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ABSTRACT

One of the distinctive features of mode-converted waves is their asymmetric
moveout (i.e., PS-wave traveltime may not stay the same if the source and receiver
are interchanged) caused by lateral heterogeneity or elastic anisotropy. If the
medium is anisotropic, the moveout asymmetry contains valuable information for
parameter estimation that cannot be obtained from pure reflection modes.

Here, we generalize the so-called “PP+PS=SS” method, which is designed to
replace reflected PS modes in velocity analysis with pure (non-converted) SS-
waves, by supplementing the output SS traces with the moveout asymmetry
attributes of PS-waves. The moveout asymmetry factor At,. is computed in
the slowness domain as the difference between the traveltimes of the PS arrivals
with opposite signs of the ray parameter (horizontal slowness). Another useful
asymmetry attribute is the offset zyi,(a) of the PS-wave moveout minimum on
a common-midpoint (CMP) gather with azimuth «. The computation of both
At and Zpmi, is integrated in a straighforward way into the processing flow of
the PP+PS=SS method.

The effectiveness of the developed algorithm and the importance of includ-
ing the asymmetry attributes of PS-waves in anisotropic velocity analysis are
demonstrated for transversely isotropic models with a tilted symmetry axis (TTI
media). Simple analytic expressions for the moveout asymmetry of the PSV-wave
in a horizontal TTI layer are derived in the weak-anisotropy approximation and
verified by anisotropic ray tracing. The asymmetry attributes reach their max-
imum in the vertical plane that contains the symmetry axis and vanish in the
orthogonal direction. The factor At is proportional to the anellipticity param-
eter 17 and rapidly varies with the tilt v of the symmetry axis. The largest values
of At, are found for the symmetry axis that deviates by 20-30° from the vertical
or horizontal directions.

All relevant parameters of a TTT layer can be estimated by a nonlinear inver-
sion of the normal-moveout (NMO) velocities and zero-offset traveltimes of PP-
and SS(actually, SVSV)-waves combined with the moveout asymmetry attributes
of the PSV-wave. It should be emphasized that the inversion of pure-mode (PP
and SS) moveouts alone is ambiguous, while the addition of the attributes At
and T, yields stable parameter estimates for noise-contaminated input data.
Although the algorithm generally requires a wide range of azimuths, the parame-
ters of most TTI models (except those with near-horizontal axis orientations) can
be obtained from 2-D data acquired in the vertical symmetry-axis plane. If the
TTI model is formed by obliquely dipping fractures, the estimated anisotropic
parameters can be inverted further for the fracture orientation and compliances.




INTRODUCTION

The complex, multidimensional nature of inverse problems in anisotropic media
makes it imperative to combine different wave types in estimating medium param-
eters. In particular, building anisotropic models for depth imaging usually requires
supplementing P-waves with mode conversions or S-waves (e.g., Tsvankin, 2001).
Since excitation of shear waves is still relatively rare, most multicomponent data sets
include P-waves and converted PS-waves. Although the benefits of using PS-waves
in various applications are well documented in the literature (e.g., Thomsen, 1999),
processing of mode conversions is complicated by several factors related to the asym-
metry of their raypath (e.g., Grechka and Tsvankin, 2002).

The difficulties in adjusting seismic processing algorithms for PS data prompted
Grechka and Tsvankin (2002) and Grechka and Dewangan (2003) to develop the so-
called “PP+PS=SS” method designed to construct “quasi-SS” reflections® from PP
and PS data without precise knowledge of the velocity model. The moveout of the
original PP arrivals can then be combined with that of the computed SS-waves in
anisotropic stacking-velocity tomography (Grechka et al., 2002a) or other velocity-
analysis algorithms. This approach significantly simplifies the inversion/processing
flow for multicomponent surveys, and it proved to be effective in anisotropic velocity
analysis of field data (Grechka et al., 2002b).

While replacing PS-waves with pure SS reflections is advantageous from the pro-
cessing viewpoint, the PP+PS=SS method does not preserve the information about
the asymmetry of PS moveout. If the medium is either laterally heterogeneous or
anisotropic without a horizontal symmetry plane, the traveltime of PS-waves does
not remain the same when the source and receiver are interchanged (Pelissier et al.,
1991; Thomsen, 1999; Tsvankin and Grechka, 2000). This moveout asymmetry of
PS reflections was shown by Tsvankin and Grechka (2000, 2002) to provide critically
important attributes for parameter estimation in transversely isotropic media with a
vertical symmetry axis (VTI). In the PP+PS=SS method (Grechka and Tsvankin,
2002a), however, the traveltime of the constructed SS arrival for each source-receiver
pair is obtained from the sum of the “reciprocal” PS-wave times corresponding to
same reflection point. (By “reciprocal” times we mean the times of the PS-waves
that have the same absolute value but opposite signs of the projection of the slowness
vector onto the reflector.) As a result, the difference between the reciprocal times
that quantifies the moveout asymmetry does not contribute to the computed SS data
and cannot be used in the subsequent velocity analysis.

This paper demonstrates that supplementing the output of the PP+PS=SS method
(i.e., PP and SS data) with the moveout asymmetry attributes of PS-waves can help
to build an anisotropic velocity field in the depth domain without a priori informa-
tion. We consider the model of a transversely isotropic layer with a tilted symmetry

IThe constructed SS events have the correct kinematics, but not the amplitudes, of the SS-wave
primary reflections.



axis (TTI) that describes, for example, obliquely dipping, rotationally invariant frac-
tures embedded in isotropic host rock. Other examples of subsurface TTI formations
include progradational clastic or carbonate sequences (e.g., Sarg and Schuelke, 2003)
and dipping shale layers in fold-and-thrust belts (e.g., in the Canadian Foothills) and
near salt domes. The TTI medium is parameterized here by the velocities of P- and
S-waves in the symmetry direction (Vpo and Vgy, respectively), the tilt of the sym-
metry axis from the vertical (v) and Thomsen’s (1986) anisotropic coefficients ¢, 4,
and « defined in the coordinate system associated with the symmetry axis (Tsvankin,
2001).

In principle, the symmetry-axis orientation and the parameters Vpy, €, and  can
be estimated from P-wave data alone, but this inversion requires the normal-moveout
(NMO) ellipses (i.e., wide-azimuth P-wave reflections) from a horizontal and a dipping
interface, and both the tilt v and reflector dip should be no less than 30-40° (Grechka
and Tsvankin, 2000). Although the addition of the NMO ellipses of pure SV-waves
to those of P-waves makes it possible to invert for the TTI parameters using the
reflections from a single interface, the parameter estimation is still ambiguous for a
range of small tilts and reflector dips (Grechka and Tsvankin, 2000; Grechka et al.,
2002a). Therefore, even the wide-azimuth traveltimes of pure reflection modes (P and
SV) from subhorizontal interfaces are insufficient for reconstructing the TTI model.

The asymmetry of PS moveout in TTI media is caused by the tilt of the symmetry
axis, which creates a model without a horizontal symmetry plane. The possibility of
using traveltime asymmetry information in estimating the parameters of a fractured
TTI layer was demonstrated on field data by Angerer et al. (2002). Here, we present
an analytic study of the PSV-wave moveout asymmery in a horizontal TTI layer and
develop an inversion algorithm that operates with both pure and converted reflection
modes. Numerical tests on noise-contaminated data indicate that the inversion is
sufficiently stable if the symmetry axis deviates from the vertical by 10° or more.
The instability of the parameter estimation for subvertical symmetry-axis orientation
is expected because for VTI media even long-spread (nonhyperbolic) moveout of PP-
and PSV-waves does not constrain the parameters Vpg, Vs, €, and § (Grechka and
Tsvankin, 2002b).

MODIFICATION OF THE PP+PS=SS METHOD

The PP+PS=SS method introduced by Grechka and Tsvankin (2002a) is designed
for seismic surveys in which shear waves are not excited (e.g., ocean-bottom cable,
or OBC) but may be recorded by multicomponent receivers. In this case, the shear
wavefield is formed by mode-converted PS-waves, with the conversion often happening
at the reflector. Although PS arrivals carry valuable information about the shear-
wave velocities, inversion and processing of mode conversions is hindered by their
large reflection-point dispersal, polarity reversals, and moveout asymmetry. The idea
of the PP4+PS=SS method is to recompute the recorded PP and PS wavefields into the
corresponding pure SS reflections, which are not physically generated in the survey.
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The construction of SS-waves with the correct kinematics (but not amplitudes)
does not require explicit information about the velocity field, but it is necessary to
correlate PP and PS arrivals and identify the events reflected from the same interface.
The original version of the PP+PS=SS method described by Grechka and Tsvankin
(2002a) operates with PP and PS traveltimes picked on prestack data. As illustrated
in Figure 1, matching the reflection slopes on common-receiver gathers makes it pos-
sible to find two PS rays (recorded at points z(® and z) with the same reflection
point as the PP reflection z(!) Rz(®). Then the traveltime of the SS-wave is determined
from

TSS (x(s)’ $(4)) = tPS (x(1)7 z(3)) + tPS(x(z)) z(4)) - tPP (x(l)’ $(2)) ‘ (1)

Application of equation (1) produces reflection SS data with the correct kinemat-
ics but generally distorted amplitudes. Clearly, the SS traveltime 7, (z®, z(¥) will
remain the same if we interchange the source (z®) and receiver (z(). Therefore, the
moveout of the constructed SS-waves in common-midpoint (CMP) geometry is always
symmetric, as is the case for any pure reflection mode. Conventional-spread SS trav-
eltimes are described by the NMO velocity (in 2-D) and NMO ellipse (in 3-D), which
can be obtained using algorithms developed for PP-wave data. The NMO velocities
or ellipses of the PP- and SS-waves can then be combined in velocity analysis ::<ing,
for example, stacking-velocity tomography, which proved to be particularly efficient
for anisotropic media (Grechka et al., 2002a).

Still, for many anisotropic models including a horizontal TTI layer, pure reflec-
tion modes are not sufficient for estimating the vertical velocities and anisotropic
coefficients (Grechka and Tsvankin, 2000; Grechka et al., 2002a). In such a case,
an important question is whether or not including some attributes of the recorded
PS-waves in the inversion algorithm can help in recovering the medium parameters.
It is clear from equation (1) that the information about the moveout asymmetry of
PS arrivals is not preserved in the computed SS traveltime, which depends on only
the sum of the traveltimes of the PS-waves converted at point R (Figure 1). Below,
we add certain measures of the PS-wave moveout asymmetry to the traveltimes of

the PP-waves and the reconstructed SS-waves in the inversion for the parameters of
TTI media.

A generalized version of the PP+PS=SS method based on equation (1) was de-
veloped by Grechka and Dewangan (2003). Instead of operating with prestack PP
and PS traveltimes, they apply a particular convolution of PP and PS traces to pro-
duce seismograms of the corresponding SS-waves. The convolution operator in the
frequency domain is given by

WSS(w) x(S): $(4)) = // [ WPS(w’ z(l)) x(B)) W;P(w’ x(l)a $(2)) X
Wps(w, x(g), x(4))] dz dz®@ , (2)

where w is the radial frequency, Wpp are Wpg are the spectra of PP and PS traces,
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Fi1G. 1. 2-D ray diagram of the PP+PS=SS method (after Grechka and Tsvankin,
2002a). The reflected PP ray from z(!) to z® and the PS rays from z(" to z® and

® to £(¥ have the same reflection point R. The rays with the common reflection
point are identified by matching the slopes on common-receiver gathers (i.e., the ray
parameters) of the PP- and PS-waves.



Wss is the spectrum of the constructed SS trace for the source and receiver located
at points z(® and z(¥, and the star denotes complex conjugate. The integration is
performed over the P-wave source and receiver coordinates z(!) and z® (Figure 1).
The main contribution to the integral comes from the stationary point that yields the
traveltime of the constructed SS-wave given by equation (1):

min
Tss($(3)’ .’17(4)) = :1:(1), z(? (tPs (x(l)a x(a)) +lps (z(Z)’ x(4)) - tPP($(1)1 x(2))) : (3)

To preserve information about the moveout asymmetry of the recorded PS-wave,
we suggest to generate an asymmetry gather in addition to the SS data. When using
the PP+PS=SS method, it is natural to define the asymmetry through the difference
between the two PS traveltimes corresponding to the same reflection point (Figure 1):

Atpg(2%,29) = t,5(2®,2®) — t,5(2®,2@) . 4)

We modified the algorithm of Dewangan and Grechka (2003) to estimate the station-
ary points given by equation (3). .Then the difference between the PS traveltimes
(picked on the original data) corresponding to each stationary point is used to com-
pute the asymmetry factor from equation (4).

If the reflector is horizontal and the overburden is laterally homogenecus, the
two reciprocal PS-waves in Figure 1 have the same magnitude but opposite signs of
the ray parameter (horizontal slowness) — that of the PP reflection from zM to z(?,
Hence, equation (4) defines the asymmetry of the PS moveout in the slowness domain.
Analytic expressions that describe the asymmetry factor At,; are given in the next
section.

Integral (2) can be extended to 3-D multiazimuth reflection data. Since sources
and receivers then cover an area on the earth’s surface, their coordinates & become
two-component vectors. The integration then has to be performed over four coordi-
nates, and the stationary point [equation (3)| corresponds to a minimum in the 4-D
space.

ASYMMETRIC MOVEOUT OF PS-WAVES IN TTI MEDIA

Parametric moveout equations

Consider a PS-wave formed by mode conversion at an interface underlying an
arbitrarily anisotropic, homogeneous layer. In general, an incident P-wave in such
a model excites two reflected shear modes (PS; and PS;). The traveltime of either
PS-wave can be represented in parametric form as (Tsvankin and Grechka, 2002)

tps =tp +ts = 2(qp — Pyp 91p —Pap92p t s — PisQis — Pas q,zs)a (5)

where ¢, and ¢, are the traveltimes along the P- and S-legs, respectively, z is the
depth of the reflection (conversion) point, p, and p, are the horizontal components of
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the slowness vector (the subscripts “P” and “S” indicate the wave type), ¢ = p, is the
vertical slowness, and ¢, = 0q/0p; (i = 1,2) (Figure A-1). Following Tsvankin and
Grechka (2002), the slownesses are computed under the convention that the z3-axis
points up, and both legs of the PS ray represent upgoing waves (i.e., the corresponding
group-velocity vectors point toward the earth’s surface).

Here, we study a horizontal layer, in which the projections of the slowness vectors
of the P- and S-legs onto the horizontal plane have to be identical to comply with
Snell’s law:

DPip = "Pis = P15 Pap = "Pas = Pa- (6)
Equation (5) then simplifies to

tPS =z [qP + s — D (Q,lp - q,ls) - P, (Q,zp - Q,zs)] . (7)

The corresponding source-receiver vector  of PS-waves in an anisotropic, homo-
geneous layer can be also expressed through the slowness components (Tsvankin and
Grechka, 2002):

Tpg : {:1,‘1, :172} = z{(q,xp - q,lS)’ (‘I,zp - Q,zs)}; (8)

Ty =4,p — Q)5
T2 =q,p — Qs

Equation (8) yields the source-receiver offset z and the azimuth « of the source-
receiver line with respect to the x;-axis:

Tps = |Tps| = Vx%'*‘x%; (9)

a = tan™} (2) : (10)

I

Moveout asymmetry in the slowness domain

For laterally homogeneous models, such as a horizontal TTI layer treated below,
the moveout of converted waves becomes asymmetric only if the medium does not
have a horizontal symmetry plane (e.g., Tsvankin, 2001). Conventionally, the moveout
asymmetry is estimated in the offset domain by interchanging the source and receiver
positions. Here, however, we define the traveltime asymmetry factor in the slowness
domain:

AtPS = tPs(pnpz) - tPS(_pl’ _pz) = AtP + Ats: (11)

where At, and At represent the contributions to At from the P- and S-legs of the
PS ray, respectively. Equation (11) describes the difference between the traveltimes
of the PS arrivals excited by incident P-waves that have the same magnitude but
opposite signs of the horizontal projection of the slowness vector.
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If the moveout of PS-waves is symmetric, then changing the sign of the horizontal
slowness reverses the direction of the source-receiver vector = [equation (8)] with no
change in the absolute value of offset. Hence, the measure of asymmetry for = can
be defined in the following way:

Aa’Ps = mPS(plvpz) + wps(—pu _pz) . (12)

The main advantage of treating the asymmetry in the slowness domain is that,
for a laterally homogeneous medium, both At,, and Az,  can be obtained directly
from the PP+PS=SS method [see equation (4) and Figure 1]. Equations (7), (11),
(8), and (12) give an exact representation of the moveout asymmetry of PS-waves
for any horizontal anisotropic layer. Next, we apply this formulation to study the
dependence of At,; on the parameters of TI media with an arbitrary tilt of the
symmetry axis. The factor Az, is discussed later on, after the introduction of the
offset zn;, of the PS-wave moveout minimum in CMP geometry.

Since the contributions of the symmetry-axis orientation and anisotropic parame-
ters to the time asymmetry factor At,¢ are hidden in the components of the slowness
vector, in Appendix A we linearize equation (11) with respect to € and d under the
assumption of weak anisotropy (|e| < 1 and |6] < 1). The derivation is carried out
for the PS mode that is polarized in the-plane formed by the slowness vector and the
symmetry axis. Note that although we will denote this wave “PSV,” its polarization
vector lies in the vertical incidence plane only if that plane contains the symmetry
axis.

The coordinate system is chosen in such a way that the symmetry axis is confined
to the [z,, z3]-plane, which represents the only vertical symmetry plane of the model
and will be called here the symmetry-azis plane (Figure A-1). The sign of the time
difference in equation (11) is specified by assuming that the symmetry axis is dipping
in the positive z;-direction.

Substituting equations (A-5) and (A-6) into equation (11), we obtain a linearized
expression for the moveout asymmetry factor of the PSV-wave:

At,e = —8nz Vi p, [p? + (2p? + p2) cos 2v] sin 2v, (13)

where n = (e — §)/(1 + 26) = € — ¢ is the “anellipticity” coefficient responsible
for time processing of P-wave data in VTI media (Alkhalifah and Tsvankin, 1995).
In the symmetry-axis plane [z;,z3], the slowness component p, vanishes that and
equation (13) simplifies to

Atps(pz =1z, =0)=—-8nz Vﬁo p? sin4v . (14)

Equations (13) and (14) give a concise description of the azimuthally-varying fac-
tor At,;. The main properties of the PSV-wave moveout asymmetry in the slowness
domain can be summarized as follows:



e The asymmetry factor vanishes for VTI (v = 0°) and HTI (v = 90°) media
because these two models have a horizontal symmetry plane. In the symmetry-
axis plane, the linearized factor At [equation (14)] also goes to zero for v =
45°. In this case, however, the higher-order terms in € and é do not vanish,
which makes the moveout weakly asymmetric.

e The contributions to the asymmetry factor from the P-leg [equation (A-5)] and
S-leg [equation (A-6)] of the converted wave are identical. Although this result
was proved here in the weak-anisotropy approximation, numerical tests show
that it remains valid for arbitrary strength of the anisotropy.

e The asymmetry in the slowness domain depends only on the difference n = e—4
and vanishes if the anisotropy is elliptical (¢ = §). Since for elliptical media with
any magnitude of e = § there is no SV-wave velocity anisotropy, the S-leg of the
converted wave does not produce any moveout asymmetry. This means that
the P-leg cannot cause the asymmetry either (see above).

e The magnitude of the asymmetry factor in the symmetry-axis plane [equa-
tion (14)] reaches its maximum for the tilts v = 22.5° and v = 67.5°. Therefore,
At, . is quite sensitive to the deviation of the symmetry axis from the vertical
and horizontal directions.

The azimuthally-varying asymmetry factor At,, computed for a typical TTI
model from the exact equations (7) and (11) is displayed in Figure 2. There is a sub-
stantial variation of At,, with the slowness component p, (e.g., in the z;-direction
where p, = 0), while the influence of p, is much weaker. Therefore, Figure 2 indi-
cates that most of the 3-D (wide-azimuth) moveout asymmetry information can be
obtained in the symmetry-axis plane [z, z3).

Note that the line p, = 0 in Figure 2 where At = 0 does not correspond to
acquisition in the [z,, z3]-plane. Since [z, z3) is not a symmetry plane, downgoing P
rays with p, = 0 deviate from the vertical incidence plane [z, 3], and the source-
receiver direction of the reflected PS-wave is not parallel to the x,-axis.

Figure 3 shows the function At (p,) in the symmetry-axis plane in more detail.
Both the PP+PS=SS method and parametric equation (11) are supposed to produce
exact values of At,., which is confirmed by our numerical results. The magnitude
of the asymmetry factor is quite substantial — it exceeds 40% of the zero-offset time
before rapidly decreasing for large values of p,.

The accuracy of the weak-anisotropy approximation (14) in Figure 3 is quite
satisfactory considering that it incorporates the contribution of the S-leg of the con-
verted wave. Typically, the weak-anisotropy approximation is much less accurate for
SV-waves than it is for P-waves because of the large magnitude of the anisotropic
parameter o = (V3,/VZ) (e — §) (Tsvankin and Thomsen, 1994; Tsvankin, 2001). In
our case, however, the anisotropy-related asymmetry factors for the P- and S-legs are
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F1G. 2. Exact asymmetry factor At,. in the slowness domain for the PSV-wave in a
horizontal TTT layer. At is normalized by the zero-offset traveltime ¢y of the PS-

wave. The asymmetry for negative slowness p, is not shown because At (p,, —p,) =
At,s(p,,p,). The medium parameters are Vpg = 4 km/s, V5o = 2 km/s, ¢ = 0.1,
= —0.1, v ="70°, and z = 1 km.
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F1G. 3. Asymmetry factor from Figure 2 in the [z1, z3]-plane. The solid line is ob-
tained from the exact parametric equation (11); the dashed line is the weak-anisotropy

approximation (14). The stars denote the output (represented as a function of p,) of
the PP+PS = SS method; the maximum offset-to-depth ratio of the PP and PS data
is close to two. .
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equal to each other (see above), and the error of the weak-anisotropy approximation
is the same for both P- and S-waves.

Moveout asymmetry in the offset domain

Most existing results on the moveout asymmetry of PS-waves are obtained in the
offset domain (Thomsen, 1999; Tsvankin and Grechka, 2000, 2002). If the source
and receiver positions are interchanged, the traveltime of the converted wave does
not remain the same unless the reflector is horizontal and the medium above it is
laterally homogeneous and has a horizontal symmetry plane. For PS data collected
in a common-midpoint (CMP) gather centered at the origin of the coordinate system,
the asymmetry factor in the offset domain is defined as

Atps =1ps (mps) - tPs(—is) ) (15)

where x,; is the offset vector of the PS-wave given by equation (8).

Azimuthally varying minimum-time offset z,;,.—If reflection moveout is
asymmetric, the minimum of the traveltime curve in a common-midpoint gather is
shifted from the CMP location. The offset corresponding to the traveltime minimum
(we denote it by Zp,) is a convenient measure of the asymmetry that depends on the
reflector orientation and anisotropic parameters. Analytic expressions for z.;, in a
VTTI layer above a dipping reflector are given by Tsvankin and Grechka (2000, 2002)
and Tsvankin (2001). In a horizontal TTI layer, z,;, carries useful information about
the tilt of the symmetry axis and the anisotropic parameters.

In Appendix B we use equations (8)—(10) for the offset x in terms of the ray
parameter to obtain the following simple expression for the azimuthal variation of
Tmin:

Zmin(@) = o cosa, (16)

where 2o = Zpin(a = 0°) is the offset of the traveltime minimum in the symmetry-axis
plane [z, z3] given in equation (B-5):

_ oy : 7 Va3 .
To = Tmin(@ =0°) =z |esin2v — - | 14+ = | sindv|. (17)
2 Vo

According to equation (16), myin(e) reaches its maximum in the symmetry-axis
plane and vanishes in the orthogonal direction. If z,;, is plotted as the radius vector
for each azimuth ¢, it should trace out a circle with radius zy/2 and center (xq,0) on
the z;-axis.

While equation (17) for zo is valid only in the weak-anisotropy limit, the az-
imuthal dependence of z.;, is described by equation (16) for any strength of the
anisotropy. Figure 4 demonstrates that for the model used in the previous section,
values of xpyi,(a) obtained from anisotropic ray tracing lie on the circle computed
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FI1G. 4. Polar plot of the offset zyi,(a) for the model from Figure 2. The stars
mark values obtained from anisotropic ray tracing of PS-waves and the solid line is
computed from equation (16) with the exact value of xy.

from equation (16) with the exact xo. Similar results were obtained for TTI models
with much larger magnitudes of the anisotropic coefficients € and §. Hence, the az-
imuthal variation of Zmi, can help to estimate the azimuth of the symmetry axis from
3-D converted-wave data, but it does not provide additional information about the
anisotropic coefficients.

The offset z,;, is not only responsible for the shape of the PS-wave moveout in
CMP geometry, it also largely controls the asymmetry measure Az, [equation (12)]
defined in the slowness domain. In the symmetry-axis plane Az, can be written as

Awps = mps(puo) + wPS(—pl’O)' (18)

Linearizing equation (18) in the anisotropic coefficients using equation (8) yields the
projection of the vector Ax g onto the z;-axis in the form

(A:L'Ps)m1 = 2z9 + 1217ng0 pf sin4v | (19)

where zj is given by equation (17). According to equation (19), the factor |Ax |
can be approximated by, a hyperbolic function of the slowness p, with the value at
the apex determined by 2xzo. Indeed, when p, = 0, the PS-rays corresponding to
both p, and —p, coincide and have the same offset zo (Figure 5). If the PS moveout
were symmetric, the offsets for p, and —p, (circles and diamonds, respectively, in
Figure 5) would have identical absolute values but opposite signs, and the zero-offset
PS-ray would have the slowness p, = 0. Figure 5 also confirms that the linearized
equation (19) is sufficiently accurate for weak and moderate anisotropy.

13



0 0.05 0.1 0.15 0.2

F1G. 5. Slowness-domain factor |Ax Ps£ in the symmetry-axis plane of a TTI layer
with the same parameters as those in Figure 2. The solid line marks exact values
of |Azx,| from equation (18), and the dashed line is the weak-anisotropy approxi-
mation (19). Exact PS-wave offsets for positive slownesses p, are marked by circles,
offsets for negative slownesses by diamonds; the offset is considered positive if the
vector x . points in the z,-direction.
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Therefore, an alternative way of estimating z, is to fit a hyperbolic function to the
slowness-dependent factor |Ax,,| and find its intercept for p, = 0. It is interesting
that the coefficient of the quadratic term of the hyperbola (19) is formed by the
same combination of the medium parameters that governs the traveltime asymmetry
factor (14).

Asymmetry factor in the offset domain.—To give an analytic description of
the factor At, [equation (15)] in the offset domain, we expanded the traveltime in a
double Taylor series around the offset i, (see Appendix C). The result is convenient
to represent in terms of the offset z and the azimuth « of the source-receiver line. The
linearized expression (C-14) for At,  contains linear and cubic terms in the offset
and is sufficiently accurate for relatively small offsets.

This approximation can be extended to larger offsets by adapting the approach of
Tsvankin and Thomsen (1994) who developed a highly accurate nonhyperbolic move-
out equation for P-waves by modifying the t2(z?) Taylor series in such a way that
it became convergent at z — oo. For long-offset converted PS-waves, the incident
P-wave travels almost horizontally ‘and accounts for most of the total reflection trav-
eltime. The contribution of the S-leg then becomes negligible, and the asymmetry
factor at infinite offset goes to zero. To ensure that At vanishes for z — oo, we
add a denominator (1 4+ Cz?) to the cubic term in equation (C-14):

Ba?
At,, = A$+m, (20)

A _ 210 cOsS

Z(Vp0+Vso)’

4nV3, sin2v cosa ) 5
B = - 2 (Vro + Vao )P 2cos2v cos“a + sin“a |,

B
cC = -3

In the symmetry-axis plane (a« = 0°) the coefficients A and B in equation (20)
become

2130
A=———r———, 21
z (Vpo + Vo) (21)

2 .
B 4nVp, sindv (22)

~ 22 (Vpo + Vo)

The initial slope A of the asymmetry factor for the azimuth « is governed by the
term (zo cos ) that represents the offset Tmin(a) of the local traveltime minimum
[equation (16)]. The higher-order coefficient B depends on the parameter n = ¢ — &
and the tilt v, and, in principle, can be combined with A for the purpose of parameter
estimation. Analysis of equation (20), however, shows that the moveout asymmetry
in the offset domain can be expressed through the asymmetry factor in the slowness
domain described above and the offset i, ().
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F1G. 6. Exact normalized asymmetry factor At in the offset domain [equation (15)].
The data were generated by anisotropic ray tracing for the model from Figure 2. After
the initial increase with offset, the asymmetry decreases for large offsets and goes to
zero for x — oo.

The azimuthally varying asymmetry factor in the offset domain in Figure 6 ex-
hibits a pattern generally similar to that of A¢,; in the slowness domain. The most
rapid change in At,; is observed in the [z, z;]-plane (see also Figure 7), while in
the plane [z,, 23] the PS-wave moveout is symmetric (At,, = 0). The absence of the
moveout asymmetry for acquisition in the z,-direction is predicted by equation (20),
which yields At,; = 0 for & = 90°. Note that, as discussed above, PS-waves recorded
in the [z;, z3]-plane have out-of-plane slowness vectors with p, # 0. Therefore, the
lines z; = 0 in Figure 6 and p, = 0 in Figure 2 correspond to PS arrivals with different
azimuthal orientations of the source-receiver vector.

The error of the weak-anisotropy approximation (20) increases with offset before
flattening out at intermediate x (Figure 7) and eventually going to zero for infinitely
large offsets. Overall, equation (20) gives an adequate qualitative description of the
moveout asymmetry, including a maximum in At (z) at offsets close to the reflector
depth (Figure 7). By design, equation (20) also converges toward the correct value
At,, =0 for z — oo.

PARAMETER ESTIMATION IN A TTI LAYER

The goal of the inversion algorithm introduced here is to estimate the parameters
of a horizontal TTI layer from PP and PS (PSV) reflection events. As emphasized by
Grechka and Tsvankin (2002) and Grechka and Dewangan (2003), effective applica-
tion of the PP+PS=SS method requires acquisition of long-offset (i.e., offsets should
reach at least twice the reflector depth) PP and PS data. If the offset-to-depth ratio
for the recorded arrivals is less than two, the range of offsets for the constructed SS
data is insufficient for obtaining a reliable estimate of the S-wave stacking velocity.

The numerical tests below prove that for a wide range of the tilt angles v of
the symmetry axis the inversion can be performed using 2-D data in the symmetry-
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FiG. 7. Asymmetry factor from Figure 6 in the symmetry-axis plane z, = 0. The
solid line is the ray-tracing result; the dashed line is the weak-anisotropy approxima-
tion (20). Also marked is the offset 29 = Zpyin(a@ = 0°) of the traveltime minimum.

axis plane. Full-azimuth acquisition, however, is necessary to find the orientation
of this plane unless it is known, for example, from geological information. Another
possible way to estimate the azimuth of the symmetry-axis plane is by analyzing the
polarization direction of PS-waves at small source-receiver offsets. The azimuthal
variation of reflection moveout of PP- and PS-waves is also needed to perform the
inversion for TTI media with a near-horizontal orientation of the symmetry axis.

Data processing

Conventional hyperbolic velocity analysis of the PP data yields their stacking
velocity (Vamo,p) and zero-offset reflection traveltime (tpg). Then, application of the
PP+PS=SS method to the PP and PS records produces traces of “quasi-shear” waves
that have the kinematics of the pure SS (SVSV) reflections (Grechka and Tsvankin,
2002a; Grechka and Dewangan, 2003). Therefore, processing of the constructed SS
arrivals can be used to estimate the stacking velocity (Vimos) and zero-offset travel-
time (tgp) of the SS-waves that are not physically excited in the survey. If the data
have a wide range of source-receiver azimuths, azimuthal velocity analysis can be
applied to obtain the NMO ellipses of the PP- and SS-waves (Grechka and Tsvankin,
1998; Grechka et al., 2002a).

The above methodology, described in detail by Grechka et al. (2002a), is designed
to avoid complications associated with the processing of mode-converted waves. For
some anisotropic models, the combination of PP- and SS-waves is sufficient to estimate
the medium parameters without additional information. For TTI media, however, the
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inversion of PP- and SS-waves is feasible only for substantial reflector dips or near-
horizontal orientations of the symmetry axis (Grechka et al., 2002a).

Here, we supplement the moveouts of the PP-waves and constructed SS-waves
in parameter estimation with the PS-wave asymmetry attributes obtained from the
PP+PS=SS method. For laterally homogeneous media, the traveltime asymmetry
At (¥, 2¥) produced by the PP+PS=SS method [equation (4)] coincides the
asymmetry factor defined in the slowness domain [equation (11)]. Another reason
to work with the asymmetry attributes in the slowness domain is the relative sim-
plicity of the corresponding analytic expressions.

The offset zpi,(a = 0) of the PS-wave traveltime minimum in the symmetry-
axis plane [r;,z3] can also be obtained from the PP+PS=SS method. As shown
by Tsvankin and Grechka (2000) and Tsvankin (2001, Appendix 5B), the traveltime
minimum of any reflected wave in CMP geometry corresponds to the ray with equal
projections of the slowness vector onto the CMP line at the source and receiver
locations (both legs of the ray have to be treated as upgoing waves). Applying this
result to the symmetry-axis plane of a horizontal TTI layer where the slowness vector
cannot have out-of-plane components, we find that the horizontal slowness at the
traveltime minimum has to go to zero. Then, for both PP-waves and the constructed
SS-waves the horizontal slowness has to vanish at zero offset (an obvious result for
pure modes), while for PS-waves it vanishes at the offset z,;,(0) = zp. Since the
PS- and PP-waves with the same reflection point have identical absolute values of
the horizontal slowness (Figure 1), the PS ray at the offset z, is generated by the
zero-offset P-wave that corresponds to the stationary point z, = z,.

Another way to estimate z is to pick the offsets (along with the traveltimes) of the
two PS-waves corresponding to the same reflection point for a range of the slownesses
p, and build the function |Az,.(p,)| [equation (18)]. This function can then be
approximated with a hyperbola whose apex yields the value of z, [equation (19)].
The main advantage of this approach is in using multiple data points, which may
help to obtain more stable estimates of x, for noisy data.

Inversion algorithm

We assume that the azimuth of the symmetry-axis plane was established, for
example, from azimuthally varying moveout of pure modes. The general expression
of the NMO ellipse has the following form (Grechka and Tsvankin, 1998):

V.2 () = Wy cos® a + 2 Wypsinacos a + Wy sin® ar (23)
where Wj; = 700p, /0z; (1,5 = 1,2), 1o = to/2 is the one-way zero-offset traveltime,
and p, and p, are the horizontal slowness components for one-way rays from the

zero-offset reflection point to the surface; all derivatives are evaluated at the CMP
location. For a homogeneous horizontal layer, the matrix W can be represented as
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(Grechka et al., 1999)

W = —q - ( q,22 Q,12>’ (24)
gu1g22 — Q12 \ —912 41

where g = q(p,,p,) is the vertical slowness and q;; = 0%q/(9p,0p,)- As mentioned
above, the slowness vector of the zero-offset ray for a horizontal layer is vertical, so
the derivatives are computed for p, = p, = 0.

If the medium has a vertical symmetry plane, one of the axes of the NMO ellipse
is parallel to the symmetry-plane direction (Grechka and Tsvankin, 1998). For a
TTI layer with the symmetry axis confined to the [z, z3]-plane, the terms g ;2 and
Wie [equation (24)] vanish, while Wi; and W, define the semiaxes of the NMO
ellipse (23). Therefore, the orientation of the NMO ellipse of the recorded PP-waves
or the constructed SS-waves can be used to find the azimuth of the symmetry-axis
plane [z, z3).

Then, as described above, the processing of 2-D multicomponent data in the
symmetry-axis plane produces the following data vector d:

d= { Vnmo,P ) tPO ) Vnmo,S ) tSO ) Atps (pl) 0) ) xmin(a = 00) } . (25)

Although At (p,0) denotes multiple measurements of the asymmetry factor for the
available range of the horizontal slownesses p,, equation (14) indicates that the move-
out asymmetry in the [z;, z3]-plane may constrain only one combination of the layer
parameters.

Analytic expressions for At,¢(p,,0) and o = Zmin(a = 0°) needed to model these
quantities in the inversion algorithm were introduced in the previous section. The
NMO velocities Vymop and Vimos in the ;-direction (a = 0°) can be computed from
equation (24) with g2 = 0:

Voo——t___ 4 (26)

VWi qu

The model vector m includes the following parameters of the T'TI layer:
mE{Vpo,VSQ,E,6,V,Z}. (27)

Thus, six or more [if At,(p,,0) constrains more than one parameter| independent
measurements [equation (25)] are controlled by the six model parameters in equa-
tion (27). To estimate the vector m, we applied nonlinear inversion (the Gauss-
Newton method) based on exact equations for all components of the data vector (25).
The misfit (objective) function minimized by the inversion algorithm is defined as

Foo o, Vemse —VimspP | (Visss — Vi) | im0
(Ve )? (Vomss)? (R~
2
b o BB SRAGE - Atme)’ (gl — ey
(£55™)? (5 Atpg)? @F=p
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where p denotes the maximum value of the horizontal slowness p,. The weighting
coefficients w; were generally set to unity. We observed, however, that assigning
substantially larger weights to the asymmetry attributes typically leads to a faster
convergence of the algorithm.

Since the exact equations for the model parameters are nonlinear and the misfit
function contains local minima, selection of the starting model may have a significant
influence on the performance of the algorithm. We based the initial guesses for the
vertical velocities and anisotropic coefficients on the isotropic relationships,

VPo = Vamo,p » V50 = Vamos, €=0,8 =0, 2 = Vimop tro/2. (29)

Our numerical tests show that if the starting model is isotropic [equation (29)] and
the initial tilt v is set to 0° or 90°, the algorithm either does not converge toward
the correct solution or the convergence is extremely slow. This happens because the
initial values of the partial derivatives of the objective function (28) with respect to
several model parameters go to zero. The convergence can be significantly improved
by keeping the initial ¢ = § = 0 but starting with an intermediate tilt v that is as
close as possible to the actual value. For example, if the anisotropy is known to be
caused by subvertical fractures, a good choice of the initial tilt is ¥ = 70 — 80°.

Numerical examples

We evaluated the uniqueness and stability of the inversion was evaluated by ap-
plying the algorithm to noise-contaminated input data. We analyzed a representative
set of TTI models with a wide range of the tilt angles v of the symmetry axis.

Models with tilt v > 60°.—TTI models with a significant tilt of the symmetry
axis can be considered typical for dipping fracture sets because fracture planes seldom
deviate far from the vertical (Angerer et al., 2002). For a system of vertical penny-
shaped cracks in isotropic host rock, the symmetry axis is horizontal (v = 90°), and
the medium becomes HTI.

The tilt v = 70° of the symmetry axis in Figure 8 is quite favorable for the
inversion based on the moveout asymmetry attributes of PS-waves. Here and in the
other examples below, the data vector d [equation (25)] was generated using the exact
equations and contaminated by Gaussian noise. The inversion was carried out for 100
realizations of the input data, which allowed us to compute the standard deviations
of the estimated parameters. The initial guess was based on equation (29), with the
tilt picked randomly from the interval 50° — 85°. The model vector m [equation (27)]
was estimated by minimizing the objective function specified in equation (28), as
discussed in the previous section.

Figure 8 indicates that the inversion results are unbiased, and the noise is not
amplified by the parameter-estimation procedure. The standard deviations are close
to 0.02 for € and &, 1% for Vpg, 2% for Vo and z, and 1° for v. The best-constrained
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FIG. 8. Inverted parameters (dots) of a horizontal TTI layer obtained from 2-D PP
and PS data in the symmetry-axis plane. The correct model parameters (Vpo = 4
km/s, Vso = 2km/s, € = 0.25, 6 = 0.1, v = 70°, z = 1 km) are marked by the crosses.
The dashed line on the [e, ] plot corresponds to the correct value of the difference
(€ — 0). The input data were contaminated by Gaussian noise with the standard

deviations of 2% for the NMO velocities, 0.5% for the zero-offset traveltimes, and 2%
for the PS-wave asymmetry attributes.

parameter combination is the difference (¢ — J), which controls the asymmetry factor
in the slowness domain [equations (13) and (14)] and has a stiong i1fluence on the
NMO velocity of the constructed SS-waves. Although the traveltimes of the PP- and
PS-waves in the symmetry-axis plane are sufficient for estimating all relevant TTI
parameters, the addition of wide-azimuth data increases the accuracy of the inversion
in the presence of noise.

It should be emphasized that the parameter estimation is feasible only if the asym-
metry information of the PS-wave is included in the inversion algorithm. The offset
o of the PS-wave moveout minimum for the model from Figure 8 reaches about 1 /3
of the depth =, and the asymmetry factor At,s for the offset x = 2z is about 15%
of the zero-offset PS traveltime. Such a large magnitude of the traveltime asymme-
try helps to constrain the tilt of the symmetry axis and the anisotropic coefficients.
Without the asymmetry information the inversion becomes unstable, even if the 2-D
data in the vertical symmetry plane are supplemented with the NMO ellipses of the
PP- and SS-waves (Grechka and Tsvankin, 2000; Grechka et. al., 2002a).

Since the traveltime asymmetry is estimated from the relatively small difference
of two time measurements, it is important to evaluate the sensitivity of the inversion
results to larger errors in the PS-wave asymmetry attributes. For the test in Figure 9
the standard deviations of At,; and zo were increased from 2% to 4% (also, the
deviations of the zero-offset times were increased to 1%). Despite the somewhat
higher scatter of the inverted parameters, the standard deviations do not exceed 0.03
for € and ¢, 2% for Vg, 3% for Vs and z, and 1° for v. Clearly. the inversion remains
sufficiently stable for realistic levels of distortions in the asymmetry attributes. In all
numerical tests discussed below, the standard deviations of the noise were fixed at
the values used in Figure 8.
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Fi1G. 9. Same as Figure 8, but the standard deviations of the Gaussian noise are
increased to 1% for the zero-offset traveltimes and 4% for the asymmetry attributes
of PS-waves (the standard deviations for the NMO velocities remain unchanged at

2%).
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F1G. 10. Inversion results for a model with the same parameters as those in Figure 8
except for the tilt v = 85°. The standard deviations of Gaussian noise here and below
are t 2% for the NMO velocities, 0.5% for the zero-offset traveltimes, and 2% for the
PS-wave asymmetry attributes.

For HTI media (v = 90°) the PS-wave moveout is symmetric, and the 2-D inver-
sion in the symmetry-axis plane cannot constrain the medium parameters. However,
as illustrated by Figure 10, even a small (5°) deviation of the symmetry axis from
the horizontal plane creates a measurable moveout asymmetry. For the model from
Figure 10, the offset zmi, is close to 11% of the depth 2, and the factor At  reaches
about 4% of the zero-offset PS traveltime for x = 2z. Although the magnitude of the
asymmetry attributes is not large, it proved to be sufficient for stable 2-D parameter

estimation. The standard deviations do not exceed 0.02 for € and d, 2% for Vpo, Vso,
and z, and 1° for v.

Models with intermediate tilt.—The moveout asymmetry factor in the slow-
ness domain is small not only for near-vertical and near-horizontal orientations of
the symmetry axis. but also for tilts v close to 45° [equation (14)]. The model of a
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FIG. 11. Inversion results for a model with the same parameters as those in Figure 8
except for the tilt v = 50°.
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FIG. 12. Same as Figure 11, but the inversion algorithm is modified to avoid local
minima.

horizontal TTI layer with 35° < v < 55° can be used to describe reflections from a
horizontal interface beneath dipping shale layers in fold-and-thrust belts, such as the
Canadian Foothills (e.g., Isaac and Lawton, 1999).

Figure 11 helps to assess the feasibility of the inversion for a tilt of 50°. Although
the asymmetry in the offset domain for intermediate tilts is substantial (zo is about
34% of z), the inverted parameters are biased and exhibit significant scatter. Analysis
of the inversion results shows that many estimated models correspond to local minima
of the objective (misfit) function and do not fit the input data within the noise level.

The problem with local minima was addressed by modifying the inversion algo-
rithm. If the search stops at a minimum where the model does not fit the data within
the standard deviation of the noise (2% for the NMO velocities and the asymmetry
attributes and 0.5% for the zero-offset traveltimes), then the model is perturbed to
resume the search from a different point in the parameter space. Figure 12 shows
that if the algorithm does not get trapped in local minima, the inversion results for

v = 50° become quite stable, with the standard deviations comparable to those for
v = 70° (Figure 8).
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F1G. 13. Inversion results for a model with the same parameters as those in Figure 8
except for the tilt v = 20°.
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F1G. 14. Inversion results for a model with the same parameters as those in Figure 8
except for the tilt v = 5°.

Models with mild tilt.—For completeness, here we discuss the parameter-
estimation results for mild tilts v. While such models are not plausible if the aniso-
tropy is caused by dipping fractures, they may be adequate for effective TTI models
formed by progradational sequences (e.g., Sarg and Schuelke, 2003).

The scatter in the inversion results for a tilt of 20° is slightly higher than that
for large tilts, but the standard deviations are less than 0.03 for € and 8, 3% for Vi,
Vso and z, and 2° for v (Figure 13). As expected, the parameter estimation breaks
down as the model approaches VTI, and the tilt v becomes smaller than 10°. Not
only do the standard deviations rapidly increase when v — 0°, but the parameter
estimates become noticeably biased. For the model with v = 5° in Figure 14. the bias
is about 0.05 for €, 0.03 for 4, and 4% for Vpo, Vso, and 2. Only the tilt is relatively

well-constrained by the data because of the sensitivity of the asymmetry attributes
to v.

Elliptically anisotropic models.—According to our analytic results, the move-
out asymmetry of PS-waves in the slowness domain vanishes if the medium is ellipti-
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p=(pl,p2,q)

a=(al,0,a3)

%

FiG. A-1. The symmetry axis is defined by the unit vector a confined to the
(1, za)-plane. The slowness vector p has an arbitrary orientation.
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APPENDIX A: APPROXIMATE MOVEOUT ASYMMETRY
FACTOR IN THE SLOWNESS DOMAIN

For a weakly anisotropic TTI layer (le} < 1 and |6] < 1), the asymmetry factor
At in the slowness domain [equations (11) and (5)] can be linearized in the aniso-
tropic coefficients € and 5. Without losing generality, the symmetry axis (unit vector
a) is assumed to lie in the coordinate plane [z1,z3} (Figure A-1):

a = [a,,0,a3) = [sinv, 0,cos v, (A-1)

where v is the tilt of the symmetry axis from the vertical direction.

To obtain the vertical slowness g as a function of the horizontal slowness compo-
nents p, and p, for both legs of the PS reflected ray, we use the approach suggested
by Grechka and Tsvankin (2000, Appendix B). The component g can be represented
as the sum of the isotropic value g and the anisotropy-induced correction term Ag:

g=p, =q+Ag. (A-2)

For P-waves in an isotropic medium with the velocity Vpo, the vertical slowness

is given by
1
Y . A-3
q Vlgo 1 p2 ( )

In the weak-anisotropy approximation Ag can be treated as the linear term in a
Taylor series expansion of ¢ in € and ¢ for fixed horizontal slownesses p, and p,:

1 oF oF
i il A-4
B Bf/0q<c)'e€+05 6)’ (A-4)
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where F(q, p,, p,, Vro, Vso0, €, 0, v) = 0 is the Christoffel equation for P- and SV-waves
in TTI media.

Next, we obtain the partial derivatives g, = 0q/0p; (i = 1,2) for the P-wave,
substitute them into equations (7) and then (11), and carry out further linearization
using symbolic software Mathematica. The weak-anisotropy approximation for the
contribution of the P-leg of the PS-wave to the asymmetry factor has the form

At, =42z(8 — €)p, V3 sin2v [p? + (2p? + p?) cos 2v]. (A-5)

The linearized asymmetry contribution of the S-leg can be found from the P-wave
equation (A-5) by using the following general transformation rule (Tsvankin, 2001,
p. 26):

VPO_’VSM 6_')07 6_')0';

_ Y&
g = "75% (6 - (S) .
Taking into account that the asymmetry for the S-leg of a given PS-ray has to be
computed for the opposite sign of the horizontal slowness [so p, in equation (A-5) has
to be replaced with —p,, and p, with —p,], we find

Aty = —4z (e — &) p, V3, sin2v [p? + (2p* + p?) cos 2v] = At . (A-6)

APPENDIX B: AZIMUTHAL VARIATION OF THE OFFSET XN

The slope dt/dx of the CMP moveout curve for any pure or converted reflection
mode is determined by the difference between the projections onto the CMP line of
the slowness vectors at the source and receiver locations® (Tsvankin and Grechka,
2000; Tsvankin, 2001, Appendix 5B). This general result, which is valid for any
heterogeneous, anisotropic medium, can be used to find the offset zy, of the PS-
wave traveltime minimum where the moveout slope goes to zero. For a horizontal,
laterally homogeneous layer, the horizontal slowness has the same absolute value for
both legs of the reflected ray, and the slope can vanish only for a ray with the slowness
vector orthogonal to the CMP line.

Suppose p, is the projection of the slowness vector onto the CMP line that makes
the angle « with the x,-axis, and p, is the slowness projection onto the orthogonal
(a + 90°) direction. The offset rpmin(a) then corresponds to the PS ray for which
P = 0. Rotating the slowness vector by the angle « in the horizontal plane vields

P, = Do COSQ@ — P SiDC, (B-1)

P, = Da Sina + p; cOSCr. (B-2)

2In this formulation both legs of the reflected ray are treated as upgoing waves.
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The offset z can be parametrically represented as [equations (8) and (9)]

T = Z\/(Q,lp - ‘1,15)2 + (q,zp - q,zs)2 . (B-3)

To find min from equation (B-3), the derivatives g, = 8q/8p; (i = 1,2), which are
derived for weakly anisotropic TTI media in Appendix A, have to be evaluated for
Pa = 0. '

Substituting g, from Appendix A into equation (B-3) and further linearizing the
result in € and 4 produces z as a function of p, and p,, which can be replaced by p,
and p; using equations (B-1) and (B-2). The component p, is then set to zero, while
P can be found from equation (10) for the azimuth . Linearizing equation (10) and
using equations (B-1) and (B-2) with p, = 0 allows us to obtain p,:

__ Zpsina
= Voo — Vo’
where zo = z,i,(a = 0°) is the value of Zp;, in the symmetry-axis plane.

(B-4)

Since the slowness vectors of reflected rays propagating in the symmetry-axis plane
cannot have out-of-plane components, the offset z, corresponds to the ray with the
vertical slowness vector (po = p; = p, = p, = 0). Evaluating z from equation (B-3)
with p, = p, = 0 gives

2
o=z esin21/—l(e—6) (1+V—I;°> sin4z/] . (B-5)
2 V&,
Finally, we substitute p, = 0 and p, from equations (B-4) and (B-5) into equation (B-
3) to obtain the following expression for the azimuthally varying offset of the moveout
minimum:
ZTmin(@) = Zo cosa. (B-6)

APPENDIX C: APPROXIMATE MOVEOUT ASYMMETRY
FACTOR IN THE OFFSET DOMAIN

To describe the moveout asymmetry in the offset domain defined in equation (15),
we express the PS traveltime through the components z; and z, of the PS-wave offset
veetor s [equation (8)]. An approximation for the asymmetry factor in a horizontal
TTI layer can be found by expanding the traveltime ¢(z,, z;) in a double Taylor series
in the vicinity of the offset (z¢,0) of the moveout minimum [equation (B-5)]:

t(zy,z2) = t(zo,0) + aa_xtl (1 — xo) + 0—6;2- Lo
+ %%(ml—mo)2+%g—;§$§+a—2372($1—$0)$2
+ %%(121—170)3‘*‘%3—:;133
N %%(xl_xo)zxﬁ%%‘;ﬁ(xl—xo)xgjL.... (C-1)
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The traveltime derivatives in equation (C-1) should be evaluated at (z, = zq, 2 = 0).
Note that the first derivatives 0t/dz; and 0t/0z, at (xo,0) are equal to zero.

The moveout asymmetry factor in the offset domain can be found from equa-
tion (C-1) as

AtPs(x17x2) = tps(xl,z'g)—tps(—xl, _.;;2)
9%t o%t 1 8%
= —26—3:%1611170—2613 $2$0+363(zl+3w1x0)
&t ot 18% .
o [a 75, 0 T ) F 5 pm Mt 35 02 (C-2)

Since [z, 73] is a plane of symmetry, At (z1,2) has to be an even function of z,:
Atps (:1:1, 2?2) = At,,s(:z:l, —.'122) . (C-3)
Therefore, equation (C-2) should not contain terms linear and cubic in z,, and

0%t &%t »*t
0z.0z, 0130z, 013 0. (C-4)

The second- and third-order derivatives in equation (C-2) are convenient to represent
in terms of the slowness components of the ray with p, = p, = 0 that corresponds
to the offset zy (see Appendix B). The time slopes 0t/0z; (¢ = 1,2) can be expressed
through the the horizontal slownesses p, and p, of the PS-wave using the results of
Tsvankin (2001, Appendix 5B):

ot

5 =~ =12). (C-5)

Differentiating 6t/dz, from equation (C-5) with respect to z; and using equation (8)
yields

O S
ax% N Jz, 01, B 3(1:1/3171 z(q,lP,lP - q,lS.lS)

) (C-G)
where q ... = 0%q,/(9p;0p;) and q ¢ .s = 0%q5/(0p;Op;).

The third-order derivatives of the traveltime ¢ needed in equation (C-2) can be
obtained in a similar fashion:

P9 (1 \_ o ( -1\ (m
or} 0z, \0x,/0py) Op1 \9z1/9p1 ) \ Oz,

0 -1 3172) 9ipapar — Qisisus
+ 2 = Lirar, SEAESERY c-7
ap? (0231/3])1) (aml z? (q.lP.lP - (1,15.13)3 ( )
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63t _ 0 ~1 _ i -1 3p1
8:1:16:1:3 N a(l,’l Bzg/apz - 6p1 6.’132/8})2 6:1:1

+ oo () (32)
Opa \ Oz, /0p, oz, )

— 92p2p,1pP "'q.zs.zs.w (C-S)
22 (q,2P.2P - q,zs,zs)2 (q.lP,lP - q,lS,lS)

Here 9ipipkp = 63‘1?/ (apjapiapk)v Q;sisks = a3qs/ (apjapiapk)’ and the derivative
(Op2/0z,) vanishes because p, = 0 on the z,-axis.

Using the linearized derivatives of the vertical slowness g [equation (A-2)] from
Appendix A leads to

2
a—i -2 {Vpo (2+ 6+ €+ 2ecos 2v + 3(§ — €) cos 4] (C-9)
3271 pA
-1
+ Vso(2+ 0 +30cos 41/)} , (C-10)
&t 12(e — 6) V3, sindv
2= = -11
8.'1:"{' 2,'2 (Vpo + V50)3 ! (C 1 )
0%t 4(e — ) Vi, sin2v
— " = - -12
0z,013 2% (Vpo + V)3 (C-12)

Substituting equations (C-9)-(C-12) into equation (C-2) and further linearizing
the result, we obtain the asymmetry factor as

_ 2z, 10 4(e — ) V3, sindv 43
P 2(Veo + Vo) 22 (Vpo + V)3 71
(e - d) Viysin2v
. -13
22 (Vpo + V)3 172 (C-13)

At

Finally, equation (C-13) can be rewritten in terms of the offset z and the azimuth o
of the source-receiver line (z; = rcosa, z; = rsin a):

2T Ty COS 4(e — 8) V3, sindv .
At . - - 3cos® o
ps (@) z(Vpo + Vo) 22 (Vg + Viso)® *
de—0)Viysin2v g
- r3cosa sin?a,
22 (Vpo + Vso)?
or
Aty (z,0) = 2Tz COS

2 (Vo + Vo)

42% (e — 9) V3, sin 2v cos o ( ) )
- 2cos2v cos® a + sin®a ). (C-14
22 (Vo + Vao)? (C-14)
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