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Abstract

Micro-seismicity is used to monitor fluid migration during reservoir production and hydro-
fracturing operations. This is usually done with sparse networks of seismic sensors located in bore-
holes. The data used for micro-earthquake monitoring are usually corrupted by noise which reduces
the signal-to-noise ratio to values as low as 0.1. Monitoring methods based on travel-time picking
of various wave modes (P or S) cannot deal with this level of noise and require extensive user in-
teraction. An alternative class of methods uses time reversal to focus micro-earthquake information
at the source position. These methods can handle noisier signal but are also costlier to run. The
technique advocated in this paper exploits time-reversal within the general framework of Bayesian
inversion. Given an assumption about the possible locations of micro-earthquakes, I use recorded
data to evaluate the probability of micro-earthquakes occurring at various locations in the Earth.
The method takes into account imaging imperfections due to unknown components of the model or
acquisition array aperture. I simulate wavefields corresponding to possible sources distributed in the
model and evaluate their match with the wavefield reconstructed from data recorded in the field.
The method operates like a pattern-recognition procedure and can exploit a wide variety of tech-
niques designed for this purpose. I use simple cross-correlation because of the speed and robustness
of this technique. The wavefields reconstructed at various locations are used to scan over time the
wavefield constructed from field data; thus, my method is able to identify not only the positions of
the micro-earthquakes but also their onset times. The final outcome of this automated process is a
map of probabilities indicating the confidence of micro-earthquake occurrence at various positions

and times.
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Chapter 1

Introduction

High-pressure fluid injected into oil and gas reservoirs causes temporal stress and strain changes.
When the stress exceeds a threshold that characterizes the resistance of rock materials, micro-
seismicity is triggered by the release of pressure along pre-existing fractures or through the creation
of new fractures (King & Willis, 1957; Tabeli & Cornet, 1987; Talebi et al., 1998a,b; Maxwell &
Urbancic, 2001; Duncan, 2005). Two kinds of physical processes within the reservoir may results
depending on the injection pressure (Fischer et al., 2008). The first possibility is that when the
introduced pressure is less than the minimum compressive stress, the fluid penetrates the reservoir
along the pre-existing fracture (House, 1987). The second possibility is that when the introduced
pressure is larger than the minimum compressive stress, the fluid propagates along a tensile fracture

which is caused by imbalanced pressure (Evans et al., 2005).

By accurately locating the source of micro-seismic events, we can map micro-seismicity and
determine the width, length, and orientation of the fracture which is either pre-existing or created
by the introduced pressure (Phillips, 1998; Duncan, 2005). Thus, precise locations of micro-seismic

events can be used to monitor hydraulic fracturing (Rentsch, 2004).

There are two categories of methods for locating micro-seismic events. One is the arrival-
time-based method; the other is the migration-based method. The arrival-time-based methods
are the traditional methods used in locating earthquakes. This category of method requires the
identification of seismic arrivals which involves accurate picking of P- and S-wave arrival times. The
onset times and the coordinates of the hypocenter of micro-seismic events are given by calculations
which require accurate knowledge of the velocity model and of the physical relationships describing

wave propagation in the subsurface.

By assuming that there is a linear relationship between the travel time t and the distance
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between the location of an earthquake and the station point, we calculate the predicted travel time
by using the equation ¢ = s, where s is the slowness which characterize the Earth model. The source
is located by optimizing a misfit function between measured and predicted travel times (Shearer,
1997; Aki & Richards, 2002). However, this category of methods is non-linear and uses least-square
hypocentral estimates. Therefore the method strongly depends on the network of stations, the
accuracy of the arrival time picking, the velocity model, and the theory accuracy (Pavlis, 1986).
In order to eliminate or minimize the imprint of the velocity model, relative earthquake location
methods were developed based on the assumption that their waveforms are similar or identical to
each other for a cluster of micro-earthquakes. By calculating the arrival time difference of a pair of
micro-earthquakes from the same station, we locate the micro-earthquake locations relative to the
reference event (Poupinet et al., 1984; Fremont & Malone, 1987; Waldhauser, 2000). The relative
earthquake location methods also depend on the picking accuracy of arrival times.

In order to achieve high picking accuracy, manual picking of the arrival time is performed.
However, this method is time consuming and has low automation. Thus, many automatic picking
algorithms have been developed in recent years to replace the manual picking method. One automatic
picking method used for relative earthquake methods is waveform cross-correlation. Assuming that
the waveform of the events in the same cluster is similar, we cross-correlate the seismogram with
the reference waveform and pick the arrival times (Schaff et al., 2004; Schaff & Waldhauser, 2005;
Schaff, 2008). Short-term-average and long-term-average (STA/LTA) is another category of methods
commonly used. STA/LTA is a measurement of local signal-to-noise ratio. Four parameters are
required before the calculation: the STA and LTA window lengths, the length of the Hanning filter
which is used to smooth the STA/LTA, and a threshold value which is used to pick the arrival
time. When the smoothed STA/LTA exceeds the threshold value, a corresponding arrival time is
calculated (Earle & Shearer, 1994). In addition, there are other automatic picking algorithms which
are based on energy analysis (Earle & Shearer, 1994), polarization analysis (Vidale, 1986), statistical
analysis, wavelet analysis, frequency analysis, and autoregressive techniques (Leonard & Kennett,
1999; Leonard, 2000).

In contrast to the methods based on picked arrival times, migration-based methods use the
full seismic wavefield to locate micro-seismic events. The main advantage provided by the methods
in this category is that they are independent of the picking of specific arrivals and can locate weak

events by focusing energy at the source using time-reversal (Baysal, 1983; Levin, 1984; Gajewski,
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2005). The drawback of methods in this category is high computational cost which limits their
practical use. However, this drawback becomes less of a problem due to the significant advances in
computer hardware, which allows for fast processing of large volumes of data.

Within the context of migration-based methods, I advocate in this thesis a new methodology
which can be used to automatically identify and locate micro-seismic events. I use time-reversal
based on numerical solutions to the acoustic wave-equation to reconstruct seismic wavefields in the
space around the possible source position and at times around the possible onset time of seismic
events. Ideally, the energy corresponding to a micro-seismic event focuses at a time and a position
in space. However, due to the incomplete acquisition, inaccuracies of the velocity model, and noise
present in data, this focus is hard to identify or may not even form at all.

T address this problem by constructing, at various locations in the model and at various times,
“ideal” wavefields which we would record given the field acquisition geometry and the velocity model
in the region under investigation if a micro-earthquake source would be located at that position and
time. Then, I employ a pattern matching procedure to compare the reconstructed wavefields based
on field data with the simulated wavefields and identify the most probable location and onset time
of the micro-seismic event. This process exploits the kinematic properties of the focused wavefields
and takes advantage of the distortions caused by the incomplete acquisition in the area under
investigation.

Given the uncertainty characterizing the process of micro-earthquake identification, I do not
construct our results as precise positions and onset times. Instead, I construct maps of probability
indicating the likelihood that a micro-seismic source exists at a given position in space and a given
time. I construct the solutions using Bayesian inversion theory which states that inversion is a process
which refines our state of knowledge. Bayesian theory discusses a priori state of knowledge, which
incorporates our knowledge about our system in absence of any measurements, and a posterior state
of knowledge, which combines the prior with additional knowledge acquired from new measurements.

In Chapter 2, I first provide a method for automatic micro-seismic location in the migration-
based category. The method discussed in this chapter is illustrated with a 2D velocity model with
only one micro-earthquake. Although this method automatically provides a source for a synthetic
seismogram, it does not take the uncertainties of measurement, theory, and S /N ratio into consider-
ation. Thus, in Chapter 3, I incorporate Bayesian theory into the method and calculate maps which

illustrate the probability of a micro-earthquake triggered at a certain location and time. In this
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chapter, I also apply the method to a situation with many micro-earthquakes and calculate their
probability maps. Finally, in Chapter 4, I apply the method to field data with controlled explosive
sources provided by ExxonMobil. In this chapter, I illustrate the method with a 3D velocity model

and prove the robustness of the method for field data.
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Chapter 2

A methodology of automatically micro-seismic

location

In this chapter, I introduce a new methodology which automatically provides the location and
onset time of a micro-earthquake in a 2D velocity model. A similar methodology is applied to 3D as
discussed in chapter 4. By solving the acoustic two-way wave-equation using reverse time migration
and using a finite difference algorithm, I reconstruct the wavefield in the time domain from a given
seismogram. The hypocentre and excitation time of a micro-seismic event is detected from the
reconstructed wavefield by comparing the wavefield with the simulated wavefields at possible source
locations and origin times.

I exploit four methods, which are normalized cross-correlation, sum of squared difference, ratio
image uniformity, and mutual information, to compare the similarity between the reconstructed
wavefield and simulated wavefields. After discussing the advantages and disadvantages of the four
methods, I select normalized cross-correlation as the method used in the following thesis. At the
end of this chapter, I discuss the robustness of the selected method in the noisy environments. The
advantages of using migration-based methods are that they are independent of the picking of arrival

times and that they can enhance the S/N ratio of the reconstructed wavefield.

2.1 Introduction

Due to the low magnitude of a reservoir micro-seismic event, it is frequently difficult to pick any
event from the seismogram. However, by applying a two-way acoustic wave equation to the recorded
seismograms, we avoid the picking of arrival times. Furthermore, using reverse time migration

(RTM) to solve the wave-equation exploits the redundant and noisy information in seismograms as
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Figure 2.1. Four different layouts of receivers.
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Figure 2.2. Snapshots of back propagated wavefields at the source onset time.
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(a) (b) ) (d)

Figure 2.3. Zoomed-in snapshots of reconstructed wavefields at the source onset time. The panels
correspond to the box shown in Figure 2.2(a).

an input to calculate the wavefield (Gajewski, 2005). Similar to stacking in seismic exploration,
RTM sums all the recorded information, thereby enhancing the correlated micro-seismic signals
and canceling the uncorrelated signal of noise. Therefore, even if we cannot identify any event in
indivi(iual seismograms, RT'M has the potential to focus all the energy at the correct location of the
source.

For a wavefield reconstructed from a seismogram by using RTM, we commonly expect that
the energy of the wavefield is focused on the hypocentre of the seismic event. However, this focus
strongly depends on the density, coverage, and number of receivers. The larger the coverage of
receivers, the better the focus of energy. Figures 2.1-2.3 show the relationship between the coverage
of receivers and the focus of the wavefield.

Figure 2.1 describes four different layouts of receivers. The gray background is the velocity
model. There are six homogeneous, isotropic, and horizontal layers. Lines represent receivers. The
receiver sampling distance is 2 meters, which is very dense. There are 100 receivers on each side. In
Figures 2.1(a) - 2.1(d), there are 400, 300, 200, and 100 receivers, respectively. The dot shows the
position of the seismic event.

Figure 2.2 shows snapshot of the reconstructed wavefields at the origin time of the event for
the four different receiver layouts. Because the wave-equation does not have a direction, it sends
signals symmetric to its receivers. Thus, there is a symmetric wavefield along the receiver line. In
this research, I only take into consideration the right hand side of the receiver line. In Figure 2.2(a),
we see a perfect circle at the source position which is represented by the dot. Figure 2.3(a) shows
a zoomed-in plot of Figure 2.2(a). This perfect point is distorted when the receiver coverage is

decreased. When there is a line of receivers, the shape of focus (shown in white) at the source point
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Figure 2.4. Snapshot of reconstructed wavefields at the source onset time for dense and sparse
layouts of receivers, respectively.
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Figure 2.5. Zoomed-in snapshot of reconstructed wavefields at the source onset time for dense and
sparse layouts of receivers, respectively.

is similar to a rectangle rather than a circle. Therefore, if we assume that the shape of the focus is a
circle when there is limited receiver coverage and use this assumption to determine the hypocentre

of the event, we may not find the source position of the event.

In practice, the density of receivers is much lower than that shown in Figure 2.1. In reality,
several receivers would be sparsely placed along a certain section of the borehole. In Figure 2.4(b),
the density of receivers is one tenth of that shown in Figure 2.4(a). There are only 10 receivers
in Figure 2.4(b), and the distance between two nearby receivers is 20 meters. Figure 2.5 shows
the shapes of the wavefield focus for the two different layouts of receivers at the source excitation
time and indicates that these two shapes are similar. However, due to the sparsely placed receivers,
artifacts are introduced into the reconstructed wavefield as shown in Figure 2.4(b). Therefore, in
practice, the focus of the wavefield cannot be applied to determine the hypocentre and the excitation

time of a seismic event. In this research, I introduce a new method which uses the shape of the



Ran Xuan / Probabilistic micro-earthquake location 9

Posltion (km)
0.4

Position (km)
0.4 0.6

Depth (km)

Depth (km)
0.6 05 0.4 03 0.2 0.1

(2) (b)

Figure 2.6. (a) The velocity model with random variability used to simulate data and (b) the velocity
model used for the wavefield reconstruction. The random velocity in panel (a) is the sum of the
velocity in model (b) with correlated Gaussian noise with a magnitude of 40% of the background.

reconstructed wavefield as a criterion to identify the source of a micro-earthquake.

2.2 The reconstructed wavefield database

In this research, I fix the velocity models and receiver geometry shown in Figure 2.6. The
velocity shown in Figure 2.6(2) is used to simulate the seismogram recorded in reality. I assume
that the surface is absorbing because normally micro-seismic signals decay before arriving at the
surface. The velocity (shown in Figure 2.6(b)), from the top layer to the bottom is: 1900 m/s,
1950 m/s, 2150 m/s, 2000 m/s, 2150 m/s, and 2350 m/s, respectively. The medium is isotropic and
heterogeneous. This velocity model is sampled every 2 m and the calculation is done on a numerical
grid of 600 x 300 nodes. The acquisition array consists of 10 receivers placed at £ = 0 km with a
spacing of 40 m, which are represented by dots. I simulate an explosive seismic source (represented
by a dot) at z = 0.140 km, z = 0.334 km, and ¢ = 0.04 s, using a Ricker wavelet with a dominant
frequency of 50 Hz. A total of 2000 time steps with a time increment of 0.2 ms are calculated.

The wavefield simulated for this event is calculated llSiIlg,
1 o 2 1
’1)2 U=V U f(nltv t) ) (2 )

where f(m;,t) is the designed source wavelet at a particular micro-seismic source location at m; =
{z¢, yi, 2¢, te }, where the subscript ¢ indicates the “true” position of the source, U(x,t) represents

the seismic wavefield simulated forward in time where x = {z, y, z}, and v(x) is the velocity shown




10 Chapter 2. A methodology of automatically micro-seismic location

Time (s)
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

’E\"._ 4?:/

o -
e"N
. C;- — T
$
$3
2 i

< w0 —

Figure 2.7. The synthetic seismogram simulated using the velocity shown in Figure 2.6(a).

Position (km) Position (km)
0.4 0.4

0

; !
of
—~c -
<, S
£° £
£ 3
o
b
o
e
o
(a) (b)
Position (km) Position (km)
0.4 0.4

0.6 0.2 0.6

Depth {(km)

06 05 04 03 0.2 0.1t

Depth (km)

(© (d

Figure 2.8. Four snapshots of the reconstructed wavefield. (b) shows the focus of reconstructed
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in Figure 2.6(a). I use this velocity to simulate the seismogram recorded in reality but I assume that
this velocity is unknown during the reconstruction process. The simulated synthetic seismogram is
shown in Figure 2.7.

This simulated seismogram is used to calculate the reconstructed wavefield using the velocity
shown in Figure 2.6(b). Four snapshots of the reconstructed wavefield are shown in Figure 2.8. T only
take the right hand side of the reconstructed wavefield into consideration. The wavefield defocuses
when it moves away from the source location. In Figure 2.8(b), the hypocentre of the micro-seismic
event is located at the focus point. If we use the best focus of the reconstructed wavefield as a
criterion to locate the source of a micro-seismic event, it is difficult to choose between Figures 2.8(a)
and 2.8(b). Thus, it is necessary to define an efficient method to locate the hypocentre and origin
time of a micro-seismic event from the reconstructed wavefield.

There are approximately three categories of methods that can be used to identify the source of a
micro-earthquake from a reconstructed wavefield. The first category involves correctly removing the
geometric spreading during the process of calculating back propagation; the second involves focusing
of wavefield energy during back propagation as a rule to find the source information; the third
involves mathematically calculating the properties of the reconstructed wavefields at the hypocentre
of earthquakes.

For the first category, there are mainly two strategies for addressing the amplitude preservation
problem. One strategy which is commonly used is crudely implemented by a simple time scaling of
the images at every time step (Tygel et al., 1992). Another strategy is the removal of geometrical
spreading using a wavefield continuation method for back propagation, which is based on the high
frequency asymptotic assumption (Gajewski, 2005). One disadvantage of the second strategy is
that this method straightforwardly uses parameters derived from the ray-based true amplitude even
though most of the parameters involved in this migration cannot be derived from a full wavefield
(Plessix & Mulder, 2002; Joncour et al., 2005b,a).

For the second category, as discussed previously, the focus of a back propagated wavefield
depends on the angle coverage of receivers; the higher the aperture, the better the wavefield focuses.
Due to limited the coverage of receivers (for example as shown in Figure 2.6), the shape of the focus
varies with source location. For example, in Figure 2.9, one source is placed close to the receivers
and another source is placed far from the receivers. These two sources are indicated by two dots.

Parts of the snapshots of the two reconstructed wavefields centered at the source positions are shown
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Figure 2.9. Sources at different positions. In Figure (a), source is close to the receivers and in
Figure (b), source is far from the receivers.
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Figure 2.10. Snapshots of the reconstructed wavefields at the source onset time. The source
location (a) is close to the receivers and (b) is far from the receivers.
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in Figures 2.10(a) and 2.10(b). A comparison of these two plots shows that the shape of the focus
varies with location and that neither of these two foci is a circular.

The third category is based on the mathematical analysis of the two-way acoustic wave equa-
tion. By solving the wave equation in the frequency domain based on the high frequency asymptotic,
we detect some properties at the focused source point. The properties are used to detect the source
location. One approach for using these properties is to calculate a predicted focal spot size based
on the effective aperture which is associated with the statistical properties of the random medium.
This spot size is then compared to the refocused spot size calculated from the field seismogram
(Papanicolaou et al., 2004; Borcea et al., 2003). Another approach is to analyze the pulse refocused
on a ring at the depth of the source and at a critical time. Thereby, we identify a relationship
between this ring and the source location (Fouque et al., 2004). Since these methods assume that
the media is randomly layered, these methods can be used in ultrasound and underwater acoustic
environments where the velocity structure is much simpler than that in the Earth.

In this research, I expect that the method I provide is able to handle the narrow aperture of
receivers and be easy to implement. I also expect that I can use this method to determine the source
locations of multiple micro-seismic events in 3D velocity models. However, none of the above three
methods satisfied our expectations. The method developed in this chapter exploits the uniqueness
of the shape of the refocused wavefield to identify the hypocentre and the critical time of a micro-
seismic event. This method is composed of two steps: 1) constructing a reconstructed wavefield
database and 2) similarity comparison. Each of these steps is discussed separately in the following
section. The first step can be further divided into two parts: 1) selecting possible micro-seismic
event locations and excitation times and 2) reconstructing wavefields for all selected micro-seismic

event locations for a known origin time.

2.2.1 Selecting possible micro-seismic event locations

We can select a probable area for micro-earthquakes by collecting different information. Ge-
ologic information about a given reservoir or preliminary results of micro-earthquakes provided by
other simple methods are two possible sources of information.

According to geologic information, there are three geologic layers in the reservoir under inves-
tigation: Colorado shales from 0 to 250 m; Grand Rapid from 250 to 320 m; and the Clearwater

reservoir which is located at the bottom (Miyazawa, 2007). As I consider this geologic information
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Figure 2.11. (a) A schematic representation of possible source area; (b) a schematic representation
of possible source locations. I assume that the micro-earthquakes occur in the region indicated by
the dense dots between z = 0.012 — 0.312 km and 2 = 0.282 — 0.382 km. A similar discrete set of
possible onset times are defined along the time axis.

along with the fact that a micro-seismic event can be triggered along a pre-existing fault (Rothert
& Shapiro, 2003), I assume that micro-earthquakes can be triggered along the interfaces of any two
geologic layers since the resistance to stress and strain around the interfaces of two geologic layers

is much weaker than that in other areas.

Using information provided by other methods (discussed below), I identify an area which is
shown by the yellow box in Figure 2.11(a). These methods include grid-searching of travel-times
which can generate a general idea of the distribution of sources although the uncertainty of this
method is great; Gaussian beam migration which can provide information from a 3D velocity model
(Rentsch, 2004, 2006, 2007); and the double-difference (hypoDD) method (Waldhauser, 2000) that
has been applied to the same reservoir (Miyazawa, 2007). I assume that all micro-seismic events
analyzed in this research are triggered within the identified area in Figure 2.11(a). The a priori
probability of a micro-seismic event being triggered within the yellow box is 1; outside the box the
probability is 0.

After selecting an area and a range of time within which a micro-earthquake can be triggered,
I design a walk within this area. For simplicity, I uniformly sample the possible source locations and
onset times within this region. The number of sources located in this space is n; x n,, where n,
and n, represent the numbers of sources along the z and z axes, respectively. In these examples, the
possible source sampling space is 4 m, there are 76 x 26 sources, and a selection of possible sources

in space are shown in Figure 2.11(b). By selecting a finite number of possible source positions, I not
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Figure 2.12. One selected possible source location which is represented by the dot located at {z, 2}
= {308 m, 303 m}.

only use the knowledge about the true source location but also reduce the computational time. The
assumption I make is that the reconstructed wavefield corresponding to the recorded seismograms
is characterized by equal probability for all sources within the region where micro-seismic events are

assumed to be located.

2.2.2 Calculating a reconstructed wavefield database

For all sources within the selected region in space, I compute the corresponding wavefield
using a forward/backward procedure. In this case, this procedure is based on the two-way acoustic

wave-equation outlined in the following steps:

e First, for a given source of a micro-earthquake (my) characterized by the onset time t4 and
location x4, 1 propagate waves forward from the source using the velocity ¢(x) shown in

Figure 2.6(b) according to the two-way acoustic wave-equation

LU=V + f(mat), (2.2)




16

o
™
®
2+
[
Swo
o
©

Chapter 2. A methodology of automatically micro-seismic location

Time (s)
0.1 0.15 0.2

Figure 2.13. Seismogram calculated by using equation 3.7 and equation 3.8

where f(myg,t) is the considered source wavelet and U(x,t) represents the seismic wavefield
simulated forward in time. For example, one source within the selected possible source locations

is mg = {x4, t4} = {308 m, 303 m, O s} represented by a dot in Figure 2.12.

e Second, the forward wavefield is sampled at receiver coordinates xq arbitrarily located in space:

R(xg,t) = U(x = x0,1), (23)

where R(xo,t) represents the recorded seismogram. In this example, the seismogram (shown
in Figure 2.13) is recorded by receivers located at £ = 0 m represented by dots in Figure 2.12.
In this seismogram, we can identify the direct P wave. There are some reflected waves from

the boundary of layers but no reflection from the top of the surface.

e Third, the recorded seismogram is time reversed due to the space-time reciprocity and propa-

gated backward in time from the acquisition array to reconstruct the wavefield at all locations

in space and all times. This step is also based on the two-way acoustic wave-equation
1 .. 2
c—2D =V*D + R(xq, —t), (2.9)

where D(x, t) are the reconstructed wavefield. Because I am only concerned with the focus part
of the reconstructed wavefield around the source location and onset time, I store a cube from

the reconstructed wavefield (shown in Figure 2.14). The size of this cube is two wavelengths in
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z (km)

0.15 0.2
x (km)

Figure 2.14. Part of the wavefield reconstructed from the possible source location. The
intersections between lines indicate the source location.

(b)

(a)

Figure 2.15. Illustration of coordinates of Figure 2.14. (a) shows a schematic plot of Figure 2.14
and the true coordinates of the three faces of (a) are shown in (b).
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space and two periods in time. The coordinates of Figure 2.14 are illustrated by Figure 2.15.
Luse “F”, “T”, and “S” to mark the front, top, and side plots of Figure 2.15(a), respectively.
The true locations of these three faces are indicated by “F”, “I”, and “S” in Figure 2.15(b).
The polygons represent where these three faces intersect. The center of Figure 2.14 is the

source location represented by the intersections of lines.

For a given source location, I refer to the wavefield reconstructed from a field seismogram or a
simulated synthetic seismogram as the observed reconstructed wavefield. In contrast, I refer to
the wavefield calculated using the three previous described steps as the predicted reconstructed

wavefield.

The above three steps are applied to all the selected sources. Then I assemble resulting calcula-
tions in a database of wavefields which is used to compare with the wavefield reconstructed from the
“field” seismograms. Figure 2.16 shows part of the reconstructed wavefield database. This database

only needs to be calculated once as long as we keep the subsurface velocity and acquisition geometry

fixed.

If two sources are located at the same position but have different onset times, the refocused
fields of these two events are the same. It is sufficient to compute reconstructed wavefields for one
onset time and then compare these simulated wavefields with the wavefields reconstructed from
field seismographs at various times. This procedure can be conceptually illustrated by Figure 2.17,
where the big box represents the wavefields reconstructed from the “field” seismograms, the small
cubes represent predicted reconstructed wavefields, and the dot within each small cube represents
the source location of the predicted reconstructed wavefield. By design, the source onset times of
the predicted reconstructed wavefields are all zero. By comparing the wavefield reconstructed from
the “field” seismogram with predicted reconstructed wavefields at the corresponding locations along
the time axis, we can not only identify the location of the source, but we can also identify the onset

time.

In an ideal case, if the sources are completely surrounded by receivers, the wavefronts recon-
structed by time reversal focus into a point at the source location and at the onset time. However,
typical acquisition arrays are limited to a relatively small region of space. In the example shown in
Figure 2.11(b), 10 receivers are placed along a borehole located at z = 0 km. For limited aperture

of receivers, the wavefronts do not focus at the source location.
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As illustrated in Figure 2.18, I define the range L as the shortest distance between the source
and the receiver line and the cross-range C as the shortest distance between the source and the line
which is perpendicular to the line of receivers in the middle. According to Figure 2.16, the cross-
range resolution C,. of the refocused wavefield at ¢ = 0 s increases when the range decreases, but the
range resolution does not change much. The relationship between the cross-range resolution Cr and
the range L in homogeneous media can be approximated by C, = MoL/a, where ) is the wavelength
and a is the array aperture (Born & Wolf, 2003). The wavefront shape at t = 0 s is controlled by
the range and the cross-range for a fixed array aperture and wavelength. It is apparent that not
only the focus is incomplete but also that the shape of the reconstructed wavefields changes in space
corresponding to the relative positions to the acquisition array as well as the velocity distribution
in space. This proves that the shape of focus varies with the location of source and that the shape

is unique.

2.3 Methods of Similarity Measurement

I have shown in the previous section that the shape of the refocused wavefield varies with the
source location. Thus, I expect that the predicted reconstructed wavefield with the center at the
true source location and onset time should be the same as the observed reconstructed wavefield at
the common areas in space and time.

Figure 2.19 shows three pairs of predicted reconstructed wavefields and parts of the observed
reconstructed wavefield. In this figure, the size of the predicted reconstructed wavefields is two
wavelengths in space and two periods in time; the size of the parts of the observed reconstructed
wavefield is the same. For simplicity, I refer to any part of the observed wavefield which has the
same size as the predicted wavefield as the windowed observed wavefield.

In Figure 2.19, the left column shows three predicted reconstructed wavefields with the source
located at {x, z} = {132 m, 334 m}, {108 m, 334 m}, and {132 m, 334 m}; the right column
shows three windowed observed wavefields with the center at {z, z, t} = {132 m, 334 m, 0.04 s},
{108 m, 334 m, 0.04 s}, and {132 m, 334 m, 0.045 s}; the explosive source location and excitation
time is {140 m, 334 m, 0.04 s}. From Figure 2.19, we can conclude that the pair of the predicted
reconstructed wavefield and windowed observed wavefield are most similar around the true source

location and onset time.
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As discussed earlier, I refer to the predicted reconstructed wavefields as the wavefields recon-
structed at all possible source locations and within a given time window. These wavefields are
calculated using equations 3.7 - 3.9 and they are stored around their hypocentres and onset times.
I loop over the possible source locations and excitation times and search for the times and locations
in space where the wavefield reconstructed from field seismograms or from synthetic field seismo-
grams match the predicted reconstructed wavefield at assumed locations for micro-seismic events. I

conceptually describe the process as measuring the similarity between multi-dimensional images.

Automatic similarity comparison methods are divided into two main categories: area-based
methods and feature-based methods. Feature-based methods require salient structures which can
be extracted from images. This salient structure should be distinct, spread across the image, and
efficiently detectable in both predicted and observed images. However, in this experiment, there
is no such feature that is distinct and spread across the reconstructed wavefield database. On the
other hand, area-based methods, which put emphasis on feature matching rather than on feature
detection, are suitable for my research since I expect to use all predicted reconstructed wavefields

as criteria to compare with the observed reconstructed wavefield.

Area-based methods are widely used in medical image registration. Normalized cross-correlation,
sum of squared difference, and ratio image uniformity are the three most common feature-based
methods used in comparing images of the same modality. Mutual information and its variant are
the most popular image similarity measures for registration of multi-modality images (Zitova &
Flusser, 2003). In this work, I apply four methods (normalized cross-correlation, sum of squared
difference, ratio image uniformity, and mutual information) to calculate the similarity between the

predicted wavefields and the observed reconstructed wavefield.

2.3.1 Normalized cross-correlation

The normalized cross-correlation (N,.) is defined as

x+ My t+M, N —_
Y. X ((D%¢) — (Debs))(DPre — Drre)

x— My t—M,

X+ My t+M, — x+M, t4+M, _—
\/Z > (D) DB 5 S (Dere — Ty

x—Myx t—M, xX— My k=t—M,

Nee(x,t) = , (2.5)
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where the overline denotes averaging values below, (D°%) is the windowed observed wavefield, and
DPre is the predicted wavefield. The size of the averaging window is (2My + 1) x (2M; + 1), where
x = {z,y, z}. The normalized cross-correlation is evaluated at the locations of every possible source
location and onset time. In this example, the size of My is one wavelength and the length of M;
is one period. The values of N, are between —1 and +1. When N, = 1, the shapes of the
predicted wavefield and the windowed predicted wavefield are identical. Thus, using this equation,
I pinpoint the location and time which generate the highest N... However, the size of the predicted
reconstructed wavefield affects the value of Nec(x,t).

After calculating the similarity between the observed wavefield (four snapshots are shown in
Figure 2.8) and the reconstructed wavefield database (part of this is shown in Figure 2.16) by using
equation 2.5, I get the normalized cross-correlation values shown in Figure 2.20. Each cube in
Figure 2.20 represents one possible source location and onset time which I previously selected. The
source location pinpointed from N, and the true source location are shown in Figure 2.21.

In this example, the detected and true source locations are close to each other; the distance
between them is 8 m which is 2 sampling spaces of possible sources. This error is much less than the
wavelength of the wavelet which is about 40 m. Thus, the accuracy is less than 1/5 of a wavelength
by using normalized cross-correlation.

In this section, normalized cross-correlation rather than cross-correlation is used to calculate the
similarity between two images because cross-correlation (CC) fails in feature recognition. Figure 2.22
shows a Ricker wavelet called the sensed wavelet with a dominant frequency of 40 Hz and a magnitude
of 1. T expect to find a Ricker wavelet also with a dominant frequency of 40 Hz from the two reference
wavelets A and B shown in Figure 2.22. For these two wavelets A and B, the dominant frequencies
are 40 Hz and 20 Hz and the magnitudes are 0.6 and 0.8, respectively. I apply normalized cross-
correlation and cross-correlation to calculate the similarities between the sensed wavelet and the
two reference wavelets. The N, value of the sensed wavelet and reference wavelet A is 1; and the
value of the sensed wavelet and the reference wavelet B is 0.5724. The CC' value of the sensed
wavelet and reference wavelet A is 11.2203; and the value of the sensed wavelet and the reference
wavelet B is 12.111. I detect the reference wavelet A with a dominant frequency of 40 Hz based on
the information provided by N... However, according to the information provided by CC, I detect
that the reference wavelet B is more similar to the sensed wavelet than the reference wavelet A. The

reason for this failure is that CC takes the amplitude of wavelets into consideration. However, in this
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research, I expect to find the pair of the predicted wavefield and the windowed observed wavefield
that produces the highest shape similarity without considering the amplitude of the wavefields.

Therefore, normalized cross-correlation is a more appropriate way to calculate the shape similarity.

2.3.2 Minimizing intensity difference

The minimizing intensity difference (M ID) method is one of the simplest methods that cal-
culates the voxel similarity. It sums the squared intensity difference between the observed and
predicted images, and we can apply a threshold criterion to the MID value (Viola, 1995). The

modified minimizing intensity difference equation is expressed as

x+ My t+M,
MID(x,t) = % 3 S (Dre— (D%),)2, (2.6)
X—Mx t—Mg

where N is the number of voxels of one predicted reconstructed wavefield and the subscript n of
DP™ and (D) denotes their normalized values. The value of MID is greater than 0, where 0
means that the normalized predicted wavefield is the same as the windowed observed wavefield after
normalizing.

Because MID is sensitive to a small number of voxels that have large intensity differences
between two images (Hill et al., 2001), the plot of M1D without a threshold (shown in Figure 2.23(a))
does not provide us with visual information about the source location. However, after applying a
threshold criterion with a value of 0.01 (this value will vary with noise level ), we can visually
detect the source location. The source location I picked and the true source location are shown
in Figure 2.24. The source location provided by MID is the same as that of N,.. Thus, MID

generates an accurate result.

2.3.3 Ratio image uniformity

The ratio image uniformity (RIU) algorithm was originally introduced by Woods et al. (1992)
for the registration of serial positron emission tomography (PET) studies, but it has more recently
been widely used for serial magnetic resonance (MR) registration (Woods et al., 1998a,b) and is avail-
able in an automated image registration (AIR) package (Hajnal et al., 2001). Ratio image uniformity
can be interpreted as the normalized standard derivation (Beutel et al., 2000). In this algorithm,

the higher the similarity between two images, the smaller the normalized standard derivation. RIU
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is defined as

| XM t+M, .
b5
RIU(x,t) = +— 2~ , (2.7)
R
where
(Dobs)
R = Dore (2.8)

is the ratio of the windowed observed wavefield and the predicted wavefield at every voxel of the

wavefields and
x+Mx t+M,

Z > R (2.9)

x M, t— M,
is the average value of R, where N is the number of voxels of one predicted reconstructed wavefield.
When (D°%*) and DP" are identical, the standard derivation equals zero, which is the minimum

value of RIU.

The result of RIU shown in Figure 2.25 provides us with no visual information. By searching
within this result, I find that the source detected from RIU shown in Figure 2.26 is several wave-
lengths away from the true source location. Thus, RIU is not accurate for locating the source and
onset time. One reason for this failure is the division between the windowed observed wavefield and

the predicted wavefield, which causes instability within this algorithm.

2.3.4 Mutual information

Measuring the similarity between two images can also be interpreted as measuring the amount
of information shared by two images or measuring how well one image explains the other (Shannon,
1948). In communication theory, mutual information, which describes the “rate of transmission
information”, is developed in order to quantitatively analyze the common information shared by
two images. Collignon et al. (1995), Viola (1995), Wells et al. (1997), and Maes et al. (1997)
independently and simultaneously proposed the mutual information for intermodality medical image

registration.

The equation is used to calculate the mutual information in this research is

MI(x,t) ZZP a,b) logP (;zpb()b) (2.10)
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where P(a,b) is the joint probability density function (PDF) of the windowed observed wavefield
and the predicted reconstructed wavefield, P(a) is the intensity PDF of the predicted reconstructed
wavefields, and P(b) is the intensity PDF of the windowed observed wavefields.

The joint PDF P(a,b) denotes the probability of occurrence of the intensity pair (a, b) with
intensity a and b located at the predicted wavefield and windowed observed wavefield, respectively.

The positions of intensities are the same. This joint PDF P(a,b) can be approximated by
P(a,b) = w (2.11)

Here, N(a,b) is the number of voxels that have the intensity a (in the predicted wavefield) and b
(in the windowed observed wavefield) at the same locations for both wavefields; N is the number
of voxels in the wavefield. The intensity of the PDF of the predicted wavefield and the windowed

observed wavefield can be expressed as

P(@) = Y Po,b) = - 3" N(a,b) = # (2.12)
b b
and
P®) =Y Plab) = = Y N(ab) = % , (2.13)

respectively, which can be calculated directly by projecting the joint PDF on two orthogonal axes.
The intensity of PDF can also be interpreted as the number of voxels with an intensity value of a
or b divided by the number of voxels in the wavefield.

Figure 2.27 shows four pairs of predicted wavefields (left column) and windowed observed
wavefields (right column); their corresponding histograms are shown in Figure 2.28. The first row
shows a duplicated predicted wavefield. Because these two figures are identical, their joint PDF
shown in Figure 2.28(a) is distributed along the diagonal. In the second row, the source location
of the predicted wavefield is {132 m, 334 m} and the center of the windowed observed wavefield is
{132 m, 334 m, 0.04 s}. The joint PDF of these two wavefields (shown in Figure 2.28(b)) is located
close to the diagonal line but is not precisely concentrated along that line. Due to various errors (for
example, noisy seismograms and incorrect velocity models), it is impossible to generate the same
histogram as shown in Figure 2.28(a). In the third panel, both wavefields are centered at the source

onset time but not at the true source location. In the fourth panel, two wavefields are located at
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the source location but not at the source onset time. Based on Figure 2.28, I find that the joint
histogram dispels or “blurs” when the wavefields are not identical; for example, the brightest regions
of the histogram become less bright and the number of dark regions are reduced. The ideal case is

shown in Figure 2.28(a) where only one line is located along the diagonal direction.

I apply equation 2.10 to the calculated joint PDFs to compute the mutual information, shown
in Figure 2.29. Based on the information shown in Figure 2.29, we can tell that mutual information
produces a higher resolution than other methods for identifying the source location. Because mutual
information can be thought of as a measurement of how well one image explains another, or how
much one image shares information with another, this method achieves its maximum value when
two images are in optimal alignment. Therefore, I search for the maximum value within mutual
information. The detected source location is shown in Figure 2.30. The source location provided by
this method is identical with locations provided by N and MID. Therefore, the location accuracy

of this method is also less than 1/5 of a wavelength.

2.3.5 Comparison of similarity measurements

In this section, four methods for similarity comparison are discussed: normalized cross-correlation,
minimizing intensity difference, ratio image uniformity, and mutual information. Ratio image uni-
formity is the only method that failed in providing a correct source location. The location accuracy
of the other three methods is similar. However, the computation cost of mutual information is high
because this method requires the extra step of calculating the joint PDF. Although the resolution of
mutual information is the highest among these three methods, I prefer normalized cross-correlation
and minimizing intensity difference for calculating the similarity. When the observed and predicted
images are identical, their minimizing intensity difference value is 0 and normalized cross-correlation
is 1. When two images are different, however, their normalized cross-correlation value ranges be-
tween —1 and +1; there is no upper limit for minimizing intensity difference value. Thus, by applying
normalized cross-correlation, I can quantitatively understand the similarity between the two images;

in contrast, minimizing intensity difference fails to provide quantitative information.

After analyzing the four methods, I prefer normalized cross-correlation for calculating the

similarity between the observed reconstructed wavefield and the predicted wavefields.
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2.4 Signal-to-noise ratio

In this section, I discuss the robustness of the method in noisy data because in reality, the
signal to noise (S/N) ratio is much lower than that shown in Figure 2.7. Thus, in order to simulate
seismograms recorded in reality, random noise with a frequency band from 0 Hz to 140 Hz is added
to the seismogram shown in Figure 2.7. Figure 2.31 shows the three seismograms with different S /N
ratios. The SNR is calculated by )

SNR = (m) ) (2.14)

Anoise
where A represents the root-mean-square. The SNR of these three seismograms are 0.185, 0.05, and
0.013. After I apply the method, three calculated normalized cross-correlations are shown in Fig-
ure 2.32. The intersections of lines indicate the true micro-earthquake locations. The distributions
of these three plots are similar. The identified source locations are shown in the right column of
Figure 2.33, and their snapshots of the reconstructed wavefields at the source onset time are shown
in the left column. The focus of the wavefield is less obvious when the S/N ratio decreases. As shown
in Figure 2.33(f), the source location I detected is incorrect. Nevertheless, I regard my method as
robust because I can provide the source location with an accuracy of less than 1 /5 of a wavelength

even when the S/N ratio is as low as 0.05.
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(a) (b) (c)

Figure 2.17. Similarity comparison between the observed reconstructed wavefield and the predicted
reconstructed wavefields at different times. Time increases from (a) to (c).

>

Figure 2.18. Range L and cross-range C. The dot represents the source and the polygons represent
the receivers.
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Figure 2.19. Similarity comparison between three pairs of predicted reconstructed wavefields and
windowed observed wavefields. (a) and (b) are located close to the source location and onset time.
(c) and (d) are located at the source onset time but not at the source explosive location. (e) and (f)
are located at the source location but not at the source onset time.
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Figure 2.20. Normalized cross-correlation. The intersections of the lines indicate the location with
the maximum value of N..
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Figure 2.21. A comparison between the picked source location, represented by the left dot of the
two dots located at x ~ 130 m, and the true source location, represented by the right dot of the two
dots.
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Figure 2.22. The sensed wavelet is represented by the tallest line, the reference wavelet A is

represented by the lowest one, and the reference wavelet B is represented by the middle one.
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Figure 2.23. Minimizing intensity difference. (a) MID without a threshold, (b) MID with a
threshold with the value of 0.01
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Figure 2.24. A comparison between the true source location, represented by the right dot of the two
dots located at x ~ 130 m, and the detected source location, represented by the left dot of the two

dots.
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Figure 2.25. Ratio image uniformity where the intersections of lines indicate the true source
location. From this plot, it is difficult to get information about the estimated source position.
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Figure 2.26. A comparison between the true source location, represented by the dot located at
z ~ 130 m, and the detected source location, represented by the dot located at x ~ 300 m .
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Figure 2.27. Four pairs of the predicted wavefields and windowed observed wavefields where (a) and
(b) are the same, (c) and (d) are centered around the true source location and onset time, (e) and
(f) are centered at the source onset time, and (g) and (h) are centered at the source location.
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Figure 2.28. Joint histograms. (a) is the histogram of plots (a) and (b) of Figure 2.27, (b) shows the
histogram of (c) and (d), (c) illustrates the histogram of (e) and (f), and (d) shows the histogram

of (f) and (h).
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Figure 2.29. Mutual information, where the intersections of lines indicate the true source location.
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Figure 2.30. A comparison between the true source location, represented by the right dot of the two
dots located at x =~ 130 m, and the detected source location, represented by the left dot of the two

dots.
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Figure 2.31. Noisy seismograms where S/N rations are (a) 0.185, (b) 0.05, and (c) 0.013.
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Figure 2.32. Normalized cross-correlations corresponding to the seismograms shown in Figure 2.31.
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Figure 2.33. The left column shows snapshots of the reconstructed wavefields; the right column
shows the true source locations at {z,2} = {140 m, 334 m} and the detected source locations. (a)
and (b) indicate the result of the seismogram shown in Figure 2.31(a) with a SNR which is 0.185;
(c) and (d) indicate the result of the seismogram shown in Figure 2.31(b) with a SNR which is 0.05;
(e) and (f) indicate the result of the seismogram shown in Figure 2.31(c) with a SNR which is 0.013.
The focus of reconstructed wavefield becomes less obvious when S/N ratio decreases.
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Chapter 3

Probability of a micro-seismic event location

In the preceding chapter, I assumed that the location and onset time that produce the max-
imum similarity are the detected hypocentre and excitation time of a micro-earthquake. However,
due to various errors, such as noisy seismograms and incorrect velocity, we are not able to provide the
exact source location and onset time. Therefore, in order to quantitatively describe the uncertainty
of the detected the source location, I exploit Bayesian inversion theory. This allows me to illustrate
the probability of the source and onset time I located for a micro-seismic event. I also apply this
method to locate multiple micro-earthquakes which are triggered within a certain area and a fixed
range of time. By studying the distribution of micro-earthquakes, we can get a sense of the growth

of fractures.

3.1 Bayesian inversion theory

Bayesian inversion theory uses probability density functions as a measurement of a given state
of knowledge (Jaynes, 2003). A crucial feature of Bayesian theory is that a probability can be
assigned to a hypothesis. According to Bayesian theory, we begin investigation with a certain state
of knowledge which is independent of any subsequent measurement we make. We assign to any
possible model acceptable to the prior state of knowledge a likelihood which quantifies how probable
it is for a particular model to represent reality (Tarantola, 2005). The posterior combines the prior
understanding of the model parameters with additional information derived from measurements and
assumptions about the physical laws governing the process under investigation. This approach allows

us to incorporate any a priori information into the data, parameters, and theory. As discussed by
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Figure 3.1. (a) A priori probability density function p(m,d) represented by a delta function corre-
sponding to pon(m) which is also represented by a step function. (b) Theoretical probability density
function ©(m, d) representing the physical relationship given by G(m) and assumed to be exact. (c)
Conjunction between p(m,d) and ©(m,d). (d) A posteriori probability density function o(m,d)
indicating that the solution to the Bayesian inversion problem is given by a single model. (e) A
comparison between the marginal probabilities showing pon(m) in the upper panel and o9r(m) in
the lower panel.
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Figure 3.2. (a) A priori probability density function p(m,d) represented by a Gaussian function
corresponding to psp(m) represented by a tapered step function. (b) Theoretical probability density
function ©(m,d) representing the physical relationship given by G(m) and assumed to be uncer-
tain. (c) Conjunction between p(m,d) and ©(m,d). (d) A posteriori probability density function
o(m,d) indicating that the solution to the Bayesian inversion problem is given by several models
corresponding to the uncertainties of the prior and theoretical probability density functions. (e) A
comparison between the marginal probabilities showing por(m) in the upper panel and om(m) in
the lower panel.
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Tarantola (2005), the posterior state of information is obtained using the Bayes theorem

(m, d)6(m, d)

_.P
o(m,d) =k (. ) , (3.1)

where m represents the model, d represents the data, p(m, d) represents the a priori state of infor-
mation, ©(m, d) represents the theoretical state of information, u(m, d) represents the homogeneous
state of information, k represents a normalization constant, and o(m, d) represents the a posteriori

state of information.

We can define two states of knowledge based on equation 3.1. The prior characterizes our
knowledge about the model and data parameters before any measurements are taken. This informa-
tion is based on the general knowledge of the phenomenon under investigation, of the distribution of
model parameters, and on the assumptions about the reliability of the measurements. The posterior
characterizes our knowledge about the model and data parameters after measurements are made
and data are processed and interpreted. Both states of knowledge are characterized by probability
density functions (PDF's) linking model and data parameters. Ideally, the measurements help refine
the prior into the posterior state of knowledge which provides a tighter connection between model

and data parameters.

According to equation 3.1, the a posteriori state of information o(m, d) is computed by com-
bining the theoretical function ©(m,d) with the prior information p(m,d). The solution to the
inversion problem is given by oon(m) which represents the posterior marginal probability on the

model space and is obtained by integrating the a posteriori probability density function over data:

om(m) = /:Da(m, d)dd, (3.2)

where D is the data space. When the uncertainty associated with the theoretical state of information
is negligible, oo (m) is

Ug]t(m) = me'l(m)pD(G(m), dObs) ’ (33)

where pop(m) is the prior state of information on the model space, pp(d) is the prior information
on the data space, and v is a normalization constant. In order to describe Bayesian inversion theory,
I need to discuss the following elements: model (m) and model space, data (d) and data space, the

prior state of knowledge (a priori PDF p(m, d)), the theoretical relations between model and data
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(theoretical PDF ©(m, d)), the posterior state of knowledge (a posteriori PDF o(m,d)), and the

posterior marginal probability on the model space(a marginal PDF om(m)).

3.1.1 Model and data spaces

The model space (90) is composed of a set of individual models which can be denoted by
m; (¢ € {1,2,...,N}). A particular parameterization has to be chosen in order to quantitatively
describe the model, and these parameters correspond to the coordinates of a system. The model space
represents all the models that can possibly characterize the physical phenomenon under investigation.

In this research, the model parameters used for the micro-earthquake location problem are
m = {x,t}, where x = {z,y,2} describes the position of a micro-seismic in space and ¢t describes
the onset time.

The data space D is composed of all instrumental responses to the investigated models which
can be denoted by d; (i € {1,2,...,M}). The data space represents all data that can possibly be
recorded and characterizes the physical phenomenon under investigation.

In this research, the data d represent the wavefields reconstructed from recorded seismograms
in the space around the most probable micro-earthquake source locations and onset times. In this
context, it is irrelevant whether the data are acquired in a borehole, on the surface, or using a
combination of borehole and surface arrays. The data parameters D(x,t) are samples of the 4-
D wavefield. Each model has only one datum because there is one wavefield characterizing one

micro-seismic event in space and time.

3.1.2 A priori probability density p(m,d)

We describe p(m,d) by a joint PDF over the model and data spaces. This prior information
is independent of any measurement. Furthermore, in the special case when the prior information
on the model space pon(m) is independent of the prior information on the data space pp (d), the a

priori probability density function p(m,d) is (Tarantola, 2005)

where pp(d) describes the measurement uncertainty of the observed data, and pon(m) illustrates

our confidence in the chosen model parameters.
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Two examples of a priori probability density functions are shown in Figures 3.1(a) and 3.2(a).
The vertical axis represents the value of the probability that a particular model characterizes for the
physical system under investigation. In Figure 3.1(a), p(m,d) = pg(m)d(d — D), where D
denote the observed data, and the a priori probability in the model space is a step function. In this
case, no error is associated with the observed data which means we are extremely confident in the
data we observe. In Figure 3.2(a), p(m,d) = pm(m)e_%‘:_‘ﬁ, where pon(m) is a tapered step
function, and Cj is the measurement uncertainty of the data. This equation demonstrates that the
higher the value of Cy, the lower the confidence in the observed data. We assume that the data are
distributed following a Gaussian function and provide the highest probability for Dbs,

For the prior probability psp(m) in this research, I assume that the hypocentre and the onset
time of micro-seismic events may be located with equal probability within a certain space domain and
time interval. Thus, I represent this prior knowledge on the model space as a boxcar function in space
and time. The prior probability pap(m) = 1 within this region of space and time and psp(m) = 0
elsewhere. I uniformly sample the model space within this region. Figure 2.11(b) shows the poy(m)
designed for this example. Here, I assume that the data (the reconstructed wavefield corresponding
to the recorded seismograms) characterize all models within the selected model space with equal
probability, as illustrated in Figure 3.1(a). I will discuss the design of the prior information on the

data space later in this paper.

3.1.3 Homogeneous probability density p(m,d)

In order to remove the effect of the discretization on the model and data parameters, we
define a homogeneous PDF u(m,d) whose role is to balance the discrete model and data spaces.
By definition, the homogeneous probability distribution states that a probability assigned to each
region of the space is proportional to the volume of the region (Mosegaard & Tarantola, 2002).
In the special case when the homogeneous probability densities on the model and data spaces are

independent, u(m,d) is expressed as

p(m,d) = pp(d)pon(m) , (3.5)

where pon(m) and pp(d) are the homogeneous probability density on the model and data space,

respectively.
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For example, for 3-D Cartesian coordinates, dV (z,y,z) = dxdydz and p is a constant. Ac-
cording to the experiment, the system is built on the Cartesian coordinates. Thus, for simplicity, I

assume g = 1 in this section.

3.1.4 Theoretical probability density ©(m,d)

The theoretical probability density ©(m,d) describes the relation between the model and data
parameters. The defined relationship corresponds to a physical law and may incorporate uncertain-
ties associated with theory, for example due to assumptions or simplifications of the physical law
or due to imperfect knowledge of the physical parameters underlying it. The theoretical probability

density ©(m, d) can be expressed as
©(m,d) = 6(d|m)uom(m) , (3.6)

where 6(d|m) describes the probability distribution of data for the given kernel function and model
and pgn(m) is the marginal probability defined in the preceding section. In Figure 3.1(b), 8(djm) =
8(d — G(m)), where G(m) is the kernel function which describes the physical relationship between
d and m. No error is associated with this kernel function. In Figure 3.2(b), 8(d|m) = e_sd;‘%tﬂﬁ,
where C; describes the theory uncertainty. The error associated with this kernel function follows a
Gaussian distribution.

In this research, the kernel function is based on the two-way acoustic wave-equation and is

constructed using the following steps:

o First, for a given model (my) characterized by the onset time ¢4 and location x4, I propagate
waves forward from the source using the velocity ¢(x) according to the two-way acoustic wave-
equation

1.
SU= V2U + f(mg,t), 3.7

where f(mg,t) is the considered source wavelet and U(x,t) represents the seismic wavefield

simulated forward in time.

e Second, the forward wavefield is recorded at receiver coordinates Xo arbitrarily located in space:

R(x()at) = U(X = Xo, t) ) (38)
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where R(xp,t) represents the recorded seismogram.

o Third, the recorded seismogram is time-reversed and propagated backward in time from the
acquisition array to reconstruct the wavefield at all locations in space and all times within
the window considered for the prior model. This step is also based on the two-way acoustic
wave-equation

1 ..
ED =V2D + R(XO, —t) , (3.9)
where D(x,t) are the data parameters, as explained earlier.

The kernel functions constructed with this procedure are functions of the velocity, the acquisition
geometry, and the source type. For a given model, I refer to the data calculated using this procedure
centered in the model with the fixed size as the predicted data DP™. In contrast, I refer to the
wavefields reconstructed from field seismograms centered in the model with the fixed size as the
observed data D°%.

For all models within the selected region of space, I compute the corresponding wavefield using
the kernel function. In this case, I assume that each model corresponds to one dataset and that all
simulated data have equal probability for explaining the recorded data. This construction, which
corresponds to the illustration in Figure 3.1(b), applies the kernel function G linking theoretically
individual members of the model and data spaces. As discussed in the previous chapter, it is
sufficient to compute data for one onset time and to calculate the database only once as long as
we keep the subsurface velocity and acquisition geometry fixed. I assemble all these calculations
in a database of wavefields which is used to compare with data reconstructed from the “field”
seismograms. Figure 2.16 illustrates the wavefield database at all locations indicated by dots in
Figure 2.11(b), and the size of the predicted data in Figure 2.16 is two wavelengths in space and

two periods in time.

3.1.5 A posteriori probability density o(m,d)

The conjunction between the a priori state of information p(m, d) and the theoretical proba-

bility density function ©(m,d) provides the a posteriori state of information o(m, d):

P(m, d)O(m, d)

o(m,d)= p(m,d) °

(3.10)
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where k is a normalization constant that serves the purpose of keeping the area under the graph of

o(m,d) constant. The expression for k is

1
k= T o, 0 (m, ) /u(m, )’

(3.11)

where X = (D,M) is the joint space of the data and model.

The posterior information o(m,d) is computed based on observations. In the special case
when both the model space and the data space are described in Cartesian coordinates, the posterior
information is proportional to the conjunction between the prior information and the theoretical

information:

o(m,d) x p(m,d)©(m,d) . (3.12)

Figures 3.1(c) and 3.2(c) schematically show the conjunction between the p(m,d) and ©(m, d), and
the results of the conjunction are shown in Figures 3.1(d) and 3.2(d). In Figure 3.1(d), o(m,d) x
§(D°* — G(m)) indicates that o(m,d) = 1 only when the observed data are exactly the same as
the data calculated from the kernel function. In Figure 3.2(d), o(m,d) e‘(DObs;G(m )2, where
C = C4+ C,. The probability distribution in Figure 3.2(d) shows how well the data calculated from

the kernel function explain the observed data.

3.1.6 The marginal probability density ogm(m)

In order to provide a solution to the inversion problem, we have to transfer the information
provided by o(m,d) to the model space. We obtain the marginal probability density in the model

space og(m) by projecting o(m,d) onto the model space:
oon(m) =/ o(m,d)dd . (3.13)
D

The probability density function provided by oon(m) indicates which models simultaneously satisfy
our prior knowledge on the distribution of model parameters, the theoretical relationships between
model and data, and the measurement uncertainties. A comparison between pg(m) and oo (m) is
shown in Figures 3.1(e) and 3.2(e). The distribution of oon(m) is narrower on the posterior relative
to the prior indicating the tighter connection introduced by the recorded data. In theory, I expect

that I will get the same distribution of osn(m) as shown in Figure 3.1(e). However, in practice, this
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does not hold true due to various uncertainties in reality.

3.1.7 Negligible theoretical uncertainties

When I assume that no uncertainty is associated with the kernel function G(m) which describes
the physical relationship between the data and the model, the theoretical probability density ©(m, d)
can be expressed as

©(m,d) = §(d — G(m))pgn(m), (3.14)

where pgn(m) is a constant for models parameterized in Cartesian coordinates. The theoretical
probability density ©(m,d) = 1 when the data equal the value calculated from the kernel function
and ©(m, d) = 0 otherwise.

In this case, the marginal probability in the model space in equation 3.13 can be expressed as

oo (m) = /cD o(m, d)dd = k /D %dd; (3.15)

when ©(m, d) is given in equation 3.14, with p(m, d) = pp(d)pm(m) and p{(m,d) = pp(d)um(m),

we can write

oon(m) = kpox(m) /9 pD(d)i(;i(;)G(m))dd, (3.16)

where pp(d) is a function of d and the observed data, and ugp(d) is a constant for data discretized

in Cartesian coordinates. Thus, equation 3.13 for an ideal kernel function can be written as
om(m) = vpar(m)pp(G(m), D) , (3.17)

where
v= | pm(m)po(d, D*)dm (3.18)
b
is a constant. In equation 3.17, oo(m) is proportional to the product of the prior probability on
the model and data spaces.

In this research, I assume that there is no error associated with the theoretical information.

Therefore, errors of ogn(m) are introduced by the measurement uncertainty of the observed data.
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Figure 3.3. Probabilistic distributions of normalized cross-correlation. The measurement uncertain-
ties are (a) Cg = 0.1, (b) Caq = 0.49, and (c)Cq = 1. The distribution of oom(m) becomes flatter

when measurement uncertainty increases.
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Figure 3.4. Snapshots of the probability density function where dots are the hypocentre of the
micro-earthquake. The outer contour has a probability of 0.8 and the contour interval is 0.05. The
measurement uncertainties of these three plots are (a) Cq = 0.1, (b) C3 = 0.49, and (c) Cy = 1.
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3.1.8 The prior information on the data

As discussed earlier, I refer to data as windowed reconstructed wavefields at all locations
in space and within a given time window. I loop over the models provided by pa(m) and look
for the times and locations in space where data reconstructed from recorded seismograms match
the simulated data at locations where I assume that micro-seismic events are located. We can
conceptually describe the process as measuring the similarity between multi-dimensional images.
In the preceding chapter, I discussed various methods that can be used to compare the similarity
between the predicted data and observed data. The preferred method of normalized cross-correlation
(N.c) measures the similarity between theoretical wavefields and wavefields reconstructed from field

seismograms. The values of N, are between —1 and +1.

For simplicity, I assume that the error of the observed data has a Gaussian distribution, and I
give the highest probability to the model which generates the smallest data misfit. The probability
density function based on the normalized cross-correlation in equation 2.5 is

_ (1—Nee(m))?
og(m) = pom(m)e 2Cq , (3.19)
where C; is the measurement uncertainty and N..(m) is the normalized cross-correlation function.

N..(m) can be expressed as

X+ My t+ M, — -
Y- (D°*(m) — D°**(m))(G(m) — G(m))
Ncc(m) _ x—My t— M, ,
X+ My t+M, x+
&>

_— Mx t+Mt - —_—
Y. (Deb*(m) — D°b*(m))®> 32 30 (G(m)—G(m))?
x—My t—M, My k=t—M,

(3.20)

which is a function of the predicted data and observed data, where the overline denotes average

values.

In equation 3.19, the larger the value of Cy, the flatter the distribution of om(m). When
C, is small, ogn(m) tends toward a delta function. Three probability distributions of normalized
cross-correlation are shown in Figure 3.3 with different measurement uncertainties. After examining
these three figures, I find that the distribution of probability follows the role I discussed previously.
Figure 3.4 explicitly shows this property. Snapshots of Figure 3.3 are picked from Figure 3.4 at the

time of the maximum probability value.
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I expect that for the distribution of oon(m), the radius of the contour with a value of 0.9 will be
half the wavelength because the location error of the N, method is less than half of the wavelength.
Thus, I choose Cy = 0.49 because the radius of the contour (shown in Figure 3.4(b)) with a value of
0.9 is about 20 m. I compute normalized cross-correlation by comparing the pre-calculated wavefield
database with the observed reconstructed wavefield, as shown in Figure 2.20. The maximum N,
value is 0.991 at z = 132 m, z = 334 m, ¢ = 0.044 s. However, the N, value is 0.985 at £ = 136 m,
z =334 m, t =0.042 s. These two values are very close and it would be unwise to pick one without
taking the other into consideration. Therefore, instead of selecting a single model as the answer, I
construct a probability distribution characterizing various models and their likelihood to represent

sources of micro-earthquakes.

3.2 Synthetic example with multiple micro-earthquakes

In the preceding section, I present micro-earthquake location in the case when only one seismic
event occurs in a region during a time interval. However, a more common situation is that multiple
micro-seismic events occur more or less at the same time and overlap in space during a given
time interval. In this section, I demonstrate the methodology on another example with multiple

overlapping events.

3.2.1 Distribution of micro-earthquakes

The motivation for such an experiment derives from field observations about how fractures
propagate during fluid injection. By spatially mapping the signals emitted by micro-earthquakes,
we can monitor the extensions of fractures (Keppler et al., 1982; Shapiro et al., 2006). Numerous field
observations indicate that the seismic zone surrounds the fractures and forms an elongated pattern
(House, 1987; Phillips, 1998; Rutledge & Phillips, 2001). Thus, the fluid-induced microseismicities
are concentrated in a spatial domain close to the hydraulic fracture (Shapiro et al., 2006).

In this example, I collected a variety of information about micro-seismic events from the same
injection experiment. Based on this information, I assume that the micro-seismic events are dis-
tributed along a fracture which is located at z = 0.326 km. The opening of this fracture, which is
along the x direction where x increases, is caused by high pressure steam injected into the borehole

located at £ = 0 km. In the case of a straight, planar, height-fixed fracture, the half-length L of the
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Figure 3.5. Synthetic model. The dots located at about z = 0 km represent receivers; the other

dots represent the micro-seismic events.

fracture is given as a function of the injection time ¢ by

t

L = v

(3.21)

with constants c3 = 2hw/q and ¢4 = 4v/2hC/q, where h is the average height of the fracture, ¢ is

the

average injection rate of the treatment fluid, C is the leak-off coefficient, w is the fracture width

which is a constant, ¢ describes the fluid loss from the fracture into the rock, and c4 describes the

contribution of the effective fracture volume and depends mainly on the geometry of the fracture

vertical cross-section (Economides, 1992; Fischer et al., 2008). By design, I assume that the growth

of the fracture has a linear relationship with the injection time and that the microseismicities are

triggered around the tips of the opening fracture. Therefore, the triggering time of one micro-seismic

event has a linear relationship with the distance between the microseismic location and the injection

point. The difference between the onset times of two nearby micro-seismic events is greater than

one period.

I also assume that the magnitudes of all micro-earthquakes are different and the sources are
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Figure 3.6. Synthetic seismogram. A total of 7000 time steps with an increment of 0.2 ms are
calculated.
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characterized by Ricker wavelets with a dominant frequency of 50 Hz. Figure 3.6 shows the simulated
seismogram characterizing all the events. The seismogram is contaminated with two types of noise.
The first type of noise is due to model heterogeneities which I assume that I cannot identify in the
imaging process. The second type of noise corresponds to the fact that the experiment is run in
a noisy environment. The frequency band of the random noise is 0 — 140 Hz overlapping with the
micro-earthquake band. The SNR for some events in this example is as low as 0.1. I assume that
measurement uncertainties are 0.64 because of the low SNR. Since the larger the size of the predicted
data, the higher the identification of a single micro-earthquake and the lower the resolution of two
nearby micro-earthquakes; thus, in order to achieve high resolution and maintain high identification,
I select the predicted data with the size of two wavelengths in space and two periods in time. I

simulate 20 micro-earthquakes and attempt to locate all of them with my methodology.

3.2.2 Analyzing probability density function of micro-earthquakes

After applying the method to the seismogram shown in Figure 3.6, I pick 20 snapshots (shown
in Figures 3.7, 3.8, and 3.9) from the probability distribution. The contours shown indicate the
probability of earthquake occurrence at various times and range from 0.8 to 0.95 with a contour
interval of 0.05. One snapshot corresponds to a single micro-earthquake I located.

Figure 3.7(a) shows the source location obtained for a micro-earthquake occurring at mo =
{z,2,t} = {0.012 km, 0.326 km, 0.02 s}. This point is located within a contour with a confidence
level of 0.95. Figure 3.7(b) shows that the event m; = {0.016 m, 0.306 m, 0.10 s} is located within
the contour with a value of 0.85. I assume that micro-earthquakes can be triggered within an area
with a probability value of 0.85 or greater due to the low SNR of this example. Figure 3.7(c) shows
the event my = {0.016 m, 0.346 m, 0.05 s} located within the contour with a value of 0.9. I locate
this event accurately. However, this plot also shows another area with a value of 0.85. This may be
caused by artifacts of the reconstructed wavefield. Figure 3.7(d) shows an area characterized by the
probability value of 0.85. This area contains the event m3 = {0.032 m, 0.33 m, 0.12 s}.

Figure 3.7(e) shows two events, my = {0.04 km, 0.314 km, 0.16 s} and ms = {0.052 km,
0.326 km, 0.24 s}, located within the contour with a confidence level of 0.9. This example shows
that the procedure may not have the resolution to distinguish among events that are located too
close to one another. Event my is also located by contours shown in Figure 3.7(f). Other choices of

parameters, e.g. in the definition of the wavefield database, might increase the spatial resolution of
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Figure 3.7. Snapshots of the probability distribution of micro-seismic events. The value of the outer
contour is 0.8 and the contour interval is 0.05. The dots represent the locations of micro-earthquakes.
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Figure 3.8. Snapshots of the probability distribution of micro-seismic events. The value of the outer
contour is 0.8 and the contour interval is 0.05. The dots represent the locations of micro-earthquakes.
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Figure 3.9. Snapshots of the probability distribution of micro-seismic events. The value of the outer
contour is 0.8 and the contour interval is 0.05. The dots represent the locations of micro-earthquakes.

the identification. This example indicates the presence of another event located inside the contour
centered at about {x = 0.17 km, z = 0.35 km}. This is simply an artifact since no event occurs
at this position and time in the simulation. Figure 3.7(g) indicates the event mg = {0.048 km,
0.338 km, 0.20 s} located within the contour with a value of 0.9. The spatial position of the event
mg is also located within the contour with a value of 0.85. In Figure 3.7(h), two events ms and mjy
are included within the contour with a value of 0.85. Figures 3.7(g) and 3.7(h) further demonstrate

the low spatial resolution of identification.

Figure 3.8(a) shows the event mg = {0.072 km, 0.33 km, 0.32 s} located within the contour
with a confidence value of 0.9. In Figure 3.8(b), event mg = {0.084 km, 0.314 km, 0.38 s} is located
within the contour with a confidence value of 0.9. Figure 3.8(c) shows event mjg = {0.092 km,
0.326 km, 0.42 s} located within the contour with a probability value of 0.85. The spatial location of
event mj; = {0.1 km, 0.334 km, 0.46 s} is also located within this contour. However, in Figure 3.8(d),
the event m;; that I try to identify is not located within the contour with the value of 0.8. Instead,

the spatial location of event m;2 = {0.112 km, 0.33 km, 0.52 s} is located on the contour line with
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the value of 0.85.

Figure 3.8(e) shows that the event at m, is not located within the contours obtained by the
inversion. In this case, the method fails. This phenomenon is likely due to the fact that multiple
micro-earthquakes overlap in this region creating false foci that masquerade as real events. The
event at my3 = {0.12 km, 0.318 km, 0.56 s}, shown in Figure 3.8(f), is located within the contour
with a value of 0.85. Figure 3.8(g) shows the event mys = {0.132 km, 0.326 km, 0.62 s} located
within the contour with a confidence value of 0.9. Figure 3.8(h) shows the event at m 5 = {0.144 km,
0.334 km, 0.68 s} located within the contour with a confidence value of 0.8. Although I successfully
identify this event and the experiment seems to place it at the right position, I have lower confidence
in its position due to the low SNR in the seismogram, which is approximately 0.1.

Similar to the situation shown in Figure 3.8(h), Figure 3.9(a) shows the event mg = {0.152 km,
0.33 km, 0.72 s} located within the contour with a confidence value of 0.8. Figure 3.9(b) shows the
event m;7 = {0.16 km, 0.322 km, 0.76 s} located within the contour with a confidence value of 0.85.
Figure 3.9(c) shows the event m;g = {0.18 km, 0.326 km, 0.86 s} located within the contour with
a confidence value of 0.9. Finally, Figure 3.9(d) shows the event at mjg = {0.212 km, 0.33 km,
1.02 s} located well within the contour with a confidence value of 0.95. These last three figures show
examples of successful identification of a seismic source.

Although in this example I do not locate all existing micro-earthquakes accurately, I regard
this experiment as a success because we are getting a good representation of the direction and speed

of fracture propagation in a difficult setting characterized by low SNR and sparse data acquisition.
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Chapter 3. Probability of a micro-seismic event location
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Chapter 4

Field data analysis

In this chapter, I demonstrate the technique with field datasets corresponding to string shots
and perf shots lowered in a borehole. In reality, the magnitude of a micro-earthquake is too small
to be identified by using travel-time based methods. However, my method reveals its robustness in
low SNR situations and demonstrates its feasibility with the field data.

This chapter is composed of three parts: first, I locate the source of perf shots based on the
2-D velocity model; second, I locate the source of string shots based on the same model; third, I
relocate the source of string shots based on the 3-D velocity model.

The perf and string shots shown here are two explosive apparatuses which are used to open
a borehole. The strength of these two shots is under control. The controlled sources allow me to
quantitatively analyze the method. When one shot is triggered, its signal is recorded by the receivers
which are spread on the surface. The layout of receivers (shown in Figure 4.1) for both perf and
string shots are the same. The dark blue dots in this figure represent the receivers; the green dot
represents the wellhead. The origin of the receiver coordinate is the location of the wellhead which
is {0 m,0 m}.

For the first two sections of this chapter, I pick a line from these receivers and calculate the
source locations. The line I pick is the one closest to the location of the explosive source projected on
the surface. The geometry of these experiments is shown in Figure 4.2, where green dots represent

receivers.

4.1 Perf shots

I test my method using the data acquired along a line which is close to the borehole. Part

of the field data of the two perf shots is shown in Figure 4.3. There are 1000 time samples, the
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Figure 4.2. Velocity model and receiver layout.
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Figure 4.3. (a) and (b) are part of the field data of two perf shots where (a) records perf 1 shot and
(b) records perf II shot.
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Figure 4.4. Four snapshots of the wavefield reconstructed from perf I. (c) shows the focus of the
reconstructed wavefield.
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Figure 4.5. Four snapshots of the probability map of perf I where the green dots represent the
detected source location, and the probability value of the inner contour is 0.95.
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Figure 4.6. Four snapshots of the wavefield reconstructed from perf II. (b) shows the focus of the
reconstructed wavefield.

time sampling is 2 ms, and the dominant frequency of the signals is 30 Hz. The magnitude of the
explosive shots is strong, and we can identify the P-wave first arrival times. The calculation is done

on a numerical grid of 171 x 84 nodes and the grid spacing is 8 m.

I begin my method by reconstructing the wavefields of the two seismograms. Four snapshots
corresponding to the perf I shot are shown in Figure 4.4. Because of the high SNR, we can easily
identify the position and time where the reconstructed wavefield best refocuses (Figure 4.4(c)).
The a priori state of information on the model space in this experiment is in the vicinity where
the reconstructed wavefield focuses. The space sampling of the possible source locations is 16 m.
Applying the method, I calculate the probability. Figure 4.5 shows four snapshots of the probability,
where green dots indicate the location with the highest probability value. The probability value of
the outer contour is 0.85 and the contour increment is 0.05. The source location I detected by using

the method is {x,z} = {0.7 km, 0.48 km}, which is characterized by a high probability value.

The same processes are applied to the perf II seismogram which is shown in Figure 4.3. After

observing the reconstructed wavefield shown in Figure 4.6, we see that the best focus location is
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Figure 4.7. Six snapshots of the probability map of perf II where the green dots represent the
detected source location, and the probability value of the inner contour is 0.9.
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Table 4.1. A comparison between the true and detected source locations. The top lines of perf I
and II show the true source locations. The bottom lines show the detected source locations.

East(m) | North(m) { Depth(m)
50.94 31.28 455.00
perf I 46.1 -151.65 480.00
155.3 | -174.11 455.43
perfIl | 1533 | 91807 368.00

around {0.8 km, 0.3 km}. However, after calculating the probability, I discovered two areas where
probabilities are greater than 0.9. The first area is shown by snapshots in Figures 4.7(a) - 4.7(c); the
second area is shown by snapshots in Figures 4.7(d) - 4.7(f). The green dots represent the location
with the maximum probability value. In this experiment, lacking other sources of information, I am
unsure of the best locations to pick for the perf shot. However, by combining the probability with
the reconstructed wavefield, I pick the source location which corresponds to the location of the best
focus of the reconstructed wavefield. The explosive source location picked is {0.75 km, 0.368 km}.
When I convert the source locations into a common 3-D coordinate framework as shown in
Figure 4.1, the source location provided by the perf I seismogram is {East, North, Depth} = {46.10 m,
—151.65 m, 480 m} and the source location provided by the perf II seismogram is {—153.32 m,
—218.07 m, 368 m}. A comparison of the detected sources with the true source locations, which is
shown in Table 4.1, shows that there is a significant positioning difference in the north direction.
This is due to the 2D nature of the inversion which does not take into account the fact that the

sources might be located off-line.

4.2 String shots

In this section, I demonstrate the technique with several field datasets corresponding to string
shots lowered in a borehole. This experiment is meant to demonstrate the robustness of the method
with low SNR.

The greatest challenge in this experiment is the fact that these string seismograms may record
more than just the string shot. The seismogram may record many micro-earthquakes which are
triggered by the string shot. One possible explanation for the mechanism of micro-earthquakes

recorded by this seismogram is that when the modified stress and strain fields, caused by the string
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Figure 4.8. (a) - (e) are part of the seismograms of the five string shots where (a) - (e) records string shots I - V, respectively. The
S/N ratio decreases from (a) - (e). It is easy to identify the P-wave from (a).
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Figure 4.9. Seismograms from Figure 4.8 after amplitude balancing has been applied. (a) - (e) show the results of seismograms of

string shots I - V, respectively. The S/N decreases from (a) - (e).
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shot, exceed their criteria, micro-earthquakes can be triggered. Therefore, my method may provide
both the source location of the string shot and source locations of natural micro-earthquakes.

My task is to identify the source of the string shot among all the sources I have located since
I can only verify my method by comparing the detected with the known source location. In order
to separate the string shot from micro-earthquakes, other kinds of information are required. For
example, I can employ the property of the magnitude of string shots because this magnitude is
greater than that of micro-earthquakes. One deficiency of my method, however, is that it cannot
detect the magnitude of a micro-seismicity since the method measures the similarity between two
reconstructed wavefields. I can solve this problem by combining the probability density function
with the reconstructed wavefield as discussed in the previous section. By checking the locations
provided by the probability map in the reconstructed wavefield to see whether there is a refocused
field, I can select the proper location for the string shot.

I test the method using data recorded along another line which is also close to the head of the
borehole for all string shot seismograms. The respective seismograms are shown in Figure 4.8. For
all seismograms, there are 5000 time samples, the time sampling interval is 1 ms, and the dominant
frequency of the signal is about 30 Hz. In Figure 4.8, the hyperbolas corresponding to the string
shots are not obvious. However, for these five seismograms, some strong signals are located in time
between 1 — 1.5 s from trace 9 to 14. This kind of signal may be caused by the Stonely wave that
propagates along the borehole and transforms into the surface wave near the top of the surface.
Although the magnitude of this kind of wave is strong, it does not affect the location accuracy
because there is no focus produced by this kind of signal. After I apply amplitude balancing, which
normalizes each trace of the seismogram by its root-mean-value, to the recorded seismogram, I use
the seismograms (shown in Figure 4.9) to calculate the reconstructed wavefields.

The a priori information on the model space is shown in Figure 4.10. Although for this section
I could have restricted our attention to the immediate vicinity of the borehole, I assume that little
prior knowledge about the location of the source is known to us. The purpose of this assumption is to
simulate the situation in real cases where we know nothing about the location of a micro-earthquake.
The sampling space of the possible source location is 16 m. Blue dots in Figure 4.10 represent the
possible source locations. The size of each reference reconstructed wavefield is four wavelengths in
space and four periods in time. The measurement uncertainty picked in this section is 0.95 due to

the low S/N ratio, the large size of reference reconstructed wavefield, and the expected high source
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Figure 4.10. The prior information on the model space.

identification. I apply the method to string shots I, II, III, IV, and V and explain the location

accuracy of the method in the following section.

For string shot I, I failed to detect the source location because the maximum probability value
is less than 0.5 and no refocused field exists in the reconstructed wavefield at the corresponding
location that generates the highest probability value. The failure is may caused by the low S/N

ratio.

For string shot II, several snapshots of the reconstructed wavefield corresponding to the seis-
mogram shown in Figure 4.8(b) are displayed in Figures 4.11(a)-4.11(d). Due to the low SNR, the
noise in the reconstructed wavefield is strong. However, due to the wide coverage of the receivers,
the refocused wavefield is easy to identify. Several snapshots of the probabilistic inversion result
are shown in Figures 4.12(a)-4.12(d). In this sequence of snapshots, there are two possible source
locations: one is indicated by Figure 4.12(b); the other is indicated by Figure 4.12(d). Both loca-
tions are characterized by a high degree of confidence. However, after considering these two source
choices and the reconstructed wavefield, I select {756 m, 290 m} as the explosive source location
for this seismogram. When I convert the detected source locations into the common 3-D coordinate

framework shown in Figure 4.8(b), the source location is {East, North, Depth} = {40 m, —201.5 m,
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Figure 4.11. Four snapshots of the wavefield reconstructed from string shot II. (c) shows the focus

of the wavefield.
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Figure 4.12. Four snapshots of the probability calculated from string shot I1. The probability value
of the outer contour is 0.75, and the contour increment is 0.05.
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Figure 4.13. Four snapshots of the wavefield reconstructed from string shot III. (b) shows the focus
of wavefield.

290 m}. Because of the 2D nature of the inversion which does not take into account the fact that the
sources might be located off-line, a geometric correction is applied which moves the source location
in space. The corrected source location is {31.70 m, —134.5 m, 282 m}. After this correction, I
compare the true string shot location and the corrected source location which are shown in column
IT of Table 4.2. Although the location error in the depth direction is about 30 m, this error is less
than 2 grid samplings of pop(m).

For string shot III, the same procedure applied to the seismogram shown in Figure 4.8(c)
yields four snapshots of this reconstructed wavefield shown in Figure 4.13. Four snapshots of the
probabilistic inversion result are shown in Figures 4.14(a)-4.14(d). In this experiment, the location
of the highest probability value (shown in Figure 4.14(b)) is in the vicinity of the borehole. When
I convert the source locations into the common 3-D coordinate framework, the source location is
{East, North, Depth} = {40 m, —201.5 m, 258 m}. A geometric correction moves the source location
in space to {31.70 m, —134.5 m, 249 m}. A comparison between the true string shot location and

the corrected source location is shown in column III of Table 4.2. The location error is about 1.5
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Figure 4.14. Four snapshots of the probability calculated from string shot III. The probability
value of the outer contour is 0.75, and the contour increment is 0.05.

grid samplings.

For string shot IV, the same procedure used in the two previous seismograms is applied to this
seismogram shown in Figure 4.8(d). Four snapshots of this reconstructed wavefield and four snap-
shots of the probabilistic inversion result are shown in Figures 4.15 and 4.16(a)-4.16(d), respectively.
The location of the highest probability value is indicated by Figure 4.16(b). After converting the
source locations into the common 3-D coordinate framework, the source location is {East, North,
Depth} = {40 m, —201.5 m, 210 m}. A geometric correction moves the source location in space and
the corrected source location becomes {31.70 m, —134.5 m, 189 m}. A comparison between the true
string shot location and the corrected source location of this seismogram is shown in column IV of

Table 4.2. The depth positions of the source provided by this seismogram is accurate.

For string shot V, after I apply the process to the seismogram shown in Figure 4.8(e), I get four
snapshots of this reconstructed wavefield shown in Figure 4.17. Four snapshots of the probabilistic
inversion result are shown in Figures 4.18(a)-4.18(d), where Figure 4.18(c) yields the location of the

highest probability. When I convert the source locations into the common 3-D coordinate framework,
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Figure 4.15. Four snapshots of the wavefield reconstructed from string shot IV. (c) shows the focus
of the wavefield.
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Figure 4.16. Four snapshots of the probability calculated from string shot IV. The probability
value of the outer contour is 0.75, and the contour increment is 0.05.
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Figure 4.17. Four snapshots of the wavefield reconstructed from string shot V. (b) shows the focus
of the wavefield.
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Figure 4.18. Four snapshots of the probability calculated from string shot V. The probability value
of the outer contour is 0.75, and the contour increment is 0.05.
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Table 4.2. A comparison between the true and corrected source locations. The top lines of East,
North, and Depth are the true source locations. The bottom lines show the corrected source loca-
tions.

File ID I I1 I1 v v
East(m) 18.71 | 14.00 | 11.00 | 11.02 | 10.35
31.70 | 31.70 | 31.70 | 31.70
North(m) -66.85 | -73.12 | -76.11 | -76.12 | -76.78
-134.5 | -134.5 | -134.5 | -134.5
Depth(m) 291.87 | 2566.78 | 222.00 | 186.00 | 97.00
282 249 189 71

the source location becomes {East, North, Depth} = {40 m, —201.5 m, 98 m}. The source location
with the applied geometric correction is {31.70 m, —134.5 m, 71 m}. A comparison between the
true string shot location and the corrected source location is shown in column V of Table 4.2.
After correction, the source locations detected from the seismograms of string shots I, II, III,
IV, and V are located along a vertical line which is in the vicinity of the borehole. The position
difference in the north direction is still significant even after applying the geometric correction.
However, errors of the depth positions are less than 3 grid samplings of the possible source location.
Thus, we consider that the depth positions provided by the method are correct. An alternative to
this geometric correction would be to run the inversion in 3D, thus reducing the spatial position

ambiguity.

4.3 String shots (3D)

In this section, I apply the technique to the string shots using the 3D velocity model. This
experiment is meant to demonstrate the feasibility of the technique in reality since the real world is
a 3D space.

The layout of receivers is shown in Figure 4.1, and the velocity model shown in Figure 4.19
is the horizontal extension of the velocity used in the 2D model in the y direction. The calculation
is done on a grid of x x y x z = 183 x 175 x 91 nodes with a grid spacing of 8 m. Because the
calculation in the 3D space is much higher than that in the 2D space, the a priori state of information
on the model space in this experiment is designed in the vicinity of the borehole and centered on

the borehole. The number of possible source locations is x X y X z = 9 x 9 x 14 with a grid
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Figure 4.19. 3D velocity model.

spacing of 16 m. In order to maintain consistency with the previous section, I choose a measurement

uncertainty of 0.95.

Due to the wide coverage of receivers, I expect the predicted reconstructed wavefield to be sim-
ilar for different source locations around the borehole. Thus, instead of calculating a reconstructed
wavefield database for all the selected sources in psp(m), I calculate only one reconstructed wave-
field for the database and compare the wavefield reconstructed from string shots with this database
at locations provided by pgy(m). This strategy not only reduces the time used in calculating the
reconstructed wavefield database but also saves the space used to store the database. However, one
deficiency of this strategy may be low in location accuracy because no matter how wide the coverage
of receivers is, the focus of wavefield various with the source location. Therefore, we should take the

coverage of receivers and location accuracy into consideration before applying this strategy.

As discussed in the preceding section, the procedure used to select the most reliable string
source from the source possibilities involves combining the probability map with the reconstructed
wavefield. However, for the 3D velocity model, it is impractical for us to manually check the best
focus of the reconstructed wavefield. Therefore, I first apply the method to the string shots to locate

source possibilities. Then I check whether reconstructed wavefields focus at the locations provided
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Figure 4.20. Probability values for (a) string shot I, (b) string shot II, (c) string shot III, (d) string
shot IV, and (e) string shot V. The value of the white color is 0.6; the blue color shows values that
are greater than 0.6; the red color shows values that are lower than 0.6.
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by these choices. The adjusted procedure is applied to string shots I, II, III, IV, and V. For string
shot I, I failed to find the source location because of the low maximum probability value.

For string shot II, one snapshot of the probability is shown in Figure 4.20(a). The intersections
of the blue lines indicate that the location of the maximum probability value is about 0.87. This
location is in the neighborhood of the borehole and is {East, North, Depth} = {27 m, —66 m, 304 m}.
Six snapshots of the reconstructed wavefield are shown in Figure 4.21, where the intersections of the
blue lines indicate the location with the highest probability value. Based on observation of these
snapshots, I find that the wavefront focuses around the location with the highest probability value
and then defocuses. However, although the coverage of receivers is wide, the wavefield does not
focus into a point which may indicate that the explosive energy does not uniformly propagate from
the string shot.

For string shot III, one snapshot of the probability is shown in Figure 4.20(b). The value of the
maximum probability is about 0.88. The detected location is in the neighborhood of the borehole
and is {East, North, Depth} = {11 m, —66 m, 272 m}. Six snapshots of the reconstructed wavefield
are shown in Figure 4.22, where the intersections indicate the location with the highest probability
value.

For string shot IV, one snapshot of the probability is shown in Figure 4.20(c). The value of the
maximum probability is about 0.89. The detected location is in the neighborhood of the borehole
and is {East, North, Depth} = {11 m, —66 m, 224 m}. Six snapshots of the reconstructed wavefield
are shown in Figure 4.23, where the intersections indicate the location with the highest probability
value.

For string shot V, one snapshot of the probability is shown in Figure 4.20(d). The value of the
maximum probability is about 0.85. The detected location is in the neighborhood of the borehole
and is {East, North, Depth} = {11 m, —66 m, 112 m}. Six snapshots of the reconstructed wavefield
are shown in Figure 4.24, where the intersections indicate the location with the highest probability
value. Due to the incorrect velocity information near the top of the surface, the variation of the
reconstructed wavefield in this area is great. This variation affects the location accuracy especially
when the explosive source is located close to the surface. This explains why the probability of the
detected source of string shot V is lower than the other three shots.

For string shots II, III, IV, and V, the selected source locations all correspond to the location

with the highest probability. A comparison between the true source locations and the detected
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Figure 4.21. Six snapshots of the wavefield reconstructed from string shot II. (c) shows the focus of
the wavefield.
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z (km)

| Figure 4.22. Six snapshots of the wavefield reconstructed from string shot III. (¢) shows the focus
| of the wavefield.
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(e) ()

Figure 4.23. Six snapshots of the wavefield reconstructed from string shot IV. (c) shows the focus
of the wavefield.
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Figure 4.24. Six snapshots of the wavefield reconstructed from string shot V. (c) shows the focus of
wavefield.
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Table 4.3. A comparison between the true and corrected source locations. The top lines of East,
North, and Depth are the true source locations. The bottom lines show the detected source locations.

File ID I II II1 Iv \"/
East(m) 18.71 | 14.00 | 11.00 | 11.02 | 10.35
27.00 | 11.00 | 11.00 | 11.00
North(m) -66.85 | -73.12 | -76.11 | -76.12 | -76.78
-66.00 | -66.00 | -66.00 | -66.00
Depth(m) 291.87 | 256.78 | 222.00 | 186.00 | 97.00
304 272 224 112

source locations, using the 3D velocity model, is shown in Table 4.3. The location error in the north
and east directions is small and less than one grid sampling. However, the location error in the
depth direction is greater than that in the other two directions. Nevertheless, these location errors
are less than 4 grid samplings and less than one wavelength which is about 67 m. Thus, I consider
that I locate these sources accurately since the sources are located within the expected region of
error which is one wavelength.

For the 3D velocity model, I expect a much higher location accuracy than I find here, especially
in the depth direction. One reason for the location error in this experiment may be that there is
only one reconstructed wavefield in the database. However, the location accuracy does not improve
significantly even when the database is composed of the wavefields calculated from sources provided
by pan(m). Two other possible causes for the error are: the low SNR of the reconstructed wavefield
(because noise can distort the wavefront) or the source type (because the wavelet I used to calculate
the database is the Ricker wavelet).

In this section, I show that the method can be easily extended to 3D space and it improves the

location accuracy in the north and east directions without the requirement of geometric correction.
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Chapter 5

Conclusions

I present a method for automatic micro-earthquake location using Bayesian inversion theory.
The method exploits the unique shape of wavefields partially refocused at the source position. This
method does not require picking of arrival times but relies on wavefield focusing obtained by time
reversal. The method not only identifies the spatial location of the source but also specifies the onset
time of the source. Furthermore, since I am using a probabilistic approach to micro-earthquake
location, the method provides confidence maps of micro-earthquake locations which can be used for
risk assessment.

Synthetic data examples demonstrate the robustness of the method and its applicability to
situations where micro-earthquakes occur in close succession in a small region in space and are
recorded in a noisy environment with SNR as low as 0.1. I also illustrate the technique with field
data in a noisy environment using both 2D and 3D velocity models. The results demonstrate the
robustness of the method for both perf and string shots.

Due to limited time, I have focused only on the explosive sources triggered in acoustic media.
However, there are further possibilities for future study: 1) we should be able to apply this method
to elastic media with double-couple sources; 2) By reducing the computation cost of this method,
we can apply it to real-time monitoring reservoirs; 3) By incorporating this method with others in
the travel-time based category, we can not only identify the magnitude of micro-earthquakes but

also detect the stress and strain orientations of faults.
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