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Abstract

Anisotropy-induced shear-wave cusps (triplications) have been recorded in lab-
oratory rock-physics experiments, long-offset VSP data, and cross-well surveys. Ray
tracing is insufficient for simulating shear-wave cusps because the ray amplitudes at
the edge of the cusp become infinite. The Gaussian-beam (GB) method has been
shown to improve the performance of modeling and imaging algorithms based on ray
theory. In particular, complex-valued amplitudes of Gaussian beams help properly
describe the wavefield in the neighborhood of caustics. In this thesis, I apply the
GB summation method to model SV-wave cusps in transversely isotropic (TI) media.
The weighting factor and beam parameters are investigated with the goal of main-
taining both accuracy and efficiency of modeling. I identify the optimal range for the
initial beam width as well as the beam interval and angle coverage. For example,
the initial beam width strongly influences the amplitudes and the polarization for
cuspoidal wavefronts. With an appropriate choice of the beam parameters, the GB
method produces an adequate approximation for cuspoidal wavefronts in homoge-
neous and layered TI media. In particular, the amplitudes from GB summation are
close to exact values obtained by the finite-difference (FD) method. The GB method
also partially reproduces nonlinear polarization along the cusp and the diffraction tail

away from the edges of the cusp.
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Chapter 1

Introduction

The GB summation method is a powerful extension of the ray method (Cerveny
& Psenéik, 2009), which represents a high-frequency approximation of the elastody-
namic wave equation. Gaussian beams employ complex amplitudes and traveltimes
to remove singularities in the wavefield. The complex traveltime can be modeled by
the complex eikonal function (Kravstov & Berczynski, 2007). However, it is diffi-
cult in practice to apply complex parameters including the slowness and coordinate
components in seismic data processing. To solve this problem, complex beams are
approximated by the paraxial Gaussian beam, which consists of the central ray built
by ray tracing and a quadratic expansion in the vicinity of the central ray.

The theory of Gaussian beams has been developed in many fields including op-
tics (Siegman, 1986), electromagnetics (Nowack & Orefice, 1993), and geophysics
(Cerveny et al., 1982; Hill, 1990, 2001). In geophysics, Gaussian beams from the
scalar wave equation have been introduced by Babich & Popov (1990), Popov (1982),
and Cerveny et al. (1982). The concept of Gaussian beams has been extended to elas-
tic media by Cerveny & Psencik (1983a, 1983b), Cervenyet al. (1984), Cerveny (1985),
Hanyga (1986), George et al. (1987), Popov (2002), and Cerveny & Psencik (2009).
Also the GB summation method has been effectively applied in seismic migration
(Hill, 1990, 2001). Further development of beam migration included true-amplitude
migration of field data (Gray, 2005; Gray & Bleistein, 2009). P-wave GB migration
in anisotropic media was discussed by Alkhalifah (1995) and Zhu et al. (2007). Here,
we focus on the GB method for SV-waves in anisotropic media.

The GB summation method has several advantages to simulate seismic wave
propagation. In contrast to the ray-tracing method, GB summation can handle trip-
lications, which are common in heterogeneous media. The GB method maintains the

efficiency of ray tracing while avoiding the cumbersome implementation of two-point
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ray tracing. In addition, it helps model shadow-zone information using diffracted
waves. All these properties make Gaussian beams appealing for seismic exploration.

In TT media, the SV-wave wavefront becomes cuspoidal if the strength of anisotro-
Py exceeds a certain critical value. These anisotropy-induced shear-wave cusps (trip-
lications) have been recorded in laboratory rock-physics experiments and long-offset
VSP data. With the growing interest in shear and converted waves, it becomes neces-
sary to model cuspoidal wavefronts. However, ray tracing is insufficient for simulating
shear-wave cusps because the ray amplitudes at the edge of the cusp become infinite.
Here, the GB summation method is applied to compute the cuspoidal wavefronts in
TT media.

The procedure for GB modeling in anisotropic media is similar to that for the
isotropic case (Cerveny, 1985). First, we apply the ray tracing method to calculate
the central rays from sources to receivers and obtain their parameters including the
traveltime, geometrical spreading, and reflection/transmission coefficients. Secondly,
these ray parameters are used to form single beams. Then, these single beams are
summed together to generate the whole wavefield. Finally, the source wavelet is
applied to the beam summation results to obtain seismograms.

As discussed above, to trace the central ray and to record the dynamic ray
parameters for beams, I apply ray tracing in 2D TI media. In Chapter 2, the basic
features of the ray method for heterogeneous anisotropic media are reviewed following
Cerveny & Moser (2007). Both kinematic and dynamic ray tracing are described.

In Chapter 3, I review the GB method in isotropic media and extend it to
anisotropic media. To maintain the efficiency and accuracy of modeling, the weighting
factor and the beam parameters have to be optimized. I choose homogeneous isotropic
and anisotropic models to find appropriate beam parameters for P- and SV-waves.
The results confirm that GB summation produces a good approximation for the exact
amplitudes in both isotropic and anisotropic media.

Then the GB method is applied to SV-wave cusps in TI media (Chapter 4). First,
I discuss the conditions necessary to generate SV-wave cusps. Then homogeneous TI
models are used to test the accuracy of amplitudes and polarization produced by
Gaussian beams. The amplitudes along the cuspoidal wavefronts are compared with
the results from FD modeling. In addition, the polarization along different branches

of the cusp is investigated.
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In Chapter 5, I apply the GB method to heterogeneous media. A four-layer
VTI model is used to generate reflected shear waves. The shear-wave cusps from GB
summation for this more complicated model closely match the FD results.

Chapter 6 contains the conclusions and recommendations for future work.




Chapter 1. Introduction
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Chapter 2

Ray Theory in Heterogeneous Anisotropic
Media

2.1 Summary

The GB method is an extension of ray tracing, which is used to compute the
central ray for each beam. Therefore, it is necessary to review the basic ray theory
for heterogeneous anisotropic structures.

Seismic ray theory is an asymptotic high-frequency approximation for seismic
waves propagating in heterogeneous isotropic or anisotropic media. For finite fre-
quencies, the ray method is not exact, but it provides a good approximation in the
far field at large distances from the source. Ray tracing in anisotropic media is exten-
sively discussed in the literature. Here, we mainly follow the work of Cerveny (1972),
Hanyga (1986), Alkhalifah (1995), and Cerveny & Moser (2007).

The ray method includes kinematic and dynamic ray tracing. Kinematic ray
tracing produces the traveltime, raypath, and wavefront of a specific arrival. Dynamic
ray tracing computes the geometrical spreading and displacement vector needed to
generate synthetic seismograms. Kinematic ray tracing can be implemented using
Snell’s law and the Fermat principle. Dynamic ray tracing is based on the paraxial

ray approximation.

2.2 Basics of Ray Theory

For an anisotropic medium, the source-free elastodynamic equation has the form

82u,~
(cijritr) ; = P o (2.1)
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where u; are the components of the displacement vector expressed through the Carte-
sian coordinates z; and traveltime ¢, c;jx; are the components of the stiffness tensor,
p is the density, and wu;; denotes the derivative of u; with respect to z;. Considering
the leading order approximation of the ray method, a trial solution for equation 2.1

can be expressed as
u(z;, t) = U(x;) exp [—iw(t — 7(x;))], (2.2)

where 7(z;) is the traveltime, U(z;) is the ray-theory amplitude vector which is real
for the ray theory and complex for Gaussian beams; w is the circular frequency and

t is the time. Substituting equation 2.2 into equation 2.1, we obtain
—N;(U) + iw™ ' M;(U) + w™2L;(U) = 0, (2.3)
where

Ni(U) = cijupipUs — pUs,
M(U) = cijupjUeys + (cijupiUs) 4, (2.4)
Li(U) = (cijuUsy),;-

Here p; are the components of the slowness vector p, given by

._37' _
p‘l_axi_v7

(2.5)

where n; denote the components of the unit vector n, which is perpendicular to the
wavefront, and V' is the phase velocity (Vp for P-waves and Vg for S-waves). Equation
2.4 is valid for heterogeneous anisotropic media.

As the traveltime 7 and amplitudes U are assumed to be frequency-independent,

N;, M; and L; are also frequency-independent. Since equation 2.3 should be valid for
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any frequency, N;, M;, and L; should go to zero:

CijupiPUx — pU; = 0, (2.6)
CijkiPiUky + (cijumUs),; = 0, (2.7)
(cijrUrt),; = 0. (2.8)

Equations 2.6 and 2.7 are sufficient to calculate the leading terms including the
traveltime 7(z;) and the amplitude vector U(z;). Equation 2.8 is ignored because it
is not satisfied for the leading term (Cervenyet al., 2007). Equation 2.6 leads to the

so-called Christoffel equation responsible for plane-wave propagation
(Fik - 6ik)Uk = O, 1= ]., 3. (29)

it = aijup;p is called the generalized Christoffel matrix, a;jx are the density-
normalized stiffness coefficients. The matrix [ has three eigenvalues G (xz;, p,)
and three corresponding eigenvectors g™ (z;,p,), which correspond to three types
wave propagating in heterogeneous anisotropic media with P, S;, and S; waves. For

each mode, the eigenvalue G(™ should satisfy the equation
G(m)(ﬂ?i,Pj) =1 (2.10)

In the symmetry plane, the SH-wave is decoupled from P- and SV-waves. Here,
we only discuss P- and SV-waves. For P-waves, G;(z;,p;) = V3pip;. For SV-waves,
Ga(zi, pj) = V&, p;p;. Here Vp and Vgy are the phase velocity corresponding to the
slowness vector p.

The vectorial ray amplitude U is expressed in terms of the unit real-valued

eigenvector g™ of the Christoffel matrix
U = Ag(m). (2.11)

Here A = A(z;) is a frequency-independent scalar amplitude. Equation 2.10 is a
nonlinear partial differential equation of the first-order derivative for the traveltime
7(x;), which is called the eikonal equation for heterogeneous anisotropic media. The

eikonal equation is used for kinematic ray tracing in the next section.
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Multiplying equation 2.7 by the eigenvector ggm)

., we obtain the partial differential

equation of the first-order derivative for the scalar amplitude A(z;):

2Ve - V(\/ﬁA) + (\/ﬁA)V Vg =0, (2.12)
where
Vei = aijklplg](gm)gj('m)' (2.13)

Equation 2.12 is a form of the transport equation, and Vg is the group velocity

vector.

2.3 Ray Tracing in 2D Heterogeneous Anisotropic Media

2.3.1 Ray Tracing

The eikonal equation 2.10 is a nonlinear partial differential equation of the first-
order derivative for the traveltime 7(z;). It can be expressed in the Hamiltonian

form,

1
where H is the Hamiltonian function. Because equation 2.14 is nonlinear for the
first-order and second-order derivatives, this system can be solved by the method of
characteristics. The parameter specifying the points along the characteristics depends
on the selected Hamiltonian. In this paper, we choose this parameter the traveltime
7. The formulas for ray tracing in heterogeneous anisotropic media can be expressed
in terms of Hamiltonian equations as
dz; 18G™ dp; 1 9G™)

dr ~ 2 8p, °  dr 2 oxm (2.15)

where

G™ (2, pn) = Tit(@n, Pa)gi g™ =1, (2.16)
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Fik(fvn,l)n) = Qijkl (%)Pjpz- (2-17)

Here, G™ and g™ are the eigenvalue and eigenvector of the Christoffel matrix
T'ix, respectively, z; denote the coordinates along the trajectory, p; are the components
of the slowness vectors p; = %, n; is a unit vector in the direction of the wave normal
(parallel to the slowness vector p), and V is the phase velocity.

Therefore, the ray tracing system for heterogeneous anisotropic media is given
by

dmi (m) (m) dpz 1 aaijkl (m) (m)
= — G ; = . . 2.18
dr a”l.]klplg] 9 > dr 2 axi PnDi9; "9 ( )

For isotropic media, the ray tracing system reads

dz; 9 dp; olnV
—Vp,. - : 2.19
dr Vep dr or; ( )
V denotes the P- or SV-wave velocity.
The initial conditions (7 = 0) for the ray tracing system are
z;(0) = 3, pi(0) = p}, (2.20)

where z? denote the source coordinates and p? = n?/V are the slowness components
at the source which define the initial ray directions.
During ray-tracing calculations, one of the criteria to test the accuracy of the

algorithm is to verify that

2.3.2 Dynamic Ray Tracing

The ray-tracing system allows us to compute the ray trajectory along with the
traveltime 7 and slowness vector p. However, these quantities are not known in the
vicinity of the ray. In addition, geometrical spreading and ray amplitudes cannot

be computed by kinematic ray tracing alone. Geometrical spreading is computed by
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dynamic ray tracing (DRT) or paraxial dynamic ray tracing. DRT involves solving
a system of linear ordinary differential equations along a central ray. It yields the
derivatives of the coordinates along the ray and of the corresponding slowness vectors
with respect to the ray parameters.

The DRT system can be expressed in many forms and in various coordinate
systems. The most common choices are the general Cartesian coordinate system
(z:) and the wavefront orthonormal coordinate system (y;). GB summation requires
the geometrical spreading in wavefront orthonormal coordinate. In the following,
all the parameters in the dynamic ray tracing system are in wavefront orthonormal
coordinates.

The dynamic ray-tracing equations given by Hanyga (1986) and Alkhalifah (1995)

for 2D anisotropic media. are

d—Q = SP+ NQ,

dr

dP

& = —NP-FQ, (2.22)

where P and @ are defined as Q = %ytl and P = M, S, N, F are the

-
derivatives of the eikonal with respect to y; (normal to the phase direction) and to

p1 (the ray parameter in the direction of 4;). They can be expressed as

S = 05

2 y(m) (m)\ 2
G o5 (6G ),

oy3 Oy
82Gm 8G™) ) 2
F = 05—-025( —— , 2.23
5o~ (% (229)
2 y(m) (m) (m)
_ 0-58 G _o. (BG oG ) .
Op10y1 Opp Oy
For isotropic media, the DRT equations are simplified to
d@ 2
- = 2.24
dr Vep, (2.24)
dP Vg
- = __nnn 2.2
dr vV < (225)

where V' is the velocity, V,,,,, is the second partial derivative of the phase velocity
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in the 7; direction. Equation 2.22 can be solved with a matrix formula that uses
the fundamental matrix of linearly independent solutions of the DRT system. We
call this fundamental matrix the DRT propagator matrix. The components of the

propagator matrix are the DRT coefficients

G Q2

P B

The initial conditions for the fundamental solution of system 2.22 are formed by
an identity matrix (Cerveny, 2001). Once the fundamental solution is found, the

dynamic ray-tracing results can be obtained from the following equation:

Q Q1 Qo Qo
- . (2.26)

P P1 P2 PO

For ray tracing, the initial value of @y and P, are real. For GB modeling, these values
become complex, in the following, we denote them by Qgpo and Pgpe. Similarly,
Qcp and Pgp denote the complex geometrical-spreading factors for Gaussian beams.
Therefore, complex dynamic ray tracing for Gaussian beams can be represented by

the following equation

QcB Q1 Q2 QcBo
_ . (2.27)

PGB P1 P2 PGBO

In heterogeneous media, the DRT should follow the interface condition in Appendix

A.
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Chapter 3

GB summation method

3.1 Summary

The ray tracing method is a useful approximation for body-wave propagation in
heterogeneous isotropic or anisotropic media, even though it breaks down in caustic
regions, in particular at the edges of triplications (Cerven)'f, 1972, 1983; Popov, 2002).
In order to overcome these limitations while retaining the advantages of efficiency and
simplicity, the GB summation method is applied (Cerveny et al., 1982; Popov, 1982).

The theory of Gaussian beams in heterogeneous isotropic media has been de-
scribed in many papers. Popov (1982), Babich & Popov (1990) and Cerveny et al.
(1982) studied Gaussian beams for the scalar wave equation. Cerveny & Psencik (1983a,
1983b), George et al. (1987) and Popov (2002) extended Gaussian beams to elastic
isotropic media. The GB method was successfully applied to seismic migration by
Hill (1990, 2001), Gray (2005), and Gray & Bleistein (2009). Alkhalifah (1995) and
Zhu et al. (2007) generalized the GB method to migration in transversely isotropic
media. Cerveny & Psencik (2009) investigated single beams for the GB method in
anisotropic media.

Gaussian beams in anisotropic media are different in several ways from their
isotropic counterparts because velocity changes with angle. First, beam wavefronts
are no longer perpendicular to the central ray because beams are formed in the vicinity
of the central ray controlled by the group-velocity vector, while the wavefronts are
perpendicular to the phase-velocity direction (Figure 3.1). In anisotropic media,
group-velocity vectors generally deviate from the corresponding phase-velocity vectors
in off-axis directions. Second, beams no longer spread equally when computed with a
constant increment in the phase angle. In energy-focusing areas, the beam density is

high, while in defocusing areas it is low (Psencik& Teles, 1996). Therefore, the beam
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Figure 3.1: Gaussian beam wavefronts in isotropic (a) and anisotropic (b) media. In
isotropic media, the beam wavefront is perpendicular to the central ray. In anisotropic
media, the wavefront is perpendicular to the wave vector, which deviates from the
central ray. L is the half-beam width corresponding to the amplitude A/e, where A
is the peak amplitude.

parameters should be designed to obtain a good approximation for both focusing and
defocusing areas. Third, the beam width changes with direction even in homogeneous
anisotropic media because it is influenced by the angle variations of velocity and
geometrical spreading.

The seismic wavefield is evaluated by integrating over all beams in the vicinity
of a given receiver. This procedure has several advantages. First, time-consuming
two-point ray tracing can be avoided. Second, the GB method yields stable results
for a wide range of beam parameters. Third, Gaussian beams keep the amplitudes
at caustics finite while ray tracing produces infinite amplitudes. In addition, the GB
method maintains the efficiency of the ray tracing method; Gaussian beam modeling
is two orders of magnitude faster than the finite-difference method.

Here, we discuss the single Gaussian beam and beam summation. To ensure
accuracy of beam summation, the weighting factor and the beam parameters including

the beam angle range, interval, and width should be carefully chosen.
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wavefront

S

Figure 3.2: Geometry of a Gaussian beam. 1 is the group angle for the central ray
Q, 1y is the group angle for ray €. R, is the reference point on the central ray and
R is the receiver. For 1 and 1, the corresponding phase angles are § and 6.

3.2 Gaussian Beains

A Gaussian beam is a high-frequency asymptotic time-harmonic solution of the
wave equation, with a Gaussian amplitude profile around the central ray. It represents
a bundle of complex-valued rays concentrated in the vicinity of the real-valued central
ray. The complex traveltime at each point in the beam satisfies the complex eikonal
equation 3.2 (Nowack & Orefice, 1993, 1994). A Gaussian beam is described by

ugs(R,0) = Ugp(R,,0) exp [iwT(R, R,)], (3.1)

where ugg(R,0) denotes the displacement for the beam with the phase angle 0,
Ugg(R,,0) is the complex-valued amplitude, 7(R, R,) is the complex-valued trav-
eltime, and R and R, are the receiver point and reference point on the central ray,
respectively (Figure 3.2). Both Ugp and 7 are smooth functions of the spatial coor-
dinates.

The traveltime 7(R, R,) can be obtained from the complex eikonal equation,

(Vr)? = (%)2 : (3.2)




16 Chapter 3. GB summation method

T = TR+iTI. (33)

Applying both the real and imaginary parts of the complex eikonal equation 3.3
to the ray-tracing system, we obtain the complex GB system (Nowack & Orefice,
1993, 1994).

3.2.1 Paraxial Gaussian Beams

The complex parameters of Gaussian beams including the slowness vector and co-
ordinates are difficult to apply in practice, especially for heterogeneous media (Nowack
& Orefice, 1993, 1994). Therefore, a common approximation is to expand the complex
traveltime into a second-order Taylor series (Cerveny, 1985). We refer to this second-
order Taylor expansion as the “paraxial Gaussian beam”. The complex traveltime in

paraxial Gaussian beams can be found as

2
(R, R,) = 7(S,R,) + z'yz—lMGB. (3.4)
where 7(S, R;) is the real traveltime from the source to the reference point on the
52
central ray, and Mgp = —8?72- is the second-order derivative of the traveltime, which
1

is a scalar in 2D and a matrix in 3D. This quadratic expression makes the wavefront
of a beam hyperbolic.

The evolution of the shape of a Gaussian beam is determined by ordinary dif-
ferential equations 2.22. The traveltime is found from the ray tracing system. The
complex-valued Mg, which controls the shape of the Gaussian beam, is computed by
dynamic ray tracing. In isotropic media, this variation is governed by the second-order
derivatives of the velocity field. In anisotropic media, it depends on the pertinent
anisotropy parameters.

The procedure for paraxial GB modeling in anisotropic media is similar to the
isotropic algorithm (Cerveny, 1985). First, the ray tracing method is applied to
calculate the central rays from the source to the receiver and compute the traveltime
and geometrical spreading. Second, these ray parameters are used to form single
beams. Third, the single beams are summed together to obtain the whole wavefield.

Finally, the source wavelet is applied to the beam summation results to generate the
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seismograms.

Second-order Derivatives of the Complex Traveltime. The second-order
derivative of the complex-valued traveltime Mgp (Cerven}", 1985) plays a significant
role in the GB summation method. It can be determined from the ray propagator
matrix by solving the dynamic ray tracing system, which calculates the complex beam
parameters Qg and Pgp in equation 2.27 (Cerven)'r et al., 1982; Cerveny & Psencik,
1983):

MGB = Re(MGB)+iIm(MGB).
= Pgp Qgp- (3.5)

Here, Mg, Pag, and Qgp are complex quantities satisfying the following con-
ditions (Popov, 1982; Cerveny, 1985):

1. Q¢p is regular everywhere.
2. Mgp is symmetric.
3. Im(Mgp) is positively defined.

The complex initial values automatically ensure the above conditions (Bleistein,

2009). An alternative way to obtain Mgp using the physical beam quantities is

Re(Mas) = Re ( SZI'; ) _E (‘f”), (3.6)
Im(Mgg) = Im (%) = 2—L(—f’l2 (3.7)

where K(R,) is the curvature of the beam wavefront of the beam, and L(R,) is the
frequency-dependent effective half-width of the beam (Figure 3.1).
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3.3 Summation of Beams

The wavefield is calculated by summing over all beams around receivers (Babich

& Popov, 1990; Cerveny, 1982). The basic equation to describe this procedure is

u(R,w) = /D #(0) ugp(R,0)df. (3.8)

where, ugp is the single-beam contribution from equation 3.1, ¢(#) is the weighting
factor, and D is a certain region around the receiver.

To obtain a good approximation for the wave equation, a proper weighting factor
should be calculated for each beam. In addition, the parameters including the region
of integration and the beam interval should be optimized to ensure both efficiency

and accuracy.

3.3.1 Weighting Factor for 2D GB Summation

The weighting factor ¢(6) plays a significant role in determining the amplitude
of the wavefield. The weighting factor can be obtained by comparing the Green’s
function with the asymptotic GB expression in homogeneous media. Cerveny et al.
(1982), and George et al. (1987) calculated the weighting factor for acoustic and
isotropic media. For anisotropic media, it is difficult to obtain an explicit expression
for the Green’s function. Here, we represent the Green’s function in 2D homoge-
neous anisotropic media using ray parameters such as geometrical spreading follow-
ing Cerveny’s (2001) derivation (Appendix C). The steepest-descent method is used
to derive an asymptotic expression for the GB summation method in TI media in
Appendix B. By equating the Green’s function and the asymptotic expression, we
obtain the following weighting factor for 2D TI media,

$(0) = ﬁ VM ;‘jv‘[ c8)Q (3.9)

where () is the ray-tracing geometrical spreading from equation 2.26, M and Mgp
represent the second-order spatial derivatives of the ray tracing system and the GB
system, respectively. If we simplify this expression for acoustic media, we obtain the

same formula as Cerveny et al. (1982).
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3.3.2 Beam Parameters

Before we calculate the wavefield generated by a line source, it is necessary to
expand a plane wave into Gaussian beams (Cerveny, 1982). To form a plane wave
using GB summation, the only required parameter is the beam interval (Cerveny,
1982; Hill, 1990). If the beam interval is smaller than the half-width of the beams,
we obtain a good approximation for plane waves. For point or line sources, there are
more parameters to consider including the beam angle coverage, interval, and width.
The beam intervals and ranges are determined by the ray-tracing procedure. The

beam width can be controlled in the beam forming step.

1. Angle range
Ideally, the angle range for the beam summation method should be from —m
to m. However, this is not realistic for computational reasons. The question is
how large the angle range should be to maintain accuracy in beam summation.
We investigate the relationship between the amplitudes and angle range in the
numerical tests below. Note that the angle range should be symmetric at the

receiver.

First, we test the results for the acoustic case. The summation of Gaussian
beams is compared to the exact solution of the wave equation for a line source
(Cerveny et al., 1982). The acoustic Green’s function (Cerveny et al., 1982) is

1 /2V wr
u(r,w) ~ —ZV —— exXp (zT/— + ZZ) (3.10)

Here, u(r,w) is the displacement for the frequency w, r is the distance from
the source to the receiver, and V is the velocity. The ratio of the Green’s
function and the amplitude from beam summation is calculated as a function
of the angle range in Figure 3.3. As shown in Figure 3.3, when the angle range
is small, the GB amplitude deviates from the Green’s function. But once the
maximum angle exceeds 15°, the beam-summation errors are smaller than 3%.
Next, we test the influence of the angle range on P-wave GB amplitudes in a
homogeneous anisotropic medium (Figure 3.4). The X- and Z-component of

displacement are computed using the FD method for comparison with the GB
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Figure 3.3: Ratio of the Green’s function and the GB amplitude. The horizontal
axis is the range of angles used in the beam summation.

summation method (Figure 3.5). Because it is difficult to plot the FD and GB
seismograms at the same scale, the relative amplitudes are shown in Figures 3.6
and 3.7. The seismograms from the GB summation method closely match those
computed by FD. Figures 3.6 and 3.7 show that the GB summation method
produces a good approximation if the angle range exceeds 15°. This limitation
may pose problems for more complex models. When the structure is complex,
the angle coverage may not be sufficient angle coverage, which could distort GB

amplitudes.

2. Beam interval
The more beams are computed, the more accurate the results are. However, to
maintain accuracy and efficiency, the optimal beam interval should be deter-
mined. Here, we test the beam interval for acoustic media. An optimized beam
angle interval required to form a local plane wave was defined by Hill (1990,

2001). If the beam interval is small and the spherical wave is assumed to be
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Z (km)

X (km)

Figure 3.4: P-wave raypaths in a VTI medium with Vpy = 3.0 km/s, Vgo =
1.5 km/s, ¢ = 0.2, and § = —0.2. The source is marked by the cross; the
receivers are located at the surface.
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locally equivalent to a plane wave, the GB summation should be close to the
FD results. Here, we modify the expression from Hill (1990) by introducing a

free parameter for anisotropic media.

To obtain accurate amplitudes, the beam interval (Hill, 1990) should satisfy

mcosf

|0p1| < (3.11)

Wor/ww,
where ép; is the horizontal slowness interval, wp is the initial beam width, w is
the angular frequency, w, is the reference angular frequency, and 0 is the takeoff

phase angle for the slowness vector p.

Expressing p; = sin#/V and assuming w < wpeqk, an alternative expression for

the angle interval can be written as

|06] < A

~ 2nwg

(3.12)
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Figure 3.5: P-wave seismograms for the VTI model from Figure 3.4. (a) and
(b) are the X- and Z-component seismograms computed with the FD method.
(c) and (d) are computed with the GB summation method.
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Figure 3.6: Z-component amplitudes computed by the finite-difference method
(FD), the ray tracing method (RT), and the GB summation method (GB). The
GB amplitudes are computed for a maximum angle of 10°.
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Figure 3.7: Same as Figure 3.6, but for a maximum angle of 15° for GB.
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If we choose the initial beam width wy = A as suggested by Hill (1990), the

above equation becomes

1
60| < —. 3.13
|66] < 57 (3.13)
1.08!
1.04l
(]
9
$ [ ]
S 1 B ...............................................‘
<
0.96}
092/
0 2 4 6 8 10
n

Figure 3.8: Ratio of the Green’s function and the Green’s function amplitude.
The parameter n is responsible for the beam angle interval (see equation 3.12).

Figure 3.8 shows that the GB amplitude converges toward the Green’s function
for acoustic media when the parameter n > 2. For anisotropic media, the value
of n should be generally larger. In the following tests, we set n = 10 — 50 to

ensure the high accuracy of GB summation.

. Beam width

A Gaussian beam in a homogenous isotropic media is shown in Figure 3.9. The
beam width w(r) is described by a hyperbolic function (Meschede, 2007):

w(r) = w01/1 + (é)z (3.14)

2
0

w,
where the parameter rg is the Rayleigh range expressed as rp = DR and A is
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Figure 3.9: Gaussian beam propagating in a homogeneous medium. The GB
width w(r) changes with the axial distance r. wp is the beam “waist”, and Tr
is the Rayleigh range.
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the wavelength.

The accuracy of GB approximation depends not only on the model, but also
on the spatially varying beam shape (Cerven}'r et al., 1982; Cerveny, 1985; Hill,
1990; Kravstov & Berczynski, 2007). Because of the paraxial nature of a Gaus-
sian beam, the summation method is accurate if the beam is narrow. However,
equation 3.14 shows that if the initial beam width is small at the source, it
increases quickly with distance. Conversely, if the initial beam width is large, it
increases slowly. Therefore, it is necessary to determine an optimal initial beam
width.

The beam width can be evaluated by two different methods, using either the
initial width at the source (Hill, 1990) or the final width at the receiver (Babich
& Popov, 1990; Cerveny et al., 1982). Both methods are generally suitable for

beam modeling.

To determine the initial beam width at the source, it is convenient to use the

initial values of the ray parameters Pgpo and Qcpo for isotropic media (Hill,
1990):

1

P, = — 3.15
GBO0 %a ( )
2
W
QcBo Vo

Here V; is the initial velocity, w, is the reference angular frequency, and wp is
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the initial beam width which has the following optimized value (Hill, 1990):
wy = 27V, /w,, (3.16)

where V, is the average velocity along the raypath. Equation 3.16 is derived for
isotropic heterogeneous media (Hill, 1990). For anisotropic media, we set V, =
Vo (W is the P- or SV-wave velocity in the symmetry direction), w, = 27 Sreaks

and use a free parameter m:
wy = 2maVy /w;. (3.17)
The influence of the parameter m on the accuracy of GB modeling for isotropic

1.1

1.05 ™ °

Acr /Acy

0.95¢

% 2 4 6 8 10
m

Figure 3.10: Amplitude ratio between beam summation and the Green’s func-
tion for an acoustic model for different initial beam-widths. The initial beam
width is indicated by equation wy = 2mnV, Jwr.

media is illustrated in Figure 3.10. Values of m > 2 provide a good approxi-
mation for the exact amplitudes. The complex initial values in equation 3.15

ensure the absence of singularities on the central ray.

Another method for controlling the beam width is to introduce a, certain com-
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plex parameter at the receiver (Popov, 1982; Cerveny et al., 1982). The corre-

sponding initial beam width is obtained by minimizing the beam width at the

2Vo
=

Here (; and Qo are the components of the propagator matrix for dynamic

receiver:

Q2

ol (3.18)

ray tracing in equation 2.26, and Vg is the symmetry-direction velocity at the
source. This method yields the parameter using mop: which corresponds to the

following initial complex ray parameters:

P, = — 3.19
2
_ Lwrwy
QGBO = 7’_—2% .

Figure 3.11 shows the beam width at the receivers for a VTI model in Figure
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Figure 3.11: Beam width at the receiver locations for different initial beam
widths for P-wave from model in Figure 3.4. The parameter m is defined in
equation 3.17.
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Figure 3.12: P-wave seismograms for a VTI medium from the model from Figure
3.4; m = 1.0. The beam widths at receivers are shown in Figure 3.11.

3.4. If the initial beam width is small, it increases quickly along the ray path
(m = 1 in Figure 3.11). If the initial beam width is large (m = 10), it increases
slowly. The corresponding P-wave seismograms are shown in Figures 3.12 -
3.15. The seismograms with the optimized m in Figure 3.15 are clean without
noise because the beams at the receivers are sufficiently narrow. There are noise
due to the too wide beam width from narrow initial beams in Figure 3.12. The
beam widths corresponding to m = 4.0 and m = 10.0 ensure clean and accurate

seismograms.

3.4 Amplitude for GB Modeling

At any point along the ray, the GB amplitude is controlled by the complex-
valued parameter Mgp (Cerven}'r & Psencik, 2009). In anisotropic media, the complex

amplitude of a single Gaussian beam for P- or SV-waves is expressed as (Cerveny &
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Figure 3.13: Same as Figure 3.12 for m = 4.0.

() (b)

x (km) x (km)
4 4

20 el i ks
x-component z-component

Figure 3.14: Same as Figure 3.12 for m = 10.0.
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(b)

X-component z-component

Figure 3.15: Same as Figure 3.12 for Mopt .-

Psencik, 2009)
1 2
Ugp = Agexp 5wy Im(Mgg)|. (3.20)

Here A is the amplitude determined by dynamic ray tracing:

VoPoQo
A= A,T ([ 2P0 %0 3.21
VYV 0 Qas (3.21)

where pg , Vp, and Qg are the density, phase velocity, and complex geometrical spread-
ing at the source. p, V, and Q are the same quantities at the receiver. A, is the

initial amplitude, and T is the product of the reflection and transmission coefficients.

3.5 Synthetic Seismograms

There are three ways to obtain synthetic seismograms using the GB method:

1. Direct beam summation in the time domain.
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2. Frequency-domain multiplication with the source wavelet.
3. Convolutional approach.

The beam expression in the time domain used in the first method is not as simple
as in the frequency domain because the beam shape is not Gaussian. Application of
the convolutional approach is hindered by the fact that the beam parameters are
complex numbers. Therefore, we use the second method based on frequency-domain
multiplication because it is more direct and efficient for GB summation.

We multiply the GB expression in equation 3.8 with the source function and apply
the inverse Fourier transform. The frequency-domain solution can be transformed into

the time domain using the inverse Fourier transform
o0
u(R,t) = / X(w) u(R,w) exp|—iwt]dw. (3.22)
—00

Here, X (w) is the spectrum of the Ricker wavelet used as the source signal.
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Chapter 4

GB summation for shear-wave cusps

4.1 Summary

Shear-wave cusps have already been observed in laboratory rock physics exper-
iments and long-offset and VSP data (Slater et al., 1993; Sondergeld & Rai, 1992).
With growing interest in shear and converted waves, it becomes necessary to model
cuspoidal wavefronts. However, difficulties in detection of cusps are caused not only
by the multivalued traveltimes but also by uneven energy distribution along the wave-
front. The ray tracing method breaks down at the edges of cusps because the am-
plitudes go to infinity. GB summation has been known to improve the performance
of modeling and imaging algorithms in caustic regions. Here, we discuss the applica-
tion of the GB summation method for simulating the SV-wave cuspoidal wavefronts
in transversely isotropic (TI) media. The modeling results illustrate the improve-
ments achieved by GB in describing the amplitudes and polarization along cuspoidal

wavefronts.

4.2 Conditions for SV-wave Cusps in TI Media

In TI media, kinematic signatures of SV-waves are mainly determined by the pa-
rameter o (equation 4.6). SV-wave cusps occur in homogeneous TI media when
o exceeds a certain critical value discussed below (Musgrave, 1970; Martynov &
Mikhailenko, 1984; Thomsen & Dellinger, 2003; Vavrycuk, 2003, 2004). In homo-
geneous TI media, SV-waves have off-axis and on-axis triplications. Generally, off-
axis triplications are approximately centered at an angle of 45° from the symmetry
axis (Thomsen & Dellinger, 2003). On-axis triplications, which correspond to untyp-

ical negative values of o, occur in the directions parallel and perpendicular to the




34 Chapter 4. GB summation for shear-wave cusps

(a) (b)

w
w

N
1
T
N
1
1

-
1
1

z-component [km/s]
o
z-component [km/s]
L o
1 1

N
L
1

T T T T T -3 T T T T T
3 2 -1 0 1 2 3 <83 2 -1 0 1 2 3

x-component [km/s] x-component [km/s]

Figure 4.1: Triplication types in TI media (Vavrycuk, 2003). (a) off-axis triplications
and (b) on-axis triplications.

symmetry axis.

The triplication conditions in TI media have been known for decades (Musgrave,
1970; Thomsen & Dellinger, 2003; Vavrycuk, 2004). The exact expressions for the
triplication conditions in terms of the elastic moduli are quite involved. Several
approximations are suggested by Thomsen & Dellinger (2003) and Vavrycuk (2003).
Here, we review the expressions of Thomsen & Dellinger (2003) because their formulas
are simple and give insight into the influence of the anisotropy parameters.

The ray angle ¢ with respect to the symmetry axis can be expressed as the
following function of the corresponding phase angle 6 (Dellinger, 1991):

Y =0+ tan™? (%%de) . (4.1)

Here, V'(0) is the phase velocity at the takeoff angle 6.
Triplications occur when a certain ray direction is associated with more than one
phase direction, which can be expressed as
dy

— <0. 4.2
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Differentiating equation 4.1 to eliminate the ray propagation direction ¢ and

substituting the result into equation 4.2 yields

42V (8)
a6

+V(6) <0. (4.3)
Explicit expressions for the triplication condition can be obtained using the
anisotropy parameters ¢, §, and o (Thomsen, 1986; Tsvankin, 2005):

Cn— Css3
— ot Tl 4.4
‘ 203 (44)

(Cs + Css)? — (Csz — Css)?

) , 4.5
2C33(Cs3 — Css) (4:5)

Css
= —(e—9). 4.6
) (1.6)

Substituting equation 4.6 and the exact shear-wave phase velocity (Tsvankin,

2005) into the inequality in equation 4.2 and setting 8 = 0° leads to
o < —0.5. (4.7)

Similarly, the condition for triplications at § = 90° becomes

2
o< 05— 5450 (4.8)

2V3,’
where Vso and Vpg are the SV- and P-wave velocity in the symmetry direction, re-
spectively. These two conditions for the on-axis triplications are exact.
The inequality for off-axis triplications is so involved that it cannot be solved
exactly. If we assume that § and 250 are much smaller than unity, inequality 4.2
reduces to (Thomsen & Dellinger, 20}())%)

2 vV
o>-|14+0— SO). (4.9)
3 ( YN
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Generally, on-axis triplications occur for ¢ < —0.5 and off-axis cusps occur for
relatively large values of o in the range 0.8 — 1.0. Several numerical examples for
different values of o are discussed in the next section.

4.3 Cusp Modeling Using GB Summation

Most rays concentrate near the edges of cusps, with relatively scarce illumination
in the central triplication area. Cuspoidal edges on the wavefront can significantly
complicate wavefields by producing energy focusing and phase shifting of signals. Us-
ing the ray-tracing method, it is difficult to obtain a good approximation for cuspoidal
wavefields because amplitudes at the edges of cusps become infinite. Here, the GB
summation method described in Chapter 3 is applied to SV-wave cusp modeling. The

tests are conducted for three homogeneous TI models.

4.3.1 VTI Model with ¢ = —0.8

On-axis triplications are observed in SV-wave seismograms obtained by GB sum-
mation and finite differences in Figures 4.2, 4.3, and 4.4. The GB summation method
produces seismograms similar to those generated by FD. When the initial beam width
is too small (m = 0.5), the beam width at receivers becomes very large (Figure 4.9)
and such wide beams introduce artifacts (Figure 4.2). With increasing initial beam
width, the artifacts disappear, and the seismograms look similar to the ones obtained
by finite differences. The excellent agreement between the GB and FD results shows
that the GB method can provide a close approximation for the exact solution of the
wave equation. The amplitudes at the edges of the cusp computed by the GB method
are finite but not exact. The X- and Z-component amplitudes for two branches of
SV-wave cusps are compared in Figure 4.7. The amplitude errors at the edges of the
cusp for different values of m are shown in Figure 4.8. The maximum GB amplitude
along the cusp is shifted slightly from the edges of cusps. The amplitude errors at
the edge of the cusps converge toward 5% for the X-component and 30% for the Z-
component as m increases. Although the error for the Z component is large, the total
wavefield error is still less than 10% because the wave is polarized predominantly in
the horizontal direction. The “optimal” value Mopt Produces amplitudes with larger
errors than the method based on changing the initial beam widths. Therefore, al-
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though seismograms produced using mg,; do not have artifacts, the amplitude errors
for the cusps are large.

The beam width at the receivers is shown in Figure 4.9. The optimized beam
width produces a narrower beam than that for other values of m. The beam width of
a narrow beam at the source (m = 0.5) increases quickly, while that of a wide beam
at the source (m = 4.5) increases slowly. Although wide beams produce almost the
same amplitudes as those shown in Figures 4.7 and 4.8, they may cause artifacts in
the seismograms (Figures 4.2). Therefore, the initial beam width should not be too

small or too large to maintain the accuracy of the GB method.

4.3.2 VTI Model with a Large Positive o

A model with a large positive value of o is tested next. GB summation reproduces
the whole cuspoidal wavefront with finite amplitudes at the edges of the cusp. Figures
4.10 - 4.12 show the X- and Z-component seismograms computed by the FD method
and GB summation with different initial beam widths. As was the case for 0 < 0,
the GB method provides a good approximation for the exact wavefield. The X- and
7-component amplitudes for one of the branches (Figure 5.4) of the cusp are plotted
in Figure 4.15. Despite some deviations, the amplitudes computed by the GB method
are close to those from the FD method. To obtain a good amplitude approximation,
m should be larger than 2. Notice that the amplitudes at the edge of the cusps are not
necessarily large because they are influenced by several factors including polarization,
source spectrum, and the reflection/transmission coefficients for heterogeneous media.

As shown in Figure 4.11 and 4.12, beams that are too narrow or too wide at
the source cause artifacts on the GB seismograms. As discussed above, when m is
small (m = 0.5), the beam width increases quickly and becomes too large at the
receivers, causing artifacts at the edges of the cusps (Figure 4.11). When the initial
beam width is too large (m = 10), it increases slowly but is still too large at the
receivers to produce a clean seismogram (Figure 4.12). Therefore, the initial beam
width should be neither too small nor too large to maintain the accuracy of the GB
summation method. For modeling of SV-wave cusps, the optimal range for the initial
beam width should be m = 2.0 — 8.0.
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Figure 4.2: SV-wave seismograms for VTI media with the parameters Vpg = 3.0 km/s,
Vso =1.5km/s, e = —0.1, § = 0.1, and o = —0.8. A line source is located at a depth
of 0.3 km and direct SV-waves are recorded at the surface. Figures (a) and (b) are
the X- and Z-component seismograms calculated by FD modeling. Figures (c) and

(d) are obtained by GB modeling with the initial beam width parameter m = 0.5
(equation 3.17).
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Figure 4.3: Wavefields generated by GB modeling for the model from Same as Figure
4.2. Figures (a) and (b) are the X- and Z-component seismograms for m = 2.5.
Figures (c) and (d) are for m = 4.5.
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Figure 4.4: Seismograms for the model in Figure 4.2 obtained by the GB method for
the optimized initial beam width Mpt.
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Figure 4.5: Seismograms and group-velocity surface for the model in Figure 4.2.
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Figure 4.6: Branches of the cusp used in the amplitude comparison in Figure 4.7.
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Figure 4.7: Amplitude comparison for the two branches of the cusp in Figure 4.6 (a)
the X-component and (b) the Z-component. The vertical marks indicate the locations
of the edge of the cusp.
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Figure 4.9: Beam width as a function of offset for the whole 4 km x 0.3 km model
for m = 0.5,2.5,4.5, and the optimized beam width.

4.3.3 Physical TTI Model

Transverse isotropy with a tilted symmetry axis (TTI media) describes dipping
shale layers near salt domes and fold-and-thrust belts such as the Canadian Foothills
(Isaac & Lawton, 1999). The parameters Vpo, Vso, €, and d for TTI media are defined
in the rotated coordinate system with respect to the symmetry axis, in which the
orientation is defined by the tilt v and azimuth S. SV-wave cusps rotate along with
the symmetry axis.

Dewangan et al. (2006) used physical-modeling reflection data from a phenolic
sample (assumed to be TTI) to test their multicomponent moveout-inversion method.
The sample was approximated by a horizontal TI layer with a tilted symmetry axis.
To verify the inversion results, they conducted a transmission experiment by placing
a horizontal source at the bottom of the sample (Figure 4.16). The transmitted SV-
wave exhibits a prominent cusp near the 45° angle with respect to the symmetry axis
(0 > 0). Here, we apply GB summation to compute the cusp for the physical model
in Figure 4.16. Figure 4.17 shows the transmitted shear-wave raypaths.

(B summation reproduces the cusp and other major features of the transmitted
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Figure 4.10: Seismograms for a 2 km x 0.3 km VTI

Vso = 1.17km/s, e = 1.1, § = —0.06, and o = 3.38. The source is located at point
(1.0,0.3) km. The receivers are located at the surface. Plots (a) and (b) are the X-
and Z-component seismograms obtained by FD modeling; (c) and (d) are the X- and
Z-component seismograms obtained by GB summation using Mopt.

model with Vpy = 2.0 km/s,
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Figure 4.11: GB summation results for the model from Figure 4.10. (a) and (b) are
X and Z component seismograms for m = 0.5; (c) and (d) are for m = 2.5.
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Figure 4.12: Same as Figure 4.11. (a) and (b) are X- and Z-

component seismograms
for m = 4.5; (c) and (d) are for m = 10.
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Figure 4.13: SV-wave seismograms and group-velocity surface for the model in Figure
4.10.
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Figure 4.14: Cuspoidal branch used in the amplitude comparison in Figure 4.15.
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Figure 4.16: Physical model with the estimated parameters Vpy = 2.6 km/s, Vso =
1.38 km/s, ¢ = 046, 6 = 0.11, 0 = 1.24, and v = 70°. The shear-wave source
(a horizontal transducer) is located at the bottom of the model. The receivers are
located at the surface.

wavefield excited by the shear transducer and modeled by the spectral element method
(Figure 4.18). Because we do not have access to the physical modeling and spectral-
element data, it is difficult to compare the amplitudes and polarization. Note that
the o value in this model is typical for shales. Although the tails of the cuspoidal
wavefront calculated by GB summation are slightly longer than the ones on the
the physical-modeling and spectral-element section, the shape of the cusp is well-

reconstructed.

4.4 Hodograms for SV-wave Cusps

The geometrical-seismics approximation is described by the leading term of the
ray series expansion, which has a linear polarization for P- and SV-waves. Hence, the
ray tracing method based on geometrical seismics can only produce linear polarization
for cuspoidal wavefronts. At the edges (location 1 in Figure 4.20) or the tails (location
3 in Figure 4.20) of the cusps, ray tracing cannot provide any information because the
amplitude at the edge of the cusp is infinite and the ray method cannot model diffrac-

tion tails. Although GB summation is based on ray theory, diffraction expressions
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Figure 4.17: SV-wave raypaths for the model in Figure 4.16.

using complex traveltimes and summation of Gaussian beams may produce nonlinear
polarization.

Generally, nonlinear polarization is caused by higher-order ray series terms, pri-
marily by the first-order term, which is largely governed by the spatial derivatives
of the leading term (Tsvankin, 2005). Therefore, the uneven amplitude distribution
along the wavefront may produce nonlinear polarization in the area of the cusp (Mar-
tynov & Mikhailenko, 1984). Deviations from the geometrical seismics, which can
be identified by nonlinear polarization on particle-motion diagrams, sometimes are
substantial even in the far-field. Here, we only consider far-field SV-wave polarization
(the source-receiver distance exceeds 10 average SV-wavelengths).

The analysis in Figures 4.21—4.26 shows that GB summation produces nonlinear
polarization, but the nonlinearity is less pronounced than that generated by FD. The
polarization at all three locations are close to elliptical. At the edge of the cusp
(location 1), GB summation produces nonlinear polarization with less ellipticity than
finite differences. At location 2 inside the cusp, the polarization diagrams generated
by both methods are similar. Location 3 is at the tails of the cusp where nonlinear
polarization is caused by diffraction. As is the case for location 1, the polarization

computed by GB summation is more linear compared with the FD result.
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Figure 4.18: Cusps in the transmitted wavefield excited by a shear-wave source. The
left section is recorded by the laser vibrometer. The middle section is simulated using
the spectral-element method. The right section is calculated by GB summation for
a central frequency of 0.6 Hz with the optimized beam width M. The solid line is
the direct shear-wave traveltime computed from the SV-wave group-velocity surface.

The initial beam width also influences the polarization diagrams. The degree of
nonlinearity varies with the initial beam widths and flattens out for m > 2.0 ~ 4.0
(Figures 4.22, 4.24, and 4.26). All the hodograms are plotted in the same scale. The
dependence of the polarization on m is similar to that for the amplitude and confirms
that the optimal range for the beam width is 2.0 <m < 8.0.
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Figure 4.19: Seismograms for s homogeneous VTI model with Vpy = 2.0 km/s,
Vso = 1.0 km/s, e = 0.3, § = —0.3, and 0 = 2.4. (a) and (b) are the X- and Z-
component seismograms obtained by the finite difference method. (c) and (d) are
computed by the GB method with Mopt -
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Figure 4.20: Seismograms for the model from Figure 4.19 with the overlaid direct
SV-wave traveltime (solid lines) computed from the group-velocity surface. The
hodograms in Figures 4.21, 4.23, and 4.25 are computed at locations 1, 2, and 3.
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Figure 4.21: Seismic traces and hodograms at location 1 in Figure 4.20. (a) and (b)
are the X- and Z-component traces obtained by the finite difference method and GB
summation, respectively. (c) and (d) are the corresponding hodograms.
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Figure 4.22: Hodograms at location 1 in Figure 4.20 for different values of m (i.e.,
different initial beam width). (a) m = 0.5; (b) m = 2.5; (c) m = 4.5; and (d) m = 6.5.
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Figure 4.23: Seismic traces and hodograms at location 2 in Figure 4.20. (a) and (b)
are the X- and Z-component traces obtained by the finite difference method and the
GB summation, respectively. (c) and (d) are corresponding hodograms.
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Figure 4.24: Hodograms at location 2 in Figure 4.20 for different values of m. (a)
m = 0.6; (b) m = 2.5; (c) m = 4.5; and (d) m = 6.5.
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Figure 4.25: Seismic traces and hodograms at location 3 in Figure 4.20. (a) and (b)
are the X- and Z-component traces obtained by the finite difference method and the
GB summation, respectively. (c) and (d) are corresponding hodograms.
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Figure 4.26: Hodograms at location 3 in Figure 4.20 for different values of m. (a)
m = 0.5; (b) m = 2.5; (c) m = 4.5; and (d) m = 6.5.




60

Chapter 4. GB summation for shear-wave cusps



Yongxia Liu / Gaussian beam modeling in heterogeneous anisotropic media 61

Chapter 5

Tests for heterogeneous media

5.1 Summary

The previous chapter describes SV-wave cusps in homogeneous TI media. The
theory outlined in Chapter 3, however, is valid for heterogeneous anisotropic media
as well. Here, GB modeling is applied to a more complicated layered VTI model.

The seismograms contain anisotropy-induced cusps in reflection SV-wave data.

5.2 Layered Model

A four-layer VTT model is used with the parameters given in Table 5.1. The
magnitude of the anisotropy parameters ¢ and & does not exceed 0.3. Reflected
shear waves from all three interfaces are computed by the FD and GB methods
in Figures 5.1-5.3. Although the seismograms are normalized, the GB summation
method reproduces the cusps with amplitudes that are similar to the FD results.
Because the reflected SV-wave cusps are observed at long offsets (more than twice
the reflector depth), the FD computation time is extremely high(the GB method is
about 500 faster). Still, the FD results in Figure 5.1 contain considerable numerical
noise, which complicates picking of amplitudes and polarizations.

The results of GB summation for three reflected SV-wave cusps confirm the
conclusions drawn for homogeneous media. Here, we examine the SV-wave cusps
reflection from the second interface. The beam width influences the shape and am-
plitudes of the cuspoidal wavefront. When m is small (m = 0.5 in Figure 5.2), the
beam widths at the receivers become large and introduce artificially long tails for
SV-wave cusps. The amplitudes are much smaller than those for larger values of m

(Figure 5.5). With increasing m, the seismograms become close to the FD results and
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Parameters | Depth Vpy Vg p € ) o

Layer 1 | 1.48 5.370 2.2 2774 0.264 0.016 1.477
Layer 2 | 1.98 4.336 1.8 2567 0.247 0.010 1.375
Layer 3 || 228 3.882 1.6 2.247 0230 0.011 1.289
Layer 4 || 5.00 3.600 1.5 2242 0.0 0.0 0.0

Table 5.1: Parameters of a four-layer VTT model. For all models, the vertical velocities
(Vo and Vi) are in km/s, depth is in km, and density (p) is in gm/cm3. A line source
is located at the surface.

the amplitudes converge to a certain value. However, when the initial beam width
is large (m = 10.0), the wide beam widths cause artifacts (Figure 5.3). If the m
value is within the range (2.0 < m < 8.0) suggested in Chapter 4, the GB summation
seismograms are close to the FD results (Figures 5.1-5.3). Due to such factors as the
geometrical spreading, source spectrum, polarization and reflection/transmission co-
efficients, the highest amplitude is not necessarily observed at the edges of the cusps
(Figure 5.5).

As discussed above, the polarization for cuspoidal wavefronts is nonlinear. Be-
cause it is difficult to record the polarization at location 2 (as in Figure 5.6), the other
two locations (1, 3) are chosen (Figure 5.6). Figures 5.7 and 5.8 show the polarization
at the edge of cusps which are almost linear as in the homogeneous media (Figure
4.21). The polarizations at the tails of the cusps are elliptical due to the diffraction
(Figures 5.9 and 5.10).
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Figure 5.1: Seismograms for the four-layer VTT model from Table 5.1. Figures (a)
and (b) are the seismograms from the FD method. Figures (c) and (d) are from the
GB summation method with m,;.
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Figure 5.2: Wavefields generated by GB modeling for the same model as in Figure 5.1.
Figures (a) and (b) are the X- and Z-component seismograms for m = 0.5. Figures
(c) and (d) are for m = 2.5.
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Figure 5.3: Same as Figure 5.2. Figures (a) and (b) are the X- and Z-component

seismograms for m = 4.0. Figures (c) and (d) are for m = 10.0.
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Figure 5.4: Cuspoidal branch marked area used in the amplitude comparison in Figure
5.5.
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Figure 5.5: Amplitudes for the cuspoidal branch in Figure 5.4. Figures (a) and (b) are
the relative amplitudes of the X- and Z-component from the GB summation method.
The vertical marks indicate the locations of the edges of the cusp.
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Figure 5.6: Seismograms for the model from Table 5.1 with the overlaid SV-wave
traveltime (solid lines) computed from the group-velocity surface. The hodograms in
Figures 5.7 - 5.10 are computed at locations 1 and 3.
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Figure 5.7: Seismic traces and hodograms at location 1 in Figure 5.6 obtained by the
GB summation for m = 4.0. (a) is the X- and Z-component traces obtained by GB
summation. (b) is the corresponding hodogram.
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Figure 5.8: Hodograms at location 1 in Figure 5.6 for different values of m. (a)
m = 0.5; (b) m = 2.5; (¢c) m = 4.0.
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Figure 5.9: Seismic traces and hodograms at location 3 in Figure 5.6 obtained by
the GB summation for m = 4.0. (a) is the X- and Z-component traces. (b) is the
corresponding hodogram.
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Figure 5.10: Hodograms at location 3 in Figure 5.6 for different values of m. (a)
m = 0.5; (b) m = 2.5; (c) m = 4.0.
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Chapter 6

Conclusions and future work

This thesis was devoted to application of the GB summation method to modeling
SV-wave cusps in TI media. As an extension of ray theory, GB summation with the
optimized beam parameters produces more accurate description of the amplitudes
and polarization along cuspoidal wavefronts in homogeneous and layered TI models.

The beam weighting factor is derived using the asymptotic GB expression and
the far-field Green’s function in TT media. To obtain an accurate approximation for
the wavefield, it is critically important to choose the optimal beam parameters, such
as the angle range, beam interval, and the initial beam width. In particular, the
optimal range of the initial beam width is found to be 2.0 < m < 8.0. With the
proper parameters, the GB summation method provides a close approximation to
finite-difference (FD) results for both P- and SV-waves even in strongly anisotropic
media. The diffraction expressions used to form Gaussian beams help model the
nonlinear polarization along the cusp.

Testing was performed for a range of TI models with different types of SV-
wave cusps. The maximum GB amplitudes are shifted slightly away from the edge of
the cusp because the amplitudes are influenced by the combination of the geometrical
spreading, source directivity, polarization and the reflection/transmission coefficients.
On the whole, the amplitudes computed by the GB method deviate only by about
10% from the FD values.

The polarizations for cuspoidal wavefronts are nonlinear because the wavefield
cannot be described by the geometrical-seismics approximation. Based on the tests
for different spatial locations along the cusp, we found that GB summation produced
nonlinear polarization, but the nonlinearity was not as pronounced as that computed
by FD. Similar to the amplitudes, the polarization varies with the initial beam width.

For m > 2, the polarization is weakly dependent on m and is relatively close to the
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FD results.

Improper choice of the beam parameters leads to artifacts on seismograms. When
the value of m is outside the optimal range, the beams at the receivers are too wide
to generate clean seismograms.

In the future, the GB method discussed in this thesis can be applied to 3D
anisotropic media of lower symmetry (e.g., orthorhombic). In particular, it would be

instructive to compute GB wavefields in the vicinity of shear-wave point singularities.
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Appendix A

Dynamic ray tracing at interfaces for

inhomogeneous TI media

When the ray hits the interface for reflection or transmission, we need to con-
sider the boundary condition of dynamic ray tracing. The geometrical relations
(Cerveny and Pgencik, 1979) are shown in Figure (A.1). At the interface, there
are three important coordinates: the local Cartesian coordinate u;, the global Carte-
sian coordinates z;, and the wavefront orthonormal coordinates y; at the interfaces
as shown in Figure (A.1). The z, axis, up axis and y, axis are perpendicular to the
incident plane. The symbol « indicates the angle between the positive direction of
the local u; axis and the slowness vector of the incident wave. 3 is the angle between
the positive direction of the local u; axis and the generated slowness vector. The
symbol & is the angle between the slowness vector and the positive direction of the
general z axis at the point of incidence.

The 3D interface propagator matrix in the ray-centred coordinates in Cerveny and
Moser (2007) is expressed by

KTK-T 0
H(q)("f'):,Tz) = . (A].)

KI(E-E- (6 -6)D)K T KTKT

Here, the expressions are valid both in plane and out of plane. All the symbols
have the same meaning as in Cerveny and Moser (2007).

The in-plane quantities can be specified with the parameter in Figure (A.1).
The new quantities for reflection or transmission are indicated as Qij and Ej with

the incident quantities Q;; and P,;. Specifying the formula in the above expression
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P inc

Y X3
Figure A.1: Geometry for the interface coordinates. u; and uz indicate the local
Cartesian coordinates. z; amd z3 indicate the global Cartesian coordinates. e, and

P indicate the wavefront orthonormal coordinates. us, z; and e, are coincident and
orthogonal to the plane.

(A.1) and using the parameters in Figure (A.1), we get the explict expressions for the

interface transformation in plane

Ql(ly) = |(|y) sin 3/ sin a, ]5”(?/) = (P”(y) sina + Q) S1/sina)/sin B,  (A.2)

Sl == E" — E'" — (0 — 5’)D11,

E, = C(;ja [(77z cos 6 — 1, sin ) sin & — 7, sin(a + &) + 7, cos(a + §)],
r

- cosf3 ., . - . . .
E, = < [(77 cos(6 + & — B) — 1, sin(d + a — f)) sin § — 7j, sin(a + 6) + 7, cos(a + 6)]

y - cos

= 5
. cos 3
G = ,

o
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where Dy; takes the same form as in Cerveny and Psenéik (1979). All the symbols
with the tilde indicate the generated wave parameters. The symbol 7 indicates the
vector of derivative of slowness vector p with respect to 7:

d
n= EE = {m,m2,7m3} - (A.3)
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Appendix B

Asymptotic results of 2D Gaussian beam

summation

In this section, we derive the asymptotic results of the 2D GB wavefield in
homogeneous media using the steepest-descent path method.
The Gaussian beam integral in homogeneous media with a unit initial amplitude

can be expressed as
u = [ oO)exp{-wf(©)}ds, (B.1)
D

where u is the displacement vector, ¢(6) is the weighting factor, w is the frequency,

and f(6) is the phase term which has the formula

£(6) = —it(Re, S) + - Map. (B.2)

As shown in Figure 3.2, R, indicates the reference point in Figure 3.2, S is the
source point, ¥, is the distance from the reference point to the receiver, and Mgp is
the beam complex parameter.

Using the steepest-descent method, we should find the saddle point and the
second-order derivative of the phase function with respect to 6.

First, let’s review some basic relations of the paraxial ray theory (Cerveny, 2001):

dy

u =@ (B.3)

Then, in the vicinity of the geometrical ray €2, it’s easy to obtain

n = Q0 — ) (B.4)
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Here, Q is the dynamic ray tracing geometrical speading factor.

Also, the relations in the vicinity of the geometrical ray € are given by

dt(R,, S)
dy

d?t(R,, S)
dy?

= 0,

~M. (B.5)

With these basic relations, let’s look into the first- or second-order derivatives
of the phase term in equation (B.2). The first-order derivative of the first term is
zero at the reference ray according to equation (B.5). The second term on the right
has quadratic term of y;. Therefore, the first derivative with respect to y; or 6 is
proportional to y;. Thus, the saddle point is y; = 0 or 6 = §,. Similarly, the second-
order derivative of the phase term at the saddle point becomes two terms with the
second derivative to the first term on the right side and the second-order derivative
of the second term on the right. The second-order derivative of the phase term at the
saddle point, only the terms without y; will survive. These two terms to 6 read

d*f

g lo=o0 = (M — Map)(Q)*. (B6)

The beam wavefield using the steepest-descent method (Bleistein, 2009) can be

indicated as

2m
d*f
v gge 1o

ui(r,0,0) = ¢(0) g; exp {iwt(r)},

27
= ¢(0) g , exp {wit(r))}. B.7
The first line in this equation is based on equation (G.7) (Bleistein, 2009). In-
serting equation (B.6) for the second-order derivative at the saddle point into the first
line, we can obtain the final expression.
Based on Cerveny (2001) derivation for 3D Green’s function in anisotropic media,

we can obtain the Green’s function and the displacement for a line source in 2D
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anisotropic media:

_ 1 g 1 1 .
ui(R,w) = Sl Q] 29V exp[z27r i sen (@) + iwt(S, R)]. (B.8)

By comparing equations B.7 with B.8, we obtain the weighting factor

$(0) = % VM ;‘iw cB)@ (B.9)
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Appendix C

Green’s function for 2D anisotropic media

Computing the Green’s function is crucial for analyzing the behavior of wave
propagation. The complexity of anisotropic media prevents the formulation of an
analytical Green’s function expression, however. To deal with this complexity, a high-
frequency asymptotic method is applied. In this section, I specify the Green’s function
in 2D homogeneous anisotropic media following the 3D derivation in Cerveny (2001).

A general body force f is located at point xy. The elastodynamic wave equation
reads

82’11,,'
(cigmtins)s + fi = Pgs (C.1)

where c;ji; are the components of the stiffness tensor, and u,; denotes the derivative
of u, with respect to z;.

The solution can be expressed as
u,-(a:,t) = Gz ((B,t, .’Bo,to). (02)

Applying the 2D Fourier transform to equation C.1 yields the system of two

linear equations:
Dt = p L fi, Dir = aij kiki — w0i, (C.3)

where a;;; are the components of the density p normalized stiffness tensor. The
B

solution of this system is given by multiplying the inverse matrix D' = 1 ':kf) with
e
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both sides of equation C.3

_ Bir fi(k;)
«(ks) pdet D (©4)
where B;, are cofactors of D;. Using the inverse Fourier transform, the general

solution of the elastodynamic equation is obtained

1 o0
u(z;) = ;/ Ii(k1, z3) exp [ikyz1] dky, (C.5)

—00

where the integral Iy is given by

Ii(k1,23) = /oo M exp [ikszs) dks. (C.6)
—c0 detD

The integral I; can be calculated by a contour integration in a complex plane
k3 = Re(k3)+ilm(ks). Contour C is composed of two parts: the first part is along the
real axis and the second part is along a semicircle in the upper half-plane, Im(k3) > 0.
The residues correspond to the roots of the equation det D = 0. Equation det D = 0
has four roots for k3. If the imaginary of ks is negative, the energy of the wave
increases with wave propagation. Here the out-going waves are only considered,
which correspond to k3 > 0 from the real k3— axis into region C* (upper half-plane).

One of the roots of detD for k; in region C* can be denoted as k3 = 6 (k).
Because inhomogeneous waves are not considered, function 6 (k;) is real-valued and

positive. Calculating the residue of integral I, for root k3 = 6 (k;) yields

Iy = 2mi M—J)— exp [tksz3] . (C.7)
Odet D/8k3 ks=0 (k1)

Inserting equation C.7 to equation C.5 leads to

up(R) = @/ Mexp [iksz3) dk;. (C.8)
P —oo | Odet D/8k3 k3=0(k1)

Substituting k; = w p;, I obtain det D = w? det(T;, — &;), where Iy, are compo-
nents of the Christoffel matrix I';, = a;jup;pi. Similarly, B;; = w?S;;, where S;;, are
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cofactors of I';y — 6;z. Hence,

w(R) = 2% / " Au(p0) F(pr) exp [iwB(pr)zs) dpn, (C.9)
S;

Aik(pl) {Bdet(l"‘m _ 6zn)/ap3 }p3=0(p1) ’ (C].O)

fer) = {fwp)},,—pe)- (C.11)

where, quantity ps = 6 (p;) is a positive real-valued root of the equation det(T, —
8in) = 0. The equation det(T;, — &;») = O represents the slowness surface, including
the slowness surface branches corresponding to P- and SV-waves. Thus, the integral
is calculated over the slowness surface p3 = 6 (p1).

Expression for A (p;) can be calculated in an alternative method. Substituting
k; = wp; into equation C.3, equation iy is observed in the following form: (Tix —
bix) Gr = w2p 1 f. 1 seek solution 4 using the relation @ = w™2A gi, where g is the
eigenvector of 'y, corresponding to eigenvalue G. Multiplying this equation by g;gk
yields

ATugig—1)=AG-1)=p'f. (C.12)

Consequently, one of the solutions of equation (I'yx — dik) Ux = w2p 1 f; is U =

w2p gy fi/ (G — 1). Using this new form of the solution in integrals leads to

Ar(p1) = gx/(9G/Bps). (C.13)

Based on the ray theory, the above equation is simplified by 0G/dps = Vi which
is the group velocity.
If I specify the line source function fi(z;) = d(z — =(S)) 6(t —to) in the time

domain, the source function in the frequency domain reads

filp1) = (47*) " exp [—iwrf(p1)] - (C.14)
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Inserting C.14 into the expression for the Green’s function, I obtain
7: o o]
Gu(R,Sw) = 5 / Au(pr) exp [iwr(py)] dps. (C.15)

Following the procedure of the stationary phase method in Cerveny (2001) book,

I obtain the asymptotic expression
Gi(R, S,w) = —Ak exp|iwp 7] / exp[—zwk(y) Y — p2r)dpl®.  (C.16)

where the upper script (y) indicates the wavefront orthogonal coordinate system.

Using the Poisson integral

/_ : expliku®)du = \/E exp [im sgn(k)] (C.17)

yields

/ exp [z [%wlé"’r] (P — pi¥)? } dp¥ ~ 2—7r]e><p Eiw sgn [kaS\)

~00 [w | k&) | 7

kgy) shows the Gaussian curvature in the wavefield which can be obtained
32 o(p (y))
)y

. The final expression of the wavefield can be indicated as

Here,
by k?’) = Using the relations in Cerveny’s book (sec. 4.14, 2001) yields

Q:V;
rU?

1 Jk 1 1
u(r, 0, w) ~ ”27rw|Q2| 20V, exp [ igm — z4 sgn (Q2)m + iwT(R, S)] (C.19)

ki =




