

t
, (3)

and similarly, the 2D e↵ects of geometric spreading (Liner, 2016) can be accounted for by

A2D / 1p
t
, (4)

where A denotes the amplitude and t denotes time. Therefore, we apply a t gain and

p
t gain to the field data set and the synthetic data set, respectively. Because we use 1D

convolutional layers, we mimic the amplitudes in 1D by applying the geometric spreading

corrections given in equations (3) and (4). Next, we apply a band-pass filter with 15 Hz

and 50 Hz cuts to the field data set to match the frequency content of the training data set

and the field data set. We also normalize the data prior to using for the CNN application

(Géron, 2019; Ekman, 2021). As a last step of the pre-processing, we only use the first three

seconds of the seismic data for computational e�ciency purposes.

Figure 2(a) shows the raw shot gather number 88 from the field data set and following

the pre-processing steps described above, Figure 2(b) shows the shot gather shown in Figure

2(a) after applying t gain, band-pass filter, and keeping the data recorded from 0 s to 3 s

only.

[Figure 3 about here.]

After applying the pre-processing steps to the entire field data set, we apply the CNN-

based free-surface multiple attenuation and seismic deghosting. Figure 3(a) shows the shot

gather number 88 before free-surface multiple attenuation and seismic deghosting. Figure

3(b) shows the shot gather number 88 after free-surface multiple attenuation and seismic
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deghosting using a CNN. The red arrows in Figure 3(a) indicate some of the 1st- and 2nd-

order free-surface multiples and the red arrows in Figure 3(b) point to areas in the data

where these multiples have been attenuated.

[Figure 4 about here.]

Figure 4(a) shows the near-o↵set trace of each shot gather (or the near-trace gather)

of the entire data set before free-surface multiple attenuation and seismic deghosting, and

Figure 4(b) shows the near-trace gather of the entire data set after free-surface multiple

attenuation and seismic deghosting. The red arrows between 1 s and 1.2 s on the left

and right sides in Figure 4(a) point to the 1st-order free-surface multiples, and the three

red arrows between 1.5 s and 1.7 s on the left side in Figure 4(a) point to the 2nd-order

free-surface multiples. Figure 4(b) shows that these multiples have been attenuated by our

CNN-based algorithm.

[Figure 5 about here.]

To better evaluate the CNN prediction, we use auto-correlation plots as a diagnostic

for periodicity in the records that is associated with multiples (Yilmaz, 2001). Figure 5(a)

shows the auto-correlation of the near-trace gather shown in Figure 4(a) before free-surface

multiple attenuation and seismic deghosting. Figure 5(b) shows the auto-correlation of the

near-trace gather shown in Figure 4(b) after free-surface multiple attenuation and seismic

deghosting. The red arrows around 0.5 s and 1 s in Figure 5(a) indicate the periodicity

of the 1st- and 2nd-order free-surface multiples, respectively. Figure 5(b) shows that both

1st- and 2nd-order free-surface multiples have been attenuated and their periodicity is not

evident in the auto-correlation of the data after the application of our CNN-based algorithm.
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Next, we evaluate the CNN-prediction results for seismic deghosting by comparing the

average amplitude spectra before and after CNN-based free-surface multiple attenuation and

seismic deghosting using the near-trace gathers shown in Figure 4. Figure 5(c) shows the

average amplitude spectrum before free-surface multiple attenuation and seismic deghosting

(red line) using the near-trace gather shown in Figure 4(a), and the average amplitude

spectrum after free-surface multiple attenuation and seismic deghosting (blue line) using

the near-trace gather shown in Figure 4(b). The average amplitude spectra before and after

deghosting in Figure 5(c) show that the low frequencies have been recovered as a result of

the CNN-based seismic deghosting.

[Figure 6 about here.]

Next, we use common depth point (CDP) gathers to evaluate the e↵ectiveness of our

CNN-based free-surface multiple attenuation. We first apply a normal-moveout correction

(NMO) to the CDP gathers using a 1D velocity profile (Keys and Foster, 1998). Because

multiples have a slower velocity than the actual medium velocity, they appear on the NMO-

corrected gathers as not flattened completely (or under-corrected), and the NMO-corrected

CDP gathers help us distinguish between the primary and multiple reflections (Yilmaz,

2001). Figure 6(a) shows NMO-corrected 700th CDP before free-surface multiple attenua-

tion and deghosting, and Figure 6(b) shows NMO-corrected 700th CDP after free-surface

multiple attenuation and deghosting using the CNN. The red arrows in Figure 6(a) indicate

some of the under-corrected multiples, and Figure 6(b) shows that those multiples have been

attenuated. We also mute the NMO-corrected gathers in Figure 6 for the stretch zones at

large o↵sets.

[Figure 7 about here.]
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We sum the traces in the NMO-corrected CDP gathers, which is referred to as CDP

stacking, to obtain a stack trace at the particular CDP location. The CDP stacking attenu-

ates multiples to some extent as a result of residual moveout after applying NMO correction

(Yilmaz, 2001). The CDP stack sections of the entire seismic data set after applying AGC

with 500 ms time gate (Yilmaz, 2001) for display purposes before and after the attenuation

of surface multiples and deghosting with the CNN are shown in Figure 7(a) and Figure 7(b),

respectively. The red arrow in Figure 7(a) indicates free-surface multiples after CDP stack-

ing using the data before free-surface multiple attenuation, and as shown in Figure 7(b),

these multiples are attenuated by the application of the CNN. The events in Figure 7(a)

are more continuous than the reflectors in Figure 7(b). Comparing the areas pointed out

by the red ellipses in Figure 7, the free-surface multiples that mask the primary reflection

have been removed and the continuity of the primary has been recovered after attenuating

the free-surface multiples and removing the ghost reflections using the CNN.

[Figure 8 about here.]

Lastly, Figure 8 shows the auto-correlation of the CDP stack section before and after

free-surface multiple attenuation by the CNN in Figure 8(a) and Figure 8(b), respectively.

The red arrows in Figure 8(a) point out the remaining free-surface multiples after CDP

stacking, and as shown in Figure 8(b), these remaining multiples have been attenuated by

the application of our CNN-based algorithm.

CONCLUSIONS

We apply a CNN-based free-surface multiple attenuation and seismic deghosting to the

Mobil AVO Viking Graben data set. Our CNN-based solution applies a trace-by-trace at-
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tenuation of free-surface multiples and ghost removal, and does not rely on a dense spatial

distribution of sources and receivers. Therefore, our CNN-based method is suitable for

acquisition geometries with irregular and sparse sources and receivers, and the accuracy of

the prediction does not rely upon the availability of the near-o↵set and neighboring traces

(which is one of the important requirements for the conventional SRME and deghosting

algorithms). We show that while our CNN-based method removes the e↵ects of free-surface

(i.e., free-surface multiples and ghost reflections), it also preserves and increases the conti-

nuity of the primary reflections in the seismic data. We show that the 1st- and 2nd-order

free-surface multiples have been successfully attenuated and the low-frequency content of

the seismic data has been successfully recovered.
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Figure 1: Schematic illustration of the ray paths of primary reflection (blue line), free-
surface multiple (black line), and source- and receiver-side ghost reflections (red line). The
white triangle denotes a receiver located at depth and the red shape denotes a source located
at depth.
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(a) (b)

Figure 2: (a) Raw shot gather. (b) Shot gather in (a) after applying the pre-processing
steps.
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(a) (b)

Figure 3: (a) Shot gather before free-surface multiple attenuation and deghosting. (b)
Shot gather after free-surface multiple attenuation and deghosting using the CNN-based
algorithm.
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(a)

(b)

Figure 4: (a) Near-trace gather of the seismic line before free-surface multiple attenuation
and deghosting shown only 0-2 s. (b) Near-trace gather of the seismic line after free-surface
multiple attenuation and deghosting using a CNN shown only 0-2 s.
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(a) (b)

(c)

Figure 5: (a) Auto-correlation of the near-trace gather before free-surface multiple attenu-
ation and deghosting shown in Figure 4(a). (b) Auto-correlation of the near-trace gather
after free-surface multiple attenuation and deghosting shown in Figure 4(b). (c) Amplitude
spectra of the near-trace gather before (red line) and after (blue line) free-surface multiple
attenuation and deghosting.
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(a)

(b)

Figure 6: (a) NMO-corrected CDP gather before free-surface multiple attenuation and
deghosting after muting the stretch zone. (b) NMO-corrected CDP gather after free-surface
multiple attenuation and deghosting after muting the stretch zone.

24



(a)

(b)

Figure 7: (a) CDP stack before free-surface multiple attenuation and deghosting after ap-
plying AGC. (b) CDP stack after free-surface multiple attenuation and deghosting after
applying AGC.
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(a)

(b)

Figure 8: (a) Auto-correlation of the near-trace gather before free-surface multiple attenu-
ation and deghosting shown in Figure 7(a). (b) Auto-correlation of the near-trace gather
after free-surface multiple attenuation and deghosting shown in Figure 7(b).
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