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ABSTRACT

Multiple events reflect more than once in the subsurface, and they are considered as noise

since they shadow the useful information about the subsurface. In marine seismic data,

the strongest multiples are those which reflect at least once from the free-surface (or the

air-water interface). The attenuation of this type of multiple has been extensively studied

and numerous approaches have been used to suppress free-surface multiples. However, free-

surface multiple attenuation is an expensive seismic data processing step that often results

in removing primary events from the seismic data along with the free-surface multiples

when primary and multiple events overlap. We present an algorithm to attenuate free-

surface multiples using convolutional neural networks (CNNs) and show that data from the

CNN-based free-surface multiple attenuation results give a correlation coe�cient of 0.97

on average with the numerically modeled data without free-surface multiples. We train a

network using subsets of the Marmousi and Pluto velocity models, and make predictions

using subsets of the Sigsbee velocity model. We demonstrate the robustness of CNNs for

free-surface multiple attenuation using three numerical examples and show that CNNs are

able to attenuate surface-related multiples even in the presence of overlapping primary and

multiple events without removing the primary reflections. The network processes a single

trace at a time, and therefore is not sensitive to missing traces or to sparse data acquisition,

as is the case for ocean-bottom nodes.
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INTRODUCTION

Although the presence of multiples in seismic data once was a doubtful question and was

not considered as a serious limitation (Dix, 1948; Ellsworth, 1948), there is no doubt now

that the removal of multiples from seismic data is one of the most challenging problems in

seismic data processing. In general, there are three main categories on which the multiple

attenuation algorithms rely: (1) Periodicity - so that the multiples can be attenuated if

they have a periodic behavior. To address this type of periodic multiple, one can use

deconvolution, ⌧ -p deconvolution, deconvolution after stack (Backus, 1959; Diebold and

Sto↵a, 1981; Yilmaz, 2001). (2) Moveout - so that the multiples can be attenuated if they

have a moveout that is su�ciently di↵erent than that of the primaries. To address this type

of multiple, one can use stacking, f -k filtering (Mayne, 1962; Yilmaz, 2001). (3) Data-driven

techniques - so that the multiples can be attenuated based on the information recorded in

seismic data. Although there are several ways to address this type of multiple (e.g., inverse

scattering multiple attenuation (ISMA), interbed multiple prediction (IMP)), they are out

of the scope of this paper (Weglein et al., 1997; Araújo et al., 2005), and in this category,

we only focus on surface-related multiple elimination (SRME) method (Verschuur et al.,

1992).

Multiple reflections are one of the most challenging problems in recorded marine seismic

data since they contaminate the primary reflections. The multiples directly related to the

free-surface (or the sea surface) have at least one downward reflection at the free-surface

and are the most significant multiples to address. SRME (Verschuur et al., 1992) is a data-

driven technique, and it predicts multiples by exploiting the physical relationship between

multiple reflections and their sub-events. The arrival time of a particular surface multiple
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can be predicted by convolving the traces that contain the multiples’ sub-events. SRME has

been widely used to predict and iteratively subtract the multiples from the seismic data, and

it is one of the most e↵ective tools in seismic processing. However, it is computationally

demanding and it does not always guarantee perfect solutions. For instance, during the

subtraction step, one can remove the primary reflections from the seismic data in addition

to the unwanted multiple reflections because of the overlapping primary and multiple events.

Additionally, a profound limitation of SRME is that it requires a dense source and receiver

distribution which makes it computationally demanding and which makes missing data

gaps a complication that must be dealt with. Although 2D versions of SRME can be

computationally e�cient, they fall short in the presence of complex subsurface requiring 3D

spatial distribution of source and receiver distribution (Dragoset et al., 2010) (e.g., when

multiples with strong cross-line raypath components present in the data). This condition

becomes even more di�cult to fulfill in 3D surveys.

There have been several attempts to address free-surface multiple attenuation. Riley

and Claerbout (1976) present free-surface multiple attenuation theory applied to 1D data,

and they also present an algorithm for surface-generated di↵racted multiple elimination.

Verschuur et al. (1992) show that free-surface multiples can be attenuated by predicting

the multiples and subtracting them from the seismic data. Jakubowicz (1998) shows that

interbed multiples can be removed using a technique that is an extension of SRME. There

have been field data applications of SRME (Dragoset and MacKay, 1993; Verschuur et al.,

1995; Kelamis and Verschuur, 2000; Dragoset and Željko Jeričević, 1998).

SRME removes the events that reflect at least once from the free-surface (or the air-

water interface). To predict the surface-related multiples only, the measured field data

are usually used and no information about the subsurface is needed. However, SRME
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makes great requirements about the data acquisition. For a successful implementation

of SRME, some of the requirements are; a dense distribution of the source and receiver

wavefields, known source wavelet, interpolation/extrapolation of the data, and available

near-o↵set data. Conventionally, an SRME processing flow follows; (i) Data pre-processing,

(ii) Prediction of the surface-related multiples, (iii) Matching filtering (or estimation of

wavelet), (iv) Adaptive subtraction.

We present and discuss a CNN-based approach to attenuate free-surface multiples. We

train a network using 2D subsets of Marmousi velocity model (Versteeg, 1994), and Pluto

velocity model (Stoughton et al., 2001), and make predictions using three subsets of Sigsbee

velocity model (Pa↵enholz et al., 2002) with salt bodies in the subsurface. As the training

input data, we use 2D data modeled with free-surface multiples using the finite-di↵erence

forward modeling, and also use 2D data modeled without free-surface multiples using the

finite-di↵erence forward modeling as the training output data. Although we use 2D subsets

of the velocity models for the training, we use 1D convolutional filters to find the optimal

weights for the network that relate the input and output datasets. After training the network

using the input and output data, we make predictions using three new datasets which were

not involved in the training process. We show that CNNs are able to make predictions

that give a correlation coe�cient (CC) of 0.97 on average between the numerically modeled

results and the CNN predictions, and when the free-surface multiples overlap with the

primary events, the CNN-based solution is able to remove the unwanted free-surface multiple

reflections e↵ectively (e.g., CC of 0.95) from the seismic data while preserving the primary

reflections.
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CNN ARCHITECTURE AND TRAINING

Machine learning (ML) is a subset of artificial intelligence and it uses mathematical and

statistical methods to let machines and computers improve specified tasks with experience.

Deep learning (DL) is a subset of ML and it is inspired by the structure of our brains and

the interconnections between its neurons. DL uses multiple layers of computational units

and every layer learns its own representation of the input data (Ekman, 2021).

[Figure 1 about here.]

Figure 1 shows a simple one-hidden-layer (and in total three-layer) neural network where

the input layer, hidden layer, and the output layer have three neurons to illustrate the

propagation of a neuron in the input layer through the network. In Figure 1, the black

arrows indicate that the three neurons in the input layer are connected to the first neuron

in the hidden layer. As the number of hidden layers increase, the network extracts more

complex information, and the networks with many hidden layers are called “deep neural

networks”.

We obtain the output value of a neuron shown in Figure 1 by

akj = �
⇣ NX

i=1

(a(k�1)
i wk

ij) + bkj

⌘
, (1)

where N denotes the number of neurons in the previous layer, akj denotes the value a to be

calculated of the jth neuron in the kth layer, a(k�1)
i denotes the value a of the ith neuron in

the (k�1)th layer, wk
ij denotes the weight w of the ith neuron which is connected to the jth

neuron in the kth layer, bkj denotes the bias b of the jth neuron in the kth layer. Training is a

process in ML such that we adjust the weights, w, and biases, b, by an iterative data-fitting

process. During the start of the training process, a set of initial adjustable random weights
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and biases are assigned. As the training progresses, the weights and biases are updated.

Also, � in Eq. (1) denotes the activation function. The activation function introduces the

non-linearity in machine learning algorithms. If there is no non-linearity between layers,

using several linear transformations of stack of layers, we only get linear transformations

and are not able to solve complex problems (Géron, 2019; Ekman, 2021).

[Figure 2 about here.]

When each neuron of a layer is connected to every neuron in the other layer, the network

is called a fully connected network. Figure 2 shows an example of a fully connected network

with an input layer, hidden layer, and an output layer where the input layer, hidden layer

and the output layer have 3 neurons. Convolutional neural networks (CNNs) are important

building blocks in DL methods inspired by the brain’s visual cortex and they have been

widely incorporated in image recognition studies since the 1980’s (Géron, 2019). CNNs

are di↵erent from other DL algorithms because the neurons in the CNN architecture are

connected to the region of pixels/neurons (receptive fields) in the input image as opposed

to every individual pixels/neurons (for more detailed information about CNNs, we refer

readers to the Appendix).

[Figure 3 about here.]

During the training phase, once an output of a network (or the output of each neuron in

the output layer) is obtained, we compare the output of the network to the desired output

(or the ground truth) by defining an error function. One of the most commonly used error

functions is the mean-squared error (MSE) metric that measures the di↵erence between the
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predicted and the ground truth results,

E =
1

m

mX

i=1

(ŷi � yi)
2 , (2)

where ŷi is the output of the network, yi is the ground truth data for a given input data

during the training, and m is the number of training examples. To update the parameters,

the MSE function is minimized commonly using the gradient descent method by calculat-

ing the gradient of the error function with respect to the weights, and training CNNs is

commonly done by backpropagation where the choice loss function and gradient descent

optimization algorithm play essential roles (Bishop, 2006; Géron, 2019; Ekman, 2021).

Di↵erent DL/CNN methods and their subsets have been used in exploration seismic

studies to address di↵erent problems. Siahkoohi et al. (2018) utilize CNNs to remove the

free-surface multiples and numerical dispersion; Das et al. (2019) use CNNs to obtain an

elastic subsurface model using recorded normal-incidence seismic data; Wu et al. (2019) use

CNNs for 3D seismic fault segmentation; Almuteri and Sava (2021) use CNNs to address to

ghost removal from seismic data; Kiraz and Snieder (2022) utilize CNNs for 1D wavefield

focusing where the solution of the Marchenko equation is not needed to retrieve the Green’s

function once the network is trained. Recently, CNNs have been used to tackle free-surface

multiples in various ways (Siahkoohi et al., 2018, 2019; Ovcharenko et al., 2021; Zhang et al.,

2021; Liu-Rong et al., 2021). In this paper, our network predicts a single trace at a time,

and this makes our algorithm insensitive to the data gaps in the acquisition and does not

require a meticulous data-filling pre-processing step.

[Figure 4 about here.]
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Network architecture

For the prediction of the free-surface multiple attenuated data, the CNN architecture we

use consists of an input layer, 9 hidden 1D convolutional layers, and an output layer. The

first and second, fourth and fifth, and seventh and eighth hidden layers have 32 filters; the

third, sixth, and ninth hidden layers have 8 filters (see the Appendix for more information

about the action of the filters). The length of the 1D convolutional window (kernel size) for

the first 3 hidden layers is 1125 samples; for the following 5 hidden layers is 101 samples;

and for the last hidden layer is 51 samples. Overall, the network consists of 1,773,697 total

parameters all of which are trainable. Figure 3 shows a cartoon of the network architecture

used for this study.

For the input layer and the hidden convolutional layers, we use the rectified linear unit

(ReLU) activation function (Ekman, 2021) which computes the function f(x) = max(0, x).

The ReLU activation function helps optimize the model easily using the gradient-based

methods (Géron, 2019). While minimizing the error function, a backpropagation (or a

backward pass) (Ekman, 2021) is used to update the weights of the network. The derivative

of the activation function is calculated at this step, and the derivative of the ReLU activation

function does not su↵er from “vanishing gradients” phenomena (Géron, 2019; Ekman, 2021).

Figure 4(a) shows the ReLU activation function and Figure 4(b) shows its derivative. Lastly,

the output layer does not have an activation function.

For all the layers, we use a stochastic gradient descent optimization algorithm with

momentum along with the mean-squared loss function as the objective function (Géron,

2019). To prevent our model from overfitting, and for an accurate evaluation, we split

the input data into training dataset, testing dataset, and validation dataset using 60%,
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20%, and 20% ratios, respectively. The testing data are used to monitor the training of

the network, and adjust hyperparameters if needed. We tune the hyperparameters using

this testing dataset and compare the output to the ground truth. One should be careful

at this step because we want the network to learn the relationship between the input and

output training data pairs, and if we tune the hyperparameters only according to the testing

dataset, the network would memorize the relationship between the input and output data

pairs instead of learning. This would also introduce the risk of overfitting, and the network

would perform poorly when we use a di↵erent dataset which is not involved in the training

process. After defining the network parameters (or hyperparameters), we use 100 epochs

(iterations) to train the network. Figure 5 shows the learning curve of our network where

the blue curve denotes the validation data and the red curve denotes training data.

[Figure 5 about here.]

The choice of hyperparameters in this paper is based on trial and error. After changing

a set of hyperparameters, we evaluate the performance of the network by comparing the

predictions to the expected results, by observing the training and validation curves in Figure

5) to make sure that we are not overfitting the data (one of the most common ways to check

overfitting is to observe the training and validation curves during training (Géron, 2019;

Ekman, 2021)).

Network training

We create 192 input shot gathers where each gather consists of 600 traces (total of 115,200

input traces) using 2D finite-di↵erence forward modeling through the models with free-

surface multiples, and 192 output shot gathers where each gather consists of 600 traces
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(total of 115,200 output traces) using 2D finite-di↵erence forward modeling through the

models without free-surface multiples. Throughout the forward modeling for each model,

600 receivers are placed along 2.4 km horizontal extent with the receiver sampling of 4 m,

and are located at 8 m depth. We use one source per model, and the coordinates of the

source are given as xs = 25 m and zs = 7 m.

For the training model selection, we use the Marmousi and Pluto velocity models. Figure

6(a) shows the Marmousi velocity model and Figure 6(b) shows the Pluto velocity model.

We extract 36 sub-models from the Marmousi model and 156 sub-models from the Pluto

model. We also add 640 m of water layer to the top of each model with 1500 m/s velocity.

Each one of 192 models used for training has 2.4 km horizontal extent, and 2.4 km depth

which includes the water column, 600 receivers, and a single shot location. Figure 7 shows

36 sub-models of the Marmousi velocity model used for the training, and Figure 8 shows

156 sub-models of the Pluto velocity model used for the training. For each velocity model,

we use a density model that is a scaled version of the velocity model by a factor two (and

the units are converted from km/s to g/cm3), and has a water layer of 640 m with the

velocity of 1500 m/s. Figure 9 shows 1 of 192 velocity and density models used during

the data generation for training. Figure 9(a) shows a training velocity sub-model extracted

from Marmousi velocity model. Figure 9(b) shows a training density sub-model scaled from

the velocity model shown in Figure 9(a). Scaling the velocity model by two and adding

the water layer into the density model creates a range of reflection coe�cients that changes

from approximately 0.33 to 0.89. The minimum reflection coe�cient at the water bottom is

set to mimic the seafloor conditions which is comparable to the seafloor reflection coe�cient

given by Kim (2004). Figure 10 shows 5 of 192 shot gathers of the input and output data

displayed next to each other used for training after removing the direct arrival. We remove
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the direct arrival from the recorded data during the training and prediction steps. Figure

10(a) shows 5 of 192 shot gathers of the data modeled with free-surface multiples which

are used as the training input, and Figure 10(b) shows 5 of 192 shot gathers of the data

modeled without free-surface multiples which are used as the training output. Figure 10(a)

shows the first appearance of free-surface multiples at each shot gather starting around 1.7 s

in the first trace of a shot gather, and ending around 2.3 s in time. Although not as strong,

the shot gathers also have other types of multiples (e.g., top and/or bottom salt peg-legs,

internal).

[Figure 6 about here.]

[Figure 7 about here.]

[Figure 8 about here.]

[Figure 9 about here.]

[Figure 10 about here.]

[Figure 11 about here.]

NUMERICAL EXAMPLES AND CNN PREDICTION

For the numerical simulation, we use three di↵erent sub-models of the Sigsbee velocity model

which are not used in the training process and are unknown to the network to demonstrate

our CNN-based solution for free-surface multiple attenuation.
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For the first example, Figure 11 shows a subset of the Sigsbee velocity model which

consists of relatively flat subsurface structures along with a part of a salt body located at

the deeper parts of the model. Similar to the training models, 600 receivers are placed

along 2.4 km horizontal extent with the receiver sampling of 4 m at a depth of 8 m. The

coordinates of the source are given as xs = 25 m and zs = 7 m. The water column is 640

m deep with a velocity of 1500 m/s and a density of 1 gr/cm3. The sea bottom for this

example also has a reflection coe�cient of approximately 0.33.

Figure 12(a) shows the data modeled with free-surface multiples using the velocity model

shown in Figure 11, and Figure 12(b) shows the waveforms modeled without free-surface

multiples using the velocity model shown in Figure 11. Figure 12(a) shows the input data,

and starting around 1.7 s in time at 0 km in o↵set, and ending around 2.3 s in time at 2.4

km in o↵set, the first multiple caused by the free-surface is located. Additionally, starting

around 2.55 s in time at 0 km in o↵set, and ending around 2.75 s in time at 1.5 in km o↵set,

another multiple caused by the free-surface is present. Although not as strong as these two

events, there are other multiples arriving after the first multiple which are caused by the

free-surface. Figure 12(b) shows the desired output, the ground truth. The free-surface

multiples described in Figure 12(a) are not present in this figure because of the excluded

free-surface e↵ects. For a successful CNN network training, we expect the CNN predictions

to be similar to the ground truth (Figure 12(b)). After training the network, Figure 12(c)

shows our CNN-based free-surface multiple attenuation results. Figure 12(d) shows the

di↵erence between the ground truth data (Figure 12(b)) and our CNN-based free-surface

multiple attenuation results (Figure 12(c)).

We measure the accuracy of the CNN-based free-surface multiple attenuation results by

calculating trace-by-trace CC’s between the ground truth and the CNN prediction. Figure
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13 shows the CC’s between the ground truth (Figure 12(b)) and the CNN prediction (Figure

12(c)), and the average CC is 0.98.

Figure 14 shows several trace comparisons of the input data (solid blue line), output

data (or ground truth) (solid red line), the CNN predictions (solid black line), and the

di↵erence between the ground truth and the CNN prediction (solid green line) shown in

Figure 12 for the zero-, mid-, and far-o↵sets. Figure 14(a) shows the trace used as an input

to the network which is the zero-o↵set trace extracted from Figure 12(a) (solid blue line),

the ground truth that is the expected result from the CNN prediction which is the zero-o↵set

trace extracted from Figure 12(b) (solid red line), the predicted zero-o↵set trace using our

CNN-based free-surface multiple attenuation operator extracted from Figure 12(c) (solid

black line), and the di↵erence zero-o↵set trace between the ground truth and our CNN-

based free-surface multiple attenuation operator extracted from Figure 12(d) (solid green

line). In Figure 14(a), the two strongest multiples caused by the free-surface in the input

trace (solid blue line) at times around 1.7 s and 2.7 s have been successfully attenuated

in the CNN prediction trace (solid black line) which matches the ground truth trace (solid

red line). Figure 14(b) shows the mid-o↵set (o↵set 1.2 km) trace used as an input to the

network from Figure 12(a) (solid blue line), the ground truth that is the expected result

from the CNN prediction which is the mid-o↵set (o↵set 1.2 km) trace extracted from Figure

12(b) (solid red line), the predicted mid-o↵set (o↵set 1.2 km) trace using our CNN-based

free-surface multiple attenuation operator extracted from Figure 12(c) (solid black line), and

the di↵erence mid-o↵set trace between the ground truth and our CNN-based free-surface

multiple attenuation operator extracted from Figure 12(d) (solid green line). In Figure

14(b), the strongest multiple caused by the free-surface in the input trace (solid blue line)

at time around 1.85 s has been successfully attenuated in the CNN prediction trace (solid
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black line) which matches the ground truth trace (solid red line). Lastly, Figure 14(c)

shows the far-o↵set (o↵set 2.3 km) trace used as an input to the network from Figure 12(a)

(solid blue line), the ground truth that is the expected result from the CNN prediction

which is the far-o↵set (o↵set 2.3 km) trace extracted from Figure 12(b) (solid red line),

the predicted far-o↵set (o↵set 2.3 km) trace using our CNN-based free-surface multiple

attenuation operator extracted from Figure 12(c) (solid black line), and the di↵erence far-

o↵set trace between the ground truth and our CNN-based free-surface multiple attenuation

operator extracted from Figure 12(d) (solid green line). In Figure 14(c), the strongest

multiple caused by the free-surface in the input trace (solid blue line) at time around 2.35

s has been successfully attenuated in the CNN prediction trace (solid black line) which

matches the ground truth trace (solid red line). The di↵erence traces for the near-, mid-,

and far-o↵set traces indicate a small amplitude mismatch between the ground truth and

the CNN-based free-surface multiples. Figure 14 shows that the CNN-based free-surface

multiple attenuation is able to attenuate the free-surface multiples despite their di↵erent

arrival times due to the o↵set change. The CNN-based free-surface multiple attenuation is

able to preserve the primary events after removing the unwanted multiples from the data.

Additionally, the phase change in the input trace is successfully accounted for through

the CNN prediction. The presence of the free-surface changes the phase and the amplitude

spectrum by the interference with the ghost wave. Thus, the algorithm suppresses multiples

and does the deghosting simultaneously(Riley and Claerbout, 1976; Amundsen and Zhou,

2013).

[Figure 12 about here.]

[Figure 13 about here.]
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For the second example, Figure 15 shows another subset of the Sigsbee velocity model

which consists of relatively flat subsurface structures with a fault near the far-o↵sets, and

a salt body located at the deeper parts of the model. Similar to the training models, 600

receivers are placed along 2.4 km horizontal extent with the receiver sampling of 4 m, and

are located at 8 m depth. The coordinates of the source are given as xs = 25 m and zs =

7 m. The water column has 640 m depth with a velocity of 1500 m/s. The sea bottom for

this example also has a reflection coe�cient of approximately 0.33.

[Figure 14 about here.]

Figure 16(a) shows the data modeled with free-surface multiples using the velocity model

shown in Figure 15, and Figure 16(b) shows the data modeled without free-surface multiples

using the velocity model shown in Figure 15. Figure 16(a) shows the input data, and starting

around 1.7 s in time at 0 km in o↵set, and ending around 2.3 s in time at 2.4 km in o↵set,

the first multiple caused by the free-surface appears. The challenge in this example is that

the first event caused by the free-surface overlaps with a primary event around 1.5 km

in o↵set and 1.85 s in time in Figure 16(a). Conventional SRME techniques require an

adaptive subtraction step in which the presence of overlapping primary and multiple events

might result in removal or reduction of the primary energy. Although not as strong as

the first event caused by the free-surface, there are other multiples arriving after the first

multiple which are caused by the free-surface. Figure 16(b) shows the desired output. The

events described in Figure 16(a) caused by the free-surface are not present in this figure

because of the excluded free-surface. For a successful CNN network training, we expect

the CNN predictions to be similar to the ground truth (Figure 16(b)). After training the

network, Figure 16(c) shows our CNN-based free-surface multiple attenuation shot gather.
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Figure 16(d) shows the di↵erence between the ground truth data (Figure 16(b)) and our

CNN-based free-surface multiple attenuation shot gather (Figure 16(c)).

[Figure 15 about here.]

Figure 17 shows the CC’s between the ground truth (Figure 16(b)) and the CNN predic-

tion (Figure 16(c)), and the average CC is 0.95 which indicates a strong similarity between

the ground truth data and the CNN prediction. Figure 18 shows several trace comparisons

of the input data (solid blue line), output data (or ground truth) (solid red line), the CNN

predictions (solid black line), and the di↵erence between the ground truth and the CNN pre-

diction (solid green line) shown in Figure 16 for the zero-, mid-, and far-o↵sets. Figure 18(a)

shows the trace used as an input to the network which is the zero-o↵set trace extracted from

Figure 16(a) (solid blue line), the ground truth that is the expected result from the CNN

prediction which is the zero-o↵set trace extracted from Figure 16(b) (solid red line), the

predicted zero-o↵set trace using our CNN-based free-surface multiple attenuation operator

extracted from Figure 16(c) (solid black line), and the di↵erence zero-o↵set trace between

the ground truth and our CNN-based free-surface multiple attenuation operator extracted

from Figure 16(d) (solid green line). In Figure 18(a), the strongest multiple caused by the

free-surface in the input trace (solid blue line) at time around 1.7 s has been successfully

attenuated in the CNN prediction trace (solid black line) which matches the ground truth

trace (solid red line). Figure 18(b) shows the mid-o↵set (o↵set 1.5 km) trace used as an

input to the network from Figure 16(a) (solid blue line), the ground truth that is the ex-

pected result from the CNN prediction which is the mid-o↵set (o↵set 1.5 km) trace extracted

from Figure 16(b) (solid red line), the predicted mid-o↵set (o↵set 1.5 km) trace using our

CNN-based free-surface multiple attenuation operator extracted from Figure 16(c) (solid
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black line), and the di↵erence mid-o↵set trace between the ground truth and our CNN-

based free-surface multiple attenuation operator extracted from Figure 16(d) (solid green

line). However, in Figure 18(b), the strongest multiple caused by the free-surface in the

input trace (solid blue line) at time around 1.9 s overlaps with a primary event. Although

the free-surface reflection is embedded in the high-amplitude energy around 1.9 s in Figure

18(b), the CNN prediction is able to remove the free-surface multiple without removing the

primary events. The CNN prediction trace (solid black line) closely matches the ground

truth trace (solid red line) in Figure 18(b). Lastly, Figure 18(c) shows the far-o↵set (o↵set

2.3 km) trace used as an input to the network from Figure 16(a) (solid blue line), the ground

truth that is the expected result from the CNN prediction which is the far-o↵set (o↵set 2.3

km) trace extracted from Figure 16(b) (solid red line), the predicted far-o↵set (o↵set 2.3

km) trace using our CNN-based free-surface multiple attenuation operator extracted from

Figure 16(c) (solid black line), and the di↵erence far-o↵set trace between the ground truth

and our CNN-based free-surface multiple attenuation operator extracted from Figure 16(d)

(solid green line). In Figure 18(c), the strongest multiple caused by the free-surface in

the input trace (solid blue line) at time around 2.35 s has been successfully attenuated in

the CNN prediction trace (solid black line) which matches the ground truth trace (solid

red line). The di↵erence traces for the near-, mid-, and far-o↵set traces indicate a small

amplitude mismatch between the ground truth and the CNN-based free-surface multiples.

Figure 18 shows that the CNN-based free-surface multiple attenuation is able to predict

and remove the free-surface multiples and preserve the primary reflection even when the

primary reflection and the free-surface multiple arrive simultaneously.

[Figure 16 about here.]
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[Figure 17 about here.]

[Figure 18 about here.]

So far in this paper, we used di↵erent sub-models from Sigsbee velocity model for pre-

diction with a reflection coe�cient of around 0.33 at the sea-bottom. However, to test the

accuracy of the CNN-based free-surface multiple attenuation prediction, without changing

the training data, we use a sub-model from Sigsbee velocity model for prediction with a

reflection coe�cient of approximately 0.5 at the sea-bottom (we create the reflection coe�-

cient of approximately 0.5 at the sea-bottom by scaling the density model accordingly and

adding the water layer). Figure 19(a) shows the data modeled with free-surface multiples

using the velocity model shown in Figure 11, but this time with a reflection coe�cient

of approximately 0.5 at the sea-bottom, and Figure 19(b) shows the waveforms modeled

without free-surface multiples using the velocity model shown in Figure 11 with a reflection

coe�cient of approximately 0.5 at the sea-bottom. Figure 19(a) shows the input data, and

starting around 1.7 s in time at 0 km in o↵set, and ending around 2.3 s in time at 2.4 km

in o↵set, the first multiple caused by the free-surface (or the first-order free-surface multi-

ple) is located. Additionally, starting around 2.55 s in time at 0 km in o↵set, and ending

around 2.75 s in time at 1.5 in km o↵set, another multiple caused by the free-surface is

present. Note that in Figure 19(a) the multiples are of higher amplitude than in Figure

12(a) because of the higher reflection coe�cient at the sea-bottom. Figure 19(b) shows

the desired output. Figure 19(c) shows our CNN-based free-surface multiple attenuation

results. Figure 19(d) shows the di↵erence between the ground truth data (Figure 19(b))

and our CNN-based free-surface multiple attenuation results (Figure 19(c)). This exam-

ple shows that our CNN-based method attenuates the free-surface multiples with di↵erent
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reflection coe�cients at the sea-bottom.

[Figure 19 about here.]

[Figure 20 about here.]

Figure 20 shows the CC’s between the ground truth (Figure 19(b)) and the CNN predic-

tion (Figure 19(c)), and the average CC is 0.98 which indicates a strong similarity between

the ground truth data and the CNN prediction. Figure 21 shows the trace view comparison

of the input, ground truth, and predicted data with a reflection coe�cient of 0.5 at the sea

bottom. Figure 21(a) shows a zero-o↵set trace comparison with the first-order free-surface

multiple arriving around 1.7 s, and some other free-surface multiples arriving at 2.55 s and

2.7 s. Figure 21(b) shows a mid-o↵set (1.2 km) trace comparison with the first-order free-

surface multiple arriving around 1.85 s, and some other free-surface multiples arriving at

2.4 s and 2.65 s. Figure 21(c) shows a far-o↵set (2.4 km) trace comparison with the first-

order free-surface multiple arriving around 2.35 s. The di↵erence traces for the near-, mid-,

and far-o↵set traces indicate a small amplitude mismatch between the ground truth and

the CNN-based free-surface multiples. Figure 21 shows that our CNN-based free-surface

multiple attenuation method successfully attenuates the surface-related multiples caused by

a di↵erent reflection coe�cient at the sea-bottom.

[Figure 21 about here.]

DISCUSSION AND CONCLUSIONS

The examples presented in this paper show that the CNN-based free-surface multiple at-

tenuation is able to remove the multiples caused by the free-surface so that the CC between
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the numerically modeled data without the free-surface multiples and the CNN predictions

is found to be around 0.97 on average. The change in the arrival time of the free-surface

multiples with o↵set is correctly predicted by the CNN and the multiples are removed from

the shot gathers without removing the primary events even when the primary and multiple

reflections overlap. Although the data obtained by the CNN prediction mostly match the

numerically modeled data, for late times of the shot gathers (i.e., for times around 2.75 s),

there are mismatches between the CNN prediction and the ground truth. This is due to the

length of the 1D convolutional window (kernel size) running into the zero-padding towards

the end of each trace to match the input and output data size in the network (see Figure

22). Kernel size (which changes between 51, 101, and 1125 samples in our case) determines

the sliding window length to perform convolution along the sample, and to match the size

of the input and output samples, we use zero-padding at the beginning and the end of each

trace of a layer (see Figure 22). This causes both the early and late arrivals of the CNN

predictions to have more mismatches than the rest of the data. Although the same happens

for the early times of the shot gathers (i.e., for times around 0.75 s), there are no events

recorded at such early times in the shot gathers. Although the CNN prediction and the

desired output have a strong similarity (see Figures 13, 17, and 20), Figures 12(d), 16(d),

and 19(d) show that there is an overall amplitude mismatch between the desired output and

CNN prediction. The network is able to make predictions where the free-surface multiples

are mostly attenuated, however for a better amplitude match between the desired output

and CNN prediction, further hyperparameter tuning may be required (e.g., di↵erent combi-

nations of the activation functions, number of hidden layers, number of filters, kernel sizes,

strides, iterations (or epochs), choice of the loss function).

As we describe above, in the conventional SRME workflow, it is hard to accurately know
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if the predicted multiples have the precise amplitude information with the matching filtering,

and/or if the adaptive subtraction step only removes the multiples without removing the

primary events from the data. Additionally, the dense source/receiver distribution require-

ment makes SRME computationally expensive and hard to implement in case of a sparse

data acquisition (e.g., ocean-bottom node (OBN) data acquisition). Since our CNN-based

approach does not require dense source/receiver distribution, once the network is trained it

can be applied to any type of acquisition where we have either 1 trace or 1,000,000 traces

available. It also does not require an additional step to subtract the multiples from the data

because the network predicts the data without free-surface multiples.

The CNN-based free-surface multiple attenuation is able to remove the surface-related

multiples caused by di↵erent sea-bottom reflection coe�cients. To further test the accuracy

of our CNN-based free-surface multiple attenuation method, we can also test the conditions

where we have variations in the source signature, source and receiver depth, water column

depth, and application to the OBN and/or carbon capture, utilization and storage (CCUS)

data. However, the variations of these parameters fall out of the scope of this paper and

will be discussed in a future paper.

The use of 1D convolutional filters makes our CNN-based free-surface multiple atten-

uation computationally e�cient (e.g., training takes 81 minutes and prediction of a trace

takes 2.4 ms). Additionally, trace-by-trace attenuation of free-surface multiples does not

require a dense spatial distribution of sources and receivers. Our CNN-based method is

suitable for irregular and sparse source/receiver acquisition geometry, and the accuracy of

the prediction does not rely upon the availability of the near-o↵set and neighboring traces

(which is one of the important requirements for the conventional SRME algorithms).
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Our numerical examples show that free-surface multiples for subsurface models with

variable velocity and density profiles with salt structures can be attenuated using CNNs

once a network is trained. We show that when the primary and multiple reflections overlap,

our CNN-based free-surface multiple attenuation method successfully removes the multiples

while preserving the primary reflections. Unlike the conventional SRME methods, our

algorithm does not require modeling and subtraction of the multiples from the full dataset

for free-surface multiple attenuation, and eliminates the risk of removing the primary energy

from the recorded seismic data by providing a fast and e↵ective alternative to the existing

free-surface multiple attenuation methods. Our algorithm does not require dense spatial

distribution of source and receivers, and it is also independent of the availability of the

near-o↵set and neighboring traces.
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APPENDIX: CONVOLUTIONAL NEURAL NETWORKS

Figure 22 shows a sketch of a two-layer 1D convolutional neural network with a three-sample

1D convolutional window (kernel). In Figure 22, there are 4 neurons, a(1)1 , ..., a(1)4 in layer 1,
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and 4 neurons, a(2)1 , ..., a(2)4 in layer 2 where the subscript denotes the neuron number, and

the superscript denotes the layer number. Note that the term neuron is usually used in the

context of a sample. For example, if we consider the neurons in layer 1 or layer 2 as a

column vector, each neuron corresponds to an element in that column vector. There is also

a three-sample temporal window in Figure 22 denoted with w1, w2, and w3. The temporal

window (or kernel) size is defined by the user in CNNs, and this kernel is initialized with

random weights, which will later be updated during the training process. We slide this

kernel from the beginning to the end of the sample in layer 1. As the kernel slides down,

we calculate a centered dot product between layer 1 and assign the result of the dot product

to the neurons in layer 2. We preserve the size of the neurons in each layer by zero padding

at the beginning and the end of the neurons, and the zero padding is represented by the

red neurons with zeros in Figure 22. Therefore, the result of the zero-padded centered

convolution in layer 2 matches the shape of the input trace in layer 1. Note that if we

do not use zero padding, the number of neurons in layer 2 does not match the number of

neurons in layer 1.

As the kernel slides down, we calculate a centered dot product between zero-padded

layer 1 and the kernel, and assign the result of the dot product to the neurons in layer 2

as;

a(2)1 = �
⇣
(a(1)1 w2) + (a(1)2 w3) + b1

⌘
,

a(2)2 = �
⇣
(a(1)1 w1) + (a(1)2 w2) + (a(1)3 w3) + b1

⌘
,

a(2)3 = �
⇣
(a(1)2 w1) + (a(1)3 w2) + (a(1)4 w3) + b1

⌘
,

a(2)4 = �
⇣
(a(1)3 w1) + (a(1)4 w2) + b1

⌘
,

(3)

where b1 denotes the bias term and the subscript denotes the number of output traces for

a layer, and � denotes the activation function. The trainable parameters of the network
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shown in Figure 22 are w1, w2, w3, and b1. However, due to the zero padding around the

beginning and the end of the sample, the prediction around these edges tends to be less

accurate than the ones around the middle of the sample.

[Figure 22 about here.]

The number of output traces for a layer is another hyperparameter that needs to be

determined. Figure 23 shows a cartoon of a 1D convolutional neural network for a two-

layer network where the number of output traces for a layer is three and kernel size is also

three. Similar to the example with one filter (see Figure 22), as the three filters slide down,

we calculate a centered dot product between layer 1 and each filter, and assign the result

of the dot product to the neurons in layer 2. Figure 23(a) shows the first filter acting on

layer 1, Figure 23(b) shows the second filter acting on layer 1, and Figure 23(c) shows the

third filter acting on layer 1. Figure 23(d) shows the input layer, layer 1, and the outputs

of three filters on layer 2. The trainable parameters of the network shown in Figure 23 are

w1, w2, w3, w4, w5, w6, w7, w8, w9, b1, b2, and b3.

In summary, for each input trace to a layer and each output trace from a layer, an

independent filter is applied, the number of such filters is the number of input traces times

the number of output traces. For each output trace, these results are summed over the

input traces, a bias term is added (one bias for each output trace), and then the activation

function is applied as;

akj =
NX

i

�(wji ⇤ ak�1
i + bj) , (4)

where ak�1
i is the ith output trace from layer k�1, akj is the jth output trace from layer
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k, wji is the filter connecting input trace i to output trace j, and bj is the bias for output

trace j, ⇤ denotes convolution in time, and N is the number of neurons in the previous

layer.

Networks with multiple filters extract more information from the training input and

output data pairs. However, increasing the number of filters also increases the computa-

tional demand of the network. Note that in Figures 22 and 23 the kernels slides down one

sample at a time and this parameter (which is one of the hyperparameters) is called stride.

For a 1D output in the next layer (layer 3), we define three di↵erent sets of weights which

will be applied to the output on layer 2 shown in Figure 23(d), and the linear combination

of these three di↵erent filtered outputs will form the output in layer 3 after adding the bias

term and applying the activation function.

Although there is more hyperparameter selection and tuning involved during the training

process, the illustration and description of each one of them are out of the scope of this

paper. For more detailed information about DL methods and CNNs, we refer the reader to

Ekman (2021); Géron (2019); Bishop (2006); Higham and Higham (2019).

[Figure 23 about here.]
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Figure 1: A sketch of a simple one-hidden-layer neural network with an input layer, hidden
layer, and an output layer. For illustration purposes, the input layer, hidden layer, and the
output layer have 3 neurons.
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Figure 2: A sketch of a fully connected neural network with an input layer, hidden layer,
and an output layer. The input layer, hidden layer and the output layer have 3 neurons.
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Figure 3: Cartoon of the 1D network used for surface-related multiple attenuation on 2D
data. The height of each trace corresponds to the sample size in our experiment which is
1126 samples. The numbers located below each trace represents the number of convolutional
filters used (e.g., 1, 32, 32, 8, ...). Each blue area visually represents the kernel size used
for each layer in the network (e.g., 1125, 101, 51).
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(a)

(b)

Figure 4: (a) ReLU activation function. (b) Derivative of the ReLU activation function.
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Figure 5: Learning curve for the convolutional neural network trained using the training
and validation datasets.
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(a)

(b)

Figure 6: (a) Marmousi velocity model. (b) Pluto velocity model.
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Figure 7: Subsets of Marmousi velocity model used for training.
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Figure 8: Subsets of Pluto velocity model used for training.
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(a)

(b)

Figure 9: (a) One of the training velocity sub-models extracted from Marmousi velocity
model. (b) One of the training density sub-models scaled from the velocity model in (a).
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(a)

(b)

Figure 10: (a) 5 of 192 shot gathers of the input training data (with a free surface). (b) 5
of 192 shot gathers of the output training data (without a free surface).
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Figure 11: A sub-model of Sigsbee velocity model used for the prediction.
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(a) (b)

(c) (d)

Figure 12: (a) Numerically modeled shot gather with the free-surface multiples (input data)
obtained using the velocity model given in Figure 11. (b) Numerically modeled shot gather
without the free-surface multiples (output data/ground truth) obtained using the velocity
model given in Figure 11. (c) Predicted shot gather without the free-surface multiples
using CNNs. (d) Di↵erence between the ground truth data (Figure 12(b)) and the CNN
prediction (Figure 12(c)).
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Figure 13: Trace-by-trace calculated correlation coe�cient between the ground truth data
(Figure 12(b)) and the CNN prediction (Figure 12(c)).
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(a)

(b)

(c)

Figure 14: Trace comparison of the input (solid blue line), ground truth (solid red line),
CNN prediction (solid black line), and the di↵erence between the ground truth and the
CNN prediction (solid green line) data from the zero-, mid-, and far-o↵sets, respectively,
extracted from the data shown in Figure 12. (a) Comparison of the zero-o↵set traces. (b)
Comparison of the mid-o↵set (o↵set 1.2 km) traces. (c) Comparison of the far-o↵set (o↵set
2.3 km) traces.
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Figure 15: A sub-model of Sigsbee velocity model used for the prediction.

47



(a) (b)

(c) (d)

Figure 16: (a) Numerically modeled shot gather with the free-surface multiples (input data)
obtained using the velocity model given in Figure 15. (b) Numerically modeled shot gather
without the free-surface multiples (output data/ground truth) obtained using the velocity
model given in Figure 15. (c) Predicted shot gather without the free-surface multiples
using CNNs. (d) Di↵erence between the ground truth data (Figure 16(b)) and the CNN
prediction (Figure 16(c))
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Figure 17: Trace-by-trace calculated correlation coe�cient between the ground truth data
(Figure 16(b)) and the CNN prediction (Figure 16(c)).
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(a)

(b)

(c)

Figure 18: Trace comparison of the input (solid blue line), ground truth (solid red line),
CNN prediction (solid black line), and the di↵erence between the ground truth and the
CNN prediction (solid green line) data from the zero-, mid-, and far-o↵sets, respectively,
extracted from the data shown in Figure 16. (a) Comparison of the zero-o↵set traces. (b)
Comparison of the mid-o↵set (o↵set 1.5 km) traces. (c) Comparison of the far-o↵set (o↵set
2.3 km) traces.
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(a) (b)

(c) (d)

Figure 19: (a) Numerically modeled shot gather with the free-surface multiples (input
data) with a reflection coe�cient of 0.5 at the sea-bottom obtained using the velocity
model given in Figure 11. (b) Numerically modeled shot gather without the free-surface
multiples (output data/ground truth) obtained using the velocity model given in Figure 11.
(c) Predicted shot gather without the free-surface multiples using CNNs. (d) Di↵erence
between the ground truth data (Figure 19(b)) and the CNN prediction (Figure 19(c)).
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Figure 20: Trace-by-trace calculated correlation coe�cient between the ground truth data
(Figure 19(b)) and the CNN prediction (Figure 19(c)).
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(a)

(b)

(c)

Figure 21: Trace comparison of the input (solid blue line), ground truth (solid red line),
CNN prediction (solid black line), and the di↵erence between the ground truth and the
CNN prediction (solid green line) data from the zero-, mid-, and far-o↵sets, respectively,
extracted from the data shown in Figure 19. (a) Comparison of the zero-o↵set traces. (b)
Comparison of the mid-o↵set (o↵set 1.2 km) traces. (c) Comparison of the far-o↵set (o↵set
2.3 km) traces.
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Figure 22: A sketch of a zero-padded 1D convolutional neural network for a two-layer
network where the number of output traces for a layer is three.
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(a)

(b)

(c)

(d)

Figure 23: A sketch of a 1D convolutional neural network for a two-layer network along
with three three-sample temporal windows. (a) The first filter and its output on layer 2.
(b) The second filter and its output on layer 2. (c) The third filter and its output on layer 2.
(d) Output of three three-sample windows on layer 2.
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