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Abstract

The local directions of a wavefront combined with knowledge of the medium ve-
locity reveal the directions of wave propagation. In reflection seismology this property
enables one to identify the location where the wavefield reflected through a one-to-
one mapping from the data to the image, known as map migration. Using building
blocks of seismic data that have locally associated directions, such as curvelets, these
directions can be used in a map-migration-based procedure to image seismic data. Fo-
cussing on sparsely representing the imaging operator and using common-offset (CO)
time-migration as an example, I show that to leading-order in angular frequency, hor-
izontal wavenumber, and image location, such migration is equivalent to transforming
the coordinates of curvelets combined with amplitude scaling. This transformation is
calculated using CO map time-migration equations developed here that use the slopes
provided by the curvelet decomposition of the data. The combination of map migration
and curvelets unifies the finite-frequency character of curvelets with the ability of map
migration to handle caustics.

I extend the CO map time-migration equations to transversely isotropic media
with a vertical symmetry axis (VTI) for pure- and converted-mode waves, allowing
estimation of the anisotropic parameters in the context of migration velocity analy-
sis. In the context of moveout analysis in common-midpoint (CMP) gathers, I develop
a rational-interpolation-based approach that overcomes the bias in the nonhyperbolic
moveout equation of Alkhalifah & Tsvankin (1995) for gP-waves, and combines unbi-
ased estimation of the anellipticity parameter n with accurate moveout correction for
arbitrary levels of anisotropy and any offset-to-depth ratio of interest. For a single hor-
izontal VTI layer, fixed 7, and fixed zero-offset traveltime, the influence of the normal
moveout velocity turns out to be limited to a stretch along the offset axis.

Rather than imaging the subsurface using a single-scattering assumption, coda
wave interferometry detects small changes by cross-correlating multiply scattered wave-
fields related to an unchanged and changed medium. Because in the presence of noise
this cross-correlation is biased, assuming that the underlying stochastic processes of the
noise realizations in both signals are mutually uncorrelated and stationary with zero
mean, I derive a correction factor that allows removal of this bias.







SAMENVATTING (SUMMARY IN DUTCH)

Als de propagatie snelheid van een medium bekend is, kan de propagatie richting van een
golf-front bepaald worden aan de hand van de lokale oriéntatie van het desbetreffende golf-
front. In reflectie seismologie bepaalt deze oriéntatie de richting waarin men in de aarde
moet kijken om de lokatie van de reflectie te bepalen. Dit principe maakt het mogelijk
om deze lokatie te bepalen met behulp van een injectieve afbeelding van de seismische
data naar de seismische afbeelding, veelal bekend als map migratie. Door de seismische
data te representeren als een superpositie van functies met lokaal geassocieerde richtingen,
kunnen deze richtingen gebruikt worden in een afbeeldings procedure die is gebaseerd op
map migratie.

In dit werk worden curvelets geidentificeerd als kandidaten voor een simultaan ijle
representatie van de seismische data en de afbeeldings operator. Door mij voornamelijk te
richten op de ijle representatie van de afbeeldings operator en tijd migratie met gemeen-
schappelijk epicentrale afstands (GEA) data als voorbeeld te gebruiken, laat ik zien dat
tot leidende orde in de hoek-frequentie, het horizontale golf-getal, en de afbeeldings lokatie,
zulke migratie equivalent is aan een coordinaten transformatie van de curvelets in de data,
in combinatie met een amplitude schaling. Deze transformatie wordt berekend met behulp
van map tijd-migratie vergelijkingen voor GEA data, die ik hier afleid. Deze vergelijkin-
gen gebruiken de hellingen die worden bepaald door de curvelet decompositie van de data.
Aangezien de data kunnen worden gereconstrueerd met relatief weinig curvelets hoeft deze
transformatie voor relatief weinig curvelets te worden uitgevoerd. De nauwkeurigheid van
deze transformatie wordt bestudeerd aan de hand van numerieke voorbeelden die bevestigen
dat de leidende orde benadering een goede benadering is voor tijd migratie met GEA data.
Het gezamenlijke gebruik van map migratie en curvelets combineert het eindige-frequentie
karakter van curvelets met het aankunnen van caustieken van map migratie. Aangezien deze
karakteristieken normaliter worden toegeschreven aan afbeeldings procedures gebaseerd op
de golf-vergelijking, kan dit werk worden gezien als een hybride formulering tussen map mi-
gratie en seismische migratie gebaseerd op de golf-vergelijking. De essentiéle ingrediénten
in de afleiding van de leidende orde benadering voor tijd migratie blijven van toepassing op
het geval van diepte migratie. Ik schets hier een mogelijke manier om vervorming van een
curvelet bovenop de leidende orde benadering in rekening te brengen, maar benadruk dat
deze methode nog geverifiéerd moet worden in de toekomst.

Ik breid de GEA tijd-migratie vergelijkingen voor isotrope media uit naar het geval van
transversale isotropie met een verticale symmetrie as (VTI) voor zowel geconverteerde als
ongeconverteerde golven, die de schatting van de relevante anisotropie parameters mogelijk
maken in de context van migratie snelheids analyse. In de context van move-out analyse in
gemeenschappelijke midpunt data (GMP), presenteer ik een methode gebaseerd op rationele
interpolatie die de systematische fout in de niet-hyperbolische move-out vergelijking van
Alkhalifah & Tsvankin (1995) voor gP-golven voorkomt. Deze methode maakt het mogelijk
om de anellipticiteits-parameter 7 te schatten in combinatie met nauwkeurige move-out

iii




correctie, voor willekeurige anisotropie sterkte en willekeurige afstand-diepte ratio. De
methode wordt getest met behulp van zowel numerieke als veld data. Voor een enkele
horizontale VTI laag, vaste 7, en vaste nul-afstand reistijd, blijkt de invloed van de normale
move-out snelheid beperkt te zijn tot het uiteen trekken of in elkaar duwen van de afstands-
as in GMP data.

Terwijl seismische migratie typisch gebruik maakt van de aanname dat het golfveld
slechts één keer verstrooid is, wordt in coda golven interferometrie een kleine verandering in
het medium gedetecteerd door gebruik te maken van het meervoudig verstrooide golfveld. In
deze methode worden de meervoudig verstrooide golfvelden van een onverstoord en verstoord
medium met elkaar gecorreleerd. Wanneer de data ruis bevat, zal deze correlatie in het
algemeen een systematische fout bevatten. Daarom leid ik hier een correctiefactor af die
het mogelijk maakt te corrigeren voor deze fout, waarbij ik aanneem dat de onderliggende
stochastische processen van de ruis realisaties in de signalen van zowel het onverstoorde
als verstoorde medium, wederzijds ongecorreleerd, stationair, en gemiddeld nul zijn. De
methode wordt getest met behulp van zowel numerieke als veld data.
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“It is harmful for the creative work of the mind,

if the intelligence inspects too closely the ideas

already pouring in, as it were, at the gates. Regarded by itself,

an idea may be very trifling and very adventurous,

but it perhaps becomes important on account of the one that follows it;
perhaps in a certain connection with others, which may seem equally absurd,
it is capable of forming a very useful construction.

The intelligence cannot judge all these things

if it does not hold them steadily enough

to see them in connection with others.

In the case of a creative mind, however,

the intelligence has withdrawn its watchers from the gates,

the ideas rush in pell-mell, and it is only then

that the great heap is looked over and critically examined.”

— Sigmund Freud
The Interpretation of Dreams

“Time ... time won'’t leave me as I am
but time, won’t take the boy out of this man”

— Bono/U2
City of Blinding Lights

“The unconscious sends all sorts of vapors, odd beings, terrors,

and deluding images up into the mind ... for the human kingdom,
beneath the floor of the comparatively neat little dwelling that

we call our consciousness, goes down into unsuspected Alladin caves.
There not only jewels but also dangerous jinn abide: the
inconvenient or resisted psychological powers that we have not thought
or dared to integrate into our lives. ... These are dangerous because
they threaten the fabric of the security into which we have built
ourselves and our family. But they are fiendishly fascinating too,
for they carry keys that open the whole realm of

the desired and feared adventure of the discovery of the self.”

— Joseph Campbell
The Hero with a Thousand Faces
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Chapter 1

Introduction and outline

In a surface seismic experiment, seismic waves that have traveled through the earth
and originated at its surface are recorded at the surface. Because of the bandlimited nature
of the seismic sources, combined with the anelasticity and the dispersive nature of the
earth’s interior, the recorded wavefield is a superposition of bandlimited wavefronts that
were partially reflected and transmitted at discontinuities such as geological interfaces and
faults in the earth. Since a wavefront can be characterized by its location, locally associated
directions, and frequency content, the nature of the recorded data can be characterized by
bandlimitation and locally associated directions.

In seismic data processing, the recorded wavefront is represented by discrete sample
values every so many milliseconds and every so many meters; that is, we are using delta
functions as the building blocks of seismic data. Since the Fourier transform of a delta
function is unity, a delta function is characterized by infinite bandwidth and all directions.
Therefore, the current building blocks of seismic data do not encompass the physical nature
of the data, i.e., bandlimitation and locally associated directions. So the natural question
arises whether we can find building blocks of seismic data that have the character of the
data already built into them, i.e., they are bandlimited, local, and have locally associated
directions. It seems intuitive that such basis functions allow a sparser representation of
the data since they encompass the character of the data. Moreover, such basis functions
could potentially also allow for a sparsification of seismic imaging because of their locally
associated directions. To understand this, I first review the essence of seismic imaging
methods that are based on the high-frequency approximation.

Seismic imaging algorithms that are based on high-frequency asymptotics, such as
Kirchhoff migration which makes use of ray theory, involve integration over diffraction
surfaces that connect sample values in the data that would lie on the recorded wavefront
if a wavefield were scattered once at a particular point in the (modeled) subsurface. This
integration is a many-to-one mapping. Because such integration needs to be done for every
point in the modeled subsurface to build up an image, and because for each of these points
the associated diffraction surfaces need to be calculated based on the subsurface model,
it is costly computationally. In this method the slopes of reflections in the data are used
implicitly only.

In the high-frequency approximation, seismic waves travel along rays through the sub-
surface. The derivative of the traveltime with respect to surface location, usually referred
to as the slope of a reflection in the data, together with the velocity, determine the direction
normal to the wavefront recorded at the surface. Therefore, calculating the slopes at source
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data domain image domain

o

a) T v, D)

Figure 1.1. a) Line elements associated with a diffraction surface in the data, and b) the
corresponding line elements in the image domain. Map migration maps each line element
in the data domain, i.e., a location, traveltime, and slope, one-to-one to a line-element in
the image domain, i.e., a horizontal and vertical location and a certain orientation. This
illustration pertains to post-stack migration, i.e., migration of data for coincident source
and receiver.

and receiver locations (i.e., in a common-receiver and common-source gather, respectively),
determines the “take-off” directions of the associated rays from these locations. Therefore,
once the slopes at the source and receiver locations are given (together with the velocity),
the location of the reflector in the earth can in principle be found using ray-tracing; i.e., the
crossing-point of the rays from the source and receiver determines the imaged location of
the reflector [e.g, Sword (1987)]. If the velocity model is accurate, the resulting traveltime
from the source to the reflector and back to the receiver equals the measured traveltime.
With use of Snell’s law at the imaged reflector location, the orientation of the reflector
can also be established. Therefore, the mapping from the source and receiver location, the
traveltime, and the local slopes at the source and receiver, to the imaged reflector location
and orientation, is one-to-one (see Figure 1.1). This mapping is referred to as pre-stack
map migration. The combination of location, traveltime, and orientations constitutes an
element of phase-space. Map migration is therefore a mapping from the phase-space of the
data to the phase-space related to the image.

This explanation of the one-to-one mapping property of map migration can be made
more intuitive by considering the following thought-experiment. Suppose a young woman
is having a picnic in the woods with her lover, Vincent van Gogh. As they are enjoying
each other’s company and the food, they hear the howling of a nearby hungry wolf. Poor
Vincent, who has only one ear, has no way of identifying the direction from which the sound
came. As far as he is concerned, the wolf could be located anywhere on a circle around
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Figure 1.2. Ken Larner (with hair) messing with the “sonograph” in the previous century.
Figure taken from Rieber (1937).

him with radius equal the product of the traveltime and the speed of sound. This situation
is analogous to the many-to-one mapping in Kirchhoff migration. Vincent’s young love,
however, picks up a traveltime difference between one ear and the other, and, by turning
her head, she can find the direction when both ears hear the wolf at the same time. Looking
in that direction she either sees the wolf straight in front of her or the wolf is straight behind
her, in which case she’d better turn around before the wolf alters the course of history and
robs Vincent of his other ear. (In seismic imaging we can ignore this ambiguity because
we know that all energy was reflected below the earth’s surface.) Therefore, the traveltime
difference, i.e., the traveltime derivative with respect to the location of the ear, allows the
young woman to identify the direction from the cry of the wolf. This situation is analogous
to zero-offset (or post-stack) map migration in the context of the exploding reflector model
(Claerbout, 1985), and thus to the one-to-one mapping property of map migration. Note
that the ability to identify a traveltime difference is limited by the size of the wavelength
relative to the separation of the ears. That is, if the wavelength is much longer than the
distance between both ears, both ears hear essentially no traveltime difference, and one is
no longer able to identify the direction to the source of the sound. This is why it does
not matter where the whoofer of a sound system is placed in the room, as it emits the
low bass frequencies that have wavelengths much larger than the distance between our ears
(if for your sound system it does matter where you place your whoofer, you’d better start
looking for your receipt). Therefore the one-to-one property of map migration is actually
the result of the high-frequency asymptotic approximation. The importance of slopes and
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(controlled) directional analysis was already realized by Rieber (1936, 1937), who devised an
apparatus called “the sonograph” to perform local slant-stacks through optical and electrical
adjustments of the recorded data (see Figure 1.2). This device allowed the determination
of the local slopes in the data prior to the digital age.

There exist special cases when the mapping from the data phase-space to the im-
age phase-space, i.e., map migration, is not one-to-one [see Stolk (2000) or de Hoop &
Brandsberg-Dahl (2000) for some examples]. In these cases it can for example happen that
a combination of a traveltime, the source and receiver locations, and the associated local
slopes can be mapped to different reflector locations. Thus, this phase-space mapping is
generally not one-to-one (Guillemin, 1985), as mentioned in Chapter 2 of this thesis. In
practice, however, these special cases are ignored because they cannot be identified with
practical acquisition geometries. For all practical purposes and for the remainder of this
introduction, I therefore tacitly assume that these special cases do not occur. Hence the
mapping is simply considered to be one-to-one.

Knowing the crucial role of slopes in seismic imaging, it seems logical to use basis
functions for seismic data that have locally associated directions. Then a simple projection
of the data onto this basis provides the local slopes in the data that can subsequently
be used in a pre-stack (amplitude-preserving) map-migration procedure to image the data.
This allows the many-to-one mapping of integration along diffraction surfaces to be replaced
by the one-to-one mapping provided by map migration. In other words, such functions allow
a sparse representation of the imaging operator, and thus a potential speed-up of current
imaging algorithms!.

Knowing that seismic data can be characterized by bandlimitation and locally asso-
ciated directions, in seismic imaging the use of basis functions that naturally encompass
this character, could have a double potential gain. First, as explained above, it seems in-
tuitively plausible that such basis functions would allow for a sparse representation of the
data because the character of the data is already built into the basis elements. In addition,
using only the basis elements that contribute significantly in the data representation (i.e.,
the elements that have large coefficients after projection of the data onto the basis), their
locally associated directions could be used with the one-to-one mapping provided by map
migration to image the data. Then, not only would we have fewer basis elements to work
with, but each element would be subjected also to a one-to-one instead of a many-to-one
mapping. This is the main underlying motivation of this thesis. I concern myself with the
sparse representation of the imaging operator only. The sparse representation of the data
is not studied in-depth, i.e., I do not investigate any sophisticated denoising methods to
achieve a sparse representation of the data.

'I conceived this idea when working at Western Geophysical (now WesternGeco) as a research scientist,
when map migration was brought to my attention by Dr. Robert Bloor.
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Outline

In Chapter 2, I explain the one-to-one mapping property from the phase-space of the
data to the phase-space related to the image, and make clear its connection with map mi-
gration. I exemplify this one-to-one mapping property by deriving closed-form 3D pre-stack
map time-migration expressions for qP-qP, qP-qSV, and qSV-qSV waves in homogeneous
transversely isotropic (TI) media with a vertical symmetry axis (VTI), which specialize to
the expressions for P-P, P-S, and S-S waves in homogeneous isotropic media. These expres-
sions can in principle be used to determine the anellipticity parameter 7 (which quantifies
the deviation of the slowness surface from an ellipse) and the zero-dip normal-moveout
(NMO) velocity Vymo for such media in the context of time-migration velocity analysis.
In addition, I present closed-form expressions for pre-stack map time-migration and dem-
igration in the common-offset domain, for pure-mode (P-P or S-S) waves in homogeneous
isotropic media, that use only the slope in the common-offset domain. This provides an
additional advantage over methods that use both slopes in the common-offset and common-
midpoint domain, especially since estimating slopes can be cumbersome in the presence of
noise. Considering kinematics only, Chapter 2 explains that map migration (or demigration)
provides a suitable vehicle to sparsely represent the imaging (or modeling) operator.

The pre-stack map time-migration equations for VTI media presented in Chapter 2 are
valid for arbitrary levels of anisotropy. Many rocks, however, exhibit only weak anisotropy
(Thomsen, 1986). I present the simplifying expressions for pre-stack and post-stack map
migration in homogeneous weakly VTI media in Chapter 3. The resulting expressions are
explicit in the relevant parameters n and Vypo.

In Chapter 4, curvelets are identified as suitable candidates for the basis functions?,
mentioned earlier in this introduction, that would allow a simultaneous sparse representation
of the seismic data and the imaging operator. Roughly speaking, curvelets are pieces of
bandlimited plane waves? that have associated dominant local directions. In Chapter 4 I
concern myself mainly with the sparse representation of the imaging operator?, and I present
a leading-order sparse representation of the imaging operator based on map migration, in
the context of common-offset time migration. This representation allows the leading-order
contribution of such imaging to be done through a simple transformation of coordinates of
each input curvelet (resulting from the curvelet decomposition of the data), calculated

2Curvelets actually do not constitute a basis but rather a tight frame for functions in L? (see Appendix
I for an explanation of tight frames). Omitting most details that are beyond the scope of this introduction,
it suffices to understand that curvelets allow a complete reconstruction of the data. This means that if all
curvelets are used, the data can be reconstructed without any residual. To avoid distraction of the main
message of this introduction by including too many details, I therefore simply refer to curvelets as basis
functions, even though they are really not.

3The difference between this rough description and the true character of curvelets is that a bandlimited
plane wave has associated with it only one k-direction, while a curvelet is associated with a small range of
k vectors.

4The sparse representation of the data is obtained simply by using only the largest coefficients to re-
construct the data. These coefficients are determined based on a direct comparison of the reconstructed
data with the original data for varying threshold percentages. Throughout this thesis I do not study any
sophisticated denoising algorithms to obtain a sparse representation of the data.
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using map migration, combined with amplitude scaling. Numerical verification of this
approximation shows that the leading-order approximation to common-offset (CO) time-
migration provides a good approximation to such imaging. This highlights the potential
of using curvelets in seismic imaging. Note that the combination of the finite-frequency
character of curvelets with map migration in essence combines high-frequency asymptotic-
based Kirchhoff imaging with finite-frequency-based methods such as wave-equation-based
imaging.

The derivation of the leading-order sparse representation for CO time-migration pre-
sented in Chapter 4 can be extended to general heterogeneous anisotropic media. The
essence of the presented derivation — a stationary phase evaluation of an oscillatory inte-
gral, combined with the linearization of the remaining phase and the linearization of the
image around the map migrated location (here shown in the context of time-migration) —
continues to hold for depth migration. For that case, it remains to be seen how accurate the
leading-order approximation is. I explain that it is my current understanding that deforma-
tion of the curvelet beyond the leading-order approximation can be done using an approach
similar to the one outlined by Smith (1998), although this idea remains to be verified in the
future. The computational cost of correction for the deformation of curvelets beyond the
leading-order approximation is currently unknown. Therefore, the question as to whether a
curvelet representation of the imaging operator allows for a significant speed-up of seismic
imaging remains currently open. The benefit of using curvelets in seismic imaging, however,
is not limited to a potential gain in computational efficiency. The bandlimited nature of
curvelets allows migration velocity analysis to be done as a function of frequency. Such anal-
ysis would be physically relevant as it is known that a wave averages the medium properties
at a scale related to the wavelength upon propagation [the first Fresnel zone is proportional
to v/A with A the wavelength (e.g., Kravtsov (1988); Spetzler & Snieder (2004)]. Hence,
waves of different frequency indeed observe the earth at different scales. Using curvelets
in seismic imaging could allow naturally for such analysis. Although for constant-velocity
media the medium is the same at every scale, I show in Chapter 4 that, in principle, im-
ages can be made for different frequencies by simply choosing to use curvelets that have
certain frequencies only. This possibility is a straightforward consequence of an appropriate
representation of both the seismic data and the imaging operator. Moreover, the locally-
associated main directions of curvelets can be used for controlled-illumination (Rietveld &
Berkhout, 1992). Considering the current interest in sub-salt imaging, controlled illumi-
nation studies can have important consequences for acquisition design, by establishing the
image quality as a function of illumination direction. With curvelets, controlled illumina-
tion can be achieved by simply choosing to use curvelets with certain main directions only.
Again, this opportunity is a straightforward consequence of an appropriate representation
of the data and the imaging operator; no additional preprocessing of the data is required.
In Chapter 4 I illustrate this in the context of time migration.

The pre-stack map time-migration equations for gP-waves presented in Chapter 2
can be used to estimate the anellipticity parameter n by optimizing a misfit function that
measures the differences between an imaged reflector (position, time, and slope) for different
offsets by letting n vary. Even though I do not demonstrate such an approach, the presented
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equations allow the estimation of 7 to be put in the context of migration velocity analysis.
Conventionally, initial estimates of 7 are obtained by analyzing the moveout of gP-waves in
common-midpoint (CMP) gathers and ascribing the deviation from hyperbolic moveout to
the presence of anisotropy. In practical seismic data processing, such analysis is often still
based on the nonhyperbolic moveout equation of Alkhalifah & Tsvankin (1995). In Chapter
5, I show that using this equation for this analysis induces a bias in the estimated value of 7,
which increases as 17 becomes larger (roughly speaking, this bias becomes noticeable when
n > 0.1). More so, for larger offset-to-depth ratios, the Alkhalifah-Tsvankin equation fails
to accurately flatten the moveout in a CMP gather even with the biased values of 7. To
overcome these problems, I present a method based on rational interpolation that combines
unbiased estimation of n with accurate moveout correction for arbitrarily large offset-to-
depth ratios. Analysis of the dependence of moveout on 7 and Vyumo reveals that, under
the generally accepted assumptions that the traveltimes of qP-waves in TI media depend
mainly on 7 and Vyuo (i.e., we can set the Thomsen parameter 8 = 0 %), the influence of
Vnmo on the moveout curve is limited to a stretch of this curve along the offset axis. This
observation allows the traveltimes needed for the rational interpolation to be found from a
(small once-in-a-lifetime) precalculated table that holds the traveltimes as a function of n
for a number of different offset-to-depth ratios, along with a chosen reference value of Vamo
(typically Vapmo = 1 km/s). This renders the method highly efficient (i.e., as efficient as
using expressions describing the moveout explicitly in terms of n and Vypo). A field data
example confirms the findings from several numerical tests.

The rational-interpolation-based method for nonhyperbolic moveout analysis presented
in Chapter 5 is just like the nonhyperbolic moveout equation in Alkhalifah & Tsvankin
(1995), based on a single horizontal VT layer. Therefore, this method allows the estimation
of effective values of n for an overburden treated as if it consisted of a single effective
layer. As pointed out by Winterstein (1986), however, in order for the estimated anisotropy
parameters to be used as lithology indicators, it is crucial to obtain interval estimates of
those parameters. Therefore, in Chapter 6, I extend the rational-interpolation-based method
for nonhyperbolic moveout analysis of qP-waves in VTI media to horizontally layered VTI
media, to allow the estimation of the interval values of 7 and Vyaro. The method is based
on the 7 — p curve, which represents a plane-wave decomposition. This is the natural
decomposition for horizontally layered media because cusps do not occur in this domain
and the horizonta] slowness is maintained upon propagation through such media. Based
on the acoustic approximation of Alkhalifah (1998), I derive expressions for the two-way
traveltime ¢ and the associated offset = as a function of the horizontal slowness p, which
are explicit in the interval values of n and VNpo. These expressions are used to calculate
the support points needed for a rational interpolation. The efficiency of the method stems
from the fact that highly accurate traveltime curves are obtained with only few support
points. The accuracy of the method is illustrated with a synthetic data example. Because
the single layer case is simply a special case of multi-layered ones, this method overcomes

5The Thomsen parameter § determines the angular dependence of the qP-wave phase velocity in the
vicinity of the symmetry axis, which is vertical in VTT media.
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the need for the tabulated approach as presented in Chapter 5 for a single horizontal VTI
layer.

As mentioned previously, the use of curvelets in seismic imaging essentially combines
high-frequency asymptotic-based Kirchhoff imaging with finite-frequency wave-equation
based imaging. Typically finite-frequency-based methods make use of cross-correlation in
one way or another [e.g., Claerbout’s imaging principle is based on cross-correlation of the
up- and down-going wavefields (Claerbout, 1971), while wave-equation-based traveltime
tomography (Luo & Schuster, 1991; Marquering et al., 1999) uses cross-correlation to esti-
mate the traveltime differences between observed and synthetic seismograms]. Coda wave
interferometry (Snieder et al., 2002) is a finite-frequency method wherein cross-correlation is
used to detect and infer small changes in a multiply scattering medium, rather than imaging
them based on a single-scattering assumption. In this method the cross-correlation between
two seismograms, one related to an unperturbed medium and the other to the perturbed
medium, is mapped into an estimate of the change in the medium. If both seismograms
contain noise, the cross-correlation will be changed, thus introducing a bias in the estimate
of the change in the medium. In Chapter 7, I present a correction factor that allows the
removal of bias in the cross-correlation, under the assumptions that the stochastic processes
underlying the noise realizations in both signals are mutually uncorrelated and stationary
with zero mean. Because the medium is assumed not to change over the duration of the
experiment, different (non-overlapping) time windows in the coda allow for independent es-
timates of the medium perturbation. If the seismograms are contaminated with noise, only
those time windows should be used for which the amplitude of the coda is significantly above
the ambient noise level. This limits the usable number of independent time windows. The
proposed correction factor thus allows more time windows further into the decaying coda
to be used, and hence allows for a reduction of the error bars on the medium perturbation
estimates.



Huub Douma / Leading-order seismic imaging using curvelets 9

Chapter 2

Explicit expressions for pre-stack map
time-migration in isotropic and VTI media and
the applicability of map depth-migration in
heterogeneous anisotropic medial

2.1 Summary

We present 3D pre-stack map time-migration in closed form for qP, SV and mode-
converted waves in homogeneous transversely isotropic (TI) media with a vertical symmetry
axis (VTI). As far as pre-stack time-demigration is concerned, we present closed-form ex-
pressions for the mapping in homogeneous isotropic media, while for homogeneous VTI
media we present a system of four nonlinear equations with four unknowns that needs to be
solved numerically. The expressions for pre-stack map time-migration in VTI homogeneous
media are directly applicable to the problem of anisotropic parameter estimation (i.e., the
anellipticity parameter 7) in the context of time-migration velocity analysis. In addition,
we present closed-form expressions for both pre-stack map time-migration and demigration
in the common-offset domain for pure mode (P-P or S-S) waves in homogeneous isotropic
media, that use only the slope in the common-offset domain as opposed to slopes in both
the common-shot and common-receiver (or equivalently the common-offset and common-
midpoint) domains. All time-migration and demigration equations presented can be used
in media with mild lateral and vertical velocity variations, provided the velocity is replaced
with the local RMS velocity. Finally, we discuss the condition for applicability of pre-
stack map depth-migration and demigration in heterogeneous anisotropic media that allow
the formation of caustics, and explain that this condition is satisfied if, given a velocity
model and acquisition geometry, one can map depth-migrate without ambiguity in either
the migrated location or orientation of reflectors in the image.

2.2 Introduction

The geometry of seismic migration can be understood and described in terms of sur-
faces of equal traveltime, i.e., isochrons. Migration encompasses the integration of signal

!This Chapter, along with appendices A and B, has been published as: Douma, H. and de Hoop, M. V.
2006. Explicit expressions for pre-stack map time-migration in isotropic and VTI media and the applicability
of map depth-migration in heterogeneous anisotropic media, Geophysics 71, no. 1, p. S13-528.
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processed data along diffraction surfaces related to these isochrons. In terms of linear filter
theory, in homogeneous media, the image is a convolution of the impulse response, shaped
in accordance with the isochrons of the migration operator, with the data. This approach
uses the positions, traveltimes, and amplitudes of the events in the data, and thus uses the
information given by the reflection slopes implicitly.

In the high-frequency approximation, seismic waves (or wave singularities) propagate
along rays through the subsurface. Provided the velocity in the earth is known, reflection
slopes in the data determine the directions of such rays at the recording surface (or the
singular direction of the wavefront set of the recorded wavefield). Therefore, once the
traveltime and the slopes at the source and receiver are known along with the velocity, the
location and local dip of a reflector in the subsurface (or image singularity) can in principle
be determined with the aid of numerical ray tracing (Cerveny, 2001).

The determination of the reflector position and orientation from the times and slopes
of zero-offset reflection seismic data, is generally referred to as map migration (Kleyn, 1977).
We refer to such determination from times and slopes of reflection data at the source and
receiver locations as pre-stack map migration. In a mathematical context, provided the
velocity is known and the medium does not allow different reflectors to have identical
surface seismic measurements that persist under small perturbations of the reflectors, the
use of the slope information results in a one-to-one mapping from the unmigrated quantities
associated with a reflection in the data (given a scattering angle and azimuth), to the
migrated quantities associated with a reflector in the image. Collecting the migrated and
unmigrated quantities in a ‘table’, leads to the notion of canonical relation.

Here we aim to elucidate that pre-stack map depth-migration and demigration are
closely related to the canonical relation of the single scattering imaging or modeling op-
erators in complex media. Imaging artefacts (or ’imaging phantoms’) are avoided if the
projection of this canonical relation on the unmigrated quantities is one-to-one. This condi-
tion was introduced by Guillemin (1985) and further exploited by ten Kroode et al. (1998),
de Hoop & Brandsberg-Dahl (2000) and Stolk & De Hoop (2002b). We explain this, and
make clear that this condition is precisely the applicability condition that allows map depth-
migration in inhomogeneous anisotropic media (i.e., in the presence of caustics).

The concept of map migration is certainly not new. Weber (1955) gives an early
account of map migration, wherein the zero-offset 3D map migration equations are derived
for a constant-velocity medium and arbitrary recording surface. Independently, Graeser
et al. (1957) and Haas & Viallix (1976) use the slopes in the data to derive the position
of a reflector in 3D from zero-offset data for a homogeneous isotropic medium. In an early
attempt at the use of numerical ray tracing, Musgrave (1961) uses the slope information to
calculate wavefront charts and migration-table lists, and Sattlegger (1964) derives a series
expansion for the coordinates of the raypath that uses the slopes in the data. Both methods
assume vertically-varying velocity media and can be used for 3D migration of zero-offset
data. Reilly (1991) and Whitcombe & Carroll (1994) present successful applications of
post-stack map migration on field data.

Map migration has been used for velocity estimation in several different approaches
[e.g., Gjoystdal & Ursin (1981), Gray & Golden (1983), and Maher et al. (1987)]. To
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improve horizon-based velocity model building, map migration has been used in seismic
event-picking schemes consisting of map migration, followed by picking of events and slopes,
map demigration, and remigration in the updated velocity model. The initial map-migration
step in such a scheme attempts to reduce mispositioning of the velocity picks. The idea to use
map migration for velocity analysis stems from the sensitivity of pre-stack map migration to
the migration velocity model, as pointed out by Sattlegger et al. (1980). Sword (1987, p.22)
develops a controlled directional reception (CDR) tomographic inversion technique, first
suggested by Harlan & Burridge (1983), to find interval velocities from pre-stack seismic
data. In that method the slopes (or horizontal slownesses) are picked automatically using
the CDR picking technique — slant-stack over a short range of offsets with subsequent
picking — developed in the former Soviet Union [e.g., Zavalishin (1981) and Riabinkin
(1991)]; but first introduced by Rieber (1936) and later reintroduced by Hermont (1979).
Subsequently the estimates of the ray parameters are used to trace rays through the initial
estimate of the velocity model, and a depth is found wherein the sum of the traveltime along
the downgoing (source) and upgoing (receiver) rays equals the observed traveltime. Then,
at this depth, the horizontal distance between the end-points of two rays in the subsurface
is minimized using a modified Gauss-Newton method to yield the velocity model.

Recently Iversen & Gjoystdal (1996) performed 2D map migration in arbitrarily com-
plex media using a layer-stripping approach similar to that of Gray & Golden (1983) to
achieve simultaneous inversion of velocity and reflector structure; they later extended this
method to 2D anisotropic media (Iversen et al., 2000). Their linearized inversion scheme,
which minimizes the projected difference along the reflector normal between events from
different offsets, uses derivatives of reflection-point coordinates with respect to model pa-
rameters as introduced by van Trier (1990), rather than derivatives of traveltimes with
respect to model parameters as used in classical tomographic inversion [e.g., Bishop et al.
(1985)]. Such an approach allows for more consistent event picking because reflectors can be
identified in a geological structure. In addition, an initial imaging step generally improves
the signal-to-noise ratio allowing for more accurate event picking. Finally, Billette & Lam-
baré (1998) most recently reiterated the importance of slope information in velocity model
estimation while validating that precision in measured slopes, traveltimes, and positions in
seismic reflection data is sufficient to recover velocities using stereotomography.

In this paper we first develop closed-form expressions for the geometry of pre-stack
map time-migration and demigration in 3D for a homogeneous isotropic medium. These
migration equations assume, in addition to the velocity (as is common in seismic imaging),
that only the location and the slopes in unmigrated common-offset gathers are known. This
is in contrast to the migration equations in 2D presented by Sword (1987, p.22), which also
require the slope within the common-midpoint gathers (or, alternatively, the slopes in the
common-source and common-receiver gathers). Time migration, which uses the assumption
of a root-mean-square (RMS) velocity remains in use. In this context our expressions have
current applicability, provided the constant velocity in them is replaced by the local RMS
velocity. To complement the work of Alkhalifah & Tsvankin (1995) and Alkhalifah (1996)
on velocity analysis in transversely isotropic media, we derive closed-form expressions for 3D
pre-stack map time-migration for qP waves, gP-qSV mode-converted waves, and qSV waves
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in transversely isotropic (TI) media with a vertical symmetry axis (VTI). These expressions
are directly applicable to the problem of anisotropic parameter estimation (such as the anel-
lipticity parameter 7) in the context of time-migration velocity analysis. For 3D pre-stack
map time-demigration in such media, we present a system of four nonlinear equations with
four unknowns, that needs to be solved numerically. Since in the vertical symmetry plane
of TI media with a tilted symmetry axis (T'TI), the phase and group directions are both
in this plane, our results apply also to the vertical symmetry plane of homogeneous TTI
media. Furthermore, the kinematic equivalence of TI media and orthorhombic media in the
symmetry planes, generalizes our results to these planes in orthorhombic media. We then
proceed to explain the applicability of map depth-migration in heterogeneous anisotropic
media, and revisit pre-stack map time-migration in homogeneous isotropic media to show
that the pre-stack map time-migration and demigration equations define the canonical re-
lation of the single scattering modeling and imaging operators in such media. For practical
issues such as slope estimation, accuracy and stability of the algorithm, and sampling and
grid distortion, we refer to the existing literature [e.g., Kleyn (1977) and Maher & Hadley
(1985)].

2.3 Map time-migration and demigration in isotropic media

To illustrate the concept of map migration, we derive explicit 3D pre-stack map mi-
gration and demigration equations for isotropic homogeneous media. We assume that pre-
processing has already compensated data for any topography on the acquisition surface,
and deal with only the geometry of migration. The results, however, could be extended to
take geometrical spreading effects into account. For media with mild lateral and vertical
velocity variations, these equations can be used provided the velocity is replaced with the
local RMS velocity.

For 2D pre-stack map time migration, Sword (1987, p.22) derived closed-form expres-
sions for the migrated location and reflector dip using the horizontal slownesses at both the
source and the receiver. It turns out, however, that for pre-stack map time-migration and
demigration in homogeneous isotropic media, we do not need the angles at the source and
the receiver given by the horizontal slownesses. We demonstrate this by deriving closed-
form expressions for pre-stack map time migration and demigration in 3D, that use only
the slopes in common-offset gathers. These expressions provide a practical advantage over
existing closed-form solutions that use both slownesses, since only one slope needs to be
measured instead of two. Such a reduction, unfortunately, no longer holds in heterogeneous
or anisotropic media.
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Figure 2.1. Geometry defining the DSR equation for a transversely isotropic homogeneous
medium with a vertical symmetry axis, in both the unrotated (z,7) and rotated (z,y)
reference frames. a) Coordinates describing the data: source location (Z,,7s) or (zs =
Tu,Ys = Yu — h) with h the half-offset, receiver location (Z,¥,) or (T, = Ty, Yr = yu + h),
midpoint location (Zy,¥y) or (Zy,¥y), two-way traveltime t, = ¢, + t,, and the slowness
vectors at the source (p,) and receiver (p,); 85, and ¥, are, respectively, the phase and
group angles with the vertical symmetry axis at the source (s) and receiver (r). The angle
« is the angle between the y and y direction, i.e., the acquisition azimuth. b) Coordinates
describing the image: the migrated location (Zm, ¥m, 2m) O (Zm, Ym, zm) With (for P waves)
2m = Vpotm/2 and t,, the migrated two-way traveltime, the wavevectors £, and €, from
the source (s) and receiver (r), and the wavevector associated with the reflector &,, (i.e.
the dip covector).
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2.3.1 The double-square-root equation

The double-square-root (DSR) equation, governing traveltime in a homogeneous isotropic
medium, in 3D is given by

vig,

1 - - - - 2
t, = - \/(:z;u—xm—hsina)2+(yu—ym—hcosa)2+(—2—>

2
~ o~ . ~ o~ ¢
+ \/(xu — Fm + hsina)? + (Fu — Jm + hcos a)? + (va) , (2.1)

where %, and ¥, are the common-midpoint (CMP) coordinates, Z, and ¥, are the reflection-
point coordinates, t, is the two-way migrated traveltime, a is the acquisition azimuth
measured positive in the direction of the positive Z axis, v is the velocity, and h is the
half-offset (see Figure 2.1). Note that here we consider only pure modes, i.e. P-P or S-S
reflections, since the velocity at the source and receiver are assumed to be equal; the case of
mode-converted waves should, however, be a straightforward generalization of the approach
outlined in this section.

Rotating the positive 7 direction to the source-to-receiver direction, the DSR equation
becomes

1 Vlm 2
ty, = ; \/(xu_xm)2+(yu_ym_h)2+(7)

2
+ \/(:Bu - -’Em)2 + (y‘u. — Ym + h)2 + ('Ut_272) . (22)

To find Zy, Yu, tu, p2 and p¥ from Ty, Yu,ty, S and pY, where pf, pi and P, pi are the
horizontal slownesses of the unmigrated reflection in the rotated and unrotated coordinate
systems, respectively, we use

Ty cosa sina O 0 0 Ty
Yu —~sina cosa 0 O 0 Yu
t. | = 0 0 1 0 0 ty . (2.3)
DY 0 0 O cosa —sina DL
¥ 0 0 O sina cosa Py,
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Table 2.1. Summary of notation.

| variable Idescription

u,m subscripts denoting migrated (m) and unmigrated (u) variables
8,7 subscripts denoting source (s) and receiver (r) variables
T,Y, 2 horizontal location z and y, and depth z
tum two-way unmigrated (u) and migrated (m) traveltime
tor one-way traveltime from source (s) or receiver (r) to reflection point

h half-offset

v group velocity
|4 phase velocity
P group angle
0

phase angle
poY horizontal slowness in z or y direction
o acquisition azimuth (measured anti-clockwise with positive y-axis)
bzy reflector dip angle with horizontal in z or y direction
Vzy —tan ¢,y
ém dip covector (i.e., the wavevector associated with the reflector in the image)

Vpo,s0 | vertical phase velocity for P and qSV waves, respectively
VNmo(0) | zero-dip NMO velocity

€0 Thomsen parameters
n anellipticity parameter
¥ azimuth angle of slowness vector with positive z-axis (clock-wise positive)

(s,7), | (sinvs,siny,)
(s,7)g | (sinfs,sinb,)

To be consistent with the general treatment of time migration using common-midpoint
coordinates and offset, we derive our results in this reference frame. Since we align the
positive y-axis with the source-to-receiver direction, we develop our equations in the common
offset, common azimuth domain. In the remaining text we assume the velocity to be known
and equal to the RMS velocity; i.e. we develop the pre-stack map migration and demigration
equations and their solutions in the context of time migration. Table 2.1 summarizes our
notation throughout the remaining text.




16 Chapter 2. Explicit expressions for pre-stack map time migration

2.3.2 Pre-stack common-offset migration

Equation (2.2) has three unknowns — Zpm,, Ym, and t,,. We obtain two additional
equations by calculating the partial derivatives of ¢,, with respect to z, and y, while keeping
the reflector location and offset constant, i.e., pf = —%%‘: and p¥, = %g%

Py = 2l T
° \/(wu — ) + (e~ ¥m — B)? + (%)
+ Tu " Im , (2.4)
V@~ 2m) + (g — ym + B)? + (22)°
o= % Yu—Ym — h
V@2 — 2m) + (v — v — ) + ()
+ Yu — Ym R : (2.5)

V@ = 2m)? + @~ ym + B + ()

where the horizontal slownesses pZ and p¥, can be measured. With these additional equations
we arrive at a system of three equations with three unknowns. To derive equations (2.4)
and (2.5) we used the property that on the pre-stack migration isochrone, defined by the
DSR equation, %’"u = %;—': = 0 for constant h.

Solving equations (2.2), (2.4), and (2.5) for £, ym and t,, results in

v2p*t
Tm = Tu— —’;L‘i (1-A2), (2.6)
2
vt A
Ym = Yu— (—2") 5 (2.7)

o () o) ()
+ <”’Z’L‘")2 (s (pEh)? — €2 + (%)2 [1- (vpﬁAu)z]) }% , (28

in which
1 64 (pYh)*
=A,(p¥,0 = — u — 4l - — 1, 2.9
A'u. U (pu7 U h) 2\/—2-1)?{,”7, @ 1 @3 ( )
with

2p\* 1 2h\ 2
_ Yy — 42 _ _ y\2
Oy = Oy (tu, Py, h) =t + (—'u ) - =2 <_'v ) (1 (vp¥ ) , (2.10)
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where the signs of the roots are chosen such that migration moves energy up-dip. The

local dip of the reflector ppY = 17—13—& can be found by calculating the partial derivatives
20(z,y),, g
8 9 ) of equation (2.2), using that 2t = 9% — 0 for constant h, and using equations
OTm * Bym Orm OYm

(2.6)-(2.8) for xp, ym and t,,. This yields

1 tu 2 h\?
= 5pz’ytumu—1||Au+1|{(5) (1-@o?) - (2)

+ <th£u>2 (3 (p2h)? — £ + (27;1)2 (1 B (vpfjAu)z))} e

Equations (2.6)-(2.8) and (2.11) thus are explicit expressions that determine the mi-
grated reflector coordinates (Tm,Ym,tm, %, Pim) from the specular reflection coordinates
(Tus Yu, tu, P, PY), given h and v. Setting z,, = 2, = 0 and pZ, = p% = 0, reduces equations
(2.7), (2.8) and (2.11) to the 2D equivalent expressions. Appendix C contains a similar
analysis to the one presented here to derive the map dip moveout (DMO) equations.

Note that equations (2.6)-(2.8) and (2.11) do not use the offset horizontal slowness
Ph = %%%‘ This means that, in practice, only pZ and p¥ need to be estimated, and the
slope in a common-midpoint gather can be ignored. Usually expressions or algorithms
for map migration use the slopes in both the common-offset and midpoint gathers, or,

alternatively, the slopes in source and receiver gathers.

=

2.3.3 Zero-offset migration

Equations (2.6)-(2.8) and (2.11) seem to be singular at first sight for A = 0 and p? = 0,
and are strictly valid when h # 0 and p}, # 0. However, these singularities are introduced
in the derivation of these expressions through division by h and p}. For small h or p¥, i.e.,

64(piih)*

— <1
9,% <1,

we use a first-order Taylor expansion for A, such that

2% h
Ay > Pu

. (2.12)

9
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Substituting this approximation for A, into equations (2.6)-(2.8) and (2.11) gives

T ~ Ty — VPt (1_4(19 )) , (2.13)

2 Oy
Ym yu—%:uiz, (2.14)
= 2{% - - (2)
s (”t;pg)z (s (peh) — 2 + (2—;‘)2 [1 o, (2vpzpzh)2]> } ,
(2.15)
Pm’ = Pt
|2p%h/\/_—1| |2pﬁh/\/_+1|{< (1 - (vp2)?) — (%)2>
+9iu (vt;pzy (8 (pEh)* — 12 + (%)2 [l - eiu (2vpﬁpﬁh)2]) }—%
(2.16)

For the special case when h = 0, these equations reduce to their zero-offset (or post-stack)
counterparts, i.e.,

(@) = (@Y~ —p;i, (2.17)

tm = tuv/1—v2p2, (2.18)

P (2.19)
" 1-v%p%’ '

pu=1/(p3)% + (P2)? . (2.20)

Equations (2.17)-(2.18) can also be found in Haas & Viallix (1976); note the typographical
error in their equations for the migrated location. Setting =, = z,, = 0 and p;,, = pj; =0
gives the expressions in 2D. These 2D expressions can also be found in Claerbout (1985,
Chapter 1).

where we have defined

2.3.4 Pre-stack common-offset demigration

The demigration equations for x, and y, can be found by first solving equation (2.2)

for t,, and evaluating the partial derivatives g::—':; and g;—:"". Using the resulting expressions
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for z, and y, in equation (2.2) then give the explicit expression for t,,. To find the slopes
pZ and pi, we then simply substitute the expressions for z.,, y,, and ¢, in equations (2.4)
and (2.5). The resulting equations are

Tu = T+ ”2”;”“", (2.21)
Yo = Yt~ "Pintm + kA, (2.22)
ty = %2 L2 thm , (2.23)
P = (2.24)

2
A = 1 [Anm +1|\/4h 2””‘

in which R
Am = A (DY, Om, h) = Pm — (2.25)
16(p%.h)
O, (1 +4/1+ T)
with
Om = Om(tm, PEY) = tm (1 + 0% (%)% + 0%,)?]) - (2.26)

Equations (2.21)-(2.24) determine the specular reflection (z, yu, tu, p%, pt) from the reflector
(Tm, Ym, tm, D%, P ). Note that pr¥ can be estimated from the dip of the imaged reflector

using that
v Oty

29 (Z,9)m

where ¢,y is the reflector dip angle with the horizontal in the z- or y-direction (measured
positive clockwise). Again, the 2D case follows by setting =, = z,, = 0 and pZ, = pZ = 0.
The inverse map DMO equations are derived in Appendix D through a similar analysis to
the one presented here.

tan ¢z = =wvprY, (2.27)

2.3.5 Zero-offset demigration

The demigration mapping given by equations (2.21)-(2.24) indeed reduces to its zero-
offset counterpart if h = 0. The resulting expressions are

p 1yt

(xay)u = (xiy)m + 5 (2.28)
ty = tmV1+v2p2,, (2.29)

T,y
Pm (2.30)

p:z:,y = =,
“ V14 v2p2,
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where

pm =1/ (PR)? + (Ph)? . (2.31)

With z,, = z,, = 0 and pZ, = pf = 0 these expressions reduce to the 2D case.

2.3.6 Numerical example

Figures 2.2a and b show modeled common-offset reflection seismic data from a syncline
reflector, embedded in a constant velocity medium with v = 2000 m/s, and its migrated
counterpart, respectively; the offset is 2000 m (i.e., h = 1000 m). To verify the pre-stack
map migration and demigraton equations numerically, Figures 2.2c and d show line elements
overlaid on top of the common-offset data and the migrated data, respectively. The line
elements in Figure 2.2c were obtained using points along the syncline in our model (giving
Ym and tp,), and the associated local dips at these points. These dips were converted
to migrated horizontal slowness (i.e., pj,) using equation (2.27), and the values of y,, tu,
and py, i.e., the demigrated variables, were found using the 2D equivalent expressions of
equations (2.22)-(2.24) (i.e., with p%, = 0). To find the line elements associated with the
diffractions from the edges of the syncline, we took a fan of line elements centered at these
edges, with a range of dips from -80 to 80 degrees, and demigrated them according to the
procedure just described. Figure 2.2c shows excellent agreement between the line elements
and the data, indicating the validity of the common-offset map time-demigration equations
(2.21)-(2.24).

The values of y,, t., and p}, thus obtained, were subsequently used in equations (2.7),
(2.8), and (2.11) (with pZ = 0) to calculate the migrated counterparts ym, tm, and pi.. The
obtained values for p}, were converted to local reflector dip using equation (2.27), giving the
orientations of the line elements shown in Figure 2.2d. The resulting line elements coincide
with the migrated data, indicating the validity of the common-offset map time-migration
equations (2.6)-(2.8) and (2.11). Note how the line elements from the diffractions (indicated
by the black line elements) associated with the edges of the syncline shaped reflector, are
all map migrated to the same location but with different orientations; much like the Fourier
transform of a delta function in space has all k-directions.

2.4 Map time-migration and demigration in VTI media

We consider now the case of homogeneous VTI media. In our derivation, we make use
of the fact that in such media the phase and group velocity vectors lie in the vertical plane.
Since for homogeneous TTI media this requirement is also satisfied in the vertical symmetry
plane that contains the symmetry axis, our results also apply to this plane in homogeneous
TTI media. Furthermore, the kinematic equivalence of TT media and orthorhombic media
in the symmetry planes, generalizes our results to these planes in orthorhombic media.
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Figure 2.2. Common offset (h = 1000 m) data (a) and its image (b) from a syncline
shaped reflector embedded in a constant velocity (v = 2000 m/s) medium, and demigrated
(c) and migrated (d) line elements superposed on the data and image, respectively. The
excellent agreement between the demigrated line elements and the seismic data (c), and the
migrated line elements and the image (d), indicate the validity of the common-offset map
time-demigration and migration equations, respectively.
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2.4.1 The double-square-root equation
In general, the group velocity vector is perpendicular to the slowness surface, whereas

the slowness vector is perpendicular to the wavefront. In TI media, the group velocity v
depends only on the phase angle § with the axis of rotational symmetry, and is given by

(Tsvankin, 2001, p.29)
1 dv\?

where V is the phase velocity of either qP or qSV waves. The group angle ¥ in such media
follows from

1 dv
v(6) o
tan@ dV

R40K3
The group angle ¢ is defined as the angle of the ray with the rotational symmetry axis,
while the phase angle 6 is the angle of the normal to the wavefront with the symmetry axis
(see Figure 2.1a). Using that the energy travels along a ray with the group velocity, the
DSR equation for a homogeneous anisotropic medium is given by

tanf +

tan®y = (2.33)

\/(-Ts,'r - xm)2 + (ys — ym)2 + zr2n \/(msﬂ‘ - :L‘m)2 + (yr — ym)2 + zr2n
ty = ” + " , (2.34)
s r

where v, . are the group velocities in the directions of the rays connecting the source with
the reflection point, and the receiver with the reflection point, respectively, and (s, Ys,r)
are the source and receiver coordinates. The positive y-direction is in the source-to-receiver
direction (i.e., s, = 7,), and the coordinate system is right-handed as before (see Figure
2.1a). Note that vs, could be either the group velocity for qP or qSV waves.

2.4.2 Medium parametrization

For general transversely isotropic (TI) media, the phase velocity for gP and qSV waves
using the parameterization introduced by Thomsen (1986), is given by (Tsvankin, 2001,
p-22)

.92 2 . .92
V(6) = Vpo 1+esin20—£i-’2f\/<1+2€s}n 9) piC 5}5“1 2% (2.35)

where Vpy is the phase velocity for the P wave at 8 =0, f =1 — gﬂ with Vg the phase
PO

velocity of the qSV wave at § = 0, and € and § are the Thomsen anisotropy parameters.
The plus sign refers to qP waves, and the minus sign to qSV waves. Taking the derivative
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with respect to the phase angle 8 gives

2
v V2 [<1+ 2—?—) esvV1 — s? —2(e — 4) syv/1 — bs? —436}
— = P | esy/1 - 52+ -

do V(o ’
(6) \/<1+2e;2)2_8(6—5)3f2(1—s2)

(2.36)
where s = sinf, and again the plus sign refers to qP waves and the minus sign to qSV
waves. Note that we have 0 < § < 7/2, since rays cannot turn in homogeneous media.

The qP-wave phase velocity, however, depends only weakly on the vertical shear-wave
velocity Vgo [e.g., Tsvankin (1996) and Alkhalifah (1998); a precise analysis of this is con-
tained in Schoenberg & de Hoop (2000)], such that the influence of Vso on all kinematic
problems involving qP waves can be ignored. Because in this paper we are only dealing with
the geometry of map migration, we can for most practical purposes set f = 1 in equations
(2.35), (2.36), and (2.563). If Vg is known, f can be calculated and subsequently used in
equations (2.35), (2.36) and (2.53) to find the phase velocity, its derivative, and the phase
angles.

Alkhalifah & Tsvankin (1995) showed that the time signatures (e.g., reflection move-
out, DMO, and time-migration operators) of qP waves in homogeneous VTI media are
mainly  characterized by the zero-dip normal-moveout (NMO) velocity
Vamo(0) = Vpov/1+ 26 and the anellipticity parameter n = (e — §)/(1 + 24), with an
almost negligible influence of Vpg.2 Using these expressions for 7 and Vy0(0), equations
(2.35) and (2.36) can, for qP waves, be rewritten in terms of , Vya0(0), and Vpg. The ex-
pressions we derive for map migration in VTI media can be used to estimate the anellipticity
parameter 17 and Vya0(0), by using the slope information of one event at two (or more)
different offsets, and calculating the migrated times for these offsets for assumed values of
n and Viypo(0) (given some Vpg). The correct values of n and Vyp0(0) should yield the
same migrated time for all offsets, since the data have one common reflection point.

2.4.3 Pre-stack map time-migration

For VTI media, all vertical planes are medium mirror symmetry planes. Both verti-
cal planes, the one defined by the source position and the reflector position, and the one
defined by the receiver position and the reflector position, thus are symmetry planes also.
Throughout the remainder, we refer to these planes as the source and receiver planes (see
Figure 2.1). In the source plane,

_-'1"m2 s — m2
tan%:\/(ms )"+ (Ys — Ym) , (2.57)

Zm

2To avoid confusion with the NMO velocity at finite dip, we prefer to maintain the notation Vivao(0)
rather than writing Vivaro as some authors do.
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while in the receiver plane, we have

_$m2 r = m2
- %:\/(xr P+ e —um)” 039)

Zm

where 1, are the group angles at the source and receiver, and zy, is the migrated depth.
The horizontal slownesses satisfy the relation

Psyr = E;—f? ) (2.39)

where we defined
Ver = V0sr), (2.40)
P = \2,) + 0he)’, (241)

with ps%¥ denoting the horizontal slownesses at the source or receiver in the x or y direction,
and 0, the phase angle at the source or receiver. Then, using equation (2.39) in equation
(2.33) and substituting the result in equations (2.37) and (2.38), we get

‘/s,'rps,r + i_ Ei_z
\/(xs,r — xm)2 + (ys,'r - ym)2 \/1 - ‘/32,1'p§,'r ‘/S’T do

Zm Ds,r av
R e SR
1- V;?,rpg,r

s,

(2.42)

s,r

Here % o 18 the derivative of the phase velocity with respect to the phase angle 8 with the
vertical symmetry axis, evaluated at the phase angle at the source (6;) or receiver (6;).
Using equation (2.42) in (2.34) then results in an expression for the migrated depth
-1

(2.43)

Zm =1ty +
V. (VI-VZZ-p l,) Ve (VI-VER - %)

For pure mode waves, i.e., gP-qP or qSV-qSV, the migrated depth can be converted to
two-way migrated time t,, = 22p,/Vpo,so . Defining 7,, as the angles of the horizontal
projection of the slowness vector at the source and receiver with the positive z-axis (see
Figure 2.3), we find

_ Y
Yor — Ym Per (2.44)

sinys, = > = = »
\/(xs,r - mm) + (ys,'r - ym) ST

Using equation (2.43) in (2.42) to get an expression for \/ (Tsr — Tm)? + (Ysr — Ym)?, and
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Ym Ys Yr y

Figure 2.3. Definition of v, as the angles of the horizontal projections of the slowness
vectors with the positive z-axis.

substituting the resulting expression in equation (2.44), then gives

dv
V11— VAP —prs —
> < metns TS dg
Ym = Ysr — 1 av

r,s)
_ —V2p2 _ —
A < 1-Vips —ps =5 T)

Note that either the parameters at the source or receiver can be used to calculate y,,, but
that using the source parameters in the first term of the numerator implies using the receiver
parameters in the second term, and vice versa; hence the order of the subscripts s, and
r,s. To find z,,, we first calculate

1 av
tupg,r (Vs;r + /-1

Vip?, do

1 dav
_ —_V2n2 _ —_

(2.45)

x
Tsyr — Tm _ Py

\/(xs,r - mm)2 + (ys,'r - ym)2 Psr

COS Y5 = (2.46)

Then, using equation (2.43) again in (2.42) to get an expression for
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\/ (Zsr — Tm)® + (Ys,r — ¥m)?, and using the result in (2.46), gives

av
V2 — Rty
) ( L= Viupss —Prs g

1 dv
tatSy | Var + 4o — 1 57
ups,r( V2R, 1% o
7')

r,s)
. (247)
1 dv 1 dav
— —V2n2 _ - — _V2p2 _ -
‘/1‘ ( 1 V:sps Ds do s) + ‘/s ( 1 ‘/rp'r Dr d9

Again note the order of the subscripts s, and r, s. Thus, equations (2.43), (2.45), and (2.47)
are closed-form expressions for the migrated location. The phase velocity and its derivative
at the source and receiver in equations (2.43), (2.45) and (2.47) can be set to their respective
values for either qP or qSV waves, showing the applicability of these expressions for both
pure modes and mode-converted waves. The 2D expressions follow by setting ., = 7, =0
and pf = pf =0.

To find the reflector dip covector &,,, (i.e., the wave-vector associated with the reflector
in the image, see Figure 2.1b), we use that the slowness vectors p, , obey Snell’s law upon
reflection at the reflector. Since we define the vertical components of the slowness vectors
to point in the negative z-direction (i.e., upwards), we have

gm = Es + €r =—w (ps + p'r) ) (248)

ITm = Tsr —

where w is the angular frequency, and &, ,. are the wave vectors associated with the source
and receiver rays. The slowness vectors at the source and receiver are given by

T
Psr

Yy
Ds,r
Poy = T |- (2.49)

Vsz,: — Psr
Therefore, the dip covector &,, is given by

(ps +pr)
pS +p’l‘ (2.50)

€m=w
s

This expressions holds for pure modes and mode-converted waves.
For pure modes, £,,, can be translated to the migrated horizontal slowness components
pm?, using that (defining the z and y components v, of the dip)

_ —&m’ Vpo,so  Otm ,
e = g Tl = T gy, PSP (251)

where £7,Y'? are the components of £,,, and ¢, 5, is again the reflector dip with the horizontal
in the z- or y-direction (measured positive clockwise). Using equation (2.50) in (2.51), it
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follows that iy -
ps T + p‘r ’y

1 1 '
Vpo,s0 (\/V—f -pi+ Vi P3>
Of course, in equations (2.51) and (2.52) Vpy and Vgq are used for qP-qP and qSV-qSV
waves respectively. Again, setting x,, = 2, = 0 and p¥ = p® = 0 gives the 2D expressions.

oY = (2.52)

2.4.4 Source and receiver phase angles

Equations (2.35) and (2.36) are used to calculate the phase velocity and its derivative,
that in turn are used in equations (2.43), (2.45), (2.47) and (2.50), to find the location and
orientation of the reflector in the image. To calculate the phase velocity and its derivative
using equations (2.35) and (2.36), the angle #, and thus s = sin, needs to be known. To
find s, we need to solve equation (2.39) for s using equation (2.35) for the phase velocity.
This gives

sin03,r = < Ps,r [(2—f) —2Ps,1‘ (C_Jf)]

Bf=

llﬂ:\/l— 4(1-f) (1—2eps,,-2ps2,f(;—5))
(f—2+2ps,r(e_6f))

2(1—2¢P;, —2P2,f (e—6)) ,  (2.53)

X

where
Py, = pﬁ,rVﬁo ) (2.54)

with pg . defined in equation (2.41), the plus sign refering to P waves, and the minus sign
to gSV waves. Note that for VTI media in 2D we have —7/2 < 65, < /2 and that the
sign of sin 6, is given by the sign of p, ;; in this case the right hand side of equation (2.53)
is preceded by sgn(ps ).

Therefore, given Vpg so and the anisotropic parameters € and é [or 5 and Viyp0(0) for
qP waves|, we can use equation (2.53) with the measured p; . to calculate the phase angles
8s,- for both P and qSV waves. The resulting values can then be used in equations (2.35)
and (2.36) to find the phase velocity and its derivative at both the source and receiver
location. Note that for the vertical symmetry plane of TTI media we have p = sin(v +
8)/V(0), with v the angle with the vertical of the symmetry axis. In this case we solve
numerically for 8 provided v is known.

If the horizontal slowness is used to parametrize the phase velocity and its derivative,
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we need not solve for the phase angles. To find the phase velocity as a function of the
horizontal slowness, we simply replace sinf,, with V;,.ps, in equation (2.35) and solve
for V.. In Appendix A, we give the resulting expressions for the phase velocity and its
derivative as functions of the horizontal slowness for qP waves, using that f = 1 for most
practical purposes.

2.4.5 Zero-offset migration

By setting p5"¥ = pr¥ = p¥ and 65 = 6, = 6, the pre-stack map migration equations
reduce to their zero-offset counterparts. Here we treat pure modes only, i.e., we set V; =
V, = V(6). Doing this for equations (2.43), (2.45), (2.47), (2.50), and (2.52) gives

_ V(0)ta o dv
Vi0)pe¥t,  V(0)pu t. 1 av
@V)m = (@Y)y - 5 T O] ) (2.56)
—Pi
_py
€m = 2w “ , (2.57)
vie)
Y
V(0)pu (258)

oY = ,
Vpo,s0v/1 — V2(0)p?

where p, is defined in equation (2.20). Of course, the migrated depth 2., can be converted to
two-way migrated traveltime t,, = 22,,,/Vpo so. Setting =, = z, = 0 and pj;, = p§ = 0, the
2D expressions follow from their 3D counterparts. It can be shown that the 2D counterparts
of equations (2.55) and (2.56) for the migrated time and location, are equivalent to equation

(28) in Cohen (1998). Also, setting % = 0 and replacing V() and Vpg with v, these

expressions for VTT media reduce to their counterparts for isotropic media [cf. equations
(2.17) - (2.19)].

2.4.6 Pre-stack map time-demigration

For the demigration problem, we assume the migrated location (Zm,Ym,zm) and mi-
grated dips ¢y (or vz ) are given. To find the unmigrated midpoint location, we need to
find the phase angles with the (vertical) symmetry axis and the azimuths of the rays from
both the source and the receiver to the reflection point. If we know the angles with the
symmetry axis, we can use equations (2.35), (2.36), and (2.39) to find the phase velocity,
its derivative and p,,. The projections ps¥ are then calculated using

p::,‘l‘ = - Sgn(yx)ps,r 1 - (3, Ir)?y ) (2.59)
pir = Psr(si7)y s (2.60)
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with (s,7)., = sins,-, the azimuth angles v, defined in Figure 2.3, v, defined in equation
(2.51), and sgn(v;) denoting the sign of v,. The unmigrated location then follows from
solving equations (2.43), (2.45), and (2.47) for t,, yu, and z,, using the values for the phase
velocity, its derivative, and p3¥.

To find the azimuth angles, v, ., and the angles with the vertical symmetry axis, 8, r,
we use the offset and azimuth information, and the dips ¢;, or vy, = —tan Gy [see
equation (2.51)]. Since in the rotated coordinate system (where the positive y-axis is in the
source-to-receiver direction) the projection onto the z-axis of the ray connecting the source
and the reflector equals the projection of the ray connecting the receiver and the reflector

onto this axis, we must have
V1= v

ﬁl—sg ﬂ

so + To +

V. do|, V, do|,
2 — . J1—r2 )
1-s2 — 5 4V 1-r2 1_7.2_Qﬂ , (2.61)
bV, db|, Vv, dd|,

where (s,7)y = sinf,, with 6, the phase angles.

Note that since 0 < 6;, < n/2 and 0 < 75, < 2m, we have 0 < (s,7)g < 1 and
-1< (3,7'),7 < 1. Because the azimuth angles vary between 0 and 27, we need to keep
track of the sign of cos+, . In our rotated coordinate system, the sign of v, determines the
sign of cosy . Therefore, for demigration,

c08 Yo = — sgn(ve)y/1 — (s,7)2 . (2.62)

This also explains the presence of sgn(v;) in equation (2.59).

Furthermore, the difference of the projections onto the y-axis should equal the offset

2h, i.e.,
o Voo av oo V=% av
TV 4|, TV, de|,
Zm | Ty =, dv -5y %, dv =2h. (2.63)
1—7'0—VTET 1_80__‘};W8

Using the definitions of p57 and equation (2.50) for &, in equation (2.51) for v, , it follows

that
Visgy/1 — 82 + Virgy /1 — 12
)| = L i (2.64)

Vi1 — 82+ Vey/1—12

vy = sgn(vy
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Vrsgsy + Vsrgry

- Virf1— 82+ Vsq/1 =12 .

Equation (2.61) together with equations (2.63)-(2.65) form a system of four nonlinear
equations with four unknowns: (s,r), and (s, r),y. The phase velocity and its derivative at
the source and receiver can be set to their respective values for either gP or qSV waves.
Hence, these expressions are valid for both pure modes and mode-converted waves. At-
tempts to eliminate, for example, rg, s, and ry to get one equation in sg lead to a high
order polynomial equation in sg. Therefore, to find the unknown angles, a numerical scheme
such as Gauss-Newton (Dennis, 1977) or Levenberg-Marquardt (Moré, 1977) might be used,
with the isotropic solution as initial value. If (s,7), and (s,r), are known, the scattering
angle can be found using the cosine formula.

(2.65)

l/y=

In Appendix A, we show that for qP waves the system of equation (2.61) and equa-
tions (2.63)-(2.65) can be rewritten into a somewhat simpler system using the horizontal
slownesses instead of the phase angles, under the assumption that for most practical pur-
poses we can set f = 1. Note that for the 2D problem, (s,r)7 =1and -1 < (s,7)y < 1,
so equations (2.63) and (2.65) form a set of two nonlinear equations with two unknowns,

(S,'f‘)o.

2.4.7 Zero-offset demigration

For zero-offset reflections in homogeneous anisotropic media, the angle of the phase
direction with the vertical equals the reflector dip angle; for VIT media the phase angle
thus equals this dip angle. Since in the demigration problem this dip is known, we know
the phase angle and thus the group angle. Note that in the vertical symmetry plane of
TTI media the reflector dip equals the sum of the phase angle and the tilt of the symmetry
axis; for zero-offset demigration in such media the phase angle is thus also known, provided
the tilt of the symmetry axis is known. Therefore, once the position and orientation of the
reflector are known, we can calculate the unmigrated location. Here we treat pure modes
only.

Using equation (2.58), we find

- Vigo,sopgn
u )
v2(9) (1+ Vi o)

(2.66)

with p, defined in equation (2.31). Then, using this expression in equation (2.58), we get

Vpo, sopm’ (2.67)
Vo),/1+ Vﬁo’sopzn

I) —
puy -

To find the two-way traveltime t,, we use equation (2.66) in (2.55) and solve for t,. This
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gives

22m[1+ VEo 5P (2.68)

d
(vw) ~ pVroso ¥

Vo>'

ty =

do

Then, using equations (2.66)-(2.68) in equation (2.56), gives the unmigrated location,

1 dV
Vpo,5005 zm |V (8) + o—— %
0,50Pm” Zm < ( ) % 0.50 40

(@,9)y = @Y + ( % 0)

d
V(6) — Vpo,sopm 0
. av . . .
Note that by setting i 0 and replacing V(6) and Vpg so with the constant velocity v, the

9> : (2.69)

equations for zero-offset demigration in VTI media reduce to their isotropic equivalents [cf.
equations (2.28)-(2.30)]. Also, setting z,, = z,, = 0 and p%, = pZ = 0 gives the expressions
in 2D.

Since for zero-offset data in VTI homogeneous media the reflector dip equals the phase
angle, we find the phase angle 6 from

6 = arctan |/v2 + 2. (2.70)

The calculated value of 6 can subsequently be used in equation (2.35) and (2.36) to find

|
the phase velocity and its derivative. Again, we can either use V(8) and le—o for gP or
6

qSV waves. For qP waves we use Vpg in equations (2.66)-(2.69), while for qSV waves we
use Vgg.

2.5 The applicability of map depth-migration and demigration in heteroge-
neous anisotropic media

The closed-form expressions we derived for common-offset and common-azimuth map
time-migration in homogeneous isotropic, and for common-azimuth map time-migration in
VTI media, explicitly show that, for a given offset and azimuth, the mapping from the
surface measurements (i.e., source and receiver positions, traveltimes and slopes), to the
subsurface image (i.e., reflector position and orientation), is one-to-one for such media (as-
suming the recorded wavefields reflected only once in the subsurface). Given a scattering
angle and azimuth, this mapping exists also in heterogeneous anisotropic media in which
caustics can develop, provided that these media do not allow different reflectors to have
identical surface seismic measurements that persist under small perturbations of the reflec-
tors. The latter is essentially the Bolker condition (Guillemin, 1985). This mapping defines
map depth-migration, which allows us to go beyond the framework of normal moveout.
This normal moveout is at the basis of pre-stack map time-migration making use of RMS
velocities, that was treated in the previous sections.
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For heterogeneous anisotropic media, the relation between the reflections measured
at the surface and the reflectors in the image, is, in the high-frequency regime, governed
by ray tracing. We capture this relation schematically with the symbol A. Since we as-
sume single-scattering only, this relation is by definition the canonical relation of the single
scattering modeling or imaging operators that relate the surface seismic measurements to
the subsurface image. Map depth-migration essentially determines this canonical relation.
Throughout the remainder, we will refer to this relation as the canonical relation.

2.5.1 The homogeneous isotropic medium case revisited

To make explicit the connection between the closed-form expressions for pre-stack map
time-migration and demigration derived in the previous sections, and the above-mentioned
canonical relation, we revisit the isotropic homogeneous medium case. For pure modes (P-P
or S-S) in isotropic homogeneous media, the equations determining pre-stack map time-
migration using both the horizontal slownesses at the source and receiver, follow directly

dv
from the equations for homogeneous VTI media by setting — = 0 and Vi, = Vpg so = v.

Under these restrictions, equations (2.43), (2.45) and (2.47) thus determine the migrated
location T, = (Tm,Ym,2m) for homogeneous isotropic media. Because the expressions
for the reflector dip in homogeneous VTI media do not contain the derivative of the phase
velocity, the equation for the wavenumber associated with the reflector (or the dip covector)
¢,, for homogeneous isotropic media, is given by equation (2.50) with Vs, = v. The
canonical relation is now formed by collecting the unmigrated and migrated quantities
in a table, i.e.,

A, = {(xu, Ys, YUrs tu: "—O.)(p:: + Pf), —ng, —ng, W;Tm, sm)}) (271)
~. ~ = N ="
reflection reflector

where w is the angular frequency. The prime in A’ indicates that the canonical relation
is here restricted to common azimuth. Hence, equations (2.43), (2.45), (2.47) and (2.50),

. ... dv )
subjected to the restrictions i 0 and Vs, = Vpo, s0 = v, determine the reflector (zm,&,,)

in the image from the reflections in the data (T, ys,¥r, tu, —w(p% + PZ), —wp¥, —wpy,w),
and thus define the canonical relation, restricted to common azimuth (i.e., A}, of the single
scattering imaging operator in homogeneous isotropic media; these equations evaluate (2.71)
‘from left to right’.

To find the equations determining map time-demigration in isotropic homogeneous

media, we need to find Z, Ys r, tu, and ps¥ as a function of (xm, £,,). By setting = 0 and

Vs » = v in equations (2.61) and (2.63)-(2.65), we get the system of equations that needs to be
solved to find the angles 6;  and azimuths ~y; , at the reflector. For pure modes, the resulting
system of equations and the solutions for (s,7)y = (sinfy,sin6,) and (s, 7)., = (sin~ys, sinyr),
are given in Appendix B. Once (s,7), and (s, 7)., are found, we calculate the source and
receiver locations (zy, ysr), two-way traveltime t,, and the horizontal slownesses psy from
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simple geometrical considerations. This gives

zm (5,7)g /1 = (s,7)]

Ty =Tsr = Tm—sgn(vy) , (2.72)
y/1- (s,r)g

Zm (s,7)., (s,7)

Ysr = ym+ 7 b y ) (273)
1- (3’7')3

2
t, = 7m<\/1—sg+\/1—r§) , (2.74)
s,T

b, = —sen(va)y/1- (s,r2 00 (2.75)
s,T

piy = (s,r)q( ,U) 2. (2.76)

These equations determine the reflection in the data (x4, ys, yr, tu, —w(p® + p¥), —wp?,
—wp¥,w) from the reflector in the image (x,,€&,,), and thus define the canonical rela-
tion, restricted to common azimuth (i.e., A’), of the single scattering modeling operator
in homogeneous isotropic media; they evaluate (2.71) ‘from right to left’. Note that the
common-offset equivalent equations to (2.72)-(2.76) are given by equations (2.21)-(2.24).

In the section on map time-migration and demigration in isotropic homogeneous media,
we showed that only the slope in common-offset gathers (as opposed to both common-offset
and common-midpoint gathers, or common-source and common-receiver gathers) needs to
be known, to map the surface seismic measurements, restricted to common offset and com-
mon azimuth, to the reflectors in the image. Under these restrictions, the canonical relation
for pre-stack map time-migration is therefore given by

A" = {(Zu, Yu — by Yu + by b, —wDE, —wPY, w; Tm, &)} (2.77)
— —~ S N
reflection reflector

Here, the double prime indicates the restriction of the canonical relation to both common
offset and common azimuth. Not counting the angular frequency w as a variable, there
are six variables (y, Yu, ty, pu”, h) describing the data. The number of variables (€, &,,)
describing the reflector is also six. Hence, for common-offset and common-azimuth data,
pre-stack map time-migration and demigration are direct mappings from input to output
variables.

2.5.2 The canonical relation in heterogeneous anisotropic media

Since we derived all expressions for map time-migration in the rotated coordinate sys-
tem with the y-axis positive in the source-to-receiver direction, these expressions implicitly
assume common azimuth, i.e., x, = x5 = x,. Lifting this restriction, the canonical relation
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is written as

h _h h h ..
A = {(ws)wr,tu, _wps’_wpr,w)wmaém)}7 (2'78)
. ~ o w
reflection reflector
where a:’;,r = (zsr,Ysr) are the source and receiver locations respectively, t, = ts + t; is

the two-way traveltime, p?), = (p%,,p8,) are the horizontal slownesses at the sources and
receivers, Tm = (Tm,Ym,2m) is the reflector position in the image, and &, = £, + &, is
the wave vector associated with the reflector; here the superscript h denotes horizontal
components only. Note that here the vertical components of the slowness vectors p,, are
defined to point in the negative z-direction, as throughout the whole text.

In general media, A is evaluated by ray tracing. Writing the solution to the ray-
tracing equations, subject to initial conditions (x¢,&y) at time 0, in the general form
(z(x0, &, ), € (0, &p, ), the canonical relation becomes, for a horizontal acquisition sur-
face,

A - {(wh(wm, ss,ts)a wh(mm7 &r, t'r): tuagh(mm) 63’t8)7 £h(a:m’ gT’t")’W; wm’gs + 51')
such that [z(zm, €, ts) = 0, 2(Zm, &, t) = O]},

with &P = (€2,&)- This symbolically represents a table parametrized by upward ray-tracing
from the reflector at location x,,.

2.5.3 Pre-stack map depth-migration and demigration in heterogeneous
anisotropic media

Defining w = (s, Ys, Tr, Yr, tn) and v = (wpZ,wpl¥,wp?, wp¥,w), (u,v) is a surface
seismic measurement characterized by the source and receiver locations, two-way traveltime,
and slopes in common source and receiver gathers; it is an element of a phase space U.
Similarly, defining m = z,, and p = &,,,, (m, p) describes a reflector defined by its location
and orientation in the image; it is an element of a phase space M.

Let Py now denote the projection of A on U and Py denote the projection of A on
M. These projections extract, respectively, the surface seismic reflections (u,v) and the
reflectors in the image (m, p) from the canonical relation A, i.e., the table evaluated using
ray tracing. Guillemin (1985), in his paper analyzing the generalized Radon transform,
introduced the Bolker condition on the canonical relation, which basically states that the
medium does not allow different reflectors to have identical surface seismic measurements
that persist in being identical under small perturbations of the reflectors, given a velocity
model and given an acquisition geometry. The Bolker condition is crucial in the development
of seismic inverse scattering theory in the presence of caustics (Stolk & De Hoop, 2002a).
Here, we explain that this condition can be understood in terms of map migration.

In our application, the Bolker condition reduces to the condition that Py : A — Py(A)
is one-to-one. But then, we can introduce the mapping Py o Py, Ly (u,0) = (myp)
which is precisely map depth-migration; here o denotes composition, which can be thought
of as a cascade of mappings (i.e., P ! followed by Pps). Hence, the Bolker condition is
the condition of applicability of map depth-migration in heterogeneous anisotropic media
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allowing the formation of caustics, given a velocity model and acquisition geometry. In
other words, if, given a velocity model and acquisition geometry, you can map depth-
migrate without ambiguity in either the migrated location or orientation, then the Bolker
condition is simply satisfied.

Map depth-demigration does not require the Bolker condition. To find the surface
seismic measurements from a reflector in the image through map depth-demigration, we
need to specify the scattering angle (for both 2D and 3D seismics) and azimuth (only for
3D) at the reflector, in addition to the reflector location and orientation, i.e., (m,u). We
introduce these (angle) coordinates by parameterizing the subsets {(m, 1)} = const on A,
and denote them by e. Thus (m, u, e) form local coordinates on A. Map depth-demigration
then follows from the mapping (m, i, e) — (u,v). This mapping was denoted 2 in Stolk
& De Hoop (2002a). In the absence of caustics, e can be chosen to be acquisition offset and
azimuth (as we did in the section on pre-stack map time-demigration in homogeneous VTI
media).

2.6 Discussion

We have presented closed-form 3D pre-stack map time-migration expressions for qP-qP,
qP-qSV, and qSV-qSV waves in homogeneous VTT media, that specialize to the expressions
for P-P, P-S, and S-S waves in homogeneous isotropic media. In addition, we have presented
closed-form expressions for pre-stack map time-migration and demigration in the common-
offset domain for pure mode (P-P or S-S) waves in homogeneous isotropic media, that use
only the slope in the common-offset domain. This provides an additional advantage over
methods where both p, and p, (or equivalently both ps and p,, the slopes at the source
and receiver position) are required, especially since estimating slopes can be cumbersome
in the presence of noise. All the derived pre-stack expressions reduce properly to their zero-
offset counterparts. Our closed-form expressions for pre-stack map time-migration can be
exploited in existing velocity-inversion algorithms that use map migration in such media. In
particular, our expressions for pre-stack map time-migration of qP waves in homogeneous
VTI media, can be used to determine the anellipticity parameter n (and the zero-dip NMO
velocity Viyapro(0)) for such media in a time-migration velocity analysis context. Note that
for media with mild lateral and vertical velocity variations, our equations can be used
provided the velocity is replaced by the local RMS velocity. The kinematic equivalence of
TI media and orthorhombic media in the symmetry planes, generalizes our results for VTI
media to these planes in orthorhombic media. In addition, our expressions for VTI media
are applicable to the vertical symmetry plane of TTI homogeneous media, which contains
the symmetry axis.

Not surprisingly, our closed-form expressions for pre-stack map time-migration in ho-
mogeneous isotropic and VTI media, exemplify that, for such media, given an offset and
azimuth, the mapping from the surface seismic measurements (i.e., the source and receiver
locations, two-way traveltime, and slopes in common source and receiver gathers) to the
reflectors in the image (i.e., location and orientation), is one-to-one. We explained that the
condition of applicability of pre-stack map depth-migration in heterogeneous anisotropic
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media that allow the formation of caustics - i.e., that, given a velocity model and acquisi-
tion geometry, you can map depth-migrate without ambiguity in both the migrated location
and orientation - coincides with the Bolker condition for seismic inverse scattering. In ad-
dition, we have shown that for homogeneous media, our pre-stack map time-migration and
demigration expressions define the canonical relation of the single scattering modeling and
imaging operators in such media.

The tangential directions to the recorded wavefronts in seismic data, are the directions,
locally, in which the data are smooth. Imaging these wavefronts provides the directions
in which the medium perturbations are smooth. In mathematical terms, these smooth
directions are the wavefront sets of the seismic data and the medium perturbations. In the
context of sparsely representing the data and the image, most sparseness (or compression)
will be accomplished in the smooth directions, i.e., along the wavefront sets of the data and
the medium perturbations. Since, given a scattering angle and azimuth, map migration
provides a one-to-one mapping from the singular directions in the data (i.e., the directions
normal to the wavefronts) to the singular directions in the image (i.e., the normals to the
reflectors), one can thus think of map migration (and demigration) as a mapping between
optimally sparse directions. Therefore, it seems that map migration (or demigration) is a
suitable vehicle to sparsely represent the imaging (or modeling) operator.
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Chapter 3

Explicit expressions for map time-migration with
qP-waves in weakly anisotropic VTI media!

3.1 Summary

In the context of time migration, map migration achieves a one-to-one correspondence
between the reflections recorded at the surface (position, time, and slopes) and the reflec-
tors in the subsurface (position and orientation), through explicit use of the slopes in the
data. Previously, Douma & de Hoop (2006) (see Chapter 2) presented pre-stack map time-
migration equations that are valid in homogeneous transversely isotropic with a vertical
symmetry axis and for arbitrary levels of anisotropy. As pointed out by Thomsen (1986),
however, many rocks exhibit only weak anisotropy. Here, I apply the weak-anisotropy ap-
proximation to the post-stack and pre-stack map time-migration equations for qP-waves
in transversely isotropic media with a vertical symmetry axis. These expressions depend
on only the anellipticity parameter 7 and the zero-dip NMO velocity Viya0(0), and can
be used to estimate 7 in the context of time-migration velocity analysis. The accuracy of
the equations is verified with numerical examples, which also quantify the error in time
imaging when the anellipticity is ignored. That error indicates that accurately accounting
for anisotropy is highly relevant to positioning of boreholes.

3.2 Introduction

Imaging the subsurface involves mapping seismic waves measured at the earth’s surface
down to the subsurface locations from which the waves reflected (once). Under certain
conditions (Guillemin, 1985; ten Kroode et al., 1998; de Hoop & Brandsberg-Dahl, 2000;
Stolk & De Hoop, 2002b; Douma & de Hoop, 2006), for arbitrary complex and anisotropic
media, the slope information and the position (in space and time) of the reflections are
related through a one-to-one mapping to the subsurface position and the orientation of the
reflectors. This mapping is referred to as (pre-stack) map migration (Douma & de Hoop,
2006, or Chapter 2 of this thesis). In the context of time imaging, these conditions are
simply always satisfied, and the mapping is thus always one-to-one. Although most imaging
algorithms use the slope information in the data only implicitly, map migration uses this

'This chapter, along with Appendix E, will be submitted for publication as: Huub Douma, 2006, Explicit
expressions for map time-migration with qP-waves in weakly anisotropic VTI media.
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information explicitly. Because of this one-to-one mapping property of map migration, it
has had many applications in velocity estimation (Gjoystdal & Ursin, 1981; Gray & Golden,
1983; Maher et al., 1987; Sword, 1987; Iversen & Gjoystdal, 1996; Billette & Lambaré, 1998;
Iversen et al., 2000).

Douma & de Hoop (2006) (see Chapter 2) derived closed-form expressions for map
time-migration in transversely isotropic (TI) media with a vertical symmetry axis (VTI).
Through careful numerical analysis, Alkhalifah & Tsvankin (1995) have shown that the
time signatures (e.g., reflection moveout, dip moveout, and post-stack and pre-stack time-
migration operators) of qP-waves in such media are governed mainly by the anellipticity
parameter 7 and the zero-dip NMO velocity, VNao(0). In addition, Tsvankin (1996) shows
numerically that the influence of the vertical shear-wave velocity Vso on the kinematics of
qP-waves in TI media is negligible, while Alkhalifah (1998) shows analytically that all time-
related processing in such media depends exactly on 7 and Vnmo(0) only, when Vgo = 0
km/s. The expressions for pre-stack map time-migration of qP-waves presented in Chap-
ter 2, however, depend on the four parameters 7, Vamo(0), Vpo, and Vgo. In principle it
should be possible to show the explicit dependence of these equations on 1 and VNumo (0)
only, through use of the acoustic approximation of Alkhalifah (1998) (i.e., setting Vso =0
km/s). In Chapter 2, however, this approximation is invoked only to simplify the pre-
sented nonlinear system of equations for pre-stack map time-demigration in VTI media (see
Appendix A), and to show explicitly the sole dependence of this system on 7 and Vyao(0).

Many rocks in the earth exhibit only weak anisotropy (Thomsen, 1986). Therefore,
in this paper, I apply the weak-anisotropy approximation to derive closed-form expressions
for map time-migration of qP-waves in weakly anisotropic VTI media. As it turns out,
by invoking the weak-anisotropy approximation the resulting expressions for map time-
migration of gP-waves in VTT media are dependent on 77 and Vyp0(0) only. The equations
can be used to invert for the anellipticity parameter 7 in the context of time-migration
velocity analysis.

The outline of this paper is as follows. First, to establish a connection with earlier work
on time-signatures of qP-waves in VTI media, I show that the expressions for the zero-offset
migrated traveltime and position presented in Chapter 2 are equivalent to the expressions
derived by Cohen (1998). Then, I proceed to derive the weak-anisotropy approximations
for post-stack (or, equivalently, zero-offset) time migration and demigration respectively,
followed by the weak-anisotropy approximations for pre-stack (or finite-offset) map migra-
tion. The accuracy of all presented equations is verified using numerical examples, which
also quantify the migration error when anisotropy is ignored.
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Figure 3.1. Dependence on Vpg of the ratios (a) ty/tm, (b) Vnmo(0)t,/(2sy,) with s, =
Ty — T, and (c) pu/pm. All ratios are calculated for the values p, = 0.10 s/km (drawn
lines), p, = 0.18 s/km (dashed lines), p, = 0.22 s/km (dotted lines) and p, = 0.25 s/km
(dashed-dotted lines) (i.e., increasing slopes in the data), with the values Viya70(0) = 3.29
km/s, n = 0.0833, and Vpo/Vso = 3/2 (i.e., f =5/9).

3.3 Post-stack map migration

From Douma & de Hoop (2006), the zero-offset expressions for 3D map migration in
homogeneous VTT media [see Chapter 2, equations (2.55)-(2.58)] are given by

_ V(6)t, 5 3 av
ViO)putty  V(0)pi¥t, dV 1
&Y m = (2,9), - 5 - 5 @\, \| V@~ 1, (3.2)
V(0)pu? (3.3)

oY =
™ Vpo/1—V2(0)p2’

where ¢, ,, are the unmigrated and migrated two-way traveltimes, (%, Y)u,m are the unmi-
grated and migrated horizontal locations, py? := (1/2)8t,/8(x,y). are the slopes in the

- and y-directions in the data, p, := \/(p2)% + ()%, pE¥ = (1/2)0tm/O(x,y)m are the
slopes in the z- and y-directions in the image, Vpy is the vertical P-wave velocity, and V(6)
is the phase velocity at angle 6 with the symmetry axis. The notation (z,y) indicates x
or y. Note that the subscripts u and m simply denote unmigrated and migrated variables,
respectively. Equations (3.1) - (3.3) thus determine the reflector position and orientation
from the unmigrated quantities associated with a reflection in the data. The expressions
for 2D map migration can be found from the 3D expressions by setting z,, = z, = 0 and
Pm = Py = 0. To establish the connection with earlier work on map migration in homo-
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geneous VTI media, Appendix E shows that equations (3.1) and (3.2), respectively, are
equivalent to the expressions derived by Cohen (1998, his equation (28)) for the migrated
vertical two-way traveltime and the horizontal migrated location.

Recall that Alkhalifah & Tsvankin (1995) showed that qP-wave time signatures in
(laterally homogeneous) VTI media are governed mainly by the anellipticity parameter n
and the zero-dip NMO-velocity Vyao(0), and are largely independent of Vpo. Here, I
confirm this independence in the context of post-stack map time-migration in Figure 3.1.
The values 7 = 0.0833, Vyar0(0) = 3.29 km/s, and the horizontal slowness components in
this figure are the same as those used by Alkhalifah & Tsvankin (1995, Figure 17). However,
since in their paper the value used for the vertical shear-wave velocity Vo is omitted, Figure
3.1a closely resembles Alkhalifah and Tsvankin’s Figure 17, but is not identical. Figure 3.1
shows results for Vgo = 0 (grey) and Vpo/Vso = 1.5 (black), which in practice can be
treated as a lower bound on the ratio of P- and S-wave velocity. As indicated by the black
curves, the zero-offset map time-migration equations are indeed governed mainly by 7 and
Vnmo(0) and are largely independent of Vpp. In addition, the grey curves confirm that
qP-wave zero-offset map time-migration is completely independent of Vpg if Vgg is set to
zero (Alkhalifah, 1998).

Under the weak-anisotropy approximation, i.e., assuming that the Thomsen param-
eters (,€) < 1, the expressions for the phase-velocity and its derivative reduce to [e.g.
(Tsvankin, 2001, p. 23)]

V() ~ Vpo (1 + 8sin @ + (e — &) sin? 6) , (3.4)

and
% ~ 2Vpgsinfcosf [e — (e — &) (1 — 2sin?0)] . (3.5)

Using equations (3.4) and (3.5) in (3.1) and linearizing in 6 and ¢, I find

tm 2 tur/1 = PRV, (1+26) — 6 (c — 6) piViko -+ 4 (e — 8) PV, (3.6)

where I used the approximation siné = p,Vpg whenever sin§ was multiplied with ¢ or ¢,
in order to consistently linearize in the Thomsen parameters. Since in the weak-anisotropy
approximation we have = (e —8)/(1+26) = e — 6 and since in general we have Vynmo(0) =
VpoV/1 + 26, we can rewrite equation (3.6) to find

3
tm = tu\/z — P2Vimo(0) = 4npiViao(0) (5 - P?LV]%MO(OO : 3.7)

Similarly, by using equations (3.4) and (3.5) in equations (3.2) and (3.3) and further
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Figure 3.2. a) Ratios (from the top down) tm/(tmly—o) sm/(5mly—o) and pm/ (pml,_o) as
a function of reflector dip, using the weak-anisotropy approximated equations (grey) and
the exact expressions (black). b) Ratios (from the top down) ty/(tu|p=0), su/(Sulp=0) With
Su != Ty — Tm, and py/(Puly—0), as a function of reflector dip using the weak-anisotropy
approximated equations (grey) and the exact expressions (black). All values are calculated
with Vvamo(0) and f as in Figure 3.1, Vpp = 3 km/s, n = 0.0833 (solid), n = 0.1666
(dashed), and i = 0.25 (dotted).
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linearizing in the Thomsen parameters, I find
% 0)p Yt peV3 0
(i)~ (50), — 0P (1 atino(0)[1 - BP0} 33)

<,y pu” 3.9
Pm 2172 21,2 ’ 39)
\/ 1—p2VZ 110(0) (1 + 20p2VE 440(0))

Q

Indeed, in the weak-anisotropy approximation, the dependence of the map time-migration
equations for qP-waves in homogeneous VTI media on Vpg disappears; also for = 0 and
Vnmo(0) = Vpg = v the equations indeed reduce to their isotropic equivalents [see Chapter
2 for the isotropic equations, i.e., equations (2.17)-(2.19)].

The accuracy of equations (3.7)-(3.9) is verified in Figure 3.2a. From the top down-
wards, this figure shows the migrated time, horizontal displacement (i.e. sm = Ty—Tm), and
migrated horizontal slowness, normalized by their elliptic counterparts [i.e., tm / (tm|n=0)’
8m/(8mlp=o) a0d Pm/(Pm|y—0), respectively]. The grey lines show the values resulting from
the weak-anisotropy approximations, which are indeed close to their true values (black lines)
for Vo (0) = 3.29 km/s, Vpo = 3 km/s, f = 3 (i.e., Vpo/Vso = 3) and 7 = 0.0833 (drawn
lines), but deviate from the exact values for larger values of n [i.e., n = 0.1666 (dashed)
and 7 = 0.25 (dotted)]. Note that overall the weak-anisotropy approximation becomes
worse for larger angles, but is highly accurate for the position (horizontal and in time) and
orientation up to about 60 degree dips for n = 0.0833. This decrease in accuracy of the
weak-anisotropy approximations with increasing dip is due to the fact that higher orders of
sin @ usually go together with higher orders in the Thomsen parameters, which are ignored
in the weak-anisotropy approximation.

Because Figure 3.2a shows the map time-migrated quantities normalized by their ellip-
tical counterparts, this figure also indicates the errors in ignoring the anellipticity parameter
n in post-stack time-imaging; i.e., the amount of deviation from unity for each quantity in-
dicates the error due to ignoring anisotropy. I normalize by the elliptic counterparts (i.e.,
n = 0), because for elliptical anisotropy all time-domain processing is kinematically equiv-
alent to the isotropic case (e.g., Tsvankin (2001)); i.e., ignoring 7 for qP-waves in (laterally
homogeneous) VTI media is the same as ignoring the presence of anisotropy all together.
Clearly, ignoring the presence of anisotropy leads to significant errors in the migrated lo-
cation (i.e., s, and t,,) and orientation of the reflector (i.e., pm) since the ratios of the
migrated quantities T,,, tn, and pm, to their elliptic equivalents are substantially different
from unity, even for moderate dips. The mispositioning in time and orientation of the re-
flector, as a result of ignoring 7, however, is negligible for dips up to about 20 degrees for
n = 0.0833. In contrast, the mispositioning in horizontal position is in this case negligible
only up to about 10 degrees. Even though we are dealing with homogeneous media here,
accurately accounting for the presence of anisotropy seems highly relevent for determining
the position of a borehole in heterogeneous media. Mis-positioning in post-stack imaging
as a result of ignoring subsurface anisotropy has been studied by Larner & Cohen (1993)
and Alkhalifah & Larner (1994).
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3.4 Post-stack map demigration

The post-stack map time-demigration equations in homogeneous VTI media are given
by [see Chapter 2, equations (2.68)-(2.67)]

tmy/1+ V2,2
te = pom (3.10)

V() B dv ’
Veo ™ d0|,
1 4dv
2 (V(G) - Vpopm — )
™ de 0
Ty VPopﬁiy (312)

V(0)4/1+ V3p2,

with pm 1= 1/(p%,)% + (pin)?. Then, using equations (3.4) and (3.5) and again consistently
linearizing in 6 and ¢, I find

tu ® tmy[14 P2 VE10(0) + 6n ”5‘"‘2’1%0(0) , (3.13)
1+pmVNMO(O)
V1\2/MO (0)p$';ytm p2 V2 (0)
~ 1+ 4 m’ NMO 3.14
4v4 (0)
DY~ pV, 14 p2 V2, (0) + 2p—EmYNMOT) 3.15
24 pm\/ +PmVimo(0) + M P VE, () (3.15)

For n = 0 and Vyp0(0) = Vpg = v, these approximations reduce to the isotropic expressions
[see Chapter 2, equations (2.28)-(2.30)). To obtain these expressions for the demigration

problem, I use the exact expression sin = p,,Vpo/4/1 + p?ano (which follows from writing

pu = sin6/V(9) in the 2D equivalent expression of equation (3.12) and subsequently solving
for sin §).

To assess the accuracy of the approximations, Figure 3.2b shows the normalized (again
by their elliptic equivalents) 2D de-migrated quantities calculated with the exact and ap-
proximated equations, for the same values of 1, Vy10(0), Vpo, and f as used in Figure 3.2a;
L.e., this figure shows (from the top down-wards) ¢,/ t“|n=0’ Su/ 3“|n=0 with s, i = 2, — 7,
and p,/ pu| n=o0- Again, the approximated values (grey) are in close agreement with the true
values (black) for 7 = 0.833, but the accuracy of the approximated quantities decreases with
increasing dip and 7. Note that in the derivation of the weak-anisotropy approximations
to the demigration equations, it is not necessary to make the additional approximation
sinf = p,Vpo whenever sinf is multiplied with a Thomsen parameter, as was necessary
in the derivation of the approximations to the migration equations. Instead, we can just
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use the exact expression sinf = p,Vpo/4/1 + p?nV}%O. This explains the relatively higher
accuracy of the unmigrated horizontal slowness even at large dips and large values of 7,
when compared to the accuracy obtained in the weak-anisotropy approximation to pm, (cf.
Figure 3.2a, bottom subfigure).

At first sight, the reader might be confused by the difference between the middle subfig-
ures of Figures 3.2a and b, since both subfigures show the quantity (4 —2m)/ (Tu — Zm)|;=0-
However, in the migration case (Figure 3.2a) z, is varying while z,, is fixed, wheras in the
demigration case (Figure 3.2b) x,, is varying while r, is fixed. This explains the difference
between both subfigures.

3.5 Pre-stack map migration

For pre-stack (or finite-offset) map migration in homogeneous VTI media, the equations
for the reflector location and orientation in the subsurface are given by [see Chapter 2,
equations (2.43), (2.45), and (2.52)]

L 2 1 N !
. ,
Voo dv av
Vs( 1—VS2P§—PsES> V;( 1_Vr2p’%_p7?l?0—,.)
(3.16)
1 dv
_ oY [~ 1%
((I), y)m (ma y)s,r tuPs)r (Vs,r + Vs2,rpg,r 1 do s,r)
dv
(\/ 1- V1~2,sp12~,s — Prys 40 )
7,8
» ’ (3.17)
1 av 1 av]y’
1 —55 . 4V 1 —v2s g, Y
V.;. ( 1 ‘/sps Ps do ‘s) + V; ( 1 Vrp'r Pr df ,,.)
L L e (3.18)

VPO ]. 2 1 2,
v A7

where V5, are the phase-velocities at the source and receiver, ps, are the horizontal slow-

nesses at the source and receiver (i.e., psr = \/ (p%,)? + (p¢r)? with p5¥ the components

of psr in the z and y directions), and h is the half-offset. Note the order of the subscripts
s,r and , s in equation (3.17). That is, choosing ps, to be ps goes together with letting
pr,s be p,. The same holds for V;, and Vs and the derivatives.

Comparison of equation (3.16) with equation (3.1) reveals that the right hand side of
equation (3.16) involves the sum of two fractions with denominators that have the same
form as Vpotm/t. in equation (3.1). Using the form of the weak-anisotropy approximation
to t,, for post-stack map time-migration [i.e., equation (3.7)] in order to approximate both
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fractions in equation (3.16), it follows that the weak-anisotropy approximation to t,, for
pre-stack map migration is given by

-1

1
b 2y | ) . (3.19)

i=sr \/ 1= piVimo(0) — 0p{Viino(0) {3 — pIVino(0)}

Inspection of equations (3.16) and (3.17) reveals that equation (3.17) can be rewritten
V
v2 4 [ _y2 @
T,y 8,7 2 s,7 de
VPops,r tm Ds,r

2 dv

V ( 1_V'rpsr ps,r%
Since we already have a weak-anisotropy approximation for ¢, (cf. equation (3.19)), we
need only consider the approximation of the fraction

/ 1 dv
V2 - —V2

s,T + pg;,- s,r do o
A=

dvV
V ( 1- V 'rpsr Ps,r 70—

(2, 9)m = (2,9)5,, — (3.20)

(3.21)

?
s,r)

to find the approximated expression for (z,y)m. The denominator in this fraction is again
of the same form as Vpgty,/t, in equation (3.1) with its weak-anisotropy approximation
given in equation (3.7). We thus have

s,r)

e dav
‘/8,7' ( 1 - ‘/:92,7‘])3,7‘ - ps,‘r %‘

Vpoy/1 - 22, VZ10(0) — 48, Vit 110(0) {3 — 12, Va0 (0)} (3.22)

Hence, we need only look for a weak-anisotropy approximation to the numerator of A. Using
equations (3.4) and (3.5) and consistently linearizing in the Thomsen parameters gives

1 A% P2 D1\2/Mo(0)
V2 4+ / — V2 _ s T NMOVT
S,T ps’r s,T do ] 2 M (323)

Then, using this approximation in equation (3.21) together with equations (3.22) we get

2 12
D5 Vimo(0)
Vino(0) {1 + 4np2 . Vi 10(0) !1 - s N2MO

Vpo \/ 1—p2 VEro(0) — 4npd Vi10(0) {3 — p2, V2 10(0)}

~ Viimo(0) {1 + dnp? Viao(0)

A= (3.24)
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Figure 3.3. Relative errors of weak-anisotropy approximated values with respect to the
exact values for (a) migrated time [(t2eek — geact) /gezect] (b) horizontal position [(s%e® —
sezact) [ gezact] and (c) migrated horizontal slowness [(pleak — pezact) /pezact] for 2D pre-stack
map migration, as a function of the reflector dip and the offset-to-depth ratio. The values
of the relevant parameters used to calculate this figure are n = 0.0833, t,, = 2 s, with
Vnmo(0), Vpg and f the same as in Figure 3.1.

Finally, using this expression together with equation (3.19) in equation (3.20) gives the
weak-anisotropy approximation to (z,y)m, i.e.,

1— pz,rVI%MO(O)] }

(@ W) = (2, 9)5 — P5F VR a10(0) {1 +4np3 . Vi mo (0) 5

V1= P2 VEa0(0) — 41p4.Viiago (0) {8 — P2, Viinro(0)}

X .
Sicer V1~ PVin0(0) — 108 Viaro(0) {3 — PVAro(0)}

Note the order of the subscripts s, and r, s, just as in equation (3.17),

(3.25)

Using the weak-anisotropy approximation in equation (3.18) and again consistently
linearizing in & and ¢, gives the weak-anisotropy approximation for the horizontal slowness
components in the image,

. oY 4 poY .

it
Zi:s,r \/1 - p’?VI\ZIMO(O) (1 + 277pz?V1\2IMO(O))

Note that indeed all approximations to the migrated quantities for pre-stack migration
reduce to their post-stack equivalent expressions if we set ps”¥ = py’¥ = pu? [cf. equations

(3.26)
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(3.7), (3.8), and (3.9)].

Figure 3.3 shows the relative accuracy of the approximations for pre-stack map time-
migration when compared to the exact expressions, as a function of the reflector dip and
the offet-to-depth ratio; i.e., Figure 3.3a shows a contour plot of (t2eek — gezact) /gezact  yhile
Figures 3.3b and ¢ show, respectively, contour plots of (s¥eek — sezact) /sezact gn( (pweak _
peract) /pezact 4]l as a function of the reflector dip and the offset-to-depth ratio. Figure 3.3
was calculated by first solving the nonlinear system for 2D pre-stack map demigration in
VTI media. This system consists of two nonlinear equations with two unknowns (i-e., the

phase angles at the source and receiver); see Chapter 2, equations (2.63) and (2.65), i.e.,

Vi-rbav Vi-sdav

4h ot Ve do |, * Vs do |,
= - .27
Vpotm 2 _TedV 2 S dV ’ (3.27)

Vv, df|, v, do|,

and
Visg + Varg
v = (3.28)
Vi1 =83+ Ve /1 — 12

In equations (3.27) and (3.28), v := —tan ¢, with ¢ the reflector dip (measured clockwise

positive with the horizontal), and 2h/(Vpoty,) is the offset-to-depth ratio, with A the half-
offset. Note that in 2D, we have —7/2 < 65, < 7/2. Given a reflector dip-angle ¢ and
an offset-to-depth ratio 2h/(Vpoty,), the angles 6, [and thus (s,r)s] were found using
the Gauss-Newton method (Dennis, 1977). Then, these values were used in the exact
migration equations and in their weak-anisotropy approximations (with ps, = (s,7)g/Vs )
for n = 0.0833, VNnpmo(0) = 3.29 km/s, Vpg = 3 km/s, and f = g. Figure 3.3 shows
that indeed for all offset-to-depth ratios used, the approximations are highly accurate up to
about 60 degrees for n = 0.0833, with the approximation to the migrated slope p,, losing
accuracy fastest; i.e., for dips up to 60 degrees the approximations are accurate within
5% for offset-to-depth ratios up to 3, at least for n as large as 0.0833. Interestingly, for
the migrated time t¢,, and horizontal displacement s,,, there is a combination of (nonzero)
reflector dip and offset-to-depth ratio where the weak-anisotropy approximate expressions
for t,,, and z,, are exact.

In addition, Figure 3.4 shows contoured values of the exact equations normalized
by their elliptic (n = 0) counterparts [i.e. (a) tm/(tmly—o), (b) sm/(Smly—o) and (c)
Pm/(Pml,—o)], as a function of reflector dip and offset-to-depth ratio, for the same val-
ues of 7, VNmo(0), Vpo, f, and t,, used in Figure 3.3. Note that for zero offset-to-depth
ratio Figure 3.4 is the same as the drawn black lines in Figure 3.2a. Clearly, ignoring the
presence of anisotropy (or, better, anellipticity) leads to error in the migrated time, lateral
location, and orientation of the reflector. Noticeably, this error increases with increasing
offset-to-depth ratio and increasing reflector dip. Therefore, the previous comment regard-
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Figure 3.4. (a) tm/(tmlp=0), (b) Sm/(sm|p=0) and (c) pm/(Pmln=0) for 2D pre-stack map
migration, as a function of reflector dip and offset-to-depth ratio. The values of the relevant
parameters used to calculate this Figure are n = 0.0833, t,, = 2 s, with Vmo(0), Vpg and
f the same as in Figure 3.1.

ing the importance of accounting for the presence of anisotropy with regard to positioning
a borehole, that was made in the context of post-stack migration, becomes even more rele-
vant in the context of pre-stack migration. Pre-stack migration error as a result of ignoring
subsurface anisotropy has also been studied by Jaramillo & Larner (1995).

3.6 Pre-stack map demigration

While pre-stack map time-migration in homogeneous VTI media is a straightforward
generalization of the post-stack problem, it is shown in Chapter 2 that the pre-stack map
time-demigration problem involves the solution of a nonlinear set of four equations with four
unknowns, i.e., two azimuth angles and two dips, that cannot be solved in closed-form. It
turns out that even using the weak-anisotropy approximation does not allow for a solution
in closed-form. While the system of nonlinear equations could be written out under the
weak-anisotropy approximation, in the interest of brevity I refrain from such a treatment.

3.7 Conclusion and discussion

Since many rocks exhibit weak anisotropy only, I present weak-anisotropy approxima-
tions to the post-stack and pre-stack map time-migration equations previously developed
by Douma & Calvert (2006) [see Chapter 2] for qP-waves in homogeneous VTI media. For
the demigration case, the approximations are given only for zero-offset. The resulting ex-
pressions depend explicitly on n and Vyaro(0) only. This confirms the previously reported
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main dependence of the kinematics of gP-waves in (laterally homogeneous) VTI media on
n and Vypo(0), but does so in the context of map time-migration and thus in the context
of time-migration velocity analysis. This main dependence is also confirmed numerically
for the exact expressions, which puts it in the context of map time-migration. At least for
n values up to 0.08, the errors of the weak-anisotropy approximations are within 5%, for
reflector dip up to 60 degrees and offset-to-depth ratio up to three. In addition, the numer-
ical examples indicate that, even in the presence of weak anisotropy only, the errors in time
imaging resulting from ignoring the presence of anisotropy are substantial. This indicates
that accurately accounting for anisotropy seems highly relevant for accurate positioning of
boreholes.

The presented equations allow for inversion of the anellipticity parameter 1 in the
context of time-migration velocity analysis. By using data from two (or more) different
offsets, we can use the difference between the migrated times, lateral positions and slopes
(i.e., all used simultaneously), as an objective function to be minimized, by changing 7.
The optimum value for 7 then results in the minimum value of objective function. Such a
scheme would be similar to the approach of Iversen et al. (2000), who use qP and qSV data to
invert for the Thomsen anisotropy parameters € and § from map migration via ray tracing
in heterogeneous anisotropic media. Using the expressions here, qP data could be used
to invert for 7 in a time-migration setting, without significant computational effort. The
resulting estimates of 7 could then be used as initial estimates in a more advanced inversion
scheme such as the one presented by Iversen et al. (2000). This would help constrain the
latter inversion.

Conventionally, estimation of 7 is done based on the deviation of the observed moveout
in common-midpoint (CMP) gathers from being hyperbolic, i.e., based on velocity analysis
in CMP gathers. Migration velocity analysis allows the estimated velocity to be related to
a subsurface location, rather than a midpoint location. Because the presented equations
allow the estimation of 7 to be done in a migration-analysis context, they can be expected
to provide improved estimates of 1 in the subsurface when compared to moveout analysis
in CMP gathers. Also, the combined estimation of migrated time, location, and orientation
is expected to be more sensitive to changes in 7 than is moveout in CMP gathers. Hence,
estimation of 7 based on map migration can be expected to provide better resolution in 7
than the resolution obtained from moveout analysis in CMP gathers.
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Chapter 4

A hybrid formulation of map migration and
wave-equation-based migration using curvelets!

4.1 Summary

Recently, curvelets have been introduced in the field of applied harmonic analysis and
shown to optimally sparsify smooth functions away from singularities along smooth curves.
In addition, it has been shown that curvelets allow a sparse representation of wave propaga-
tors. Since the wavefronts in seismic data lie mainly along smooth surfaces (or curves in two
dimensions) and since the imaging operator belongs to the class of operators that is sparsi-
fied by curvelets, curvelets are plausible candidates for simultaneous sparse representation
of both the seismic data and the imaging operator. Here, the first curvelet-based seis-
mic imaging method is presented, using common-offset time-migration as an example. It is
shown that with curvelets the leading-order approximation (in angular frequency, horizontal
wavenumber, and migrated location) to such migration becomes a simple transformation of
the coordinates of the curvelets in the data, combined with amplitude scaling. This trans-
formation is calculated using common-offset (CO) map time-migration, which uses the local
slopes provided by the curvelet decomposition of the data. The accuracy of the method is
verified using numerical examples that indicate that using the leading-order approximation
only, provides a good approximation to CO time-migration. Even though the current work
treats constant media only, the essence of the presented leading-order derivation applies
to pre-stack depth-migration also. The combination of map migration with curvelets, as
presented in this work, unifies the finite-frequency character of curvelets with the ability
of map migration to handle caustics. Because wave-equation-based migration is not trou-
bled by the presence of caustics and honors the finite-frequency character of the data, this
work can be viewed as a hybrid formulation of map migration and wave-equation-based
migration.

4.2 Introduction

In the high-frequency approximation, seismic waves propagate along rays in the sub-
surface. The local slopes of reflections in seismic data measured at the surface determine

'This chapter together with Appendix H will be submitted for publication to Geophysics as: Huub Douma
and Maarten V. de Hoop, 2006, A hybrid formulation of map migration and wave-equation-based migration
using curvelets.
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(together with the velocity of the medium at the surface), the directions in which we need
to look into the earth from the surface to find the location and orientation of the reflector
in the subsurface where the reflectionw occurred. The determination of a reflector position
and orientation from the location of a reflection in the data and the local slope, is generally
referred to as map migration (Kleyn, 1977). For an overview of the literature on this topic,
and for an explanation of the applicability condition of map migration, we refer to Douma
& de Hoop (2006) (see Chapter 2).

Given the slopes at the source and at the receiver locations, map migration provides
a one-to-one mapping from the surface seismic measurements, i.e., locations, times, and
slopes, to the reflector position and orientation in the image (provided the medium does not
allow different reflectors to have identical surface seismic measurements that persist in being
identical under small perturbations of the velocity model; see Douma & de Hoop (2006) for
an explanation of this condition). This is in sharp contrast to migration techniques that
do not make explicit use of the slopes in the data, such as Kirchhoff methods, where the
data are summed over diffraction surfaces [see, e.g., Bleistein et al. (2000)]; such mappings
are many-to-one in a way that all points along the diffraction surface are mapped to one
diffractor location. The benefit of the explicit use of the local slopes in the data, is exploited
in several seismic applications such as parsimonious migration (Hua & McMechan, 2001,
2003), controlled directional reception (CDR) (Zavalishin, 1981; Harlan & Burridge, 1983;
Sword, 1987; Riabinkin, 1991), and stereo tomography (Billette & Lambaré, 1998; Billette
et al., 2003). This list is not complete and many more applications exist. In all these
methods, the slopes are estimated from the data using additional processing techniques such
as local slant-stacking, multidimensional prediction-error filters (Claerbout, 1992, p.186-
201) or plane-wave destruction filters (Fomel, 2002; Claerbout, 1992, p-93-97).

Recently, in the field of applied harmonic analysis (Candés & Guo, 2002; Candés &
Donoho., 2000; Candés & Donoho, 2004b) a tight frame of curvelets has been introduced
(see Appendix I for an explanation of tight frames) which provides an essentially optimal
representation of objects that are twice continuously differentiable (C 2} away from discon-
tinuities along C? edges. Due to the wave character of seismic data, the reflections recorded
in seismic data lie predominantly along smooth surfaces (or curves in 2D), just as geologic
interfaces in the subsurface lie primarily along smooth surfaces. Therefore, it is plausible
to assume that seismic data and their images can be sparsely represented using curvelets.
This was earlier also noted by Herrmann (2003a,b). At points where the recorded wave-
fronts or the subsurface contain point-like discontinuities (e.g., at the edges of a fault in
the subsurface), however, the level of sparsity that can be achieved with a curvelet repre-
sentation naturally will be somewhat less than the sparsity achieved for the smooth parts
of wavefronts or geologic interfaces. Because curvelets are anisotropic inseparable 2D ex-
tensions of wavelets that have main associated local directions, i.e., oriented wavepackets,
using curvelets as building blocks of seismic data the local slopes in the data are built into
the representation of the data; a simple projection of the data onto the curvelet frame (com-
bined with an intelligent thresholding scheme to separate signal from noise) then provides
the local directions associated with the recorded wavefronts.

Smith (1998) and Candés & Guo (2002) have shown that curvelets sparsify a class of
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Fourier integral operators from which the seismic imaging operator can be constructed. In
combination with the observation that reflections in seismic data lie mainly along smooth
curves, it seems therefore that curvelets are plausible candidates for simultaneous compres-
sion of seismic data and the imaging operator. Waves with a given dominant wavelength are
sensitive to variations in the medium with certain lengths scales only (Jannane et al., 1989);
Le., a wave with a dominant wavelength of say 100 meters is hardly sensitive to variations
in the medium on the scale of one centimeter (because the first Fresnel zone of a wave
is proportional to the square-root of the wavelength). Just like wavelets, curvelets have
a bandlimited character and thus have an associated dominant frequency. Because of this
bandlimited nature, curvelets with different dominant frequencies are sensitive to variations
in the medium at different scales. This allows the possibility to smooth the background
velocity with filters related to the dominant wavelength of the curvelets (i.e., the scale of the
curvelets), and propagate curvelets of different scales through different smoothed versions
of the medium. Smith (1998) has shown that the propagation of a curvelet through such
a smoothed medium is governed by the Hamiltonian flow in this smoothed medium associ-
ated with the center of the curvelet. Here the center of a curvelet is defined by its center in
phase-space, meaning the central location of a curvelet combined with its central direction.
This means that a curvelet is treated as if it was a particle with an associated momentum
(or direction). For each smoothed medium, this observation reduces to the statement that
the propagation of a curvelet (through an infinitely smooth medium) is well-approximated
by translating the center of the curvelet along the corresponding Hamiltonian flow, i.e.,
translating it along the ray associated with the center of a curvelet (Smith, 1998; Candés
& Demanet, 2005). In fact, the procedure just outlined yields a leading-order contribution
to the solution of the wave equation (Smith, 1998). Hence this procedure admits wave-
equation-based seismic imaging with curvelets.

In this work we focus on the simple case of homogeneous media to learn the basic char-
acteristics of seismic imaging with curvelets and as preparation for imaging in heterogeneous
media with curvelets. Because in homogeneous media the above-mentioned smoothing is
unnecessary, we ignore such smoothing in this paper altogether. Instead, we focus our at-
tention on verifying, in the context of seismic imaging, the statement that curvelets can
be treated as particles with associated directions (or momenta). We show that by treating
curvelets as such, common-offset (CO) time-migration becomes, to leading order in angular
frequency, horizontal wavenumber, and migrated location, a transformation of the coor-
dinates (i.e., midpoint and time) of each curvelet in the data, combined with amplitude
scaling. The coordinate transformation can be calculated with the aid of the explicit for-
mulas for CO map time-migration developed by Douma & de Hoop (2006) (see Chapter 2).
Numerical verification of the proposed leading-order approximation based on this simple
coordinate transformation confirms that it provides a good approximation to CO time-
migration. We emphasize that the essence of the derivation is not limited to homogeneous
media but mention that the leading-order approximation to pre-stack depth-migration is
obtained also by a transformation of coordinates. In that case, however, the accuracy of
the leading-order approximation is currently unknown.

The coordinate transformation presented below is calculated using map migration. Be-




54 Chapter 4. A hybrid formulation of map migration and wave-equation migration

cause map migration makes explicit use of the slopes in the data, it constitutes a mapping
in phase-space (Douma & de Hoop, 2006). Moreover, since there are no caustics in phase-
space, map migration naturally handles caustics. The combination of map migration with
curvelets, as presented in this work, unifies the ability of map migration to handle caus-
tics with the finite frequency character of curvelets. The ability to handle caustics while
honouring the finite-frequency character of the data, is also found in wave-equation-based
migration [e.g., Claerbout (1970, 1976), Stoffa et al. (1990), Biondi & Palacharla (1996),
Le Rousseau & de Hoop (2001)]. Therefore, we view this work as a hybrid formulation of
map migration and wave-equation-based migration.

The outline of this paper is as follows. First we explain what curvelets are, how they
are constructed, and what are their main properties. Subsequently we present examples of
digital curvelets from the digital curvelet transform (Candés et al., 2005). A more detailed
treatment of a particular construction of real-valued curvelets is included in Appendix H.
Then, we show an example of the use of curvelets as building blocks of seismic data, and
explain the relationship between curvelets and map migration. We proceed to derive that
to leading order in angular frequency, horizontal wavenumber, and migrated location, CO
time migration is equivalent to a transformation of the coordinates of the curvelets in
the data combined with amplitude scaling, and analyze the components that constitute
the coordinate transformation. Subsequently we explain how this transformation can be
calculated from pre-stack map migration. Finally, we verify the accuracy of the proposed
method using numerical examples, and finish with a discussion of the results.

4.3 Curvelets

In this section we explain what curvelets are, how they are constructed, and what are
their main properties. Appendix H, which provides a more detailed treatment of a particular
construction of curvelets, closely follows the original treatment of the construction of real-
valued curvelets by Candés & Donoho (2004b) but provides additional explanations and
derivations to guide the non-specialist. For a short summary of the more general complex-
valued curvelets, we refer the reader to Candés & Demanet (2005), while Candes et al. (2005)
describe two different implementations of digital curvelet transforms. A frame similar to
the curvelet frame was earlier introduced by Smith (1998).

In wavelet theory [e.g., Mallat (1998)], a 1D signal is decomposed into wavelets, where
a wavelet is localized in both the independent variable and its Fourier dual, say time and
frequency. Such localization is understood within the limits imposed by the Heisenberg
uncertainty principle. These wavelets can be translated along the time axis through a
translation index, and dilated in their frequency content through a scale index. They are
uniquely determined by both indices: the translation index m determines their location
along, say, the time axis, while the scale index j determines their location along, say, the
frequency axis.

Curvelets are basically 2D anisotropic (see below) extensions to wavelets that have a
main direction associated with them. Analogous to wavelets, curvelets can be translated
and dilated. The dilation is given also by a scale index j that controls the frequency content
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spectral domain spatial domain

a) g

Figure 4.1. Tilings of the curvelet frame in the spectral domain (a) and the spatial domain
(b). In the frequency domain a curvelet is supported near a wedge on a polar grid (ie.,
the actual support extends slightly further than the indicated wedge), where the width of
the wedge is proportional to 2L9/2] and its length is proportional to 27. On the support of
such a wedge, a local Fourier basis provides a Cartesian tiling of the spatial domain (shown
schematically in b). The essential support of a curvelet in the spatial domain is indicated
by an ellipse (while again the actual support extends beyond this ellipse).
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of the curvelet, while the translation is indexed by m; and mg (in two dimensions)?. A
curvelet has a main associated direction that can be changed through a rotation. This
rotation is indexed by an angular index I. The relation between these indices and the
location of the curvelet in the spatial and spectral domains is shown in Figures 4.1a and b.
A curvelet is uniquely determined by all four indices (7,1, m1,m2).

As explained in Appendix H, curvelets satisfy the anisotropic scaling relation width
squared length in the spatial domain3. This is generally referred to as parabolic scaling.
This anisotropic scaling relation associated with curvelets is a key ingredient to the proof
in Candés & Donoho (2004b) that curvelets provide the sparsest representations of C 2 (i.e.,
twice continuously differentiable) functions away from edges along piecewise C? curves.
The search for sparse representations of such functions in the field of image analysis was
the original motivation for their construction, as wavelets fail to sparsely represent such
functions (Candés & Donoho, 2004b) due to their isotropic character. The anisotropic
scaling relation is a key difference between wavelets and curvelets. The parabolic scaling is
also a key ingredient to the proof that curvelets remain localized in phase-space (i.e., remain
curvelet-like) under the action of the wave operator provided the medium is smoothed
appropriately prior to propagation (Smith, 1998).

Curvelets are constructed through the following sequence of operations. First, the
spectral domain is bandpass filtered in the radial direction into dyadic annuli (or subbands);
this means that the radial widths of two neighboring annuli differs by a factor of two, the
next outer annulus having twice the radial width of the inner one (see Figure 4.1a). Each
subband is subsequently subdivided into angular wedges, where the number of wedges in
each subband is determined by the frequency content (or the scale index j) of the subband
(see Figure 4.1a). The number of wedges in a subband with scale j is 2l3/2] where the
notation |p| denotes the integer part of p. This means that the number of wedges in a
subband increases only every other scale’. Subsequently, each wedge is multiplied by a
9D orthonorma)] Fourier basis for the rectangle that just covers the support of the wedge.
According to the discrete Fourier transform, this basis has the fewest members if the area
of this rectangle is minimum, since then the product of both sampling intervals in space is
largest. Therefore, the orientation of this rectangle rotates with the angular wedge, and the
spatial tiling associated with the local Fourier basis is oriented along the central direction
of the angular wedge (see Figure 4.1b); that is, the spatial tiling associated with each
angular wedge depends on the particular orientation of the wedge. The subband filtering

2We differ from the standard notation k; and k2 to avoid confusion with the wave-vector components.

3Considering the difference in dimension between width and squared length, this scaling relation holds
when both width and length are made dimensionless through division by a reference length, typically the
sampling interval in numerical implementations. Otherwise this relation would involve a proportionality
constant that has a dimension which adjusts for the difference in dimension between width and squared
length.

4This is a consequence of the dyadic nature of the subband filtering done in the first step combined with
the desired parabolic scaling. Without this splitting at every other scale resulting from the parabolic scaling,
the number of wedges would increase with a factor V2 if the scale index was increased by one. In this case
we would not have an integer number of wedges, hence the doubling of the number of angular wedges every
other scale only.
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gives curvelets their bandlimited nature (just as with wavelets), whereas the subdivision
of these subbands into angular wedges provides them with orientation. The local Fourier
basis over the support of the angular wedge allows the curvelets to be translated in space.
Therefore, curvelets are in essence a tiling of phase-space; l.e., a tiling of two variables and
their two Fourier duals. The tiling is non-trivial in that the sampling of phase space is polar
in the spectral domain, but Cartesian in the spatial domain. As explained in Appendix H,
curvelets are essentially Heisenberg cells in phase-space.

Roughly speaking, we can think of curvelets as small pieces of bandlimited plane waves.
The difference between this rough description and the actual interpretation lies, of course, in
the fact that a bandlimited plane wave has associated with it one k direction only, whereas
a curvelet is associated with a small range of k vectors. A better description is the term
coherent wave packet which was around before curvelets were ever constructed [e.g. Smith
(1997, 1998)] and dates back to the work of Cérdoba & Fefferman (1978). The frequency-
domain tiling of the curvelet frame is the same as the dyadic parabolic decomposition or
second dyadic decomposition (Gunther Uhlmann, personal communication with Maarten
de Hoop) used in the study of Fourier integral operators [see e.g. Stein (1993)], which was
around long before the construction of the curvelet frame (Fefferman, 1973).

Curvelets form a tight frame for functions in L? (Rz) — see Appendix H for the proof
of this property and Appendix I for an introduction to tight frames. This means that, much
as with an orthonormal basis, we have a reconstruction formula

=X (heen, (fe)= [ f@)p@a, (@1)

PEM

where ¢, denotes a curvelet with multi-index p = (j,1,m1, my), the superscript * denotes
complex conjugation, M is a multi-index set, and f(z, z9) € L? (R2). Thus, we can express
an arbitrary function in L2 (R2) as a superposition of curvelets. The quantity (f,c,) is the
coefficient of curvelet ¢, which denotes the projection of the function f on curvelet c,,.

4.3.1 Digital curvelets

In the construction of curvelets treated so far, the sampling of the spectral domain is
done in polar coordinates while the sampling of the spatial domain is Cartesian (see Figures
4.1a and b). From a computational point of view, this combination is not straightforward
to implement. Combining Cartesian coordinates in both domains is straightforward and
is standard in data processing. Therefore, for the purpose of digital curvelet transforms,
the polar coordinates in the spectral domain are replaced with Cartesian coordinates (see
Figures 4.2a). Also, in the field of image analysis [where the digital curvelet transform
was originally developed (Candés & Donoho, 2004a; Candés et al., 2005)], images usually
have Cartesian spatial coordinates to begin with; hence it is natural to have Cartesian
coordinates in the spectral domain also. This allows straightforward application of Fast
Fourier Transform algorithms. This argument holds for seismic as well as image data.

To go from polar coordinates to Cartesian coordinates in the spectral domain, the
concentric circles in Figure 4.1a are replaced with concentric squares (see Figure 4.2a);
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Figure 4.2. Tilings for digital curvelets in the spectral domain (a) and the spatial domain
(b). For digital curvelets, the concentric circles in the spectral domain are replaced with
concentric squares, and the Cartesian spatial grid is sheared.
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hence the rotational symmetry is replaced with a sheared symmetry. As a consequence, the
Cartesian sampling in the spatial domain is a Cartesian grid that is sheared rather than
rotated (cf., Figures 4.1b and 4.2b)5. This construction allows a rapidly computable digital
curvelet transform (Candés et al., 2005). For more details on the implementation of digital
curvelet transforms, we refer to Candeés & Donoho (2004a) and Candés et al. (2005).

4.3.2 Examples of digital curvelets

Figure 4.3 shows examples of digital curvelets. The left column shows curvelets in the
spatial domain, while the right column shows their associated spectra. Superimposed on
the spectra is the spectral tiling of the digital curvelet transform. The middle column shows
the associated spatial lattice for each of the curvelets, where the centers of the cells are the
locations of the centers of the curvelets in space®. Here the spatial cells on the spatial lattice
are colored according to the magnitude of the curvelet coefficient (here always unity); black
equals one and white equals zero. Figure 4.3b shows a translated version of the curvelet in
Figure 4.3a; the spectral tile is the same, but the spatial tile has changed, i.e., indices j and
! are held constant, but the translation indices m; and my are different. Figure 4.3¢c shows
a curvelet with the same spatial location and the same scale index as that in Figure 4.3a,
but with a different angular index [. That is, the spectral tile has moved within the same
filter band, i.e., within the same concentric squares. Note how the spatial lattice changes as
we change the angular index {. Finally, Figure 4.3d shows a dilated version of the curvelet
shown in Figure 4.3a; the spatial location is the same, but the spectral tile has moved
outward into a neighboring annulus (or subband), i.e., the scale index j — j + 1. Since the
neighboring annulus is subdivided into more wedges, the angular index ! has also changed,
but in such a way that the direction of the curvelet is basically the same. Similarly, since
the larger scale has a finer spatial sampling associated with it, the translation indices m 1
and mgy have also changed, but in such a way that the curvelet location is the same.

4.4 Curvelets remain curvelet-like when subjected to the class of operators
relevant for seismic imaging

The action of operators belonging to the class of Fourier integral operators that can be
sparsely represented using curvelets, which includes the CO time-migration operator, can
be described in terms of propagation of singularities along a Hamiltonian flow (Smith, 1998;
Candes & Guo, 2002). The action on a curvelet of a particular scale can be approximated by
translating the curvelet along the ray associated with the center of the curvelet through the
medium smoothed for that particular scale. This means that, in the appropriately smoothed
media, curvelets remain fairly localized in both the spatial domain and the spectral domain.

Here the centers of the cells are the locations of the centers of the curvelets in space.

SThroughout this work, we used the nonequispaced fast Fourier transform-based curvelet transform
(Candés et al., 2005). Because this transform induces a sheared spatial grid, as opposed to the wrapping-
based transform (Candeés et al., 2005), which induces a rectangular grid, all spatial lattices shown in this
work are sheared grids.
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Figure 4.3. First column: curvelets in the spatial domain. Second column: associated
spatial lattices, and spatial cells colored according to the value of the coefficient (black is
one, white is zero). Third column: amplitude spectra and frequency-domain tilings. First
row: a curvelet. Second row: curvelet from (a) with different translation indices. Third
row: curvelet from (a) with a different angular index. Fourth row: curvelet from (a) with
a different (higher) scale index (here the translation indices and the angular index are also
different because they both depend on the scale index).
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Hence, the propagated curvelet can be constructed by using neighboring curvelets only,
where neighboring is understood in the context of phase-space; i.e., a neighboring curvelet
is a curvelet that is close in the spatial domain and has orientation close to the orientation
of the curvelet that is propagated along the central ray, i.e., the ray associated with the
center of the curvelet in phase-space. Note that propagation of a curvelet in accordance
with the Hamiltoninan is an operation in phase-space since it makes explicit use of the slope
of the curvelet. Since in phase-space no caustics can occur, curvelet-based imaging does not
even notice the formation of caustics.

For homogeneous media smoothing is unnecessary and curvelets of all scales can be
propagated along the central ray through the same medium. To illustrate this, Figure 4.4
shows the result of CO Kirchhoff migration of a curvelet [taken from Douma & de Hoop
(2004)]. The top row shows the input curvelet in space (the vertical axis was converted
to depth using z = vt, /2 for convenience, with z denoting depth, and v and ¢, denoting
velocity and the two-way traveltime, respectively) and its associated amplitude spectrum.
Again the spatial distribution of the coefficients is shown in the middle panel, just as
in Figure 4.3. The left-most panel of the bottom row shows the CO Kirchhoff-migrated
curvelet. Notice how the migrated curvelet is clearly localized in space and determines only
part of the isochron, in sharp contrast to the whole isochron if a single sample (or a ‘spike’)
would be used as input to the migration. This confirms that in the context of migration (at
least for CO time-migration), curvelets are indeed a more appropriate choice for building
blocks of seismic data than are spikes (that are currently used to represent seismic data).
The spectrum of the migrated curvelet (bottom right) is clearly also localized after the
migration, and overlies only four wedges in the curvelet tiling of the spectrum. The middle
panel shows the coefficients for the spatial area in the lower left quadrant of the leftmost
figure (outlined by the dotted lines), for the wedges labeled ‘1’ through ‘4’; since curvelets
of different orientations induce different spatial tilings”, and since the migrated curvelet
overlies four wedges, the spatial distribution for the coefficients related to all four wedges
are shown separately in the lower middle pannel of Figure 4.4. Indeed this reveals that the
migrated curvelet is constructed from several curvelets, but only few of them having large
coefficients. This confirms that curvelets remain fairly localized in both the spatial and
spectral domain (i.e., they remain curvelet-like), at least after CO time-migration.

4.5 Curvelets as building blocks of seismic data

Seismic reflections in seismic data lie primarily along smooth surfaces (or curves in two
dimensions). Even diffractions from discontinuities in the earth’s subsurface, such as edges of
geologic interfaces caused by faulting, lie along smooth surfaces. This is a direct consequernce
of the wave-character of seismic data. As mentioned in the introduction, it is intuitive
that curvelets can be used to sparsely represent seismic data because curvelets provide the
sparsest representations of smooth (C?) functions away from edges along piecewise C'2 curves

"The wrapping-based curvelet transform (Candeés et al., 2005) does not induce different tilings for spectral
wedges with the same scale index but different angular indices.
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Figure 4.5. Synthetic common-shot gather with cusped wavefront: original (a), recon-
structed using only the 0.25% largest curvelet coefficients (b), and the difference (c). The
reconstruction with 0.25% of the curvelets is almost identical to the original common-shot
gather. In this example, using only 0.25% of the curvelets results in about 30 times fewer
curvelets than input samples in the gather.

(Candés & Donoho, 2004b). Throughout this work, we adopt this intuition and illustrate
this with a simple synthetic example. Hence, we focus on the sparse representation of the
imaging operator rather than the data.

Figure 4.5a shows part of a synthetic common-shot gather, where the wavefront has a
cusp. These data relate to a model with a syncline-shaped reflector. Figure 4.5b shows the
reconstructed gather where only the 0.25% largest curvelet coefficients were used. For the
particular example shown, this relates to a compression ratio of about 30; i.e., we used 30
times fewer curvelets than the number of sample values in the original gather to reconstruct
the data. From Figure 4.5c the difference between the original and reconstructed data is
negligible. Note that this large compression ratio is partly a result of the synthetic data
having many zero sample values to start with; for a field data example this compression
ratio would likely be smaller. This example, however, shows that with curvelets as building
blocks of seismic data, the data can be represented with fewer curvelets than samples in
the data, and with essentially no residual, even in areas where the wavefront has cusps.

In this example, we have applied a hard thresholding to the data; we discarded 99.75%
of the curvelets. At first sight one might therefore think that the compression ratio should be
400. The curvelet transform, however, is a redundant transform, meaning that if all curvelets
are used to reconstruct the data, there are more curvelets than sample points in the data.
Different digital implementations of the curvelet transform have different redundancies®

8In this particular example, the apparent compression ratio (400) and the associated implied redundancy
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The quantity between the square brackets is an oscillatory integral that can be approx-
imated using the method of stationary phase [e.g., Bleistein et al. (2000, p.129)]. Treating
—w as the formal large parameter and defining the phase ® as

_ "'s(yax; h’) + 'rg(y,:c; h) _ ke

q)(y,.’ll, kx,w,h) = v ’;1‘ y (411)
we get
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with ®"(y, (y, kg /w; h), kz,w; h) := the Hessian evaluated at the stationary

Oz® z(y,k=z/wih)
midpoint location z(y, kz/w; k). Note that the factor /|w| in equation (4.10) has canceled
out through the stationary phase approximation. Calculating the Hessian explicitly gives

@":ﬁ( ! ! ) . (4.13)

v \B(y,z;h) | r3(y,zh)

Since r,(y, z; h) and r4(y, z; k) represent distances (that are always positive) and because
we have yg > 0, it follows that the Hessian is positive definite, whence sgn(®”) = 1. Using
this in equation (4.12) gives

—o0J—00 /21| ®"(y, 2(y, ke /w; h), Kz, w; B)|

x Uy (kg,w)dkzdw . (4.14)

The stationary midpoint location z(y, kz/w; h) satisfies

aé(y7 m’ km, w; h)

oz r=z(y,kz/w;h)

=0. (4.15)

This condition leads to a quartic equation in x with z(y, kz/w;h) as its solution. This
solution gives the midpoint location z as a function of the slope p = kz/w in the CO
data and the migrated location y. The resulting expression for z(y, kg /w; h) is thus a map
demigration as a function of unmigrated (or input) as well as migrated (output) quantities;
i.e., the midpoint location is determined as a function of the unmigrated slope and the
migrated location. Note that to find the stationary midpoint location z(y, kz/w;h) the
quartic equation does not need to be solved if we decompose the data into curvelets. In
that case we can use the resulting central midpoint location (z), central traveltime (t)
and central slope (p) to determine the migrated location (y) through the map migration
equations (4.2)-(4.4). In this way, for each input curvelet, we know the relation between
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the midpoint location = on one side, and the migrated location y and the slope (p) in the
data on the other side. Hence, we need not solve the quartic equation if we setup the
migration in the data-domain (i.e., an input-based algorithm, see below) rather than in the
image-domain (i.e., an output-based algorithm). The explicit form of the quartic equation
is given in Appendix J.

Let B,(y) be the image of one input curvelet ¢y, with multi-index p = (4,1, m1, m3).
That is, we replace the input data Us(kz, w) in equation (4.14) with one curvelet Culks,w),
where the notation ¢, denotes the Fourier transform of the curvelet cu(z,t) in the = — ¢
domain. Therefore we have

o0 o<
Bu(y) = / / d(y, kg, w; h)e‘ip(y""'(y”%/“”h)’km"";h)éﬂ(kx, w)dkzdw , (4.16)
—00 J —-00

where we have defined
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with
ty,z; k) := (rs(y, 75 h) + rg(y, z; R)) Jv (4.19)

the traveltime from the source to the reflector and back to the receiver. Equation (4.16) is
reminiscent of plane-wave migration (Akbar et al., 1996).

Noticing that é,(k.,w) is localized near a wedge with center angular frequency w,, and
center horizontal wavenumber k¥, we linearize the dependence of P on w and k, around
wy and k%. This means that, apart from the amplitude a’, the oscillatory integral on the
right-hand side of equation (4.16) becomes simply an inverse Fourier transform. Doing this,
we have

P(yakz)w;h’) ~ P(y’k;:t’w’u;h)

dP dP
Hw —wa) —= + (ke — k) —— ) (4.20)

(k) ARz | (ks 10

where the derivatives dP/dw and dP/dk, denote total derivatives. From equation (4.18) it
is immediate that

Py, kz,wui h) = wy t(y, 2(y, pus h); h) — k2 2(y, pu; B) | (4.21)

where p, := k}/w,. Then, calculating the total derivative, it follows from equation (4.18)
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that
dP ot ox Oz
= = t(y, z(y, pus h); h) + ( ——) - (km—) . (4.22)
9 | g o) 02 0w / | kg o) 00 /| kg o)
Since p = 8t/dz and that wp = ks, it follows that
dP
To = t(y, z(y, pu; h); 1) - (4.23)
(k:‘c‘)wu)
Similarly, it follows that
dP ( ot 6:1:) Oz
- = |\wam — z(y,pui h) — (kx__)
Bk | e wu) 0z ks ) | (a ) Okz ) | (k wu)
= —z(y,pu;h) . (4.24)
Using equations (4.21), (4.23), and (4.24) in (4.20), we have
P(y, kz,w; h) & wt(y, 2(y, pus h); h) — ke (Y, pus h) - (4.25)

In addition, using that the amplitude a/(y, kz, w; h) varies slowly over the spectral support
(i.e., a spectral wedge) of a curvelet, we approximate

d(y, ks, w; h) = ' (y, kg, wus B) - (4.26)

Then, using equations (4.25) and (4.26) in (4.16), it follows that
(o9} o0 X
Bu(y) = d'(y, k3, wu; h)/ / éﬂ(kz,w)e"“{‘*’t(y:f(w’mh);h)—k: s(wpuit)dk,dw, (4.27)
—00 J —00

which is indeed simply an inverse Fourier transform of a curvelet.

Furthermore, we make use of the fact that curvelets remain (fairly) localized in the
spatial domain under the action of the migration operator (see Figure 4.4 for an illustration
in the context of time migration). That is, given a curvelet in the data cu(x,t) with center
location (&, t,) and main slope py, this curvelet is localized near the map-migrated location
Y, Therefore, we linearize the dependence of t(y, z(y, pu; h); h) and z(y, pu; h) on y around
the map-migrated location y,,. Linearizing z(y, pu; h) gives

2y, puih) = T + (Vyz (¥, pus D)y - (4 = Ym) » (4.28)

where we used T, = Z(Y,,, Pu; h) and where the notation V4 denotes the gradient with
respect to y. Linearizing t(y, z(y,pu; h); h) in y again involves total derivatives instead of
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partial derivatives since both ¢ and = depend on y. Hence, we have

dt(y, z(y, pu; h); h
Yy, z(y,pui )i h) = (Y, T(Yms Puj B)j ) + v (Zyp i) (Y = Ypm)
Yy
Ot(y, z(y, pu; h); h
=ty +(Y—Yn) {Vyt(y,fc(y,pu;h);hH it (%f ) )Vyx(y,pu;h);h)}
Ym
=ty + (Y — Yn) - {Vyt(y,m(y,pu; h);R)ly,  + puVyz(y, pu; b); h)lym} : (4.29)

Using equations (4.28) and (4.29) in (4.27) it follows that

oo poo )
ﬁ/l, (y) = a/(y, kY, wy; h) / / é#(kx’w)e—z(wtu—kzxu)
—~00 J —00
y e—i{w {Vyt(y,z(yypu;h);h)+puVym(y,pu;h);h)} 'ym —ky vyz(y’p“;h)lym } _(y_ym)dkxdw |
(4.30)

Realizing that the integral is peaked at y = y,,, we can replace o’ (y, k%, wy; h) in equation
(4.30) with a/(y,,, k%, wy; k). Doing this, while recognizing the inverse Fourier transform,
we finally have

Bu(y) = & (Y, ks wus h) cu(L - (¥ — ym) + Tu) (4.31)
where we have defined
T
L = (Vym(y,pu;h)lym {Vyt(y, 2(y,pu; h); h) +puVyx(y,pu;h)}|ym) ;
(4.32)
Ty = (x4 tu)T . (4.33)

Therefore, it follows that the leading-order approzimation (in angular frequency, horizontal
wavenumber, and migrated location) to CO time-migration, consists of a coordinate trans-
formation applied to a curvelet in the data, given by

y=L1. (x—2y) + Y » (4.34)

combined with an amplitude scaling, where both the matrix L and the amplitude a’ are
evaluated with the use of pre-stack map migration. In other words, Kirchhoff diffraction
stacking is replaced with a coordinate transformation of the curvelets in the data.

The matrix L can be written as

L=S§, T, (4.35)
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with

S, = (1 ‘1)) (4.36)

T
T = (Vaowpaihll, Votlw,z@pshibl,) - (4.37)

The explicit form of the matrix T for CO time-migration in (4.37) is derived in Appendix
K. Note that the matrix Sp, defines a unilateral shear along the t-axis; i.e., the matrix Sp,
shears the input curvelet with slope p,, along the t-axis to have zero slope.

Now that we know the leading-order approximation to one CO time-migrated curvelet
¢, through equation (4.31), we can determine the total image of the (scattered) data us
using the reconstruction formula (4.1). Letting M denote the 2.5-D CO time-migration
operator, we have

By) = [Mug] (1) = D (usyc) M) (@) = Y (us,00) Bul¥) (4.38)

HEM pEM

where M is the index set containing all multi-indices p represented in the data. Finally,
because seismic data can be sparsely represented with curvelets, we can write the total

image A(y) as
)= 3 (us ) Bulw) (4.39)

uEM

with 8, (y) given by equation (4.31), and M the index set that holds the multi-indices of
curvelets that survive a certain threshold. Note that the index set M is determined through
thresholding the projection of the seismic data us onto the curvelet frame.

4.7.1 Input- versus output-based imaging

Equation (4.39) is based on a decomposition of the data us(x) with curvelets, followed
by thresholding of the resulting coefficients, and subsequent imaging of each curvelet that
survived the thresholding. Therefore, this is an input-based seismic migration. This is anal-
ogous to convolution of each sample in the data with its associated isochron in accordance
with classical Kirchhoff time-migration. Alternatively, output-based Kirchhoff migration can
be calculated based on diffraction stacks, as is done in practical imaging algorithms; i.e.,
for each position in the image, a diffraction surface is calculated and the data are stacked
over this surface. The resulting stack then gives the image at that particular position in
the image.

There is an important difference between input- and output-based migration algo-
rithms. In output-based algorithms the image points are specified and the needed diffrac-
tion surfaces in depth migration are calculated by ray-tracing in heterogeneous (anisotropic)
media from the image point to the surface. In input-based algorithms, for a particular point
in the data, all locations in the image that have the same traveltime as the data point need
to be calculated. This is a more complex procedure than ray-tracing from the image point
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to the subsurface. For this reason many practical migration implementations are output-
based algorithms. For the homogeneous media case treated in this work, this difference is
irrelevant. Formulating the migration as an output-based imaging algorithm, we have

Bly) = Mu(y)= > (Mus],cu)cw(y)
pem’

= > (ue [Mey]) ew(y), (4.40)

wWeM!

where M* is the adjoint of the migration operator, i.e., the modeling (or demigration)
operator. In this case, a curvelet in the image domain is demigrated and its projection onto
the data is calculated. Subsequent thresholding then determines if the projection of the
demigrated curvelet onto the data exceeds a specified threshold. This procedure would allow
target-oriented wave-equation-based migration by demigrating curvelets contributing to a
particular part of the image only. This requires calculating the leading-order approximation
to the demigration operator acting on a single curvelet, i.e. [M *cw|(x) in equation (4.40).

4.7.2 Analysis of the linear transformation L

In Appendix K we derive an explicit expression, equation (K.13), for the linear trans-
formation T in 2D CO time-migration. It is given by

tan 037'3 + tanfyr3

7-3 + 3
T = * e , (4.41)
—2cosfsin¢ 2cosfcos ¢
v v

where 6 is the half opening-angle (see Figure 4.7). Inspection of the second row of this
matrix, reveals that this transformation contains a rotation with angle ¢ = (8, + 0y)/2,
which is the migrated dip. Making this rotation explicit, we rewrite T as

T=T-R_,, (4.42)

with

T =

(cosd)+Xsin¢ Xcos¢—sin¢>, R_¢:=<COS¢ sin ¢

0 2cosd —sin¢g cos¢
v

> . (4.43)

The matrix R_4 describes a rotation with angle ¢. Because ¢ is clockwise positive and
since ¢ increases downward while z increases to the right, R_4 describes an anti-clockwise
rotation. In the definition of T we introduced

B tan 037'3 -+ tan 097'2

X = 4.44
r3+ 7'2 ( )
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Figure 4.8. Illustration of the individual components of the linear transformation L~! =
R4-S~1.D71.S_,, [equation (4.47)]: input curvelet (a) after S_p,, (b), D71 (c), S~ (d), and
Ry (e). The parallellogram superimposed on a curvelet in subfigure a and its transformed
versions in b-e allow easy identification of the action of each individual component of L.

for notational convenience. Further, inspecting equation (4.43) it follows that T' can be
written as the matrix product of a dilation matrix D and a unilateral shear matrix S. That

is, we can write T” as
T=D-8S, (4.45)

with
cos¢ + Xsing 0 1 Xcos¢ —sing
D := 0 2cos8 | , S:= cos¢p+ Xsing | . (4.46)
0 1
v

Therefore, using equations (4.42) and (4.45) in equation (4.35), it follows that
L=S, -D-S-R_4. (4.47)

Finally, using this representation of L in the coordinate transformation in equation (4.34),
which describes the leading-order contribution to 2D CO time-migration, we have

y=R¢'S—1'D_1'S'—Pu'(m_mu)'l_ym’ (448)

where we used that S_,, = S 1

From equation (4.48) it follows that the leading-order approximation to CO time-
migration can be described by the following sequence of linear!? transformations. First, a
curvelet in the data with center location @, (i.e., center midpoint location z,, and center
two-way traveltime t,) and center slope py, is sheared along the time-axis to have zero slope.
Subsequently, the curvelet is dilated in both the vertical and horizontal direction. Then,
the curvelet is sheared along the horizontal direction and is rotated to have output dip ¢.

10The translation part of the coordinate transformation is of course not linear.
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All these linear transformations have the center location x, of the curvelet as their origin.
Finally, the resulting transformed curvelet is translated to the migrated output location
Ym- This sequence of transformations (except the translation) is depicted for one curvelet
in Figure 4.8, where a parallellogram is added to illustrate the geometric character of these
transformations.

Based on our knowledge of map migration, the rotation and translation part of the se-
quence of transformations is intuitive. The dilation in the vertical direction with v/(2cos8)
(after shearing the curvelet along the time axis to have zero slope) takes care of both the
time-depth conversion and of the lowering of the frequency content resulting from the imag-
ing condition; i.e., the frequency content is lowered by a factor cos8 because the length of
the migrated slowness p,,, is smaller than the sum of the lengths of the input slownesses Psy
(see Figure 4.7). Therefore, the translation, rotation and dilation part of the transforma-
tion conform to our intuition [see also Douma & de Hoop (2005)]. However, the unilateral
shears along both the vertical and horizontal axes, as well as the dilation of the horizontal
axis, are somewhat surprising, and indicate that the leading-order approximation to CO
time-migration incorporates a certain amount of linear deformation — this linearity results
from the linearization of t(y, z(y, pu; h); h) and z(y,p,;h) about Y- To understand this,
consider the special case of zero-offset migration. In that case the matrices S_p, and Ry
remain unchanged, while the shear matrix .S becomes the identity matrix and the dilation

matrix D is given by
1/ cos 0
Dl,_, = ( /cos ¢ ) . (4.49)

Observe that this matrix includes no cosé term because for zero-offset § = 0 (i.e, |Pml =
2/v). Note also that this matrix includes a squeeze in the horizontal direction equal to
cos ¢. Because this squeeze is applied after S_p., which shears the input curvelet to have
zero slope, the squeeze shortens the long axis of a curvelet. If ¢ = 7/2 the long axis of
the curvelet is mapped onto a point. This can be understood by noticing that, assuming
a constant velocity, we can record a reflection from a dipping reflector with dip 7/2 in the
subsurface only if this reflector is at the surface. Since the reflection of this reflector will
have a slope 2/v in the data, a straight line with this slope will be mapped onto a point.
Therefore the horizontal component of the dilation matrix accounts for both focussing (or
defocussing) of curvelets upon imaging and geometrical spreading.

4.7.3 Calculation of L

All quantities necessary for the calculation of I, can be found from the curvelet decom-
position of the data, combined with map migration. First, the central location ., = (g )T
of the curvelet in the data is found from the translation indices m1 and mg, while the slope
Pu is found from the scale index j and the angular index I. This slope determines the matrix
S_p,- Then, using x,, t,, and p, in the 2D map time-migration equations (4.2)-(4.4), we
find the migrated location y,,, and the migrated slope p,,. The migrated dip ¢ can then
be calculated from ¢ = tan~!(vp,,/2), which determines the rotation matrix Ry. From
Ym and z, the distances rsg(y,,, Zu; h) can be calculated using equation (4.9) for a given
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half-offset h, and the angles 6,4 then follow from 654 = cos™!(y5*/rs,g), which determine
the half opening-angle § = (8, —0;)/2. Using the calculated values of ¢, Ts.g(Ym> Tus ), Os,g,
and 6, we can calculate the matrices D and S using equations (4.44) and (4.46). Note that
in digital implementations the matrix L needs to be applied on a grid. For this purpose,
we derive the discrete form of L in Appendix L.

4.8 Extension to pre-stack depth-migration

Although here we have concerned ourselves with time-migration only (i.e., straight
rays), the main ingredients of the presented derivation apply to pre-stack depth-migration
as well. That is, for pre-stack depth-migration the derivation of the leading-order approx-
imation also contains a stationary phase evaluation of the integral with respect to the
non-constant (or non-common) variable!!, and subsequent linearization of the phase of the
resulting oscillatory integral followed by linearization around the (map) migrated location
Y. Therefore, for pre-stack depth-migration, a derivation similar to that presented here
also leads to the leading-order approximation to depth-migration being a simple trans-
formation of coordinates. For depth migration, however, the transformation is calculated
for a smoothed medium, as pointed out by Smith (1998) in the context of solving the
wave-equation; i.e., a curvelet with scale index j (i.e., a wavelength proportional to 279)
is migrated through a smoothed medium that has no heterogeneity beyond a scale propor-
tional to V2~ = 279/2 i.e., beyond the width of a curvelet. This is reminiscent of the first
Fresnel zone of a wave being proportional to VA, with A the wavelength.

In the context of one-way wave-equation-based migration we mention that deformation
of a curvelet beyond the leading-order approximation could possibly be calculated using an
approach similar to the one given by Smith (1998, p.799), who presents a weak solution to
the wave equation as the solution of a Volterra equation. The solution of this equation is
evaluated based on an initial estimate of the solution constructed from roughly translating
the centers of curvelets along the Hamiltonian flow associated with the smoothed media. In
the context of one-way wave-equation-based imaging, the wave operator is to be replaced by
a one-way operator, while time is replaced by depth. Then the extension of the presented
leading-order approximation for CO time-migration to pre-stack depth-migration, would
allow the calculation of the initial estimate of the solution of the Volterra equation. We
emphasize that this idea remains to be verified.

4.9 Numerical examples

Figure 4.9a shows the 2.5-D CO Kirchhoff migrated curvelet from Figure 4.4 in more
detail, while Figure 4.9d shows the real part of the associated spectrum. Figure 4.9b shows
the result of using the leading-order approximation (4.31) to image the same curvelet, while
Figure 4.9c shows the difference between the Kirchhoff result and that of the leading-order

117, this work the non-common variable is the midpoint, but in, for example, common-shot depth-
migration, it would be the receiver location.
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CO Kirchhoff Coordinate transform Difference
x (km) x (km) X (km)
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Figure 4.9. CO Kirchhoff migration of the curvelet shown in Figure 4.4 (a), coordinate
transformation of this curvelet according to equation (4.34) (b), and the difference (c). The
bottom row shows the real part of the spectrum for the CO Kirchhoff migrated curvelet
(d), the coordinate transform of equation (4.34) (e), and the difference (f). The coordinate
transformation provides a good first approximation to the Kirchhoff-migrated curvelet.

P —
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approximation. Before subtraction, both images were normalized to the same maximum
amplitude so that the difference shows only relative amplitude differences between the two
images. Figures 4.9e and f show the real part of the amplitude spectra of the images shown
in Figures 4.9b and c.

The leading-order approximation (4.31) based on a simple transformation of coordi-
nates of curvelets provides a good approximation to the Kirchhoff result. The maximum
amplitude of the difference between both methods is 24% of the maximum amplitude in the
Kirchhoff image. Note from the patterns in the real parts of the spectra, that the curvelet
is slightly curved due to the migration, whereas the linear coordinate transformation does
not take such bending into account (cf., Figures 4.9d and e). As a consequence, the main
difference in the spectrum occurs on the edges of the support of the curvelet in the fre-
quency domain (see Figure 4.9f). This difference, attributable to the nonlinear deformation
of the curvelet which is absent in the presented leading-order approximation, can again be
considered small.

Although Figure 4.9 shows a favorable comparison for one particular curvelet, of im-
portance is the interference among several curvelets after migration. Figure 4.10a shows
a superposition of eight curvelets, with the same central location in space, and the same
scale index, but different directions (or angular indices). Figure 4.10b shows the ampli-
tude spectrum of the superposition of all eight curvelets, revealing that we used right-ward
sloping curvelets only. Figure 4.10c shows the 2.5-D CO Kirchhoff migrated result (the
offset is here 2 km), while Figure 4.10d shows the result of the leading-order approximation
[i.e., equation (4.38), with §,(y) calculated using (4.31)]. Since the data in Figure 4.10a
contain right-ward sloping curvelets only, the Kirchhoff result contains the left part of the
bandlimited isochron only, as expected. Comparing Figures 4.10c and d, the leading-order
approximation again provides a good approximation to the Kirchhoff migrated result; the
interference of the different curvelets leads to an overal smooth left-part of the bandlimited
isochron that compares favorably with the Kirchhoff result. Away from the isochron, both
results show the weak tails of the curvelets. For the Kirchhoff result these tails are again
somewhat curved towards the isochron, while the leading-order approximation does not
include such nonlinear deformation. The difference between both results, however, is small.

Figure 4.11a shows a CO section (with offset equal 1 km) of synthetic data generated
from a syncline model in a constant-velocity background. We use these data to further
test the curvelet-based migration, and to highlight that triplications in the data are not a
problem; crossing events in the data are simply constructed from curvelets that have the
same location but different orientations. In Figure 4.11a we used only the 0.75% largest
curvelet coefficients of the data to reconstruct the data. This thresholding percentage was
determined in the same manner as presented earlier for the data shown in Figure 4.5, i.e.,
through visually verifying that the difference between the original and reconstructed data is
negligible. The associated amplitude spectrum of the reconstructed data is shown in Figure
4.11b. Observe that almost all energy is contained in frequency bands associated with scale
indices 4 < j < 6. Figure 4.11c shows the 2.5-D CO Kirchhoff migrated result, while Figure
4.11d shows the curvelet-based migration calculated with the leading-order approximation
i.e, using equation (4.39)]. The leading-order curvelet-based migration provides a good
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CO data amplitude spectrum
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Figure 4.10. Superposition of eight curvelets (a), the associated amplitude spectrum (b), the
CO Kirchhoff-migrated result (c), and the result from the coordinate transformation of equa-
tion (4.34), combined with amplitude scaling [equation (4.31] (d). The amplitude-corrected
and coordinate-transformed curvelet gives a good approximation to the Kirchhoff-migrated
result, and the interference between different curvelets results in a smooth isochron. Since
we used only rightward-sloping curvelets, the left part of the isochron is constructed only.
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ures 4.12a, b and c). Figures 4.12d, e, and f, show the associated cumulative images; the
images for j < 4 are not shown because the data have essentially no energy for j < 4 (see
Figure 4.11). Following such per-scale imaging, the associated image gathers can then be
submitted to a velocity analysis. The opportunity for such frequency-dependent migration
velocity analysis is a straightforward consequence of the curvelet frame being an appropri-
ate representation of both the seismic data and the imaging operator. Note that per-scale
imaging also allows the study of the finite-frequency interaction with the interfaces, i.e., the
frequency-dependence of the reflection coefficient.

The locally-associated main directions of curvelets allow controlled illumination (Ri-
etveld & Berkhout, 1992) of the subsurface. Figure 4.13a shows the amplitude spectrum of
the data in Figure 4.11a, but reconstructed with rightward sloping curvelets only. Hence,
a dip-filtering is here achieved by simply reconstructing the data using rightward sloping
curvelets only. Figure 4.11b shows the resulting image, which now mainly shows the left
part of the syncline only. Note that a partial image of the discontinuity on the right edge
of the syncline is also visible, but now imaged with rightward sloping curvelets only. Here,
the controlled illumination is achieved by dip-filtering the data with curvelets. Dip-filtering
the image with curvelets, in contrast, leads naturally to the focusing-in-dip procedure of
Brandsberg-Dahl et al. (2003). The output-based imaging algorithm based on equation
(4.40) would then simply demigrate only curvelets in the image with certain dips in certain
locations, and check if the resulting demigrated curvelet had a projection on the data that
exceeded a chosen threshold. Again, these opportunities are in essence a straightforward
consequence of curvelets being appropriate building blocks of both seismic data and the
imaging operator; no additional preprocessing, such as slant-stacking, is needed.

4.10 Discussion

Here, we have calculated the coordinate transformation in equation (4.34) using a
brute-force approach in the spatial domain. For each significant curvelet coefficient, we
apply an inverse curvelet transform, and transform the resulting curvelet in the spatial do-
main according to equation (4.34). This approach has allowed us to generate the numerical
examples and to show the proof of concept of imaging with curvelets using the derived
leading-order approximation. This approach, however, does not provide an efficient algo-
rithm to perform seismic imaging with curvelets. Ultimately one would want to calculate
the transformation of coordinates in the curvelet frame through a mapping of curvelet in-
dices and coefficients, although an approach that makes use of the compact support of the
curvelets in the spectral domain, seems worth investigating also.

Curvelet-based seismic imaging can have several potential benefits over existing imag-
ing algorithms. As mentioned in the previous section, the fact that curvelets incorporate the
character of the seismic data combined with the fact that they are elements of phase-space,
turns extensions to seismic imaging such as controlled illumination, focussing in dip, and
frequency-dependent migration velocity analysis, into natural consequences of an appropri-
ate reparameterization of seismic data and the imaging operator. Moreover, the fact that
the leading-order approximation to curvelet-based seismic imaging is calculated using map
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Figure 4.13. Amplitude spectrum of the thresholded data in Figure 4.11a, but now using
only rightward-sloping curvelets (a), and the resulting image of these curvelets using equa-
tion (4.39) (b). By using curvelets with certain slopes (ie., certain angular indices) only,
we achieve a controlled illumination of the subsurface.
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migration, suppresses the need for integration over diffraction surfaces. Combined with the
intuition that curvelets allow a sparse representation of the data, which we exemplified here
using simple examples, this could therefore lead to a gain in computation time over existing
imaging algorithms. However, we currently do not know how much additional computa-
tional overhead is needed to calculate the deformation of curvelets beyond the leading-order
approximation. Therefore, the question whether curvelet-based imaging will lead to a gain
in computational efficiency over existing algorithms remains currently open. Finally, based
on the work of Smith (1998), curvelet-based imaging allows imaging through media with
limited smoothness, i.e., rougher media.

Even though the curvelets used in this paper are two-dimensional, they can be ex-
tended to higher dimensions (Ying et al., 2005). Figure 4.14 shows an example of a three-
dimensional (3D) curvelet in both the spatial domain (a) and the spectral domain (b). In
the spatial domain, 3D equivalents of curvelets look like circular disks that are smooth
along the disk and oscillatory orthogonal to the disk. Roughly speaking they are smoothed
circular pieces of a bandlimited plane wave in 3D!2, Hence, provided the leading-order ap-
proximation to seismic imaging is worked out in three dimensions in, e.g., a common-source
setting (or common-offset as in this work), 3D curvelets allow seismic imaging in 3D.

4.11 Conclusion

With cuivelets as building blocks of seismic data, the character of the data, i.e., ban-
dlimitation and locally associated directions, can be built into the representation of the
data. A simple projection of the data onto the curvelet frame, combined with an intelli-
gent thresholding algorithm, then provides the local slopes in the data. We have presented
simple numerical examples to illustrate this. These examples also illustrate the potential of
curvelets to sparsely represent the data, even though this needs to be verified for field data
in combination with a more sophisticated denoising algorithm.

We have shown that using curvelets, the leading-order approximation to CO time-
migration becomes a simple transformation of the input coordinates of the curvelets in the
data, combined with amplitude scaling. In other words, to leading order in angular fre-
quency, horizontal wavenumber, and migrated location, the Kirchhoff diffraction stack can
be replaced with a coordinate transformation of curvelets in the data. This transformation
is calculated using CO map time-migration, which uses the local slopes provided by the
curvelet decomposition of the data. Considering that the data can be sparsely represented
with relatively few curvelets, CO time-migration becomes to leading order a transformation
of coordinates of only few curvelets combined with amplitude scaling. We have presented
numerical examples indicating that this leading-order approximation provides a good ap-
proximation to such time migration.

Although the current work treats constant media only, we emphasize that the essence
of the presented derivation applies to pre-stack depth-migration also. Specifically, the

12This rough description ignores that each curvelet has a small range of k-vectors associated with it, rather
than only a single k direction, as has a plane wave.
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Figure 4.14. A 3D curvelet in space (a) and its associated (contoured) amplitude spectrum
(b). In the spatial domain, 3D equivalents of curvelets look like circular disks that are
smooth along the disk and oscillatory orthogonal to the disk.

derivation of the leading-order approximation to pre-stack depth-migration also contains
a stationary phase evaluation of the integral with respect to the non-constant variable,
and subsequent linearization of the phase of the resulting oscillatory integral followed by
linearization around the map-migrated location of the center of the curvelet. In addition,
we briefly sketched a possible way to account for deformation of the curvelet beyond the
leading-order approximation while emphasizing that this idea remains to be verified in the
future. Because curvelets are basically elements of phase-space, curvelet-based seismic imag-
ing naturally allows the formation of caustics in heterogeneous anisotropic media. Given
the bandlimited nature of curvelets, curvelet-based migration combines high-frequency-
asymptotics-based Kirchhoff imaging with finite-frequency-based wave-equation migration.
This work is in our opinion the first of a series of papers that will possibly lead to a new
generation of seismic imaging algorithms.
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Chapter 5

Nonhyperbolic moveout analysis of qP-waves in
VTI media using rational interpolation’

5.1 Summary

Anisotropic velocity analysis using qP-waves in transversely isotropic media with a
vertical symmetry axis (VTI), is usually done by inferring the anellipticity parameter N
and the normal moveout velocity Vi aso from the nonhyperbolic character of the moveout.
Several approximations explicit in these parameters exist with varying degrees of accuracy.
Here, we present a rational interpolation approach to nonhyperbolic moveout analysis in the
t — r domain. This method has no additional computational overhead compared to using
expressions explicit in 7 and V0. The lack of such overhead stems from the observation
that, for fixed n and zero-offset two-way traveltime tg, the moveout curve for different values
of VNmo can be calculated by simple stretching of the offset axis. This observation is based
on the assumptions that the traveltimes of qP-waves in (laterally homogeneous) VTI media,
depend mainly on 7 and Vivas0, and that the shear-wave velocity along the symmetry axis
has a negligible influence on these traveltimes. The accuracy of the rational interpolation
method is as good as that of these approximations. The method can be tuned to be accurate
to any offset range of interest, by increasing the order of the interpolation.

We test the method using both synthetic and field data, and compare it with the non-
hyperbolic moveout equation of Alkhalifah & Tsvankin (1995), and the shifted hyperbola
equation of Fomel (2004). Both data types confirm that for 7 2, 0.1 our method significantly
outperforms the nonhyperbolic moveout equation in terms of combined unbiased parame-
ter estimation with accurate moveout correction. Comparison with the shifted hyperbola
equation of Fomel for Greenhorn-shale anisotropy establishes almost identical accuracy of
the rational interpolation method and his equation. Even though the proposed method cur-
rently deals with homogeneous media only, results from application to synthetic and field
data confirm the applicability of the proposed method to horizontally layered VTI media.

5.2 Introduction

Over the past two decades, the importance of anisotropy and its influence on seismic
data processing have become increasingly appreciated. Since 75% of the clastic infill of

'This Chapter has been accepted for publication in Geophysics as: Huub Douma and Alexander Calvert,
2006, Nonhyperbolic moveout analysis in VTI media using rational interpolation.
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sedimentary basins consists of shale formations (Tsvankin, 2001, p.11), and since the trans-
versely isotropic (TI) model adequately describes the intrinsic anisotropy of shales (Sayers,
1994), wave propagation in TI media has attracted much attention. Because the disper-
sion relations govern the propagation velocities of the different wave modes (and hence the
traveltimes used in seismic data processing), and because these relations are nonlinear in
the elastic coefficients, many authors have worked on approximations of the dispersion re-
lations in TI media (Dellinger et al., 1993; Tsvankin & Thomsen, 1994; Alkhalifah, 1998;
Schoenberg & de Hoop, 2000; Zhang & Uren, 2001; Stovas & Ursin, 2004; Fomel, 2004),
with varying levels of accuracy. Fowler (2003) gives a comparative review of some of these
approximations with an emphasis on TI media with a vertical symmetry axis (VTI media).

The nonhyperbolic moveout equation for gP-waves developed by Tsvankin & Thomsen
(1994) was derived to allow velocity analysis in VTI media using such waves. This equation
was later rewritten by Alkhalifah & Tsvankin (1995) in terms of the normal moveout velocity
Vnmo and the anellipticity parameter 7, i.e., in terms of the relevant parameters for the
kinematics of gP-waves in VTI media. Even though this equation is exact at zero offset
and infinite offset, Grechka & Tsvankin (1998) mention that at intermediate offsets “this
approximation can be somewhat improved by empirically changing the denominator of the
nonhyperbolic term.” This limited accuracy at intermediate offsets was also noted by other
authors [e.g., Zhang & Uren (2001), Van der Baan & Kendall (2002), and Stovas & Ursin
(2004)], and causes (as we show in this paper) a bias in the estimated value of 7. As larger
offset-to-depth ratios (ODR) provide better resolution for 1 (Alkhalifah, 1997; Grechka &
Tsvankin, 1998; Wookey et al., 2002), improved accuracy for larger ODR can help reduce
the uncertainty in inversion for 7 [within the limits of the trade-off between n and VNpmo,
as observed by Grechka & Tsvankin (1998)] when large ODR are available.

To achieve higher accuracy at larger ODR and to reduce the bias in the estimated
values of 7 when using the nonhyperbolic moveout equation from Alkhalifah and Tsvankin,
we propose a rational interpolation scheme for traveltimes of qP-waves in homogeneous
VTI media. The choice to use a rational interpolation was motivated by the observation
that several of the aforementioned approximations achieve high accuracy through the use of
rational approximations [e.g., Schoenberg & de Hoop (2000) and Stovas & Ursin (2004)], and
by the form of the nonhyperbolic moveout equation of Tsvankin & Thomsen (1994), which
resembles a rational approximation. We refrain from an attempt to derive yet another
approximation to traveltimes of qP-waves in such media that is explicit in the relevant
parameters. Instead, we simply make use of the facts that the shear-wave velocity along
the (vertical) symmetry axis, Vso has negligible influence on the traveltimes of qP-waves in
TI media (Tsvankin & Thomsen, 1994; Tsvankin, 1996; Alkhalifah, 1998, 2000), and that
these traveltimes depend mainly on the anellipticity parameter 7 and the (zero-dip) normal-
moveout velocity Vapo (Alkhalifah & Tsvankin, 1995). That is, the influence of Thomsen
parameter § is only small. We show that these two assumptions cause the influence of Vnmo
on the nonhyperbolic moveout of gP-waves in a horizontal homogeneous VTI layer, for fixed
anellipticity parameter n and two-way zero-offset traveltime to, to be a simple horizontal
stretch (or squeeze); i.e., the moveout curve is stretched (or squeezed) along the offset
axis. This observation allows the traveltimes needed for the rational interpolation to be
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calculated from a small number of precomputed traveltimes stored in a table. Therefore, this
method has no additional computational overhead compared to methods that use explicit
approximations in the relevant parameters.

The outline of this paper is as follows. First, we study the accuracy of the nonhyper-
bolic moveout equation from Tsvankin & Thomsen (1994). Subsequently, we introduce the
rational interpolation approach to nonhyperbolic moveout for qP waves in VTI media, and
explain the stretch-squeeze influence of VNmo on the moveout curve of qP reflections in a
single horizontal homogeneous VTI layer. Synthetic tests, for both a single homogeneous
horizontal VTI layer and a horizontally layered VTI medium, subsequently verify the im-
proved accuracy of the method when compared to the nonhyperbolic moveout equation.
Finally these findings are confirmed by an application of the method to field data.

5.3 Accuracy of the nonhyperbolic moveout equation

The nonhyperbolic moveout equation of Tsvankin & Thomsen (1994), rewritten in

terms of the anellipticity parameter n by Alkhalifah & Tsvankin (1995), is given by
z? 2zt

Virmo Viuo [t8VEmo + (1 + 2) 2]’

t3(z) = 2 + (5.1)
where ¢ is the two-way traveltime at zero offset, z is offset, and V0 is the (zero-dip) NMO
velocity. Note how the moveout reduces to hyperbolic moveout for elliptical anisotropy
(n = 0) (e.g., (Tsvankin, 2001, section 4.3.1). This equation is exact at both zero offset and
infinite offset.

Figure 5.1a show contours of the maximum absolute traveltime difference (in per-
centage of ¢9) between ray-traced traveltimes for a single horizontal VTI layer and the
nonhyperbolic moveout equation, for virtually all combinations of 1 and Viyao of practical
interest. The maximum ODR is two, and tg = 1 s for all models considered. The ray-traced
traveltimes were determined with Vso = 0 km/s and 6§ = 0. The differences in the travel-
times are of the order of a percent, which in this case amounts to 10 ms. For a dominant
frequency of 50 Hz in surface seismic data, this amounts to a traveltime error of about half
a dominant period; i.e., a sizeable error that can lead to a bias in the estimated values of
n and Vypo when velocity analysis is done using this equation. Note that here we use
the true values of 7 and VNmo for the moveout analysis rather than the best-fit values,
since we want to analyze the accuracy of the nonhyperbolic moveout equation for a known
model. It is known that the traveltime differences shown in Figure 5.1a can be reduced by
using the best-fit values of 7 (and Vyar0), rather than the true ones; that is, the traveltime
differences become smaller when a bias is introduced in the estimates of n (and Vo).

Figures 5.1b is as Figure 5.1a except that here the maximum ODR is four. With
current acquisition systems, such values of ODR are feasible for shallow targets and are
common in near-surface seismic applications. Note that for this ODR, the (relative) errors
in the traveltimes have increased roughly with a factor two.
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Figure 5.1. Comparison of the accuracy of the nonhyperbolic moveout equation (a and
b, NHME) and of the [2/2] rational interpolation (c and d, RI), for a range of models
(combinations of n and Vi Mo) that spans most models of practical interest. In subfigures a
and ¢ the maximum ODR is two, whereas in b and d the maximum ODR is four. Contours
are drawn for the maximum absolute percentage error in traveltime (compared to ray-traced
traveltimes where ray tracing was done with Vo = 0 km/s and § = 0) for a single horizontal
VTI layer. The contoured values are shown in percentage of to. The stars in subfigures b
and d indicate the model parameters used for the residual moveout plots in Figure 5.3.
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5.4 The dependence of nonhyperbolic moveout for a single VTTI layer on 7 and
VNmo

From simple geometric considerations, it follows that for a homogeneous horizontal
VTI layer, the traveltime is given by

_ Vpoto

t =
veosy

(5.2)

where Vpg is the P-wave velocity along the vertical Symmetry axis, 9 is the group angle,
and v is the group velocity for propagation in direction 9. The offset z associated with this
traveltime is given by

Tr = Vp() to tanz,b . (53)

In a TT medium, the phase velocity is given by (Tsvankin, 2001, p.22)

. 92 2 _ )
V(6) = Vio 1+esin20—§ 1—\/(1+2€S’fn 9) _ 2e=d)sin 29), (5.4)

f

where 6 is the phase angle, ¢ and § are the Thomsen parameters, and f = 1 — VS20 / V.go,
with Vo the S-wave phase velocity along the symmetry axis. For such a medium, the group
angle is related to the phase angle through (Tsvankin, 2001, p.29)

1 dv
V(6) d8

tan@ dV
V(o) do

tan @ -+
tany =

(5.5)

while the group velocity v is given by

2
V= V(o)\/1 + <%0)%) . (5.6)

It is known that the qP-wave phase-velocity in TT media depends only weakly on Vg,
(Tsvankin & Thomsen, 1994; Tsvankin, 1996; Alkhalifah, 1998). For all kinematic problems
regarding qP waves, Vg is therefore usually ignored. We likewise set Vgy = 0 (or f =1)
in equation (5.4). This is the acoustic approzimation from Alkhalifah (1998, 2000). Note
that Alkhalifah & Tsvankin (1995) obtained equation (5.1) from the nonhyperbolic moveout
equation of Tsvankin & Thomsen (1994), by also setting Vgy = 0. In addition, Alkhalifah
& Tsvankin (1995) showed that the time signatures of qP-waves in homogeneous VTI me-
dia depend mainly on the (zero-dip) normal-moveout velocity Vo and the anellipticity
parameter 7, with an almost negligible influence of Vpo. Since we are interested only in
traveltime calculations, we can choose § — 0, and thus Vpy = Vy a0 and € = 7, in equation
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(5.4). That equation then becomes

V() = VN]\,IO\/7Tsin2 0+ % (1 +4/(1+ 29 sin? 0)2 — 2nsin’ 29) , (5.7)
while equations (5.2) and (5.3) for the traveltime ¢t and the associated offset z, become
VMo to
t= ——r 5.8
vcosY (58)
and
z = VNmo totan®, (5.9)

respectively. Note that the phase velocity V(8) now depends linearly on VNnmo. This
linearity causes the term -17%0_)%‘91 in equations (5.5) and (5.6) to be independent of VNpo.

Since the dependence of the group angle on the anisotropic parameters is governed by the
1

term -‘/—(05% [cf. equation (5.5)], the group angle 1 is independent of Vnmo and depends
only on 7. In addition, it follows from equation (5.6) that the group velocity v depends
linearly on Vypmo since the phase velocity depends linearly on Vnmo. From equations (5.8)
and (5.9) it then follows that the traveltime t becomes independent of VNmo and that the
associated offset = depends linearly on Vnmo- Also, tg is a simple scaling factor for both the
traveltime t and the associated offset z. Ina single horizontal VTI layer, this means that for
fized n and to, the moveout curve for different values of Vnmo can be calculated by simple
horizontal stretching and squeezing along the offset azis (see Figure 5.2). This important
observation is a straightforward consequence of the negligible influence of V5o on qP-wave
traveltimes in TI media and the fact that the kinematics of gP-waves in homogeneous VTI
media depend mainly on Vnmo and 7 (i.e., we can choose § = 0). To make explicit the
independence of the traveltimes of VMo, We rewrite equation (56.8) as

t
£ — 0

= , (5.10)
Vv mo=1 cos

where v|y, mo=1 denotes the group velocity calculated for VNmo = 1 km/s.

Figure 5.1a (as well as b-d) shows that the contoured maximum traveltime differences
between ray-traced traveltimes and traveltimes calculated using the nonhyperbolic moveout
equation are independent of Vymo. This is now easily understood in light of the previous
observation that the nonhyperbolic moveout for fixed n (and to) but different values of
VN Mo, are simply horizontally stretched or squeezed versions of each other. Note that we
used Vgo = 0 and & = O for the ray tracing to determine the traveltime differences shown
in Figure 5.1.
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Figure 5.2. Under the customary assumptions that traveltimes of qP-waves in VTI media
depend mainly on 1 and V0, and that the shear-wave velocity along the symmetry axis
(Vso) has negligible influence on the traveltimes of qP-waves in such media, the nonhyper-
bolic moveout curve for fixed n and tg, but varying Va0, can be calculated by simple
horizontal stretching (or squeezing) along the offset axis.

Rewriting equation (5.1) gives

20 (z/Vivaro)" . (5.11)
£+ (1 +20) (2/Vivaso)’
0

t2(m) = t(2) + (fE/VNMO)2 — [

Using the observation that the offsets = are linear in V0, i.e., using equation (5.9), it
follows that

4 204+ [1+2m)Kk2)

where we used k/2 = tan), with k the ODR. This equation shows explicitly that, under
the above-mentioned approximations, the traveltimes for a given ODR k (or group angle

£2(k) = 12 {1 +F k! } , (5.12)
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?) are independent of Vypr0. Note that using k/2 = tan® in equation (5.9) gives

2z

k=———.
toVNmMo

(5.13)
Strictly, k is a true ODR only if § = 0. For convenience, we refer to k as the ODR

throughout the remainder of this paper. Under the above-mentioned two approximations,
the traveltimes ¢(k) are independent of Vypyo0.

5.5 Nonhyperbolic moveout analysis using rational interpolation

Fitting function values at various points (that are not necessarily distinct) using a
rational function is usually referred to as multipoint Padé approzimation (Baker & Graves-
Morris, 1981). Such approximation is also referred to as N-point Padé approzimation,
Newton Padé approximation, or rational interpolation, depending on the context. Since in
this paper, we do not use coincident interpolation points (often referred to as confluent
interpolation points), we prefer to use the term rational interpolation.

A rational approximation to a function T'(x) is written as

Ni(z)
Dy (z)’

where N, (z) is a polynomial of maximum order L, and Djs(z) a polynomial of maximum
order M. We denote such an approximation as {L/M] and use the normalization N1(0) =
T'(0) and Dy (0) = 1.0, after (Baker, 1975, pp. 5-6). Given n = L+ M function values T; at
points z;, with i = 1,...,n, we arrive at a linear system of n equations with n unknowns,
the coefficients of the polynomials. Once the coefficients are found, the resulting [L/M]
approximant can be used to find the function values T'(z) at values of z different from the
interpolation points z;. The solution to this system for the [2/2] rational approximation is
given in Appendix M.

Here we use rational interpolation to approximate nonhyperbolic moveout in a hori-
zontal transversely isotropic homogeneous layer with a vertical symmetry axis. Rewriting
equation (5.1) in the form of a rational approximation using the definition of (Baker, 1975,

pp. 5-6) gives
4+2(1+mn)k? + 2k
2 2
=t . 15
i) 0( 4+ (1+2n) k2 (5.15)

This expression reveals that the nonhyperbolic moveout equation can be viewed as a [2/1]
rational approximation for t? as a function of k? (or 22). Therefore, we could try a [2/1]
rational interpolation to approximate nonhyperbolic moveout. In this paper, we choose a
[2/2] rational interpolation in an attempt to gain extra accuracy.

To calculate the four unknown coefficients for the [2/2] rational interpolation using
equations (M.2)-(M.5), we need four traveltimes and four associated offsets. Let t; (i =
1,...,4) be the traveltime for a fixed ODR k; (or group angle %;), and let the associated
offset be x;. From the previous section, we know that the traveltimes t; are independent of

T(z) ~ (5.14)
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Vnmo and depend on tg through a simple scaling only. This means that the traveltimes ¢;
needed for the rational interpolation can be calculated from a small subset of traveltimes
calculated for a fixed reference value of tg, denoted as tsef , a range of n values, say from
—0.2 to 1.0 in steps of 0.01. This subset can be precomputed and stored in a table. Hence,
when the traveltimes ¢; for a particular combination of tg, Va0, and 7 are desired, a simple
lookup in this table for the particular 7 combined with scaling with to/ taef [cf. equation
(5.10)], gives the traveltimes ¢; needed for the rational interpolation. That is, the desired

traveltime t; is obtained from
t
t; = tﬁable (tr_gf) , (516)
0

where t{%b¢ js the value of ¢; obtained from the table (evaluated for to = tj/) for ODR k;
and the desired value of . Evaluating the table for tgef = 1 s allows the calculation of ¢;
to be done by scaling of t{%%¢ with #y only. Using the given values of Vyao and to, the
corresponding offsets z; are then found simply from

Vi k;
T; = %to’ ) (5.17)

It is important to mention that the coefficients d;, da, ni, and ny (see Appendix M),
needed for the rational interpolation for a given value of tg, are calculated from traveltimes
t; and accompanying offsets z; that depend only on 1 and V0. Hence, even though we
use a higher order rational approximation than the nonhyperbolic moveout equation from
Alkhalifah and Tsvankin (i.e. [2/2] compared to [2/1]), the number of degrees of freedom
are the same; i.e., both methods aim to resolve n and Va0, and thus resolve the same
number of variables (two). This remains true even if we would use higher order rational
interpolation compared to the [2/2] rational interpolation we use throughout this paper.

The traveltimes and offsets obtained using the method outlined above, allow us to
perform velocity-analysis in VTI media using [2/2] rational interpolation. The efficiency
of this approach is comparable to that of current velocity analysis using nonhyperbolic
moveout equation (5.1), since the small subset of traveltimes for to = 1 s and a range
of n values, is precomputed once and stored in a table. In other words, the nonhyperbolic
moveout equation is replaced simply with the rational interpolation formula, and the needed
traveltimes are read from the precomputed table.

To precompute the table of traveltimes, a standard anisotropic ray-tracing algorithm
can be used. Here, to calculate the traveltimes, we first solve

tan9-+i ﬂ
S Vi, (5.18)
2 ! tang; dV/ ’ ’
Vi df |,

for §; numerically, using the Matlab function ‘fsolve’ which uses an interior-reflective Newton
method to solve nonlinear equations (Coleman & Li, 1994, 1996). To obtain equation (5.18)
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we used tan; = k;/2. In equation (5.18), V; is the phase velocity associated with ODR k;.
Note that since we are ultimately interested only in traveltimes, we can use § = 0 and hence

_11/_1. 20 . is independent of
Vnmo as explained earlier. Once 6; is found, the traveltime tﬁ“ble is then found through
calculation of the group velocity vi|y,  _; using equations (5.7) and (5.6) with Vypyo =1
km/s, and subsequent use of this velocity in

€ = 1. The value of Vpg = Vyumo is irrelevant, since the term

toe!

b
4 an—lfi
Vil ar0=1 €OS (t 5 )

[cf. equation (5.10)]. We found that using the group angle as an initial guess for the phase
angle generally worked well. We did not investigate different methods to solve for the
phase angles ;. Using the ‘fsolve’ function in Matlab, the calculation of a table with four
traveltimes for about 100 values of 7 takes on the order of one minute on a modern PC.

For hard rocks, setting Vo = 0 is not as good an approximation as for softer rocks
(Tsvankin, personal communication). For such geology (say carbonate reservoirs) it is better
to use an ‘intelligent estimate’ of the V,/V; ratio. Note that in this case the traveltimes
t(k) are still independent of Va0 because f is simply equal to some appropriately chosen
constant value. Therefore, the moveout curves for fixed values of 7 and to but different
values of Viypo are again horizontally stretched or squeezed versions of each other.

tioble _ (5.19)

5.6 Accuracy comparison between rational interpolation and the nonhyper-
bolic moveout equation

Figure 5.1c shows contours of the maximum absolute percentage traveltime difference
between ray-traced traveltimes for a single horizontal VTI layer and traveltimes resulting
from the [2/2] rational interpolation. Here to =1 s, and the maximum ODR is two. The

ODR values used for the rational interpolation are k1 = 3 ko =1,ks = g, and kg = 2. Here

the maximum traveltime errors are of the order 10~3% of ¢y (or 0.01 ms in this case), which is
two-to-three orders of magnitude more accurate than that using the nonhyperbolic moveout
equation. With a dominant frequency of 50 Hz, the traveltime errors are about 0.05% of
the dominant period, and are hence negligible. Figure 5.1d shows the same contours, but
now for a maximum ODR of four (the ODR values used for the rational interpolation are
k1 =1, kg =2, k3 = 3, and k4 = 4). The traveltime errors are now somewhat larger and of
the order of 1072% of ¢y (or 0.1 ms in this case), but still one-to-two orders of magnitude
smaller than those for the nonhyperbolic moveout equation. Again, compared to a dominant
period of 20 ms, these errors are negligible (0.5% of the dominant period). Hence, rational
interpolation achieves a significant improvement in accuracy up to large ODR, and is highly
accurate for all models of practical interest.

Figure 5.3 shows the residual moveout as a function of ODR for the nonhyperbolic
equation (dashed) and for the [2/2] rational interpolation (solid). Here we used Vypro = 2.4
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Figure 5.3. Residual moveout as a function of ODR using the nonhyperbolic moveout equa-
tion (dashed) and [2/2] rational interpolation (solid). In both cases the model parameters
used are = 0.3 and Vyp0 = 2.4 km/s (indicated by the star in Figures 5.1a-c). The inset
shows the residual moveout for the [2/2] rational interpolation on a larger scale (with axes
as in the main figure). At the interpolated ODR values 1, 2, 3, and 4, the residual moveout
is identical zero.

km/s 2, n = 0.3 (indicated by the star in Figures 5.1b and d), and to = 1s. The inset shows
the residual moveout for the [2/2] rational interpolation at a larger scale. The residual
moveout is strictly zero at the specified ODR values of ky =1, kg = 2, k3 = 3, and kg4 = 4.
We note that extrapolation beyond k4 can result in large errors in traveltimes because the
[2/2] rational approximation starts oscillating with large amplitudes. The onset of such
oscillation can be seen in Figure 5.3 for ODR values beyond k4 = 4. This is caused by fact
that in the limit of £ — oo, a [2/2] rational approximation becomes a constant. Therefore,
for our [2/2] rational interpolation, k4 should be chosen such that it exceeds the largest
offset in the data.

Comparing Figures 5.1c and 5.1d, it seems that use of larger intervals Ak between the
k; causes the maximum traveltime errors to increase. To analyze the influence of Ak, and to
see what maximum ODR can be reached with [2/2] rational interpolation with considerable
accuracy, Figure 5.4 shows the maximum absolute percentage traveltime error as a function
of Ak. The top horizontal scale of the figure shows the maximum ODR. Here we use
Vnmo = 2.4 km/s and to = 1 s, and plot the traveltime errors for two different values of 7,

2Because of our observation that the traveltime errors do not depend on Vnaso, the actual value of Viaso
is of course irrelevant.




98 Chapter 5. Nonhyperbolic moveout analysis using rational interpolation

max offset-to-depth ratio

0.0 0.5 1.0 1.5 2.0

A(offset-to-depth ratio)

Figure 5.4. Accuracy of the [2/2] rational interpolation as a function of the separation in
ODR of the interpolation traveltimes for 7 = 0.3 and 5 = 1.0. In both cases Vnmo =24
km/s. Even if the separation in ODR is two, i.e., the maximum ODR is 8, the percentage
errors in traveltime are of the order 10~1%.

ie., 7= 0.3 (solid) and 7 = 1.0 (dashed). Note again that the value of V0 is irrelevant;
errors do not depend on V0, as explained previously. The high 5 value for the dashed
curve can be taken as a worst-case scenario with respect to accuracy. For practical values of
7, the maximum error in traveltime for ODR values up to 8 (achieved with k1 = 2, ko = 4,
ks = 6, and k4 = 4) is of the order of a tenth of a percent of tg. Therefore, for almost all
practical cases, our [2/2] rational interpolation provides an accurate nonhyperbolic moveout
approximation. If needed, higher-order rational interpolation, combined with Ak = 1, would
obtain extra accuracy.

Figure 5.5 shows semblance scans (at fixed to) as a function of V0 and the horizontal
velocity Vior = Vymo+v/T + 2, calculated using the nonhyperbolic moveout equation (a, c,
and e) and the [2/2] rational interpolation (b, d, and f). In each column of subfigures the
true model parameters (indicated by the star) vary, and are, respectively, Vipo = 2000
m/s and Vior = 2300 m/s (or 7 = 0.16) for a and b, Vypyo = 2892 m/s and Vjo, = 3745
m/s (or n = 0.34) for c and d, and Vyaro = 2464 m/s and V. = 3880 m/s (or 5 = 0.74)
for e and f; the semblance maxima are indicated by the squares. Note that the synthetic
gathers were generated using ray-traced traveltimes, where the ray tracing was done using
the true values of 4, i.e., § = 0 for a and b, § = —0.05 for ¢ and d, and § = —0.22 for e and
f, while we used Vg = 0 km/s for all models.
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Figure 5.5. Semblance scans and moveout-corrected gathers, where the moveout correction
was done with the parameters related to the maximum semblance values (indicated by the
square). The model for each subfigure consists of a single horizontal VTI layer, and the
maximum ODR is two. For all models, tg = 1 s. The true model parameters are indicated
by the star, and are: Vypo = 2.0 km/s and Vior = 2.3 km/s (i.e., 7 = 0.16) in subfigures a
and b; Vyao = 2.892 km/s and Vi, = 3.745 km/s (i.e., n = 0.34) in ¢ and d (shale under
zero confining pressure); and Vypyo = 2.46 km/s and Vior = 3.88 km/s (ie., n = 0.74), in
e and f (Green River Shale). In subfigures a, c, and e, the nonhyperbolic moveout equation
was used, while in b, d, and f, we used the [2/2] rational interpolation.

The model parameters for Figures 5.5a and b correspond to the model parameters used
in Figures 1 and 2 of Grechka & Tsvankin (1998). [These parameters were originally chosen
because such values of 1 were observed on field data (Alkhalifah et al., 1996)]. Since these
model parameters are identical to those in Figures 1 (and 2) of Grechka & Tsvankin (1998),
our Figure 5.5a is the semblance scan equivalent of Figure 1 in their paper. For Figures 5.5¢
and d the model parameters correspond to a shale under zero confining pressure, and for
Figures 5.5e and f the parameters correspond to Green River shale [see Table 1 in Thomsen
(1986) for these two cases|. For all subfigures (i.e., a - f) we used tg =1 s and a maximum

3
§,k2=1, k3=§,andk4=2.
Figures 5.5a, ¢, and e show that the nonhyperbolic moveout equation (5.1) obtains

high semblance values, but for the wrong values of Vior; VMo seems largely unbiased.
This means that the associated common midpoint (CMP) gathers are well flattened using a

ODR of two. For the rational interpolation we used k1 =
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Figure 5.6. Same as Figure 5.5, except that the maximum ODR is now four.

biased estimate of V},o,, hence introducing a bias in the estimated value of 77. The associated
moveout corrected gathers for all three models are shown above the semblance scans. Note
that for all three models, the semblance maximum (indicated by a square) for the non-
hyperbolic moveout equation indicates a value of 7 smaller than the true value (a smaller
difference between Vj,. and Vyao than the difference between their true respective val-
ues). Hence, this method seems to underestimate 5. The nonhyperbolic moveout equation
obtains accurate n values only when the true 7 values are small (< 0.1). Straightforward
application of the [2/2] rational interpolation method provides, for all models, maximum
semblances that coincide with the true model parameters, and accurately flattens gathers
without any residual moveout (see Figures 5.5b, d, and f).

Figure 5.6 shows the same semblance scans and moveout corrected gathers, for the
same models and methods as in Figure 5.5, except that here the maximum ODR is four.
For the rational interpolation we used k1 = 1, ky = 2, k3 = 3, and k4 = 4. Notice that for
all models and both methods, the peak of the semblance scans is much better defined than
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in Figure 5.5; that is, the large semblance values span a much smaller range of Vpor (and
thus ) values, and a somewhat smaller range of Vypo values. Indeed the higher resolution
for n for larger offset ranges was mentioned by Alkhalifah (1997), Grechka & Tsvankin
(1998), and Wookey et al. (2002). Aside from the improved resolution in 7, Figures 5.6a,
¢, and e, show again the underestimation of 77 when the nonhyperbolic moveout equation is
used, just as in Figures 5.5a, ¢, and e. The maximum semblance, however, now deteriorates
with increasing levels of anellipticity, and the associated moveout-corrected CMP gathers
clearly indicate a distortion in the residual moveout, even for the model with n = 0.16
(see Figure 5.6a), a value that is commonly observed on field data [e.g. Alkhalifah et al.
(1996)]. The rational interpolation method (Figures 5.6b, d, and f) results in no residual
moveout combined with unbiased estimates of 7 and Vypo. This is a direct consequence of
the high accuracy of the rational interpolation method shown in Figure 5.1d for this ODR.
If accuracy is desired for even larger offsets, higher-order rational interpolation can be used.
Alternatively, [2/2] rational interpolation can be used with an increased interval between
the ODR k; (say k1 = 2, k2 = 4, k3 = 6, ks = 8), as Figure 5.4 indicated that with the [2/2]
rational interpolation we can achieve reasonable accuracy up to ODR of 8.

5.7 Accuracy comparison with the nonhyperbolic moveout approximation of
Fomel

Recently, Fomel (2004) proposed a shifted-hyperbola approximation for the group ve-
locity and converted this into the following moveout equation for a single homogeneous
horizontal VTI layer,

2) = T e + z(—li—n)\ﬁ""(“’) FO ) e, (6
where H(zx) represents the hyperbolic part,
2 a?
H(z) =t + A+ Veng (5.21)

Fomel (2004) showed that this approximation is significantly more accurate than the non-
hyperbolic moveout equation (5.1) of Alkhalifah & Tsvankin (1995).

The rational interpolation approach that makes use of the fact that the influence of
Vo on the moveout is limited to a stretch along the offset axis, is based on the approx-
imations that (1) the influence of Vg on qP-wave traveltimes in TI media is negligible,
and that (2) the kinematics of qP-waves in homogeneous VTI media depend mainly on
Vnmo and 1, ie., we can set § = 0. Figure 5.7 shows the traveltime difference between
ray-traced traveltimes for a single horizontal VTI layer with Greenhorn-shale anisotropy
(Jones & Wang, 1981) and the nonhyperbolic moveout equation (5.1) form Alkhalifah and
Tsvankin (dotted), the shifted hyperbola equation (5.20) from Fomel (dashed), and travel-
times resulting from ray tracing with Vgg = 0 km/s and 6 = 0 but the same values of Viyapro
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Figure 5.7. Comparison of accuracy between the nonhyperbolic moveout equation without
the correction factor (dotted), the shifted hyperbola method of Fomel (2004) (dashed), and
our rational interpolation approach (solid), for Greenhorn-shale anisotropy (7 = 0.34 and
VNmo = 2935 m/s). The absolute traveltime errors are calculated with respect to ray-traced
traveltimes. The model parameters are: Vpg = 3094 m/s, Vo = 1510 m/s, § = —0.05, and

€ = 0.256 (Greenhorn shale).

and 7 (solid). The ansitropy parameters are Vpo = 3094 m/s, Vso = 1510 m/s, § = —0.05,
and € = 0.256 (ie., Vypyo = 2935 m/s and n = 0.34), and ty = 646.5 ms. Except for
the solid line, Figure 5.7 reproduces Figure 7 of Fomel (2004). Note that the accuracy of
the shifted hyperbola approximation is marginally better than the ray-traced traveltimes
using Vgg = 0 km/s and § = 0. The maximum difference between these two traveltime
approximations is about 1 ms (i.e., 0.15% of t¢) for this particular model. From a practical
point of view, the two approximations are therefore identical. Even though we have not
calculated the solid line with a rational interpolation, we can approximate the solid line
to almost arbitrary precision with rational interpolation (i.e., with [M/N] rational inter-
polation where M, N > 2). For ODR up to four, we showed this in Figure 5.1d using a
[2/2] rational interpolation. Since the rational interpolation method that we propose uses
traveltimes calculated with Vsg = 0 km/s and § = 0, we conclude that the accuracy of
our method is basically identical to that of the shifted hyperbola approximation of Fomel
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(2004). Comparison of semblance scans and moveout corrections calculated using equation
(5.20) and the rational interpolation method (not shown here), for the models and offsets
studied in Figures 5.5 and 5.6, showed no difference between both methods.

5.8 Application to horizontally layered VTI media

Up to this point, we have treated only a single horizontal VTI layer. In this section
we test the applicability of the rational interpolation method to a horizontally layered
VTI medium, and compare its accuracy to that of the nonhyperbolic moveout equation.
Based on the work of Tsvankin & Thomsen (1994), Grechka & Tsvankin (1998) showed
that the nonhyperbolic moveout equation (5.1) remains valid in horizontally layered media
provided the parameters n and Viypro are replaced by ‘effective’ values that are some average
over the vertically heterogeneous overburden. Also, they rewrite the Dix-type inversion
procedure, originally introduced by Tsvankin & Thomsen (1994), in terms of  and Vymo.
In that method, the effective values of 7 and Vjyps0, obtained from applying the single-layer
equation (5.1) to data from a layered medium, are used to estimate the interval values of 7
and Vypmo.

We compare the effective values of 7 and Vypyo obtained using the nonhyperbolic
moveout equation and the rational interpolation method, through application of both meth-
ods to a horizontally layered medium with the following parameters:

e layer 1: h =1 km (h is the depth of the bottom of the layer), Vnpo = 2098 m/s,
Vhor = 2098 m/s, n = 0, (Vpg = 2000 m/s, ¢ = 0.05, § = 0.05),

e layer 2: h =2 km, Vypo = 2000 m/s, Vior = 2300 m/s, n = 0.16, (Vpo = 2000 m/s,
e = 0.16, 5 = 0),

e layer 3: h =3 km, Vyrpo = 2892 m/s, Vior = 3745 m/s, n = 0.34, (Vpo = 3048 m/s,
€ = 0.255, § = —0.05),

e layer 4 : h =4 km, Vypo = 2460 m/s, Vi,r = 3880 m/s, n = 0.74, (Vpo = 3292 m/s,
e =0.195, § = —-0.22).

For all models we used Vo = 0 km/s. Note that here the first layer is elliptically anisotropic,
and the second through fourth layers have the same model parameters as those in the models
studied in the first through third row of Figures 5.5 and 5.6, respectively.

Table 5.1 shows the results from both methods for a maximum ODR of two (top) and
four (bottom). Since both methods are for a single-layer VTI medium only, and because we
apply these methods to layered VTI media, the 7, VNmo, and Vi, values in Table 5.1 are
all ‘effective’ values. The results closely resemble the results obtained from the single layer
numerical tests shown in Figures 5.5 and 5.6. For maximum ODR=2, the nonhyperbolic
moveout equation gives consistently lower estimates of 7 than the rational interpolation
method, and the difference increases as we increase the level of anellipticity, i.e., as we go
deeper. At the same time, the semblance values (indicated with s in Table 5.1) are high
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Table 5.1. Comparison of obtained semblance values (s), Va0, Vhor, and 5, for both
methods (NHME = nonhyperbolic moveout equation, and RI is rational interpolation),
when applied to a layered medium and maximum ODR of two (top) and four (bottom).
The model consists of four horizontal homogeneous VTI layers.The parameters for each
layer are given in the main text.

ODR =2
NHME RI
layer s Vnmo Vier 7 s VoMo Vier 7
1 1.00 2097 2101 0.00 1.00 2099 2101 0.00
2 0.98 2058 2179 0.06 0.98 2058 2188 0.07
3 1.00 2271 2839 0.28 1.00 2252 3022 0.40
4 0.99 2313 3012 0.35 1.00 2282 3285 0.54
ODR =14
NHME RI
layer s VNmo Vher 7 s VMo Vier 7

1.00 2094 2099 0.00 1.00 2096 2099 0.00
095 2029 2207 0.09 0.96 2035 2218 0.09
0.57 2238 2894 0.34 0.84 2189 3158 0.54
0.57 2320 3038 0.36 0.87 2241 3391 0.64

=W N =




Huub Douma / Leading-order seismic imaging using curvelets 105

mg%% index c) cross-line index
100 150 200
|

1

300

in-line index

t(s)

2504

elevation (s)

Figure 5.8. Field data used to test the rational interpolation method. Inline (a), crossline
(b), and plan view of the residual topography of the event used for testing (indicated by
the arrows in a and b) after removal of the regional dip (c¢). The dotted lines in ¢ denote
the locations of the inline and crossline sections shown in a and b. The dashed line in c
denotes the location of a regional fault.

for all layers using both methods, indicating high quality moveout correction. This is anal-
ogous to the behaviour shown in the single layer numerical test shown in Figure 5.5; i.e.,
both methods provide accurate moveout correction, but the nonhyperbolic moveout equa-
tion does so with a biased (too low) value of 7. For maximum ODR=4, the nonhyperbolic
moveout equation results in decreasing semblance with increasing level of anellipticity, (i.e.
as we go deeper), indicating a lack of ability to accurately moveout-correct the data. That
the rational interpolation method has substantially larger semblance values than the non-
hyperbolic moveout equation, indicates that this method is able to flatten the gathers best,
with the least residual moveout. Again this is analogous to the results from the single-layer
case (Figure 5.6). Hence, it seems that the rational interpolation method, which is based on
a single horizontal VTI layer, is suitable for application to a horizontally layered medium,
at least up to maximum ODR=4 and high levels of anellipticity.

5.9 Field data example

Figures 5.8a and b show inline and crossline stacked time sections from a land dataset
that contains a reflector at about 750-ms two-way traveltime (indicated by the arrows), illu-
minated with ODR ranging to larger than four. We focus attention on this event throughout
the remainder of this section. The geology consists of relatively flat (dip less than two de-
grees), predominantly shale layers, such that a layered VTI model seems, at first sight,
appropriate for these data. Although the structure on the horizon of interest is limited to
within 420 ms of a best-fit planar dip, a subtle NNE-SSW structural trend, associated with
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deeper faulting (Figure 5.8c), exists. The dashed line indicates the location of a regional
fault. The inline and crossline spacings are both 110 ft.

To test our method, we calculated semblance as a function of Vypyo and Vj,, for
the whole dataset over a 100-ms window centered on the event of interest. The offsets
used in the analysis were limited to offsets with a maximum ODR of approximately four.
Figure 5.9a and b show the semblance scans for both methods for a randomly selected CMP
gather. The location of this gather is indicated by the intersection of the dotted lines in
Figure 5.8¢c; the location is also indicated by the vertical dotted lines in Figures 5.8a and b.
This gather was generated by collecting traces from a 3-by-3 super bin of adjacent CMPs,
and subsequent offset-binning. The derived 1, Vx a0, and maximum semblance values for
both methods are: 0.34, 3100 m/s, 0.38 (nonhyperbolic moveout equation) and 0.33, 3250
m/s, 0.40 (rational interpolation). The inferred values of 1 are close to the 5 value used to
generate the results shown in Figures 5.6c and d, where ODR = 4 also. Note the striking
similarity between the change of shape of both the moveout corrected gathers and the
semblance scans of the field data (Figures 5.9a-d) and the synthetic data (Figure 5.6¢c and
d), as we change from the nonhyperbolic moveout equation to the rational interpolation
method. For the semblance scans, the nonhyperbolic moveout equation method exhibits no
clear evidence of the inherent trade-off relation between n and V0, whereas the rational
interpolation method does display this known trade-off. Also, the semblance peak is most
clearly defined for the [2/2] rational interpolation method because of its higher accuracy
at larger ODR. Note that the residual moveout for the nonhyperbolic moveout equation is
substantial, whereas the rational interpolation method gives well corrected moveout.

Figures 5.10a and b show mapviews of the values of 1 obtained for the event of interest
over the entire dataset, using, respectively, the (a) nonhyperbolic moveout equation and
(b) the [2/2] rational interpolation method, for maximum ODR of two. The 7 values
obtained using nonhyperbolic moveout equation, are generally smaller than the estimated
n values from the rational interpolation method, just as in our synthetic data examples (cf.
Figure 5.5). The same comparison for Vypo (not shown) indicated that both methods
gave similar estimates of Va0, just as in the synthetic examples. Figures 5.10c and d are
as a and b, but here the maximum ODR is four. Notice, that the estimated n values are
spatially less variable, for both methods. This can be understood in light of the improved
resolution in 7 for larger ODR. For both ODR = 2 and ODR = 4, the [2/2] rational
interpolation results in more spatially smooth and continuous values of 7 (and Viyp0) than
the nonhyperbolic moveout equation. It is important to note that this spatial continuity was
not imposed, but followed from a straightforward application of the rational interpolation
method presented here. Since the seismic data show no indication of substantial lateral
heterogeneity (cf. Figure 5.8), the relatively smooth spatial variation of 7 is consistent with
the seismic data. This increases our confidence in the 7 values obtained using the rational
interpolation method. In some parts the values of  seem to correlate somewhat with the
geologic trend (cf. Figure 5.8c).

Figure 5.11a shows the normalized semblance difference between the nonhyperbolic
moveout equation method and the rational interpolation method, for maximum ODR=2.
The normalized semblance difference is the difference between the semblances from both
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Figure 5.9. Semblance scans (a and b) for one CMP gather, located at the crossing of the
horizontal lines in Figure 5.8c; its location is also indicated by the dotted lines in Figures
5.8a and b. The associated moveout corrected gathers are shown in subfigures c and d. The
methods used for parameter estimation (i.e., to calculate the semblance scans) and moveout
correction are, respectively, the nonhyperbolic moveout equation (a and c) and the [2/2]
rational interpolation method (b and d). A 100-ms window centered around to = 750 ms
was used in the computation. The contours in a and b indicate the semblance values.
Maximum semblance values for both methods are, respectively, 0.37 (a) and 0.40 (b), and
the resulting estimates for  and Viypso are, respectively, n = 0.34 and Vypyo = 3100 m/s
(a), and n = 0.33 and Va0 = 3250 m/s (b).
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Figure 5.10. Map view of 7 derived from the event of interest in the field data with maximum
offset of 2250 m, i.e., ODR = 2 (a and b), using semblance scans with the nonhyperbolic
moveout equation (a) and the [2/2] rational interpolation method (b). Subfigures ¢ and d
are as a and b, except that the maximum offset is 4500 m, i.e., ODR = 4. Estimates of n
at locations with poor offset distributions were set to white.
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Figure 5.11. Normalized semblance difference between the nonhyperbolic moveout equation
and the [2/2] rational interpolation method, for a maximum offset of 2250 m, i.e., ODR = 2
(a) and maximum offset of 4500 m, i.e., ODR = 4.

methods divided by the semblance for the nonhyperbolic moveout equation method. For
these offsets, both methods result in similar semblances, indicating similar ability to flatten
the gathers. This supports our findings from the numerical tests that both methods obtain
comparable results in terms of moveout correction, for an ODR range up to two (cf. Figure
5.5). Figure 5.11b is as 5.11a, except that here the maximum ODR is four. For this
range of ODR, the [2/2] rational interpolation has on average 10% higher semblance values
than does the nonhyperbolic moveout equation method. This supports (for the whole
field dataset) our findings from the synthetic results. Hence, for this field data example
and for a maximum ODR larger than two, the [2/2] rational interpolation method provided
generally improved moveout correction (i.e., improved semblance values), and more spatially
continuous estimates of 7.

5.10 Discussion

We have shown that for ODR values up to 8, the [2/2] rational interpolation results
in an accuracy of O(1071)%, or less, of ¢y for most models of practical interest. If higher
accuracy is desired, or accuracy up to larger ODR is needed (e.g., in near-surface seismic
experiments), higher-order polynomials can be used in the rational approximation. The
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added computation time for inclusion of several extra terms is negligible; hence the efficiency
of the proposed method remains essentially the same.

As with any linear system of equations, the system used to calculate the coefficient
ny, ng, di, and dg, may be singular. In our case, this happens when the moveout is
purely hyperbolic (see Appendix N). However, as explained by Stoer & Bulirsch (1993,
p.61-62), this nonsolvability of the interpolation problem is a matter of degeneracy; hence,
solvability can be restored by arbitrary small perturbations of the support points. For purely
hyperbolic moveout we indeed observed that adding a small amount of numerical noise (on
the order of 1072 ms) to the support traveltimes, restored solvability. Figure 5.1, however,
shows that for virtually all anisotropic models of practical interest such degeneracy does
not occur, indicating that for our [2/2] rational interpolation we need not worry about such
degeneracy. We have not tested for degeneracy using higher order rational interpolation.

Rational interpolation can be accompanied with the presence of (nearby)® unwanted
poles on (or near) the interval of interpolation [e.g., Berrut & Mittelmann (1997, p.357)
or Berrut & Mittelmann (2000)]. Once the coeflicients ny, no, di, and dp are determined,
the presence of such poles can easily be verified by checking for zeroes in the denominator
of the corresponding [2/2] rational approximation. Also, because in the absence of nearby
poles in the complex plane the derivative of the traveltime curve should always be positive
in a single horizontal VTI layer, the presence of such (nearby) poles can be checked for by
checking for a change in sign of the derivative of the rational approximation t(z). When a
(nearby) pole is found, slight perturbation of the support points using noise injection should
remove the pole. However, Figure 5.1 indicates that for virtually all anisotropic models of
practical interest we did not observe the presence of such poles.

We mentioned in the above that the [2/2] rational interpolation converges to a constant
in the limit of infinite offset, causing the interpolant to oscillate with large amplitudes
beyond the maximum interpolation ODR k4. This generally holds for [M/N] rational
interpolation where M = N. However, using for example M = N + 1, then the limit of the
interpolant converges to a linear function. Even more so, setting the coefficient np_1 = 0,

"M x , which has the right functional
dp—1

dependence for the moveout curve at infinite offset. This would possibly allow extrapolation
beyond the maximum interpolation ODR k; with smaller error. We have not tested any
such approach. For this paper, the [2/2] rational interpolation suffices to exemplify the
accuracy of the rational interpolation in the context of velocity analysis in VTI media.
The geometry of straight rays involved in velocity analysis for a horizontal homoge-
neous layer and the geometry of the rays associated with point scattering in a medium
with constant velocity are identical. Therefore, the rational interpolation method proposed
here is immediately applicable to the problem of post-stack and pre-stack time-migration
in VTT media. Larger offsets in the context of moveout velocity analysis are the equiva-
lents of steeper dips in time-migration. Therefore, the increased accuracy at larger ODR

the interpolant T'(X) then converges to the function

3Here, nearby is meant in the complex plane; in practice nearby would likely be defined as having a
distance (in the complex plane) smaller than the smallest distance between the support abscissas x; and
Tig1.
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provided by the rational interpolation, suggests improved accuracy when the rational inter-
polation scheme is used in imaging of steep reflectors in the context of pre and post-stack
time-migration in VTI media. In this context, our observation that, for fixed n and tg, the
moveout curve for different values of Vypro can be calculated by simple horizontal stretch-
ing and squeezing, implies that the pre and post-stack migration operators for different
values of Vo are also found by such stretching and squeezing.

None of our synthetic tests included amplitude-versus-offset (AVO) variations, whereas
the field data example clearly does (cf. Figure 5.9). Some additional synthetic tests (not
shown), indicate that the rational interpolation method is less sensitive to such AVO varia-
tions than is the nonhyperbolic moveout equation method; this can be explained by the high
accuracy of the rational interpolation method?. Note that the presence of AVO variations
causes semblance based moveout correction to be biased towards the offsets with higher
amplitudes. Such bias is especially noticeable when an inaccurate moveout approximation
is used to moveout correct the data.

The average n values resulting from application of the rational interpolation method
and the nonhyperbolic moveout equation method to the field data for a maximum ODR=4,
are 7, = 0.28 and 74, = 0.25, respectively. For both methods, these values of n are high
compared to values typically reported from nonhyperbolic moveout analysis [e.g. Toldi
et al. (1999)]. Of course the relatively high 7 values are likely a result of the particular
lithology of this area. However, most studies reporting estimates of 7 have been done on
marine data, where a substantial waterlayer reduces the effective values of 7, hence possibly
introducing a bias in what are traditionally considered acceptable values of 1. Of course,
the underestimation of n using the nonhyperbolic moveout equation as pointed out in this
work, only aggravates possible underestimation of acceptable values of 7.

In the field data example, we treat the overburden of the reflection event of interest
as a single horizontal homogeneous VTI layer. As a result, the estimated values of n and
Vinmo are effective parameters. The geological significance of such effective quantities is
difficult to establish, and an approach assuming a layered overburden and resulting interval
estimates of 7 and Va0 would remove this difficulty. Although we do not demonstrate
such an approach in this paper, we believe that such an approach is feasible by applying
rational interpolation in a layer-stripping fashion. We leave the verification of this idea to
a future study. Meanwhile, the single-layer approach outlined here can be used to obtain
more accurate estimates of the average (or effective) values of 7 and Vy a0 in layered media.
Using these values in current Dix-type averaging procedures could lead to better interval
estimates of these parameters.

For horizontally layered media, a plane-wave decomposition, obtained through a 7 —p
transform, is the natural decomposition of the data. This fact was successfully used by
Van der Baan & Kendall (2002) and Van der Baan (2004), to obtain interval estimates of
7 and Vyao from moveout in the 7 — p domain. Even though they successfully estimate
interval values of n and Va0, the need to transform the data to the 7 — p domain or to
pick traveltimes in the ¢ — z domain, is a practical disadvantage. Therefore, there is room

4We did not include phase changes with offset in the tests concerning sensitivity to AVO variation.
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to try to extend our ¢t — = based rational interpolation method to render interval estimates
of n and Vymo.

5.11 Conclusions

We have presented a rational interpolation approach to nonhyperbolic moveout anal-
ysis and correction of qP-waves in VTI media. The accuracy of the method was tested
using both synthetic and field data and compared with that of the nonhyperbolic moveout
equation of Alkhalifah and Tsvankin (Alkhalifah & Tsvankin, 1995), which is the standard
in practical data processing applications. Both synthetic and field data results confirm
that the rational interpolation method significantly outperforms the nonhyperbolic move-
out equation method of Alkhalifah and Tsvankin, in combining unbiased parameter (1)
estimation with accurate moveout correction, for arbitrary levels of anellipticity and large
ODR. The resulting traveltime errors are several orders of magnitude more accurate than
the errors obtained from the nonhyperbolic moveout equation of Alkhalifah and Tsvankin,
and the method can be tuned to be accurate at any offset range of interest by increasing
the order of the interpolation. The improved accuracy at larger ODR should lead to more
accurate imaging of steeper dips if the method is used in the context of post or pre-stack
time-migration in VTI media.

In the special case of n < 0.1 and maximum ODR up to four (we did not test ODR
larger than four), the shortcomings in moveout correction and estimated values of 7, ob-
tained using the nonhyperbolic moveout equation from Alkhalifah and Tsvankin, are small
and probably negligible from a practical point of view. Comparison of the traveltimes used
for the rational interpolation (calculated using the above-mentioned customary assump-
tions) and the shifted hyperbola approximation from Fomel (2004) for Greenhorn-shale
anisotropy, showed that the differences between both methods are less than 1 ms, and
hence, from a practical point of view, negligible.

Under the customary assumptions that traveltimes of qP-waves in VTI media depend
mainly on  and Vypo (i.e., we can choose § = 0), and that the influence of Vg on
traveltimes of qP-waves in TI media is negligible, we found that for a single horizontal VTI
layer, the nonhyperbolic moveout curve for fixed values of n and %o, but varying values
of VNmo, can be calculated by simply stretching the offset axis. This observation allows
calculation of the traveltimes needed for the rational interpolation from a small number of
traveltimes for a few ODR values, some reference value of ¢y (conveniently taef =1s), and
7 values ranging from -0.2 to 1.0 in steps of, say, 0.01. These few hundred traveltimes can
be precomputed once, in about a minute on a modern PC and subsequently stored in a
table. Therefore, the rational interpolation based method has no computational overhead
compared to methods based on approximations explicit in the relevant parameters n and

Vnwmo-
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Chapter 6

Nonhyperbolic moveout analysis of gP-waves in
layered VTI media using rational interpolation!

6.1 Summary

The nonhyperbolic moveout observed in common-midpoint gathers is often ascribed to
the presence of seismic anisotropy in the subsurface. Therefore, this moveout is commonly
used to get (initial) estimates of the relevant seismic parameters describing such anisotropy.
For qP-waves in laterally homogeneous transversely isotropic media with a vertical symme-
try axis (VTI), these parameters are the anellipticity parameter  and the zero-dip normal
moveout velocity Vimo. The 7-p domain is the natural domain for parameter estimation in
horizontally layered media since cusps do not occur in this domain and because the hori-
zontal slowness is preserved upon propagation. However, the need for methods that use the
7-p domain to transform the data or to pick traveltimes in the z-t domain, is a practical
disadvantage. To overcome this, we combine a 7-p domain inversion technique with rational
interpolation of traveltimes in the z-t domain. This combination results in a highly accu-
rate, yet efficient semblance-based method in the z-t domain, for estimating the interval
values of 7 and Vj,;, from the moveout of qP-waves reflected once in a horizontally layered
VTI medium. The efficiency of the method stems from the fact that rational interpolation
needs only few (here five) support points to obtain accurate moveout interpolation. The
accuracy of the method is verified with a numerical example.

6.2 Introduction

In the past two decades, seismic data processing has gradually developed to allow an
estimate of seismic anisotropy to be obtained from the data. A common method to get
(initial) estimates of seismic anisotropy is to analyze the nonhyperbolic part of the moveout
in a CMP gather (Tsvankin & Thomsen, 1994; Alkhalifah & Tsvankin, 1995; Alkhalifah,
1997; Grechka & Tsvankin, 1998; T'svankin, 2001, Chapter 4). This analysis originated with
the work of Hake et al. (1984), who presented a three-term Taylor expansion to describe the

!This Chapter is part of a paper in progress intended for submission to Geophysics as: Huub Douma and
Mirko van der Baan, 2006, Nonhyperbolic moveout analysis of qP-waves in layered VTI media using rational
interpolation. An abstract on the work presented in this Chapter has been accepted for presentation at the
Annual Meeting of the EAGE as: Huub Douma and Mirke van der Baan, 20068, Semblance-based anisotropy
parameter-estimation in layered VTI media using rational interpolation.
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moveout in a CMP gather acquired over a horizontally-layered transversely isotropic (TI)
medium. Tsvankin & Thomsen (1994) presented an improved rational approximation that
provided better accuracy at long offsets, but many authors subsequently pointed out the
lack of accuracy at intermediate offsets [e.g., Grechka & Tsvankin (1998), Zhang & Uren
(2001), Van der Baan & Kendall (2002), Stovas & Ursin (2004), and Douma & Calvert
(2006)]. This observation led to several other methods, such as the 7 — p based method
(Van der Baan & Kendall, 2002; Van der Baan, 2004), the shifted-hyperbola-based approach
[e.g., Fomel (2004)], continued-fraction-based approaches [e.g., Ursin & Stovas (2006)], and
a rational-interpolation-based method (Douma & Calvert, 2006).

Because horizontal slowness is preserved upon propagation through horizontally lay-
ered media, and because traveltimes as a function of the horizontal slowness p are single-
valued, the 7-p transform is the natural domain for anisotropy parameter estimation in
layered media (Hake, 1986; Van der Baan & Kendall, 2002). Since the 7-p transform is a
plane-wave decomposition, the relevant velocity is phase velocity rather than group velocity.
The latter velocity is mathematically more complex and often follows from approximations
to already approximated phase velocities. Hence, anisotropy-parameter estimation in the
7-p domain renders the extra approximation for the group velocity unnecessary, thus leading
to more accurate estimates of the relevant parameters.

The disadvantage of the 7-p domain inversion technique is that we either need to (1)
transform the -t gathers to the 7-p domain and pick the 7-p curves in this domain, or (2)
pick the ¢(z) moveout curves using a least-squares fitting procedure and transform these to
the 7-p domain. Most interpreters prefer the second option since they have more experience
viewing data in the z-t domain (Van der Baan & Kendall, 2002). Manual picking of the
moveout curves, however, is in practice cumbersome despite being prone to error.

The approximation to nonhyperbolic moveout of qP waves given by Tsvankin & Thom-
sen (1994) is a rational approximation that is exact at zero and infinite offset. Recognizing
the accuracy of rational approximants together with the need for better accuracy at inter-
mediate offsets, Ursin & Stovas (2006) recently derived a rational approximation (written
as a continued fraction) for nonhyperbolic moveout in layered VTI media by matching a
Taylor series expansion for the squared traveltime up to sixth order in offset (actually third
order in squared offset); such approximation is also known as Padé approzimation [e.g.,
Baker (1975) or Bender & Orszag (1978)]. Although this rational approximation provides
improved accuracy at intermediate offsets, beyond certain offsets it loses accuracy. To over-
come this, but at the same time recognizing the accuracy of the rational approximation,
Douma & Calvert (2006) (see Chapter 5) proposed a rational interpolation approach to
describe nonhyperbolic moveout. In this method, the moveout is obtained through rational
interpolation of traveltimes at offsets where accuracy is desired, i.e., at offsets acquired in the
field. They showed that for a single horizontal VTTI layer, the rational-interpolation-based
method, using quadratic polynomials in both the numerator and the denominator, allows
for highly accurate moveout correction up to offset-to-depth ratios of about 8, combined
with unbiased estimation of Vo (or 7).

We extend the rational-interpolation-based method of Douma & Calvert (2006) to
a horizontally layered TI medium with a vertical symmetry axis, based on nearly exact
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traveltimes derived from the 7-p curve in combination with the acoustic approximation
of Alkhalifah (1998). This allows us to set up a three-parameter, i.e., tg, 1, and Vpno,
semblance-based analysis in the t — £ domain, to invert qP-wave moveout for the interval
values of 17 and Vj,;, as a function of the zero-offset two-way traveltime tg, without the use
of a Dix-type averaging procedure (Dix, 1955). The presented method is highly efficient
due to a combination of expressions for the traveltimes and offsets that are explicit in the
interval values of 7 and V,,;,,, and the horizontal slowness, and because rational interpolation
needs only few support points (here five) to obtain accurate moveout interpolation. Since
we are dealing with qP-waves only, interpolation can be done in the z — t domain since no
cusps can occur on qP wavefronts due to the convexity of the slowness surface of such waves.
The method can be extended to pure mode qSV reflections based on the weak anisotropy
approximation of the phase velocity for such waves (Thomsen, 1986), provided the measured
reflected wavefront does not contain any cusps. In case the reflected wavefront does contain
cusps, the 7 — p domain is the natural domain of choice for horizontally layered media, as
pointed out by Van der Baan & Kendall (2002).

The organization of this paper is as follows. First, we review the 7 — p curve and
subsequently use it to develop the expressions for traveltime and offset of pure-mode qP
reflected waves in layered VTI media, as a function of the horizontal slowness. We then
proceed to present the rational-interpolation-based procedure for traveltime estimation, and
explain its use in interval parameter estimation of 7 (or Vi, ) and Vi, 0. Finally, a numerical
example illustrates the method.

6.3 The general 7 — p curve

From simple geometric considerations, it follows that in an (anisotropic) homogeneous
medium the horizontal distance Az’ traveled by a plane wave within a time interval At’ is
given by

Az = v;”At’ , (6.1)

where v is the horizontal group velocity. The length of the projection of the group-velocity
vector on the normal to the wavefront equals the phase velocity [e.g. Vlaar (1968); Helbig
(1994, p.23)]. Therefore, in two dimensions,

pvg +qug =1, (6.2)

where p and ¢ are the horizontal and vertical components of the slowness vector p, re-
spectively, and v} is the vertical component of the group velocity. Using equation (6.2) in
equation (6.1) and solving for At’ we have

At = pAz’ + qAz (6.3)
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where we used Az = 'U;At’ . The two-way traveltime At can be split into two one-way
traveltimes Af and A#' for the up- and down-going ray, respectively, i.e.,

Af = pAz — Az, AV =pAz' + Az, (6.4)

where we denote explicitly the difference in the vertical direction for the up- and down-going
rays. For a reflected wave in a horizontal layer, it follows, using Snell’s law p = p = p, that

At = Af' + At = pAz + (§ — §)Az (6.5)

where Az = 2Az’ denotes the offset. Assuming that the medium has a horizontal symmetry
plane (such as transversely isotropic media with either a vertical or a horizontal symmetry
axis, or orthorhombic media with a horizontal symmetry plane, or even monoclinic media
with a horizontal symmetry plane) and assuming pure-modes only (i.e., qP-waves, qSV-
waves and qSH-waves), we have § = —¢ = ¢. Using this in equation (6.5) then gives

At = pAz + 2qAz . (6.6)

Defining the intercept time A1 := At—pAxz, and replacing the single layer with a stack
of homogeneous anisotropic horizontal layers, we obtain the 7 — p curve [e.g., Chapman
(2004, section 2.3)]

t=pr+71, (6.7)

with 2 denoting the offset and with
T = Z Ativigt, (6.8)
i

where t} is the two-way vertical traveltime in layer i, and v§ and ¢* are the vertical group
velocity and vertical slowness in layer 7, respectively. It follows from the definition of the
T — p curve that

dr
—_— =, 6.9
= (©9)

6.4 Traveltimes for gP-waves in layered VTI media based on the 7 — p curve

Although equation (6.7) is valid in generally anisotropic horizontally layered media
with a horizontal symmetry plane, and valid for gP-waves as well as for gSV-waves and
qSH-waves, we treat qP-waves in VTI media only. Since for such waves no cusps can occur
in the moveout due to the convexity of the slowness surface, this allows the interpolation to
be done in the £ — t domain. Also, in horizontally layered VTI media, each vertical plane is
a symmetry plane, so the vertical group-velocity is the same as the vertical phase velocity.
Therefore, the vertical group velocity v§ in equation (6.8) is replaced with the vertical phase
velocity V¢ (i.e., Vi, for qP-waves).

The traveltimes of qP-waves in laterally homogeneous VTI media depend mainly on
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the zero-dip normal-moveout velocity Vym, and the anellipticity parameter 5 (Alkhalifah &
Tsvankin, 1995). The vertical shear-wave phase velocity Vgg has negligible influence on the
traveltimes of such waves in TI media (Tsvankin & Thomsen, 1994; Tsvankin, 1996; Alkhal-
ifah, 1998). Alkhalifah (1998) derived an approximate relation for the vertical slowness g
in terms of V,,;;,, and 5 by setting Vo = 0. This relation is given by

1-p?v2

W . (6.10)

nmo

Vhod® =1-

Setting Vgo = 0 is described as the acoustic approximation by Alkhalifah (1998). Grechka
& Tsvankin (1998) showed that the horizontal velocity Vior = Vimoy/1 + 27 is better con-
strained from semblance-based moveout analysis than is n. Therefore, in anticipation of
a semblance-based parameter estimation, we rewrite equation (6.10) in terms of Vj,, and
Vamo- When we do this, equation (6.10) becomes

1- szhzm,
1-p? (V2 = ViZno)

Using equation (6.11) in (6.8) then gives 7 explicit in the relevant parameters Vj,, and
Vamo, 1.€.,

Vlgoq2 =

(6.11)

i 1 _p2 (Vi:w)2
T = A . 6.12
A [ - ] o

With this expression we can calculate the derivative d7/dp and use the resulting expression
in equation (6.9) to find the offset = explicit in Vjo. and Vimo. Doing this gives

P (Vo) /31— P2 (Vi)
(19 ()~ Vim?]}

Finally, using equations (6.12) and (6.13) in (6.7), we get an expression for the traveltime
as function of the horizontal slowness p explicit in the relevant parameters Vi and Vi,
ie.,

(6.13)

m=ZAtf)
i

P2 (Vimo)™ 1 {1 =22 [(Vi)® = (Vimo)] } + [1 = 9% (Vi)]

V=7 0] {182 [)? - ]}

(6.14)

t=> At
i

The weak anisotropy approximation (Thomsen, 1986) can be used to linearize the
phase velocity Vsy for qSV waves as a function of phase angle, which can subsequently
be written [equation (31) from Van der Baan & Kendall (2002)] in terms of the horizontal
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slowness as

1/2
—1+20p*VZ + {(1 - 2<7p2VS20)2 + 8ap4VS40}
4opiV3, ’

VSV (p) ~ (6.15)

with o := (Vpo/Vs0)2(e — 8). Then the vertical slowness g can be found using ¢ = 1/V&, —
p?, which can subsequently be used in equation (6.8) to find the intercept time. Substitution
of this result in equations (6.7) and (6.9) gives the equivalent expressions to equations
(6.13) and (6.14) for the offsets and associated traveltimes of reflected qSV waves. The

resulting expressions could be made explicit in the NMO velocity V.3V using the relation
VSV = Vsov/1+ 20. Such expressions could be used only in an z — ¢ based interpolation

scheme provided the wavefront does not contain any cusps. Although such a treatment is
possible, linearized approximations for qSV-waves are often not very accurate because the
presence of the squared Vpg/Vsp in the definition of o often makes ¢ much larger than e
and § (Tsvankin, 2001, p.26-27). Therefore we refrain from this treatment and subsequent
numerical verification.

6.5 Rational interpolation

Equations (6.13) and (6.14) are explicit in p. For an z-t based semblance analysis,
however, we require traveltimes for all offsets acquired in the field. Finding the p value
associated with a certain offset x in equation (6.13) corresponds to a simplified 2-point ray-
tracing problem, which can be solved using a straightforward bisection approach since the
offset z and traveltime ¢ in equations (6.13) and (6.14) are single-valued and monotonically
increasing with increasing p-value. In principle this can be done for each available offset and
the resulting moveout curves can be used to perform a semblance-based parameter estima-
tion in the  — t domain. Here, however, we propose a more elegant and computationally
less demanding procedure that uses the traveltimes and offsets calculated for a few p-values
only in the rational-interpolation-based approach of Douma & Calvert (2006) (see Chapter
5). In this way, the method of Douma & Calvert, which is based on a single horizontal VTI
layer, can be extended to horizontally layered VTI media. The proposed method naturally
encompasses the single-layer case, hence removing the need for the tabulated approach used
by Douma & Calvert.

A rational approximation to a function t(z) is generally written as [e.g., Stoer &
Bulirsch (1993, p.58-63)]

Np(z) no+mz+---+npzh
~ - 6.16
Hz) Dy (z) dy+dic+---+ dyzM’ ( )

with Np(z) a polynomial of order L, and Ds(z) a polynomial of order M. We denote such
an approximation as [L/M]. This rational approximation is determined by the L + M + 2
unknown coefficients n;, 4 = 0,1,...,L and d;, 2 = 0,1,..., M. Since these coefficients can
be determined up to only a common factor p # 0, the [L/M] rational approximation is fully
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determined by L + M + 1 support points (z;,t;) satisfying

Nip(z;)
Hx) = = 6.17
(IL‘,) D (3:1,) t'L ( )

Hence, it is necessary that the coefficients satisfy
NL(LII,') — tiDM(:L‘i) =0. (6.18)

Satisfying equation (6.18), however, is not a sufficient condition for equation (6.17) to
hold since Np(z;) and Dps(z;) may both be zero. In that case, the rational interpolation
problem is unsolvable, and support points (z;,t;) cannot be reached and are thus missed
by the rational function Np(z)/Dps(z). Such support points are usually referred to as
inaccessible. If x; is an inaccessible point, the functions Ny (z) and Dps(z) have (at least)
a common factor x — z;. If Np(z) and Dps(x) have no such common factor, the rational
interpolation problem is solvable (Stoer & Bulirsch, 1993, p.58-63).

If the L + M + 1 support points (z;,t;) of an [L/M] rational approximant can be
interpolated by a [L'/M’] rational approximation with L' + M’ < L + M, the support
points are said to be in special position (Stoer & Bulirsch, 1993, p.61-62). Suppose i1,...,iq
are the subscripts of the inaccessible points of the [L/M] rational approximant t(z) in
equation (6.16). Then, Ni(z) and Dp(z) have common factor I;cy;, . ;.3(% — ), which
after cancellation leaves an equivalent [L’/M’] rational approximant with L' + M’ + 1 =
L+ M +1—20. Since the remaining polynomials N (x) and Dj},(z) have no more common
factors, they form a rational approximation t'(z) = Ny (z)/D;] ( ) that solves the rational
interpolation problem through the remaining L + M + 1 — « accessible points. Since L +
M+1-a>L+M+1-2a =L+ M'+1, it follows that the accessible support points of a
nonsolvable rational interpolation problem can always be interpolated by a [L’/M’] rational
approximation with L'’ + M’ < L + M, and are thus always in special position. This means
that the nonsolvability of a rational interpolation problem is really a matter of degeneracy.
Therefore, the possible nonsolvability of a rational interpolation problem is never an issue in
practice, since it can be overcome by adding arbitrarily small perturbations to the support
points.

If z and ¢ in equation (6.16) denote squared offset and squared traveltime, respectively,
it follows that for purely hyperbolic moveout all the support points are in special position.
As shown in Appendix N, this means that in that case the linear system (6.18) is degenerate.
This was also noted by Douma & Calvert (2006), who observed that this degeneracy can be
overcome by arbitrarily small perturbations (in the form of numerical noise) of the support
points (z;,t;). If, however, z and t denote offset and time instead of squared offset and
squared time, then there is no degeneracy for hyperbolic moveout. Here, we therefore
interpolate the traveltimes as a function of offset as opposed to the squared traveltimes as
a function of the squared offsets, as done by Douma & Calvert (2006).

Douma & Calvert explicitly solve the linear system (6.18) for [2/2] rational inter-

polation in their appendix A (see Appendix M of this thesis). Alternatively, the rational
approximant N (z)/Dps(x) can be written as a Thiele continued fraction (Stoer & Bulirsch,
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1993, p.63-67) given by

Np(z) to + T —1xg T —1
Dy () * " plzo,z1)+ p(zo,71,72) — p(z0)+
I —TM+L-1
, 6.19
p(an"'axM+L)_p(mﬂ)"'1$M+L—2) ( )
where we use the notation % = g:—a—c/_d' Here, the reciprocal differences p are defined
by
p(:L‘i) = 1 ; (620)
T — Tk
oz, z) = tz T (6.21)
R
T — Titk
iy Tigly- .-y Tigk) =
ploi Tiv i+k) Py Tigk—1) = P(Tit1,- - Titk)
+p(:1:i+1, ey xi+k—l) . (622)

Here, we use the same order of rational interpolation that Douma & Calvert used, i.e., a
[2/2] rational interpolation, since they showed that this order of interpolation (at least for
a single horizontal homogeneous VTI layer) provides high accuracy in the traveltimes up
until offset-to-depth ratios of 8. Setting L = M = 2 in equation (6.19) gives the resulting
Thiele continued-fraction interpolation, i.e.,

H(z) ~ No(z) T — Ig T — I
Dy (z) *" b(zo, z1)+ plzo, ... ,72) — p(zo)+
r — T2 Tr— I3

P(xo, .. 11"3) - P(flfo,-’fl)‘f' P(-’L'O, v )$4) - p(xO) s ,1:2) .
(6.23)

This equation can be used to find the function values ¢(z) at values of z different from the
support abscissas z;. Note that for the [2/2] rational interpolation only four support points
need to be calculated, because tg is treated as a parameter, rendering the method highly
efficient.

6.6 Three-parameter semblance-based parameter estimation in the = — ¢ do-
main

We use the expressions for the traveltimes and associated offsets, i.e., equations (6.14)
and (6.13), respectively, to calculate the support points for the rational interpolation. That
is, given four p-values p; (j = 1,...,4), and given the model parameters Atj, Vi, and Vi o,
we calculate the pairs (z;,t;). Together with the pair (zg,t0 = Y, At§), these pairs are the
necessary five support points for the [2/2] rational interpolation that can be used to calcu-
late the reciprocal differences from equations (6.20)-(6.22). Using the resulting reciprocal
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differences, we then have the necessary ingredients to calculate the Thiele continued-fraction
interpolation using equation (6.23). The moveout curve obtained in this fashion, can be
used either to perform a semblance analysis or to moveout correct a CMP gather.

For a single horizontal VTI layer, Douma & Calvert (2006) used 5 regularly spaced
offsets to act (together with the associated traveltimes) as the support points of the {2/2]
rational interpolation. For the layered case, we obtain the four? necessary p-values using
a bisection approach in combination with equation (6.13). That is, given four offsets (or
offset-to-depth ratios), we find four horizontal slownesses p; that have offsets close to the
prescribed ones (say within an accuracy of 100 m) using bisection. For a single horizontal
layer this bisection approach is in principle unnecessary, since the horizontal slowness as a
function of offset [derived from equation (6.13)] can be shown to satisfy a quartic equation
that can be solved explicitly (see Appendix G for the general solution to a quartic equation).
Alternatively, we could simply use four equally spaced p; values, with the largest p; equal

1/ { max V,for) This is computationally the most efficient option. We have not tested
1

this approach, however, since we aim to stay close to the method of Douma & Calvert
(2006) which obtains accurate interpolation using regularly spaced offset-to-depth ratios.
Moreover, because the rational interpolation achieves high accuracy with so few support
points, the computational overhead of bisection is negligible.

Since the support points are explicit in V,fm, Vo, and Ath, a semblance-based inver-
sion in the z-t domain is feasible as a function of the three parameters tg, V., and V.
In this way the best-fit values of V}_ and Vi, can be determined as a function of ¢, by
finding the maximum semblance combinations of Vi = and Vi, as a function of to. For
pure-mode qSV waves in the absence of cusps, a similar semblance analysis is feasible based
on the three relevant parameters tg, ¢;, and V,fmo’ sy, Where o; denotes the interval o.

In principle, a semblance-based global inversion can be set up to determine the values
of ,fm and V,, for all layers at the same time, or by applying the inversion in a layer-
stripping fashion. In practice, however, both approaches are often not desirable, because of
the trade-off between V;i__and V%, for limited offset acquisition geometries [e.g, Alkhalifah
(1997); Grechka & Tsvankin (1998). This tradeoff makes the inversion sensitive to errors
in the observed traveltimes caused by the presence of noise or imperfect static corrections.
Because this tradeoff is reduced with increasing offset-to-depth ratio (Alkhalifah, 1997),
however, such procedures could be used when larger offset-to-depth ratios (approximately
four or larger) are available in the data. When such data are not available and if the
layer of interest is known, the overburden can be modeled as a single layer with certain
effective values of V. and Vi, [e.g., Tsvankin (2001, section 4.1.3)]. Once these values
are established, the values of V! and V! . can be estimated by finding the maximum
semblance value over a range of values of V;', and V;},, while keeping the effective values
of Vior and Vymo of the overburden fixed. This method would reduce the problem of error-
propagation in a layer-stripping approach when large offset-to-depth ratios (say > 3) are
not available in the data.

2Because the pair (o, to) simply relates to po = 0, we need only calculate four p; values, instead of five.
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Table 6.1. Model parameters used in ray-tracing to determine the traveltimes from a
layered model. The associated CMP gather is shown in Figure 6.1a.

layer h (m) Vpmo (m/s) Vier (m/s) 17 Vpo (m/s) Vso (m/s) e )
1 1000 2098 2098 0.00 2000 300 0.050 0.05
2 2000 2000 2208 0.16 2000 300 0.160 0.00
3 3000 2892 3747 0.34 3048 300 0.255 -0.05
4 4000 2464 3882 0.74 3292 300 0.195 -0.22

6.7 Numerical example

Douma & Calvert (2006) (see Chapter 5) applied the [2/2] rational interpolation
method for a single horizontal VTT layer to a layered model to obtain effective value of
1 and Vymo. Here, we test our method for interval parameter estimation of n and Vi, us-
ing the same layered model that Douma & Calvert used. The model parameters are given
in Table 6.1. Figure 6.1a shows a CMP gather for this model. The top layer is elliptically
anisotropic, i.e., n = 0, whereas the remaining layers have subsequently increasing values
of n. The values of Vy,;n0, Vior, and 7 for each layer are listed in Figure 6.1a. The level of
anellipticity for the third layer (i.e., 7 = 0.34) can be considered high, whereas the anellip-
ticity in the fourth layer (i.e., n = 0.74) is extreme. The values of Vimo, Vior, and 7, for
the second layer, correspond to the model parameters used in Figures 1 and 2 of Grechka
& Tsvankin (1998)3. For the third and fourth layer, the model parameters correspond to a
shale under zero confining pressure, and to Green River shale, respectively, [see Table 1 in
Thomsen (1986) for these two cases]. Hence, even though the anellipticity in the third and
fourth layer are high, they have been observed in laboratory measurements.

The CMP gather shown in Figure 6.1a was obtained using anisotropic ray-tracing and
subsequently setting all amplitudes to 1.0. Hence, realistic amplitude and phase variations
with offset are not modeled in this gather. It is known that semblance based methods
can to some extent suffer from amplitude variations with offset [e.g., Sarkar et al. (2002)].
Here, we eliminate this complication in order to focus our attention on the ability of the
proposed method to accurately determine the interval parameters of Vo, Vior, and 7 from
the traveltimes in CMP gathers.

We want to highlight that the proposed method is accurate up to large offset-to-depth
ratios. Therefore, for all events in Figure 6.1a, the maximum offset-to-depth ratio is four.
Knowing that for such large ratios the tradeoff between V,,,,, and Vj,, is small, we employ

3These parameters were originally chosen because such values of  were observed on field data (Alkhalifah
et al., 1996).
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Figure 6.1. (a) CMP gather with qP-reflections from a 4-layer model generated using ray-
tracing (see Table 6.1 for parameters). The layers are outlined by dashed lines, and the
true values of 1, Vi, and Vi, are indicated. (b) As (a) but with estimated values of 7,
Vior and Vpno indicated together with their associated traveltimes (dashed white lines).
The support points are marked by the black dots. (c-f) Semblance scans as a function of
the interval values of Vjor and Vi, for layer 1 (c) through 4 (f), respectively. The grey
circles indicate the true values of associated interval values of Vi, and V,,;,0 while the white
triangles indicate the interval values obtained from the maximum semblance (smax)-
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Figure 6.2. Semblance scans as a function of the interval values of V}, and Vj,,,,, for layer
4 for an offset-to-depth ratio of 1.5 (a) and 4 (b).

the proposed method in a layer-stripping setting. Figures 6.1c-f show the semblance scans
from the first through the fourth event in Figure 6.1a as a function of the interval values
Vi o and Vi . For each layer, the semblance scans were obtained by fixing the overburden
values of V,? . and V}'__ to their estimated values. Then, by varying the interval values V;}, .,
and V§__ in the layer of interest and calculating the traveltime curves for each combination
of Vi, and V}__ using the rational-interpolation method given above, we determined the
semblance values along these curves. The location of the maximum semblance value is
indicated by the white triangle, while the location corresponding to the true model values
of Vi, and ,fw is indicated by the grey circle. Note the excellent agreement between
the obtained values of V%, and V}' = (and thus 7;) and the true interval values of these
parameters (see Figure 6.1b), as inferred from the close proximity of the locations of the
white triangle and the grey circle. Figure 6.1b shows the traveltime curves (calculated using
the rational-interpolation approach) associated with the obtained interval values Vi and
Vji . (white dashed lines) superimposed on the events in the CMP gather, confirming the
close match between the true traveltimes and the traveltimes from the inverted interval
parameters V. and V}! . This close match is confirmed by the high maximum semblance
values Smqy (shown in Figures 6.1c-f), indicating the excellent agreement between the actual
traveltimes and the obtained traveltimes, even for the large offset-to-depth ratio of four.
The support points used for the rational interpolation are indicated by the black circles.
From the shapes of the semblance scans for all layers, it follows that V} _ is better
resolved than V. This can be attributed to the relatively large value of four used for
the maximum offset-to-depth ratio. Indeed, larger offsets put tighter constraints on the
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Table 6.2. Effective values of Vino, Vhor, and n for the layered model shown in Figure
6.1a obtained using the Alkhalifah-Tsvankin approximation. The maximum offset-to-depth
ratio used to obtain these values is 1.5.

layer  Vimo (m/s)  Vier (m/s)

1 2096 2100 0.00
2 2047 2193 0.07
3 2284 2816 0.26
4 2328 2995 0.33

inversion of Vj,, than do the smaller offsets [e.g., Alkhalifah (1997)]. Figure 6.2 confirms
this in the context of the interval value V,:'m,, by showing the semblance scan for the fourth
layer for a maximum offset-to-depth ratio of 1.5 (Figure 6.2a) and 4 (Figure 6.2b). Note
that the larger offsets do not really add any constraints on Vi, since Vi is mainly
determined by the near offsets. Therefore, the small discrepancies between the true values
and obtained interval values 7; are mainly caused by small deviations of the obtained values
of Vyumo from their true values (see Figure 6.1). We attribute these differences to the use of
the acoustic approximation to determine the support points.

Grechka & Tsvankin (1998) introduced a method to find the interval values V! .
and 7; from the effective values of Vi, and Vi, obtained from the Tsvankin-Thomsen
approximation (Tsvankin & Thomsen, 1994) [later rewritten in terms of 7 by Alkhalifah &
Tsvankin (1995)]. This approximation describes the nonhyperbolic moveout of qP-waves in
a single horizontal VTI layer. The effective values of Vi, and Vi are obtained by finding
the best-fit values of Vi, and Vj,, using this approximation on a CMP gather containing
data from a (horizontally) layered VT1 medium. Because this approximation lacks accuracy
at larger offset-to-depth ratios and as a result introduces a bias in the estimated values of
7 (see Chapter 5), we compare the proposed method to that of Grechka & Tsvankin (1998,
equations (14), (16) and (17)) for a maximum offset-to-depth ratio of 1.5 only. Table 6.3
summarizes the results, while Table 6.2 shows the effective values of Vo, Vihor (and 1) used
to calculate the interval estimates shown in Table 6.3; the effective values were obtained
through a (maximum) semblance analysis based on the Thomsen-Tsvankin approximation
(Tsvankin & Thomsen, 1994) for a single horizontal VTI layer. In Table 6.3 the heading
“GT” denotes the method by Grechka and Tsvankin, while the heading RI denotes the
proposed method based on rational interpolation. The proposed method achieves higher
accuracy in the interval values V%, V,for, and ' than does the method of Grechka and
Tsvankin, even for high to extreme levels of anellipticity. The small deviations of V,for (and
thus 7*), obtained with the rational-interpolation method, from their true values, are due
mainly to the lack of resolution in the horizontal velocity of the data for small offset-to-
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depth ratios in combination with the use of the acoustic approximation in deriving equations
(6.13) and (6.14).

Table 6.3. Comparison of actual interval values of V0, Vaor, and 7, and the values obtained
using the inversion formulas of Grechka & Tsvankin (1998) and the presented method based
on rational interpolation, for a maximum offset-to-depth ratio of 1.5.

Vomo (m/s) Vhor (m/s) U

layer Actual GT  RI Actual GT RI Actual GT RI

2098 2096 2098 2098 2100 2096 0.00 0.00 0.00
2000 1997 2003 2300 2548 2290 0.16 031 0.15
2892 2886 2918 3745 3721 3733 034 033 0.32
2460 2511 2490 3880 3583 3851 0.74 052 0.70

W N =

6.8 Discussion

Rational approximations have achieved relatively accurate traveltime approximations
both here and in previous studies. In light of the reported accuracy and efficiency, it
therefore seems reasonable to speculate that the underlying functional dependence of the
traveltime curves in layered VTI media is close to rational. This would explain the high
accuracy of the proposed method with only few (here five) support points.

Rational interpolation can be accompanied by the presence of (nearby)? unwanted
poles on (or near) the interval of interpolation [e.g., Berrut & Mittelmann (1997, p.357) or
Berrut & Mittelmann (2000)]. Such poles occur when the denominator becomes close to zero
away from the support abscissas x;. After the reciprocal differences in the Thiele continued
fraction are calculated, the presence of such poles can easily be verified by checking for
zeroes in the denominator of the corresponding {2/2] rational approximation. Also, because
in the absence of nearby poles in the complex plane the derivative of the traveltime curve
should always be positive in layered VTI media, the presence of such poles can be detected
by checking for a change in sign of the derivative of the rational approximation #(z). In
case a pole is identified, the support points can be perturbed slightly using noise injection
(i-e., small perturbation of the support points), to remove the pole. Alternatively, support

“Here, nearby is meant in the complex plane; in practice nearby would likely be defined as having a
distance (in the complex plane) smaller than the smallest distance between the support abscissas z; and
Tit1.
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points at different offsets (x;) can be used. In the unlikely event that the poles are persistent
under these perturbations, the rational interpolation could be replaced with a cubic spline
interpolation, at the cost of the need for more support points to obtain (sub-millisecond)
accuracy comparable to that of the [2/2] rational interpolation. In this work we have not
observed the presence of such unwanted poles.

The presented method shows that with only few (five) support points, highly accurate
traveltime curves as a function of offset can be obtained using {2/2] rational interpolation.
Even though we only show its accuracy in the context of moveout analysis of qP-waves in
layered VTI media, it seems worthwhile to further investigate the use of rational interpola-
tion in more general traveltime calculations, in particular in the context of sparse storage
of traveltimes. Such sparse storage is relevant in everyday seismic data processing where
large traveltime tables are being used for imaging and inversion.

6.9 Conclusion

Because the horizontal slowness is preserved upon propagation through horizontally
layered media, and because the traveltimes as a function of the horizontal slowness p are
single-valued (i.e., no cusps), the 7-p transform is the natural domain for anisotropy pa-
rameter estimation in layered media. However, quality control of processing results and
interpretation of seismic data is preferably done in the t-z domain. Based on the 7 — p
curve and the acoustic approximation of Alkhalifah (1998), we have presented expressions
for the traveltimes and associated offsets of qP-waves in horizontally layered VTI media
that are explicit in the interval values of Vj,, and Vi, and the horizontal slowness p. We
have shown that using these expressions in combination with an z — t based rational inter-
polation procedure, leads to highly accurate moveout curves for gP-waves in horizontally
layered VTI media. These curves are in turn used to set up a three-parameter semblance
analysis in the z — ¢t domain for the estimation of V,,,, and V. (and thus 7) as a function
of tg. This method overcomes the need to process the data in the 7-p domain or to pick
traveltimes in the z-t domain, as in the method of Van der Baan & Kendall (2002). The
presented method extends the rational interpolation based method of Douma & Calvert
(2006), which is valid for a single horizontal VTI layer, to horizontally layered VTI media.
Since this method naturally encompasses the single-layer case, it removes the need for the
tabulated approach used by Douma & Calvert (2006). The efficiency of the method stems
from the fact that only few (four) support points need to be calculated to achieve highly
accurate moveout curves with rational interpolation.
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Chapter 7

Correcting for bias due to noise in coda wave
interferometry!

7.1 Summary

Coda wave interferometry (CWI) utilizes multiply scattered waves to diagnose small
changes in a medium by using the scattering medium as an interferometer. Since the medium
is usually stationary over the duration of a seismic experiment, different (non-overlapping)
time windows in the coda allow for independent estimates of the medium perturbation.
If the seismograms are contaminated with noise, only those time windows can be used for
which the amplitude of the coda is significantly above the ambient noise level. This limits the
usable number of independent time windows. Here, we show how bias due to noise in CWI
can be accounted for, by deriving a correction factor for the cross-correlation coefficient,
under the assumptions that the stochastic processes underlying the noise realizations in both
signals are mutually uncorrelated and stationary with zero mean. This correction factor
allows more time windows further into the decaying coda to be used, and hence allows
for a reduction of the error bars on the medium perturbation estimates. We demonstrate
the validity of this correction factor by using data from a numerical experiment and field
measurements. These experiments involve the displacement of point scatterers and a change
in the source location, respectively. The application of our correction factor is not limited
to CWI, but can be used to correct for bias induced by noise in any application that uses
cross-correlation between different signals that are contaminated with noise.

7.2 Introduction

Multiply scattered wavefields have been experimentally shown to be remarkably sta-
ble with respect to perturbations of the boundary conditions of experiments with multiply
scattered waves (Derode et al., 1995, 1999). Due to this stability, the information carried
by multiply scattered waves has been successfully used in an industrial context (e.g., Fink,
1997). Coda wave interferometry (Roberts et al., 1992; Snieder et al., 2002; Snieder, 2002,
2004; Grét et al., 2006) uses multiply scattered waves to detect small changes by using the
scattering medium as an interferometer. Since multiply scattered waves dominate the final

!This Chapter has been published as: Huub Douma and Roel Snieder, 2006, Correcting for bias due to
noise in coda wave interferometry, Geophysical Journal International, 164, pp. 99-108.
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portions of a seismogram, they are usually referred to as coda waves just as, in musical
notation, the coda denotes the closing part of a musical piece. Hence the name coda wave
interferometry (CWI). Since CWI uses multiply scattered waves, it is inherently more sen-
sitive to changes in the medium than are techniques based on single scattering, as multiply
scattered waves sense changes in the medium multiple times.

In parallel, but independently, diffusing acoustic wave spectroscopy (DAWS) (Page
et al., 2000; Cowan et al., 2002) was developed as the classical equivalent of diffusing wave
spectroscopy (DWS) (Maret & Wolf, 1987; Pine et al., 1988; Yodh et al., 1990; Weitz
& Pine, 1993). In DWS light is used to study different aspects of strongly scattering
media, whereas in DAWS classical waves are used to probe such media. DWS has been
used in many applications such as, e.g., determining the aging of foams, particle sizing,
and determining the motion of particles in fluidized suspensions on angstrom length scales
(Weitz & Pine, 1993). So far, DAWS has mainly been used to determine the relative mean
square displacement of fluidized suspensions of particles (Page et al., 1999; Cowan et al.,
2000; Page et al., 2000; Cowan et al., 2002). CWI has been succesfully used to measure
the nonlinear dependence of seismic velocity in rocks on temperature (Snieder et al., 2002),
to monitor volcanos (Grét et al., 2005), and to estimate source displacement (Snieder &
Vrijlandt, 2005). The ability to use CWI to determine the relative mean square displacement
of point scatterers from noise-free waveforms was established using a numerical experiment
by Snieder et al. (2002). Both CWI and DAWS use the amplitude information as well as
the phase information of the multiply scattered wavefields, and are both based on a path
summation approach to model the multiply scattered wavefields. Hence, both methods are
in principle the same, but have been used for different applications.

CWI is based on a measure of cross-correlation between multiply scattered wavefields
recorded before and after a medium has changed. The cross-correlation coefficients cal-
culated for different (non-overlapping) time windows provide independent estimates of the
medium perturbations. These independent estimates in turn allow for the calculation of
error estimates of the perturbation; the larger the number of independent (unbiased) mea-
surements, the smaller the error estimates.

When the coda is contaminated with noise, the number of independent time windows
that can be used is limited to traveltimes where the ambient noise level is small compared
to the amplitudes of the multiply scattered waves. To be able to use as many independent
time windows as possible, and hence reduce the error bars on the inferred perturbation, it
is important to correct the cross-correlation function for the bias caused by noise. In this
paper, we show how this bias in CWI can be corrected for, by deriving a correction factor
for the cross-correlation coefficient based on the assumptions that the stochastic processes
underlying the noise realizations in both signals are mutually uncorrelated and stationary
with zero mean. We demonstrate its validity by using data from a numerical experiment
involving the displacement of point scatterers, and field data involving the displacement
of the source location. The organization of this paper is as follows. We briefly state the
essence of CWI and derive the noise correction factor. Subsequently we show the validity
of the correction factor using numerical and field experiments. We conclude with a short
discussion of the results. In Appendix O we derive a condition for the reliability of the
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correction factor for the zero-lag cross-correlation coefficient. This condition can be used
to determine the time windows in the coda where the correction factor is reliable.

7.3 Coda wave interferometry

Here, we summarize the essence of CWI, but refer to Snieder (2006) and references
therein, for a treatment of the theory leading to the expressions presented below.

In CWI, we measure the normalized cross-correlation between seismograms u,(t) and
up(t), where u,(t) and u,(t) are the wavefields recorded at the same location from an
unperturbed and perturbed medium, respectively. We aim to infer the level of the pertur-
bation in the medium from this correlation. The normalized time-shifted cross-correlation
is calculated as the time-windowed correlation coefficient r(ts;¢,t,), given by

(Uu, U‘P)(ts;t,tw)

r(ts;t, ty) ==
\/ (s W) (1 =031,8,) (U Up) 1, =05t1)

, (7.1)

with

1 [tHw

(s ) ) = = [+ )

w Jt—ty,
where t; is the time-shift in the cross-correlation, ¢ is the central window time, and t,, is half
the duration of the time window. If we assume that the perturbation in the medium mainly
influences the traveltimes of the waves, with a resulting time shift 77 for the wave that
travels along trajectory T (Snieder, 2006), the maximum value of the correlation coefficient,
max [r(ts;t,ty)], is related to the variance of the traveltime perturbations o? by

1—
max [r(ts;t, ty)] =1 — szaz , (7.2)

where the frequency w? is given by

t+tiy uﬁ (t,)dt,

w2 o= dotw WAV 7.3
w , .
el (t)dt! (7.3)
and o2 is defined as
2 B 2
o2 = L1 A% (77;42 ()" (7.4)
T 4T

In equations (7.3) and (7.4), @ denotes the time derivative of u(t), A2 is the intensity
of the wave that has traveled along trajectory T, and (r) denotes the intensity-weighted
traveltime perturbation averaged over all scattering paths. It turns out that for the two
types of perturbation studied in this paper, i.e., small displacement of the scatterers and a
change in the source location, the assumption that the perturbation mainly influences the
traveltimes, is appropriate. Note that in equation (7.2), as well as throughout the remainder
of this paper, the maximum is calculated with respect to t, for given values of ¢t and t,,.
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7.4 Correcting for the bias due to noise

In equation (7.2), the waveforms u,(t) and up(t) used to calculate max [r(ts;t,t,)] are
assumed to be free of noise. To study the influence of noise on CWI, we derive a correction
factor for the correlation coefficient when the waveforms u,(t) and u,(t) are contaminated
with noise. We define

Uy () 1= w(t) +nu(t),  up(t) = up(t) + mp(t) , (7.5)

where w,,(t) and u,(t) are the noise-contaminated signals, u,(t) and u,(t) the noise-free
waveforms, and n,(t) and n,(t) the noise signals for the unperturbed and perturbed wave-
fields, respectively. Using the noise-contaminated signals, we define the noise-contaminated
cross-correlation coefficient as

(u’ ,ul ) )
P (teit, ) = o laitie) (7.6)
\/(’U'&, u&)(t;:O;t,tw) (u;)’ ué) (ts=0;t,tw)
Our aim is to derive a correction factor ¢(t;t,t,) such that
(st tw) = c(ts; tytw)r (ts;t tw) - (7.7)

Throughout the remaining derivation, we assume that the noise signals n,(t) and ny(t)
are realizations of mutually uncorrelated stationary stochastic processes with zero mean.
Stationarity is here meant in the wide sense, i.e., the mean is the same (zero) for all times,
and the autocorrelation depends only on the time shift ¢, (Papoulis, 1991, p. 298).

Using equation (7.5), we find

(W) ) = ()t + (0D eit,0) T (U ) i) + (0 0 )
(7.8)

(uy, ul,) (omtittn) = (s ) (1, =0st,t0) + 2 (Vs M) 1,2 0:8,80) T (P Rud ¢, 0:8,20) > (7.9)
(“;”“;’)(t3=o;t,tw) = (uP’uP)(ts=0;t,tw)+2(up’n1’)(ts=0;t,tw)+(np’np)(ts=0;t,tw)' (7.10)

In equations (7.8)-(7.10), terms of the form (u,n), .. ) appear, where u = u(t) is a deter-
ministic signal and n = n(t) a realization of a stochastic process n(t)2. These terms are
time-windowed averages of the product z(t) := u(t)n(t + t;), where u(t) is deterministic.
Hence, z(t) is a single realization of a stochastic process (t) with the same statistical prop-
erties as n(t). Since we are dealing with windowed time-averages of single realizations of
stochastic processes, we want to evaluate the time averages using the underlying ensemble
averages. This leads us to the ergodicity of the stochastic signals treated here.

It is known (Papoulis, 1991, Chapter 13-1) that a (stationary) stochastic process x(t)

2Throughout this paper we adopt the notation that n(t) denotes a realization of an underlying stochastic
process 1e(t).
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is mean-ergodic if and only if A(T) := ( foT Czxzx (T)dT) /T — 0 as T — oo, where Cpz(7)
is the autocovariance of x(t) at time-shift 7; this is Slutsky’s theorem. For A(T) — 0 as
T — oo, it is sufficient for Cpg(7) — 0 as 7 — co. This means that (t) and (¢ + 7), and
thus n(t) and n(t + 7), must be uncorrelated for large time shifts 7, a requirement that is
a reasonable assumption in most practical applications. Hence, with this assumption, we

can conclude that x(t) is mean-ergodic, meaning that the time average ( fTT :c(t)dt) /(2T),

i.e., the time average of a single realization z(t), is close to E(x(t)) = 0 with probability
close to 1. Here, E(x(t)) denotes the expected value of x(t). We have E(x(t)) = 0 since
x(t) has the same statistical properties as n(t), i.e., zero mean. In turn, this means that

1 ttty
(7)) = 5o / w(t)n(d +t,)de' ~0), (7.11)
8 0 tw 2tw t—te
provided the window length t,, is at least several dominant periods of the noise-contaminated
signal. Note that the only real restrictive requirement used to show (7.11), is that n(t) is
stationary with zero mean.

For the term (n,,np) in equations (7.8)-(7.10), we follow a similar argument,

toittu
except that now the stoche(lstic ;)>rocess to be considered is z(t) := n,(t)ny(t + t), where
n,(t) and n,(t) are the underlying stochastic processes of which n,(t) and n,(t), respec-
tively, are single realizations. As in the previous paragraph, for z(¢) to be mean ergodic, it
is sufficient if C2z(7) — 0 as 7 — co. Since n,(t) and n,(t) are assumed to be mutually
uncorrelated both with zero mean, it follows that Cz2(7) = Cnyng, (T)Cnyn, (7). Again,
under the often practical assumption that n.,(t) and n,(t+7), as well as ny(t) and n,(t+7),
are uncorrelated for large 7, we have that Cn,n,(7) — 0 and Cpn,(7) — 0 as 7 — oo;

hence Cz2(7) — 0 as 7 — oo. This means that z(t) is mean ergodic, which is equivalent to
1, (t) and np(t) being cross-covariance ergodic. Therefore, we have that ( fTT z(t)dt) /(2T)
is close to E(2(t)) = E(ny(t)ny(t+1ts)) = E(ny(t))E(ny(t +t5)) = 0 with probability close
to 1. This implies that we have

1 tt-tyw
(s e 00 = 51 /H na(t )y (¢ + t)dt! = 0, (7.12)

with the same assumption for the window length t,, as used in equation (7.11). Note
that both approximations (7.11) and (7.12) become more accurate with increasing window
lengths.

Using equations (7.11) and (7.12) in equations (7.8)-(7.10), it follows that

(u;t’u;)(ts;t,tw) ~ (uu’up)(ts;t,tw) J (7.13)
(u;uu;t)(ts=();t,tw) ~ (uwuu)(t3=0;t,tw) + (nu,nu)(ts=0;t,tw) ) (7'14)
(u;”u;’)(ts=0;t,tw) ~ (u”’up)(ts=0;t,tw) + (nl”nl’)(ts=0;t»tw) ' (7.15)

Using these approximations in equation (7.6), and substituting the resulting expression in
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equation (7.7), it follows that the correction factor c(t;t,t,,) is given by

olts;t, t) 1 . (7.16)

(1 _ (nu,n‘u)(ts=0;t,tw)> (1 _ (nP’nP)(ts=0;t,tw))
(ut,, ue,) (ts=0st,tw) (u;,, u;,) (ts=05t,tw)

This correction factor ¢(ts; ¢, t,,) depends on the unknown noise realizations n,,(t) and np(t).
Note, that the correction factor contains only the zero-lag autocorrelations of these unknown
noise realizations,and that therefore only an estimate of their respective variances is nec-
essary to calculate the correction factor. In practice, assuming the noise is stationary, we
can estimate these variances using the recorded wavefields u,(t) and wu(t) before ¢ = 0
of the experiment. Replacing n,(t) and n,(t) in equation (7.16) with the recorded wave-
fields before t = 0 is a good approximation only if the terms of the form (u,n) (toittw) and

(Puy1p) (tait 1) 1D €QUations (7.8)-(7.10) are small compared to the remaining terms. Hence,
for this replacement to be valid, we want the following inequalities to hold:

| (o + nuanp)(ts;t,tw) + (upa nu)(ts;t,tw)l < |(uu,up)(ts;t,tw)| ) (7'17)
2|(uu’nu)(ts=0;t,tw)| < |(uu,uu)(t3=0;t,tw) + (7, n'u)(ts=0;t,tw)| ’ (7.18)
2| (s Mp) (t,=03t,10) | K (s Up) (8 =03t,0) F (79 Top) 2 =031, )| » (7.19)

where we have used the linearity of the (-, ')(t,,;t,t.,,)in equation (7.17). In Appendix O we
rewrite these three inequalities into one inequality that can be evaluated using only the
noise contaminated signals u;,(t) and u;(t), and a representative noise realization no(t),
e.g., estimated from the wavefields before ¢ = 0 of the experiment. The resulting inequality
[equation (O.5)] then determines if a certain time window has associated with it a reliable
correction factor, when the unknown noise signals n,(t) and n,(t) in equation (7.16) are
replaced with ng(t). Since for the applications treated in this work, (i.e., a displacement of
the source and the displacement of the scatterer locations) the maximum correlation occurs
at time-shift t; = (r) = 0 s, we treat the special case t; = 0 in Appendix O only.

Replacing n,(t) and ny,(t) with ng(t) in equation (7.16), the correction factor is given

by
oltait, t) ~ 1 . (1.20)

1 (no, no)(ts=0;t,tw) 1 (TLO, no)(t_.,:O;t,tw)

(u:n u'lu) (ts=0;t,tw) (’U,;), ’U;;)) (£s=0;t,tw)
and is considered reliable if inequality (O.5) is satisfied with an appropriate value of 7 [i.e.,
O(1071)]. To derive condition (O.5), we assume that the noise is stationary and that n(t)
and np(t) have about the same noise levels, (i.e., the same variance). If the noise levels
of ny(t) and n,(t) differ substantially, separate estimates of the variances (nu, nu)(;, —gy4..,)

and (np,np) (ta=0st,t,,) €N be used in equation (7.16) to calculate the correction factor. In
this case condition (O.5) does not apply, and a new condition could be derived. To avoid
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belaboring the point, we refrain from such a treatment.

7.5 Displacement of the scatterers

The problem of inferring the average displacement of scatterers in a strongly scatter-
ing medium from the multiply scattered wavefields has been used to study fluidized particle
suspensions (Weitz & Pine, 1993; Heckmeier & Maret, 1997; Page et al., 1999; Cowan et al.,
2000; Page et al., 2000; Cowan et al., 2002). In geophysics, this problem could be relevant
when a strongly scattering region in the earth is strained, causing the scattering hetero-
geneities to move. In such a situation the displacement of the scatterers is not expected to be
random, but will be correlated among scatterers. Here, we present a numerical experiment
with point scatterers in a homogeneous background model, where we randomly perturb
the scatterer locations and use CWI to infer their root-mean-square (RMS) displacement.
Although this experiment is not directly related to a changing strain in the earth, it serves
the purpose of testing the workings of our correction factor.

Snieder & Scales (1998) showed that for independent perturbations of the scatterer
positions and isotropic scattering, the variance of the path length L is given by

0% =2md?, (7.21)

where n is the number of scatterers along the path, and ¢ is the RMS displacement of
the scatterers in the direction of either coordinate axis (horizontal and vertical for two
dimensions). Note that Snieder and Scales assume all directions of random displacement to
be equally likely. As a result, the RMS displacement is the same in each direction (horizontal
and vertical for 2D), i.e., for 2D the true RMS displacement would be 1/26. Using that the
number of scatterers is on average given by n = vt/l*, with [* the transport mean free path
(Lagendijk & van Tiggelen, 1996), and v the velocity, and using L = vt, it follows that the
variance of the traveltime perturbations is given by

2 _ 287

T ol

o (7.22)

Inserting this in equation (7.2), it follows that the RMS displacement é can be found from

5= \/ (1 — max [r(ts; £, t)]) '”_Lt (7.23)

w?

Since the perturbations of the scatterer locations are assumed to be independent, and since
the scattering is assumed to be isotropic, the mean traveltime perturbation (7) = 0. This
means that the maximum of the time-windowed cross-correlation function occurs at zero
lag, i.e., ts = 0.

Figure 7.1 shows the setup of our numerical experiment to test the inference of the
scatterer displacements from the seismic coda using equation (7.23). This experiment was
also outlined in Snieder et al. (2002). One hundred point scatterers (solid circles) are
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Figure 7.1. Unperturbed (filled circles) and perturbed (open circles) locations of the point
scatterers in the medium. For display purposes the differences between the unperturbed
and perturbed locations are magnified by a factor 10. The star denotes the source and the
triangles the receivers. The modeled seismograms are shown for three receivers. The drawn
seismograms are related to the unperturbed scatterer locations, and the dotted seismograms
to the perturbed locations. For times later than t = 4.7x 1072 s (marked by the dashed line),
the waves have scattered more than four times. The horizontal bar indicates the window
length for the time-windowed cross-correlations used to calculate the RMS displacement ¢
shown in Figure 7.2.
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contained in an area of 40 x 80 m?, and the waveforms are calculated using a numerical
implementation (Groenenboom & Snieder, 1995) of Foldy’s method (Foldy, 1945). The
resulting seismograms are shown by the solid lines for three locations on the edge of the
area, and the source location is indicated by the asterisk. In these calculations the scattering
amplitude was set to —4i, in order to get the maximum possible scattering strength as
constrained by the optical theorem [Groenenboom & Snieder (1995); in their notation we
used v = 4]. The background velocity equaled 1500 m/s, and the source spectrum S(w) =
e~w*/ ““(2), with w the angular frequency, wg = 27 fg, and fu = 600 Hz. The frequency band
used was 400 — 800 Hz, with a dominant frequency of about 500 Hz resutling from tapering
on either side of the spectrum. Since in our experiment we have isotropic scattering, the
transport mean free path equals the mean free path, i.e., [* = I. The mean free path in
our simulation was measured to be | = 17.6 m, which, using n = vt/!, can be used to infer
that after t = 4.7 x 1072 s the waves are on average scattered more than four times. This
time is indicated in Figure 7.1 by the dotted vertical line. The perturbed scatterer locations
are indicated by the open circles in Figure 7.1. For display purposes the displacements are
magnified by a factor 10. The actual RMS displacement is §iue = 8 X 1072 m in both
the horizontal and vertical direction. This displacement equals just 1/38 of the dominant
wavelength (the dominant wavelength A = 3 m). The resulting waveforms calculated using
the displaced scatterers are shown for three receivers by the dotted lines.

Figure 7.2a shows the inferred value of § [using equation (7.23)] as a function of the
central window time t, where the estimated values for § from all 21 receivers were averaged.
[The receiver spacing was chosen such that the calculated multiply scattered waveforms
were uncorrelated, meaning they can be treated as independent.] The dotted lines show the
average inferred value of § as a function of time plus or minus one standard deviation. The
half-window duration t,, was 10~2 s, resulting in a window length of 10 dominant periods,

and Vw? = 3.66 x 10° rad/s. The vertical dashed lines indicated the range of validity of
equation (7.23). For early times (i.e., t < 4.7 x 1072 s) the relation n = vt/l for the number
of scatterings used in the derivation of equation (7.23) is not valid, and for late times (i.e.,
t > 2.9x 107 1s), the second-order Taylor approximation of the autocorrelation of the source
signal is inaccurate by more than 15%. This latter time is indicated by the rightmost dotted
vertical line in Figure 7.2. For reference, Figure 7.2b shows an unperturbed (black) and
perturbed (red) wavefield from the central receiver seen in Figure 7.1; the inset shows a
blow-up of the seismograms at late times, indicating that although the signal is small, it is
well above numerical precision.

Within the range of validity of equation (7.23), Figure 7.2a shows that the true dis-
placement is recovered within the range given by the average RMS displacement plus or
minus one standard deviation. For late times, the correlation coefficient is close to zero

and, according to equation (7.23), the inferred value of § is then given by 4/vl/ <Zu_2t) This

function is indicated by the dashed line in Figure 7.2 and agrees well with the inferred value
of § for late times. For these times the inferred value of § is of course no longer a good
estimate of the true RMS displacement.

As mentioned in the introduction, when the wavefields are contaminated with noise, the
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Figure 7.2. a) Inferred RMS displacement 4§ as a function of the center window time ¢ (solid
line) plus or minus one standard deviation (dotted lines). The true value of ¢ is indicated
by the horizontal solid line. The range of validity of CWI is indicated by the vertical dashed
lines. The half-window time t,, used in calculating the time windowed correlation coefficient
equals 0.01s. b) Unperturbed (black) and perturbed (grey) seismogram from the central
receiver seen in Figure 7.1; the inset shows a blow-up of the seismograms for ¢ > 0.4 s.
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Figure 7.3. An example signal without noise (drawn) and with noise (dotted). The hor-
izontal bar indicates the window length for the time-windowed cross-correlations used to
calculate the RMS displacement é§ shown in Figure 7.4.

number of independent time windows that can be used is limited to traveltimes where the
ambient noise level is small compared to the amplitudes of the multiply scattered waves.
In order to be able to use as many independent time windows as possible, and hence
reduce the error bars on the inferred perturbation, it is important to correct the cross-
correlation function for the bias caused by the noise. To assess the correction factor in
equation (7.20), we added band-limited noise to the waveforms for all 21 receivers from our
numerical experiment. The bandwidth of the noise was the same as that of the noise-free
signals (i.e., 400 — 800 Hz). Figure 7.3 shows a waveform with and without the added noise.
Using the noise-contaminated waveforms, we again calculated the inferred values of § both
with and without the correction factor; see Figure 7.4c and 7.4b respectively. For reference,
Figure 7.4a shows the inferred value of § when the noise-free signals were used. Figure
7.4b shows that the noise induces a bias in the estimated value of &; the presence of noise
reduces the correlation between the unperturbed and perturbed waveforms, and causes the
inferred values of §, calculated using equation (7.23), to be larger. For early times, the true
value of ¢ is embedded within the average value of ¢ plus or minus one standard deviation,
but the estimated average value of § is too high, especially for later times, where the lower
amplitude values of the coda result in lower signal-to-noise ratios. Figure 7.4c shows that
the correction factor from equation (7.20) accurately accounts for the bias caused by the
noise. The noise estimates were obtained using the signal before the main first arrival in
the seismograms. In the calculation of the results shown in Figure 7.4c, we used condition
(0.5) for each receiver, with v = 0.125 to select the time windows used for the inversion
of § [note that this is a different v than that used by Groenenboom & Snieder (1995),
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Figure 7.4. Inferred value of § as a function of the central window time ¢, obtained using
equation (7.23) with (a) the noise-free signals, (b) the noise-contaminated signals but no
application of the correction factor, and (c) the noise-contaminated signals with application
of the correction factor using equation (7.20).

where 7y determines the scattering strength]. As a result, the number of receivers that had
usable time windows for a given central window time ¢, varies for different t. This causes
the jagged appearance of the average inferred value of § (and the standard deviation). We
used a time window only when at least seven receivers (i.e., 30% of the receivers) satisfied
condition (0.5) at the central window time ¢t. After t ~ 9 x 1072 s fewer than seven
time windows satisfied condition (O.5) with v = 0.125, and hence the correction factor was
judged unreliable. As a result, the noise-corrected estimates of the RMS displacement are
not shown for times larger than t ~ 9 x 1072 s.

7.6 Source separation

Snieder & Vrijlandt (2005) used CWI to estimate the distance between seismic events
recorded at a single station, that have the same source mechanism. They derive the imprint
of a change in source location on the variance of the traveltime differences, and then use
equation (7.2) to infer this change from the maximum of the cross-correlation function, i.e.,
max [r(ts; t,ty)]. In addition they show that for a change in source location this maximum
occurs at time shift ¢, = (r) = 0, and that for two double-couple sources with a source
separation in the fault plane, the relation between the source displacement As and the
variance of the traveltimes o2 is given by

(5+3)
02 B ab ,68

2 = mms)? , (7.24)
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where a and 3 are the P and S wave velocities, respectively. Different non-overlapping
time-windows provide independent estimates of the source separation. These independent
estimates in turn allow for calculation of error estimates of the source separation.

Figure 7.5a shows two seismograms (events 242003 and 242020) from earthquakes on
the Hayward fault, California (Waldhauser & Ellsworth, 2000), recorded at station CSP of
the Northern California Seismic Network. The recorded signal before the arrival of the P
wave shows that the noise level is considerable. Figure 7.5b shows the maximum of the
time-windowed cross-correlation function without the correction factor (thin line) and with
the correction factor (thick line) applied, and Figure 7.5¢ shows the inferred values of the
source separation using equation (7.24). Here the noise level (or variance) was estimated
from the waveforms before the first arrivals. The half-window duration t,, used is 5 s (the
full window length is indicated by the horizontal bar in Figure 7.5a), and the P and S wave
velocities used to calculate the source displacement are o = 5750 m/s and 3 = 3320 m/s,
respectively. Note that we used overlapping time windows, since we plot max [r(ts; t,ty)]
simply as a continuous function of the central window time t. Of course, non-overlapping
windows could be used to ensure independent estimates of the source separation.

Figure 7.5b shows that the corrected values of max [r(ts;t,1,)] maintain a fairly con-
stant level for times ¢ late in the coda, whereas the uncorrected values decrease earlier in the
coda because the noise decreases the similarity between both waveforms. As a result, the
inferred values of the source separation using equation (7.24) are more or less constant even
for larger traveltimes when the corrected values of max [r(ts;t,t,)] are used (Figure 7.5¢).
This indicates that the correction factor ¢(ts;t,t,,) given by equation (7.20), accurately cor-
rects for the influence of the noise on the cross-correlation function. For very large times
(say t > 40s) the corrected values are more variable because the correction factor becomes
unreliable. We purposely showed the times where the corrected values become variable, to
indicate the level of variation caused by an unreliable correction factor. The time where
the correction factor becomes unreliable could have been estimated using condition (0.5)
with an appropriate value of v [i.e., O(1071)].

7.7 Conclusion

We have derived a correction factor for the influence of noise on the cross-correlation
function, and have shown its accuracy using both numerical and field data. The derivation of
the correction factor is based on the assumption that the stochastic processes underlying the
noise realizations in both the unperturbed and perturbed signal are mutually uncorrelated
and stationary with zero mean. We show the application of this correction factor in the
context of CWI, for the inference of the RMS displacement of scatterers and a displacement
of the source, from multiply scattered wavefields. For the displacement of the scatterers,
we showed that in the presence of noise, a displacement of only 1/38 from the dominant
wavelength can be successfully retrieved from the cross-correlation between the unperturbed
and perturbed signals. This shows the power of CWI when compared to methods that use
singly-scattered waves only.

Both for a displacement of the scatterer locations and for a change in the source
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Figure 7.5. Seismograms from two earthquakes on the Hayward fault, California, recorded
at station CSP of the Northern California Seismic Network (a), their cross-correlation max-
imum max [r(ts;¢,t,)] as a function of the central window time ¢ (b), uncorrected (thin
line) and corrected (thick line), and the inferred source displacement (c) using both the
uncorrected (thin line) and corrected (thick line) values of max [r(ts;¢,ty)] shown in (b).
The horizontal line in (a) indicates the window length used in the cross-correlation.
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location, the perturbation is independent of the traveltimes of the multiply scattered waves.
Using non-overlapping time windows to estimate the perturbations provides a consistency
check of the method, and allows the calculation of error estimates. Therefore, our correction
factor is relevant as it increases the number of usable time windows and hence allows for a
reduction of the error estimates. In addition, the correction factor adjusts for bias in the
cross-correlation induced by the noise. Since our factor depends on an estimate of the noise
level in the data, we present a condition that allows determination of the reliability of the
correction for a zero-lag cross-correlation. This condition can be verified using only noise-
contaminated signals and an estimate of the noise level in the data. Using this condition,
the time windows used in the zero-lag time-windowed cross-correlation can be judged to be
reliable or not.

The use of the proposed correction factor is of course not limited to CWI. Any appli-
cation that uses cross-correlations between different and noisy signals, and needs to correct
for bias induced by noise, can benefit from the correction factor presented here.
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Chapter 8

Future work

A thorough investigation into a particular subject usually leads to new research ques-
tions or opportunities for future work. This is the case also for the work presented in this
thesis. Therefore I conclude this thesis with an outline of future research opportunities that
result from the presented work. Considering that this thesis covers several different topics,
these opportunities are treated in the same order as the chapters to which they are related.

It is possible to derive pre-stack (common-offset) map time-migration equations in
isotropic media like the ones presented in Chapter 2, which instead of the velocity use the
offset horizontal slowness p, (Fomel, 2005). This idea dates back to the work of Ottolini
(1983). With these equations, the need for conventional velocity picking in CMP gathers is
replaced with the need to estimate the local slopes pj, in CMP gathers, while the velocity
becomes a data attribute that can derived from the local slopes. Fomel (2005) estimates
these local slopes using plane-wave destruction filters (Fomel, 2002). Alternatively, the lo-
cal slopes in the data can be estimated by projecting the data onto the curvelet frame. In
the context of pre-stack time-migration with curvelets, this would require 3D extensions
of curvelets for 2D imaging since the local slopes both in a common-offset and common-
midpoint gather need to be known. In the context of velocity analysis in CMP gathers,
however, 2D curvelets would be sufficient; since each curvelet has a central slope associated
with it, each curvelet coefficient also has a velocity associated with it. Hence, once an intel-
ligent thresholding procedure has determined which curvelets to keep to allow an accurate
reconstruction of a CMP gather, the velocity profile results from a mapping of the curvelet
coefficients to the velocity. In this way, velocity estimation in essence becomes a denoising
problem. Also, since each curvelet really has a small range of local slopes associated with
it, each curvelet could be mapped to a range of velocities. This allows an estimation of the
uncertainty in the estimated velocity caused by the finite frequency character of the data.

In Chapter 4 I showed that the leading-order approximation (i.e., leading order in
angular frequency, horizontal wavenumber, and migrated location) to common-offset (CO)
time-migration can be obtained through a simple transformation of the input coordinates
of the curvelets in the data, combined with amplitude scaling. This transformation is cal-
culated using CO map time-migration that uses the local slopes provided by the curvelet
decomposition of the data. In order to allow pre-stack depth-migration, the key ingredients
to the derivation presented in Chapter 4 should be applied to the case of heterogeneous
(anisotropic) media. These key ingredients are a stationary phase evaluation of the integral
with respect to the non-constant variable, and subsequent linearization of the phase of the
resulting oscillatory integral followed by linearization around the map-migrated location of
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the center of the curvelet. This would provide the leading-order approximation to pre-stack
depth migration. As pointed out in Chapter 4, such analysis could be done for demigration
(i.e., modeling) in heterogeneous media to allow an output-based seismic imaging algo-
rithm. That is, demigrating a curvelet in the image and subsequently checking whether
the projection of the demigrated curvelet onto the data exceeds a certain threshold, would
determine whether or not the curvelet in question contributes to the image. Considering
the redundancy of the curvelet frame, however, applying this procedure to the whole image
domain rather than a particular part of the image only, as in a target-oriented migration,
would in principle mean demigrating more curvelets than there are samples in the image.
Therefore, such a procedure would likely need to be combined with an initial estimate of
the image, to determine the likely locations and orientations of the curvelets constituting
the image. Such estimates could be obtained using map migration. The issue to either
construct an output- or input-based imaging algorithm using curvelets remains a topic for
future investigation.

A fast implementation of the leading-order approximation to seismic imaging using
curvelets could be obtained if the coordinate transformation constituting the leading-order
approximation (presented for CO time-migration in Chapter 4) would be expressed in terms
of curvelet coefficients. In this case, a mapping of curvelet indices and associated coefficients
could possibly be obtained. Such a procedure would allow for a fast computation of the
leading-order approximation to seismic imaging in the curvelet domain. This would require
an explicit calculation of the projection of a curvelet, subjected to the presented coordinate
transformation, onto the curvelet frame. This seems a route worthwhile pursuing since
indeed a fast algorithm to calculate the leading-order approximation would be obtained.
However, an algorithm outside the curvelet domain that makes use of the compact support
of curvelets in the Fourier domain (i.e., a wedge) seems worth investigating also.

In Chapter 4, the sparse representation of the data with curvelets was obtained using
hard thresholding of the coefficients based on visually inspecting the difference between the
original data and the data reconstructed with only a certain percentage of the (largest)
curvelet coefficients. This simplistic thresholding results from focussing on the sparse rep-
resentation of the imaging operator rather than sparse representation of the data, as men-
tioned in Chapter 4. More sophisticated thresholding techniques, however, exist to obtain a
sparse representation of the data. Such thresholding techniques usually involve minimizing
a certain misfit of the data combined with a regularization term specific to the problem. It
remains to be investigated what measure of misfit and what regularization term are most
suitable to obtain a sparse representation of seismic field data.

In the field of global seismology, tomographic studies these days no longer assume that
traveltime perturbations from a reference background model are due to perturbations along
the ray connecting source and receiver only (propagating through the background model).
Rather they acknowledge the finite-frequency character of the data, which means that a
finite volume surrounding this ray is responsible for the observed traveltime perturbations
(see Nolet et al. (2005) for an introduction)!. This is described by a sensitivity kernel that

! As a matter of fact, in 3D traveltimes are unaffected by the presence of a (point) scatterer on this ray,
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is used in the inversion of the observed traveltime perturbations. This kernel is calculated
based on a single-scattering assumption by convolving the Green function from the source
to a scatterer with the Green function from the same scatterer to the source, with an
added scattering coefficient in between. Therefore, calculation of these kernels involves
accurate calculation of the Green functions. Being able to calculate kernels for every region
in the earth thus involves the ability to accurately calculate the needed Green functions, a
computation that is time-consuming and thus expensive. There are two possible ways to
reduce the computational cost (Tony Dahlen, personal communication). First, one can try
to speed up the calculation of the needed Green functions. In light of the work of Smith
(1998) that we mentioned in the context of extending the time migration with curvelets,
presented in Chapter 4, to depth migration, it seems worthwhile to investigate the use of
curvelets for the calculation of the Green functions to improve computational efficiency.
Another approach would be to realize that for global studies the background model is
always the same [usually the Preliminary Reference Earth Model (PREM) (Dziewonski &
Anderson, 1981)]. That is, for global inversions the Green functions are always calculated
for the same background model. Hence, if all Green functions would be calculated once, a
tabulated approach would allow the calculation of the kernels necessary for the inversion.
In this case, the issue is efficient storage of the huge table containing the wavefields in the
PREM model. A sparse representation of these Green functions, and thus this huge table,
could possibly be obtained using curvelets.

In recent investigations into the anisotropic nature of the subsurface, special emphasis
is put on azimuthal variations of the seismic velocity [e.g., Jenner (2001) and Grechka et al.
(2005)]. These investigations often start with or involve the azimuthal variations in the
nonhyperbolic moveout observed in a CMP gather [e.g., Vasconcelos & Tsvankin (2006)].
Considering the accuracy of the rational-interpolation based approach to nonhyperbolic
moveout analysis presented in Chapters 5 and 6, it seems worth investigating the applica-
tion of this new method to estimate azimuthal anisotropy in the subsurface, and compare
its accuracy with that of existing methods. Even though the accuracy of the rational-
interpolation-based method for layered media, presented in Chapter 6, was established for
synthetic data, its accuracy and applicability need to be verified for field data. The appli-
cability to field data is currently being tested and will be reported on in a future paper that
will include the work presented in Chapter 6.

because the traveltime from the source to a point on the ray to the receiver equals the traveltime along the
ray. This argument can be extended to a scatterer of finite size that is (much) smaller than a wavelength,
considering the effect of wavefront healing. In case wavefront healing occurs prior to the arrival of the
wavefront at the receiver, the traveltime perturbation due to a small scatterer on the ray connecting source
and receiver is also zero.
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Appendix A

From phase angle to horizontal slowness assuming
Vso=0

The slowness surface for qP waves is convex, which in combination with a VT1 medium,
assures that the only branch points in vertical slowness occur at § = +7/2, where 8 is the
phase angle measured from the vertical axis of symmetry. In homogeneous media, given
the surface seismic geometry, these branch points are never reached, since turning waves do
not occur in such media. Thus, for qP waves in such media we can parametrize the phase
velocity and its derivative uniquely in terms of the horizontal slowness p.

Substituting sin = pV in equation (2.35) and solving for V, leads to

V(p) = VPO\/ il (A.1)

1—2p2VE3se+ 2ptVE, (6 —€)

where we used that Vgg = 0 (i.e., f = 1) and that the kinematics of gP-waves in anisotropic
media are independent of Vo within the limits of seismic accuracy Alkhalifah (1998). The
derivative %% is then

av 2pV3,8 — 4p3VE, (8 — €) — 4pPV5, (6 — €)?

e 2 . (A.2)
P (1-2p2V35e+2p*VE, (6 —€)) \/1 + 2p2V3, (6 —¢€)

Both expressions could as well be readily rewritten in terms of 1, Vxyo(0), and Vpg.

Using these expressions, we can write the vertical slowness ¢ = 1/1/V?2 — p? as

1 [1-p2V3,(1+ 2€)
_ A3
q Vpg \/1 + 2p2V1%0 (6 —¢) ’ (A.3)

or in terms of 1, Vya0(0), and Vpy [see also Alkhalifah (1998, equation A-10)],

1 P2V, (0
g=— . 2N1V210( ) ’ (A.4)

In order to calculate the group angle [see equation (2.33)] as a function of the horizontal
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slowness, we use the chain rule,

dv._ dVdp
W o (A.5)
Using p = sin8/V, this becomes
dv dv dav
- = 21/2 -
20 (dp\/l pV>/<V+pdp> , (A.6)

where we used that in homogeneous media we have cos(#) = 1/1 — p2V2 > 0. Then, using
this expression together with equations (A.1) and (A.2) in equation (2.33), we find

PVpo (1 + 26)

tany = ) (A.7)
(1+2p2V3, (6 - 5))3/2 \/1 —p?VE, (1 +2¢)
or in terms of 5, VNypo(0) and Vpy,
tany = PVino(0) . (A.8)

Veo (1= 202V 0(00m) " /1 = 2V 10 (0) (1 + 20)

Using the simplified expressions (A.4) and (A.8) for the group angle and vertical slow-
ness in equations (2.61) and (2.63)-(2.65) then leads to the following system of equations
for pre-stack map demigration in homogeneous VTI media,

o _ ,/l—sf‘;

32
(1= 2003VZ110(0)) /2 /1 = p2VR1,6(0) (1 + 21)

- Pyl (A.9)

3 2 ’
(1 — 2002V 110(0)) ¥ \/1 — 22VEmo(0) (1 + 2n)

4h _ tm""yp'r
2 - 3/2
Vumo©) (1 - 20p2VR0,0(0)) % /1~ p2VE0(0) (1 +20)
tmSyPs
_ : (A.10)

(1 = 2002V p10(0)) /1 = P2VE A0 (0) (1 + 2)

— sgn(vz)Vpo (ps\/l — 83 +pry/1- r2) | (a11)

1 PsVimo(0) o1 PViimo(0)
1- 2771’3 Vimo(0) 1- 277prVNMO(0)

VPO (Sfyps + r’YpT) (A 12)

1 PVimo(0) v i Vimo(0)
1 —2np2Vi10(0) 1- 277PrVNM0(O)

vy = -
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Note, that for the 2D problem we have (s,7)., =1 and -1 < (s,7)y = Vsrpsr < 1, and
that equations (A.10) and (A.12) then form a nonlinear system of two equations with two
unknowns, viz. psr.
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Appendix B

Solving for scattering angle and azimuth for
pre-stack demigration in homogeneous isotropic
media

To find the angles 0, (see Figure 2.1) and azimuths 7, (see Figure 2.3) for pre-stack

demigration in homogeneous isotropic media, we set - Qand V; =V, = Vpg = v in
equations (2.61), (2.63)-(2.65). The resulting system of equations is

Ji—2—22— = J1-r2T° (B.1)

b
2 2
1-s; 1-7rg

Ty S 4h
Ty — Sy = T > (B.2)
( J1-72 1—33) Vlm
80,/1—83—{-7‘9,/1—7“,27
sgn(vz) = Vg, (B.3)
\/1 —s2+ \/1 —r2

_ 89Sy + ToTy =y, (B.4)
Ji-s3+\/1-173

where (s,)y = (sinfs,siné,) and (s,7)., = (sin~s,sin~y,) are unknown. (The pathologi-
cal cases (s,7), = 1, i.e. 90-degree dipping reflectors, are not included in this system of
equations and we exclude these impractical cases by choosing 0 < 6 < 7/2.)

To find sg, we first use equations (B.2) and (B.4) to eliminate r¢7,. Then we eliminate

sg4/1 — s2 from equations (B.1) and (B.3), and combine the results to give an equation
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with only sg, s, and r,:

(2= /i) -

2
t
(1= r2) d 4h? 4 2hwt, [ vy + —2252 +@ﬂﬂ) vy + —25

K l—sg 2 ,/1—33

In order to get 7"3 as a function of s9 and s, we use equations (B.1) and (B.2) to eliminate

(B.5)

ro/1/1 — 1'3, and subsequently solve for r?y. This gives
$95-4Vtm \ 2
(2h 1-— sg + 0—;13)

5 -
it
4h? (1 — s2) + 2hsgsyvtmy /1 — s + (So'; m)

Before we substitute this expression for r,% into equation (B.5), we first eliminate r9,/1 — r?y

from equations (B.1) and (B.3), and solve for s%, which gives

2 __
Ty =

(B.6)

2

1%
s?1=1+1/§—;‘§, (B.7)

where sg # 0. Then, using equations (B.6) and (B.7) in (B.5), gives
(1 — sg) {h2 [,3 (1 - sg) - 41/3] + 2Vyha} =

v*t2 2 .2 2\ .4 2 2
o (B[220 - (1+2) - 2] 02} | 3

with v, # 0 and where we have defined

a = %ﬂ(l+ug—u5) , (B.9)
B = (1+2+2)°%. (B.10)

Note that the special case v, = 0 is equivalent to the 2D case treated below. Equation
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(B.8) is a quadratic equation in s3 that can be solved for sg to give

vi,

2
2h2 (B — 202) + 2vyh (a £ ) + [,3 (—2—) (1+22) Fay

28 <h2 +(1+02) (”t’”>2>
= \/4y3h2 + 8 (”%")2 . (B.12)

The proper root in equation (B.11) is then found through substitution in the original system
of equations (B.1)-(B.4).

Once sy is found, we need to solve for the remaining parameters rg and (s, r)7. To find
rg we first use equation (B.4) in (B.2) to eliminate r¢7, to give

, (B.11)

S =

-

with

2
—— =y + A S 565 (B.13)
Vim ,/1—7"9 \/1——39 \/l—ro
Then, to eliminate s, we use equation (B.7) and subsequently solve for 74 to give
2
hoty/s2 — v2(1 — s2) — /1 — 82 [y hvty, + A
ro=|1— /55— A0 = ) = /1= syt (B.14)

4h? + 2u hvt, + A ’

where we have defined

Once (s,7)y are found, we solve equation (B.13) for s, to get

- H(uy\/l—so+\/1 rg( +uy>), s
s (\/1—sg+\/1—r0)

provided sy # 0. Finally, using equation (B.4) in (B.2) to eliminate s, sg9 we solve for r.,.

4h
l—rg( 1’#(@‘%)‘% 1""{3) (B16)
= .16

provided rg # 0.
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B.0.1 Special cases

In 2D, the system of equations (B.1)-(B.4) reduces to two equations with two un-
knowns:

Tg So _ 4h ’ (B.17)

B vt
\/1-—7'3 \/l—sg m
Sg+To

V1-s3+4/1-73

with —1 < (s,7), < 1. In order to solve this system for the unknowns (s,r),, we first
rewrite equation (B.17) to get

=y, (B.18)

ToVtm4 /1 — sg
J1i-ri= . (B.19)
4hy /1 — sg + sguty,

Using this expression in equation (B.18) to eliminate /1 — 72 then gives

4vyh (1 — s3)
39Uty + 1/1 — s2 (4h + vyvty)

2
Then, using eq.(B.19) to calculate ;17 = (\/ 1-— rg /7'0) + 1, and multiplying the result
6

with 72 calculated using eq.(B.20), gives

S (B.20)

2
( [4h/1= 3 + sootm] + [1- 53] v2t3n)

x (4hvy [1 - 53] + sGvtm + s04/1 — 53 [4h + vytm))
2 2
(4h 1-—- sg + sa'vtm) (sovtm +4/1— sg [4h + Vy'l)tm]) . (B.21)

2
Then dividing both sides of this expression by (1 — s2) (4hy/1 — s2 + sguvt,, ) and simpli-
(2] /]

2

fying the result, gives a quadratic equation in tanfs = s¢/4/1 — 33 = Tyg, Viz.

VOt TR, + (4hvy + v, (1/3 —1)) 795 + 2k (Vg —1) — vty =0, (B.22)
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with roots

1 2h

o= g, (17) = g%

Then, by using this expression in equation (B.17),

we find

1 2h
Tgr=g(1—ll,§)+_—ﬂ:\
Y

Vi,

Therefore, (s,r), are then given by

(s,7)g = sin (arctan (7gs, Tor)) -

167

(B.23)

(B.24)

(B.25)

The proper roots in equation (B.23) and (B.24) are then chosen through substitution in the
original system of equations (B.17) and (B.18). Note that the pathological cases (s,7)g = 0

mentioned in the previous subsection are included in this solution.

For the special case v, = 0, i.e., the 2D zero-dip case, the solution for (s,r), is given

simply by o
Ssg = sin <arcta,n (_t—

Vim

)

(B.26)




168 Appendix B. Scattering angle and azimuth for pre-stack demigration



Huub Douma / Leading-order seismic imaging using curvelets 169

Appendix C

Explicit expressions for map DMO in isotropic
homogeneous media

Map dip moveout (DMO) is the mapping from the midpoint location y,, two-way
traveltime ¢,,, and slope p, in a common-offset section, given a velocity, to their counterparts
after DMO, i.e., the midpoint location yg, two-way traveltime 7y, and slope p,?lM O, In order
to derive the map DMO equations for an isotropic homogeneous medium, we start with the
DMO ellipse in such a medium, just as we started with the pre-stack migration ellipse when
we derived the pre-stack map migration equations in Chapter 2. The DMO ellipse is given
by

(0 — vu)? 78
2 -+ 7= b (C.1)
g -

where 1o and 79 are the midpoint location and two-way traveltime, respectively, after DMO,
¥ and £, are the midpoint location and two-way traveltime before DMO, h is the half-offset,
and v is the medium velocity (assumed constant). Calculating the derivative of equation

1d
(C.1) with respect to yo (i-e. (—id—) and subsequently solving for pPMO .— :‘Z.d_TO’ we get
Yo Yo
4h?
DMO (Yu — ¥o) <t12; 3 )
mo = 2h21g (C2)

Similarly, calculating the derivative of the DMO ellipse with respect to y, we get

Yu — Yo 21tupy
h2 - 4h2 92 — Yy (03)
(+-%)
1dt, X .
where p, := Sdyy Equations (C.1), (C.2), and (C.3) form a system of three equations
u

with three unknowns (assuming the velocity is known) for yo, 70, and pPMO_ Hence, the

expressions for map DMO follow from solving equations (C.1), (C.2), and (C.3) for yo, 70,

and pPMO,
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Rewriting equation (C.3) gives

2h2'rgtupu

Yu —Yo = (C4)

Eliminating the term y, — yo in (C.1) using equation (C.4) and subsequently solving for 7o,

then gives
te— —3 ) 242, 2
16h4t
T = —'U 1 + — "'_upu 2 = 1 ) (C'S)
2\/§htupu 9 4h?
tu 7

where we ignored the other root for 7 as it is complex. Then, using equation (C.5) in (C.4)
and solving for yg gives the explicit expression for yg, viz.

(¢-%)
v 2 1- iy 16h%t2p2

4ty py 4h? 2
L

(C.6)
)
Note that if we set h = 0, we indeed get yo = y,, as expected, since in this case applying

DMO to the data leaves the data unchanged. Finally, using equations (C.5) and (C.6) in
equation (C.2) gives

. 42
DMO v g2 16h*t2p2
=t v - 14— C.7
Pm 2v/2h , 4h?)? (€
tu - —1)—2._

Equations (C.5), (C.6), and (C.7) are the 2D map DMO equations for an isotropic homo-
geneous medium.
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Appendix D

Explicit expressions for inverse map DMO in
isotropic homogeneous media

Inverse map DMO is the mapping from the midpoint location yg, two-way traveltime 7o,
and slope ng O after DMO, to their counterparts before DMO, i.e., the midpoint location
Yu, two-way traveltime t,, and slope p,. To determine the explicit expressions of y,,, tu,
and p, as functions of yg, 79, and p,?lM O we use the same system of equations as we used
to derive the map DMO equations in Appendix C, i.e., equations (C.1), (C.2), and (C.3).

We now treat y,, t., and p, as unknowns and solve for the unmigrated specular reflection

Yu, tu, Pu) as a function of yg, 79, and pPMO | given a velocity v and half-offset h.
m
Rewriting equation (C.2) we get
2 h2’T DMO
Yu — Yo = 2 T0Pm ) (Dl)

£

4R?
where we have defined t2 := t2 — —5- Using equation (D.1) in equation (C.1) and solving
v

for t,, we get

4h? 18
t, = -v—2-+—2—(1+A), (D2)
DMO 1652 (prlr)zMO)2
where we have defined A := A(p;,"“,70,h) = 4/1+ ———5—"—, and we chose the

-
proper root using the fact that for h = 0 we must have t, = 7% (since in this case DMO,
and its inverse, leave the data unchanged). Using equation (D.2) in (C.1) and solving for
Yu, we find

o = w0 — hognpMOYA—L (D.3)
vVA+1

Then, solving equation (C.3) for p, we find

Pu= (y“ — yo> <t3 _ %}12—2)2 . (D.4)

h? 278ty

Finally, we find the explicit expression for p, in terms of yg, 709, and pPMO by using
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equations (D.2) and (D.3) in (D.4). This gives

2 VATTI(A+1)%2
Pu = sgnngOﬁ T ( ) ) (D.5)

78
7+ 2 (A+1)

where we used that sgn p, = sgnpD2M©. Equations (D.2), (D.3) and (D.5) define the inverse
map DMO equations in an isotropic homogeneous medium.
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Appendix E

Comparison with Cohen’s (1998) expressions for
2D zero-offset map time-migration

Cohen (1998) presented equations for the position of a (straight) ray in a vertical
symmetry plane of a homogeneous anisotropic medium. In this appendix, I show that these
equations are equivalent to the zero-offset map time-migration equations for the migrated
location, assuming propagation indeed occurs in a vertical symmetry plane of a homogeneous
anisotropic medium. Cohen’s expressions [his equation (28)] for the position along a straight
ray are given by

T =17, 2=g3T (E.1)

where = and z are the horizontal and vertical position along the ray, 7 is the one-way
traveltime, and g; and g3 are the horizontal and vertical components, respectively, of the
group-velocity vector, given by [Cohen’s equations (26) and (27)],

dg 1
= 1 - . E.2
9 dpgs y 93 dgq ( )

q- pd_p
In these expressions, p and ¢ are the horizontal and vertical components of the slowness-
vector, respectively. From equation (E.1) we can deduce, by substituting z := z; = Vpotm/2

and 7 :=t,/2, that
tu

tm = ——————~»
d
Voo (q —pd—z>

where t,,, is the migrated two-way traveltime, and t,, is the unmigrated two-way traveltime.
This equation is valid in any vertical symmetry plane of a homogeneous medium. Although
Cohen does not explicitly call this equation an equation for map time-migration, it indeed is
since it makes explicit use of the slope information in the data to find the migrated position
in time.

(E.3)

Since the vertical slowness can be written as ¢ = 1/1/V(6)? — p? with V() the phase

velocity, we have
dq V(6) ( 1 dv )
2 _ _ - 4 X E.A4

dp~ JI_pVEE\V(©®3dp © (E4)

To evaluate this expression, we need to find the derivative of the phase-velocity with respect
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to the horizontal slowness component p. Using the chain rule we have

W _dvar_av ()" ©5)
dp  dodp do\do) - ‘
Since in general p =sinf/V, we find that
v dv 40
— . (E.6)
R U Ve

do

Using this expression in equation (E.4) and substituting the result in equation (E.3) then
gives

L, V(o) 5 5 4V
m =ty V;;O ( l—pV(e) - E ’ (E7)
which is identical to equation (3.1) in the main text, when we substitute p,, for p.
From equations (E.1) and (E.2) we deduce (upon substituting z := z, — z,, and
T 1= t,/2) that
t, dq
2d
Ty — Ty = dq P (E.8)
p dp q

Using equations (E.4) and (E.6) in equation (E.8), we find

_ . _V¥Opt. V(@pt.dV | 1 )
Tm = Tu ) 2 do\ V2@

(E.9)

which is identical to equation (3.2) in the main text (provided we again substitute p, for
p)-
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Appendix F

Algebraic solution to the general cubic equation

The algebraic solution to the general cubic equation was first published in the Ars
Magna by Cardano (1545), although he obtained the solution most likely from Tartaglia
and del Ferro (Boyer, 1991, p.282-283). The method for solving the cubic presented here
closely follows the treatment by Richardson (1958, p.327-329).

A general cubic equation is given by

2+ asr? +ayxl +ag=0. (F.1)
To solve equation (F.1), we first substitute
ri=2—A, (F.2)

and solve for A such that the coefficient in front of the 22 term is zero. To achieve this, A
must satisfy —3A + as = 0, giving

ay
A=—. F.3
: (F3)

Using the definition of z from equation (F.2) together with the value of A just determined,
the cubic equation (F.1) becomes

24 pz+qg=0, (F.4)
where we defined
2
p = a— % s (F5)
aias 2
g = ag— —13—— ﬁag . (F.6)

Equation (F.4) is usually referred to as the depressed cubic.
To solve the depressed cubic equation (F.4), we use Viéta’s “magic” substitution

z:=u—£, u#0. (F.7)
3u

Using this substitution in equation (F.4), we find

3

6 3 P
Y ) F.8
wqu - o : (F.8)
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which is a quadratic equation in »® and has solutions

2 3
3__4 L
u = 2+ 4+27, (F.9)
and
2 3
3__9_ /9 P F.10
u 5 4+27. (F.10)

Let o be a solution to u in equation (F.9) and 8 a solution to u in equation (F.10).

Then, defining w := 1 + —3i, we know that the six combined solutions to equations (F.9)
and (F.10) are a,wa,w?a, B,wP, and w2B. Also, we have
2 3 2 3 3
g, ¢, P g Jj¢ p\_ P
(2+ it % (2 4+27)— 27’ (F11)

which implies that the solutions a and 3 to equations (F.9) and (F.10), must satisfy
off = —g . (F.12)

Hence, using the three cube roots a,wa, and w?a of equation (F.9) in definition (F.7), the
three roots to the depressed cubic equation (F.4) are given by

= a-2 aq--P _
n = a-z-=a 5P a+f, (F.13)
36

zg = wa——p—=wa—li=wa+w2ﬁ, (F.14)

dwar wgq”P

36
- e P 2L P2 F.1
73 = wa-g-=wa w23—_10 wa+wi, (F.15)

36

where we used equation (F.12) and w3 = 1. Note that if we had chosen to use the three
cube roots B,wf, and w?f in definition (F.7), we would have found the same three roots
21, 22, and z3. This means that the sign of the square root in equations (F.9) and (F.10) is
irrelevant to the final roots of the general cubic equation. If & = 0 (which happens when

p=20,qg#0, and g > 0), we simply choose the three cube roots 8, wg, and w?3 in definition
(F.7).

The roots z1, 3, and x3 to the general cubic equation are then found using equations
(F.13) - (F.15) and (F.3) in equation (F.2). This gives
a ag

x1=a+ﬂ—%, :z:2=wa+w2,3—?2, :1:3=w2a+wﬂ—§-. (F.16)



Huub Douma / Leading-order seismic imaging using curvelets 177

When p = 0 and ¢ = 0, the depressed cubic equation is simply 23 = 0, giving the roots to
a
the general cubic equation ©; = 29 = 3 = ——?2.
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Appendix G

Algebraic solution to the general quartic equation

The solution to the general quartic equation is originally due to Ferrari, but was first
published in the Ars Magna by Cardano (1545). In this appendix we follow the treatment
by Richardson (1958, p.329-331), although we add the explicit equations for the roots of
the quartic equation in terms of the coefficients a3, az, a1, and ao.

The general quartic equation is given by
4 3 2 —
z* 4+ a3z® +agx® +ajx+ap=0. (G.1)

To solve the quartic equation, we aim to write the equation in the form P? = Q?, where
both P and Q are quadratic functions of z. In this way the quartic equation is reduced
to two quadratic equations (i.e. P = +Q), and the four solutions to these two quadratic
equations are the solutions to the general quartic equation. The quartic equation is therefore
sometimes also referred to as a biquadratic equation.

Rewriting equation (G.1) and adding a term (a3x/2)? on both sides, gives

2 2

The right-hand side of equation (G.2) is generally not a perfect square. Hence, in order
for both the left- and right-hand sides of equation (G.2) to be a perfect square, we add the

2
a
terms (a:2 + im—) y+ yz to both sides. Doing this gives

2
(x2+@£+y)2= a—g—a2+y m2+(a—3y——a1)x+£—a0 (G.3)
2 2 4 2 4 ' '
2
The right-hand side of this equation is a perfect square if its determinant D = (_c};_y — al) —

2 2
4 (% —az + y) (yz - ao) equals zero. Setting D = 0 leads to the resolvent cubic equation

in y, given by
y® — agy® + (a1a3 — 4ap) y + 4apas — a? — agag =0. (G.4)
This equation is called the resolvent cubic equation, because any of its roots turn the right-

hand side of equation (G.3) into a perfect square. Such a root can be found using the
method outlined in appendix F for solving a cubic equation.
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a_g a +
4 2 T Y0,

we need to separate two independent cases: I) R # 0, and II) R = 0. In the first case (I),
we rewrite equation (G.3) as

2
(:z: += +y2) - (Ra:—i— S ) , (G.5)

Denoting yo as a root to the resolvent cubic equation (G.4) and defining R :=

which can be simplified to the two quadratic equations

asyo — 2a1 _

= 0. (G.6)

m2+(%:l:R)x+yo2:t

In this case (i.e. R # 0), the explicit expressions for the solutions of the general quartic
equation (G.1) are given by

1= 7 5V 2+y+...
1 a 2 2 (asyo — 2a1)
3 3Yo0 — 2a1
= — —-= -2 G.7
2 <2+ g f2tw] —%o-—m ’ (G7)
Zs—az—l—yo
_ a1 [a _
T2 = —g 7o\ @tw
1 a a3 ? (a 2a1)
3 (?3“‘ f‘““’*“) — 290 - — (G-8)
a
f—a2+y0
I3 = —a3+1 a_§ as +yo +
3 =~ 2\/4 2+yo+...
1{fa 2 ? (a 2a;)
a
5 33‘— 23'—(1.2+y0 —2y0+ 32y0 1 y (Gg)
g _ .
\ 1 2t
- 1 fa _
Te = —p o\ "a2tw
1 |(fa 2 ? (a 2a)
a a
2 -V2—a | —wo+ —=R k (G.10)
2 2 4 a3
\ 7 2Ty
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In case R = 0 (case II), we rewrite equation (G.3) as

2
2
2 , 3% )2 Yo
hatand 2y = 20 _
(:c + 5 +vy ( 1 ao) )

which can be simplified to the two quadratic equations

2
2,0, W0, JU_ g
x+2:1:+2:l: 1 ag .

181

(G.11)

(G.12)

In this case (i.e. R = 0), the explicit expressions for the solutions of the general quartic

equation (G.1) are given by

ag 1 a’% /yg
T = —— 4 -4/ = - — 44/ = —a
1 1 2\/l Yo i 0,

ag | 1 [a} [vd
= + 2yp +4 a
3 . T3\ 72 Yo . 0,

ag 1 a?{ /yg
T — = - -9 +4 2 —a
4 A 2\/1 Yo 1 0

(G.13)

(G.14)

(G.15)

(G.16)
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Appendix H

A particular construction of a tight frame of
curvelets

In this appendix, we give a detailed explanation of the construction of curvelets and
show that they constitute a tight-frame for functions in L2(R2). This treatment closely
follows the construction of real-valued curvelets by Candés & Donoho (2004b) except for
some added derivations and explanations to clarify the construction of curvelets for the non-
specialist. We deviate in some places from the original treatment to clarify certain details.
For example, we immediately use the notion of splitting at every other scale (explained
later). A frame similar to the tight frame of curvelets was earlier introduced by Smith
(1998).

Before treating the construction of curvelets, we mention that we want to be able to re-
construct a signal in a function space X’; i.e., we want curvelets to satisfy the reconstruction

formula
f= Z (facu)cu ) (Hl)

neM

where c,, denotes a curvelet with multi-index p (and M some index-set), and f € X. It is
known [e.g., Herndndez & Weiss (1996, pp.334-336) and Appendix I in this paper] that if X
is a Hilbert space and ¢, are elements in this space, equation (H.1) is satisfied if and only if

IF1% =D I(fiew)?, VfeX, (H.2)

peM

where ||-|| , denotes the norm on X. The latter expression implies that the energy of the
signal f is conserved through the decomposition (H.1); in other words, the curvelets c,
should be a partition of unity (i.e., unit energy) for the reconstruction formula (H.1) to
hold. Condition (H.2) is the definition of a normalized tight frame (see Appendix I for an
explanation of tight frames).

Curvelets can be thought of as 2D (anisotropic) extensions to wavelets. Just as in 1D
wavelets are localized in one variable and its Fourier dual, curvelets are localized in two
variables and their two Fourier duals. Such localization is understood within the limits
imposed by the Heisenberg uncertainty principle, i.e., AtAf > 1, with ¢ and f denoting
time and frequency, respectively. This principle thus determines a tile in the space with ¢
along one axis and f along the other. For curvelets in 2D, choosing the variables to be x
and z, such localization is obtained through (hyperdimensional) tiling of the spatial domain
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Figure H.1. Example of a possible angular window function v(@) (a), and Lemarié-Meyer
windows |w(277|k|)|? for the radial windows (b). The Lemarié-Meyer windows for j and
j + 1 are equal at 27* 17,

(z, 2) and the spectral domain (k;, k). We treat the spectral localization first followed by
the spatial one.

Let x;.(k) be a window (or tile) in the spectral domain, with j an index related to
the radial (i.e., scale) direction, and ! an index related to the angular direction; i.e. the
localization in the spectrum is dealt with in polar coordinates r and 8. In order for curvelets
to constitute a tight frame and thus satisfy the reconstruction formula (H.1) (see Appendix
I), the windows x; (k) must satisfy

MY uk)P=1,jelieL, (H.3)
i !

such that x;;(k) indeed is a partition of unity. The window x;,(k) is constructed through
multiplication of an angular window v(6) and a radial window w(|k|), where k is the wave-
vector. We treat the angular window first, followed by the radial window.

Let v(6) be an even, real-valued, non-negative, angular window function that is in-
finitely continuously differentiable (i.e., C*) and compactly supported on [—m, 7). This
function is chosen to be 2m-periodic, such that v(8) and v(8 + w) are exactly out of phase;
Figure H.1a shows a possible choice of such a window function. Then the angular window
satisfies

@)+ |6+ )% =1, 6 €[0,27).

Defining the windows v;;(8) = v(296 — Im), with j >0 and 1 =0,1,2,...,27 — 1, it follows
that these windows cover the interval [~7/27,7). The windows v;;(6 + m) then cover
[-m — x/27,0). Taking into account the 27-periodicity of v(6), it follows that v;;(6) and
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v;1(0 4 ) together cover [0,2). It is important to note that each window v;;(#) has width
27 /27 and that the width of the window thus depends on the scale j.

Due to the 27-periodicity of v(#), we have
vii@+m)=v(2(@+n)—in) =v (290 - (1+29)7) = 1423 (). (H.4)

Using this, it follows that for each 7 > 0

27+l 27 -1 2+l
S lva@F = D va@FP+ > o)’
1=0 =0 =27
271 291 )
= Z |Vj,l(9)|2 + Z IVj,l+21'(0)|
=0 =0
271
= 3 (@ + @ +mP) = 1. (H.5)
=0

Therefore, energy is indeed conserved in the angular direction using the window functions
v;1(0). Another way of saying this is that the windows v;;(0) satisfy the admissibility
condition (Candés et al., 2005). There are many different window functions that satisfy
this admissibility condition. Hence, curvelets can be constructed using different choices of
angular window functions, much as in the construction of wavelets.

The angular windowing provides the curvelets with geometry, i.e., with their main
associated directions. To give curvelets their bandlimited nature, howver, the (radial)
frequency axis is subdivided into bandpass filters (i.e., subbands). This is done using a
radial window w. A possible choice for such a window is the Lemarié-Meyer window [see
Herndndez & Weiss (1996, p.27-28) and Figure H.1b]. Let w be a C'® real-valued, non-
negative, function with support included in {27 /3,87 /3]. Then Meyer introduces a partition
of unity as

foo ()2 + 3" fw@In)P =1, vr>0, (H.6)
320

with wg a coarse scale C*° window that equals 1 on [0,27/3] and vanishes beyond 47 /3.

Let k denote the (angular) frequency vector, i.e., k = (kz, k;). Then, combining the
angular and radial windows into one window x;;(k) as

Xj(k) = w (277 |k|) [v1/2)4(8) + 572000 + )], (H.7)
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and setting |xo(k)|? = [wo(|k|)|? + |w(|k])|?, it follows that

alif2) 1
o(R)P+ D Ixjuk)?
1=0,7>1
ali/2l 1 )
—i 2
= Jwo(|kDI* + lw(lkD) >+ D |w @I KD |vy/210(8) + viij2)(0 + )]
1=0,5>1
22[1'/2J_1
= lwo([kD)1> + [w(k) [+ Y Jw @7 RN Y [v/210(0) + viijea(6 + )]
j>1 1=0
— 2
= lwo([kN)I>+ > [w (277 k])|" =1, (H.8)
j>0

where we used equations (H.5) and (H.6). Here, the notation |j] denotes the integer part of
j. From equation (H.8), x;(k) [together with xo(k)] form a partition of unity of the whole
frequency plane. Note that by construction, the x;;(k) have compact support, i.e., curvelets
are compactly supported in the spectral domain. Note that there are many different radial
windows that could form such a partition of unity, just as for the angular windows; i.e.,
many different variants of curvelets can be constructed by using different radial window
functions.

From the definition of x;;(k), x;,i(k) is obtained through a rotation of x;o(k). With
this observation, the tiling x;(k) of the frequency plane (kz, k.) can be depicted as seen in
Figure 4.1a in Chapter 4. Note that the definition of x (k) using v|;/2),; in equation (H.7),
means that the number of angular windows increases only every other scale (see Figure
4.1a). This splitting at every other scale is a consequence of the choice of dyadic subbands
in combination with the parabolic scaling. With the subband filtering being dyadic (i.e.,
the length of the support of the radial window being multiplied by 2 each time the scale
index increases by 1), the width of the curvelet is multiplied by V2 each time the scale
index increases by 1. Hence, the only way to have an‘integer number of angular windows
per subband with the windows satisfying the parabolic sclaling, is to double the number of
angular windows at every other scale only.

Since the radial (or subband) windows w(277|k|) for j and j + 1 are equal at 2/F1x
(see Figure H.1b), the frequencies of x;;(k) are supported near the dyadic coronae {27m <
|k| < 27*1x}, depicted in Figure 4.1a. These dyadic coronae are directly related to the
familiar dyadic subband filtering in wavelet theory. This decomposition of the frequency
plane is the same as the second dyadic decomposition treated by Stein (1993) in relation to
oscillatory integrals of the second kind (or Fourier Integral Operators).

Ignoring the splitting at every other scale, we see that the length of an angular wedge
(i.e., in the radial direction) is proportional to 291! — 27 = 27 while the width of the wedge
is proportional to 2/ x 277/2 = 29/2, This means that the volume of the angular wedge
is O (2j x 29/ 2). Considering the Heisenberg uncertainty principle, a curvelet is therefore
supported in the spatial domain near a rectangle of width proportional to 277 and length
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273/2; i.e., the width of this rectangle is the inverse of the length of the angular wedge, while
the length of the rectangle is the inverse of the width of the wedge. Therefore, curvelets
obey the anisotropic scaling relation

width o length? | (H.9)

where proportionality is used to indicate the omitted constants!. This scaling is referred to
as the parabolic scaling. Note that the scaling relation (H.9) holds in the spatial domain,
while in the frequency domain we have length o< width?.

So far we have shown the tiling of the frequency plane with curvelets. The windows
x;1(k) allow us to rotate and dilate curvelets. To be able to translate curvelets in the spatial
domain, the windows x;;(k) are multiplied with a local (i.e., over the spectral support of
a curvelet) L? orthonormal basis. Since all windows x;,(k) are simply rotated versions of
x;,0(k), we first consider the window x;o(k). The support of this window is contained in
the rectangle R = I; x Ip;, with

Ij = {kz,t; < ks <t;+ L;}, Iy ={ks k| <1/2},

with L;, and l; the smallest possible bounds, and t; the largest possible bound, such that
xj,0(k) = 0 outside this rectangle R. Here L; and l; determine, respectively, the sampling
intervals (or translation steps) in z- and z-direction in the spatial domain. From a Fourier se-
ries expansion for functions with period 2L, e*™*/L / V2L, with q € Z, is an orthonormal ba-
sis for L? functions with period 2L. This means that e?27m2k=/1; / \/E , with mo € Z, is an or-
thonormal basis for L2(I). Also,
eim(mit1/2k/L; /| /5T with my € Z, is an orthonormal basis for L(+1;;) [see e.g. Herndndez
& Weiss (1996, Chapter 1.4)]. Therefore, the sequence (u; ) [with m = (m1,m2)| de-
fined as

meZ?

e‘iﬂ'(m] +l/2)kx/LJ‘ ei?.‘lrmz k. /lj

is an orthonormal basis for L2 (£I1; x Iz;). Defining 6; and 6o by L; = 5,72 and l; =
692121372 we have

Ujm (K, kz) =

9-35/4
27 vV 51 62
where the multiplicative term 273//4 follows from ignoring the splitting at every other scale
in the term 2 (L3/2149)/2 e, replacing |7/2] with j/2 in this term.

Using this definition, and denoting by Ry, the rotation by angle 8;;, the curvelet in

i —j i -13/2)
Ujm (kz, kz) _ ez1r(m1+1/2)2 kz /61 ezm22 k2./62 ,

!This scaling relation holds when both width and length are made dimensionless through division by
a reference length, typically the sampling interval in numerical implementations. Otherwise this relation
would involve a proportionality constant that has a dimension which adjusts for the difference in dimension
between width and squared length?.
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the frequency domain is then defined as
8ull) = 2mx;u(R)usm (R, k), 1= (3,1,m), (H.10)

where ¢, denotes the Fourier transform of the curvelet ¢, € L%(R?). These are the fine
scale curvelets. The coarse scale curvelets are then defined as ¢,,(k) = 2mxo(k)um(k),
with u,(k) = (2mdg) Leilmike/dotmak=/%0)  Here, §y is again some appropriate constant
determining the sampling rate (or translations steps) in the spatial domain. Note that
here 8y determines the sampling rate in both the z- and z-direction, since the coarse scale
curvelets are isotropic (and thus really are wavelets).

Using the definition of curvelets given in equation (H.10), curvelets form a normalized
tight frame. From equation (H.10), in L2 we have

> |(ha)] = o [ 7] boat)a

where we have used that (uj,m (R;j lk)) - is by construction an orthonormal basis for
’ me

2
L? over the support of x;(k), i.e., luj,m (R;j lk)| = 1. Using that the x;;(k) constitute
a partition of unity by equation (H.8), it then follows that

L3721 -1 Li/21-1
S5 S (tsime)|| = 0PE S [ |09 s
j20 =0 mi,m2 >0 1=0

gli/2)-1
= (2n)? / f(k)| [Z > |xﬂ(k)|2} dke
j=>0 I=0
~ 2
= @n? [ |fk)| ak
= oA

Therefore () ,cps (With p = (4,1, m1, m2) a multi-index) is a tight frame for L?(R?). Here,
M is a multi-index set that has the appropriate ranges for j, [, m; and mq. Finally, using

the Parseval formula and the Plancherel formula for L?(R?), i.e., ( £ é“) = (2n)% (4, Cu)
and ” f ” = (2m)2 || f ||2, respectively, it follows that for f € L2(R?)
> el =1l - (H.11)
peM

This shows that (cu),epy is a normalized tight frame for L?(R?), giving the reconstruction
formula (H.1).
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Appendix I

Tight frames in Hilbert spaces

Let H be a Hilbert space, and let (-,-) denote the inner product on H. A collection
of elements {e;} jes in H, with J an index set, is called a frame if there exist constants A
and B, 0 < A < B < o0, such that

Al <D I(f.e)? < BIIfIE, VfeH, (L1)

jed

where A and B are called frame bounds, and where |-||;, denotes the norm on H in-
duced by the inner product. If the frame bounds are equal (A = B), the frame is called
tight. For example, the four vectors ¢; = (0,1), ¢o = (1,0), ¢3 = g,g), and

2 V2
¢4 = (—%, \/?_ , form a tight frame for R? with frame bounds A = B = 2, since it

follows that S5, [(f,#:)|* = 2| FII>.

The linear span of frame elements is dense in H [e.g., Herndndez & Weiss (1996,
p.399)], meaning that any element f € H can be written as a linear combination of the frame
elements, and that the difference between this linear combination and f has a measure zero.
If the frame elements were also linearly independent, they would form a basis for H. The
frame elements e; are not a basis since adding the zero vector to {e;};cs does not alter the
inequalities in expression (I.1). Adding any vector, even a zero vector, to a basis, destroys
the linear independence of the basis, meaning it no longer would be a basis. When both
frame bounds equal unity (A = B = 1), the frame is called a normalized tight frame. Each
orthonormal basis is a normalized tight frame, but the converse is not generally true, since
the frame elements need not be linearly independent.

Although the frame elements do not need to be normal, they must satisfy ||e;|| < VB,
Vj € J. To see this, let f = e, for some k € J, and use frame condition (I.1) to see that
lexll* = ek, ex)|* < 3 ey ek, €5)1> < Blex|/®. Therefore we have |lex|| < vB, Vk € J. If
the frame is a normalized tight frame (i.e., A = B = 1), we must have |lex]| < 1. Hence,
for a normalized tight frame, the linear independence of a basis is traded for the condition
llex]| < 1, Vk € J.

If a normalized tight frame has |lex|| = 1, Vk € J, {e;};jeJ is an orthonormal basis for
H. To see this, observe that for fixed k € J, 1 = [lex||* = |(ex, ex)|* < 2ied |(ex, €)% < 1.

Therefore, we have > jes |(exs ej)|2 = |(ex, ex)]?
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+Zj¢k,je.] l(ek:ej)l2 = ||6k||2 + Ej;ék,jej |(ek:ej)|2 =1, and thus Zj;ék',je.ll' |i(ek,€j)|2 =0.
This implies (ex,e;) = 0, Vk € J and k # j. Since k is arbitrary, and sinee |[[ex| = 1, it
follows that {e;};es is an orthonormal basis for H.

It is known [e.g., Herndndez & Weiss (1996, pp.334-336)] that. for a Hilbert space H
and a family of elements {e;};cs in H, the condition

IfI5 =D 1(F el VFeH, (12)
jed
is necessary and sufficient for
F=Y (fre))e; (1.3)
jeJ

to hold. That is, statements (I.2) and (I.3) are equivalent. This tells us that for a tight
frame with frame bound A, reconstruction formula (1.3) holds, for if } ., [(/, &) =

2
A ||f||%, simply defining ¢ = ej/ VA, gives djed ’(f, e;.)| = ||f||$_{ From the equivalence

of statements (1.2) and (I.3), then f =3 .; (f, e;) e; = %z (f,ej)ej; ie., for a tight
jed

frame we have reconstruction formula (I.3). For a normalized tight frame (A = 1), f =
;e (f€;) ej, and thus also the reconstruction formula (I.3). Note that this reconstruction
formula is identical to the reconstruction formula for an orthonormal basis, but here the
frame elements are not orthogonal; i.e., you can have reconstruction formula (I.3) with
linearly dependent elements of H, provided (1.2) holds.

Although we showed that the reconstruction formula (I.3) holds for (normalized) tight
frames, a similar reconstruction formula can be found if the frame is not tight. We refer
the reader to Mallat (1998, chapter 5), Herndndez & Weiss (1996, Chapter 8), or Strang &

Nguyen (1997, Section 2.5) for treatments of non-tight frames.
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Appendix J

The quartic equation for the stationary midpoint
location as a function of y and p

The stationary midpoint location z(y,p; h) satisfies the condition that the derivative
of the phase ® with respect to midpoint location is zero. That is, using equation (4.11),

z(y, p; h) satisfies
(3o o,

with 7, and 74 given in equation (4.9). Solving this equation for z(y, p; h) leads to a quartic
equation in ¢ := (z(y, p; h) — y1)? given by

ot +az0® + a0 + a0 +ag=0, (3.2)

with
L
PR o A G (vlp)_z)(z;/g‘;% @-@p?) (1.4)
o i (1= p)?) M3 (3 —l(ip():;/;)ffvzy% (/e 2" 0% e )
ap = (K2 +43)° [h2 - %] . (3.6)

Note that for p > 0 we have y; < z, and that for p < 0 we have y; > z. Therefore, in
general we have

z(y,p; h) = sgn (p)Vo +y1 . (3.7)

The general solution to a quartic equation is given in Appendix G.
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Appendix K

Explicit expression for the linear transformation T'
for common-offset time-migration with curvelets

To find an explicit expression for the linear transformation T given in equation (4.37),
first consider the term Vt(y, z(y, pu; h); h)| - For the subsequent derivation it is impor-
tant to realize that in calculating the gradient of ¢ with respect to y, the midpoint location
z is fixed. Using equation (4.19) together with the definitions of r, and 74 in equation (4.9),
it follows that

_(zu—h—yi’l+xu+h—yin>

1 Ts Tg
Vyt(y, 2(y, push)ih)l, - = =~ o
Ya Y2
Ts Tq

1 (—(sin 65 + sin 09))
_ , (K.1)

cosfs + cos b,

where y,,, = (yT yg")T, and where the angles 6, and 6, are defined in Figure 4.7. Then,
defining the slowness vectors p, and p, at the source and receiver locations, respectively,

as
1 [—sinf,,
ps,g e ; ( COSOS,g ) ) (K2)
we can rewrite equation (K.1) as
Vyt(y, z(y, pu; k)i )|, =Ps+ Py = P s (K.3)

Here, p,, is the slowness vector associated with the dip covector &, := wp,, (i.e., the wave
vector associated with the reflector). Defining ¢ := (85 + 64)/2 as the dip (i.e., the angle
with the horizontal measured clockwise positive), it follows that

2cosf [—sin
Vytly,a(w,pui b, = 220 (P) (K.4)

where 6 := (6, — 6,)/2 is the half opening-angle.
Next, consider the term Vg z(y,py; h)| v From Appendix J, the stationary midpoint
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location satisfies equation (J.1). Explicitly writing out this equation gives

—h— h—
z I il | P (K.5)
Ts 'I"g

Now, treating x as the dependent variable and y and p = k;/w as the independent variables,
we can take the partial derivative with respect to y; on both sides of equation (K.5) to get

(a_x_l){(l+i)+($‘h‘y1)2+("’+h‘y1)2}:o. (K.6)

Ay Ts Tg r3 'rg

Therefore, we have
Oz(y,p; h)

=1. K.7
o (K.7)

Ym

This result is intuitive, since changing the horizontal component y; of the image location y,
while keeping the slope p constant, should result in a simple translation of the whole geom-
etry shown in Figure 4.7 along the horizontal axis. Similarly, taking the partial derivative
with respect to yo on both sides of equation (K.5), we get

1 oz x—h—y16r3+l0_x_m+h—y1%

— =0. K.8
Ts Oya T2 Oyz T4y T2 Oyo &8)
Using that
Org r—h—y1 0 1y
— — 4+ K.9
6y2 7‘3 6y2 Ts ( )
0 h—y 0O
Oy _ axhopds (10
Oys Te Oya 14
and substituting these expressions in equation (K.8), it follows that
tan fyr3 + tan 6,73
9z(y, p) — 8 g 5 9's (K.11)
o Yo Tg+ T3
Using this together with equation (K.7), it follows that
tan 0,73 + tanfgr3 T
. _ g s
Vyz(y,pus M), = (1 —p (K.12)

Finally, using the results from equations (K.4) and (K.12) in equation (4.37), we find the
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resulting explicit expression for the linear transformation 7" to be

tan 037’3 + tan@,r3
r3 + 3
T = e . (K.13)
—2cosfsin ¢ 2cos 8 cos ¢

v v
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Appendix L

Discrete form of the linear transformation L!

For the purpose of digitally implementing the linear transformation L1, we express
the shear, rotation, and dilation matrices that together form L as matrices on a grid with
sampling intervals At and Az in the time and midpoint axes, respectively. Starting with
the shear matrix S_,, [see equation (4.36)], we observe that

S_p, - <‘:’) = (t _“; ua:) . (L.1)

Writing the vector (z t)T as (n;Az n;At)T, it follows that
ne AT

s (7) = <<nt—pu%nz>m) | (L2

Therefore, the matrix S_,, expressed on the discrete grid, with sampling intervals At and
Az, is given by

A 1 0
S_Pu = —p g 1 ’ (L‘3)
“ At
where we use the superscript A to denote that the matrix is defined on a discrete grid.
Hence, defining the vector & := (ny n;)T, we have
A A N
R Azx . L4
Pu M = Pups e (L-4)
Going through the same analysis for the matrices D~! and S~! [equation (4.46)], we find
! 0
(DA)*I _ cos¢ + X sin¢ . , (L.5)
0

cos 8
X cos ¢ — sin ¢ vAt

(%) = ) _cos¢+)1(sin¢2A:z:) , (L.6)
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while for the rotation matrix R_4 we get

vAt
cos ¢ —sing——
A
s ¢m COs ¢

In finding the expressions for (D) -1 (SA)_I, and R§¢, we used that the sampling interval
Az in the image satisfies Az = vAt/2.
Therefore, using equations (L.4)—(L.7), we have

(ﬁ) — 7 (Z:) —R8,-(82)7"- (DM 52, (Z’:) : (L-8)

In general, the new grid coordinates n!, and n, are not integers. Therefore we need to
interpolate the obtained grid coordinates to integer values of n, and n,. We do this using
bilinear interpolation.
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Appendix M

2/2] rational interpolation for nonhyperbolic
moveout in a single horizontal VTI layer

Using the definition and normalization of the rational approximation outlined in the
main text, we can write the [2/2] rational approximation for squared traveltimes T" as a
function of squared offset X as

To + 11X + na X2
T(X)~ 1+ di X +do X2

(M.1)

where Ty = tg is the squared zero-offset two-way traveltime, and n;2 and d;o are the
coefficients of the numerator and denominator of the rational approximant, respectively.
Using four squared traveltimes T; = t?, with ¢ = 1,...,4, and four accompanying squared

offsets X; = mf as interpolation points, we arrive at a linear system of four equations with

four unknowns, the coefficients n1 9 and d; 3. We simply solve (using Mathematica) for the
four coefficients in terms of T;, X;, and Ty. The resulting expressions for the coefficients are

given by

d = ((To - Ty) X1 XoX3(Ti X1 (X2 — X3) + T3 X3(X1 — X2) + ...
T2 Xo(X3 — X1)) — (T1 — To)(To — Ta) X7 X3 + (T2 — To)(T1 — T3)X7 +. ..
(To — T1)(Ty — T3) X X2) X4 + (To — T3) X1 Xo(T1 X1 — ToXo + ...
Ta(Xa — X1)) — (To — To)(Ty — TR X2 — (To — T1)(To — T) X X3 + ...
(T3 — Ty)(T1 X2 — To X1 + To(X1 — X2)) XHX32)/ ...
(X1 Xo X3(To(T3(X2 — X3)(X1 — X4) — Tu(X1 — X3)(Xa — X4)) + ...
Ty (Ty(X2 — X3)(X1 — X4) — T3(X1 — X3)(X2 — X4) + ...
To(X1 — Xo)(X3 — X4)) + TsTu(X1 — Xo)(X3 — X4))X4) , (M.2)
dy = (=To(X1 = X2)(X1 = X3)(X2 — X3) + T3X1 Xo(X1 ~ Xo)(1 +d1 X3) + ...
X3(T1 Xo(1 + di X1) (X2 — X3) + To X1 (1 + d1 X2)(X3 — X1)))/ - ..

(X1X2X3(T2X2(X1 — X3) + T3 X3(Xe — X1) + 1 X1(X3 — X2))) (M.3)
ng = To(Xy1— Xo)+Ti(1+ Xa(d1 + d2X1)) X2 — To X1 (1 + Xo(dy + d2 X2))/ ...
X1 Xo(X1 — Xo) (M.4)
To— T
ny = Tidy — 2oL — (ng—doT) Xy . (M.5)

X1
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Note that only the expression for d; is explicit in just T;, X;, and Tp, whereas da also
depends on dj, ny on dj 2, and n; on ng and dj 2. Calculating the coefficients n1 2 and d o
using the above expressions and the interpolation traveltimes ¢; and offsets z;, we can use
the resulting values of n; 9 and d 2 in equation (M.1) to evaluate interpolated traveltimes
t for offsets  between offsets ;.
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Appendix N

Degeneracy of [2/2] rational interpolation for
hyperbolic moveout

Replacing the traveltime ¢ and offset z in equation (5.14) by the squared traveltimes
T and squared offsets X and adopting the normalization N (0) = T(0) and Dp(0) = 1.0
after Baker (1975, pp. 5-6), the [2/2] rational interpolation is given by

To+n X + n2X2

TX) > I a X T d, X2

(N.1)

Here Ty denotes the squared zero-offset two-way traveltime. Using four support points
(X;,T;), we arrive at a linear system of equations for the unknown interpolation coefficients
ny, n2, dl; d21 i'e',

A-xz=d. (N.2)
where
—X1 -—X12 X1T1 X12T1 n T()-—Tl
i —X2 —X% X2T2 X22T2 L no L T()—T2
A= X -x2 xm x| a4 YT e | (N-3)
— X4 —Xf XyTy X2T4 do To— Ty

with Tj the squared two-way zero-offset traveltime. Calculating det A, we get

detA = X X2X3X4 [(T1T2 + T3T4) (X1 — X2) (X3 — X4) cee
+ (T + T3Ty) (X1 — Xo) (X3 - X4)...
— (T1T2 + T3T4) (Xl — X2) (X3 - X4)] . (N.4)

When the moveout is hyperbolic, we have T; = Tp + X; /vz. Using this, it follows that

Xi— X; =02 (T; - Tj) . (N.5)
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Using equation (N.5) in (N.4) then gives

detA = 'U2X1X2X3X4 [(T1T2 + T3T4) (T1T3 —NTy —ToT5 + T2T4) -
+ (T + T3Ty) (VT — ToTy — ThT3 + T3Ty) . ..
— (T1T2 + T3T4) (T1T2 —NTy —ToT3 + T3T4)]
= VX1 XoX3Xy [((TV T + T3Ty) (Th T3 — Ti Ty — ToTs + ToTy) - ..
—(MT + L) (M1 T3 — ThTy — ToT3 + ToTy) . ..
+ (113 + ToTy) (1 Ty + ToT3) — (T1T3 + ToTy) (1 Ty + T2T3)]
- 0. (N.6)

Hence, for hyperbolic moveout, the linear system (N.2) for [2/2] rational interpolation of
the moveout (expressed as squared traveltime as a function of squared offset) becomes
degenerate.
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Appendix O

A condition to estimate the reliability of the
zero-lag cross-correlation correction factor

Equation (7.16) for the correction factor of the cross-correlation coefficient depends
on the unknown noise functions n,(t) and n,(t). In practice, we don’t know these noise
functions and often have only an estimate of the noise level, as opposed to some ensemble
average. We want the correction factor to be reliable when the unknown variances of the
noise in equation (7.16) are replaced by a single estimate of the noise level. If inequalities
(7.17)-(7.19) are satisfied, the correction factor depends only weakly on the estimate of the
noise level. Here we rewrite these inequalities into a single inequality that can be verified
using the noise-contaminated signals and an estimate of a single realization of the noise
no(t).

To write inequalities (7.17)-(7.19) as a single one, we first add the left- and right-hand
sides of equations (7.17)-(7.19), while multiplying equation (7.17) by two for convenience
in the further derivation. This gives

2 (|(“u + nmnp)(ts;t,tw) + (upa nu)(ts;t,tw)l + | (u, nu)(t,=0;t,tw)| + |(uP?nP)(ts=0;t,tw)|)
<
2| (uy, up)(ts;t,tw)l + (U, uu)(ts=0;t,tw) + (P, nu)(t3=0;t,tw)
+(up, Up) (t.=03t,t) + (Mps Tp) (1, =038, » (0.1)

where we have used that zero-lag auto-correlations are positive definite. If conditions (7.17)-
(7.19) hold, equations (7.13)-(7.15) from the main text are good approximations. We can
use these approximations, together with the linearity of (- ,-) (teittr) 20d equation (7.5), to
approximate inequality (O.1) as

2((tnyy M) (test,tw) T (Ups M) (t530,t) — (Paes Tp) (143t t) |
+2|(u;’nu)(t3=0;t,tw) - (nu,nu)(t3=0;t,tw)| + 2|(u;))np)(ts=0;t,tw) - (npanp)(t,=0;t,tw)|
<
2{(wly Up) (tastytw) | (s W) (ta=0t,t0) T (s Up) =03t - (0.2)

For the applications treated in this paper, i.e., a source displacement and the displace-
ment of the scatterer locations, the maximum cross-correlation occurs for ts = (1) = 0
s. Also, since in CWI we assume that the traveltime perturbations in the time window
[t — tw,t+1ty,) are small, we expect a positive cross-correlation between the signals u,,(t) and
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up(t) for times where CWI is valid. Hence, making use of this approximation, and setting
ts = 0 in condition (0.2), we can write this condition as

| (g, + u’;n nO)(ts=O;t,t..,)| + |(u'lu.7n0)(ts=0;t,tw) - (no, nO)(t,,:O;t,t,,,)I
(U 10) (ta=03t,0) = (10, 710) (ts =0st,) | K 2([tr, + u)/2, [, + 0] /2) 2, =03t,2)
(0.3)

where we substituted for both noise signals n,(t) and ny(t) the estimated noise signal
no(t), and we assumed |(nu,np)(ts;t,tw)| < |(u;,np)(ts;t’tw) + (u;,,nu)(ts;t,tw)| to eliminate
the (ny,7p)(z,:t,t,) term. The latter approximation is more appropriate for larger signal-
to-noise ratios, larger time windows, and uncorrelated noise realizations n,(t) and ny(t).
Note that substituting a single noise signal for both unknown noise signals n,(t) and ny(t)
is appropriate only if both noise signals have similar noise levels. Dividing both sides of
condition (0.3) by (no, 70)(t,=05,t,,) (Which is positive definite), and defining the ratio

(el + /2, [y + 41/2) g

(no, nO)(t,=0;t,tw)

T(t, tw) = , (0.4)

inequality (O.3) leads to
L
2

where « is O(10~!). Here 1/T(t,t,) can be interpreted as the average signal-to-noise ratio.

Condition (0.5) is satisfied only for time windows that have a large average signal-
to-noise ratio. The L.h.s of condition (O.5) can be evaluated using the noise-contaminated
signals u},(t) and up(t), and an estimated noise signal no(t). This condition can thus be used
as a selection criterion to determine which time windows have reliable correction factors
associated with them, when an estimated noise level (calculated using an estimated noise
realization ng(t)) is used, i.e., when equation (7.20) is used to calculate the correction factor.
Note that « can be interpreted as the inverse of the signal-to-noise ratio.

/ !
(uu + Up, nO)(t,,:O;t,tw)

(no, no)(ts=0;t,tw)

(Uz,no)(t,=o;t,t.,,) _ (u;nn())(t,=0;t,tu,) _ 1’)
(no, no)(t,=0;t,t.,,) (no, nO)(ts=0;t,tw)
/T(t,tw) <7, (0.5)

1|+
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