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Ch. 1 - Sec. 1

1. GREEN’'S FUNCTIONS

In this chapter we discuss those properties of scalar Green's functions
which make them useful as sources by themselves and as adjunct elemental
sources in finding field distributions for more complicated problems
involving surfaces and volumes. We begin with the Green’s functions for the
wave equation in n=1,2,3 spatial dimensions and 1 temporal dimension. Using
different boundary conditions we show that in (n,1) dimensions there are
five possible Green's functions and, using their interrelationships, only
three independent omes. Each one has various uses depending on the problem
at hand. Integration over time yields the corresponding Green's functions
for the Helmholtz equation again in n=1,2,3 spatial dimensions. We also
treat separately, and briefly, the causal Greem’s function for the parabolic
wave equation.

Fourier transform representations of these Helmholtz Green’s functions
are often useful, as are additional integral representations formed by
integration over one or two of the Fourier transform variables. This leads
to integral representations associated with the names Weyl, Sommerfeld, and
Weyrich. These are all spectral representations of some kind, the Weyl
representation being a two-dimensional integral over the transverse
wavenumber components, the Sommerfeld representation a one-dimensional
representation over the (radial) transverse wavenumber, and the Weyrich
representation a one—dimensional representation over the vertical wavenumber
component. Both the latter use cylindrical symmetry properties. Plane wave
spectral decompositions are also treated as are their interrelations with
the above representations. An example is discussed of the use of the
representations in the half-plane.

For complicated geometries the most straightforward approach to solving



Ch. 1 - Sec. 1

boundary value problems is to use integral equations. To develop surface
integral equations using Green'’s functions as elemental sources, or their
derivatives as dipole sources, it is necessary to know their analytic
properties. In particular spatial singularities must be treated in such a
way that the resulting integral equations may be solved using classical
techniques. This is <called regularization, and we demonstrate the
regularization of the first and second vector derivatives of the Helmholtz
Green's function.

Finally we discuss the Green's function in one-dimension wusing
conventional methods here generalized to inhomogeneous media. We treat a
general method of finding profiles for which the one-dimensional Helmholtz

equation is solvable in terms of known classical functions.

1.1 GREEN’'S FUNCTION FOR THE WAVE EQUATION

1.1.1  (3,1)-DIMENSIONS

The Green’'s function is defined as

(3,1)

6 (x,x'st,t) (1.1)

in three spatial and one temporal dimensions. It satisfies the wave

equation given by (c is the wave speed)

[V - o0l ] P mxtrten) = -sxnse-t (1.2)

where the Laplacian is defined by



vV-a +a +a . (1.3)
x y z

It is convenient to do many of the manipulations in four-vector notation

x = (f’xo) x, =ct , (1.4)

with the scalar product defined by

>0 space—-like
x+x=x-g-x [=0 1ight-like (1.5)
<0 time-like .

Using this notation the Green’'s function satisfies
(”1) [} — [ —_—
Js (x,x") = 8(x-x') = -B(x-g')8(x,~x}) . (1.6)

where we have defined the d’Alembertian operator

H3 —-2_2 2 2
O-=9-c =v-o, . (1.7)
Since we have 5(10—1;) = ¢ *8(t-t’) we see from (1.2) and (1.6) that our

Green's functions are related by
6 gzt t) = ¢ 607 (x,x) . (1.8)

Since the delta function source temm is a function of the difference
between the space—time source point (x’) and receiver point (x), and the
coefficients of the differential operators in the d'Alembertian are
constants (homogeneous medium), the Green’s function omnly depends

functionally on the difference x-x’'. For convenience we write it as a



function of this difference, and introduce the Fourier transform in the

difference argument
¢ = 2o [fferetinn 8V wa'x (1.9)

with notation (w is circular frequency)

kex = k'x -k x 3 ko = w/c

a'x = ax &, . (1.10)

Apply ing the d’'Alembertian operator to (1.9) we see that (1.6) is satisfied

provided

s w -« - 1SS IET S : (1.11)
We note that the four-dimensional delta function is written as

8(x) = (2n)"j]]]éxp(ik-x)d‘k . (1.12)

Using (1.11) and defining wp=|k| we can write (1.9) as

(s,2) 1 exp(ik*x) 4
G (x) = - dk . (1.13)
(zn)‘ H” (k - mk)(ko+ "’k)

To evaluate (1.13) we must first evaluate the k, integral

© exp(—ikoxo)

dk_ . (1.14)
e E T ey e

I =



To do this we must define how to treat the pole terms at k°=imk in the
integrand. There are two equivalent ways to do this. The first is

(a) Fix the poles — offset the contour

There are five ways to do this illustrated below:

1.2 N3\ 5> R: retarded

Here the integration contour is written as semicircles above

the two poles at imk. It is called the retarded contour for

reasons which will be clear later.

2. ——)—W—A: advanced

Here the integration contour is written as semicirlces below

the two poles at u.

3. —— x| x |—>—P: principal value

Here the poles are evaluated using the Cauchy principal value

definition of the integral.

4. —-)—\x/—)—/x\-)—D: Dy son

Here the integration coantour is written using semicircles,

one below the pole at -w, and one above the pole at +uwy. The
name arises from F. Dyson in his work on quantum field

theory.



5.———"x M x ;9 C: causal

Here the semicircles are reversed from the Dyson contour.

The second method is to:

(b) Fix the contour - offset the poles

For this method we fix the contour along the real k, axis from -«

to », and shift the poles. The above five become

S
1. x X > R: retarded
2. x x > A: advanced
3. X >4 > P: principal value
4, x D: Dyson

r

x

5. x C: causal

P

x

Each method makes clear that we will treat (1.14) as an integral im the
complex plane. We use method (b), i.e. we shift the poles by an amount is

and consider the results in the limit as &> 0. That is we shift them into



the imaginary part of the complex ko, plane. We thus have

(ko— mk)(k°+ wk) —)[ko— (mk+ iae)][k°+ w - iBe] , (1.15)

where a,B=1, 0 depending on the shift. For the five cases we have that

C: a=1,p=-1 ., (1.16)

To evaluate the poles, use the Dirac-Plemelj relations for distributions (we

assume the limit g—> 0)

1

1
= P id .
-;—1_—1? y ¥ nm (Y)

(1.17)

That is, we express the poles at y * ie in temms of principal value (P)
distributions and half-residue terms from the semicircles. (Ref. 1.4, p.

476.) We thus have for one pole

1 1
= =P + ani 6(k - v ) , (1.18)
k [mk + iae]' k,— g o 'k
and for the product of two poles
1

(k- o, - iae) (ko+ o - iBg)

= P 1 + i a 8(k - w ) - p 8(k + ) (1.19)
3 2 20 [ 0 k 0 k ] . °
ko - wk k



e 1 — DE€C, L

Substituting (1.19) into (1.13) we can thus write all of our examples in

terms of two integrals as

63 (x) = -(21:)"'[11(:) + (ni/2) [a I (x,-x,) - B I,(i"o)]] » (1.20)

where the integrals are defimed by
1,00 = pff[f sRikx) 4
h § 2 2
k ~w
° k

and

exp[l(k-x tox )] "

sy = ff

“x

(1.21)

(1.22)

To evaluate I, nse the following distributional relation

P-%-= - ;-J; exp(iat) TET da ,

which can be easily proved as follows

-0 [

= (-]
e—0
]
= lim i + i
e—~>0 T + ie T - is
. 1

where the latter step follows from the relations (1.17).

I exp(iazt) 1%T da = I exp(iat)da - I exp(iat)da

lim I exp[ialt + iel]da - I expf[ialt - ie]]da]

(1.23)

I, can thus be



written as

I(x) =~ %-lha 1%T IIII exp(-iak-k + ik-x)d'x .

(1.24)

Completing the square in the four—dimensional integral and introducing the

change of variables

K =k - (2a) x
and the integrals

©

I dp exp(?iapz) = [ﬂ/(iia)JI/’ ,

we can evaluvate the four-dimensional integral to get
I (x) = (ﬂ3/2)jha a exp[ii-x(4a)_1] .
The further change of variables a=(4a)™' then yields
I(x) = -4n° 8(x))
which can also be written as
I(x) = -4n’(2r)"[s(r + x,) + 8(r - xo)] .
The latter follows from the gemeral distributional result

8(f(x)) = % 8(x - xi)/lf'(xi)l
i

where f(xi)=o,

We evaluate I, using spherical coordinates with

(1.25)

(1.26)

(1.27)

(1.28)

(1.29)

(1.30)



dx = wz

e doy d(cos 6)dg

kex = w, T cos 6 r = |

The angular integrals are straightforward, and we get

(1.31)

Iz(f’xo) = (2n/ir)l; [exp[imk(xo + r)] - exp[iwk(xo- r)]]dwk . (1.32)

Introduce a small convergence factor

I (x,x ) = (2n/ir) 1lim exp[iv, (x_+ r + ie)
3'~"" e 0 ]; [ [ ko ]
- exp[imk(xo— r+ ie)]]dmk
. 1 _ 1
= (2n/x) 1:?0[ x,tr+ ie x, - r+ ie ] .

If we use (1.17) and combine the tems we get

2
I(x,x) =dnpl_ 4201
a'~""o 22 T

By substituting -x, for x, and rewriting we get that

1,(x.7x,) = [1,0x)]

3
2% i
T

4n P-l- -
3
X

[S(xo- r) - 8(x°+ r)] .

[S(xo— r) - 8(x°+ r)]

(1.33)

(1.34)

(1.35)

We thus have all the necessary integrals from (1.29), (1.34) and (1.35) and

can evaluate our Green’'s functions from (1.20). The results are:

- 10 -



Eg. 1. RETARDED GREEN’S FUNCTION (a=p=-1)

G;”l)(x) = (4no) ™" Blx - 1) . (1.36)

This result means that after a time t, a pulse in three-dimensions is

concentrated on the surface of a sphere of radius r=xo,=ct (i.e. it is an

outgoing spherical wave). Also we note that since
8(x - r) = 8lct - 1) = ¢t st - t/e)
we have that following (1.8)
O e I A A S I

In addition this is called a retarded Green's function since any field u can

be expressed as an integral over a source function f as

u(x) = uw(x,x)) = Ilfdg'lax; G;"l)(x-x')f(f'.xo) .

Substituting the Green's function from (1.36) and evaluating the x;

integration yields
u(x) = III&;'(4nr)-1 f(x',x,— ) ,

where r=|;—5'|. The latter is an integral over a source function f

evaluated at a retarded time.

- 11 -
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Bg. 2. ADVANCED GREEN’'S FUNCTION (a=p=1)

We have that

G;”I)(x) = (4n)™* 8(x, + 1) (1.37)

This is an incoming spherical pulse concentrated on a sphere of radius r=-
ct. Thus for a real pulse it must exist for negative times. It is called
an advanced Green’s function since any field can be written as the spatial
integral over a source function f evaluated at an advanced time x +r in

analogy to the previous discussion.

Bg. 3. PRINCIPAL VALUE GREEN’S FUNCTION (a=p=0)

From (1.20) this is directly related to I, so that
68N = (w7 st : (1.38) -

We also note that it can be writtem as a linear combination of (1.36) and

(1.37)

6 0 = 3 [ol P 0+ 6] (1.39)
so that another representation is

G;"l)(x) = (8nr)—1[6(xo— r) + 8(x + r)] , (1.40)

)

which also follows from (1.29) and (1.30). In a sense it is a standing wave

Green's function since it balances both incoming and outgoing wave Green's

functions.

_12_



Eg. 4. DYSON GREEN’S FUNCTION (a=-1, B=1)

By relating the I, integral to the principal value term (1.38) we get

that
6V =6V + Lpl (1.41)
D P 4n x

Eg. 5. CAUSAL GREEN'S FUNCTION (a=1, p=-1)

This is just the complex conjugate of the Dyson function

(1.42)

2

(3,2) _ al3,1) _ i 1
GC (x) = GP (x) P = -
4n x

Finally we can easily conclude either from the explicit forms of the

five functions (1.36), (1.37), (1.38), (1.41) and (1.42) or from the

definitions (1.16) and (1.20) that we have the relations

Gl(,s'i)(x) =_;_ [Gl(;'l)(x) + G‘(:'l)(x)] )

and

6V =3 68V @ v 6l V] (1.43)

so that only three of the five functions are linearly independent. In

addition we also note that the difference of amy two of these Green's

for example

functions is a solution of the homogeneous equation, i.e.

(3,1) _ g(2,2) (1.44)

g8 = G A

satisfies
(1.45)

- 13 -



1.1.2  (2,1)-DINENSIONS

Here we compute the Green’s functions in two spatial and one temporal
dimension. We do this by identifying one spatial coordinate and integrating
the (3,1) Green’'s functions over this coordinate. We choose the z-direction

as our direction of integration and write the radius r as

[p’+ (z - z')’lllz : (1.46)

2]
"

where

p-p' 1 g=I(xy) ., (1.47)

1 4a-}
n

will be the remaining two-dimensional vector. The Green’s functions we

define all satisfy the equation
(@ + 0. - ¢ 0} 6> (p,v) = -s(v)B(R) . (1.48)

Eg. 1. RETARDED GREEN’S FUNCTION

We define Gé"l) as the spatial integral over Gé"l) given by (1.36)

’ -
where r=|x-x'| and v=x,-x,. It is

6{** e, = !; 68" (x,xnaz (1.49)
_ 1 ® 8(r - ©) ,
- ?E'j, 2 4 .

We define

- 14 ~



so that

{=12-z al = -dz’
r3=P3+t_3

at/r = ar/t

dr(rz— Pz)_llz ,

<o

(2,1)
6g (P,7)

° (rz_ Pz):./z

and, evaluating the 8—functjomn, we get

This illustrates the fact that,

1 6(x - P)
77'(72_ Pz)1/z

(3,1) =
6g (B,z) =

1 I 6§(r - t)dr
n

in two dimensions,

(1.50)

(1.51)

the effect of an impulse

after a (scaled) time t has elapsed has spread over a region of spatial

extent P<{x.

given point has a tail.

A line source in three dimensions produces a field which at any

We can analogously define the other Green'’s functions as integrals over

the corresponding (3,1) dimensional Green’s functions.

(1.41) and (1.42) we get

Ex. 2.

ADVANCED GREEN’S FUNCTION

(2,12) _ 1 o(-<-P)
Sa (B.,%) = 73'(12_Pz)1/z

_15_

From (1.37), (1.40),

(1.52)



Eg. 3. PRINCIPAL VALUE GREEN’S FUNCTION

Gl(,z,l)(g.t) = %’T < 13 1/3 [o(-c—P) + 9("7—P)] . (1-53)
(z"-P")
Eg. 4. DYSON GREEN’'S FUNCTION
6(301)(P'.‘) = G(z'l)(P’t) + Lo(ili.lz_ . (1.54)
D ~ P ~ 4n [Pz""tz]z/z

and finally

Eg. 5. CAUSAL GREEN’S FONCTION

(201) = (391) - _i-e(P' T )
GC (P,<) GP (P, %) P T;;:{;{;7; . (1.55)

1.1.3 (1,1)-DIMENSIONS

The Green’s function in one spatial and one temporal dimension is

defined as

e“""(g,e) E=x-x' 3 ©=x-x =oclt-t') , (1.56)
and satisfies the equation

@2 - 02 6 (g,0) = -8(2) 8(r) . (1.57)

We can compute the five Green’s functions either by integrating over the y—

coordinate results G(z'l)(g.t) from Sec. 1.1.2, or by using pole shifting
and complex integration techniques as we used im Sec. 1.1.1. We choose the

latter. Introduce the Fourier transform

- 16 -



6(1'1)(§.t) = (2n)-zjj;xP[i(kx§ - kot)la(l’l)(kX’ko)dkxdk° '(1.58)

and apply the differential operator in (1.57) to it. We can thus solve for

the Fourier transform and write (1.58) as

(2 exp(-ik <)

G '1)(.‘:.‘5) = —(Zﬂ)'zjexp(xk &)dk I_-T)-_ dv . (1.59)
k
° x

Shift the poles of the integrand as in Sec. 1.1.1. That is we have that

1 1
i) EFTEY ~ E-k - iae)(EF k- ife)
[ b 4 o x o x ] b 4

=P 21 3
ko~ k_

+ ni
2k
X

lask,- x) - poek,+ k)] o (1.60)
where we have used (1.,17). The result for (1.59) is

6(1'1)(§.r) = -(2n)_’[11(§,t) + (niIZ)[a I,(&-t) -B Iz(ﬁ.t)]] , (1.61)
in analogy to (1.20) where here

of]

exp[i(k E-k t)]

1, (¢,7) ak_dx, (1.62)

and

» exp[ikx(c + 1:)] "
k x °

——QD x

(1.63)

Iz(g.t)

_17_



The values a and B are given by (1.16).

The integrals can be easily evaluated wusing complex variable

techniques. The results are

I (&%) = —(n°/2) sgn tlsgn(f + ©) - sgn(E - V] , (1.64)
or
2
I,(¢,%) = -n [8(x - |&] + 8(= - |EP] (1.65)
and
Iz(t.t) = ni sgn(E + ) . (1.66)

We combine these results using (1.64)-(1.66) and (1.16) in (1.61) to get the

results:

Eg. 1. RETARDED GREEN’S FUNCTION

(1,1) 1
G " &%) =50 - | - (1.67)

Bg. 2. ADVANCED GREEN'S FUNCTION

(
6, (z,) = 3o - g . (1.68)

Eg. 3. PRINCIPAL VALUE GREEN’'S FUNCTION

6" (2,0 = 180z - Je + 0(— - |5 . (1.69)

- 18 -



Bg. 4. DYSON GREEN’S FUNCTION

el‘)"*’(g.c) =- 7 [O(t)sgn(t—t) + e(—r)sgn(§+r>] . (1.70)

and

Bg. 5. CAUSAL GREENS FUNCTION

Gél’l)(t.t) =%— [9(1:)sgn(§+1:) + 9(-‘088!1(5“")] . (1.711)
Other compact values can also be derived, for example

(1,1) 1

Gy (&,°) = -7 sgn[§ - I‘rl] , (1.72)
and

(2, 1
6¢" (€, = senfe + 1<) - (1.73)

-19 -



1.2 GREEN’S FUNCTIONS FOR THE HELMHOLTZ EQUATION

1.2.1 (3)-DIMENSIONS

We can define the Green's functions for the Helmholtz equation as the
temporal Fourier transform of the Green’'s functions for the wave equation

derived in Sec. 1. Using the four—-dimensional fomulation we have

6z = [ 6P xn emplixmar (2.1)

where 1:=x°-x;. They satisfy the Helmholtz equation given by the same

Fourier transform operating on (1.6). It is
o+ ey = sx-xn (2.2)

where k =w/c and w is circular frequency. We compute each of the Green's

functions corresponding to the pole shifts in Sec. 1.

Eg. 1. RETARDED GREEN’S FUNCTION

From (1.36) we have that for a difference of arguments (r=|g—x'|)
68V x) = 6" x -2 = ) Tste -0 . (2.3)
Substitute this in (2.1) to get
68 (. x) = (n) explirgn) (2.4)

which is an outgoing spherical wave, i.e. for harmonic time dependence
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exp(-iwt) = exp(—ikoxo) ’ (2.5)

the wave travels in a positive radial direction and satisfies an outgoing

radiation condition of the form

1lim d _ . (3) _ -2
rém [a—i- 1k°] GR = 0(1' ) . (206)

It expresses the field at the receiver point x due to a point source located

at g’ in a homogeneous medium,

Eg. 2. ADVANCED GREEN'S FUNCTION

From (1.37) we have that
6V x,x) = Gno) stz + 1) (2.7)
which when substituted into (2.1) yields

G;s)(i,sv) = (41!1')—1 exp(-ikor) . '(2.8)

For harmonic time dependence this is an incoming radial wave satisfying the

radiation condition

lim 3 (3) _ -3
r—)w[.5;-+ ik°] GA = 0(cr ) . (2.9)
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Cile 4 — DOCCes &

Eg. 3. PRINCIPAL VALUE GREEN'S FUNCTION

This can be computed either directly from (1.40) using a difference of
argoments or from (1.39) represented here as half the sum of (2.3) and

(2.8). The result is
G;’)(g.g') = (4no)? cos(k r) , (2.10)

which for harmonic time dependence represents a standing wave. Note also
that in contrast to the retarded and advanced functions, the principal value

Green's function is real.

Eg. 4. DYSON AND CAUSAL GREEN’S FUNCTIONS

From (1.41) and (1.42) we have that

6% (x,x) = G(”l)(x.x’) + 2 p ! . (2.11)

D, C P 4n’ (x - x')z

We substitute this into (2.1) and use (2.10) for the evaluation of the
principal value term. The remaining integral can be evaluated using residue

calculus methods. The result is
() 5.x") = “*leos(k r) * i (2.12)
GD, c(ln‘ ) = (4nr) cosik r) = i sgn (ko) s1n(kor) ’ .

which can be rewritten as

6'*) (x,x") k >0
R ~~ °
G;’)(f’f') =
6¢*) (x,x") k<0 , (2.13)
A ~ ~ °

and
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6" (x.x") k, >0
G(C’)(E.z') =
(3) ]
Gy’ (x,x") k<0 . (2.14)

Because the Dyson and Causal Green’s functions mix representations and do
not satisfy either a well-defined radiation condition or a standing wave
interpretation except for positive or negative frequency separately, they
are not useful for our purposes. In addition negative frequency results are
usually folded into positive frequency omnes in applications, and neither the
Dyson or Causal functions yield new results over and above those found from
the retarded, advanced, and principal value functions. We do not compute

them for (2) and (1) dimensionms.

1.2.2 (2)-DIMNENSIONS

The two-dimensional Helmholtz Green's functions are the temporal
Fourier transforms of the Green's functions for the two—dimensional wave
equation in Sec. 1.1.2., They are defined as

(2,1)

G(’)(g.g') = I G (P,t) explik v)dT , (2.15)

and satisfy the Helmholtz equation given by the corresponding transfomm of

(1.48) which becomes

(3)

(82 + a; + kD6 (gp') = -Blx -x")bly - y') . (2.16)
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vare - v we =

Bg. 1. RETARDED GREEN’'S FUNCTION

For this case we substitute (1.51) in (2.15) to get

o exp(ik <)
6 (poeh = I ey e LI (2.17)
P (" -P7)

If we make the substitution
t = P cosh¢ : dv = P sinhg d¢ .
the integral becomes

Gé’)(g.g') = %7‘-[ exp(ik Pcoshg)dg (2.18)

-0

written from -« to = since the imtegrand is an even function of 9. The

integral (2.18) is a representation of the Hankel function
() _ i gpl(2)
GR (p.p') = ?-Ho (koP) ’ (2.19)
which is an outgoing cylindrical wave, i.e. asymptotically
(2) . 1/3 .
B (kP) ~ (2/n1k°P) exp(xkoP) . (2.20)

which spreads like a cylindrical wave with amplitude factor /3,

Eg. 2. ADVANCED GREEN’S FUNCTION

Substitute (1.52) into (2.15). The integration can be performed as
above with an additional sign change in tv. The result is the incoming

Hankel function
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(2) oo i op(2)
GA (p.P ) = T Bo (kOP) » (2.21)

which represents a cylindrical wave propagating in the direction of

decreasing r.

Eg. 3. PRINCIPAL VALUE GREEN’S FUNCTION

This can be computed either directly by substituting (1.53) in (2.15)
or as half the sum of (2.19) and (2.21). The result is
(3) o1
6 (p.,p') = z—No(koP) ’ (2.22)

P

where N, is the Neumann function.

1.2.3  (1)-DIMENSION

We define the one—-dimensional Helmholtz Green's function as the
temporal Fourier transform of the one—dimensional Green's functions for the

wave equation in Sec. 1.1.3. It is

6 (x,x") = I 6(1'1)(§.t)exp(ikot)dt , (2,23)

where E=x-x’'. Fourier transformation of the differential equation (1.57)

yields the ordinary differential equation

2

[ d _ . ] 6 (x,x*) = - 8(x-x') ., (2.24)
2 ]

dx

which is the ome-dimensional version of the Helmholtz equation satisfied by

all the one-dimensional Green's functions below.
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Eg. 1. RETARDED GREEN’'S FUNCTION

Substitute (1.67) in (2.23). Evaluation of the step function yields

Gl(;)(x.x') = % ‘[| lexp(ikot)dt . (2.25)
<

Recall that this Green’s function for the wave equation was computed with k,
shifted to k, . We can then directly evaluvate the imtegral in (2.25) since

the contribution at o vanishes. The result is
(2 -
GR )(xpx') = -(Ziko) * exp(ik° lx—x'l) » (2.26)

which is a one—dimensional wave which travels to the right.

Eg. 2. ADVANCED GREEN'S FUNCTION

Substitute (1.69) in (2.23). The integral evaluation proceeds in the
same manner as the previous example except that here we note that the
advanced Green’s function is computed with k, shifted to k,_. The result is

2 (xx0) = ik Texpl-ik, lxt ) (2.27)

which for harmonic time dependence is a one—dimensional wave travelling to

the left.

Eg. 3. PRINCIPAL VALUE GREEN'S FUNCTION

This can be computed either directly from (1.69) or by combining half

the sum of (2.26) and (2.27) to give
G;l)(x.x') = -(4k°)_1 sin(k°|x—x'|) , (2.28)

which represents a standing wave.
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Chc 1 - Sec~ 3

1.3 CAUSAL PARABOLIC GREEN’S FUNCTION

The causal Green's function which satisfies the parabolic wave equation
V2 slx.x'st,t)) - 2y 9B = —g(x-x")8(t-t') (3.1)
x ~ ~ ’ -5{ ~ ~

which contains only the first derivative im time and where y is a comnstant
can be computed as follows. Causality means that there is no measurable
effect until the source turms on, i.e. g must vanish for times t less than

the source turn—-on time t’'. This is

glx,x'st, t') =0 t <t . (3.2)
Introduce the Fourier transform in x
sk, x"st, t’) = j]];xp(—ik°5)g(5.5':t.t')dg , (3.3)
and correspondingly Fourier transform (3.1) to get
a8

2 Y _éT + kzz = exp(—ik‘}_')&(t't') » (3.4

where k is the Fourier transform variable and k’=k-§. We still require the

condition (3.2) and the one—dimensional equation (3.4) has solution given by
Bexhte) = 007 emfoapr - K-t 2]ty L (3.5)

where the step function defines causality. The inverse transform is
glx,x"st, t') = (Zu)—sj]];xp(ig°5);(g.5'zt.t')dg , (3.6)

and if we substitute (3.5) into (3.6) we note that the result is the Fourier
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Ch. 1 - Sec. 3

transform of a Gaussian. The latter may be treated by cartesian coordinates

to yield

3/a 1/2 Ix-x’|
S(Sng'itpt') = 1 3 1 (27) 2 expl— l—_——'—— o(t-t’) . (3.7)
(27) -t/ 2 tt

It can be shown that this result can be gemeralized to n—spatial dimensions

to yield
3
/3 Iz-x’|
(n) . o1 1 2yn ]n _y EE o 8
g (E,E 3t't ) n Y t_t, exp 2 t"t' e(t t ) » (3- )
(2n)
where for
n=1 x = (x)
n =2 x = (x,y)
n=3 x = (x,y,2)
n x = (11’ X seees xn) .
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1.4 _REPRESENTATIONS

There are several useful integral representations of the Green's
function for the Helmholtz equation. The latter is a spherical wave and the
representations amount to expanding a spherical wave into either plane waves

(spectral integrals) or cylindrical waves (Sommerfeld and Weyrich

representations).

1.4.1 WEYL REPRESENTATION

The first representation is an expansion of a spherical wave into plane

waves. The Helmholtz Green's function in  three dimensions satisfies the

differential equation
@ + &) 6Pz xn = sxx . (4.1)

Fourier transform this equation with respect to x, i.e. multiply the

equation by

j]];xp[-i(kxx + kyy + kzz)]dxdydz ’ (4.2)
to get the mixed representation

E(s)(g.g') = exp(ig-g')(kz—k:)_l , (4.3)
where

32 2 2 2 3 2 2
ko= |kl =k + k vk, =k +tk (4.4)
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and kX jis the Fourier transform variable. Note that in (4.4), by defining
the transverse part of the wavenumber

ko= +x)* (4.5)
t x y

we have essentially picked out the z—-direction as special. Of course we

could do this with any of the three directions. Using (4.3) the inverse

Fourier transform is thus

G(’)(;.g') = (2n)—’II];xp[i(kxx + kyy + kzz)]a(g.g')dg (4.6)
explifk (x~x') + k (y-y') + k (z-2')
__ 1 [ [ x 'y z ]] dk dk dk
(20)° (kz - K)(kz + K) Xy z
(4.7)
where
K= (x} - k:)”’ , (4.8)

and where we have distingnished the poles in the integrand of (4.7) as poles

in k,. We evaluate (4.7) cylindrically, i.e. we do the k, integral first
using complex variables. We shift the poles by adding a small positive

imaginary part to k, and hence to K. That is

z -— ’
*K z-2'>0 Fig. 1.1

-K * j z-2z'<0
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We evaluate the kz—integral in (4.7) by closing the contour in the upper

half plane (z-z’'>0) or in the lower half plame (z-z'<0). The result is

l;xp[ikz(z—z')] ni )
R A R o explik|z—z' |1 . (4.9)

Using this in (4.7) and writing the remaining two integrals using the two-

dimensional vectors

Et = (kx:ky) JJ ’x"t = (x:y) » . (4.10)
we get
. exp |[ik -(x - x!) + iK |z—z'|]
G(’)(g.y)= bR ” t ~t xt * dx, . (4.11)
(2n) +

where ImK>0.

Equation (4.11) is the two—~dimensional plane-wave spectral

representation or Weyl representation. In deriving it we have singled out
the z-—direction as sbecial. This is appropriate if the z—direction in the
application is special, for example if there is a discontimuity in z or if
the variability in the medium is in the z—direction. We treat this further
in the next section. Also notice that here we shifted both poles by +ie, so
that effectivey one shifted above the axis and one below. For the retarded
Green’s function is Sec. 1 we shifted both w, poles down. This is equivalent

to what we have done here since we had

k - wk -9k° - (wk ~ ig)

k + ieg -~ o
[} o

k »

ko + wk -9k° + (wk + ie) ko + ie + mk .



In both terms we give a positive shift to the k, term. By shifting the
poles in the manner above we have derived the Weyl representation for the
retarded Green's function. Other pole shifts can be done to form a Weyl
representation for the advanded or principal value Green’'s functions for

example.

1.4.2 SOMMERFELD REPRESENTATION

For this case we expand the spherical wave in cylindrical waves. The
expansion is essentially over the horizontal wave number. We begin by
representing the Weyl representation (4.11) in cylindrical polar coordinates

defined about x-x’' and y-y’. We have that
» N - [} = .
explik, (Et gt)] exp(lktp cos®) , (4.12)

where

1/2
p = [(x—x')z + (y—y')zl = x4 gil » (4.13)

and 6 is the angle between k; and St'l;' Using the cylindrical differential

area element

dk, =k _dk_do , (4.14)

and the definition of the Bessel function (cylindrical wave)
Izﬂ
1,00 = (207 Texplik,p cos0)ao (4.15)

we evaluate the O—integral as above to get from (4.11)
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... 3 2. 1/2
@ J (k. plexplilk,, - kt) |z-z'|] .

G(S)(E’Er) =_1_I YD ¢

(4.16)
n (ky,- k)

dk

t »

where we have explicitly written out the square root K. The result (4.16)
is a one—~dimensional integral representation of a spherical wave in terms of

cylindrical waves called the Sommerfeld representation. It is an integral

written over the horizontal wavenumber k;. and is only useful for problems

which contain an analogous horizontal symmetry (i.e. a parametric
independence of 8).

Alternatively, we can write (4.16) in terms of the Hankel function.
The Bessel function J, can be written in tems of Hankel functions Hsl) and

ng) as

)
(ktr)] ) (4.17)

. (2) (2
3,00 = 1/2[88 (x,p) + B

Substitute this into (4.16), and use, in the Hsz) integral, the result

(2)

(3) _ ni
Ho (ktr) = Bo (e 'k, r) , (4.18)

t
and, in this integral rotate the contour by defining a mnew variable

k= Mg, (4.19)

so that the limits of integration go from (0,») to (0,we®i)=(0,-»). The

result is an integral over only ﬂgl) given by
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1

]2
1) L2 3 ,
H: (ktp)exp[x [k0+_kt |z-z |]

2 2J1/2
[k°+' kt]

Since Hé") behaves like an outgoing wave asymptotically, the representation

(3) S |
6 “(x,x') = g= ktdl:t . (4.20)

(4.20) is useful in problems which contain this type of geometry, e.g. the
exterior problem of scattering from a bounded object. Equation (4.16) on
the other hand is useful for an interior representation, i.e. omne which

contains standing waves rather than outgoing waves.

1.4.3 EXPLICIT EVALUATION oF ¢*}

We mentioned that our representations were for the retarded Green's

function. We can explicitly exhibit this by evaluating all the integrals in

6(2). From (4.7) we have that

exp[ik-(x-x')
6 (g,x7) = 2 [[[ [ l ax (4.21)

(27)° k- k)

Using spherical polar coordinates defined as in Fig. 1.2

o

Fig. 1.2

we have that
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]

R

(x - x') =k|g - x'|cos® = kr cos® ,

H

(4.22)

dk = k'dk sin® dodg .

The ¢-integral just yields 2n. The O-integral is

n
Iexp(ikr c0s9)sin0d0 = [exp(ikr) - exp(—ikr)](ikr)_l . (4.23)
]

We evaluate the positive exponential integral using complex variables and

pole shifts to k,*ie to get (close in uhp)

€0

k exp(ikr) - .
[ (k-—ko+) (k+k°ﬁ:§ ni exp(lkor) . (4.24)

The negative exponential is evalumated by closing in the lower half plane

with the same pole shifts (k,, +ie) to yield

k exp(-ikr) _
[ (k—kH) (k+k°+) = -xi exp(ikor) . (4.25)

Combining all these results we get
(3) '
6 (x,x') = exp(ikor)/4ﬂr » (4.26)

which was the same result as we found using the retarded comtour in Sec. 2.

1.4.4 VEYRICH REPRESENTATION

An alternative represemtation of spherical waves expanded in

cylindrical waves can be found by expanding in the vertical (kz) wav enumber
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rather than the horizontal wavenumber as in the Sommerfeld representation.

Starting with (4.21) we don’t do the k,-integral. Instead do the k; and ky

integrals using cylindrical symmetry. Using the definitiom
Kk = (x>-xH?* (4.27)
z o z

(4.21) is written as

e ik +(x -x')
1 ; [ exp[ik, (z-2") Jak, [I [k, (220 dk _dx .

6(3)(5.5') = 5 3
(2n) kt- Kz

(4.28)

The latter two integrals can be evaluated using the cylindrical coordimate
and Bessel function definitions in (4.12)-(4.15)., The O-integral again

yields a Bessel function so that we have

(k r)
6z, x = 2 [exp[ik (z-2') Jak -E—:—E—«n . (4.29)
(2n) z 2 k.- K

We use (4.17) for the Bessel function and in the integral for Hsz) we again
rotate the contour (k¢ - kt) so that nusing (4.18) we again have an

integral only over le). We get

* (2 )(k p)
(3) 1 to t
G (5’5') = e exp ik (z—z ) dk l————dk . (4.30)
2(2m)° I [, ] ox-xl O F

We have shifted our poles so that Isz>0. We evaluate the k —integral using
complex variables and closing the contour in the uhp. Explicitly writing

out K, we get
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(-]

(3) i () [r2 _ 397"
G (5.;')=-8-’T]exp[ikz(z—z')]ﬂo [[k°+— K] p]dkz. (4.31)

which is Weyrich's formula, a one-dimensional integral representation in

terms of the vertical wavenumber k, . The result (4.31) is often quoted

using (4.26) as

(. 1/3
=% o102 ﬂil)[p(k:- a) ]da , (4.32)

e xp iko(pz+ zz)l/’]

(pz+ zz):l/z

where p,z are real, r=(p*+z2)*/? and 0¢ arg (k:—a’)’/’<n.

1.4.5 PLANE-WAVE DECOMPOSITION OF 6¢*’

It is possible to derive two Weyl-type representations for the
Helmholtz Green’s function in two dimensions. In two dimemsions the latter

satisfies the Helmholtz equation

(2)

(V, + k)6 (x,x!) = -8(x,x) . (4.33)

~t’~t

We Fourier transform the equation by multiplying by

I];xp(—ixt-zt)dgt ’

where k. =(ky,k;) is the Fourier transform variable. The result is the mixed

representation
~(2) _ . , 3 __32,-1
6" (k,,xp) = exp(-ik -x 1) (k, k) . (4.34)

The inverse transform thus becomes
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|
[y
]

(3) ’ . '“(") ’
G (xt.xt) = &xp(1xt'5t)6 (k,.x)dk, (4.35)

= (2m)* §

1 'rexp[ist'(ft_5£)]dk

, (4.36)
(2:0)% ) (kx_ xy)(kx+ x&) ~t

where

Kk = (- )Y . (4.37)
y y

We expressed the integrand of (4.36) in such a way as to do the k.-

integration using complex variable techniques just as we did the k;~

integration in (4.9). The result is

exp[ik_(y-y') + iK_[x-x’|
6 (x,x) = M [ [ty T L . (4.38)
(2n) 3, y
Alternatively we could define
K = (- ), (4.39)
X o X

so that the denomimator of (4.36) becomes
(k - K )(k + K ) »
y X y X

and the obvious choice is to carry out the ky-integration. The result is

(2) ni [
G (x,,x!) =
SRt an?

exp[ikx(x—x’) + inly-y'll o

K
x

. (4.40)

The representations (4.38) and (4.40) are both Weyl-type representations for
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the two~dimensional Green’'s function. Their use depends on exploiting the

geometry of the particular application.

1.4.6__EXPLICIT EVALUATION OF G(*)

Using (4.34) and (4.35) we can explicitly evaluate 6(*)  using

cylindrical coordinates and complex integration. We have

explik *(x - x!)
G(z)(gt.gé) -1 [[ L t ]dk dk_ . (4.41)
(2n) - K xy

o+ 9|e+

In cylindrical coordinates we have that

kelx,-x1) =k |z~ zilcos 0 = k;r cos 0 , (4.42)

dkxdky = ktdktdo .

The O-integration yields 2an Jo(k.r), and we replace J, Uusing (4.17). The

integral involving Hsz) is rewritten using (4.18) so that we only have an

integral over Hsl). It is

(1)
B (k)
(3) O | ° t
G (ztpzt) = z‘; [?-_—k—’-— ktdkt . (4.43)
t ]

Since H$1) behaves like an outgoing wave, we evaluate (4.43) using complex
integration by closing the contour in the upper half plane. The poles are

shifted by ko—>k,tie. The result is the cylindrical Green's function
6 (x.x = (/4 B D p) . (4.44)
~t ~t ° °

It is most usefvl for problems in cylindrical coordinates which have no

angular dependence.
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1.4.7 EXPLICIT RELATION BETWEEN G¢*) apg g¢*)

In three dimensions we have that

exp [ik- (x-x')
6*) (x,x") =—1—?l” [z : ]dkxdkydkz . (4.45)
(2n) kK -k

Break up these three integrals into a k,—integral and a two-dimensional

transverse integral as

G(’)(;.;') = %? lexp[ikz(z—z')]dkz°

explik (x - x’)
1 ” z[“t e ]dk ax . (4.46)
(2n) k- [ko- k] *y

z

The latter two integrals are just (4.41) but with k; replaced by K;=kj-kj.

Using (4.44) we thus have that

. 1/3
6 (z,x - L l exp [ik, (z-2") Jug ™) [[x:- ;] o, . waam

which is just Weyrich's formula (4.31).

1.4.8 THREE-DIMENSIONAL REPRESENTATIONS IN THE HALF-PLANE

In the previous sections we presented several integral representations
for the Green’'s functioms. We placed no restrictions on the regions of
validity of these representations, and consequently they are valid in all

space. Here we treat representations valid in one or the other half space.
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We have singled out the z-direction as special, and we define the half-

planes using this. The Weyl representation for the retarded Green's

function is from (4.11)

. exp ik *(x - x!) + iK_|z-z'|
G[(;)(g.g')= ub ” [ % % hd ngt . (4.48)

(2n)° K,

If we restrict the region to z-z'20 so that the absolute value can be
dropped we write the result as a three-dimensional integral as (the + sign

indicates the region z-2'20).

[61(13)‘5’5"]+ = (zn)"[” Ag(Klexp[ik- (x-x")]dk . (4.49)
where the amplitude function is defined by
Ap(k) = (ni/K)8(k -K) . (4.50)

The advantage of this representation is in a three-dimensional problem where
however the boundary is planmar.

Similarly, a representation for z-z'£0 can be written as

[G:;)(z.g')]_ = (zn)"[” Ag(Kexp[ik-(z-x)]dk . (4.51)
where the amplitude is defined by
Ag(k) = (ni/K)8(k + K) . (4.52)

We can combine the two representations (4.49) and (4.51) to yield a quasi-

three~dimensional Fourier representation where however the amplitude is
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spatially dependent viz.

L]

6

R (x,x’)

(2ﬂ)_$l]];R(z-z',k)exp[i§~(5—5')]dk , (4.53)

and is given by

Ap(z-z',k) = O(z—z')A;(g) + 0(z'—z)A;(§)

(ni/K) [O(z-z')S(kz—K) + 0(z' -8k x)] . (4.54)

We could also derive a Weyl-representation for the advanced Green's

function. It is

K ~t

s exp ik - (x - x!) - iK_|z-2z'|
(3) (5,50) = 2N - ” (220 20 ]dk . (4.55)
with analogous representations for z-z'20 and z-z'%0 given by

- +
[st)(z‘s')]t = (2n) ’l]];a(g)exp[ik'(5"5')]d5 , (4.56)
where
+
Aa(g) = —(ni/K)S(kzi K) , (4.57)

with the full three-dimensional representation given by
6;3)(3-5') = (2ﬂ)—3l]];a(z-z',g)exp[is-(5-5')]d§ ’ (4.58)

where the amplitude is
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A (z-z',k) = —(ni/K)[B(z—z')S(k + K) + 6(z+z2')6(k —K)] . (4.59)
a z z

From these representations we can also compute the representation for

the principal value using

( (3 3
o5 gz = 126l (mx) + 6 mxn] (4.60)
so that
GL’)(E,EO) = (2")—’[[[AP(Z—Z"k)em[is'(f—s')]dk s (4.61)
where
AP(z-z'.L) = 1/2[AR(z—z',g) + Aa(z—z',g)] (4.62)
- (ni/2sgntz-20) s B - s ] - (4.63)

- 43 -



1.5 ANALYTIC PROPERTIES OF THE GREEN’S FUNCTIONS

1.5.1 ANALYTIC PROPERTIES OF Gp'®)

We discuss the properties of Gé’) using distributions. We have that

exp ik, |x - s'l]

. (5.1)
dnfx - z']

6y (x.x) =

We begin with the Weyl representation presented in Sec. 4. Here we have

3 2 2 2 2 .
= - = + -
K [ko kt_' and kt kx ky It is

. exp |ik *(x - x!) + iK |z—z'|]
al II L2k ik * dk, ., (5.2)

K,

where x’ is the source point and x the receiver point. We keep the

representation as a difference in these coordinates. We use the term
K, = K + ie to distinguish the square root having a positive imaginary part.

The properties are as follows:

PROPERTY 1. Gn(') (z - x°) is continuous as z - z'-0.

The proof is obvious. There are two cases, whem z — z’' > 0 and

z - z' <0, Both limits are the same. They are

(3) NO)

lim G, "(x - x') = lim _ (x - x') ,
z—z'—)0+ R z-2'—20 R

and equating the limits of (5.1) and (5.2) we get

1k°p

’ (5.3)

dx
e _ ni . - ! t
4np (2m)® _” exp[igt ('x-t st)] K+
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where p = I;t - ;'t|. Simply put the argument of the exponmential in (5.2)

vanishes independent of direction because of the absolute value.

PROPERTY 2. The first derivative in depth is discomtimunous.

To prove this differentiate (5.2) with respect to z

(3) _ sy _ —nsgn(z-z') Lo o . ’
2, 68 (x - xn) - etz ([ iy (x - x0) + 3K, Ja-a s,
(2n) (5.4)

Note that the factor K cancels in the integrand., In the limit as z - z’' -0
the exponent vanishes independent of direction but the antisymmetric signum

function remains., Also, the integral for z - z' = 0 is just the two

dimensional delta function multiplied by (2n)2. The result is

lim @ Géa)(f—f') = I 5 lim sgn (z-z')
z-z'>0 2 (2n) z-z'-0

° 3 . -— ’
II exp[1§t (Et Et) ) F

: () 4y -1 L [1 z - z2'->0%
z—i}E;O 9 _Gp (x-x') 7 O(x.- xt) 1 s - 2750~ ° (5.5)

Note that the 1limits are independent of k,» SO the same discontinuous

derivative behavior holds for static potential theory. Define:
. (3) 1y = [ (s) , ]
lim 9 6p "(x-x') a,6p "(x,.x3) .’ (5.6)

z-z'—> 0

so that the discontinuity is a distribution
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disc [azGé’)(g.g')] ., = [azeé’)]+— [azeéa)]_

zZ = 2Z

—8(5t— 5;) . (5.7)

We show later that this is analogous to the discontinuous behavior for one-
dimensional Green’'s functions. Here we also have an additional two-—
dimensional delta function.

PROPERTY 3. The transverse derivatives are continuous.

Def ine the transverse differential operator as

_ [ 3/9x
it a/dy

]

Cde Cudo

Differentiating (5.2) we get

k
(3) "y = B i . ’ : ' jt -

This again approaches a finite value in the limit z - z’—> 0 independent of

direction and is

k

. (s) -n . jt

lim 9.6 “(x,x') = explik, *(x - x')] dk, (5.9)
z-z'—0 jt R ~7= (Zn)’ l[ ~tott St x+ t

which can be evaluated directly by doing the integral or simply by noting

that we can interchange the derivative and the limiting process to yield

ikop

. (), e
lim 9.6 "(x-x') =9, (5.10)
z-2'=>0 J R ~~ jt 4dnp s p=|x - xt'l .

Next we want a representation for the full vector derivative. We will

need this later to find the normal derivative of the function. For reasons
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which will be clear later it is convenient to have this in three-dimensional
integral form which is regularized, i.e. which has no derivative

singularity, plus a singular term. Differentiate (5.2) (where j=1,3,3 and

3, = 3/a,)

(3),___»y - _mi . . o
ajGR (x-x') 2m)” [[[1kjt+ 18j3Kt sgn(z-z )] .

dk
. _ . ~t
exp[1_15t- (‘Et 5;) + 1K+|z—z' |] K:— . (5.11)

Now regularize the singularity in the z-derivative as follows:

ax
t
256 2 = 0 ” iy, om ik, (2, 2D + 1K fer ||

+ iSjs sgn(z-z') -

ni . ' L
.[ (2n)° I[ dk, expfiky" (2 5t)”"‘l"ix+|z z’ | 1]

¢ 1 3 (2u)’5(5t- 5{)] . (5.12)
(2n)

In the singular term we subtracted and added the term 1. This brought out
the 5 function explicitly. We could have subtracted any function of z - z’
which has the limit 1 as z - z'-> 0, as for example coslk,(z - z')].
Regularization is not unique, and this subtraction, or any appropriate
subtraction, is a regularization in the sense that the resulting integral is
not singular.

We next want to reintroduce the kz-integration in (5.12). Recall that

we eliminated this integration by evaluating it to derive the Weyl
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representation. In the first integral it is simple to recover the k,

integral. We use the result that (ko—ko, + ie, KK + ieg)

[« -3
. _ exp[ik (z - z')]
SRR & z dx . (5.13)
n I kz _x3
z +

In the second integral we use

explik (z—z')] 2
sgn(z - z') exp(iKlz-z'I)-l] = ’lt—1[ [ z p X

T3 o2 k
kz K+ z

dk , (5.14)
K4

which can also be derived using residue calculus methods. The integrand in
(5.14) has three poles, the one at k, = 0 evalvated using the principal

value (P), and the other two using the shifts ko, + ie or K + ie. The

result in (5.12) is, noting that k} - g* = k* - k]

explik- (x-x')
8J.G;’)(5.5') -1 ”[ ik [ ] dk

(2m)° it -l =
exp [i,ls-(g-z')] K’
+ is'a 3 2 P '3 ds
J k-k z
-1 sgn(z-z') 5(x - x') & . (5.15)
2 ~t ~t K

Noting that the Fourier transform of G&’) is

-1
6 w = -« . (5.16)

with ko>k, + ie, we can write (5.15) as
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Ch. 1 - Sec. 5

0, 6 ) (xx) = 7 L [l];xp ix- x| BV P wax

(2n)
- 1 &, sgn(z-z') 8(x - x!) (5.17)
2 j’ ~t ~t » .
where
g
PK) = 2ifk, + 5, P ]| - (5.18)

The integral temm is not singular. (In fact note that if we set z-z' = 0 in
the integral we get that the j = 3 term vanishes since the resulting
integrand is an odd function of kz-) It is a Cauchy principal value
integral. The subtraction of the term 1 has led to this. Subtraction of
another term will lead to an altermate principal value integral. The full

discontinuity is proportional to the j = 3 term, i.e.
(), _ ] _[ (), ] _ 3
[ajGR x| -foe x| = s skeEp (5.19)

where the + and - signs refer to the limits as z-z’ approaches zero from
positive or negative values respectively. An alternmative way of writing
(5.17) is

(s) .,y _ 1

p——y - 1 — ! —y !
J(5 x') 75j3 sgn(z-z )8(5t Et) ’ (5.20)

where

1 ~(3)
R ') i * ”~ ”~ ! 3 ’ *
j(x x 2m)” l[l exp[1k (x-x )]GR (x) PJ(k)dk (5.21)

is the regular part of the derivative term. We can thus set both vectors x
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and x' onto the surface in R; and have a well defined limit.

1.5.2 ANALYTIC PROPERTIES OF Gf*’

The full three-dimensional Fourier representation for G(')(z—s" is

given by

6(3)(5-x') =

exp ikz(z—z')]
~ (2’!)3 em[ist(zt-st)]d.k,t (kz_ i+) (kz+ K+j dkz 0 (5.22)

2
where K = [k: - k:]ll and k: = k; + k; . The retarded Green's function
was computed by shifting these poles using k,—>k,, or K>K;. The advanced
Green's function is computed using the shift k, 5k, -~ ie = kq_ or K =
K - ie = K_. The singularity structure in the complex kz"plane is thus

(k)
K +igt ’ z-z'>0

LSS f~—>
\ y e

We close the contour in the upper half plane for 2z-z'>0 and in the lower

Fig. 1.3

half plane for z-z'<0. The result is

exp [ikz( z-2' )] i
[ C-Daq 0 * T T oxp[-ik|z-z ] (5.23)

so that the Weyl representation for the advanced Green'’s function
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(3) exp(-ik r)
GA (5_5') =T, r = I;-"l » (5.24)
is given by
(’) ') P ni s ’ » dst
6, "(x-x') = n exp |ik - (x - x!) -ik_|z-z' | g— » (5.25)
(2n) -
where we distinguish the square root term using K_ = K-ie. Its properties
are
1. GX”(;—;') is continuwous as z-z' 0. The 1limits from ©both
directions are the same. Note that from the functional form the
limit is
—ikop ak
: = i n [[ exp[i§t°(5t- 5;)] —i;- , (5.26)
np (2n) -
with p = I5t'5t'|’ The square root distinguishes the contribution.
2. The first derivative in depth is discontinuous. Differentiating we
get from (5.25)
() _ vy - _, sgn(z-z’) s (e et . ]
8 6, '(x-x') = -n RELEE - Ml explik +(x -x1) + ik |z-z'|fak, . (5.27)
(2n)
which in the limit as z—-z' -0 from the two directions is
), 1 1 z-z' >0"
; - _ R
tn 0680 Gx) = - Fe x| Y Do (5.28)
z-z 0

which is the same discontinuity as the derivative of the retarded

Green's function in (5.5).
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3. The transverse derivatives are continuous. From (5.23) we have

that

1i 3,6 (xx) =2 ik - (x - x')] fif—-dk (5.29)
z_zvm_)o jt A =X (21!)’ oxp 1~t ~t ~t K ~t ° °

which from the functional form (5.24) equals

ajt[ exp(-ikop)/4up] . (5.30)

Hence we can write the full vector derivative as

(3) ! = -ni - —
56 ) - =i [[[ikjt i6,,K_ sga(s—z ]

dk
exp ist-tgt— 5;]-ix_lz—z'|] —%% . (5.31)

Now regularize in the z- derivative term. Rewrite (5.31) as

dk
(s),___,y _ -ni . [. le oy s o ]_;:g
3,6, (x-x') )’ ik,, exp ik +(x.- x1) iK_|z-z'|]| ¢

—isj3 sgn(z-z') -

‘ [ ::i)’ [[ e‘p[i5t°(5t- 5&] °‘p(’ix-'z'z'|"1] dk
. .

- (::), (2m* 8(z x| . (5.32)

Reintroduce the k - integration (here k, 9k,-ie and K 9K -ie = K_) using
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K ® exp ikz(z-z')]
exp[—iKIz—-z'l] = ﬂ—i—- dkz 2 2 » (5-33)

and

k

S z

méxp ik (z-z') 3
ssn(z—z')[exp[—iKIz—z'l]—l] - ;—i—[ ’[x: ] P[i—] dk, . (5.34)
- K_ z

Note the minus sign in front of (5.33) and the plus sign in front of (5.34).

The principal value term in (5.34) is an odd function. Using the Fourier

transform of GX’) which is

-1

~(3) 2 3
6, (k) = [k - ko_] . (5.35)

wvhere k, —k,~ie the result using (5.33) and (5.34) in (5.32) is

(3),___,y_1 1 ey |3(3)
9.6, "(x-x’) = E-(zu)’ [[[ exp[ig (x-x )]GA (k) Pj(h)dk

(5.36)

- = sgn(z-2')8 S(Et— 5;) .

js

Note that the result is similar to that for the retarded Green's function,
(5.17), except that here the Fourier transform of the advanced Green's

function is under the inmntegral. P& (k) is defined by (5.18).
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1.5.3 REGULARIZATION OF ajcl(,”

We have that

(3)

¢ x| . (5.37)

so that combining (5.17) and (5.36) we get

(s) w11 ieeny | @2
ajGP (x-x') = 7.[2n]’ [[[ exp[ig (x-x )] 6p (k)Pj(g)dg

1
- i-sgn(z—z') Sjss(gt—gé) ’ (5.38)
where
~(3) 2 2 -1
& w = el k] . (5.39)

retarded and advanced Green’s functions.

1.5.4 REGULARIZATION OF 3,3 ; 6°)

We begin with the Weyl representation for the retarded Green'’s function

in three dimensions

dk
() ni . . t
ko= (2m)° l [ Trost ¥ |] £
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Differentiate this representation to get

dk

(3) i’ . . ~t
ajGR (x) = — [l [kjt + Sj, sgn(z)K] exp lik -x + 1K+|z|] <
(2n) *(5.41)

and differentiate a second time to yield

(s) ni .
.G = 2iK 8(z) 6 _ & +
amaJ R (5) (2n)3 [I [ 1 + z j* ms3

kg, + 8K, s ][k, + 8 K sm]]
dk

. exp[i'l_gt'zt + iK+|z|] —iﬁ , (5.42)
+

which can be written as four terms

(3) ni . ]
9 8.6 "(x) = ——u I [ exp[ik -x +ik [z|] -

2
i’k x
[-—-%—t—l‘lt—Jr i” sgn(z) |k .6, +k
+

| mt 3 jtsmS]

.2 .
+ i K+8j,6m3 + 2i Sjssm,b(z) dk, - (5.43)

The first term is not singular, and using the relation

exp(iK+|z|) 1 exp(izk,)
K, Ty e 9k
’ k-k,
1 . =(3)
=T exp(1zkz) GR (k) dkz , (5.44)

we can write it as a three dimensional integral
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= 1 ) 1. ~(3)
I; - (2")3 [l-l i kjtkmtexp(l'lf E) GR (k) ds . (5.45)

The second term containing the sgn(z) function has a possible delta
function singularity in the limit as z - 0. We regularize it as follows.

First rewrite it as

= ni 3 ie .
L= (20" [[ i sgn(z)[ﬁntsj’+ kjtsmil exp(ik, X)

(5.46)

. [exp(iK+|z|) -1+ 1] k.
The term involving the +1 in the bracket can be written as the derivatives
of a two dimensional delta function. The remaining term can be written as a

three dimensional integral using the relation (5.14) as

1 ~(3) K,
sgn(z) exp(iK+|z|)_1] = 37 lexelik,z)6p (k) Pl —] 4k . (5.47)
z
The result is
I, =-2 5. 2 ]s( )
s =~ 7 ssnlz) 553 mt+ Sms jt I,
2
+ 1 [Ipi’[k 5.+ k.6 ]p[K—”]exp(ibx)G")(k)dk
(2m)® 3} mt j: jrml ) k) ~~ R ~ (5.48)
The third term in (5.43) is not singular. Using the relation
2
i ) = o Gik 2) ) (x)ax (5.49)
K+exp(1K+|z| = 71 |exelik 2) G , .

we can write it as a three dimensional integral
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= 1 -2 2 ~(3) .
I; = (21(): [[[ i K+ GR (x) exp(i‘ls E)ds 5j3 8m3 ’ (5.50)

which can be written using the idemtity

2 ~(3) _ 2 .2 2_ .2
K 8w = ) -k /- k)

[k:+—(k:+ k) + k:]/ (k*- k] )

4+ 8w (5.51)
z R

to yield

I =21 ”[ dk i’k: E(s)(k) em(is-z)sj’sm'+ F ssmsS(f-) . (5.52)

o’ R J

The fourth tem in (5.43) is a delta function. It is

_ ni . . . .
I, ree [” 2i8,,8,,8(z) exp[ik, -x .+ ik |2]] dk

js m3 ~
The result (5.43) is given by the sum of I, thru I, from (5.45), (5.48),
(5.52) and (5.53). The result can be written

2 a.6t%)

b § b 8
m® R (x) = -5 R (1) - ;-sgn(z)lﬁjiamt+ Smssjt]8(5t) , (5.54)

mj

where ij(;) is the regular part of this mixed second derivative given by

Rmd(g) =

. (3)
exp(ik-x) G "7 (k)P (k) dk , (5.55)
(2’ [” ~~ R mj ~
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and where

2
2 _ K 2
5 ij (k) = kmtkjt+ [kmtsj‘+ kjtsmsl P[k—z-] + kzsm’sj’ . (5.56)

Note that from this representation it is easy to show that

(3131*' azaz+ azas)Gé’)(f) == (2:;), l][ exp(isoi)ﬁé')(k)kzd_g » (5.57)

2 2 2 2
where k =k + k+ k. From the identity
x 'y ‘'z
3 2 .3 _ 2+(3)
E/(-k) = 1+ kG @,
we see that
2.(3) = - — 2 g(?)
A GR (x) = -8(x) ko GR (k) , (5.58)

which serves as a check on our results.
Some properties of this representation are obvious. The first is the

symmetry of the derivative operationmn

2 9 G(s)

n’j R (x) =9

(3)
RERgCIN. (5.59)

Since Gé’) is a homogeneous function we can exchange derivatives with

respect to field and source coordinates up to a minus sign so that
3 9. 68 (zx =09 64 (xx" . (5.60)
mj R &= mj R '~%

From (5.54) it is obvious that P is symmetric

P (k) =P_ (k) . (5.61)

Since m and j run from 1 to 3 we thus have at most six independent
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components. Evaluating terms we get

P =2k s P =2k, P =2
i1 X 22 y 33 z‘
P =2kk
i3 xy
2 2
- K _ K
P, = kaP[-k—J B, =2k Pl . (5.62)
z z

Other constraints are possible. Note that

PP =P (5.63)

and
2
[szle:] = Pu/Pzz . (5.64)

Finally, note that the jump discontinuity in the representation (5.54)
occurs only in the off-diagonal components. The discontinuity across the

surface is

.2, G;:)L S RN T LY ST IS PN CR )

Note also that if we spatially integrate these dipole temms by themselves

the result is zero. For example
I ajt 6(;t)d5t = 0jt ’ (5.66)
but with an additional term in the integral we get for example

([ £z 90805,) 4z, = <0 fE) |y L - (5.67)

Note that if we have the difference of arguments we get
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¢ ’ (’) ' =_i r -
a aj Gp (x x) - ij(5 x)
_1 L. ’ [ '
5 sgn(z Z)(sjiamt + Sm,ajt)s(gt Et) .
(5.68)
To differentiate on the second argument note that
G 85 Gé’)(g' -x) = amajGé')(g' -x) . (5.69)

by the homogeneity of the Green's function. Substituting this in (5.68) and
writing the partial derivatives in terms of the unprimed coordinate on the

rhs we get a sign change in the latter term. The result is

236" - x) =-=R

mj R ~ (5 - 5)

mj

b
d ' - +5 9 . - .
+ < sgn(z z) (8 s jt)S(ft Et)

(5.70)

j3amt
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1.6 ONE-DINMENSIONAL PROBLEMNS

1.6.1 GREEN'’S FUNCTION IN 1-DIMENSION

We begin with a general second order linear differential equation with

a delta function source term

2
j : + p(z) %:—+ qlz)g = -8(z-z') . (6.1)
z

The function ¢ is thus the Green’s function for this one—dimensional
problem. The source point z' is singled out and we have different solutionms
in the regions z>z'’ and z<z'. Thus the source point can be interpreted as
introducing another - boundary layer into the problem. We thus have two
solutions and must say how they match at the layer interface. We assume
that

(a) ¢ is continuous across the layer

(b) dg¢/dz has a discontinuity across the layer.
We use the continuity property to find the discontinunity as follows. First

rewrite (6.1) in the fomm

2
12+ & [p(aag) + La(a) - p'(2)1gla) = 0 . (6.2)

2

dz

Next integrate (6.2) across the layer from z’'-e to z'+e where & is small and

shrinks to zero. For the second derivative term in (6.2) we get

’ ’ -—
lim rwiiﬁdz=ﬂz+8 Jdet g (6.3)
e 30 Jz-g 4%z dz z'-e dz dz

where we have defined
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lim 92-(z'ie) -4 (6.4)
P 90 dz dz

The second term on the lhs of (6.2) becomes
'te d z'+e
jz e [p(z)¢(z)]dz = plz)¢g(z) -0 ,

z'-¢ z'-¢e

which vanishes as ¢ > 0 since p is continuwous and we assume p is also

continuous. It is not necessary to assume the latter in which case our

result is

(p'-p ) g(z"

where

+
p = lim plz' t ¢) .
e 20

The third term on the lhs of (6.2) is

'+8
lz [q(z) - p'(z)] ¢(z)dz ,

z'-¢
which vanishes in the limit as ¢ -0 unless q(z) or p’(z) are discontinuous.
If q(z) is discontinuous it becomes
+ -
(q - q) ¢(z')

where
: <
q = lim q(z't g) ,
e 20

and if p is discontinuous so that

p(z) = po(z) 0(z-z') + pl(z) 6(z'-z) ,

where © is the step function
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_T1 x>0
0(x) = [o x<0

we have that
p'(z) = p;(z) 0(z-z') + p;(z) 8(z-z')

+ po(z) 5(z-z') - pl(z) 5(z~-z') ,

so that we get for the result

z'te
[ e
z'-g
z'+e z'te
- I p(z) %%-dz .

z'-¢ z’'—¢

= p(z)g(z)

d¢+ d¢
2 [po(2') - p,(2") Jplz) - [Po(z') az - halz) E] ¢ o

+
The second term vanishes as &€ —>0 provided neither of d¢~/dz is singular.
Essentially all of these discontinuous properties merely complicate our
algebra and we drop them. That is, we assume p, p', and q are continuous at

the interface. The result is, from (6.3)

a4 _ 9 _ 4 (z=2) , (6.5)

where the -1 results from integrating the delta function. The continuity of

¢ is expressed as
+ -
¢ -9 =0 (z=12z2') , (6.6)

and it is these latter two equations we use in the analysis. Now we must

define the field boundary value problem. We do two examples.
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Eg. 1. INFINITE SPACE EXAMPLE

Here the boundary 1layer is the only finite boundary. Above that
boundary layer we have solutions of the homogeneous version of (6.1) (mo
delta function term). For wave like solutions asymptotically we choose the
solution which satisfies an outgoing radiation condition. To insure these
wave-like solutions p(z) and q(z) are required to have certain asymptotic

properties. The simplest are that as z 5

p(z) 50 and q(z) —>constant >0 .

Strictly speaking we also have to require that p(z) and q(z) are monotonic
functions. If there are any kinks in these profiles, waves can be trapped,
and we must effectively introduce further layers into the problem. For
simplicity we assume these properties are satisfied.

Thus, in the upper layer (U) where z)>z' the solution of the homogeneous
version of (6.1) satisfying the outgoing radiation condition can be written

as

¢U(z) = Au (2) z>z' |, (6.7)

where A is an unknown constant. Similarly in the lower (L) region (z<z')

the solution satisfying the outgoing radiation condition is

¢L(z) =B u_(z) z<z' , (6.8)

where B is an unknown constant. Our conditions (6.5) and (6.6) are then

satisfied by (6.7) and (6.8) provided that at z = 2z’
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At - Bo—e =-1 , (6.9)
and

Au. - Bu = 0 . (6.10)
The se are coupled equations for A and B whose solution is

A=-u (z")/W , B= —n+(z')/W , (6.11)

where W is the Wronskian

¥=19v'u —-uwu . (6.12)

The full solution can thus be written as

- u,(z)u_(z")/W z>z'
¢(z) = (6.13)

- u, (z)u_(2)/¥W z{z' .

To specify the solution further we must know the eigenfunctions. As a

simple example choose p= 0 and q = k: in (6.1). Then the eigenfunctions of

2
d
2r+xip = 0, (6.14)

dz

are either exp(}ik,z) or [cos k,z, sin k,z]l. We choose the former set since

they correspond to outgoing waves. We thus have that

u,(z) = 5% ; u (2) = o7HR® ;W= o2ix, (6.15)

so that
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eiko(z—z’)

- ’

¢(z) = 31k, zZ>2
(6.16)

e_iko(z-z')
’
2ik, 2¢zt
or rewriting
p(z) = - E%E' eikolz-z'| (6.17)
[]

which is our standard retarded one—dimensional Green’s function. Note that
we got the retarded Greem’'s function because we chose outgoing radiation

solutions.

Eg. 2. BOUNDARY EXAMPLE

In this example we introduce upper and lower boundaries at a finite

distance from the source plane. Geometrically we have that

%o Upper Region 1
z' <z <z
]
z'
Lower Region 2
zL < z < 2z’
i
Now we must choose our solutions as
)
#g(2) = A, oV +a_ P, (6.18)

including both linearly independent solutions uii) in region 1, and in the

lower region 2

b (0 =8 0@+ @ (6.19)

also including both linearly independent solutions in this region ué’). We

have the same continuity and jump conditions at the interface as before.
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Equations (6.5) and (6.6) become at z=2z'

dgy a9,

@ @& -t (6.20)
and

pu - ¢L = 0 . (6.21)

These are two conditions on the four constants A+ and Bx. In addition there

are boundary conditions at zpy and zj. Assume for simplicity that

pu(zu) =0 |, (6.22)
dé,
i (zL) =0 . (6.23)

Again our formalism can accommodate much more complicated impedance type
boundary conditions at these surfaces. We again take our previous example
where p = 0 and ¢ = k2 in (6.1). Because of the form of the boundary

conditions it is convenient (but not necessary) to choose our eigenfunctions

as
(1) sin ko(z—zU)
u (z) = (6.24)
t [ cos ko(z-zu) ,
and
sin k (z-z )
uiz)(z) = ° L (6.25)
z cos kb(z—zL) .

Using (6.18) and (6.22) yields A_=0. Using (6.19) and (6.23) yields B, =0.

We thus have satisfied the boundary conditions with the fields

- 67 -



¢U(z) A, sin[ko(z—zu)} ’

and

#(z) = B_ cos[ko(z—zL)] .

We now must satisfy conditions (6.20) and (6.21) which become

Ak, cos[ko(z'—zn)] + B_k sin [ko(z’—zL)] =-1

A, sin[ko(z'—zu)] - B_ cos[ko(z’-zL)] =0 ,
whose solution is
u(Z)(z')
A+ = = = cos[ko(z'—zL)]//W ,
uil)(z') )
B = — = s1n[ko(z'—zu)]/w ’
where
W= -k cos[ko(zL-zn)J ’
so that
p(z) = [ - sin[ko(z-zu)] cos[ko(z'—zL)] z>z'
k, cos[ko(zL-zU)]
- sin[ko(z'—zu)] cos[ko(z-—zL)] z<z'
k cos[ko(zL—zu)] ’
or

p(z) = [ sin [ko(zu—z)] cOs[ko(z'-zL)] z)>z’
k, cos[ko(zL-205]

sin[ko(zu—z')] cos[ko(z-zL)] z<z’

k, cos [ko ( zL-zU)]
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1.6.2 SOLVABLE PROFILES — INHOMOGENEOUS MEDIA

The examples in the previous development in this section were for
homogeneous media. Here we develop a general method to find the
eigenfunctions for various one-dimensionally inhomogeneous media. In a
sense we do an inverse problem, first choosing the eigenfunctions and then
finding the medium index of refraction.

We begin with a general linear second order differential equation

a’n

= e S+ gon) =0, (6.34)
X

whose solutions are assumed to be known in terms of special functions for

example. Transform both independent and dependent variables as

x = u(z) u’(z) #0 (6.35)

h(x) = w(z)g(2z) wiz) #0 , (6.36)

so that the new equation on ¢ is given by

2
i_z+ Az) $2 4+ Bla)g(m) =0, (6.37)
z

where A and B are given by

Az) =2 -5 4 wp(a) (6.38)
w u
and
B(z) =X+ 2 o p(2) - %"] + (w9 ’alz) (6.39)

where we have defined
P(z) = p(u(z)) ; Q(z) = q(u(z)) . (6.40)

To prove this note that
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—aav - —— e o~

4a h(x) = g;~%; [w(z)g(z)] = 1-7-[w'¢ + wp'l

dx u
and

a’ dz d [ daf

R P [ ]

X

%T [_ u” ; [W'¢ + w"] + _:;_' [W'¢ + 2w0¢0 + w¢n]] .

(u’)
Combining these in (6.34) yields

[wg® + 2w'g’ + w'g] _wu”
(w)? (u')

- (wp’ + w'gp)

P(z)

+ o7

[wg’' + w'¢l + Qlz)wg =0 .
Multiplying by (u’)? yields
we' + 2w'g + w'¢ -~ :—',' [wg’' + w'g)

+ P(z)u'lwg’ + w'¢) + Q(z)(n')z wg =0

Dividing by w yields

The basic idea of this development is as follows:

1. Choose p(x) and q(x) such that the differential equation (6.34) has
known solutions in terms of special functioms.

2. Choose A(z) = 0 to find one of the functions uw or w in terms of the
other.

3. Then B(z) is known in terms of one of the transformation functions from

(6.38) and (6.39) as
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B(z)

w" N
w 013
w—'—z w—] + [u] Q(z)
(6.41)

4 [5—] - [5—]3 ¢ ) At

with say u known as a function of w from the condition A(z) = 0.
4, Then choose the second transformation function, w say, so that B(z) is

known.
5. Write B(z) = k: n2(z) where n(z) is the index of refraction in the

inhomogeneous media described by the differential equation (A = 0 and B

= k:n’(z) from (6.37)) as

3
48,k n'(adg=0 . (6.42)
dz

0 which is

We can integrate the equation A(z)

’ ”
p(z)+z§-—%,-=o ,

“‘

v 3 in [u’] - 2-%; in [w] = u’ P(z) ,

d u’
&
w

However, rather than integrate the equation for a gemeral P(z) we will find

and

v P(z) . (6.43)

that the differential form is most useful as we choose particular values of
p(x) and hence P(z).

Bg. 1. HYPERGEOMETRIC EQUATION

We begin with our differential equation (6.34) where we choose

_ c-[a+b+1]x _ -ab
p(x) = —TITXS— » q(x) = ;-(—ljx-y . (6.44)

Here a,b and ¢ are constants. For convenience we define a = atb+l. The

result is a second order linear differential equation with three regular
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singular points which is called the hypergeometric equation. Solutions can

be found in the form of power series, convergent for |x|<1. The two

linearly independent solutions can be written as

h1 = F(apb;c;x) » (6-45)

and

hz= x'7C F(a+l-¢c, b+l-¢c; 2-¢; x) , (6.46)

where the notation for the hypergeometric function is (Ref. 1.1)

3 (a)n(b)n n
F(a,bycsx) =1 + =T * (6.47)
n=1 ¢ nn
with
(a)n = ala+l) (a+2) -+« (a+tn-1) n21 (6.48)
(a)o =1 .
Note that the series are finite for negative integers or zero.
From (6.40) we have that
P(z) = —ooonlz) alz) = ——2b (6.49)

w(z) [1—u(z)] °* v(z) [1-u(z)] °

so that (6.43) can be written as

d u’ c—aun
a“‘[;:] ¥ W .

u’ u’
€5 - (a—c) i

& 1 L°a-we]

which can be integrated to yield a relation between w and u
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u'

Wi (2) =D ——— (6.50)
w’(1-u)®"°

where D, is an integration constant. Alternatively we could write from

(6.38) with A(z) =0

w' 1 Ju* _ u’(c—au(z))
w 7'[37 u(1-u) ’ (6.51)

so that our representation for B(z) from (6.41) is

B(z) = & 51] - [51]2 - 23%%;%; , (6.52)

which, using (6.51), expresses B entirely in terms of u(z), which we now
choose.

To motivate a choice of u(z), note that from (6.52) we would like a
constant background term in the index of refraction, The differential

equation

2
(u’)  _ L2
—G=7 = 4 (6.53)

where £ is a constant, has the solution

u(z) = sin (fz + g) (6.54)

where g is an integration constant. From (6.50) we get

w(z) =2 D flsin(fz + g))"°° [cos(fz + g)) 72°7°% | (6.55)

so that
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%:-= ;-[(I—Zc) ctn(fz+g) - (1+2¢c-2a) tan(fz+g)] ’

and hence

’

2
il E}J = —-%— [(1-2c)[csc(fz+g)]3 + (1+2c-2a)[sec(£z+g)]z] ’

and

2 a
E&J =-§— [(I-Zc)z[ctn(fz+g)]3 + (1—2c-2a)3[tan(fz+g)]z
- 2(1—2c)(1+20~2a)] ,

so that from (6.52) we get

a1
B(z) = £ [-E-(l—zc)(1+2c—2a) - 4ab]

(6.56)

(£2/12) [(1-20)[csc(fz+g)]z + (1+2c—2a)[sec(fz+g)]3]

(£/4) [(1-zc)’[ctn(fz+g)1’ - (1+zc—za)’[tan(fz+g>1’] i

An alternate version of this expressionm is

3 a8, 8,
B(z) = f [a1 + .y + Py ] » (6.57)
[sin(fz+g)] [cos(fz+g)]
where
2

a, = (a-b) , (6.58)

a, = —(c-1/3)(c-3/3) , (6.59)
and

a. = 1/¢ - (c-a-b)* . (6.60)
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Some simple properties of the profile (6.57) are:

(a)

(b)

(¢)

(d)

All the coefficients, hence the profile, are positive if we require
atb, 1/3 ¢ ¢¢ 3/2, and -1/2 {c-a-b{ 12/32.

The derivative of B vanishes at z = z, if

[tan(fzo+g)]‘ = a’//a, . (6.61)

An a priori choice of z, can be used to fix the other parameters. The

values of the function and its second derivative at z = z, are

B(zo) = £ a1+az+a3+2Jaza3 ] , (6.62)

and

B"(zo) = 8f‘[a’+a’+24a3a3 ] = sz[B(zo) - a1f2] . (6.63)

2
A profile minimum occurs at z, if B*(z )> O or if B(z))> a;f which
implies a,+a,+2fa a_ > 0. A profile maximum occurs at z  if B*(z )< 0

or if a,+ a,+2¢aza3 <0, in which case both a ,and a  must be

negative in order for the rhs of (6.61) to be positive.

From (6.45) and (6.46) the solutions corresponding to the profile

(6.57) are
h = F(a,b;c; sinz(fz+g)) » (6.64)
and
2(1-¢c) .
h, = [sin(fz+g)] F(atl-c,b+l-c;2-c; sin (fz+g)) . (6.65)

Note that from (6.57) if we choose f = k, to cancel the k, tems in
B(z) = k} n?(z), the resulting profile n(z) is frequency dependent due

to the remaining f terms in the denominator sine and cosine functions.
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However, we can scale this out. See the remarks in Appendix 6A.

Bg. 1a.

As a simple example and check on the method, we should recover the

solutions for a constant profile. Let c=1/3 and a=-b=1/2 in (6.57) then
B(z) =k, n'(2) = £ . (6.66)

The solutions are from (6.45)

-2
[

F(1/3,-2/3;1/3, sinz(fz+g)) = cos(fz+g) , (6.67)

and

sin(fz+g) F(1,0,3/3, sin_z(fz+g)) = sin(fz+g) , (6.68)

B
it

both evaluations of which can be found in Ref. 1.2, pg. 1040,

Bg. 1b,

Suppose in the representation (6.56) we choose c=1/3, then we get

B(z) = fz[-4ab - (1-a)[sec(fz+g)]’ - (l-a)z[tan(fz+g)]z] .

For convenience let g=0 and choose f to be pure imagimary, f=if ,, f, real.

Then using cos(if,z)= cosh(f,z) and tan(if,z)= i tanh(f,z) we get
B(2) = £ [ 4ab + (1-a)[sechig,2)1” - (1-o) *[tamn(£,221°] . (6.69)

which bears a resemblance to the Epstein profile illustrated later. Here

however, the eigenfunctions are
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F(a,bycy - sinhz(flz)) ,» €= 1/3

[i sinh(flz)] F(a+l-¢c, b+l-¢cy 2-cy - sinhz(flz)) .

for a=b=c=1/3 we get (Ref. 1.2, pg. 1042)

h = sech(f_z) , (6.70)
1 1

and

h, = tanh(f z) , (6.71)
each of which is a solution of h"-f}h = 0. This makes sense because a = 2
and the only profile remaining is B(z) = f:. The minus sign in the equation
results from rotating z to iz, or equivalently f —if, .
Eg. 1c.

For this example we directly pick the transformation function w(z) as

wiz) = P | (6.72)
Then from (6.50) we have that

u’(z) =-%— eZBz w(1-) ¥ .

]

Let a = ¢ and choose

ulz) = ¢** .
We have a solution provided

1
Y=p-=2+cy or p= (1-¢c) y/2 .
]

Then from (6.52) we get
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2 2
- . [ Q-c)y _ y e ¥?
B(z) [ — ] ab ————l_eyz .

If we want to shift the origin from z=0 define
u(z) = ey(z-z°)
then the constraints are

Yy =28 + cy and ¥ D

with

Bg. 1d. Epstein Profile

Here we choose our transformation function as

u(z) = 1/2(1 + tanh(z/2) ,
so that

1 -u=1/3(1 - tanh(2/2)) ,
and

ull-u) = 1/4 [sech(z/2)]

with the results

v'(z) = 1/a sechz(z/Z) ,

a"(z) = - 1/a sech’(z/2) tanh(z/2) |,
2 - —tanh(2/2)

w'(z) 1 sech” (z/2) _ 1 1-tanh’ (z/2)
ulz) 2 T+tanh(z/2) 2 1+tanh(z/2)

= %-[l—tanh(z/Z)] ’
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(6.73)

(6.74)

(6.75)

(6.76)



and

I-u  1/3[1-tanh(z/2)] 2

w1/ sechz(Z/Z) = 1 (1+tann(z/2))

We thus have from (6.51) that

w' 1Ty  w _, . u
== 7-[-—— ¢ — (c-a) I:;-]

= —% [c - ;— + (1- 12"- ) tanh(z/z)] ’

el [1'] = - %— (1- -2‘5 ) sech®(z/2) ,

and

2

['EL J = %-[(c-a/Z)’ + 2(c-a/2)(1-a/2) tanh(z/2)

2 2
+ (1-a/2)*[tanh(z/2)] ] ,

and if we replace

[tanh(z/2)]1” =1 - [sech(z/2)]"

we have

2
[-5— ] = [te-ar® + (-arny”
+ 2(c—-a/2)(1-a/2) tanh(z/2)

2 b3
—~ (1-a/2)[sech(z/2)] ] :

We can thus write from (6.52) that
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B(z) = B, + B_[sech(z/2)]* + B_ tamh(z/2) , (6.77)
where

B, = [(c-a/” + (1-ar2)?] , (6.78)

B=-FU-Priu-£ -2, (6.79)
and

- 3 (c-a/2) (1-a/2) . (6.80)

-]
]

BEquation (6.77) has the fom of the Epstein profile (Ref. 1.3). Some

properties of the profile are:
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