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ABSTRACT

Oil, gas, and geothermal reservoirs, and overlying strata are often composed of aniso-
tropic rocks. Proper treatment of anisotropy during the processing of seismic data not
only helps to avoid distortions in reservoir imaging, but also provides estimates of the
anisotropic coeflicients, which carry valuable information about lithology and fracture
networks. Accurate estimation of the velocity model is one of the most difficult steps

in imaging of seismic data from anisotropic media.

Here, I introduce a velocity-analysis method for anisotropic models that can be called
stacking-velocity tomography. This technique is designed to invert normal-moveout
(NMO) ellipses, zero-offset traveltimes, and reflection time slopes of P- and S-waves
for interval anisotropic parameters and shapes of reflection interfaces. Examination
of a wide range of anisotropic models makes it possible to establish the conditions

needed for stable parameter estimation.

Results here show that, in many cases, it is possible to build anisotropic velocity
models from azimuthally-varying hyperbolic moveouts of P- and S-waves alone. For
example, the inversion of P-wave NMO velocities makes it possible to estimate the an-
isotropic parameters of a physical model that includes a bending transversely isotropic
(TT) layer with a tilted symmetry axis. However, there are some notable exceptions
such as horizontally layered orthorhombic and TI media with vertical axis of sym-
metry, for which anisotropic parameter estimation requires independent knowledge of
the vertical velocities or reflector depth.
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I also present a general analytic expression for the quartic moveout coefficient A4 that
is responsible for the magnitude of nonhyperbolic moveout of pure (non-converted)
modes. This expression takes into account reflection-point dispersal on irregular
interfaces and is valid for arbitrarily anisotropic, heterogeneous media. All quantities
needed to compute A4 can be evaluated during the tracing of a single (zero-offset) ray,
so long-spread moveout can be modeled without time-consuming multi-offset, multi-
azimuth ray tracing. Analysis of the azimuthal dependence of A4 for tilted TT media
shows that P-wave nonhyperbolic moveout can help to constrain the orientation of

the symmetry axis.
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Chapter 1

INTRODUCTION

Proper treatment of vertical transverse isotropy (VTI), the most commonly used an-
isotropic model for sedimentary basins, can be important in velocity analysis and
imaging of reflection data. The kinematics of P-waves in VTI media is controlled
by the vertical velocity Vpo and Thomsen’s (1986) anisotropic coefficients € and ¢
(Tsvankin, 1996); the parameter § governs the kinematics of P-waves near the sym-
metry axis, and the parameter e controls P-wave propagation away from the symme-
try axis. Estimation of these parameters from reflection data is a major problem in

building accurate velocity models for seismic imaging.

Inversion of P-wave data in VTI media has been addressed in a number of recent
publications, including Bube and Meadows (1997), Grechka and Tsvankin (1998a),
Bartel et al. (1998), Le Stunff and Grenié (1998), Le Stunff and Jeannot (1998), and
Sexton and Williamson (1998). Time-domain imaging for vertical transverse isotropy
is largely based on the result of Alkhalifah and Tsvankin (1995), who proved that
P-wave reflection traveltimes in laterally homogeneous VTI media above a dipping
interface depend on just two parameters — the normal-moveout (NMO) velocity from

a horizontal (zero-dip) reflector,

Vamo(0) = Vo V1 + 23, (1.0.1)



and the anellipticity coeflicient,

(1.0.2)

Whereas Vj;m0(0) and 7 provide enough information for time processing, they are
insufficient for resolving the vertical velocity Vpy and reflector depth. Therefore,
surface P-wave data do not constrain the depth scale in VTI media, needed, for

example, in prestack depth migration.

The two-parameter description of P-wave time-domain signatures, however, breaks
down in the presence of lateral heterogeneity above the reflector (Alkhalifah et al., 1998;
Grechka and Tsvankin, 1999b). Grechka and Tsvankin (2002a) developed a Dix-type
averaging procedure for NMO velocities in laterally heterogeneous anisotropic me-
dia and applied it to moveout analysis for vertical transverse isotropy. Their results
show that the NMO velocity of reflected P-arrivals that cross dipping intermediate
interfaces depends on the individual values of Vpg, ¢, and 9, rather than just on the
combinations V;no(0) and 7. Le Stunff et al. (2001) presented an example of suc-
cessful inversion of P-wave traveltimes for the parameters Vpg, ¢, and 4 in a model
that included a dipping V'TT layer overlying a purely isotropic medium. The inver-
sion becomes much better constrained if P-waves are combined with S- or PS-waves.
Here, I develop a methodology for velocity analysis of combined P- and S-wave data

in laterally heterogeneous anisotropic media.

Chapter 2 introduces stacking-velocity tomography for P-wave data in VTI models
composed of homogeneous layers separated by plane dipping interfaces. The anal-
ysis shows that 3-D wide-azimuth P-wave moveout data from N non-intersecting

interfaces constrain up to 3N — 1 combinations of the interval parameters Vpg,, €n,



0n, where n = 1, ..., N. Hence, to determine the interval values Vpg,, €,, and 4,
uniquely and reconstruct the model in depth, at least one of the parameters has to
be known a priori. The inversion is generally better posed if the subsurface contains

faults or if the interfaces are curved (but the layers are still homogeneous).

Chapter 3 includes an extension of the theory of NMO-velocity surfaces (Grechka and
Tsvankin, 1998b) to anisotropic media with irregular interfaces. I employ singular
value decomposition and actual inversion (stacking-velocity tomography) of P-wave
reflection data to show that, for some VTI models with smooth curved interfaces,
parameter estimation in depth using P-wave traveltimes can be accomplished without

any a prior: information.

Chapter 4 extends the anisotropic velocity analysis to multicomponent data. A num-
ber of previous case studies involving multicomponent land and offshore data demon-
strated that mode (P-to-S) conversions can supplement or even replace pure-mode
reflections in such applications as imaging beneath gas clouds (e.g., Granli et al., 1999;
Thomsen, 1999) and characterization of fractured reservoirs (e.g., Pérez et al., 1999).
Processing of PS-waves, however, is complicated by the strong influence of seismic
anisotropy on their signatures. For example, the velocity anisotropy of SV- and

PSV-waves in TI media is controlled mostly by the coeflicient

o= (%’)2 (e —6), (1.0.3)

which is typically much larger than the parameters ¢ and § governing P-wave data
(Vpo and Vg are the vertical P- and S-wave velocities, respectively). Mis-ties between
PP and PS sections routinely produced by conventional isotropic imaging methods

(e.g., Nolte et al., 1999) indicate the need for joint anisotropic velocity analysis of



PP and PS reflection events.

As shown by Tsvankin and Grechka (2000, 2002) for TI media with a vertical sym-
metry axis (VTI), wide-azimuth reflection traveltimes of PP - and PSV-waves from
a single mildly dipping reflector are sufficient for estimating all relevant parameters
(Vpo, Vso, €, and §). If the reflector is horizontal, however, joint inversion of PP

and PSV moveout data is nonunique, even if uncommonly long offsets are available

(Grechka and Tsvankin, 2002c).

Chapter 4 introduces the methodology of anisotropic multicomponent stacking-velocity
tomography and describes its application to TI media with an arbitrary tilt of the
symmetry axis. Rather than working with P.S data directly, I combine them with PP
data to compute the traveltimes of the pure SS (SV or SH for TI media) reflections
from the same interface using the algorithm of Grechka and Tsvankin (2002b). The
reconstruction of SS traveltimes is entirely data-driven and does not require precise
knowledge of the velocity model. This procedure makes it possible to avoid inherent
problems of PS-wave velocity analysis caused by the asymmetry of PS moveout with
respect to zero offset on CMP (common-midpoint) and CCP (common-conversion-

point) gathers, conversion-point dispersal, and polarity reversals.

In contrast to the more complicated moveout of mode conversions, reflection trav-
eltime of pure SS-waves is symmetric with respect to zero offset and, for moderate
offset-to-depth ratios, can be described by the NMO ellipse (Grechka and Tsvankin,
1998b). Hence, the theory of the NMO ellipses and NMO-velocity surfaces (Grechka

and Tsvankin, 2002a) is directly applicable to SS-wave moveout.

The tomographic algorithm operates with the NMO ellipses, zero-offset traveltimes,

and reflection slopes (measured on zero-offset time sections) of PP-waves and the



reconstructed SS-waves. I examine a wide range of homogeneous TT models with a
tilted symmetry axis and establish the conditions needed for stable parameter estima-
tion. Then I apply the method to layered TI models to estimate the interval medium

parameters and the shapes of interfaces from multicomponent reflection data.

Chapter 5 discusses anisotropic parameter estimation for a physical model that con-
tains a bending transversely isotropic shale layer with the symmetry axis orthogo-
nal to the layer’s boundaries. This physical model was built by Leslie and Lawton
(1996) to simulate typical reflection data acquired in overthrust areas of the Alberta
Foothills in Canada. Several recent publications demonstrated that the presence of
TTI (transverse isotropy with tilted symmetry axis) formations in overthrust areas
may cause serious problems in imaging of exploration targets. Ignoring the influence
of transverse isotropy and applying conventional velocity-analysis and migration tech-
niques leads to mispositioning of reflectors beneath TTI layers and inferior quality of
seismic sections (Leslie and Lawton, 1996, 1998; Vestrum et al., 1999). Vestrum et
al. (1999) showed on both model and field data that higher-quality images of both
dipping and horizontal features in the overthrust environment are produced by mi-
gration algorithms capable of handling TTI media. The main difficulty, however, is
in evaluating the anisotropic parameters from surface reflection data, especially in
structurally complex areas. Using the general theory of normal moveout in laterally
heterogeneous media developed by Grechka and Tsvankin (2002a), I demonstrate
that P-wave NMO velocities and zero-offset traveltimes can be inverted for the full
set of the anisotropic parameters of the TTI layer. Information about the anisotropic
parameter € is contained in the moveout of a reflected wave that crosses one of the

dipping TI blocks.

Chapter 6 describes an extension of stacking-velocity tomography to more compli-



cated orthorhombic media believed to be typical for naturally fractured oil and gas
reservoirs (Schoenberg and Helbig, 1997; Bakulin et al., 2000). Wide-azimuth re-
flection traveltimes of PP-waves and two split converted waves (PS; and PS,) are
shown to be sufficient for constraining the anisotropic parameters for a relatively wide
range of orthorhombic models. First, I establish the conditions needed to estimate
the vertical velocities and Tsvankin’s (1997c) anisotropic coefficients of a single dip-
ping orthorhombic layer and, therefore, fully reconstruct this model in the depth do-
main. Then, I proceed with parameter estimation for orthorhombic media composed
of multiple homogeneous layers separated by plane or curved interfaces. Numerical
tests indicate that although for a certain class of such layered models the inversion
of multicomponent data is theoretically possible, it may not be sufficiently stable. A
priori constraints on the vertical velocities help to reduce the errors in the estimated

anisotropic coeflicients.

Chapter 7 is devoted to an analytic description of P-wave long-spread moveout in TI
media with an arbitrary orientation of the symmetry axis. In conventional seismic
data processing, reflection moveout of pure modes is typically assumed to be hyper-
bolic, at least for spreadlengths not exceeding reflector depth. However, the presence
of heterogeneity (either lateral or vertical) or anisotropy causes deviations from hy-
perbolic moveout that sometimes cannot be ignored even for offsets-to-depth ratios
smaller than unity (e.g., Al-Dajani and Tsvankin, 1998). Insufficient understanding
of nonhyperbolic moveout and practical difficulties in analyzing long-offset data often
force seismic processors to mute out the nonhyperbolic portion of the moveout curve.
Long-spread moveout, however, has proved to be useful in a number of applications,
such as anisotropic parameter estimation, suppression of multiples, and large-angle

AVO analysis.



A detailed overview of existing results on nonhyperbolic moveout analysis in aniso-
tropic media can be found in Tsvankin (2001). Most earlier work on the contribution
of anisotropy to long-spread moveout (e.g., Hake et al., 1984; Byun and Corrigan,
1990; Muir et al., 1993) is restricted to transversely isotropic models with a vertical
symmetry axis (VTI). Tsvankin and Thomsen (1994) developed a general nonhyper-
bolic moveout equation based on the normal-moveout (NMO) velocity Vymo and the
quartic moveout coefficient A, of the t2(z?)—function. In contrast to the conventional
Taylor series, the Tsvankin-Thomsen equation converges at offsets approaching infin-
ity, which ensures its high accuracy in the intermediate offset range (i.e., for offsets
two to three times the reflector depth) important in reflection seismology. A partic-
ularly convenient form of this equation for P-waves in VTI media was suggested by
Alkhalifah and Tsvankin (1995). The equation of Alkhalifah and Tsvankin (1995) has
been widely used for estimating the parameter n from P-wave long-spread traveltimes

(e.g., Alkhalifah, 1997; Toldi et al., 1999).

The behavior of nonhyperbolic moveout becomes much more complicated if the
medium is azimuthally anisotropic. Al-Dajani and Tsvankin (1998) derived the quar-
tic moveout coefficient for TI media with a horizontal symmetry axis (HTI) and
extended the Tsvankin-Thomsen equation to horizontally layered HTI media. A dif-
ferent method based on spherical harmonics was employed by Sayers and Ebrom
(1997) to describe long-spread P-wave moveout in an azimuthally anisotropic layer.

None of these schemes works in the presence of reflection-point dispersal.

Non-vertical symmetry axis creates an azimuthally anisotropic model without a hori-
zontal symmetry plane, where nonhyperbolic moveout is influenced by reflection-point
dispersal. I present analytic expressions for the quartic moveout term for both hori-

zontal and dipping reflectors and study the azimuthal dependence of nonhyperbolic



moveout as a function of reflector dip and symmetry-axis orientation. Strong az-
imuthal variations of nonhyperbolic moveout (e.g., it completely vanishes in certain
azimuthal directions) may be used to constrain anisotropic parameter-estimation al-

gorithms operating with wide-azimuth reflection traveltimes.



Chapter 2

PARAMETER ESTIMATION IN LAYERED VTI MEDIA WITH
PLANE DIPPING INTERFACES

2.1 Analytic background

2.1.1 VTI model and data for inversion

Consider a model composed of N homogeneous VTI layers (some of them may be
isotropic) separated by plane dipping non-intersecting interfaces (Figure 2.1). The
model parameters responsible for P-wave kinematics include the interval vertical ve-
locities Vpyn, anisotropic coefficients €, and d,, and the interface dips ¢,, azimuths
¥n, and depths z,, (for example, under the coordinate origin O). Thus, the model

vector

m = {Vpo, €n; Ons $n, Yy za}, (n=1,..., N) (2.1.1)

is characterized by 6NV independent quantities. It is convenient to split the vector m

into two vectors 1 and i, where 1 contains the layer parameters,

1={Vpon, €n, 0}, (n=1,..., N), (2.1.2)

and i describes the interfaces,
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i={dn, ¥n, za}, (n=1,..., N). (2.1.3)

Clearly, each vector (I and i) has 3N components.

Velocity analysis of 3-D multi-azimuth P-wave data recorded at common midpoints
(CMP) with coordinates Y = [Y], Y5] provides estimates of the one-way zero-offset
reflection traveltimes 79(Y, n) from all interfaces and the corresponding NMO ve-
locities Vymo(), where « is the azimuth. Azimuthally-dependent NMO velocity of
any pure mode is described by an ellipse that can be expressed in terms of the 2 x 2

symmetric matrix W (Grechka and Tsvankin, 1998b):

V-2 (@) = Wipcos® a + 2 Wiy sinacos o + Woy sin® a, (2.1.4)
where
o*r Op;
Wi =719 0| = , i=1,2). 2.1.5
7 7o 8x,3m] v 70 ij v (Z J ) ( )

Here 7(z,, x;) is the one-way traveltime from the zero-offset reflection point to the
location x {z;, z2} at the surface, 7 is the one-way zero-offset traveltime, and p; are
the components of the slowness vector corresponding to the ray recorded at the point

X.

The matrices W(Y, n) can be obtained from azimuthal velocity analysis based on
the hyperbolic moveout equation, parameterized by the NMO ellipse, as described by
Grechka and Tsvankin (1999b). From zero-offset (or stacked) time sections, one can
pick the slopes of the reflection events, thus giving estimates of the ray parameters

p(Y, n) = [p1(Y, n), p2(Y, n)| of the zero-offset ray for reflector n.
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Layer 1

Layer N

zero-offset
ray

F1G. 2.1. Schematic depiction of zero-offset raypaths for a stack of VTI layers
separated by plane dipping interfaces.
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Since the layers in the model are homogeneous and the interfaces are plane (Fig-
ure 2.1), the slowness components p;(Y, n), p2(Y, n) are independent of the CMP

coordinate Y. Taking into account that

87'0 (Y1 TL)

3Y] = pj(n) ) (.7 =1, 2) ) (2'1'6)

we can express the zero-offset traveltimes 79(Y, n) as linear functions of Y}:
T()(Y, n) "——"7’0(0, n)+p1(n)Y1 +p2(n)Y2 (217)

Here 79(O, n) are the traveltimes recorded at the coordinate origin O. Using equa-

tion (2.1.7), the input traveltime data d(Y, n) can be represented as
d(Y, n) = {7'0(0, n), pl(n), pg('l’L), W]l(Y, n), le(Y, n), W22(Y, TI,)}, (218)

wheren=1,..., N.

The feasibility of the inversion for m is controlled by the character of the spatial

variation of the effective NMO ellipses W(Y, n).

2.1.2 Effective NMO ellipse

In the model treated here (Figure 2.1), zero-offset ray trajectories from the same
interface are parallel to each other at different CMP locations Y. As a result, the
interval slownesses, group-velocity vectors, and the matrices W, are independent of
the CMP coordinate Y, whereas the interval traveltimes 7o,(Y) are linear functions

of Y. Therefore, the difference between the NMO ellipses W (O, n) and W(Y, n)
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zero-offset
ray

Fi1a. 2.2. The generalized Dix-type formula averages the intersections of the interval
NMO-velocity cylinders with the model interfaces along the zero-offset raypath.
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measured at points O and Y has a purely geometric nature related to the variations
in the length of the interval ray segments. This suggests that the dependence of
W(Y, n) on Y provides no information about the model parameters not contained
in the NMO ellipses W(O, n). This statement is supported by numerical results

below.

Thus, the data vector (2.1.8) can be written as

d(Y, n) = {d(O, n), Y — O}. (2.1.9)

2.2 Feasibility of parameter estimation

It is clear from equation (2.1.9) that although traveltime data from different common
midpoints may be useful in practice to suppress noise, they give the same information

about the medium parameters as the data vector
d(O, n) = {n(0, n), p(n), W(O, n)} (2.2.10)

at any single CMP. Thus, analyzing the dependence of the vector d(O, n) on the
parameter vector m [equation (2.1.1)] should be sufficient for evaluating the feasibility

of the inversion. For brevity, henceforth the CMP coordinate will be omitted.

For an N-layered VTI model, the vectors d (data) and m (model) contain 6N com-
ponents each. Therefore, the vector m can be obtained from the data d only if all
components of d are independent. Unfortunately, this is not the case for VT media.
The P-wave NMO ellipse W(1) from a dipping reflector overlaid by a homogeneous
VTI medium provides only two equations for the medium parameters because its

orientation is fixed by the reflector azimuth v; (Grechka and Tsvankin, 1998b):
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pa(l) _ Wan(1) = Wi (1) +/[Wae(1) = Wi (D] + 4 WH(1)

pi(1) 2Wis(1) . (2.2.10)

tan ’(pl =

Specifically, the semi-axes of the NMO ellipse in the first layer constrain the zero-
dip NMO velocity Vimo(0) and the anellipticity coefficient . As a result, the data
vector in the top layer contains only five components. Singular-value decomposition
(SVD) analysis performed below shows that this is the only relationship among the

components of the data vector, if all interfaces have different strikes.

The goal of the tomographic algorithm introduced here is to estimate the anisotropic
subsurface model using wide-azimuth measurements of stacking (moveout) veloci-
ties on moderate-length CMP spreads (i.e., spreads close to the reflector depth).
Therefore, this approach can be classified as anisotropic stacking-velocity tomogra-
phy. Although limiting the input data to stacking velocities excludes the far-offset
information from analysis, it has important advantages over conventional tomogra-
phy. First, azimuthally-varying moveout velocity, described by the NMO ellipse, can
be computed by tracing only one zero-offset ray per common midpoint and per re-
flector, which makes anisotropic tomography computationally feasible (Grechka and
Tsvankin, 1999b). Second, even for lower-symmetry systems NMO ellipses can be
described by semi-analytic expressions providing valuable insight into the parameter
combinations constrained by a certain set of input data (e.g., Grechka and Tsvankin,
1999a). Third, stacking-velocity tomography can be performed locally on the horizon-
tal scale of a single CMP gather, and the velocity field can be estimated separately
for relatively small blocks containing several adjacent common midpoints. Within
each block, the layers can be treated as homogeneous, and the interfaces can be ap-
proximated by simple smooth surfaces, such as low-order polynomials. Then global

smoothing can be applied to build the laterally varying anisotropic velocity field and
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reflecting interfaces.

For inversion purposes, it is convenient to split the vector d(O, n) into two parts. For
a given (“trial”) set of the interval VTI parameters 1, [equation (2.1.2)], the observed
values of 75(n) and the horizontal slownesses p;(n), p2(n) can be used to compute
values for the depths, dips, and azimuths of the interfaces i, [equation (2.1.3)]. Indeed,
knowledge of the parameters of the first layer 1; is sufficient for computing the vertical
slowness component from the Christoffel equation and obtaining the slowness vector
p(1). Since the slowness vector of the zero-offset ray is orthogonal to the reflector,
the vector p(1) defines the reflector normal. Then one can find the group-velocity
vector (ray) in the first layer and use the traveltime 79(1) to compute the depth z; of

the first reflector.

Once the first interface has been reconstructed, the slowness vector in the second
layer can be obtained from Snell’s law and used to find the orientation of the second
reflector. The zero-offset traveltime of the reflection from the second interface gives
an estimate of the reflector depth, etc. Continuing this procedure downward yields
the dips, strikes (or azimuths), and depths for all interfaces of the trial model. Clearly,
any errors in the input data or trial layer parameters 1, will distort the computed

interfaces i,.

The best-fit vector of the layer parameters 1, is found by inverting the NMO ellipses
W (n) because the rest of the input data has already been used to determine the
interfaces. Therefore, to study the feasibility of the inversion procedure it is sufficient

to perform SVD analysis of the 3N x 3N matrix of Frechét derivatives

F= . (k,n=1,...,N). (2.2.12)
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Here we assume that the vector i, which specifies the interfaces, is such that the
computed traveltimes and horizontal slowness components for each trial model exactly
match those in the data. We compute the NMO ellipses using the formalism described
in Grechka and Tsvankin (2002a).

Figure 2.3 shows a typical result of SVD analysis of the NMO ellipses with respect to
the parameters 1 = {Vpo 1, €1, 01, Vpo2, €2, 02} in a two-layer model. While the last
singular value is always equal to zero, the other five do not vanish if the azimuths
of the interfaces are different (see the curves marked by squares, diamonds, and
triangles). The presence of two vanishing singular values when the strikes of both
interfaces coincide (the circles in Figure 2.3) is not surprising, because in this case
the axes of the NMO ellipse from the bottom of the model are aligned with the dip
and strike directions (i.e., the model becomes 2-D), and there is one less independent

data component.

The model from Figure 2.3 can be used to support the statement that the inversion
results are independent of the CMP location. Therefore, it is indeed sufficient to
carry out the inversion using the NMO ellipses from all interfaces measured at a

single CMP.

To get a more quantitative assessment of the feasibility of the inversion for the model
from Figure 2.3, we performed a series of SVD analyzes of the matrix W;; for different
values of the dip (¢,) and azimuth (1;) of the first interface. The results, displayed in
Figure 2.4, indicate that it should be possible to estimate five parameter combinations
for any choice of ¢; and v, with the exception of ¥; = 0°, 180° and ¢; = 0°. In
the first two cases, the two reflectors are co-oriented, and the 3-D model becomes

2-D, which reduces the number of equations to four. In the third case (¢, = 0°),
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F1G. 2.3. SVD analysis for a two-layer VTI model with the parameters Vpy; = 2 km/s,
e = 0.15, &; = 0.05, Vpoo = 3 km/s, e = 0.25, do = 0.10. The singular values
are normalized by the greatest one. The interface depths under the CMP location
O =[0,0,0] are 2y = 1 km and 2, = 3 km, the dips ¢; = 40° and ¢, = 20°, and
the azimuth of the bottom interface is 1)y = 0°. The curves correspond to different

azimuths of the intermediate (first) interface: o (¢, = 0°), O (¢, = 30°), O (¢, = 60°)
and A (¢ = 90°).
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the first layer is horizontal, and the NMO ellipse W (1) degenerates into a circle that

constrains just one combination of the medium parameters.

The observations drawn from Figures 2.3 and 2.4 can be extended to an arbitrary
number of VTI layers. The NMO ellipses constrain at a maximum 3N — 1 combi-
nations of the 3N interval parameters {Vpon, €n, 6,} (n =1, ..., N), provided the
model interfaces have different azimuths. Otherwise, P-wave traveltimes contain less
information about the medium. For instance, if the azimuths of all interfaces are iden-
tical, the model degenerates into 2-D, and the NMO ellipses from different reflectors
are co-oriented. Thus, only their semi-axes constrain the layer parameters, and the
number of independent equations reduces to 2IV. In the limiting case of horizontal
layers, the NMO ellipses become circles defined by the N interval zero-dip NMO ve-
locities. Hence, unambiguous inversion is impossible without additional information;

some practical possibilities are discussed below.

2.3 Parameter estimation using a prior: information

2.3.1 Specifying one of the parameters

The results of the previous section suggest that a prior: knowledge of a single layer
parameter may be sufficient to overcome the ambiguity. For example, it might be
possible to estimate the vertical velocity Vpg; in the top layer using a shallow borehole
and then obtain the anisotropic parameters €; and d; from the NMO ellipse W(1).
According to the SVD results, this should be sufficient for estimating the remaining

medium parameters.

To verify this conclusion, we performed several numerical tests, with typical results
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FiG. 2.4. Contours of the fifth eigenvalue (multiplied by 1000) as a function of the
dip ¢; and azimuth 9, of the intermediate interface in a two-layer VTI model. The
parameters Vpg 1, €1, 01, Vpoo, €, 02, 21, 22, ¢2, and 9, are the same as those in
Figure 2.3.
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Fi1aG. 2.5. Zero-offset P-wave rays in the three-layer VTI model from Table 1.

listed in Table 1. We traced reflected rays through a three-layer VT model for nine
CMP locations (Figure 2.5 and Table 1), added Gaussian noise to the computed
NMO velocities and zero-offset traveltimes, and obtained the layer parameters by
least-squares fitting of the NMO ellipses. Although, as discussed above, multiple
common midpoints do not provide new information for the inversion, they help to

stabilize results in the presence of random noise.

To constrain the inversion, the parameter §; = 0.04 was assumed to be known, which
allowed the other parameters to be estimated with good accuracy (Table 1). The er-
rors generally increase with depth, which can be expected from Dix-type algorithms.
The low accuracy for the parameter €3 in the bottom layer is associated with insuffi-

cient angle coverage of the reflected rays.
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Vpo,1 €1 o, Vo2 € o Vo3 €3 d3

b y

(km/s) (km/s) (km/s)
Correct | 1.00 |0.08|0.04 | 2.00 |0.20|0.10| 3.00 |0.10 | 0.05

Inverted | 0.99 |0.09| - 202 10.18(0.09| 296 |0.18|0.07

2 &1 (21 ) b2 (> 23 #3 V3

(km) | (deg) | (deg) | (km) | (deg) | (deg) | (km) | (deg) | (deg)
Correct | 1.00 | 30.0 | -10.0 | 2.00 | 30.0 | 30.0 | 4.00 | 10.0 | 70.0

Inverted | 1.00 | 29.8 | -10.0 | 1.98 | 29.9 | 30.4 | 3.98 | 10.3 | 70.5

Table 1. Comparison of the correct and inverted parameters of a three-layer VTI
model (see Figure 2.5). The standard deviations of Gaussian noise added to the NMO

velocities and zero-offset traveltimes are 2.0% and 0.5%, respectively.

The choice of §; as the known parameter was arbitrary; holding any other interval pa-
rameter at the correct value produces similar quality results. Thus, one can therefore
reconstruct the entire model if the vertical velocity Vpg, or one of the anisotropic
coefficients (¢, or &,) in any layer, is known; in principle, the interval anisotropic
parameter can be obtained from vertical seismic profile (VSP) data or well log data.
In the case of well log data, it is necessary to apply several corrections to the response
of the borehole tools; for instance, we need to take into account the effects caused
by the invasion zone (Peeters et al., 1999). The presence of the invasion zone makes
the parameter estimation from well log data difficult. The inversion procedure also
works well in the special case of isotropy, i.e., when ¢, and 4, are set to zero in one

or more layers.
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Depth (km)

Y, (km)

Fi1G. 2.6. Zero-offset rays in a three-layer VTI model. All interfaces have the same
azimuth ’(/)1 == 'l,bz == 1/)3 =0°.

2.3.2 Specifying vertical velocity in 2-D models

We also examined the case when all interfaces in the three-layer medium discussed
above have the same azimuth. The axes of the NMO ellipses W(1), W(2), and W(3)
in such a model are parallel to the dip and strike directions, so the moveout data
provide only six equations (two semi-axes for each ellipse). With a total of nine
medium parameters (three per layer); thus, three parameters have to be specified in
advance. One possibility, examined in the test from Figure 2.6 and Table 2, is to
assume that the vertical velocities in the model are known, for example, from vertical
seismic profile (VSP) data. We modeled zero-offset traveltimes and NMO ellipses
for several CMP locations distributed along the dip direction (Figure 2.6) and again
performed inversion of noise-contaminated data. With the vertical velocities in each
layer, Vpo1 = 1 km/s, Vpgo = 2 km/s, and Vpg3 = 3 km/s, assumed to be known.
The inverted interval parameters ¢, and 4, are in close agreement with the actual
values (Table 2). Comparable accuracy was achieved in a number of other tests in

which the number of layers and the level of noise were varied.
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VPo,l €1 0 Vo2 €2 02 VP0,3 €3 03

’

(km/s) (km/s) (km/s)
Correct | 1.00 |0.08|0.04 | 2.00 [0.20|0.10| 3.00 |0.10 |0.05

Inverted - 0.08 | 0.04 - 0.19 | 0.10 - 0.08 | 0.05

Table 2. Comparison of the correct and inverted values of parameters for the three-
layer VTI model shown in Figure 2.6. The standard deviations of the Gaussian noise

added to the traveltimes and NMO velocities are 1.0% and 2.0%, respectively.

2.3.3 Specifying a relationship between ¢ and §

Another way to reduce the number of unknowns is to impose an empirical relationship
between € and d, such as those discussed by Ryan-Grigor (1998), in at least one layer.
We found that making € a known function of § [i.e., € = €(d)] generally makes the
parameter estimation unique. Let us assume, for example, that the relation between
the interval ¢, and 4, is linear (6, = k, €,), with the coefficients k,, known a priori.
Figure 2.7 displays the contours of the smallest singular value (the singular values are
all normalized to unity) for a two-layer VTI model in which 6, = k; €; and 2 = ks €,
(in principle, specifying k; alone would be sufficient). Although this singular value was
computed as a function of k; and k-, the axes in Figure 2.7 are labeled in terms of the
anellipticity coefficients 7, = (€, —d,)/(1+24,) (for weak anisotropy, n, =~ €, —d,) to
demonstrate that the only vanishing singular value corresponds to elliptical anisotropy
of the whole model (1, = 7o = 0). If either 7, # 0 or 7, # 0, none of the eigenvalues
goes to zero, and the inversion becomes feasible. This is illustrated by the satisfactory

inversion results for the model with 7; = 7, = 0.05 in Table 3.
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F1G. 2.7. Contours of the smallest singular value (multiplied by 1000) for a two-layer
VTI model. The relevant model parameters are Vpg; = 1 km/s, €; = 0.20, §; = k; €1,
Vpo)g =2 km/s, €y — 020, (52 = k262, ¢1 = 300, 'l,bl = 300, ¢2 = 500, ’(/)2 = Oo,
z1 = 1 km, 2o = 3 km. The coefficients k; and ks vary from 0 to 1.1.
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Vo1 €1 VP0,2 €2

(km/s) (km/s)
Correct 1.00 [0.20| 2.00 |0.20

Inverted 0.98 |0.18 1.98 0.17

Table 3. Comparison of the correct and inverted values of parameters for the two-
layer VTI model from Figure 2.7. k; and k, are such that 7, = 7o = 0.05. NMO
velocities, computed at 200 CMP locations, were contaminated by Gaussian noise

with a standard deviation of 2%.

One special case when this approach does not help is elliptical anisotropy. Even if all
layers are known to be elliptically anisotropic (k, = 1, €, = d,), and the number of
relevant VTI parameters reduces to 2N, the 3N — 1 equations for the NMO ellipses
do not have a unique solution. This conclusion is in agreement with the results of
Dellinger and Muir (1988) obtained using linear transformations (stretching) of the

isotropic wave equation.

2.4 Models with curved interfaces or faults

A priori information may not be needed at all for models with nonplanar reflectors
in some of the layers. Variable reflector dip causes reflected rays to span more spatial
directions, which helps to constrain the anisotropic velocity model. While media with
irregular interfaces are discussed in detail in Chapter 3, here we show how additional

dips can remove the nonuniqueness in the parameter estimation.

Suppose, for example, that the intermediate interface in the two-layer VTI model from
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Figure 2.3 is bent in such a way that it has two plane portions with the same dip ¢, =
40° but different azimuths ¢, = 30° and ; = 90°. Recording reflections, from the
bottom of the model, that cross both portions of the intermediate interface yields an
additional NMO ellipse (i.e., three more equations). The absence of vanishing singular
values for this problem (Figure 2.8; the smallest singular value is 0.02) indicates
that all parameters can be resolved uniquely. Here all the layers are assumed to be

homogeneous.

Parameter estimation may also become feasible if the model contains a dipping fault
plane (such as in Figure 2.9) and the data include reflections from both the fault and
layer boundaries. A similar model was used by Alkhalifah and Tsvankin (1995), who
developed a dip-moveout inversion method to estimate the interval values of 1 from
surface P-wave data. Alkhalifah and Tsvankin (1995), however, assumed that each

zero-offset reflected ray crosses only horizontal interfaces on its way to the surface.

In the models analyzed above (e.g., Figure 2.9), intermediate interfaces are dipping,
which introduces dependence of NMO ellipses from both horizontal and dipping re-
flectors on the interval values of ¢ and §. Even for 2-D media with fault planes in
some of the layers, it may be possible to determine all relevant VTI parameters. For
example, the semi-axes of the three NMO ellipses corresponding to the zero-offset
rays marked in Figure 2.9 provide us with six equations. SVD analysis reveals no
zero singular values, which indicates that the interval parameters can be found in a
unique fashion (Figure 2.10). Still, the inverse problem is not as well-posed as that for
3-D models because the smallest singular value in Figure 2.10 is just 0.0014 compared

to 0.02 in Figure 2.8.



28

0.5

0.45

0.4

0.35

Singular values
o
n L
6))] w

o
)

0.15

0.1

0.05

oo 8
1 2 3 4 5 6
Parameter combinations

FiG. 2.8. SVD analysis for a two-layer VTI model similar to the one in Figure 2.3.
This time, however, the intermediate interface contains two segments with the same
dip ¢; = 40° but different azimuths 1, = 30° and ¢, = 90°.
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Fi1G. 2.9. The presence of fault-plane reflections in a layered VTI medium might be
sufficient to obtain the model in depth from P-wave reflection data.
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FiG. 2.10. SVD analysis for the VTT model from Figure 2.9. The layer parameters
are the same as those in Figure 2.3.
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2.5 Summary

P-wave NMO ellipses measured from multi-azimuth 3-D reflection data over layered
VTI media depend on all three relevant interval Thomsen parameters (Vo ,, €, and
d,) if the overburden contains dipping interfaces. Here, we examined the inversion
of P-wave traveltime data for the interval VTI parameters, the orientation (dip and
azimuth), and depth of the interfaces. For each trial model the objective function,
which has to be minimized during the inversion, is obtained in two steps. First,
P-wave zero-offset traveltimes and reflection slopes (horizontal slownesses) are used
to find the dip, azimuth, and depth of all interfaces and reconstruct the trial model
in depth. Second, one computes the effective NMO ellipses of reflection events and
defines the objective function as a measure of the difference between the modeled
ellipses and those recovered from the data. This is an iterative scheme. We call this

methodology “P-wave stacking-velocity tomography.”

If the interfaces have different azimuths and do not cross each other, the P-wave
NMO ellipses in an N-layer model yield 3N — 1 independent equations for the 3N
interval VTI parameters Vg ,, €,, and 4,. The spatial variation of the NMO ellipses for
this model does not provide any additional information for the inversion procedure.
Therefore, in general, surface 3-D P-wave data alone are generally insufficient to
determine the unknown VTI parameters and reconstruct the interfaces in a unique
fashion. For 2-D models with co-oriented interfaces, the axes of all NMO ellipses are
parallel to the dip and strike directions, and the number of independent equations

reduces to 2N.

This ambiguity, however, can be overcome if a single parameter in any layer is known a

priori. For example, in many cases a subsurface layer may be assumed to be isotropic
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(¢; = d; = 0), or the vertical velocity in it may be estimated in a shallow borehole.
The inversion can also be made unique by introducing a certain relationship between
the parameters (e.g., between € and ¢) in at least one of the layers. The only model
for which this approach fails to remove the ambiguity in the inversion of P-wave
data is elliptical anisotropy (e, = d,). For 2-D models it is necessary to specify one
parameter per layer before the inversion; for instance, the vertical velocities may be

known from VSP measurements.

The VTI parameters are generally better constrained by P-wave reflection data if the
medium contains a fault plane or curved interfaces. For some types of models with

intersecting interfaces the inversion does not require any a prior: information.
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Chapter 3

PARAMETER ESTIMATION IN LAYERED VTI MEDIA WITH
CURVED INTERFACES

In Chapter 2, we evaluated the feasibility of parameter estimation for VTI media
composed of homogeneous layers separated by planar dipping interfaces. If the inter-
faces do not intersect each other, unambiguous inversion for the depth model requires
minimal a priori information, such as knowledge of a single VTI parameter in one
of the layers. Here, we study the inversion of P-wave reflection traveltimes for more

complicated VTI models, which contain irregular interfaces.

First, we extend the theory of NMO-velocity surfaces (Grechka and Tsvankin, 2002a)
to anisotropic media with irregular interfaces and develop an efficient algorithm for
modeling multi-azimuth and multi-offset reflection traveltimes. Then, we employ
singular value decomposition and actual inversion of P-wave reflection data to show
that for some VTI models with smooth curved interfaces parameter estimation in

depth can be accomplished without any a priori information.
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3.1 NMO velocity in anisotropic media with irregular interfaces

3.1.1 NMO velocity on a curved CMP line

The NMO ellipse W recorded in the plane P can be viewed as the intersection of the
NMO-velocity surface U with P (Grechka and Tsvankin, 2002a):

W=UP. (3.1.1)

If the CMP line o is curved, as in acquisition from non-flat topography (e.g., Gray
et al., 1999), its curvature will influence the value of NMO velocity Vimo(o). The

expression for V(o) is derived in Appendix E:

Viro(@) = LU LT + 7p - K, (3.1.2)
where

_ d’a(h)
K= I . (3.1.3)

is the second-order derivative of the radius-vector o with respect to half-offset h; it
is evaluated at the common-midpoint (zero offset). Depending on the sign of the dot

product p - K, the line curvature can either increase or reduce the NMO velocity.

3.1.2 Dix-type averaging in media with irregular interfaces

Equation (3.1.2) can be applied to the CMP line o that lies on any irregular surface

s. The NMO velocity Vamo(s, £) along direction £ on s is given by
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Vn;r?o(sa e) ={ (W + 7P K') ZT ) (314)

where W is the NMO ellipse obtained as the intersection of the NMO-velocity surface
U with the plane P tangent to s at Y. In equation (3.1.4) it is assumed that the
slowness vector p is continuous across s. The matrix

0%
~ oh;on !

h1=h2=0

(G,j=1,2) (3.1.5)

K,ij

is composed of the second-order derivatives of s(hy, hy) with respect to the half-offsets

hi and ho; the values h; = hy = 0 correspond to the CMP location.

If s represents the boundary between two layers, the NMO ellipse is discontinuous
across the tangent plane P, with the jump depending on the difference between the
slowness vectors above (p(t)) and below (p{~)) surface s. As shown in Appendix G,
equation (3.1.4) leads to the following expression for the NMO ellipse W) on the

“positive” side of the interface:
W =w) — g (p("') - p(‘)) ‘K, (3.1.6)

where the term [7’0 (p(+) — p(‘)) . K,] represents a correction for the interface curva-

ture.

The above results make it possible to generalize the Dix-type averaging procedure of
Grechka and Tsvankin (2002a) to media with irregular interfaces. Suppose the model
above the reflector contains NV homogeneous layers, and we know the NMO-velocity
cylinder in the layer immediately above the reflector. Slicing this cylinder by the
plane tangent to the N — 1th interface at the intersection point of the zero-offset

ray yields the NMO ellipse Wfl__)l. Applying equation (3.1.6), one finds the ellipse
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WP, corrected for the interface curvature and then substitutes it into the Dix-type

averaging equation:

W™ Yo =3 (W] 7o, (3.1.7)

where W(N) is the effective NMO ellipse at the earth’s surface, and 75, are the
interval zero-offset traveltimes. Application of equation (3.1.7) involves projecting
the NMO-velocity cylinders onto the planes tangent to the layer interfaces following

the methodology of Grechka and Tsvankin (2002a).

Equation (3.1.7) allows us to compute the effective NMO ellipse W, which can be
obtained from 3-D multi-azimuth reflection data. Since it is necessary to trace only
one (zero-offset) ray per common midpoint, the hyperbolic portion of pure-mode
reflection moveout can be modeled without the time-consuming calculation of multi-

offset and multi-azimuth traveltimes.

3.2 Parameter estimation using P-wave reflection traveltimes

3.2.1 Model representation and data for inversion

The above theory of NMO ellipses is a convenient tool for traveltime modeling that can
be efficiently used in parameter-estimation algorithms. The inversion methodology in-
troduced here operates exclusively with surface P-wave data acquired in wide-azimuth
3-D surveys. The input data include the zero-offset P-wave traveltimes 7(n), the re-
flection slopes in orthogonal directions (horizontal slownesses) p(n) = [p1(n), p2(n)],

and the NMO ellipses W (n) measured for all interfaces (n =1, ..., N). As shown in
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zero-offset
rays

Fic. 3.1. Multi-azimuth CMP recording over a layered VTI model with irregular
interfaces.
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Chapter 2, this set of input parameters does not constrain the interval values of Vpg,
€, and ¢ if the VTT layers are homogeneous and separated by planar non-intersecting
boundaries. Here, however, the interfaces are allowed to be irregular while the layers

are still assumed to be homogeneous.

The goal is to determine whether or not the data
d(Y, n) = {n(Y, n), p(Y, n), W(Y, n)}, (3.2.8)

acquired at a number of CMP locations Y = [Y}, Y3], can be inverted for all relevant

model parameters

m= {VPO,na €n,y 6717 lejz,n}) (329)
n=1,....,N; h1=1,....J1; jo=1,..., Jo).

Here Vpgn, €, 0, are the interval VTI parameters, and ¢, are the matrices of the

coefficients describing the depths z,(Y7, ¥3) of the model interfaces.

Since the quantities ¢, have to be estimated from the data, some simplification in
the inversion procedure can be achieved by adopting a linear relationship between
zn(Y1,Y3) and (j,j,,». In principle, this requirement can be satisfied by representing

the interfaces in terms of arbitrary basis functions Bj, (Y1) and Bj,(Y2):

L T
Yl’Y2 Z Z C.71.72, 71 Yl) sz(YZ) . (3.2.10)

J1=1 j2=1

For simplicity, here we elected to implement the polynomial function,
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Fi1G. 3.2. Zero-offset rays in the two-layer VTI model used in SVD analysis. CMP
locations are marked by triangles. The relevant layer parameters are Vpo; = 1 km/s,
€1 = 0.20, 6, = 0.10, Vpgo = 2 km/s, e = 0.15, 6 = 0.05. The interfaces are
described by 2-D quadratic polynomials, so ¢; and {, are 3 x 3 matrices.

Jl J2 . .
wl¥i,Y2) = 30 3 Guan YV (3:2.11)

Ji1=1 j2=1

3.2.2 Feasibility of the inversion

For models with planar interfaces, the dependence of the data vector (3.2.8) on the
CMP coordinate Y does not provide any new information about the model parameters
(Chapter 2). This is no longer the case in the presence of interface curvature because
zero-offset reflection rays change direction with the CMP location. Therefore, the
spatial variation of the data may help to constrain the inversion and determine the

depth scale of the model.

Similar to the approach outlined in Chapter 2, the zero-offset traveltimes 75(n) and
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the reflection slopes p(n) can be used to estimate the shapes of the interfaces z,(Y)

for any given estimate of the layer parameters

1= {Vpon, €n, 0n}, (n=1,..., N). (3.2.12)

This is achieved by tracing zero-offset rays downward and computing the coordinates

of the reflection points and the corresponding interface normals.

In contrast to media with planar interfaces, the number of common midpoints and
their spatial distribution determines the ability to reconstruct the irregular interfaces.
Since the slowness vector of each zero-offset ray is orthogonal to the reflector at the
reflection point R (Figure 3.1), it provides the orientation (i.e., the azimuth and
polar angle) of the unit normal b,(R) to the reflecting interface. In addition, the
zero-offset traveltime yields the depth of the reflection point R. Thus, the triplet
{10(n,Y), p1(n,Y), p2(n,Y)} at CMP location Y provides three constraints on the
quantities (j, j,,» specifying the reflector 2, (Y) [equation (3.2.11)]. This implies that
the number M of common midpoints required to obtain J; x J, coefficients (,, has to

satisfy the inequality

M > ‘]13‘]2 . (3.2.13)

For example, four common midpoints (M = 4) in Figure 3.2 should be sufficient for
reconstructing the J; x Jo = 3 x 3 = 9 coefficients that define each model interface.
One can solve the equations for the coefficients ¢, by least squares using the data

from all available CMP locations.

Since the traveltimes 79(n, Y) and slopes p(n, Y) are used to obtain z,(Y), the layer

parameters 1 [equation (3.2.12)] will be found from the NMO ellipses W(n). To show
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that the NMO ellipses may constrain the layer parameters uniquely, let us present an
example of singular value decomposition (SVD) analysis for the two-layer VTI model
shown in Figure 3.2. The ellipses measured from two reflectors at four CMP locations
(triangles in Figure 3.2) provide 2 x 4 x 3 = 24 equations for the six components of

the vector 1.

Thus, the feasibility of the inversion can be ascertained by applying SVD to the 24 x 6
matrix F of Frechét derivatives,

_OW(n,Y)

d o1’

(3.2.14)

computed for the correct values of model parameters m. Since none of the singular
values vanishes (Figure 3.3), the input data provide sufficient information for param-
eter estimation, and this VTI model can be fully reconstructed in the depth domain

from P-wave reflection traveltimes.

Clearly, it is not always possible to obtain VTI parameters using just P-wave data.
For example, as the curvature of the intermediate interface in Figure 3.2 decreases,
the model approaches that with planar interfaces where at least one singular value is

zero (Chapter 2).

3.3 Numerical examples

To confirm the SVD results, we carried out actual inversion of P-wave data for the
model in Figure 3.2 in the presence of noise. Reflection traveltimes were computed
for 240 common midpoints placed every 25 m along the two dashed lines between the

triangles in Figure 3.2. This provided an overdetermined system of 240x3 = 720 equa-
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F1c. 3.3. Normalized singular values for the model from Figure 3.2.
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Vpo,a €1 01 VP0,2 €2 o
(km/s) (km/s)
Correct 1.00 0.20 | 0.10 2.00 0.15 | 0.05
Inverted 1.02 0.17 | 0.07 2.05 0.11 | 0.03

Table 1. Inversion results for the two-layer VTI model from Figure 3.2. The standard
deviations of Gaussian noise added to the NMO velocities and zero-offset traveltimes
are 2.0% and 1.0%, respectively.

Vpoa €1 01 Vpo,2 €2 2 Vpo,3 €3 03
(km/s) (km/s) (km/s)
Correct 1.80 0.20 ] 0.10 2.00 0.15 ] 0.05 2.30 0.10 | 0.03
Inverted 1.77 0.23 1 0.12 1.97 0.17 | 0.07 2.26 0.12 | 0.05

Table 2. Inversion results for the three-layer VTI model from Figure 3.4. The
errors in the inverted quantities are due to Gaussian noise added to the zero-offset
traveltimes and NMO velocities. The standard deviations of the noise are 1.0% (for
the traveltimes) and 2.0% (for the velocities).

tions for reconstructing the interface parameters ¢,,. Gaussian noise was added to the
modeled NMO velocities and zero-offset traveltimes, and the parameter vector m was
obtained [equation (3.2.9)] using least-squares fitting of the data d [equation (3.2.8)].
Comparison of the results of this test with the actual parameters (Table 1) shows

that all three parameters in both layers were found with good accuracy.

Another example, this time for a three-layer VTI model with a more complicated
shape of the interfaces is shown in Figure 3.4 and Table 2. The data vector d(Y,n)
was determined from the traveltimes computed at 600 common midpoints located
along two lines with a spacing of 15 m. The accuracy of parameter estimation on
noise-contaminated data (Table 2) is comparable to that in the example from Table 1.
Therefore, in this case, P-wave reflection traveltimes provide sufficient information

for the inversion in the depth domain.
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Fi1G. 3.4. The three-layer VTT model used in the inversion with several zero-offset
rays. Common midpoints are located on the two gray dashed lines.

3.4 Summary

Here, we applied P-wave moveout inversion to more complicated VTI media with
irregular interfaces. To compute azimuthally dependent NMO velocity in such models,
we extended the theory of NMO-velocity surfaces (Grechka and Tsvankin, 2002a) by
deriving a correction for the interface curvature. The new methodology generates
NMO ellipses over arbitrary anisotropic media with irregular interfaces by tracing a
single zero-offset ray per CMP. This modeling algorithm, which is several orders of
magnitude faster than 3-D two-point ray tracing, provides a foundation for efficient

traveltime inversion.

We studied the feasibility of the interval-parameter estimation using singular value
decomposition (SVD) followed by the tomographic-style inversion of noisy data. The

input parameters for the inversion include P-wave zero-offset traveltimes and az-
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imuthally dependent NMO velocities (i.e., NMO ellipses) acquired at a number of
common midpoints over the study area. In contrast to media with planar inter-
faces discussed in Chapter 2, in some cases, for VTI models with irregular interfaces
it is possible to reconstruct the model in depth from P-wave reflection traveltimes
alone. Interface curvature increases the angle coverage of reflected rays, which helps
to constrain the parameters of the anisotropic velocity field. Only if the anisotropy
is close to elliptical, does the depth scale become poorly constrained by P-wave data
regardless of the interface shape, which agrees with the results of Dellinger and Muir

(1988).

The most critical assumption that ensured the success of the inversion procedure
is that the model is composed of homogeneous layers. Allowing for a variation in
the VTI parameters within some of the layers may prevent us from resolving the
three principal components of the model: anisotropy, irregular interfaces, and lateral
velocity variation. Even for isotropic models with irregular interfaces and laterally

varying velocity, the traveltime inversion is generally nonunique (Goldin, 1986).

Although this “stacking-velocity tomography” of PP data excludes the far-offset in-
formation (i.e., nonhyperbolic moveout) from analysis, this approach has important
advantages over conventional reflection tomography. The first advantage is related
to the computational efficiency. Since the NMO ellipse (and, therefore, the multiaz-
imuth, multioffset hyperbolic moveout as a whole) can be computed by tracing only
one zero-offset ray for each reflection event at a given CMP location, the number of
rays to be computed in forward modeling is reduced by at least an order of magni-
tude. This makes anisotropic traveltime tomography computationally feasible. An-
other advantage deals with the more complicated but likewise more important issue of

uniqueness of anisotropic traveltime tomography. Due to the multi-parameter nature
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of anisotropic media, it is often difficult to determine directly from the traveltimes
which parameters (or parameter combinations) are constrained in a given acquisition
geometry. In contrast, the NMO velocities, which are described by semi-analytical
expressions for arbitrary anisotropy (Grechka et al., 1999a), provide a much simpler
way of approaching this problem. Also, the weak anisotropy approximations of the
NMO velocities give an easy-to-use tool for examining the sensitivity of the traveltime
data to various anisotropic coefficients (see the expressions for SV-waves in the next

chapter.)
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Chapter 4

PARAMETER ESTIMATION IN TI MEDIA USING PP AND PS OR
SS DATA

In contrast to the more complicated moveout of mode conversions, reflection trav-
eltime of pure SS-waves is symmetric with respect to zero offset and, for moderate
offset-to-depth ratios, can be described by the NMO ellipse (Grechka and Tsvankin,
2000). Hence, the theory of the NMO ellipses and NMO-velocity surfaces (Grechka et
al., 1999b; Grechka and Tsvankin, 2002a) is directly applicable to SS-wave moveout.

The methodology of Chapter 2 is generalized here for the combination of conventional-
spread PP and SS data. The tomographic algorithm operates with the NMO ellipses,
zero-offset traveltimes, and reflection slopes (measured on zero-offset time sections) of
P P-waves and the reconstructed SS-waves. We examine a wide range of homogeneous
TI models with a tilted symmetry axis (including horizontal transverse isotropy, or
HTI) and establish the conditions needed for stable parameter estimation. Then we
apply the method to layered TT models to estimate the interval medium parameters

and the shapes of interfaces from multicomponent reflection data.
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4.1 Multicomponent stacking-velocity tomography

The goal of the tomographic algorithm introduced here is to estimate the anisotropic
subsurface model using wide-azimuth measurements of stacking velocities of PP- and
SS-waves on moderate-length CMP spreads (i.e., spreadlengths that are smaller than

the reflector depth).

We implement the multicomponent tomographic procedure for TI media composed of
homogeneous layers separated by plane or smooth curved interfaces. The algorithm

includes the following main steps:

1. Picking PP and PS traveltimes from pre-stack 3-D data volumes and identifying
the PP and PS events reflected from the same interface. In general, both split

converted waves (PS; and PS;) can be used.

2. Computing the traveltimes of the pure SS reflections from PP and PS data using
the method of Grechka and Tsvankin (2002b).

3. Performing azimuthal velocity analysis to obtain the NMO ellipses of the PP- and

SS-waves.

4. Inverting of the NMO ellipses, zero-offset traveltimes, and reflection slopes for the
interval anisotropic parameters by extending the approach of Chapter 2 to multicom-

ponent data.

The data vector used in the inversion for an N-layered TT medium is given by
d(Q, Y, n) = {1a(Y, n), po(¥, n), Wa(¥, n)}, (4.1.1)

where Q = PP or SS is the mode type (only SV SV-waves are included in the algo-
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rithm described in this chapter), Y = [Y7, Y] is the CMP coordinate, n = 1,2, ..., N is
the reflector number, 7 is the zero-offset traveltime, p is the reflection slope on zero-
offset time sections, and W are the 2x2 matrices (Grechka and Tsvankin, 1998b)

describing the NMO ellipses.

The goal is to find the model vector m that contains the interval medium parameters
and the coefficients of the polynomials used to describe the model interfaces. For TI
media with an unknown tilt of the symmetry axis, the inversion of PP- and SV .SV -
waves can be used to estimate six interval parameters — the symmetry-direction P-
and S-wave velocities Vpy and Vg, anisotropic coefficients ¢ and ¢, and two angles

responsible for the symmetry-axis orientation.

In general, the parameter-estimation algorithm is organized in the same way as that
introduced for PP-waves in Chapter 2 (Grechka et al., 2002a). For a given set of
trial interval anisotropic parameters, the zero-offset traveltimes 7 and the reflection
slopes pg are used to compute the one-way zero-offset rays for all reflection events.
Then the interfaces for the trial model are reconstructed by fitting 2-D polynomials
to the termination points of the zero-offset rays. Finally, the interval parameters are

obtained by minimizing the objective function

F(m)= ) ||W§;‘°(Y,n,m)—Wgeas(Y,n)n. (4.1.2)
Q,Y,n

The norms in the function (4.1.2) contain the differences between the computed and

measured NMO ellipses W for all modes and all reflectors at each CMP location.
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4.2 Inversion of PP and SS data for a homogeneous TI medium

Consider the model of a single homogeneous TI layer with a planar lower boundary
(horizontal or dipping) and arbitrary orientation of the symmetry axis. The problem
addressed here is whether or not wide-azimuth reflection traveltimes of PP- and SS-
waves (i.e., SV reflections reconstructed from PP and PSV data) can be inverted
for the symmetry-direction velocities Vpy and Vsp, the parameters € and 4, and the
axis orientation. It is convenient to study the feasibility of parameter estimation
by applying the weak-anisotropy approximation to the NMO ellipses and zero-offset

traveltimes.

The analysis has to be performed for P-waves only, because any kinematic signature
of SV-waves for weak transverse isotropy can be obtained from the corresponding
P-wave signature by making the following substitutions: Vpg — Vg, & — o, and
e — 0 (Tsvankin, 2001; see Table 1). A similar substitution rule for SH-waves
is Vpg — Vso, d — <, and € — . SH-wave anisotropy, however, is elliptical, and
most kinematic signatures can be obtained in closed form without applying the weak-

anisotropy approximation.

4.2.1 VTI layer

In the weak-anisotropy limit, the substitution rules for different modes hold for the
processing parameters as well. Alkhalifah and Tsvankin (1995) showed that P-wave
time processing in VTI media with a laterally homogeneous overburden above the

target reflector is governed by the zero-dip P-wave NMO velocity
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L7 [ Sv | SH |
Kinematic parameters
Vpo Vso Vso

€ 0 0%
) o y

Processing parameters (VTI)
i —0 0

VP, nmo VSV, nmo VSH, nmo

Table 1. Correspondence between the parameters responsible for the kinematic
signatures of P-, SV -, and SH-waves in weakly anisotropic TI media.

V;]mo,p =VpoV1+29 (423)

and the anellipticity coefficient

(4.2.4)

Note that this result is valid for any strength of velocity anisotropy. Time processing
of SV-waves for weakly anisotropic VTI media is then controlled by the zero-dip

SV-wave NMO velocity

Vamo,sv = VsoV1+ 20 (4.2.5)

and the parameter —o/(1 + 20), which plays the role of 7. Time processing of ellip-

tically anisotropic S H-waves requires just the NMO velocity

Vamo,sw = Vsoy/1+ 27 (4.2.6)

because the quantity corresponding to 1 goes to zero. This result stems from the fact
that isotropic time-processing algorithms are entirely valid for elliptical anisotropy

(Dellinger and Muir, 1988; Alkhalifah and Tsvankin, 1995).
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Suppose the data include multi-azimuth (3-D) traveltimes of P P- and P.SV-reflections
from a planar dipping interface below a homogeneous VTI layer. Without losing gen-
erality, the dip plane of the reflector is assumed to coincide with the coordinate plane
[z1, 23] (i.e., the z;-axis points in the dip direction). Applying the methodology
of Grechka and Tsvankin (2002b), one reconstructs the traveltimes of the pure SS
(SVSV) reflections and uses azimuthal moveout analysis (Grechka and Tsvankin,

1999b) to obtain the NMO ellipses of both PP- and SS-waves.

Since the model is symmetric with respect to the dip plane, the axes of the NMO
ellipses have to be aligned within the dip and the strike directions (Grechka and
Tsvankin, 1998b). The linearized approximations for the semi-axes of the PP-wave
NMO ellipse are given by (Alkhalifah and Tsvankin, 1995; Grechka and Tsvankin,
1998b):

V2 2
2 _ Ynmo,P nye _ 9
‘/nmo,P,dip(pP,l) —1_ yp ll + 1—yp (6 9yp + 4'!!1))] (427)
and
V;lzmo,P,st.rike(pP,l) = Vn2mo,p [1+2nyp(2—-yp)], (4.2.8)
where

—_ 2 2
Yp = pP’l Vnmo,P .

Pp,, is the horizontal slowness component of the PP-wave zero-offset ray (or the
dip component of the reflection slope), and the strike component p,, = 0. Equa-

tions (4.2.7) and (4.2.8) can be inverted for the zero-dip NMO velocity Vimop and
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the anisotropic coefficient 7 if the reflector dip (expressed through the slope p, ) is
not too small. The inversion of the PP-wave NMO ellipse using the exact equations

is discussed by Grechka and Tsvankin (1998b), who find that the dip should exceed

25° to ensure stable estimation of 7.

The weak-anisotropy approximations for the dip and strike components of the SV-
wave NMO velocity can be obtained directly from equations (4.2.7) and (4.2.8) using

the conversion rule from Table 1:

Vz _ V.S?V,nmo 1 2O'ySV 6 9 4 2 4.2.9
nmo,P,dip(pSV,l) - m - 1— Ysv ( — JYsv + ySV) ) ( L. )
Vnsz,SV,Strike(psv,l) = ‘/;12mo,SV [1 —20ysv (2 - ySV)] . (4210)
Here

.2 2
Ysv = Pgy, V;lmo,sv ’

Psy., is the horizontal slowness component of the SS-wave zero-offset ray (or the dip

component of the reflection slope), and the strike component p,, , = 0.

Similar to the parameter estimation for P P-waves described above, equations (4.2.9)
and (4.2.10) can be inverted for Vymo sy and o. Furthermore, substituting Vime sv
and o into equation (4.2.5) yields the shear-wave vertical velocity Vsy. Then the
zero-offset traveltime and the reflection slope of the SS reflection can be used to

reconstruct the depth and dip of the reflector.

Next, let us demonstrate that adding this information to the traveltimes of PP-waves

is sufficient for estimating the vertical velocity Vpy and the anisotropic coefficients ¢
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and §. We can find 6 from Vymo p and Vpg, and € from 7. The equation of a planar

reflecting interface can be written in the form
b-(x—rp)=0, (4.2.11)

where b is the unit vector normal to the reflector, and rp defines the P P-wave zero-
offset reflection point. Similarly, for the zero-offset SS ray reflected from the point

Tsy, one has

b-(x—rsy)=0. (4.2.12)
Combining equations (4.2.11) and (4.2.12) yields

b-rp=b-rgy. (4.2.13)

The vector b can be replaced in equation (4.2.13) by the normalized (so that the
magnitude is equal to unity) slowness vectors of the zero-offset PP and SS rays
because the slowness (or phase-velocity) vectors of pure-mode reflections at zero offset
are orthogonal to the reflector. Also, the vectors rp and sy can be expressed through
the group-velocity vectors of the PP- and SS-waves by putting the origin of the
coordinate system at the CMP location. Further linearization of equation (4.2.13) in

the anisotropic parameters leads to

TP‘/nmo,P[l-— ( pPIVanP)_'_npil‘/;lmOP]_

Tsv VanzSV [1 -0 ( psv 1 Vmo sv T psv 1 ‘/nmo SV)] ’ (4214)

where 7p and gy are the zero-offset traveltimes of the PP- and SS-arrivals. Note that

the quantities on the left- and right-hand sides of equation (4.2.14) comply with the
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conversion rule in Table 1. The result equivalent to equation (4.2.14) can be obtained
by using Snell’s law for the zero-offset P- and SV-rays instead of equations (4.2.11)
and (4.2.12).

Although the parameters Vimo p, Vamo,sv, 7, and o, which can be obtained from the
PP- and SS-wave NMO ellipses [equations (4.2.7)—(4.2.10)], are sufficient to find the
vertical velocities Vpy, Vso and the coefficients € and &, the inversion of the PP-
wave NMO ellipse requires reflector dips of at least 25° (Alkhalifah and Tsvankin,
1995; Grechka and Tsvankin, 1998b). The NMO ellipse of the SS-wave is more
sensitive to dip than is that of the PP-wave because of relatively large values of
0. Supplementing equations (4.2.7)—(4.2.10) with equation (4.2.14) adds another
constraint on the anisotropic parameters and helps to obtain an accurate result for
dips less than 25°. Indeed, the numerical tests below confirm that dips as small as

15° are sufficient for stable estimation of the VTI parameters for this simple model.

Figure 4.1 illustrates application of the methodology to noise-contaminated wide-
azimuth PP and SS (SVSV) traveltimes (the SS traveltimes are supposed to have
been computed from the PP and SS data) generated for a homogeneous VTI layer
with the lower boundary dipping at 15°. We perform nonlinear inversion (the Gauss-
Newton method) based on the exact equations for the NMO ellipses, zero-offset trav-
eltimes, and reflection slopes using the objective function given in equation (4.1.2).
The dots in Figure 4.1 mark the estimated VTI parameters for different realizations
of the noise added to the input data. The standard deviations in the inverted pa-
rameters (2% for Vpg and Vs, 0.03 for ¢, and 0.02 for §) indicate that the noise does
not get amplified by the parameter-estimation procedure, so the inversion is reason-
ably stable. In the presence of higher levels of noise in the data, it can be difficult

to estimate the anisotropic parameters. Note that the estimated values of ¢ and §
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Fi1G. 4.1. Results (dots) of the joint inversion of PP and SS (SVSV) data for a
single VTI layer above a planar dipping reflector. The correct layer parameters are
marked by the crosses, the reflector dip is 15°, and the velocities are given in km/s.
The dashed line on plot (a) corresponds to the correct value of 7. The data were
contaminated by Gaussian noise with standard deviations equal to 2% for the NMO
velocities and 1% for the zero-offset traveltimes and reflection slopes.

cluster near the line of the correct parameter 1 = ¢ — ¢ because the difference ¢ — ¢
is well-constrained by both PP and SS traveltimes (Tsvankin and Grechka, 2000,
2002).

The only parameter of VTI media that cannot be obtained from P and SV data is
~ — the anisotropic coefficient responsible for the elliptical anisotropy of S H-waves.
Tsvankin and Grechka (2000, 2002) showed that -y can be determined from converted
PS H-waves, which are generated for all azimuthal directions outside the dip plane.
The methodology introduced here can be applied to the estimation of v from the
NMO ellipses of pure S H-wave reflections computed from PP and PSH data. Thus,
with the combination of P-, PSV- and PSH-wave reflection traveltimes, one can

estimate all five VTI parameters and build the VTI model in the depth domain.
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4.2.2 HTI layer

Contreras et al. (1999) studied the inversion of wide-azimuth PP data for HTT media
and showed that the symmetry-direction velocity Vpy, the coefficients ¢ and & (or
¢V) and 6("); see Tsvankin, 1997b), and the azimuth 3 of the horizontal symmetry
axis can be found from the PP-wave NMO ellipses from a horizontal and a dipping
reflector. However, the need to use two different dips for each depth interval makes
this algorithm difficult to implement in practice. In contrast, the approach presented
here is designed to estimate the HTI parameters using the NMO ellipses of PP- and
SS(SVSV)-waves from a single reflector that can be either horizontal or dipping.
Note that by “SV-wave” we always mean the mode polarized in the plane formed
by the slowness vector and the symmetry axis. If the symmetry axis is horizontal
or tilted, this plane is no longer necessarily vertical, but we still prefer to keep the

notation commonly used for VTI media.

The inversion for a horizontal HTI layer confirms the results of Tsvankin (1997b)
who pointed out that the combination of wide-azimuth PP- and SS-wave moveout
data is sufficient for estimating the symmetry-direction velocities Vpy and Vgy and
the parameters ¢ and 4. For this model, the velocities Vpg and Vgo can be found
directly from surface data because they are equal to the corresponding NMO veloci-
ties measured in the direction orthogonal to the symmetry axis (i.e., in the isotropy
plane). Typical results of inverting noise-contaminated PP and SS traveltimes for
the parameters of a horizontal HTT layer are shown in Figure 4.2. The standard de-
viations in all estimated parameters, including the azimuth 8 of the symmetry axis

(not shown on the plot), are quite small; the deviation in J is 0.6°.

To examine the inversion for dipping interfaces, we adapted for SS-waves the weak-
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FiG. 4.2. Results of the inversion (dots) of PP and SS traveltime data for a hor-
izontal HTT layer using the exact equations for the NMO ellipses. The data were
contaminated by noise with the same standard deviations as those in Figure 4.1. The
correct layer parameters are marked by the crosses. Vpg and Vg are the velocities in
the symmetry-axis direction in km/s.

anisotropy approximations for P P-wave NMO ellipses given by Contreras et al. (1999).
Both the theoretical analysis and the inversion based on the exact equations (see Fig-
ure 4.3) show that the parameter estimation remains stable for the whole range of

dips from 0° to 90°.

The dots of the estimated parameter values in Figure 4.3 form smaller clouds than
those in Figure 4.1, which indicates that the inversion of dipping events for HTT media
is more stable than that for VTI media. As discussed above, for a horizontal VTI
layer the inversion for Vpg, Vs, €, and § cannot be performed at all. It should also be
mentioned that the inversion algorithm for HTT media converges much more rapidly

to the correct model than it does for VTI media.
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F1G. 4.3. Same as Figure 4.2 but for an HTT layer with the lower boundary dipping
at 25°. The azimuth of the symmetry axis with respect to the dip plane is g = 40°;
the standard deviation in (3 is 0.8°.

4.2.3 TTI layer

The parameter-estimation problem for transverse isotropy with a tilted symmetry
axis (TTI media) includes only one additional unknown compared to the HTI case —
the tilt ». This, however, makes the inversion substantially more ill-posed than that
for HTI media because the pure-mode NMO ellipses are nonlinear functions of v, even
for weak anisotropy. Grechka and Tsvankin (2000) found a nonlinear dependence on
the tilt in the weak-anisotropy approximations for the P P-wave NMO ellipse in T'T1
media. Therefore, the misfit (objective) function for the NMO ellipses that has to be
minimized in the nonlinear inversion may have local minima, even for weak anisotropy.
The multimodal nature of the misfit function may require several inversions starting

from different points in the model space.

The schematic summary of the numerical results in Figure 4.4 illustrates the influence
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of the tilt of the symmetry axis and reflector dip on the uniqueness of parameter
estimation in T'TI media. This plot should not be interpreted in a strict quantitative
sense because the criteria used to identify the areas of unique and nonunique inversion
are somewhat loose. In general, the line dividing those areas corresponds to standard
deviations in € and ¢ of about 0.03 (for the errors in the input data given in the
caption of Figure 4.1). However, the quality of the inversion results also depends
on parameters not shown in Figure 4.4 such as the magnitude of ¢ and § and the
azimuth of the symmetry axis. In particular, the inversion becomes more stable with

increasing absolute values of € and §.

It should be emphasized that in generating Figure 4.4 we assumed that the orientation
of the symmetry axis is unknown, even if the model is HTI or VTI. Therefore, the
stability of the inversion results for both VTI and HTI is lower than in the two
previous sections on VTI and HTI media where the tilt of the symmetry axis was
fixed at the correct value. Still, Figure 4.4 shows that even if the HTI model is not
assumed in advance, it can be accurately reconstructed from reflection data despite
some problems caused by the more complicated topology (e.g., multiple local minima)
of the objective function. Even when the objective function has complex structure,
it is possible to apply more sophisticated tools to find the global optima (Scales et
al., 1992).

In contrast, when the tilt of the symmetry axis is small (i.e., the model is close
to VTI) and unknown, the inversion remains ambiguous for all reflector dips. As
the symmetry axis deviates further from the vertical, the inversion becomes more
stable (for a fixed dip) and can be performed for an increasingly wide range of dips
(Figure 4.4). For HTT media (see above) the inversion is feasible even for a horizontal

reflector and without a priori knowledge of the tilt.
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Fi1G. 4.4. Uniqueness of depth-domain parameter estimation in T media for the full
range of reflector dips and tilt angles of the symmetry axis. The tilt and azimuth of
the symmetry axis were unknown (i.e., they were estimated from the inversion) for
all models, including VTT and HTT media.

Figure 4.5 displays inversion results typical for models located within the area of
nonuniqueness in Figure 4.4 near the area’s boundary. As in the previous examples,
we inverted the NMO ellipses, zero-offset traveltimes, and reflection slopes of the P P-
and SS-waves after contaminating the input data with Gaussian noise. Although the
obtained parameters scatter around the correct values, the standard deviations (4%
in Vpy and Vsp, 0.05 in €, 0.04 in §, 1.5° in 3, and 0.8° in v) indicate a substantial

error amplification in the estimation of Vpg, Vg, €, and 9.

The stability of the inversion for TTI models may be enhanced by including SH-

wave NMO ellipses and zero-offset traveltimes to the input data. The traveltimes
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of pure SH reflections can be obtained using PSH converted waves generated for

source-receiver azimuths outside of the vertical symmetry plane(s) of the model.

Thus, multicomponent (PP and PS), multiazimuth reflection data can be inverted
for the parameters of homogeneous TI media for a range of reflector dips and tilts of
the symmetry axis. The highest stability is observed for near-horizontal orientations
of the symmetry axis, while for a vertical and tilted symmetry axis the inversion

generally becomes more stable with increasing dip.

4.3 Parameter estimation for layered TI media

Here, the multicomponent tomographic procedure is applied to TI models containing
homogeneous layers with arbitrary orientation of the symmetry axis separated by
smooth curved interfaces. Suppose the input data include wide-azimuth traveltimes
of PP- and PSV-waves reflected from two interfaces of the VTT model in Figure 4.6.
After computing the traveltimes of the pure SS reflections using the PP + PS =
SS method (Grechka and Tsvankin, 2002b), one collects the PP and SS data into
CMP gathers for azimuthal velocity analysis. Estimating the PP- and SS-wave NMO
ellipses and zero-offset traveltimes at four CMP locations (Figure 4.6) yields the data
vector from equation (4.1.1). Then for each trial set of interval anisotropic parameters
one finds the interfaces and computes the objective function, which is then minimized

in the nonlinear inversion algorithm.
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F1G. 4.5. Results of the inversion (dots) of PP and SS traveltime data for a dipping
TTI layer (the dip is 30°). The data were contaminated by noise with the same
standard deviations as those in Figure 4.1. The correct layer parameters are marked
by the crosses. The velocities in the symmetry-axis direction Vpy and Vg are in km/s,
the tilt v and azimuth 3 of the symmetry axis are in degrees (8 is measured with

respect to the dip plane).
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F1G. 4.6. Zero-offset rays of the PP- and SS(SV SV)-waves recorded at four CMP
locations over a model composed of two homogeneous VTI layers. The layer parame-
ters are: Vpg,1 = 2.0 km/s, Vo1 = 0.8 km/s, €; = 0.15, §; = 0.05; Vppg 2 = 2.5 km/s,
VSO’2 =0.9 km/s, €y = 020, (52 = 0.10.

4.3.1 Numerical examples

The input data from Figure 4.6 were distorted by Gaussian noise with standard devia-
tion of 2% for the NMO velocities and 1% for the zero-offset traveltimes and reflection
slopes. The inversion results for 100 realizations of the input data in Figure 4.7 in-
dicate that the noise does not get amplified by the parameter-estimation procedure.
The standard deviations in the inverted parameters are less than 1% for Vpy and Vi

(not shown), and about 0.01 for € and é.

Note that neither of the interfaces in the model from Figure 4.6 has steep segments.

In agreement with the results for a single layer, the high sensitivity of the SS-wave
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F1G. 4.7. Results of stacking-velocity tomography for the model in Figure 4.6. The
dots mark the exact values of the anisotropic parameters, the bars correspond to the
+ standard deviation in each parameter.

NMO ellipse to reflector dip and the addition of the ratio of the zero-offset PP and
SS traveltimes [equation (4.2.14)] ensures the stability of the joint inversion of wide-
azimuth PP and SS data for dips of 15°-20°. Including the NMO ellipses of the
S H-waves may help to constrain the anisotropic coefficient v and build a complete

VTI model in depth.

Figures 4.8 and 4.9 show the tomographic inversion of multicomponent data for a
more complicated model that includes VTI, HTI and TTI layers. Despite the larger
error bars for deeper horizons, the overall stability of the algorithm is satisfactory. A
general increase in errors with depth, caused by the relatively small contribution of
the deeper layers to the reflection traveltimes from their lower boundaries, is typical
for all kinematic inversion algorithms. Also, although we do not differentiate the
Dix-type formula explicitly to obtain the interval anisotropic coefficients, errors in
the parameters of the upper layers still propagate into the inversion results for the

deeper part of the section.
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F1G. 4.8. Zero-offset rays of the PP- and SS(SV SV )-waves for a model composed
of TTI, VTT and HTT layers.
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F1G. 4.9. Results of stacking-velocity tomography for the model in Figure 4.8.
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4.3.2 Influence of errors in the symmetry type

In the examples discussed above, we assumed that the type of anisotropy (i.e., aniso-
tropic symmetry) in each layer was known in advance. Since this is not typically the
case in practice, it is instructive to examine the inversion of error-free data using an

intentionally incorrect anisotropic symmetry in one of the layers.

We specified a TI model composed of two VTI layers on top of an HTI layer (Fig-
ure 4.10) with the interval parameters listed in the top row of Table 2. Then the
tomographic parameter estimation was performed under the erroneous assumption
that the bottom (HTI) layer has VTI symmetry (the second row in Table 2). As
expected, the inversion produced seriously distorted values of the symmetry-direction
velocities Vpg 3 and Vg 3 and the anisotropic coefficients €3 and 3. It is interesting
that the parameters of the two upper layers are also inaccurate because the error in
the bottom layer gets distributed throughout the whole model to minimize the ob-
jective function (4.1.2). Hence, errors can propagate not only downward (accumulate

with depth) but also upward, albeit with a substantially smaller amplification.

An implication of this observation is that it might be preferable to perform tomo-
graphic inversion in a layer-stripping mode, starting with estimation of the parameters
of the subsurface layer using the most shallow PP and PS reflections. Then, fixing
the obtained values, one can determine the interval parameters of the second layer by
inverting the traveltimes from its bottom, and the parameter-estimation procedure
continues downward. In addition to eliminating upward error propagation from the
deeper layers, the stripping approach is computationally efficient because only a few
unknowns need to be found at each stage (i.e., for each layer). The main shortcoming

of layer stripping is its implicit reliance on the assumption that the reflections from
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F1G. 4.10. Zero-offset rays of the PP- and SS(SV SV)-waves for a model composed

of two V'TT layers on top of an HTT layer. The interval parameters are listed in the
top row of Table 2.

[ VPo,1 [ Vso,n | e [ 61 [ Bi [ Vro,2 [ Vso,2 | €2 | 82 [ Vro,s [ Vso,s | ea [ é3 | Ba ]
Correct model parameters
200 [ 080 [015J005] - [ 250 [ 090 [0.20 [ 0.10 [ 350 | 1.10 ][ 0.20 [ 0.05 [ 30
Inversion assuming the bottom layer to be VTI
198 | 079 J016 J0.06 ] — [ 253 | 090 Jo0.18 [ 0.09 [ 3.00 | 1.28 ] 035 ] 034 | —
Inversion assuming the top layer to be HTI
223 ] 094 Joo01Joo03 101 ] 261 [ 092 [0.15 [ 0.02 ] 355 [ 092 [0.24 ] —0.09 [ 34

Table 2. Correct parameters of the model composed of two VTI layers on top of an

HTI layer (top row) and the inversion results based on erroneous assumptions about
the symmetry in one of the layers.
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the bottom of the layer contain full information about the layer parameters. Since
this is not always the case for P P-waves in T1 media (Le Stunff et al., 2001; Grechka
et al., 2002a), one can expect that for some models the layer-stripping method may

create ambiguity in the joint inversion of PP and PS data.

In the second test, the top (VTI) layer was assumed to have HTI symmetry. Then, in
addition to the expected significant errors in the parameters of the top layer, we also
obtained distorted parameters in both bottom layers (see the third row in Table 2).
This test underscores the importance of choosing the right type of anisotropy in
the overburden, because any errors in the shallow part of the section will propagate

through the whole model.

An alternative to assuming a specific type of anisotropy is to adopt the more general
tilted TI (or even orthorhombic) model from the outset of the inversion. The correct
type of anisotropy can then be identified from the determined orientation of the
symmetry axis (for TTI media) or relationships between the estimated anisotropic
coefficients (for orthorhombic media). However, the need to estimate the tilt of the
symmetry axis often reduces the stability of the algorithm, especially for models close

to VTL

4.3.3 Influence of heterogeneity

Accurate reconstruction of vertical and lateral velocity variations is the main challenge
in reflection tomography. For example, even for isotropic media certain types of
vertical velocity variations within layers can never be resolved from the reflection
traveltimes, no matter how the inversion is performed (e.g., Goldin, 1986). Given the

complexity of this problem for anisotropic media, the discussion here is limited to
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a numerical example illustrating the errors in the estimated anisotropic parameters

caused by heterogeneity unaccounted for in the inversion.

Suppose we attempt to estimate the parameters of the VTI overburden for the model
from Table 2 (Figure 4.10) using only the reflections from the second interface. The
effective parameters of the overburden then change both vertically (since it actually
consists of two layers) and laterally (because the first interface is not horizontal).
While the vertical variations of the VTI parameters cannot be resolved without in-
cluding reflections from the first interface, one can try to estimate the lateral pa-
rameter variations by performing the inversion for a range of CMP coordinates Y

(Figure 4.10).

The data d(Q, Y, n) [equation (4.1.1)] were generated for Q@ = P, SV, n = 2 and
CMP coordinates ¥; = [-0.6, —0.4, ..., 0.8, 1.0] km, Y5 = [-0.2, 0.2] km. In each
inversion, we used four adjacent common midpoints (that form the corners of a rectan-
gle) and assigned the estimated anisotropic coefficients to the center of the rectangle.
Treating the overburden as a single homogeneous VTI layer yields the parameters
displayed in Figure 4.11. Clearly, all estimated quantities change laterally because
the variations in the dip and depth of the interfaces make the overburden laterally
heterogeneous. It is interesting that while the effective vertical velocities Vpy and Vg
(Figure 4.11a, b) can be regarded as certain averages of the interval velocities, the
best-fit anisotropic coefficients € and d often lie outside the range of the corresponding

interval coefficients (Figure 4.11c, d).

This result, which seems to be puzzling, can be explained by the fact that we operate
with a variety of different averages in stacking-velocity tomography. The “average,”

or effective parameters produced by the tomographic inversion process are not nec-
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Fi1G. 4.11. Effective parameters (dots) of the VTI overburden estimated using the
reflections from the second interface in Figure 4.10. The correct parameters of the VT1
layers that make up the overburden are marked by the dashed lines. The coordinate
Y) (in km) is defined in the text.
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essarily bounded by the minimum and maximum interval values. As an example, in
Appendix H it is shown that the effective anisotropic coefficient § derived from the
P P-wave NMO velocity for a stack of plane homogeneous V'TT layers can often exceed
the maximum interval coefficient ¢,,. In the special case of isotropy, when all §,, = 0,
the effective § above vertically heterogeneous media is always positive (Grechka and
Tsvankin, 2002d). The model in Figures 4.10 and 4.11 contains curved interfaces, and
the averaging procedure is more complicated than that in Appendix H. The results,
however, are similar in that in both cases the effective values lie outside of the range

of the corresponding interval quantities.

The results in Figure 4.11 can be considered as a consequence of upscaling, performed
implicitly to obtain effective values of the anisotropic parameters. Replacing the
actual heterogeneous medium with the homogeneous model providing the best fit to
the data may result in effective properties that cannot be obtained by straightforward

arithmetic averaging of the corresponding interval (local) properties.

4.4 Summary

This chapter extends stacking-velocity tomography to multicomponent (P and S)
data. The tomographic algorithm is designed to invert wide-azimuth traveltimes of
P and S-wave reflections for the interval parameters of transversely isotropic media.
Although the method does not operate directly with converted PS-waves, it can still
be applied in multicomponent ocean-bottom surveys. Prior to the velocity analysis,
PS data are combined with the PP-wave moveout from the same interface to com-
pute the reflection traveltimes of SS-waves using the model-independent kinematic

technique of Grechka and Tsvankin (2002b).
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The SS traveltime, in contrast to the more complicated moveout of converted waves,
is symmetric with respect to zero offset and (on conventional-length spreads) can be
described by the NMO velocity. Azimuthal semblance analysis of PP and SS travel-
times on CMP gathers produces the NMO ellipses (i.e., azimuthally varying stacking
velocities) and zero-offset traveltimes that serve as the input to the tomographic

inversion.

Here, the multicomponent tomography was implemented for a stack of transversely
isotropic layers separated by smooth interfaces. The detailed analysis for a homo-
geneous TI medium and numerical testing for layered models show that for a range
of reflector dips and tilt angles of the symmetry axis, the combination of PP and
PSV (or SVSV) data can be used to build anisotropic models for depth process-
ing. The most notable exception is horizontally layered VTI media, for which even
long-spread (nonhyperbolic) moveout of PP- and PSV-waves does not constrain the

vertical velocities (Grechka and Tsvankin, 2002c).

The chapter also discusses upscaling, which is one of the most complicated issues
in estimating the elastic properties of the subsurface. we demonstrated with simple
examples that the values of the so-called effective parameters, which provide the best
fit to our data, might actually lie outside of the range determined by the maximum and
minimum of the interval values for the same parameter. It is important to mention
that the quantities obtained from the inversion always bear an imprint of the assumed
model. Some subsurface features, such as the short-scale velocity heterogeneity, can
be never incorporated into our models because of the limited resolution of seismic
data. Those features, however, do influence the data and can also change the values

of the estimated parameters in a way that is difficult to control.
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Chapters 2 and 3 show that for a certain class of layered VTI models with dipping
or irregular interfaces, P P-wave reflection data alone can be used to reconstruct the
depth scale of the model and parameters ¢ and §. This inversion, however, breaks
down if the difference € — § is small, and the anisotropy is close to elliptical (Dellinger
and Muir, 1988). As follows from the results of this chapter, combining PP- and
SS-waves resolves this ambiguity (in the presence of mild reflector dip) because the
velocity function of SV-waves in elliptical media is purely isotropic. Extending the
argument of Dellinger and Muir (1988), one can state that the isotropic velocity func-
tion of SV-waves, which have equal vertical and horizontal velocities, does not allow

the medium “stretching” in the vertical direction that causes the depth ambiguity.
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Chapter 5

APPLICATION OF MOVEOUT INVERSION TO PHYSICAL MODEL
DATA

Here, we use data from a physical modeling experiment to study the feasibility of
anisotropic parameter estimation in TTI media from measurements obtained from
actual velocity analysis of CMP gathers. The physical model was built by Leslie
and Lawton (1996) to simulate typical reflection data acquired in overthrust areas
of the Alberta Foothills in Canada. Using the general theory of normal moveout
in laterally heterogeneous media (Grechka and Tsvankin, 2002a), we show how one
might invert P-wave NMO velocities and zero-offset traveltimes for the full set of the
anisotropic parameters of the TTI layer. Information about the anisotropic parameter
€ is contained in the moveout of a reflected wave that crosses one of the dipping TI
blocks. The accuracy of the inversion procedure is dependent on the errors in the
NMO velocities obtained from conventional hyperbolic semblance analysis of reflection

events.

5.1 Physical modeling

The 2-D physical model built at the University of Calgary by Leslie and Lawton

(1996) was designed to mimic overthrust structures typical for the Central Alberta
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Foothills in Canada (Figure 5.1). Four blocks of Phenolic laminate (shaded in gray
in Figure 5.1) were glued together to form a bending transversely isotropic layer with
symmetry axis orthogonal to the bedding. The Phenolic material, which is known to
be orthorhombic, was cut in the direction of one of the symmetry planes to produce
a 2-D TI sheet with the parameters believed to be typical for shales in the Foothills.
The P-wave velocities in the symmetry direction (Vo = 2925 m/s) and isotropy plane
(Voo = 3365 m/s) yield the anisotropic parameter ¢ = 0.16, while the second relevant
anisotropic coefficient, ¢, is equal to 0.08 (Cheadle et al., 1991). The TI layer was
embedded in a purely isotropic Plexiglass material (white in Figure 5.1) with the

P-wave velocity Vi, = 2740 m/s.

An ultrasonic P-wave reflection survey with the acquisition parameters given in Ta-
ble 1 was acquired by Leslie and Lawton (1996) at the top of the model. The time
section for the smallest offset in the data (Figure 5.2) shows a false anticline struc-
ture at a time of approximately 1.4 s. This pull-up of the bottom of the model is
caused by the combined influence of the higher velocity and anisotropy in the Phenolic
blocks. Leslie and Lawton (1998) presented a series of pre-stack depth migrations of
these data and showed that the bottom interface cannot be flattened without taking
anisotropy into account. Their results also suggest that P-wave reflection traveltimes
might contain sufficient information for obtaining the model parameters needed for
the anisotropic imaging. Here, we use the theoretical results discussed in Grechka
and Tsvankin (2002a) to perform a parameter-estimation procedure based entirely

on surface P-wave data.
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1410 m
1940 m

530 m|

5180 m

FiG. 5.1. Physical model of an anisotropic thrust sheet (after Leslie and Lawton,
1996). In each block of the bending TI layer, the symmetry axis (marked by the
arrows) is perpendicular to the layer boundaries. The distances are scaled by a factor
of 10,000.

Number of common midpoints 504
CMP spacing 10 m
Offset spacing 20 m
Minimum offset 200 m
Maximum offset 2000 m

Table 1. Acquisition parameters used by Leslie and Lawton (1996).

5.2 Parameter estimation

5.2.1 Assumptions about the model

First, we present the assumptions needed to avoid ambiguities in the inversion of the
available set of measurements for the model parameters.

(i) All blocks making up the model in Figure 5.1 are assumed to be homogeneous.
Allowing for lateral velocity variation leads to trade-offs between the parameters, such
as those described for VTI media by Grechka (1998).

(ii) All four TTI blocks are made of the same material with the symmetry axis
orthogonal to the bedding within each block. In other words, we have to assume that

the model contains a homogeneous, bending TTI layer. Without this assumption,
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CMP (m)
1000 2000 3000 4000 5000

F1G. 5.2. Common-offset (200 m) time section of the reflection data acquired over
the model from Figure 5.1. The arrows mark the reflection events (R1 — R5, Ra,
and Rb) discussed in the text.
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F1G. 5.3. Cartoon of the zero-offset rays for reflection events R1 — R5, Ra and Rb.
Numbers in the circles denote model blocks.

the number of independent parameters cannot be reduced to that constrained by the
data.

(iii) The Plexiglass blocks (white in Figure 5.1) are isotropic. This assumption cannot
be verified using the available data because the same P-wave reflection traveltimes
could have been generated for an elliptically anisotropic surrounding medium with
the same value of the NMO velocity from horizontal reflectors (e.g., Alkhalifah and
Tsvankin, 1995).

(iv) The reflector at the bottom of the model is horizontal, which implies that the
anticline structure at approximately 1.4 s in Figure 5.2 is caused by the spatial velocity
variations in the overburden. This assumption would not be needed if we could

measure the NMO velocity for the reflection event marked as Ra in Figure 5.2.
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5.2.2 Inversion for the anisotropic parameters

Under the above assumptions, it is possible to obtain all model parameters in the
depth domain using the zero-offset traveltimes and normal-moveout velocities of re-
flection events R1 — R5 marked in Figures 5.2-5.4. We also attempted to process
reflections Ra and Rb, which carry information about the parameters of the TTI
layer. However, as discussed below, the NMO velocities and zero-offset traveltimes of

these events could not be picked with sufficient accuracy.

5.2.3 Reflection R1

Let us begin with event R1 reflected from the segment [D,Dj;] beneath the isotropic
homogeneous Plexiglass layer [Figure 5.3; see assumptions (i) and (iii)]. The two-way
zero-offset traveltime 7g; and NMO velocity Vimo,r1 = Viso Were picked from several
semblance panels similar to the one shown in Figure 5.4a. Then we computed the
mean values of the traveltimes and velocities over several common-midpoint (CMP)
locations and obtained 7g; = 1.437 s and Vymor1 = 2742 m/s. The standard devia-
tions attributable to picking inaccuracies, based on the spatial extent of the semblance
maxima, were estimated at 0.004 s and 30 m/s (Figure 5.4a). The zero slope of re-
flection event R1 in Figure 5.2 indicates that the segment [D;Ds] is horizontal. Its
depth, which is supposed to be constant under the whole model according to assump-
tion (iv), is z = zg1 = 7r1 VR1/2 = 1969 & 22 m. Here and below, the notation
a = b £ c means that the quantity a is estimated to be equal to b with the error
bar or standard deviation c¢. The computed depth z is somewhat greater than the

correct value (1940 m) because it was determined using the traveltimes picked from
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F1G. 5.4. Semblance contours at CMP locations 3780 m (a), 630 m (b), 680 m (c), and
1480 m (d). The gray areas mark the spatial dimensions of the semblance maxima
used to pick the traveltimes and NMO velocities of reflection events R1 — R5.
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the semblance maxima rather than from the actual first breaks.

5.2.4 Reflection R2

Event R2 is similar to R1 because it also represents a reflection from the bottom of an
isotropic homogeneous layer. Since the NMO velocity Vimo r2 = Viso = 275040 m/s
(Figure 5.4b) practically coincides with Vimo r1, and the Plexiglass is supposed to
be homogeneous and isotropic, blocks 1 and 2 (Figure 5.3) are taken to be made
of the same material. On the time section from Figure 5.2, reflection R2 can be
seen as a horizontal event at the traveltime 7o = 1.05 £ 0.008 s; this implies that
segment [B; Bs] is horizontal. The estimated thickness of block 2 is zry = Tro Vro2/2 =

1444 + 19 m.

5.2.5 Reflection R3

Reflection R3, generated at the bottom of the horizontal block 3 (Figure 5.2 and 5.3),
contains information about the NMO velocity Vo in the TTI layer. The symmetry
axis in block 3 is vertical (i.e., the block has the VTI symmgtry), and Vo is related

to the symmetry-direction velocity V; as (Thomsen, 1986)

Vamo = Vo VI + 26 (5.2.1)

Since ray R3 propagates through a laterally homogeneous medium [assumption (i)],

the interval NMO velocity can be found using the conventional Dix (1955) differenti-
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ation

V2 _ V2
Vo= \] "R3 Ynmo,R3 — TR2 Vnmo,R2 _ 3192 +£ 104 m/s, (5.2.2)
TR3 — TR2

where Trs = 1.405 £ 0.004 s and Vymo,rs = 2870 + 20 m/s are the measured zero-
offset traveltime and normal-moveout velocity for reflection R3 (Figure 5.4b). Under
assumption (iv), the depth of segment [C;C5] is equal to that of segment [DyDj):
Zr3 = 2r1 = 1969 + 22 m. Therefore, one can compute the vertical velocity in block 3

as

Vo =2 B8~ *R2 _ 9963 + 157 m/s. (5.2.3)
TR3 — TR2

Then, using equation (5.2.1), one finds the anisotropic coefficient 6 = 0.09 + 0.06.
As a result, conventional moveout analysis near the left edge of the model yields two
parameters of the TTI layer: the symmetry-direction velocity V, and the coefficient

d. The other relevant anisotropic parameter, ¢, still has to be found.

5.2.6 Reflection Ra

To determine the parameter ¢ from horizontal events, we again had to assume that
the bottom interface is horizontal. An alternative way of estimating 6 without such
an assumption is to use the NMO velocity Vymo,ra 0f the reflection from the dipping
segment [AsCs] (Ra in Figure 5.3). Vimo ra represents the following function of the
velocities Vg, Vimo, and the half-slope pgr, of reflection Ra on the zero-offset section

(Grechka and Tsvankin, 1998b):
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F1G. 5.5. Semblance contours for reflection Ra at CMP location 2810 m. The gray
area indicates the range of possible moveout-velocity picks.
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The NMO velocity of event Ra needs to be picked on a CMP gather within the rela-

(5.2.4)

tively short segment [A4A5). To avoid receiver locations outside this segment, offsets
larger than approximately 500 m have to be muted. Even after the muting, however,
accurate picking of the NMO velocity Vimo,ra is practically impossible because of
the absence of small offsets up to 200 m (Table 1) and relatively large (for such a
shallow reflection) offset increment. The steep interface [A5Cs] also contributes to
the high uncertainty in the velocity picking. The above factors lead to strongly elon-
gated semblance contours in Figure 5.5, which yield error bars for Vime ra Of at least
1000 m/s. Clearly, such an accuracy is inadequate for the subsequent estimation of

the anisotropic coefficients.
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F1G. 5.6. Two-way zero-offset traveltimes (dots) for reflection R4 and their approx-

imation with a st

raight line. The standard deviation of the picked traveltimes from

the straight line is 0.006 s.
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5.2.7 Reflections R4 and Rb

Reflections R4 and Rb form parallel straight lines on the time section in Figure 5.2,
indicating that segments [ByBs] and [C5C}4] of the TTI block 5 in Figure 5.3 are
parallel to each other. Approximation of the picked zero-offset traveltimes of event R4
by a straight line (Figure 5.6) allows us to obtain the half-slope pr4 = 1.82x107* s/m.
The NMO velocity Vimo,ra = 3120£70 m/s corresponding to the semblance maximum

in Figure 5.4c satisfies the isotropic relationship (Tsvankin, 2001)

‘/ESO

V;]mo,R4 = ﬁ
V 1- PRra V;so

Although equation (5.2.5) is also valid for elliptically anisotropic media with the zero-

(5.2.5)

dip NMO velocity Vis,, we use assumption (iii) to identify blocks 2 and 4 as part of
the homogeneous isotropic section of the model. Then the dip ¢ of segment [B,Bs]

is given by
¢ = sin™! (prq Viso) = 29.8° £0.4°. (5.2.6)

Neither the traveltime 7gp, nor the NMO velocity Vamo, rb Of event Rb could be picked
because of its low amplitude (Figure 5.2). However, this does not hamper parameter
estimation because both Try, and Vyme, rb are controlled by the model parameters that
can be estimated from other reflections. For example, the traveltime 7g; could have
been used to obtain the thickness z; of block 5 (Figure 5.3) in the direction normal to
interfaces [ByBj;] and [C3C4). Since the symmetry axis is also perpendicular to these
interfaces [assumption (ii)],

2 =V, ﬁ“’;—”‘“ : (5.2.7)
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Instead of using equation (5.2.7), however, one finds the thickness z, from the trav-

eltime of reflection R5 (see below).

Although it is natural to expect that the NMO velocity Vimo, rb contains information
about the anisotropic parameter ¢, it turns out not to be the case. The Dix-type
averaging equation for tilted layers described by Grechka and Tsvankin (2002a) leads
to the following expression for Vime, ro:

Tra Vi&, + (Trb — TRa) V2
V2 — iso nmo 5.2.8
nmo, Rb TRb COS2¢) ’ ( )

where ¢ is the dip of interfaces [By B3] and [C3C4], given by equation (5.2.6). Equa-
tion (5.2.8) shows that Vime,ro depends on a single parameter of the TTI block — the
NMO velocity Vime, which has already been determined from the horizontal events.

The same conclusion holds for the almost invisible reflection from segment [C4Cs).

5.2.8 Reflection R5

Both the thickness z, and the anisotropic coefficient ¢ can be found from traveltime
Trs = 1.378 £ 0.004 s and the NMO velocity Vime rs = 3250 & 50 m/s of reflection
R5 (Figures 5.4d and 5.7). Note than neither 7gs nor Vime rs depends on the CMP
coordinate (Figure 5.2). This is possible only if segments [B;Bj] and [C5C4] are
parallel to each other (this has already been established by the analysis of events R4
and Rb) and the bottom interface [C5D,] is horizontal. Consequently, the zero-offset
ray R5 inside the isotropic blocks 4 and 6 has to be vertical (Figures 5.3 and 5.7).

The zero-offset traveltime 75 of event R5 can be written as

TR5 = Ttti,R5 T Tiso,R5 » (5.2.9)
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Fia. 5.7. Notation associated with the zero-offset ray of reflection R5 from the
horizontal interface [C3D;] below the TTI block 5.

where 7y rs and Ty rs are the traveltimes inside the TTI and isotropic blocks, re-
spectively. Using the relationships between the group(ray)-velocity vector and the
horizontal (p) and vertical [¢ = ¢(p)] components of the slowness vector in the TTI

block 5 (Grechka et al., 1999b), one obtains

Teti,R5 = 2 21 (g — pq’) ﬁf—w ) (5.2.10)
2 cos Y
Tiso, R5 = Vo (2 — 2z m) ) (5.2.11)

where

¥ = tan™! (j—;) =tan !¢ (5.2.12)
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Actual Inverted
Viso (m/s) | 2740 | 2742 £+ 30
(m/s) | 2925 | 2963 + 157

€ 0.16 | 0.16 £0.06
) 0.08 | 0.09+0.06

Table 2. Comparison of the actual and inverted values of the velocities and aniso-
tropic coefficients.

is the angle between the zero-offset ray and vertical inside the TTI block 5 (Figure 5.7).

The slownesses p and ¢ satisfy Snell’s law at the top and bottom interfaces of block 5:

p= (q - Viso) tang. (5.2.13)

In combination with the Christoffel equation in the TTI layer, Snell’s law (5.2.13) can

be used to obtain both slowness components for a given set of the TTI parameters.

The NMO velocity Vomo,rs provides a second equation for estimating z; and €. We
omit the derivation of Vimo,rs, which can be found in a straightforward manner using

the results of Grechka and Tsvankin (2002a) and Le Stunff et al. (2001):

2 1 2 ‘/tti,nmo(p) 2
Vamo, R5 = a Tiso,R5 Viso T Titi, R5 m , (5.2.14)
where
d2q dp2
Viti, nmo(P) = ﬁ (5.2.15)

is the interval NMO velocity within the TTI block evaluated for the horizontal slow-

ness component p of the zero-offset ray (Grechka et al., 1999b).
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After picking Trs and Vymo,rs from the semblance panel in Figure 5.4d, we perform
nonlinear inversion of equations (5.2.9) and (5.2.14) for z; and € and obtain z; =
594 + 105 m and € = 0.16 & 0.06. Complete results of the parameter-estimation

procedure are summarized in Table 2.

5.3 Summary

The presence of transverse isotropy with a tilted symmetry axis (TTI media) causes
significant distortions in the results of conventional velocity analysis and imaging in
overthrust areas. While migration algorithms can be extended to T'TI models in a
relatively straightforward way, estimating the anisotropic parameters needed to build
the velocity model is a much more difficult task. The structural setting of overthrust
areas is characterized by steep interfaces and substantial lateral heterogeneity, which
further complicate the recovery of the anisotropic velocity field from surface reflection

data.

Still, for models consisting of quasi-homogeneous blocks it may be possible to invert
P-wave reflection traveltimes acquired in the dip direction of the structure for all
relevant parameters of TTI media. Here, we used the physical-modeling data of
Leslie and Lawton (1996) to estimate the thickness, symmetry-direction velocity V5,
and the anisotropic coeflicients € and ¢ of a bending transversely isotropic layer. Two
important constraints on the TTI model were provided by the geologically justified
assumptions that the symmetry axis is orthogonal to the bedding and the TTI layer
is homogeneous. Another, more arbitrary assumption used in the inversion procedure
was that the bottom of the model is horizontal. This assumption, however, would

have been unnecessary if the acquisition geometry had been suitable for processing
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reflections from steep interfaces in the shallow portion of the model.

While estimation of the symmetry-direction velocity V; and the coefficient J using
horizontal reflection events and the depth of the bottom interface was relatively
straightforward, obtaining the parameter ¢ represented the most challenging part of
the inversion procedure. As follows from the analytic description of normal moveout
in laterally heterogeneous media (Grechka and Tsvankin, 2002a), information about €
is contained only in the NMO velocity and zero-offset traveltime of arrivals that cross
the dipping TTI blocks and reflect from the bottom of the model. The inversion using
one of these reflection events makes it possible to estimate not only the value of ¢,
but also the thickness of the dipping T'TI block. Thus, P-wave reflection traveltimes

proved to be sufficient to reconstruct the tilted TI model in the depth domain.

In general, the feasibility of anisotropic parameter estimation in TTI media depends
strongly on the degree of structural complexity and the range of propagation direc-
tions covered by the zero-offset reflected rays. As long as the lateral variation in the
elastic parameters is not substantial, the presence of bending TTI layers with variable
dips may actually help in parameter estimation by generating reflected rays that cross
the TTI blocks at different angles with the symmetry axis. The analytic inversion
methods (i.e. those based on NMO ellipses) may become inaccurate for media with
more severe lateral heterogeneity, but they can still be used to build an initial model

for migration velocity analysis.

One of the objectives was to estimate the confidence intervals for all inverted quan-
tities. These error bars were obtained by visually inspecting the spatial extent of
the semblance maxima used to pick the NMO velocities and zero-offset traveltimes.

Although this approach is subjective, it still provides useful information about the un-
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certainties in the traveltime inversion for anisotropic media. It should be mentioned
that the accuracy in velocity picking can be substantially increased by upgrading the

acquisition geometry (i.e., recording small offsets, reducing the receiver spacing, etc.).
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Chapter 6

STACKING VELOCITY TOMOGRAPHY FOR ORTHORHOMBIC
MEDIA

Here, we extend the methodology of stacking-velocity tomography to orthorhombic
media, believed to be typical for naturally fractured oil and gas reservoirs (Schoenberg

and Helbig, 1997; Bakulin et al., 2000).

6.1 Tomographic parameter estimation using multicomponent data

The success of the parameter-estimation procedure discussed below depends on our
ability to construct SS traveltimes from PP and PS reflection data using the PP +
PS = SS method (Grechka and Tsvankin, 2002b). Although this method requires no
explicit velocity information, one must be able to identify traveltimes of PP- and PS-
reflections, from the same interface, on prestack common-receiver gathers. Traveltime
picking, however, is difficult for traces with low PS amplitudes (and, correspondingly,
low signal-to-noise ratio) caused by small reflection coefficients in areas of polarity
reversals. To evaluate the seriousness of this issue for a typical moderately anisotropic

orthorhombic model, we use a synthetic test.

We computed the multicomponent seismograms in Figure 6.1 by anisotropic dynamic

ray tracing. As expected, the PP reflection has the highest amplitude on the vertical
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Fi1G. 6.1. (a) Plan view of a multiazimuth CMP gather, with sources for each line
located on one side marked by s, and receivers on the side marked by r. (b-d)
True-amplitude three-component synthetic seismograms of PP-, P.S;- and PS;-waves
reflected from a dipping interface beneath an orthorhombic layer. The numbers 0,
30, 60, 90, 120, and 150 on the vertical axis in Figures (b-d) indicate the azimuth
(in degrees) of the block of traces plotted under this number (e.g., all traces between
numbers 150 and 120 have an azimuth of 150°). The source-receiver offsets within
each block of traces range from 0.1 km to 1 km in 0.1 km increments. The azimuth of
the dip plane is ¢ = 0° (see the plan view), the dip ¢ = 30°, and the depth under the
common midpoint z = 1 km. The azimuth of the vertical [z,, z3] symmetry plane of
the orthorhombic layer with respect to the reflector dip plane is 8 = 60°. Tsvankin’s
(1997c) anisotropic parameters of the layer are Vpy = 2.9 km/s, Vg = 1.4 km/s,
€ = 0.15, 6@ = 0.05, y@ = —0.25, €V = 0.25, §) = 0.15, 4 = —0.20, 6@ =
—0.05.
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component (Figure 6.1d), whereas the two split converted waves PS; and PS, are
seen best on the horizontal inline and crossline components (Figures 6.1b, c). Despite
some dimming of the PS;- and PS;-waves at certain azimuths, the offset range of
those low-amplitude arrivals is relatively narrow. Therefore, Figures 6.1b, ¢ suggest
that, despite the presence of polarity reversals, picking of wide-azimuth converted-
wave traveltimes over orthorhombic media is feasible. This conclusion remains valid
for media with a smaller shear-wave splitting coefficient than those used here, where
the PS; and PS, arrivals overlap, and time picking has to be preceded by Alford

(1986) rotation.

Once the traveltimes of PP-, PS;-, and PS;-waves have been picked, the PP + PS
= 55 method can be employed to compute the traveltimes t5; and tg, of pure shear-
wave reflections S1.5; and 555, from the same interface. The traveltimes tg; and tgo
are guaranteed to be symmetric with respect to the common midpoint, so they can
be processed by means of hyperbolic semblance analysis. For wide-azimuth data, it
is possible to reconstruct the NMO ellipses of both PP- and SS-waves using a 3-D

hyperbolic semblance operator (Grechka and Tsvankin, 1999b).

The NMO ellipses, along with the corresponding horizontal projections of the slow-
ness vectors pg (the reflection slopes on zero-offset time sections) and zero-offset
traveltimes 7¢ (Q = P, S1, or Sy), are used as the input data for anisotropic stacking-

velocity tomography. The data vector for an N-layered orthorhombic medium is

d(Q) Y, 7’L) = {TQ(Y7 ’I’L), pQ(Ya 'I’L), WQ(Ya n)}) (611)

where Y = [Y7,Y5] is the CMP location, n = 1,2, ..., N is the reflector number and

W is the 2x2 matrix describing the NMO ellipse.
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Stacking-velocity tomography for multicomponent data is described in detail in Chap-

ter 4 (Grechka et al., 2002b).

In the next section, we discuss the issues of uniqueness and stability in the inversion

of the data vector (6.1.1) for the parameters of orthorhombic media.

6.2 Parameter estimation in a single orthorhombic layer

First, we review notation and some relevant properties of wave propagation for or-
thorhombic models. Seismic signatures in orthorhombic media can be conveniently

described in terms of the two vertical velocities,

Vp0= @- and VS(): cﬁ, (622)
V » V »

and Thomsen-style anisotropic coefficients €2 §(123) and (2 introduced by
Tsvankin (1997¢); ¢;; are the components of the stiffness tensor and p is the den-
sity. The coefficients ¢, 6, 4 (; = 1,2) defined in the vertical symmetry planes
[z2, 3] and [z1, 3] (Figure 6.2) have the same meaning as Thomsen’s (1986) pa-
rameters €, d, and y for transverse isotropy. The coefficient §(® plays the role of

Thomsen’s d in the horizontal plane [z, 5.

The kinematics of wave propagation in the symmetry planes of orthorhombic media
is practically identical to that in VT media. The only notable difference is caused by
the so-called singularity directions in orthorhombic media (the point A in Figure 6.2),
where the phase velocities of two shear waves coincide. The S-wavefront near a
singularity usually becomes multi-valued, while the wavefront of the fast S;-wave

develops an elliptical hole. Those complicated phenomena are outside of the scope of
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e()

[5¢]

F1G. 6.2. Sketch of body-wave phase-velocity surfaces in orthorhombic media (after
Grechka et al., 1999a). The coefficients (1), §(!) and y() are defined in the symmetry
plane [z4, 3], while ¢? §@ and 4 correspond to the plane [z, z3] (Tsvankin,
1997c). a;; = y/ci;/p, where ¢;; are the stiffness coefficients and p is the density.

the thesis; hereafter, we assume that the singularities are located outside of the fan

of ray directions used for velocity analysis.

6.2.1 Horizontal reflector

The semi-axes of NMO ellipses for all reflection modes in a horizontal orthorhombic
layer are co-oriented with the vertical symmetry planes and have the following simple

form (Grechka et al, 1999a):

1 cos? a sin®

V3 amo (@) [V(?r)lmo]z + [V(f,)lmo]z

(6.2.3)

(Q = P, S, orSy);
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« is the azimuth with respect to the [z1, z3]-plane. Because of the kinematic equiva-
lence between the symmetry planes of orthorhombic and VTI media, the semi-axes of
the NMO ellipses (V(i) ) can be obtained by adapting the VTI equations (Grechka

Q,nmo

and Tsvankin, 1998b)

V2 o= Veo (/1 +26@), (6.2.4)

Vel o = Vo /1 + 260 (6.2.5)
V.S('f,)nmo =Va \/1 +24@ = \/066//0, (6.2.6)
Vel umo = V1 V14200, (6.2.7)
VD o = Vea /1420, (6.2.8)
V.S(';,)nmo = Vs \/1 +29(0) = \/Cﬁﬁ/p; (6.2.9)
where

o2 = <%)2 (@ — @) ,

o0 (@)2 (0 — gm) (6.2.10)

Vs1

I 1+ 2~M
= V. Vo1 = V. — 2.11
VS2 S0, S1 S0 1+2 7(2) (6 )
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Here, it is assumed that the fast mode S; at vertical incidence is polarized in the

To-direction.

As follows from equations (6.2.4)—(6.2.11), the anisotropic coefficients (12, §(1?) and
712 can be estimated in a unique fashion only if either one of the vertical velocities
or the reflector depth is known. This result is hardly surprising because the NMO
velocities and zero-offset traveltimes could not be unambiguously inverted for the

anisotropic parameters even for the higher-symmetry horizontal V'TT layer.

Note that the coefficient © has no influence on the NMO ellipses in a horizontal layer
and, therefore, cannot be determined from conventional-spread reflection moveout. A
more detailed discussion of the NMO ellipses of pure and converted waves in hori-
zontally layered orthorhombic media, and their inversion, can be found in Grechka et

al. (1999a).

6.2.2 Plane dipping reflector co-oriented with a vertical symmetry plane

While moveout inversion of multicomponent data is nonunique for a horizontal VTI
layer, the results of Chapter 4 show that the vertical velocities and coefficients ¢ and
d can be estimated uniquely from PP and SS traveltimes if the reflector beneath the
VTI medium has a dip of at least 15-20°. Here, let us examine whether or not this
result holds for an orthorhombic layer above a plane dipping reflector that is oriented
in such a way that the dip plane coincides with one of the vertical symmetry planes

of the overburden.

Suppose the dip plane of the reflector is the [z;, z3] symmetry plane of the orthorhom-

bic medium. Since the slowness vector of the zero-offset ray for any pure mode is or-
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thogonal to the reflector, the horizontal slowness projection at zero offset is confined
to the dip plane. Both horizontal slowness components (p; and ps) of the zero-offset
ray can be found from reflection slopes on the zero-offset (or stacked) time section.
Therefore, reflection time slopes can be used to find the azimuthal direction of both

the reflector and the [z;, z3] symmetry plane.

Then, the model vector m to be estimated from moveout data contains the remaining
eleven unknowns: nine Tsvankin’s (1997c) parameters discussed above (Vpg, Vso, e,
€@, 6 5@ 53 41 and y?), the reflector dip ¢, and the distance D between
the reflector and the origin of the Cartesian coordinate system O. The elements of
m are supposed to be found from the eighteen-component data vector (6.1.1), which

has six zero elements,
P2, =0; Wiz, =0, (Q@=P, S, or$5), (6.2.12)

because [z1, 73] is the symmetry plane for the whole model. The remaining three
zero-offset traveltimes 7, three horizontal slownesses p; ¢, and six diagonal elements
of the matrices W g (which correspond to the dip- and strike-components of the NMO

velocities) provide a total of 12 equations.

However, below we demonstrate that the expressions for the traveltimes 74 are not

independent. The equation of a planar reflector can be written as
n-x=D, (6.2.13)

where n = [sin¢, 0, cos¢| is a unit vector perpendicular to the reflector. Assum-
ing that the origin O of the Cartesian coordinate system is placed at the common

midpoint, the reflection point r¢ of the zero-offset ray can be found from
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’I'Q = gQ TQ, (6214)

where g, is the group-velocity vector of mode Q). Since the point r¢ lies on the

reflector (6.2.13), the one-way zero-offset traveltime is

D

. 6.2.15
"0 (6:2.15)

TQZ

Snell’s law requires that the slowness vectors pg = [p1,q, 0, 3] of pure modes be

parallel to each other and orthogonal to the reflector, so

n=>22 Q=P S, orS). (6.2.16)
|PQ|

Combining equations (6.2.15) and (6.2.16) and taking into account that py - go = 1
(this equality plays the role of the eikonal equation in anisotropic media) yields

D D
__EQ=D@|=_EQ (6.2.17)

TQ = - .
© Do 99 sin ¢

Equation (6.2.17) shows that three zero-offset traveltimes 7p, 751, and 7g5 constrain
only one combination of the model parameters — D/ sin ¢. Therefore, the number of
independent equations to be solved for the 11 unknown parameters reduces from 12

to 10. Clearly, this inverse problem does not have a unique solution.

6.2.3 Arbitrarily oriented plane dipping reflector

If the dip plane of the reflector does not coincide with either vertical symmetry plane,

each NMO ellipse generally has a different orientation. That increases the number of
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independent components of the data vector (6.1.1) and, as demonstrated below, can

make the inversion unambiguous.

Indeed, if the dip plane and the symmetry planes are misaligned, the number of
equations exceeds the number of unknowns. The model vector includes 13 elements

to be found from the data:
m = {VPO) VSO) e(l)a J(I)a ’Y(l)a 6(2)1 6(2)a ’7(2)a 5(3)a 137 D) ¢) ¢}’ (6218)

where 3 is the azimuth of the vertical symmetry plane [z;, 23] and ¢ is the azimuth
of the dip plane of the reflector. The original number of equations (i.e., the number
of measured quantities) is 18 [equation (6.1.1)], but, as discussed above [see equa-
tion (6.2.17)], the three traveltimes 7o provide only one independent equation. In
addition, the ratio of the horizontal slowness components for each mode is fixed by
the reflector azimuth (p, o/p1,0 = tan), which eliminates two more independent
equations. Even with these factors taken into account, however, the number of equa-
tions (14) is larger than the number of unknown model parameters (13), and, in

principle, the moveout inversion may be possible.

Still, the inverse problem is nonlinear, so the feasibility of parameter estimation has to
be assessed by numerical testing on noise-contaminated data. The numerical analysis
will show that the inversion for a range of typical orthorhombic models is not only
unique but also quite stable. Because of the multimodal nature of the misfit function,
we perform several inversions starting from different points in the model space. The
results in Figure 6.3 are obtained from the data d = {TQ, P WQ} generated for
all three modes (P, S; and S;) at a single CMP location. The traveltimes 7, the

horizontal slowness components pg, and the NMO ellipses W were contaminated
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F1G. 6.3. Inversion results for a single orthorhombic layer above a dipping reflector.
The exact values of the anisotropic coefficients are marked by the dots; the bars
correspond to the + standard deviation in each parameter. The reflector dip ¢ is 30°,
the azimuth of the dip plane ¥ = 0°, and the azimuth of the [z, 23] symmetry plane
of the layer 8 = 60°.

by Gaussian noise with standard deviations of 1% for 74 and pg and 2% for W,.

The parameter estimation was repeated 100 times for different realizations of the
noise using a nonlinear least-squares algorithm. The maximum standard deviation
in the recovered anisotropic coefficients does not exceed 0.025 (the value for 6
in Figure 6.3), which means that the inversion is sufficiently stable. The standard
deviations for the parameters not displayed in Figure 6.3 are small as well (1.2% and

0.6% for the vertical velocities Vpg and Vgq, respectively, and less than 1° for the

angles 3, ¢ and ).

For the model from Figure 6.3, the dip plane of the reflector deviates by 30° from
the nearest vertical symmetry plane, which ensures the high stability of the inversion
result. Figure 6.4 shows the inversion output for a model similar to that in Figure 6.3,
but the azimuth angle between the dip plane and a vertical symmetry plane is just
15°, and the dip ¢ is reduced from 30° to 20°. Both changes have a negative influence
on the performance of the inversion algorithm, and the error bars for most parameters

become noticeably longer. Still, the moderate magnitude of the standard deviations
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Fi1G. 6.4. Same as Figure 6.3, but the reflector dip ¢ is 20°, and the azimuth of the
[1, 23] symmetry plane § = 15° (the azimuth of the dip plane remains 1 = 0°). The
standard deviations for the parameters not shown on the plot are as follows: 1.3%
and 0.7% for the velocities Vpg and Vgg, respectively, and less than 1.5° for the angles

B, ¢ and .

indicates that the inversion remains sufficiently stable for practical applications.

Further reduction in the difference [t — 3| or in the reflector dip leads to a rapid -
increase in the errors (i.e., the standard deviations). Indeed, the analysis in the pre-
vious section suggests that the inversion becomes nonunique when |y — 3| approaches
k /2, where k is an integer. Likewise, the inversion becomes unstable if the reflector
dip ¢ < 15°; for subhorizontal reflectors the anisotropic coefficients cannot be esti-
mated without a priori knowledge of the vertical velocities or reflector depth (see
above). A similar dependence of the quality of moveout-inversion results on reflector
dip was found for VTI media in Chapter 4 (see also Tsvankin and Grechka, 2000,
2002).

6.2.4 Curved reflector

If the reflector beneath an orthorhombic layer has arbitrary spatially varying cur-
vature, the uniqueness of the inversion procedure is much more difficult to evaluate

analytically. The feasibility of estimating the medium parameters in this case strongly
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depends on the shape and parameterization of the reflector and the spatial distribu-

tion of the common midpoints (see Chapter 4).

Extensive testing with synthetic traveltimes shows that reflector curvature does not
pose any serious problems for the parameter estimation in a single orthorhombic layer,
provided the reflecting interface contains dips over 15° and the dip directions deviate
from the vertical symmetry planes. Typical inversion results for noise-contaminated
data 7q, pg, and W from nine CMP locations are displayed in Figure 6.5. As in
the previous test, the inversion was repeated 100 times to study the distribution of
the estimated parameters. The standard deviations in Figure 6.5b are even smaller
than those in Figure 6.3; this conclusion also holds for the vertical velocities Vpg, Vg

and the reflector orientation (not shown).

The increase in stability for the curved reflector in Figure 6.5 is explained by the
relatively wide range of reflector dips and azimuths sampled by the zero-offset rays.
In other words, each CMP provides independent information. This advantage of
curved interfaces, of course, can be fully exploited only if it is still possible to treat

the medium above the reflector as homogeneous.

6.3 Stacking-velocity tomography in layered media

The above analysis for a single orthorhombic layer helped to reveal the potential of the
multicomponent inversion algorithm. In this section, the methodology of stacking-
velocity tomography is applied to more realistic models composed of homogeneous

orthorhombic layers separated by plane or curved interfaces.

If noise-free data {TQ, Po» WQ} (Q = P, 51, S2) for all interfaces are available, and
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offset rays of the P- S;- and S;-waves reflected from a curved

interface below an orthorhombic layer and (b) the estimated anisotropic parameters.
The [z, z3] symmetry plane makes an angle of 60° with the Yj-axis. The data
were contaminated with Gaussian noise that had the same standard deviations as in
Figure 6.3. The exact values of the anisotropic coefficients are marked by the dots,
while the bars correspond to the + standard deviation in each parameter.
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Fi1aG. 6.6. The resul

ts of stacking-velocity tomography for a model composed of three

horizontal layers (a — top layer, b — middle layer, ¢ — bottom layer) with different

azimuths of the ver

tical symmetry planes. The vertical velocities were assumed to be

known; from top to bottom, Vpg 1 = 1.0 km/s, Vo1 = 0.5 km/s, Vpg o = 1.5 km/s,
Vso,2 = 0.6 km/s, and Vpg 3 = 1.8 km/s, Vo 3 = 1.0 km/s. The layer thicknesses are
21 = 0.4 km, 25 = 0.6 km and z3 = 0.8 km, and the azimuths of the symmetry planes
are 3; = 40°, By = 70° and B3 = 10°.
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the reflectors satisfy the conditions established for a single layer (i.e., the dips ex-
ceed 15-20° and the reflector azimuths sufficiently deviate from those of the vertical
symmetry planes), the tomographic algorithm can recover the interval orthorhombic
parameters along with the shapes of the interfaces. However, due to error accumu-
lation with depth and a lower sensitivity of surface data to the parameters of deeper

layers, even moderate noise causes substantial errors in the interval parameters.

To make the inversion sufficiently stable for field-data applications, we assume that
the interval vertical velocities (Vpg,n or Vi ) are known in all layersn =1, ..., N. It
may be sufficient to establish some constraints on the vertical velocities to recover the
rest of the medium parameters; alternatively, it is possible to specify the thickness of
each layer. Such an assumption may not be too restrictive in reservoir characterization
because seismic inversion for orthorhombic anisotropy would typically be performed
at later stages of the reservoir development when borehole and check-shot data are

already available.

Figure 6.6 shows the parameter-estimation results for a model composed of three
horizontal orthorhombic layers. The data {TQ, P WQ} were generated for nine
common midpoints and contaminated by Gaussian noise with standard deviations of
1% for the zero-offset traveltimes and horizontal slownesses and 2% for the matrices
W describing the NMO ellipses. After fixing the interval vertical velocities Vpg n,
Vso,n (n =1, 2, 3) at the correct values, we performed the inversion for the interval
anisotropic coefficients, the azimuths g, of the vertical symmetry planes, and the
layer thicknesses. Knowledge of the vertical velocities ensures that all anisotropic
coefficients except for 6®) are estimated with high accuracy. Because the parameter
5® has no influence on the NMO ellipses of both P- and S-waves in a horizontal

orthorhombic layer (see above), it is not constrained by the input data. The stan-
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dard deviations in the azimuths of the symmetry planes do not exceed 1°, and the

deviations in the layer thicknesses are less than 1%.

Application of the tomographic algorithm to a more complicated layered model with
curved interfaces is illustrated by Figure 6.7. The input data were computed again
for nine common midpoints (Figure 6.7a) and contaminated by Gaussian noise with
the same standard deviations as in Figure 6.6. In addition to the interval anisotropic
parameters and the azimuths 3, of the vertical symmetry planes, the algorithm was
designed to reconstruct the shapes of all three interfaces. As expected for any tech-
nique based on surface traveltime data, parameter estimation becomes less stable with
depth (Figures 6.7b,c,d). Nevertheless, the standard deviations in the anisotropic pa-
rameters do not exceed 0.1 (the value for 6§1) in Figure 6.7d). Taking into account
that the error amplification for a given layer is proportional to its relative thickness,
we conclude that the anisotropic coeflicients are constrained reasonably well. The
azimuths of the symmetry planes and the shapes of the interfaces were also estimated
with high accuracy; the standard deviations in 3, B2, and 35 are 1.0°, 1.6°, and 4.6°,

respectively.

6.4 Summary

Estimating the parameters of orthorhombic media from surface seismic data is of pri-
mary importance in building realistic models of naturally fractured reservoirs. This
chapter is devoted to an extension of multicomponent stacking-velocity tomography
to orthorhombic media. The input data include the NMO ellipses, zero-offset trav-
eltimes, and reflection slopes of the PP- and SS-waves, which are inverted for the

interval anisotropic parameters and the shapes of the interfaces.



111

a

0+ g
0.5+ \ \\\\\ "'\\\:l\ =N
T

e

b
04r : :
0.2 u . A :
-02 7
B @ @ ) A A @
& 8] ¥y & 8 1 8
c
02f i
0 f 3
; i i
—02 [ T U
R R N U
& 5 Yo 23 8, Yo 8;
d
0.4 ............. R Oy S PP P PP S D L LR T LR
o o
02t i

TR BN () R
Y3 €3 83 Y3 83

8:(32) 8:(32)
F1G. 6.7. (a) Reflected zero-offset rays of the P-, S;- and Sp-waves in a three-layer
orthorhombic medium, and (b,c,d) the results of stacking-velocity tomography. The
vertical velocities Vpg 1 = 1.0 km/s, Vgo,1 = 0.6 km/s, Vpg o = 1.5 km/s, Vgg,2 =
0.8 km/s, and Vpg 3 = 1.8 km/s, Vg9 3 = 1.0 km/s were assumed to be known. The
azimuths of the symmetry planes are §; = 40°, 83 = 50° and 33 = 10°.
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The theoretical conditions needed to make this inversion unique for a single or-
thorhombic layer require that the reflector has at least a mild dip (¢) and the azimuth
of the dip plane (3) be different from those of the vertical symmetry planes of the
overburden (8 + 90°). If the reflector is horizontal, the vertical velocities and the
anisotropic parameters €12, §(123) and 4(1? cannot be obtained from the reflec-
tion traveltimes of PP- and SS-waves (or PS-waves) alone (Grechka et al., 1999a).
Even a mild reflector dip ¢ = 15 — 20°, however, makes the inversion for a single
orthorhombic layer feasible; a similar result was obtained by Tsvankin and Grechka

(2000, 2002) for VTI media.

When the dip plane of the reflector coincides with one of the vertical symmetry planes
of the overburden, the NMO ellipses are co-oriented with the dip and strike directions
and do not contain enough information about the medium parameters. The difference
between the dip direction and the azimuth of the nearest symmetry plane has to
exceed 10° to ensure unambiguous inversion. The same condition (|¢) — 5| > 10°) is
required in the inversion of multiazimuth P P-wave traveltimes for the anellipticity

parameters 7 of orthorhombic media (Grechka and Tsvankin, 1999a).

Synthetic tests on noise-contaminated data for typical orthorhombic models show
that, for a single layer, noise does not get amplified by the inversion algorithm. In
contrast, the estimated anisotropic parameters in layered orthorhombic media often
are significantly distorted as a result of error accumulation with depth and a reduced
sensitivity of surface data to the parameters of deeper layers. We suggested that
this instability in stacking-velocity tomography could be avoided by supplementing
the surface data with constraints on the vertical velocities of the P- and S-waves
measured from well logs or check shots. This constraint makes the inversion re-

sults sufficiently stable for application in quantitative fracture characterization for
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orthorhombic reservoir models (Bakulin et al., 2000).
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Chapter 7

ANALYTIC DESCRIPTION OF NONHYPERBOLIC REFLECTION
MOVEOUT

7.1 Nonhyperbolic moveout equation

Reflection traveltime of pure (non-converted) modes is conventionally approximated
by a Taylor series expansion of the squared traveltime ¢?, which is often truncated

after the quartic term (Taner and Koehler, 1969):
t2 = Ag + As X% + Ay X*, (7.1.1)

where X is the source-receiver offset and

d [ d(#2) ]

d(t?) 1
T 2d(X?) |d(X?)

ax|, (7.1.2)

,A4

Ay =12, Ay =

X=0

to = t(0) is the two-way zero-offset traveltime, and A, is related to the NMO velocity
as Ay = V2. The first two terms in equation (7.1.1) describe the hyperbolic part

of the moveout curve, while A, is the quartic coeflicient primarily responsible for

nonhyperbolic moveout.

Although the series (7.1.1) provides a better approximation for long-spread moveout

than does the conventional hyperbolic equation based on just the NMO velocity, it
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loses accuracy for offsets reaching 1.5-2 z (z is the reflector depth). Tsvankin and
Thomsen (1994) modified equation (7.1.1) by adding a denominator to the quartic

moveout term to make ¢(X) convergent at X — oo:

A X1

2 _ 2
£ = Ao+ 42X + T 00

(7.1.3)

where the additional coefficient A depends on the horizontal group velocity Vjor,

"~ Vaor = Vi

nmo

A (7.1.4)

Equation (7.1.3) was originally derived for VTI media, but its generic form makes it
suitable for anisotropic media of any symmetry. For example, Al-Dajani and Tsvankin
(1998) obtained the exact moveout parameters A; (Vime) and A, for a horizontal
HTI layer and used them to extend equation (7.1.3) to azimuthally dependent P-
wave moveout in HTI media. While equation (7.1.3) is not always adequate for pure
(non-converted) S-waves (Tsvankin and Thomsen, 1994), it provides a simple and
numerically efficient way for modeling the reflection traveltimes of P-waves and, for

relatively simple models, converted waves (Tsvankin, 2001).

For horizontally layered anisotropic media above the reflector, the effective NMO ve-
locity (or the effective A,) in a certain azimuthal direction can be determined from the
generalized Dix formula of Grechka et al. (1999), which operates with interval NMO
ellipses (Grechka and Tsvankin, 2002a). The velocity Vjor used in equation (7.1.4)
to define the coefficient A is found by averaging the interval horizontal velocities

(Tsvankin, 2001).

Therefore, the key issue in applying equation (7.1.3) is to derive the corresponding

quartic moveout coefficient A;. The dependence of Ay on the medium parameters
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also yields valuable analytic insight into the properties of nonhyperbolic moveout.
Below, we give a general representation of the coefficient A4 and discuss its behavior

for TI media with arbitrary symmetry-axis orientation.

7.2 General expression for the quartic moveout coefficient

Here, we present an exact expression for the quartic moveout coeflicient in arbitrarily
anisotropic, heterogeneous media (Figure 7.1). The derivation, described in detail in
Appendix I, is based on expanding the two-way traveltime in a Taylor series in half-
offset and applying the so-called normal-incidence-point (NIP) theorem (Chernjak
and Gritsenko, 1979; Hubral and Krey, 1980; Fomel and Grechka, 2001), which helps
to relate the Taylor series coefficients to the spatial derivatives of the zero-offset
traveltime. The general form of the quartic moveout coefficient A4 can be represented
as (Appendix I):

1 0%y 0?7 N 7o 01y
16 Oy Oy OYm Oy~ 3 Oy Oy OYm Oyn

. 83’7'0 627'0 ! 83’7'0
0 Oyx Oy, 0z; \ Oz; Ox; 0% OYm OYn

Ay

] LiLiLL,, (7.2.5)

where y defines the CMP location, x defines the reflection point, 7y is the one-way
zero-offset traveltime, and L is a unit vector parallel to the CMP line. Since in our
case the traveltime is recorded at the surface, L = [cosa,sin«, 0], where « is the

azimuth of the CMP line with respect to the axis z;.

Equation (7.2.5) was obtained without making specific assumptions about the anisotropy

or heterogeneity of the model; also, it is generally valid for reflectors of irregular shape.
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zero-offset
reflection point

Fi1G. 7.1. Reflection traveltimes from an irregular interface are recorded in a multi-
azimuth CMP gather over an arbitrarily anisotropic, heterogeneous medium. The
quartic moveout coefficient A4 varies with the azimuth « of the CMP line. h is the
half-offset vector. The derivation of the quartic coefficient in Appendix I takes into
account reflection-point dispersal.

Our derivation, however, assume that the one-way zero-offset traveltime can be dif-
ferentiated with respect to the spatial coordinates near the common midpoint, which
is not the case, for example, in shadow zones. The Taylor series expansion for re-
flection traveltime may break down for models with strong lateral velocity variations
(Grechka and Tsvankin, 1998b) and in the vicinity of caustics. Nonetheless, for suffi-
ciently smooth subsurface models commonly used in seismology, equation (7.2.5) can
be expected to give an accurate representation of the quartic moveout coefficient and

therefore the magnitude of nonhyperbolic moveout.

The form of the azimuthal dependence of the coeflicient A, in equation (7.2.5) is
governed by the derivatives of the zero-offset traveltime 7y with respect to the coordi-

nates of the common midpoint and zero-offset reflection point. For relatively simple
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models, the traveltime 75 can be expressed explicitly as a function of y and x, and
the derivatives in equation (7.2.5) can be evaluated in closed form. However, if the
medium is laterally heterogeneous or has a low anisotropic symmetry, it is conve-
nient to express equation (7.2.5) in terms of the horizontal slowness component of the
zero-offset ray (Cohen, 1998; Grechka et al., 1999). Most important, all derivatives
in equation (7.2.5) can be evaluated using quantities computed during the tracing of

the zero-offset ray.

7.3 Quartic coefficient in a homogeneous TTI layer

While equation (7.2.5) is completely general, the treatment here is restricted to anal-
ysis of nonhyperbolic moveout in a homogeneous T'TTI layer overlaying a planar dip-
ping reflector. Furthermore, we assume that the symmetry axis is confined to the
dip plane of the reflector, which is typical for dipping TI formations (e.g., shales) in
fold-and-thrust belts (Isaac and Lawton, 1999) or near salt domes (Tsvankin, 1997a).
Hyperbolic reflection moveout and the dependence of NMO velocity on the anisotropic
parameters for this model was discussed by Tsvankin (1997a, 2001) and Grechka and
Tsvankin (2000). As in Chapter 4, we parametrize the medium by the symmetry-
direction velocities of P-waves (Vpg) and S-waves (Vso) and Thomsen’s anisotropic
coeflicients ¢, 4, and «y specified with respect to the symmetry axis. In other words,
the parameters are defined by the VTI equations in the rotated coordinate system
whose z3-axis is aligned with the axis of symmetry. The tilt v of the symmetry axis
is considered positive if the axis points toward the reflector (i.e., if the symmetry axis

and the reflector normal deviate from the vertical in the same direction).
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Since the dip plane of the reflector contains the symmetry axis of the overburden,
it represents a vertical symmetry plane for the whole model. Therefore, the dip
and strike directions of the reflector determine the principal axes of the azimuthally-
varying quartic moveout coeflicient A,. Below, we use equation (7.2.5) to study the
functional form of A4 in a TTI layer and its dependence on the reflector dip and

anisotropic parameters.

For a homogeneous medium, the zero-offset traveltime 75 can be expressed explic-
itly in terms of the CMP and reflection-point coordinates (see Appendix J). This
allows us to evaluate the spatial derivatives of 74 and obtain the coefficient A, from
equation (7.2.5). While the exact equation for the quartic coefficient is suitable for
computational purposes, it does not provide analytic insight into the dependence of
A4 on the model parameters. As demonstrated in Appendix J, significant simplifica-
tion can be achieved by applying the weak-anisotropy approximation and linearizing

equation (7.2.5) in the anisotropic parameters.

Although the discussion of the weak-anisotropy results below is formally limited to P-
waves, any kinematic signature of SV-waves (i.e., of the mode polarized in the plane
formed by the slowness vector and the symmetry axis) for weak transverse isotropy
can be obtained from the corresponding P-wave signature by making the following
substitutions: Vpy — Vgo, 6 — o, and € — 0 (Tsvankin, 2001). The parameter
o = (Vpo/Vso)?(e — ) is fully responsible for SV-wave velocity variations in weakly

anisotropic TI media.

The linearized P-wave quartic moveout coefficient in a TTI layer can be written as

(Appendix J)
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21
ATTI = TR F(a, ¢, ), (7.3.6)
Po Vpo
where the function F is defined in equation (J.1.14), ¢, is the two-way zero-offset
traveltime, « is the azimuth of the CMP line measured from the dip plane, and ¢ is

the reflector dip.

Figure 7.2 shows that the linearized equation (7.3.6) is sufficiently close to the ex-
act quartic coefficient for relatively small values of the anisotropic parameters. The
diamonds in Figure 7.2 correspond to the coefficient A; obtained by least-squares
fitting of a quartic polynomial to reflection traveltimes generated by anisotropic ray
tracing. Clearly, equation (7.3.6) (solid curve) provides a good approximation to the
best-fit values of A, for the full range of azimuths. As demonstrated by Tsvankin and
Thomsen (1994), the weak-anisotropy approximation may rapidly lose its accuracy
with increasing values of the parameters ¢ and . However, equation (7.3.6) can still

be used for qualitative analysis of nonhyperbolic moveout in tilted TI media.

7.3.1 Analysis of the approximate quartic coeflicient

It is clear from equation (7.3.6) that regardless of the tilt of the symmetry axis and
reflector dip, the P-wave quartic moveout for weak transverse isotropy is controlled
by a single anisotropic parameter — the anellipticity coefficient 7. If the medium is
elliptical (n = 0), A4 vanishes and reflection moveout becomes purely hyperbolic.
This is a general result valid for an elliptically anisotropic layer with any strength of

the anisotropy (Uren et al., 1990).
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270

Fi1G. 7.2. Accuracy of the linearized quartic moveout coefficient for a tilted TT layer.
The diamonds mark values of A4 obtained for each azimuth by fitting a quartic poly-
nomial to the ray-traced t2(z?)—curve on the spreadlength X ., & 1.252, where z = 1
km is the reflector depth. The solid line is the weak-anisotropy approximation (7.3.6).
The model parameters are Vpg = 1 kmm/s, e = 0.1, § = 0.025, ¢ = 0°, and v = 80°.

7.3.2 Dip and strike components of A,

Equations (7.3.6) and (J.1.14) can be used to find the coefficients A4 in the dip and

strike directions. On the dip line (o = 0°),

Afaip(9) = —tfjg}é cos® ¢ cos(4v — 3¢) . (7.3.7)
0

Note that the quartic coefficient is proportional to cos® ¢, and the magnitude of

nonhyperbolic moveout has a general decreasing trend with dip [the influence of

the term cos(4v — 3¢) is discussed below]. Equation (7.3.7), however, becomes less

accurate for near-vertical reflectors because for ¢ close to 90° several terms involving

anisotropic coeflicients can no longer be treated as small. Evaluation of the exact
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equation (7.2.5) shows that unless the symmetry axis is vertical or horizontal, A4 for

a vertical reflector (¢ = 90°) is relatively small but does not go to zero.

According to equation (7.3.7), the quartic moveout coefficient (and, therefore, non-
hyperbolic moveout as a whole) vanishes if cos(3¢ — 4v) = 0, or (3¢ — 4v) = nn/2
(n = +1,43, 45, ...). In the special case of VT media (v = 0), the quartic coefficient
and nonhyperbolic moveout as a whole vanish for a dip of 30° (see a more detailed

discussion of the VTI model below).

Since the argument 3¢ —4v is a linear combination of ¢ and v, zero values of cos(3¢ —

4v) are represented by straight lines. For instance, 3¢ — 4v = —w/2, or

v= % + <. (7.3.8)

el

For a fixed reflector dip, cos(3¢ — 4v) goes to zero for two different values of the tilt
v between 0° and 90°, which is in good agreement with the computations of analytic
(NMO) and finite-spread moveout velocity in Tsvankin (1995, 2001). Hence, the
absence or low magnitude of dip-line nonhyperbolic moveout in nonelliptical (n # 0)
TTI media may be used to constrain the relationship between the reflector dip and

the tilt of the symmetry axis.

Equation (7.3.7) is written in terms of reflector dip, which cannot be estimated from
surface reflection data unless the velocity model is known. Therefore, for purposes of
anisotropic parameter estimation, it is more convenient to rewrite the quartic coef-
ficient as a function of the horizontal component p of the slowness vector associated
with the zero-offset ray (e.g., Alkhalifah and Tsvankin, 1995). The horizontal slowness

component, or the ray parameter, determines the slope of reflections on zero-offset
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Processing parameters (TTI)
Vp,nmo | M COS4v | 7 sindv

Processing parameters (VTI)
VP,nmo | n I 0

Table 1. Correspondence between the parameters responsible for the kinematic
signatures of P-waves in anisotropic TTI and VTI media. It is assumed that the
CMP line for TTI media lies in the dip plane that also contains the symmetry axis.
The parameter description for TTI media is valid if the anisotropy is weak.

(or stacked) sections and can be measured directly from surface data.

Substituting the ray parameter p = sin ¢/V(¢) [V (¢) is the phase velocity at dip ¢]

into equation (7.3.7) yields

Afan(D) = 8 (}rT_I y)("“o)]4 [(y — %) mn cos 4v + (y - Z) VY nsin 41/] ,(7.3.9)

nmo ,dip

where
Yy =1 (Voo (0) (7.3.10)

and V,ITI(0) is the NMO velocity from a horizontal reflector. Hence, AT}l expressed
as a function of p depends on three parameters: VIII(0), n, and v [or VIII(0),
n cos4v, and 7 sin4v] (Table 1). In principle, the quartic moveout coefficient can be
inverted for these parameters, if accurate estimates of Ajgl are available for three
different dips. The high level of structural complexity in overthrust areas or near salt
domes in some cases may be sufficient for reconstructing the function A}Tﬂp (p). How-
ever, as discussed by Grechka and Tsvankin (1998a), the trade-off between the NMO

velocity and quartic moveout coefficient typically leads to substantial uncertainty in

Ay
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In anisotropic parameter estimation, nonhyperbolic moveout should be used in combi-
nation with the NMO velocity (e.g., Alkhalifah, 1997; Grechka and Tsvankin, 1998a).
The dip-line P-wave NMO velocity for weakly anisotropic TTI media was given by
Tsvankin (1997a, 2001) as a function of dip. Rewriting his result through the ray
parameter p yields

VITI

0
Vnan;I(p) — %—-(y) [1+ fncosdv — gnsindy], (7.3.11)

where

_ Y 2
and

_ Y 2

For vertical transverse isotropy (v = 0), equation (7.3.11) reduces to the expression
derived by Alkhalifah and Tsvankin (1995). Note that, both the dip-line NMO ve-
locity and the quartic moveout coefficient are fully governed by the same parameter
combinations: V,1T1(0), ncos4v, and nsin4v. According to Tsvankin (1997a, 2001),
however, the weak-anisotropy approximation for NMO velocity loses accuracy for an-

isotropic coefficients reaching 0.15-0.2, and the exact Vj,,, becomes dependent on the

individual values of € and §.

Next, we analyze the strike component of the quartic moveout coefficient that can be

obtained by substituting o = 90° into equation (7.3.6):
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AT (8) = — i cost(9— ). (7.3.14)
Po VpPo
Both the dip and strike components of A, are proportional to 7, but their dependencies
on reflector dip ¢ and the symmetry-axis tilt v are entirely different. Equation (7.3.14)
shows that Ajll. goes to zero only if the symmetry axis is perpendicular to the
reflector normal (i.e., the symmetry axis is confined to the reflecting plane). For
example, if the reflector is vertical (¢ = 90°), the strike-line quartic coefficient vanishes
for VTT media (v = 0°). Indeed, for such a model, reflected rays are confined to
the horizontal (isotropy) plane where velocity is independent of angle, which makes
reflection moveout for any azimuth purely hyperbolic. On the whole, the dip and
strike components of the quartic coefficient vanish for different combinations of v and

¢ and, therefore, can be effectively combined in an inversion procedure.

If the symmetry axis is orthogonal to the reflector (¢ = v), Af1L. is independent of
both dip and tilt:

27
A= — . (7.3.15)

4 strike t2 0 VII;O

Equation (7.3.15) is known for the special case of VTI media and a horizontal reflector,
i.e., when ¢ = v = 0 (Tsvankin and Thomsen, 1994). Another special case of interest
is that of an HTI layer (v = 90°) and a vertical reflector (¢ = 90°). Since the
strike line for this model is perpendicular to the symmetry axis, and reflected rays

are horizontal, reflection moveout in the strike direction is identical to that for a V'TI

layer above a horizontal reflector.

The dip-line component of A4 for ¢ = v is proportional to cos* v [equation (7.3.7)],

so it rapidly decreases with dip, while the strike-line component remains constant.
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Fic. 7.3. Azimuthally-varying quartic moveout coefficient A4 for a TTI layer com-
puted from equation (7.3.6). The polar radius is equal to the coefficient A, in the cor-
responding azimuthal direction (the azimuth is measured from the dip plane marked
by the arrow). The reflector dip is ¢ = 15°, and the tilt of the symmetry axis is 40°;
the other parameters change only the scale of the plot (intentionally undefined here).

Therefore, nonhyperbolic moveout from dipping reflectors for this model should be
measured close to the strike direction; a more detailed discussion of the azimuthal

dependence of A, is given below.

7.3.3 Azimuthal dependence of A,

Unlike NMO velocity that has a simple elliptical azimuthal dependence (Grechka and
Tsvankin, 1998b), the variation of the quartic moveout coefficient with azimuth has
a much more complicated character. The nonlinear relationship between A4 and the
angles ¢, v, and « [equation (7.3.6)] leads to multiple zeros of the function A4(c)

whose positions strongly depend on both dip ¢ and tilt v. Figure 7.3 displays a



127

150/
180

210\

270

FiG. 7.4. Azimuthally-varying coefficient A, for a VTI layer computed from
equation (7.3.19). Reflector dip is 30°, and the dip direction is marked by the arrow.

polar plot with a typical azimuthal signature of the quartic coefficient in TTI media.
Clearly, A4 exhibits much more variability compared to the NMO ellipse, with zeros
at azimuths of 38° and 142°. (The quartic coefficient and moveout signature as a
whole have an azimuthal period of 180°.) The sign of the coefficient A, changes from
positive near the dip direction (i.e., for the horizontally oriented lobe in the figure)

to negative for the other lobe corresponding to 38° < a < 142°.

These plots suggest that the azimuthal signature of the quartic coeflicient can provide
useful information for anisotropic parameter estimation. In particular, the azimuthal
directions of the CMP lines with vanishing A, depend on certain combinations of
¢ and v and can be used to constrain the orientation of the symmetry axis [equa-
tion (7.3.6)]. The variation of the sign of A4 with azimuth is also sensitive to both ¢

and v.
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7.3.4 Symmetry axis orthogonal to the reflector

Because of the complicated structure of equation (7.3.6), here we focus on several
special cases of practical importance. Models with the symmetry axis orthogonal
to the reflector (¢ = v) are believed to be typical for fold-and-thrust belts (e.g.,
the Canadian Foothills) where the anisotropy is caused by dipping TI shale layers.
For TI media with ¢ = v, the zero-offset ray is parallel to the symmetry axis and
orthogonal to the reflector, so some features of reflection moveout are similar to those
for a horizontal VTI layer. For example, Tsvankin (1995, 2001) demonstrated that
if ¢ = v, the dip-line NMO velocity obeys the conventional (isotropic) cosine-of-dip

dependence.

The dip and strike components of the quartic coefficient for this model were dis-
cussed above. To study the azimuthal dependence of A,, we substitute ¢ = v into

equation (7.3.6) to obtain

2
AT p=v) = —ﬁ (1 — sin? v cos? a)2 ) (7.3.16)
Po VPo

According to equation (7.3.16), the quartic coefficient goes to zero when
(7.3.17)

Condition (7.3.17) can be satisfied only on the dip line (@ = 0°) of a vertical reflector
(v = 90°, which implies a horizontal symmetry axis). Away from the dip line, the
coefficient A4 for a vertical reflector varies as

2
AT™M(p=v =90°) = —2—7171— sin® «v. (7.3.18)
tpo Vo
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Equation (7.3.18) shows that A4 rapidly decays with increasing deviation from the
strike direction (¢ = 90°). This conclusion remains valid for arbitrary reflector
dip because the strike component for this model is independent of » and « [equa-

tion (7.3.15)], while the dip component is proportional to cos? v.

7.3.5 Dipping reflector beneath a VTI layer

Setting the tilt v of the symmetry axis in equation (7.3.6) to zero yields the weak-

anisotropy approximation for the quartic coefficient in VTI media

27 cos? ¢

AVTI _
4 2 4
tp0 Vo

(1 — 4 sin? ¢ cos® a) : (7.3.19)
For a vertical reflector (¢ = 90°), A4 vanishes regardless of the azimuth of the CMP
line because reflected rays are confined to the horizontal isotropy plane where ve-
locity is constant and moveout is purely hyperbolic. If the reflector is horizontal
(¢ = 0°), the model as a whole is azimuthally isotropic, and the approximate A4 is
determined by the well-known expression (Tsvankin and Thomsen, 1994; Alkhalifah
and Tsvankin, 1995)

2
AV (p = 0°) = —ﬁ . (7.3.20)
PO Y PO

A discussion of the exact (i.e., not limited to weak anisotropy) quartic moveout co-
efficient of both P- and S-waves in horizontally layered VTI media can be found in

Tsvankin (2001).

For a dipping reflector, the coefficient A4 vanishes in azimuthal directions satisfying
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FiG. 7.5. Same as Figure 7.4, but the reflector dip is 45°.

1
2sing

|cosa| = (7.3.21)
If the dip is equal to 30°, A; goes to zero only for a single azimuth o = 0° that
corresponds to the dip plane (Figure 7.4). This analytic result is in good agreement
with the numerical study of NMO velocity in Tsvankin (1995, 2001), who showed that
the P-wave dip-line moveout approaches to a hyperbola for reflector dips relatively

close to 30°.

For any dip between 30° and 90°, equation (7.3.19) yields two azimuths « (plus two
more azimuths different by +180°) for which A4 = 0. If the dip is equal to 45°, the
quartic coefficient vanishes for azimuth a = +45° (Figure 7.5). The sign of A4 is
positive near the dip plane (—45° < & < 45°) and negative near the strike direction
(45° < a < 135°). If the dip is less than 30°, equation (7.3.21) does not have a

solution, and A4 < 0 for all azimuths (Figure 7.6).
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F1G. 7.6. Same as Figure 7.4, but the reflector dip is 15°.

7.3.6 Horizontal HTI layer

For a horizontal HTI layer (v = 90° and ¢ = 0°), equation (7.3.6) reduces to

27 4
————— CO0S" x. (7.3.22)
tho Vo

AHT
Equation (7.3.22) has the same azimuthal dependence (cos* ) as the exact expression
for A4 obtained by Al-Dajani and Tsvankin (1998). In the equation given by Al-
Dajani and Tsvankin, however, the factor multiplied with cos? o corresponds to the
exact quartic coefficient in the plane that contains the symmetry axis (o = 0°). The
quartic coeflicient vanishes in the isotropy plane orthogonal to the symmetry axis

(o = 90°), where reflection moveout is thus purely hyperbolic.
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7.3.7 Physical modeling results

Here, we show some results obtained by Isaac and Lawton (1999). They built a 2-D
physical model to investigate the magnitude of imaging errors incurred by isotropic
processing when anisotropy is present in the dipping overburden. Figure 7.7a shows
an sketch of the model, and Figure 7.7b shows the migrated zero-offset section. Fig-
ure 7.8 demonstrates that for this particular model, the moveout of the reflection
from the bottom of the TTI layer is almost hyperbolic; that is, the magnitude of the
nonhyperbolic moveout is very small. This result is in agreement with the theoretical
results presented above. From the theory described before, it is possible to predict
that if the model has only one horizontal TTI layer, the magnitude of the nonhyper-
bolic moveout along the z;-direction is small for mild tilts (the plane [z;, 3] contains

the symmetry axis).

7.4 Summary

This chapter introduces an exact expression for the quartic moveout coefficient A4
valid for arbitrarily anisotropic, heterogeneous media. Unlike most existing methods,
the approach used here does not require the model to have a horizontal symmetry
plane and accounts for reflection-point dispersal on dipping or irregular interfaces.
Substitution of the quartic coefficient into the general moveout equation of Tsvankin
and Thomsen (1994) yields a good approximation for nonhyperbolic moveout of P-
waves and, in some cases, mode-converted PS-waves in anisotropic media with real-

istic structural complexity.

It should be emphasized that all quantities needed to calculate the azimuthally-
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Fi1G. 7.7. a) Scaled physical model built by Isaac and Lawton (1999). The model is
composed of two layers. The first layer has TTI symmetry; it was made with phenolic
material. The second layer is isotropic, and it was made with Plexiglass. b) migrated

zero-offset section.
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F1a. 7.8. Shot gather showing that the moveout of the reflection from the bottom of
the TTI layer is close to hyperbolic. The parameters of the TTI layer are: ¢ = 0.18,
0 = 0.08, and v = 45°.
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varying quartic coefficient can be obtained by tracing a single (zero-offset) ray. Com-
puting the zero-offset ray is also sufficient to construct the NMO ellipse (i.e., the
azimuthally varying NMO velocity) responsible for short-spread moveout (Grechka
et al., 1999; Grechka and Tsvankin, 2002a). Therefore, the results of this chapter can
be used to model azimuthally dependent long-spread moveout in a computationally

efficient way, without time-consuming multi-offset, multi-azimuth ray tracing.

The general equation for A4 was applied to study the properties of P-wave nonhy-
perbolic moveout in TI media with arbitrary orientation of the symmetry axis. The
analysis was restricted to a homogeneous TI layer above a planar horizontal or dip-
ping reflector; it was assumed that the symmetry axis is confined to the dip plane.
To gain insight into the the dependence of the quartic moveout coefficient on the
model parameters, we simplified the exact expression by linearizing it in the aniso-
tropic parameters. The derived weak-anisotropy approximation is proportional to the
anisotropic time-processing parameter 1 = € — 9, so the magnitude of nonhyperbolic

moveout increases as the model deviates from elliptical (e = §).

While the azimuthal dependence of A4 is a rather complicated function of the reflector
dip ¢ and the tilt v of the symmetry axis, the expressions for the quartic coefficients in
the principal (dip and strike) directions are relatively simple. In particular, the strike
component of A; depends solely on the difference between the dip and tilt rather than
on their individual values. The magnitude of the dip component is proportional to
cos3 ¢, so it rapidly decreases with ¢. For a fixed dip, the dip-line quartic coefficient

vanishes for two values of the tilt between 0° and 90°.

While the azimuthal dependence of NMO velocity typically has a simple elliptical

form, the azimuthal variation of the quartic coefficient in tilted TI media turns out to
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be more complicated, sometimes with A4 vanishing in several azimuthal directions.
The azimuthal positions of the zeros of the quartic coefficients and the signs of A4 in
different azimuthal sectors are largely governed by the tilt v and reflector dip ¢ (7
plays the role of a scaling coefficient). In realistic heterogeneous media, nonhyper-
bolic moveout is also caused by vertical and lateral velocity gradients, but anisotropy
usually makes a more significant contribution to A, (Alkhalifah, 1997). In particu-
lar, the azimuthal dependence of nonhyperbolic moveout over a medium containing

a tilted TT layer should be well-described by the equations given in this paper.

In the important special case of the symmetry axis orthogonal to the reflector (¢ = v),
the quartic coefficient goes to zero only on the dip line of a vertical reflector. For
this model, the strike-line A4 is independent of dip (and tilt) and has the same value
as in VTI media, while the dip-line A4 decreases with dip as cos* ¢. Therefore, the
magnitude of nonhyperbolic moveout for ¢ = v is significant mostly for azimuthal
directions close to the reflector strike. If the medium is VTT and reflector dip is mild
(¢ < 30°), A4 is negative for all azimuths, and its magnitude increases away from
the dip direction. For a 30° dip, nonhyperbolic moveout in VTI media vanishes on
the dip line, which agrees with existing numerical results (Tsvankin, 1995, 2001). If
the dip exceeds 30°, A4 goes to zero in two azimuths that do not coincide with either

strike or dip directions.

For purposes of anisotropic parameter estimation, moveout equations have to be
rewritten in terms of the ray parameter p that can be determined from reflection
slopes on zero-offset (or stacked) sections. The dip components of both A4 and NMO
velocity expressed through p depend on the same three parameter combinations in-
volving n, v, and the NMO velocity from a horizontal reflector. This result and

the high sensitivity of the azimuthal signature of A, to the symmetry-axis orienta-
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tion indicate that P-wave nonhyperbolic moveout may provide valuable information
for velocity analysis in TTI media. Although the trade-off between V., and A,
makes quantitative estimates of the quartic coefficient relatively unstable (Grechka
and Tsvankin, 1998a), the azimuthal variation of the sign of A4 and the directions of
vanishing or small nonhyperbolic moveout should be detectable from wide-azimuth

reflection data.
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Chapter 8

DISCUSSIONS AND CONCLUSIONS

8.0.1 Conclusions

I introduced stacking-velocity tomography for wide-azimuth P-wave reflection data.
If the overburden contains dipping interfaces, P-wave NMO ellipses measured from
multi-azimuth 3-D reflection data over layered VTI media depend on all three relevant

interval Thomsen parameters (Vg ., €,, and 6,).

If the interfaces have different azimuths and do not cross each other, the P-wave
NMO ellipses in an N-layer model yield 3N — 1 independent equations for the 3N
interval VTI parameters Vp », €,, and d,. The spatial variation of the NMO ellipses for
this model does not provide any additional information for the inversion procedure.
Therefore, in general surface 3-D P-wave data alone are insufficient to determine the
unknown VTI parameters and reconstruct the interfaces in a unique fashion. For 2-D
models with co-oriented interfaces, the axes of all NMO ellipses are parallel to the
dip and strike directions, and the number of independent equations reduces further

to 2N.

This ambiguity, however, can be overcome if a single parameter in any layer (for 3-D
models) is known a priori. For example, in many cases the subsurface layer may be

assumed to be isotropic (e; = §; = 0), or the vertical velocity in it may be estimated
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in a shallow borehole. The inversion can also be made unique by introducing some
relationship between the parameters (e.g., between € and 4) in at least one of the
layers. The only model for which this approach fails to remove the ambiguity (for

P-wave data) is elliptical anisotropy (e, = d,).

In contrast to media with planar interfaces, for VT media with irregular interfaces it
may be possible to reconstruct the model in depth from P-wave reflection traveltimes
alone. Interface curvature increases the angle coverage of reflected rays, which helps
to constrain the parameters of the anisotropic velocity field. Only if the anisotropy
is close to elliptical, does the depth scale become poorly constrained by P-wave data
regardless of the interface shape, which agrees with the results of Dellinger and Muir

(1988).

I also extended stacking-velocity tomography to mulicomponent (P and S) data.
The tomographic algorithm is designed to invert wide-azimuth traveltimes of P and
S-wave reflections (in general, using two split S-waves) for the interval parameters
of TI media. Although the method does not operate directly with converted PS-
waves, it can still be applied in multicomponent ocean-bottom surveys. Prior to
the anisotropic velocity analysis, PS data are combined with the P P-wave moveout
from the same interface to compute the reflection traveltimes of SS-waves using the

model-independent kinematic technique of Grechka and Tsvankin (2002b).

The multicomponent tomography was implemented for a stack of transversely isotropic
layers separated by smooth interfaces. The detailed analysis for a homogeneous T1
medium and numerical testing for layered models show that for a range of reflec-
tor dips and tilt angles of the symmetry axis, the combination of PP and PSV (or

SV SV') data can be used to build anisotropic models for depth processing. The most
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notable exception is horizontally layered VTI media, where even long-spread (nonhy-
perbolic) moveout of PP- and PSV-waves does not constrain the vertical velocities

(Grechka and Tsvankin, 2002¢).

The inversion of P-wave stacking velocities was applied to 2D physical-modeling data
of Leslie and Lawton (1996). This physical model, which contains a bending TTI
layer, was built to simulate the distinctive features of typical reflection data acquired
over T'TT shale layers in the Alberta Foothills. Two important constraints on the
T'TI model were provided by the geologically justified assumptions that the symmetry
axis is orthogonal to the bedding and the TTI layer is homogeneous. Another, more
arbitrary assumption used in the inversion procedure was that the bottom of the
model is horizontal. This assumption, however, would have been unnecessary if the
acquisition geometry had been suitable for processing reflections from steep interfaces
in the shallow portion of the model. The assumptions made it possible to estimate

all model parameters from P-wave reflection traveltimes.

The multicomponent stacking-velocity tomography was further generalized for or-
thorhombic media. A number of synthetic tests on noise-contaminated data for typi-
cal orthorhombic models showed that, for a single layer, noise does not get amplified
by the inversion algorithm, and the anisotropic inversion is stable. In contrast, the es-
timated anisotropic parameters in layered orthorhombic media often are significantly
distorted as a result of error accumulation with depth and a reduced sensitivity of
surface data to the parameters of deeper layers. This instability in stacking-velocity
tomography can be avoided or reduced by supplementing the surface data with con-
straints on the vertical velocities of the P- and S-waves measured from well logs or
check shots. This constraint makes the inversion results sufficiently stable for ap-

plication in quantitative fracture characterization for orthorhombic reservoir models
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(Bakulin et al., 2000).

While the above algorithms operate with NMO velocities or ellipses, I also introduced
an exact expression for the quartic moveout coefficient A, valid for arbitrarily aniso-
tropic, heterogeneous media. Unlike most existing methods, the approach used here
does not require the model to have a horizontal symmetry plane and accounts for
reflection-point dispersal on dipping or irregular interfaces. Substitution of the quar-
tic coeflicient into the general moveout equation of Tsvankin and Thomsen (1994)
yields a good approximation for nonhyperbolic moveout of P-waves and, in some
cases, mode-converted PS-waves in anisotropic media with realistic structural com-

plexity.

It should be emphasized that all quantities needed to calculate the azimuthally-
varying quartic coeflicient can be obtained by tracing a single (zero-offset) ray. Com-
puting the zero-offset ray is also sufficient to construct the NMO ellipse (i.e., the az-
imuthally varying NMO velocity) responsible for conventional-spread moveout (Grechka
et al., 1999b; Grechka and Tsvankin, 2002a). Therefore, these results can be used
to model azimuthally dependent long-spread moveout in a computationally efficient

way, without time-consuming multi-offset, multi-azimuth ray tracing.

The general equation for A4 was applied to study the properties of P-wave nonhy-
perbolic moveout in TT media with arbitrary orientation of the symmetry axis. The
analysis was restricted to a homogeneous TI layer above a planar horizontal or dip-
ping reflector; it was assumed that the symmetry axis is confined to the dip plane.
The derived linearized expression for A4 is proportional to the anisotropic P-wave
time-processing parameter 7 =~ ¢ — J, so the magnitude of nonhyperbolic moveout

increases as the model deviates from elliptical (e = ¢).
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In the important special case of the symmetry axis orthogonal to the reflector (¢ = v),
the quartic coefficient goes to zero only on the dip line of a vertical reflector. For
this model, the strike-line A4 is independent of dip (and tilt) and has the same value
as in VTI media, while the dip-line A; decreases with dip as cos!¢. Therefore,
the magnitude of P-wave nonhyperbolic moveout for ¢ = v is significant mostly for
azimuthal directions close to the reflector strike. If the medium is VTI and reflector
dip is mild (¢ < 30°), A4 is negative for all azimuths, and its magnitude increases away
from the dip direction. For a 30° dip, nonhyperbolic moveout in VTI media vanishes
on the dip line, which agrees with existing numerical results (Tsvankin, 1995, 2001).
If the dip exceeds 30°, A4 goes to zero in two azimuths that coincide with neither
strike nor dip directions. These results can be used to constrain the symmetry-axis

orientation.

In all the inversions presented in this work, the magnitude of the objective function

evaluated at the initial guess was always greater than 1.

8.0.2 Future work

Recently Grechka et al. (2002) successfully applied stacking-velocity tomography to
2D field data (PP- and PSV-waves). The full potential of multicomponent stacking-
velocity tomography can be realized by applying it to 3D data. To do so, it is necessary
to recover the two pure shear-wave traveltimes (S1.5; and S»S,) from PP, PS;, and
PS, data using the PP + PS = 5SS method. This is a challenging task that requires
identification of the two converted waves (PS; and PS,), which involves treating
such problems as geophone coupling, vector fidelity, irregular acquisition geometries,

random noise, and multiples. Clearly, the presence of lateral heterogeneity is a major
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challenging problem for stacking-velocity tomography and one that requires further
research. Another source of problems for stacking-velocity tomography may be the
absence of sharp interfaces; smooth transition zones between layers may give rise to

inaccurate estimates of the 575, and 535, traveltimes.

The joint inversion of near and far offsets is another subject requiring further inves-
tigation. This joint inversion may have some advantages over full-scale tomography;
for instance, the azimuthally varying hyperbolic and nonhyperbolic moveouts of pure
modes can be reconstructed by tracing only one zero-offset ray per common midpoint
and per reflector. As shown in Chapter 7, it may be feasible to get additional infor-
mation from nonhyperbolic moveout; as a consequence, one may be able to get better
estimates of the anisotropic parameters for lower symmetries (orthorhombic, mono-
clinic, etc). The practical implementation of this joint inversion is challenging for the
reasons mentioned in the previous paragraph. Again, one of the critical problems in

dealing with large offsets is the presence of pronounced lateral velocity variations.
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APPENDIX A

A.1 Derivation of the NMO velocity

The derivation is based on expanding the traveltime in a Taylor series in half-offset h
near the CMP location (h = 0) (Grechka and Tsvankin, 1998b). The traveltime field

is assumed to be smooth enough for all needed derivatives to exist at zero offset.

If the coordinate of the common midpoint O is denoted by y (Figure A.1), the coor-

dinates of the source S and receiver R are y — x and y + x, where
X = [1121, Ta, 1173] =hL=h [Ll, Eg, £3] . (A].].)

L corresponds to the unit vector parallel to the CMP line. The pure-mode two-way
reflection traveltime ¢ depends on the positions of the source and receiver and on the
coordinate r = r(y,x) of the reflection point. Summing the one-way traveltimes 7

corresponding to the downgoing and upgoing rays yields

ty,x,r) =7(y —x,r) + 7(y + x,1). (A.1.2)

Since reflection point dispersal (i.e., the deviation of r from ry in Figure A.1 for
|x| # 0) does not change NMO velocity (e.g., Hubral and Krey, 1980; Goldin, 1986),

we assume that nonzero-offset rays are reflected at point rg:

t(y) X, l‘) = t(Y) X, 1‘0) = T(y - X, 1'0) + T(y + X, rO) .
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CMP line

Fi1c. A.1. Reflected rays recorded on a common-midpoint line in 3-D space. rg is
the reflection point of the zero-offset ray originated at the CMP location O. The ray
excited at S and emerging at R is reflected at a different point r, but the reflection-
point dispersal has no influence on NMO velocity.
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Hence, for a given reflection event and a fixed CMP location (constant y and ry), ¢

is a function of the one-way traveltime from the zero-offset reflection point:
t(x) = 7(—x) + 7(x) . (A.1.3)

Taking into account equation (A.1.1), the first derivative of the traveltime with respect

to the half-offset A is given by
— =) —L. (A.1.4)
Using equation (A.1.3), we find the derivative (A.1.4) at zero offset as

dt & or = 0Ot
i heo™ s+ ) 2= I

Differentiating equation (A.1.4) again yields

2 3 2
LI Tt r (A.1.6)

Therefore, at zero offset

3 0%t

Xl=h=0 g 'ome1 0Tk OTm

d*t
dh?

3 2
Lolm=2% 07

Ly Ly, A.1.7
h=0 km=1 8IBk axm k ( )

h=0

To obtain the equation for NMO velocity along the CMP line £, we expand the

traveltime t(h) in a Taylor series,

2
h'_ 4. (A.1.8)

h=0 2 ) ’

t(h,L) =1ty + ﬁ

d*t
h
dh

o T dR2
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where to = 27y is the two-way zero-offset traveltime. Substituting equations (A.1.5)

and (A.1.7) into equation (A.1.8) leads to

o*r ‘
axk a5l7m h=0

3
t(h, L) =to+h* > Lp Lo+ ... (A.1.9)

k,m=1

Squaring equation (A.1.9) and keeping quadratic and lower-order terms with respect

to h yields

2 L) = £ 4 207 Y O LiL A

¢ = +2¢ — - .1.10
(h, L) = t5 + 210 k,mz=l 8T, O |n=o * ( )

Introducing the source-receiver offset

X =2h, (A.1.11)

we rewrite equation (A.1.10) in its final form

(X, L) =t + (LU L") X2, (A.1.12)

Here the superscript T denotes transposition; the 3 x 3 symmetric matrix U is defined

as
o0t Opy
m=To=——— =Ty —— , kkm=1,23), Al1l
Uk 7 a$k a-’Em h=0 7o a:L‘m h=0 ( m 3) ( 3)
and
Pk = a—T, (k=1,2,3) (A.1.14)
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are the components of the slowness vector p = [p1, p2, p3)-

Comparing equation (A.1.12) with the conventional definition of the normal-moveout

velocity Vimo(L£) on the CMP line L,

2

2(X, L) = Al1
( ) E) tO + ‘/;lzmo (ﬁ) ? ( 5)
we conclude that
1 T
=LUL". (A.1.16)

Viino(£)
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APPENDIX B

B.1 Constructing the NMO surface from the NMO ellipse

Let us assume that the NMO ellipse (matrix W) in the [z, z5]-plane has been con-
structed from three or more moveout-velocity measurements in different azimuthal
directions. To build the NMO-velocity surface U from W, we need to obtain the

matrix elements Ugs. This can be done by using the Christoffel equation,
F(p,x) =0, (B.1.1)

where p = p(x) is the slowness vector of rays generated at the zero-offset reflection
point, and F' explicitly depends on the spatial coordinates x because in heterogeneous

media the elastic stiffness coefficients ¢;; vary in space.

Differentiating equation (B.1.1) with respect to z; and z, yields

: Opk :

ZFPA; +F:L‘j=0, (.7=1)2)) (B12)
i1 0%

where F,, = 0F/0p;, and F;, = 0F/0z;. The partial derivatives of the horizontal

slowness components and the zero-offset traveltime 7y define the NMO ellipse W:

o _ Wy

o5, 1 (1,7 =1,2). (B.1.3)

Substituting equation (B.1.3) into equation (B.1.2) and solving for dps;/dz;, we find
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Us. = 3]73 FPI le + Fp2 ng + To ij
B=Toy3 - = —

oz F, , (1=1,2). (B.1.4)

Differentiating the Christoffel equation (B.1.1) with respect to z3 and taking into ac-
count that Op;/0z3 = Ops3/0z; (because of the symmetry of U) leads to the following

expression for Uss:

Ops _ B Uis + B, Ups + 70 Fi
3:1:3 Fpa '

U33 =170 (B15)
At a fixed spatial location x, the Christoffel equation can be treated as a relationship
between the vertical slowness component p; = ¢ and the horizontal slownesses p;

and po. Implicit differentiation of the Christoffel equation then gives (Grechka et

al., 1999b)
E,. )
4; = _%, (.7 = 172): (816)

where q; = 0q/0p; = Ops/0p; and F, = 0F/0q = O0F/0ps. Using equation (B.1.6),

we rewrite equations (B.1.4) and (B.1.5) in the form

Fy, .
Ujz = ¢1Wi; + g2Wo — 1o Fj , (1=12) (B.1.7)
q
and
Fy,
Uss = q1Uzz + q2Us3 — 19 F (B.1.8)
q

Substituting equation (B.1.7) into (B.1.8), we obtain the final expression for Us; and

the NMO-velocity surface as a whole:
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Wi Wi g1Wi + q2Whp — 10 Fy [ Fy
U={[ o Wy g1 Wiz + qoWas — 70 Fir, [ Fy ,(B.1.9)
o o AW +2¢19. Wi + ¢GWae — 10 (¢ Fey + g2 Fs, + Fry) [ Fy

where bullets in the lower triangle of the matrix denote the elements Uy = Uy,

Uz, = Uiz, and Usp = Uss.
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APPENDIX C

C.1 Dix-type averaging in heterogeneous anisotropic media

Here we give a detailed description of the Dix-type procedure for building the NMO-
velocity surfaces in heterogeneous anisotropic media. Suppose we would like to
use a known surface U(7y) at the zero-offset traveltime 7y to construct the surface
U(7 + A7) at the time 79 + A7y, where A7y is an infinitesimal interval. We assume
that the projection of the slowness vector p(7p) onto the plane P(7y) L dp/dr is lo-
cally preserved over the ray segment corresponding to A7y (Figure C.1). Given the

intersection of the NMO-velocity surface U(7p) with the plane P(7),
WP (75) = U(70) Y P(70),

the intersection at the time 79 + A7y is given by the Dix-type equation

-1 -1
W] 4 Ay WP ]

d1.1
T0 + AT (C.L.1)

[WP(TO)(TO'*'AT())]—I _ To [
Here

P
W (T0)|[T0,T0+ATO]= Ul[’ro,’ro—}-ATo]n P(TO)

is the intersection of the local NMO-velocity surface U|[T0’T0 +Ar) With the plane P(70).
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zero-offset

F1G. C.1. The projection of the slowness vector p(7y) onto the plane P(rp) L dp/dro
is locally preserved even if the medium is inhomogeneous and anisotropic.

The plane P(ry + A7) L dp/dro| at traveltime 79 + A7 generally differs from

T0+AT0
the plane P(7), as shown in Figure C.1. In order to account for the rotation of the
plane P along the ray, we reconstruct the NMO surface U(7y + A7p) from its cross-
section WP(™) (75 + A7) using equations (D.1.9) and (D.1.12) (see Appendix D) and

find the intersection of U(7y + A7p) with the plane P(ry + ATp):
WP(ro+A70) (To + AT()) B U(Tg + AT()) ﬂP(T() + AT()) .

Since the slowness components are locally preserved in the plane P(ry + A7p), we
can continue the cross-section WP(r0+470) (7 + A7;) along the next ray segment using

equation (C.1.1) applied to the time interval [rg + A7, 7 + 2A7).
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In summary, continuation of the NMO-velocity surface along the zero-offset ray in-

volves the following steps:
Step 1. Construct the intersection W”(0)(ry) [equation (D.1.7)] of the given NMO-
velocity surface U(7,) with the plane P(7p) orthogonal to the vector dp/dm.

Step 2. Continue the cross-section of the NMO-velocity surface over the time interval

ATp; that is, compute WP(0) (14 + Arp) from WP(0) (1) using equation (C.1.1).

Step 3. Reconstruct the surface U(7y + A7p) [equations (D.1.9) and (D.1.12)] from

its cross-section WP(0) (1 + Arp).

Step 4. Repeat Step 1 for the surface U(ry + A7p).
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APPENDIX D

D.1 Operations with cross-sections of NMO-velocity surfaces

In this appendix, we show how to compute the intersection W7 of the NMO-velocity
surface U with an arbitrary plane P and reconstruct the matrix U from its given
cross-section W”. Let us denote by z the unit vector in the direction dp/d7 normal

to the plane P. The vector z can be specified by two spherical angles ¢; and ¢s:

z = [sin ¢ cos @, sin ¢; sin ¢, cos @] . (D.1.1)

It is straightforward to verify that the unit vectors

bV = [cos ¢ cos pa, cOS Py Sin Py, — sin ¢y] (D.1.2)
and
b® = [—sin ¢y, cos ¢, 0] (D.1.3)

are both orthogonal to z and, therefore, lie in the plane P L z. Thus, any vector b

in P is given by

b =bWcosa+bPsina, (D.1.4)
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where « is the azimuth (within P) with respect to b(%).
The NMO velocity within the plane P,

1

can be viewed as the intersection of the NMO surface U with the plane P. Substi-
tuting equations (D.1.2) — (D.1.4) into (D.1.5) yields

1

V2 (a) = W} cos’a + 2WE sinacos a + W, sin® a, (D.1.6)
nmo P
where
3
Wi= 3 BomijUm, (,j=12), (D.1.7)
k,m=1
and
1 N N
Bim,ij = 5 (bfz)bﬁ,’l’ +b§c1)b$:l)) . (4,7=1,2, k,m=1,2,3). (D.1.8)

Equations (D.1.1) - (D.1.3), (D.1.7), and (D.1.8) define the matrix W7 that describes
the intersection (i.e., the NMO ellipse) of the NMO surface U with the plane P having

the unit normal z.

Next, we show how to reconstruct the whole NMO surface U from its cross-section

W?P. This procedure is based on equation (B.1.9), which can be written in the form

Wi Wi g, W + q2Wie + Ay
U=[ o Wy 41 Wi + q2Was + Ay , (D.1.9)
o o Wi +2¢1qWia + ¢5Waa + As
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where W is the NMO ellipse in the horizontal plane [z, ], and the quantities A;

are given by

q,1F$1 + q,2F$2 + F:':s
70 .

Ay =— =

The derivatives of F' [equation (B.1.1)], which also determine the derivatives ¢; and
q,i; of the vertical slowness component with respect to the horizontal slownesses are

evaluated at point x of the zero-offset ray specified by the one-way traveltime 7.

From equation (D.1.9) it is clear that in order to compute U we need to know the
matrix W because all other quantities are obtained by differentiating the Christoffel
equation (B.1.1). Substituting equation (D.1.9) into (D.1.7) leads to three linear

equations relating the matrices W and W7:
2
WE=Cij+ > DujWey, (1,1 =1,2). (D.1.10)
#,j5'=1
Here
Cij = 2A1B13,i5 + 2A3 B3 i + A3Bags, ij
and

Dy i; = Byji ij + g Bjis i + q 0By i + .09 j0Bss, ij (@, 5,4,7=12).

To emphasize the fact that equations (D.1.10) represent a system of linear equations

for the unknown elements Wy, we replace the pairs of indices {:j} and {i'j'} by a



166

single index using the following convention: {11} — 1, {12} — 2, and {22} — 3.

Then, equations (D.1.10) can be rewritten in a more conventional form,

3
> Ep W =C, — W, (k=1,2,3). (D.1.11)
k'=1

where Fy are the elements of the 3 x 3 matrix

Di1,11 2Dig,11 Dog 1
E= | Dy,12 2Di212 Do 12
Di1,22 2D12,99 Doy 92

The linear system (D.1.11) can be solved for the matrix W using standard techniques:
W=E"'(W"-C). (D.1.12)

Thus, equations (D.1.9) and (D.1.12), supplemented with the Christoffel equation (B.1.1),
make it possible to reconstruct the NMO-velocity surface U from its intersection W7

with the plane P.
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APPENDIX E

E.1 NMO velocity along a curved CMP line

Here the derivation of the NMO velocity measured along a straight arbitrarily ori-
ented CMP line given by Grechka and Tsvankin (2002a) is extended to CMP lines
with nonzero curvature at the common midpoint. This new derivation is based on
expanding the pure-mode reflection traveltime ¢ in a Taylor series in half offset h
(h = 0 at the CMP location). The traveltime is assumed to be smooth enough for all

needed derivatives to exist at zero offset.

Let us denote x,,, = o(0) the coordinate of the common midpoint O (Figure E.1)
on the irregular CMP line o. If the CMP line is parametrized as a function of its
arclength h, the coordinates of the source S and receiver R become o(—h) and o (h).
Using the small-offset approximation of the reflection traveltime, the function o (h)

can be replaced by its quadratic Taylor series expansion in the vicinity of h = 0:
1
o(h) =Xgyp + Lh+ §ICh2 + o(h?). (E.1.1)

Here L is the unit vector tangent to the CMP line at h = 0,

do
I . , (E.1.2)

=0

L

and K is related to the curvature of the CMP line,
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o(-h)

Irregular
CMP line

FiG. E.1. Reflection traveltimes are recorded along the curved CMP line o with the
common midpoint at O. Note the difference between the reflection points rq and r of
the zero-offset and nonzero-offset rays.

‘o

dh?

=8

K (E.1.3)

h=0

The pure-mode two-way reflection traveltime ¢ measured at small offsets h along the

CMP line o can be expanded in a similar quadratic Taylor series,

dt(a(h),r d*t(o(h),r
t(o(h),r) =t(a(0),r) + Ld(h—)—) h+% % R +... (E.14)
h=0 h=0

The traveltime ¢ depends on the source and receiver positions and on the coordinate
r of the reflection point. Summing up the one-way traveltimes 7 corresponding to the

down- and upgoing rays, we can write
t(o(h),r) =7(o(=h),r) + 7(a(h),r). (E.1.5)

Let us begin with showing (following the derivation of Tsvankin and Grechka, 2000)
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that the reflection point dispersal (i.e., the deviation of r from the zero-offset reflection
point ry in Figure E.1) has no influence on the values of the derivatives dt/dh and

d’t/dh? at h = 0, so equation (E.1.5) can be replaced with
t(o(h),r) = t(o(h),r0) = 7(0(=h),x0) + (o (h), o) . (E.1.6)
Let us examine the difference

At = t(a(h),r) — t(a(h), ro) (B.1.7)

fixed O and h

between the traveltimes corresponding to the specular reflection point r and to the
zero-offset (non-specular) reflection point ro. The source and receiver are located
along the CMP line o at the fixed half-offset h. The difference At can be expanded in
a Taylor series in the distance p = |r — rg| between the points r and ry (Figure E.1).
At zero-offset, r = ry and At|,—o = 0 as follows from equation (E.1.7). Since the
traveltime has an extremum at the specular reflection point r (Fermat’s principle),

the series At(p) starts with the quadratic term
1
At(p) = 5 Ao (h) 2 (o (B) + o(s"), (E.1.8)

where

dzt(a'(h), r)

Aloh) = —— 45 (E.L9)
Differentiating equation (E.1.8) with respect to h yields
dA o(h dolo(h
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Since p = 0 at h = 0, the derivative

dAt
- =0. E.1.11
an |, " (E.1.11)
Therefore,
dt{o(h),r dt(o(h),r
difoth)r) | di{olh).o) (E.112)
dh dh
h=0 h=0
Next, let us differentiate equation (E.1.10) again:
ear PA(e(h) dA(a(h)) dp(a(h))
ge = aw P le) 4 (o) =g
2
dp(a(h)) &p(a(h))
+2 Ao (h)) [T +2A(a(h)) p(o(h)) — (E.1.13)
Evaluating the derivative (E.1.13) at h = p = 0, we obtain
2
LA dp(a(h))
| = 2 A(o(h)) [T (E.1.14)
h=0

To show that the derivative (E.1.14) is zero, one notes that both the traveltime and
the ray trajectory of a pure reflection mode remain the same if one interchanges the

source and receiver positions (the reciprocity principle). Hence,
r(o(h)) =r(o(-h)) (E.1.15)
and, therefore,

p(a(h)) = |r(0'(h)) - r0| = lr(a(—h)) - ro| = p(cr(—h)) , (E.1.16)
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i.e., p is an even function of A for any fixed CMP line o. Consequently,

dp(a(h))

= E.11
= 0, (B.1.17)

h=0

so equation (E.1.14) results in

d?At
dh?

=0. (E.1.18)
h=0

Thus

&t(a(h),r)
dh?

_ &*t(o(h), o)

g (E.1.19)

b

h=0

h=0

and the derivatives in the series (E.1.4) can be obtained by differentiating equa-
tion (E.1.6). This result is equivalent to the normal incidence point (NIP) theorem
proved by Chernyak and Gritsenko (1979) (their proof can also be found in Goldin,
1986) and by Hubral and Krey (1980).

The zero-offset (h = 0) traveltime can be expressed as [see equation (E.1.6)]

t(o(h),1o)| _ = to =27 (%) (E.1.20)

h=0 =
Differentiating equation (E.1.6) and taking into account equation (E.1.1), one finds

dt(a(h))

=0. E.1.21
7 0 ( )

h=0

3
=y gi (—Lk+ Li+2Ki b+ o(h))
k=1 Y0k

h=0

Differentiating the one-way traveltime with respect to h twice yields

M _ ° aQT(a(h)) doy dom 3 aT(U(h)) d%oy,

dh? + Z

. E.1.22
0oy 00 dh dh [ Oox dh? (E-1.22)

k,m=1



172

Using equations (E.1.1), (E.1.6) and (E.1.22) leads to

&*t(o(h)) 3 (a(h)) or(o (h))
—_— + 2 . (E.1.2
dh? =2 k;_l Joy, 00, Z doy, K- | 3)
h=0 h=0 h=0
Noting that
N (E.1.24)
aak h=0 8$k h=0
equation (E.1.23) can be rewritten in the following form:
2i(o(h) L () 5, 9r(x)
dh? Z 2% 0 |, LiLm+2 Z oor |, Kk - (E.1.25)
h=0 -

Equation (E.1.25) relates the second-order derivative of the two-way traveltime ¢
with respect to the half-offset and the second-order spatial derivatives of the one-way

traveltime 7 from the zero-offset reflection point.

To obtain an equation for the NMO velocity along the CMP line o, let us substitute
the derivatives (E.1.21) and (E.1.25) into the series (E.1.4):

367()
LiLm +Z .

h=0

/ck} . (E.1.26)

t(a(h)) =to+ h? { 3 (x)

km=1 axk 6:vm

Squaring this equation and keeping the quadratic and lower-order terms with respect
to h yields
3 07(x)
Ly Lo +

k Z axk

h=0 k=1

Kx } . (B1.27)

(o (h)) =t + 2t h? { 3

k,m=1

Bxk axm he=

Introducing the source-receiver offset
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X =2h, (E.1.28)
one can rewrite equation (E.1.27) in its final form,
t*(o(X)) =+ (LULT +7p-K) X2, (E.1.29)

where 79 = /2 is the one-way zero-offset traveltime. Here T denotes transposition,

and the 3 x 3 symmetric matrix U is defined as

_ 0% (x) _ Om(x) B _
Ukm = To axk amm o = To a.’,l)m o N (k,m == 1, 2, 3), (E130)
pr(x) = or(x) ,  (k,m=1,2,3), (E.1.31)
axk

are the components of the slowness vector p = [p1, p2, p3)- In equation (E.1.29) p is

evaluated at the CMP location.

Comparing equation (E.1.29) with the conventional definition of the NMO velocity
Vamo(or) along the CMP line o,

(E.1.32)

we conclude that

Vie)=LULY+7p-K. (E.1.33)

nmo
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APPENDIX F

F.1 NMO velocity at an irregular surface

Equation (E.1.33) can be used to describe the azimuthal variation of the NMO velocity

measured along CMP lines at an irregular surface s. Let us specify the surface

s = s(hy, h) (F.1.1)

by a pair of curvilinear orthogonal coordinates h; and hy (Figure F.1) in such a way

that the half-offset h along the CMP line o is given as (for h — 0)

hy = h cosa (F.1.2)
and
hy = h sina, (F.1.3)

where « is the azimuth of the tangent to the CMP line at the common midpoint x,,,

with respect to the axis hy (Figure F.1).

For simplicity, the axis z3 of the coordinate frame is directed along the normal n to
the surface s(hy, hy) at the CMP location. This implies that the tangent vector £ to

the CMP line at x,,, [see equation (E.1.2)] is
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F1c. F.1. CMP line o at an irregular surface described by the radius-vector
s(h1, he). n is the unit vector orthogonal to the surface at common midpoint x,,.

L =|cosa, sina, 0], (F.1.4)
and one can replace £ with the vector ¢ which lies in s:
¢ =Ly, Lo] = [cosa, sina]. (F.1.5)

To obtain the NMO velocity for any CMP line o within s, one needs to express the
curvature K in equation (E.1.33) in terms of the derivatives of s with respect to the

coordinates h; and hs. Using equations (E.1.3), (F.1.2) and (F.1.3), one finds

co Tl g s dwa
dh along O, h=0  igel Oh; Oh; dh dh o
= K11 COSZa + 2 K1 Sin @ COS @ + Koy sin (F.1.6)
where
9%s
Gz 08 , (i,j=1,2). (F.17)
7T Ok oh; hi=ha=0

Equation (F.1.6) can be rewritten in matrix form using equation (F.1.5):
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K=trtT. (F.1.8)

Equation (E.1.33) then yields

VnTn?o(S:Z) =4 (W+7-0p'n) eT, (Flg)
where

Thus, the directional dependence of the NMO velocity Vimo(s, £) measured on the
irregular surface s can be described in terms of the following 2 x 2 symmetric quadratic

form:

W=W+7p-k, (F.1.11)

where W is the matrix that represents the NMO ellipse in the plane tangent to s at

the CMP location, and 7o p - K is the correction for the curvature.
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APPENDIX G

G.1 Continuation of NMO velocities through irregular interfaces

Grechka and Tsvankin (2002a) developed a concise Dix-type formula for anisotropic
models composed of homogeneous layers separated by planar interfaces. They showed
that the effective NMO ellipse at a given CMP location can be obtained by averaging
the intersections of the NMO-velocity surfaces with the layer boundaries along the

zero-offset ray.

the derivation of Grechka and Tsvankin (2002a) was based on the fact that the inter-
sections of the NMO-velocity surfaces U with the planar boundaries (i.e., the NMO
ellipses W) are the same on both sides of each interface. For irregular interfaces,
the quantities continuous across the interfaces are the matrices W defined by equa-
tion (F.1.11). Indeed, W determine the NMO velocities measured on the top (+) and

bottom (—) sides of the interface s (Figure G.1). According to equation (F.1.11),
W = W 4 pM g (G.1.1)
W(_) P W(_) + To p(_) K. (G.1.2)

As shown in Appendix E, NMO velocity can be computed using the one-way travel-
times from the zero-offset reflection point to the CMP line. Essentially, those travel-

times correspond to the wavefront propagating from the zero-offset reflection point.
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zero-offset ray

Fi1G. G.1. Zero-offset ray crossing an irregular interface s. Plane P is tangent to the
interface at the intersection point; p{*) and p{~) are the slowness vectors on different
sides of the interface.

To satisfy the boundary conditions, the wavefront has to be continuous across sur-

face s, which implies that the NMO velocities measured on two sides of s at the

reflection/transmission point (Figure G.1) are identical. Therefore,
W = w) (G.1.3)

In contrast, the NMO ellipses W) and W) measured on two sides of the plane
P tangent to s have to be different because the slowness vector changes across the

interface. Combining equations (G.1.1)-(G.1.3), one finds
W = w) — (p(+) - p(‘)) ‘K. (G.1.4)

As discussed in the main text, the correction of NMO ellipses for the interface curva-
ture developed here can be used to extend the Dix-type averaging formula of Grechka

et al. (1999b) and Grechka and Tsvankin (2002a) to media with irregular interfaces.
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APPENDIX H

H.1 Dix-type averaging for the Thomsen coefficient §

As an example of the relationship between the effective and interval anisotropic pa-
rameters, consider the effective P-wave NMO velocity (Vp nmo) for a stack of horizon-
tal homogeneous VTI layers. Here (a) denotes the effective value of the parameter a.
The effective NMO velocity (Vp, nmo) can be found using Dix (1955) averaging of the

interval NMO velocities

(T) (VP,nm0>2 = ZTTL Vlg,nmo’nJ (H].l)

where 7, are the interval one-way zero-offset traveltimes, Vp ymo,» are the interval
zero-dip NMO velocities, which relate to the interval vertical velocities Vpg , and

interval anisotropic coefficients §,, via equation (4.2.3),

V3 nmon = Vho,n (14 26,) , (H.1.2)
and

(1) =" (H.1.3)

is the total (effective) zero-offset traveltime.
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The products of the interval vertical velocities Vpg , and zero-offset traveltimes 7,

determine the layer thicknesses
hn = VPO’nTn 3 (H14)

which add up to produce the effective thickness

hy = 3" hn (H.15)
of the stack of layers. Then, the effective vertical velocity is defined as
h.
(hy _ %"
— — ) H.1.
W) = = £, (H.1.6)

Making use of equation (H.1.4), the effective vertical velocity can be written in the
form

[(V;)]_l = (Vo) = % = ;Q“— = l% ; Vﬁ:n]_l , (H.1.7)

Vpo,

which explicitly shows that (Vpg) is the harmonic average of the interval vertical

velocities Vpg 5.
Next, let us introduce the effective anisotropic coeflicient (§) by analogy with equa-
tion (H.1.2):

(Ve amo)? = (Vipo)? (1 + 2 (0)) . (H.1.8)

The goal is to find the relationship between the effective (d) and the interval coeffi-
cients d,. Substituting equations (H.1.2), (H.1.4), (H.1.6), and (H.1.8) into the Dix

formula (H.1.1), one obtains
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(h) (Vo) (1+2(3)) Zh Veo,n (1+26,) (H.1.9)

(Vpo) (1+2(6)) = Y b Veon (1+268,) . (H.1.10)

(h>

The latter simply says that the product (Vpo) (1+ 2(d)) is the arithmetic average
of the interval products Vpo , (1 +26,). Since the effective vertical velocity (Vpo)
itself, being the harmonic average of the velocities Vpg ,, cannot be greater than its
arithmetic average, the effective (§), found from equation (H.1.10), always gives some

overestimate of the interval &,,.

The last conclusion can be illustrated rewriting equation (H.1.10) in the following

form:

5 (,,)Zh Vpo,n %Zh Vpo,n 0n .
L+2(0) = =2 (H.1.11)

Note, since no approximations have been made, this equation is exact. The first term
in its right-hand side is the ratio of the arithmetic and harmonic averages of the
vertical velocities, therefore, it is always greater or equal than unity. Thus, we arrive

to the following inequality

ﬁ ; hn VPO,n 6n

3) > H.1.12
O —
In particular, when §,, in all the layers are equal, i.e.,
h=8=...=8=...=8, (H.1.13)
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inequality (H.1.12) yields
(6) > 6. (H.1.14)

The equality is reached only if all interval velocities Vpg ,, are equal, in which case
the stack of the layers degenerates into a single layer. In the special case of isotropy,

6 =0, and one has
(6) > 0. (H.1.15)

Therefore, we are getting some nonzero positive effective § just due to layering.

The simple math presented here might shed some light on the well known discrepancy
between the laboratory measurements on shale cores, which give both positive and
negative § (Thomsen, 1986; Vernik and Liu, 1997), and seismic velocities in sedimen-
tary basins, which always lead to the positive values of . While the measurements
on the scale of a rock sample can be thought to correspond to the interval values,
the seismic data, which always involve averaging over some interval, produce more
like effective quantities. Therefore, § obtained from seismic should be always greater

than that measured in the lab.

H.1.1 Two layers

To give an example of the expected values of (J), consider a stack of two layers that

have equal thicknesses

hi = hs. (H.1.16)
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In this case, equation (H.1.11) reduces to

~ Vpo,1+ Vpo,2

14+2() =
+20) 4 Vpo,1 Vpo,2

[VPO,I + Vpo,2 + 2 (Vpo,1 61 + Vpo,2 52)] . (H.1.17)
Introducing the ratio of the vertical velocities

Vpo,2
7 H.1.18
Vpo,1 ( )

leads to the following simplification of equation (H.1.17)

1
142(6) = 4+v“ [1+v+2(6 +v6)]. (H.1.19)

This finally yields the effective (4):

) = 4 ;:V + 14‘:)“ (61 +v6,) (H.1.20)

which can be treated as a function of the velocity ratio v.

An example of (6(v)) is presented in Figure H.1. We see that the values of ()
are bounded by the interval parameters §; and d, only for relatively mild velocity
variations, i.e., when v is close to one. As the deviation of the interval velocity ratio

from unity increases, (4) grows and at some point exceeds the max(dy, é,).

Analysis of the dependence (H.1.20) for positive v shows that the function (§(v)) has

the only minimum at

 [1+24
v= 1126, (H.1.21)

Based on the asymptotic values,
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FiG. H.1. The function (6(v)) for two horizontal VTT layers (solid). The dashed
lines indicate the values of interval anisotropic coefficients d; and J,.

vl_lg_lg (0(v)) =400 and UBTOO (0(v)) = +o0. (H.1.22)
Therefore, the difference between the effective (§) and the max(d;, d>) becomes greater
with the increase of the absolute difference between the velocities Vpy ;1 and Vpg .
Figure H.1 confirms this conclusion. It also shows that (§) can significantly exceed
the interval §-values for the velocity variability routinely observed in the sedimentary

basins.
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APPENDIX 1

I.1 Derivation of the quartic moveout coefficient

Here, we develop a general analytic expression for the quartic moveout coefficient
A4 by extending the approach employed by Grechka and Tsvankin (2002a) in their
analysis of NMO-velocity surfaces. Suppose the traveltime ¢ of a certain pure (non-
converted) reflected wave is recorded on a CMP line parallel to the unit vector L.
The coordinates of the source S and receiver R are defined by the vectors y - h and
y + h (Figure 7.1), where y corresponds to the midpoint, and the half-offset vector

h can be represented as

h =hL = h[Ly, Ly, 0] (I1.1)

To obtain the quartic moveout coefficient, we expand the two-way traveltime in a
Taylor series with respect to the half-offset A in the vicinity of the CMP location
(h=0):

h4
TR (1.1.2)

h=0

h®  dt

31 an

i
21 " dnd

h=0

et
dh?

t(h,L) =t, + dat

i h +

h=0

h=0

where ¢, is the zero-offset traveltime.

For a pure (non-converted) reflection mode, ¢ is an even function of h because the

traveltime remains the same when the source and receiver are interchanged. There-



186

fore, the odd derivatives of ¢ can be dropped from equation (I.1.2), which leads to

h4
—lﬁ + ... (1.1.3)

h=0

i_zf dt

51t dna

d*t

h=0
To find the derivatives in equation (I.1.3), it is convenient to treat reflection traveltime
for a fixed CMP location y as a function of h and the coordinates [z;, 22, 2(z1, 22)] of
the reflection point x since the specular reflection point is determined by the source
and receiver positions, ¢t = ¢(h,x(h)). Using this representation of traveltime and
taking into account equation (I.1.1) yields

dt _ ot ot d(l)k

R E=1.72). 1.1.4
dh ~ Ohy "+axkdh’ ( 2) (I.1.4)

According to Fermat’s principle, for the specular ray

ot
oo =0 (L.L.5)

and equation (I.1.4) takes the form

dt ot
a _ ot .- I1.
dh ~ Ohy Ly (I.1.6)

Evaluating the derivative of equation (I.1.6), we obtain

d*t 0%t 0%t  dz,,
- Lt b Sy,
PR T T T TR

(L.1.7)

where k =1,2and m =1, 2.

Differentiating equation (I.1.7) twice gives the following expression for the fourth

derivative of t:

§4_t o't 9%t 0%z,

= Lollmln+ 35 o0 oh ohe

dh? Oy Ol Ohmdhy, Ll
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Mt oz, o o,
wLn+ 2 LiLm
O, Ohdhdhy Ol Lt g ety Oh

0%t 0z, 0T, 03t 0 <8xn me)
Ly

Y Sho.0z.0h 0h oh ¢ 8.0c,0h, 9k \ ok o
0%t 3z, 03t oz, 0%z,

8200 01 *V 3000 0h, oh OR2

Li. (L1.8)

Since not only the traveltime, but also the ray trajectory, stays the same when the

source and receiver are interchanged, the vector x is an even function of h:

x(Y; h'L) = x(Y) _hL) ) (119)
and

dx d3x

|~ O (1.1.10)

Taking equation (1.1.10) into account, the derivative d*t/dh* [equation (I.1.8)] at the
CMP location (h=0) becomes

d*t o't
= = L,LyLnLy,
dht|,_, ~  OhyOhkOhmOhy|, , "
83t 0%z,
. L1.1
S St |, 02 |,_ (11.11)

Introducing the offset X (X = 2h) and the one-way zero-offset traveltime 75, and

using the results of Fomel and Grechka (2001), we can rewrite equation (I.1.11) as

d*t

1 647'0
_ - L,LyLyLn,
dX*,_, 8 [ OYpOYOYmOYn
01y 0%z,
ml, 1.1.12
3 5 B ( on? h:O) LiL ] (11.12)
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where the derivatives with respect to x; and y; are evaluated at the zero-offset reflec-

tion point and the CMP location.

To represent the derivatives (0°z,/0h?) in terms of the traveltime, we use Fermat’s

principle expressed in the following form (Grechka and Tsvankin, 2002a):

ot

Differentiating equation (I.1.13) twice with respect to h yields

03t 5%t 62$k
Ohyohdz, P B0z, ( oh? h:o) =0, (I.1.14)
and
WL”L’“ * oz0c, (am ) 0. (1.1.15)

As before, all derivatives in equations (I.1.14) and (I.1.15) are computed for the
zero-offset ray. Two equations (I.1.15) corresponding to n = 1,2 can be solved for
the derivatives (0%z,/0h?) and (0%z,/0h?) at h = 0. Substituting the result into

equation (I.1.12) yields

d4t 1 l 647'0
- = = L,LyL,L,
dX*y_, 8 OYpOYkOYmOyn *
637'0 627'0 - 337'0
— LyL,L,L,|. [.1.16
0z;0YxOYm (axiaxj 0z 0y, Oy, P ( )

After the fourth traveltime derivative has been derived, the quartic moveout coeffi-
cient can be obtained from the Taylor series (I.1.3). Introducing the offset X = 2h

into equation (I.1.3) and squaring the first three terms of the series leads to
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X? N d*t
, 2! dXxt

d*t
t2(X,L) ~ (to + ——

X4)2
. (1.1.17)
dX?|, _

x—o 4

Keeping only the quartic and lower-order terms in X transforms equation (I.1.17)

into

t2(X,L) = Ay + A X? + Ay X*. (1.1.18)

Here, Ay = t% = 472 denotes the squared two-way zero-offset traveltime,

Pt
0 dxe

2
8 To Lk Lm 1

A, =t =T ——— =
’ X=0 ayk aym Vnzmo(L)

(1.1.19)

is the quantity reciprocal to the squared NMO velocity on CMP line L (Grechka and
Tsvankin, 1998b), and

N 1 d?t
4\ dX?

To d4t

2
== . (1.1.20)
6 dX* X=o)

X=0

Substituting the derivatives d*¢/dX* from equation (I.1.16) and d*t/dX? from equa-

tion (I.1.19) into equation (I1.1.20) yields the final expression for the quartic coefficient:

Ay = i l 627'0 827'0 + E 847.0
17 16 Oy OYi OYym Oy, 3 Oyx, OY1 OYyy Oyn,
837'0 627_0 -1 637'0
) LinLy. 1.1.21
70 Oyx Oy, 0x; (61;2. axj) az,. O OUm L. L, ( )
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APPENDIX J

J.1 Weak-anisotropy approximation for the P-wave quartic moveout co-
efficient in tilted TI media, with symmetry axis contained in the dip

plane

We consider a homogeneous transversely isotropic layer above a plane dipping reflector
and assume that the symmetry axis (unit vector c) lies in the dip plane (Figure J.1).
Without losing generality, the x;-axis can be aligned with the dip direction, so that

the vector c is given by

¢ = [sinv,0,cosv]. (J.1.1)

The zero-offset ray should be confined to the dip plane that represents a vertical plane
of symmetry for the whole model (Figure J.1). The two-way traveltime between the

common-midpoint y and the reflector in a homogeneous medium is simply

2 \/(331 —y1)? + (T2 — ¥2)* + 22(21, 72) .

J.1.2
Vq(ylay%xl,xz) ( )

t(yh Y2, .’131,$2) =

Here 2(z;, z;) defines the reflecting plane, and V,(yi, 2, 21, Z2) is the group velocity.

Using the weak-anisotropy approximations for the P-wave group velocity and group
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Fi1G. J.1. The reflected wave is recorded above a homogeneous TI layer with a dipping
lower boundary. The symmetry axis is contained in the dip plane [z, 3], but may
be tilted away from the vertical at an arbitrary angle v.

angle in TI media (Tsvankin, 2001), we find

V;:

Vi

+ ncosbsin 2asin 2v)] ,

where we have denoted

sina

cos a

sind

cosb

\/(yl —z1)? + (y2 — 22)°

\/(yl —11)* + (y2 — 32)% + 22

\/(yl —21)2+ (yo — @2)2 + 22
(y2 — z2)

Vo — 27 + (2 — 22)2
(y1 — 1)

\/(yl —21)% + (Y2 — 22)? ,

[4 +m(—8 — € — psin® asin® b — 1 cos 2v(2 cos® bsin® a + sin® asin® b — 1)

(J.1.3)

(J.1.4)

(J.1.5)

(J.1.6)

(J.1.7)
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m = —1-sin®asin®b — cos2v (—1 + 2sin” a cos? b + sin® a sin® b)

+ cosbsin 2asin 2v . (J.1.8)

The parameters used in equation (J.1.3) are introduced in the main text. Since the

zero-offset traveltime needs to satisfy Fermat’s principle, the minimum value of ¢

corresponds to the coordinates of the zero-offset reflection point a;§°) and xgo). This

implies that the derivatives of t(y, y2, 1, Z2) with respect to z; and z, vanish at the

point [x&o), xgo)]:

at(yl,y2>$1,$2) — 0, (Jlg)
01, [z§0)’zg®]
t
0 (y1,y2,$1,$2) =0. (JllO)
0xs [mgm’xg»]

Equations (J.1.9) and (J.1.10) can be used to relate the CMP coordinates y; and y,
to the coordinates $§0) and x;(zo) of the zero-offset reflection point. Substituting equa-
tions (J.1.2) and (J.1.3) into equations (J.1.9) and (J.1.10) and dropping quadratic
and higher-order terms in the anisotropic coefficients yields

sin2(¢ — v)

o +ztang + 20, (J.1.11)

Y1 =2z[0+n—ncos2(é— v)]

yp =z . (J.1.12)

Using equations (J.1.2), (J.1.11), and (J.1.12) to evaluate the derivatives in equa-
tion (I.1.21), we obtain the following linearized approximation for the P-wave quartic

moveout coefficient:
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Fla, ¢,v), (J.1.13)

9 1
— 4+ ——[—24 cos2a + 6 cos da + 8 cos(6¢ — 4v) + 4 cos2(a — 2v)

64 128

—4 cos(4a — 2v) + 24 cos2(¢ — 2v) + 12cos2(a + ¢ — 2v)
+8cos2(a + 2¢ — 2v) + 4cos2(a + 3¢ — 2v) + cos4(a — V)
+32cos2(¢p —v) + 32cos4(p —v) — 16cos2(a + ¢ — v)
+8cos2v + 6cosdv + cosd(a + v) — 4cos2(2a + v)
—16cos2(a — ¢+ v) +4cos2(a + 2v) + 4cos 2(a — 3¢ + 2v)

+8cos2(a — 2¢ + 2v) + 12cos2(a — ¢ + 2v)] . (J.1.14)
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APPENDIX K

K.1 Weak-anisotropy approximation for the P-wave quartic moveout co-

efficient in tilted TI media, with symmetry axis out of the dip plane

Here, we obtain the weak-anisotropy approximation (WAA) for the quartic coefficient
in general TTI media; the symmetry axis (unit vector ¢) does not lie in the dip plane
of the structure (Figure K.1). Without loss of generality, the z;-axis is aligned with

the dip direction, so that the vector c is given by

¢ = [sinv cos B3, sinv sin 3, cos ], (K.1.1)

where (3 is the azimuth of the symmetry axis measured from the dip plane (Fig-
ure K.1). Because the symmetry axis is outside the dip plane of the structure, the
zero-offset ray is not confined to the dip plane; the dip plane of the structure is not a
vertical symmetry plane. As in the case analyzed in Appendix J, the two-way travel-
time between the common-midpoint y and the reflector is given by equation (J.1.2).
Because the symmetry axis has an arbitrary orientation, however, the P-wave group

velocity is given as follows

Vi 1
V, = —é:ig[ﬁél—E(—20+4cos2a+4cos(2b—2ﬂ)
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F1G. K.1. The reflected wave is recorded above a homogeneous TI layer with a dipping
lower boundary. The symmetry axis is outside of the dip plane [z, z3]. The tilt and
azimuth of the symmetry axis are v and 3, respectively.

—2cos(2a + 2b — 28) — 2 cos(2a — 2b + 23)

+8cosa cos(a+b— B —2v) +8cosa cos(a — b+ [ — 2v)
+6cos(2a — 2v) — 2cos(2b — 28 — 2v) + cos(2a + 2b — 28 — 2v)
+cos(2a — 2b+ 2 — 2v) + 4 cos 2v + 6 cos(2a + 2v)

—2cos(2b — 28 + 2v) + cos(2a + 2b — 28 + 2v)

+cos(2a — 2b+ 23 + 2v) — 8cosa cos(a+ b — B+ 2v)

—8cosa cos(a — b+ B+ 2v)) (126 + 20e + 4(8 — €) cos 2a

+4(6 — €) cos(2b — 283) — 26 cos(2a + 2b — 2p3)

+2¢ cos(2a + 2b — 23) — 24 cos(2a — 2b + 23)

+2e cos(2a — 2b+ 23) + 85 cosa cos(a + b — 5 — 2v)

—8ecosa cos(a+b— f—2v)+8icosa cos(a— b+ f — 2v)
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—8ecosa cos(a — b+ [ — 2v) + 66 cos(2a — 2v)

—6¢€ cos(2a — 2v) — 26 cos(2b — 28 — 2v)

+2ecos(2b — 28 — 2v) + d cos(2a + 2b — 28 — 2v)

—ecos(2a + 2b — 20 — 2v) + d cos(2a — 2b + 283 — 2v)
—ecos(2a — 2b+ 23 — 2v) + 46 cos 2v — 4e cos 2v

+66 cos(2a + 2v) — 6e cos(2a + 2v)

—26cos(2b — 28 + 2v) + 2ecos(2b — 23 + 2v)

+0 cos(2a + 2b — 23 + 2v) — ecos(2a + 2b — 23 + 2v)

+6 cos(2a — 2b+ 20 + 2v) — ecos(2a — 2b + 20 + 2v)
—8dcosa cos(a+b— S+ 2v)+ 8ecosa cos(a+b— F+ 2v)

—86cosa cos(a — b+ 3+ 2v) + 8ecosa cos(a — b+ S+ 2v))], (K.1.2)

where sina, cosa, sinb, and cosb are given by equations (J.1.4) to (J.1.7).

Since the zero-offset traveltime needs to satisfy Fermat’s principle, the minimum value
of ¢ corresponds to the coordinates of the zero-offset reflection point x§°’ and xgo). This
implies that the derivatives of ¢(y;, y2, 1, Z2) with respect to x; and z, vanish at the

point [x§°’, a:go)]; these derivatives are defined by equations (J.1.9) and (J.1.10).

As in Appendix J, equations (J.1.9) and (J.1.10) can be used to relate the CMP
coordinates y; and y, to the coordinates a:§°’ and x§°’ of the zero-offset reflection
point. Substituting equations (J.1.2) and (K.1.2) into equations (J.1.9) and (J.1.10)

and dropping quadratic and higher-order terms in the anisotropic coeflicients yields

y = 2 + (z(sec? ¢)(—46 + 20 + 4(5 — €) cos 2

—2(d — €) cos(28 — 2¢) + 46 cos(2¢)
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—4ecos 2¢ — 20 cos(2f + 2¢) + 2e cos(28 + 2¢)

—24 cos(2f — 2v) + 2ecos(2( — 2v)

+6cos(28 — 2¢ — 2v) — ecos(28 — 2¢ — 2v)

+60 cos(2¢ — 2v) — 6ecos(2¢ — 2v)

+0 cos(28 + 2¢ — 2v) — ecos(28 + 2¢ — 2v) + 46 cos 2v

—4e cos 2v — 24 cos(28 + 2v)

+2€ cos(28 + 2v) + d cos(28 — 2¢ + 2v)

—ecos(28 — 2¢ + 2v) + 66 cos(2¢ + 2v)

—6e cos(2¢ + 2v) + 6 cos(28 + 2¢ + 2v) — ecos(2f + 2¢ + 2v)
+646 cos 3 cos ¢ cos v sin ¢ sin v — 64e cos 3 cos ¢ cos v sin ¢ sin v)
(—((2 — 2cos 2B + cos(28 — 2v) + 6 cos 2v

+ cos(25 + 2v)) sin 2¢) + 8 cos S cos 2¢ sin 2v)) /128 — ztan @, (K.1.3)

23 + (2(—46 + 20e + 4(6 — €) cos 28

—2(8 — €) cos(28 — 2¢) + 43 cos 2¢ — 4e cos 2

—26 cos(20 + 2) + 2e cos(28 + 2¢) + 46 cos(B + 2¢ — 2v)
—4ecos(f + 2¢ — 2v) — 26 cos(28 — 2v) + 2e cos(28 — 2v)
+8cos(28 — 2¢ — 2) — ecos(28 — 2¢ — 2v)

+66 cos(2¢ — 2v) — 6e cos(2¢ — 2v)

+0 cos(28 + 2¢ — 2v) — ecos(28 + 2¢ — 2v) + 46 cos 2v
—4e cos 2v — 26 cos(2B + 2) + 2€ cos(26 + 2v)

+6 cos(28 — 2¢ + 2v) — ecos(28 — 2¢ + 2v)
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+60 cos(2¢ + 2v) — 6e cos(2¢ + 2v)

+6 cos(28 + 2¢ + 2v) — ecos(28 + 2¢ + 2v)
+46 cos(B — 2¢ + 2v) — decos(B — 2¢ + 2v)
—44 cos(f — 2¢ + 2v) + decos(f — 2¢ + 2v)
—40 cos(B + 2¢ + 2v) + 4decos(B + 2¢ + 2v))

sec ¢ sin 3 sin v(cos ¢ cos v + cos Ssin ¢sinv))/8, (K.1.4)

where z is the depth of the zero-offset reflection point. Using equations (J.1.2),
(K.1.2), (K.1.3), and (K.1.4) to evaluate the derivatives in equation (I.1.21), we obtain
the following linearized approximations for the z;- (o = 0°) and z,-line (& = 90°)

P-wave quartic coeflicients when the dip of the reflector is 0°:

ATTMa =0°) = —(e—6)(18 — 24cos 208 + 6cos4 + 28 cos(28 — 4v
4,7
—4 cos(4p — 2v) — 16 cos(2 — 2v) + cos(48 — 4v)
+40 cos 2v + 70 cos 4v — 16 cos(2f + 2v) + cos(45 + 4v)

—4.cos(48 + 2v) + 28 cos(2 + 4v)) /(256(Vpez)?) , (K.1.5)

Ap(@=90°) = —(e—6)(18+ 24cos2f + 6cos4B — 28 cos(2f — 4v)
—4 cos(4f — 2v) + 16 cos(2f — 2v) + cos(45 — 4v)
+40 cos 2v + T0cos4v + 16 cos(23 + 2v) + cos(4 + 4v)

—4 cos(48 + 2v) — 28 cos(28 + 41))/(256(Vpoz)?) . (K.1.6)

If the reflector is dipping, the expressions are more complicated, and it is impossible
to write them in one page. Equations (K.1.5) and (K.1.6) show that the dependence

of Ay on the tilt (v) and azimuth (3) of the symmetry axis is nonlinear. These
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equations also tell us that regardless of the tilt and azimuth of the symmetry axis,
the only anisotropic parameter that can be constrained is the parameter 1. Moreover,

if the medium has elliptical anisotropy, the quartic coefficient becomes equal to zero.

These equations also show that the dependencies of the x;- and z,-line quartic co-
efficients on the tilt (v), and azimuth (3) of the symmetry axis differ. In addition,
equations (K.1.5) and (K.1.6) illustrate that the z;- and z,-line quartic coefficients

may be zero for some combinations of v and 5.

We used Mathematica to get the linearized expressions shown in this appendix.
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APPENDIX L

L.1 Quartic coefficient for a homogeneous orthorhombic layer overlaying

a plane dipping reflector

First, we review notation and some relevant properties of wave propagation for or-
thorhombic models. Seismic signatures in orthorhombic media can be conveniently

described in terms of the two vertical velocities,

Vio = ([ and Vio =4/ -2, (L.1.1)
p p

(123) " and 4(? introduced by

and Thomsen-style anisotropic coefficients €12, §
Tsvankin (1997c); ¢;; are the components of the stiffness tensor and p is the den-
sity. The coefficients ¢, §@), 4@ (; = 1,2) defined in the vertical symmetry planes
[z, 3] and [z1, z3] (Figure L.1) have the same meaning as Thomsen’s (1986) pa-

rameters €, §, and 7 for transverse isotropy. The coefficient §¢®) plays the role of

Thomsen’s ¢ in the horizontal plane [z}, 2.

The kinematics of wave propagation in the symmetry planes of orthorhombic media is
practically identical to that in VTI media. The only notable difference is caused by the
so-called singularity directions in orthorhombic media (the point A in Figure L.1),
where the phase velocities of two shear waves coincide. The Sj-wavefront near a

singularity usually becomes multi-valued, while the wavefront of the fast S;-wave



201

(D)

)

Fi1G. L.1. Sketch of body-wave phase-velocity surfaces in orthorhombic media (after
Grechka et al., 1999b). The coefficients €(!), 6 and y(!) are defined in the symmetry
plane [z, 73], while €®, 6 and v® correspond to the plane [z), 23] (Tsvankin,
1997c). ai; = 4/cij/p, where ¢;; are the stiffness coefficients and p is the density.

develops an elliptical hole. Those complicated phenomena are outside of the scope
of this paper; here, we assume that the singularities are located outside of the fan of

ray directions used for velocity analysis.

Here, we study the character of the quartic coefficient in a model that contains an
orthorhombic layer overlaying a plane dipping reflector (Figure L.2); the orthorhombic
layer contains one horizontal symmetry plane and two orthogonal vertical symmetry
planes. One of the vertical symmetry planes coincides with the dip plane of the
reflector. Thus, the zero-offset ray has to be confined to the dip plane that represents

a vertical plane of symmetry for the whole model (Figure L.2).
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>
X

FiGc. L.2. The reflected wave is recorded above a homogeneous orthorhombic layer
with a dipping lower boundary. The dip plane [z;, z3] is a vertical symmetry plane
for the whole model.

Using the weak-anisotropy approximations for the P-wave group velocity (V;) and

group angle in orthorhombic media (Tsvankin, 2001), we get

Vy, = Vpo(l — (62 — €2)(cosbsina)* + &;(sinasinb)® — (6, — €;)(sin asin b)*

+ cos? b(6y sin® @ — (6, + 69 — 63 — 2¢;) sin* asin? b)) , (L.1.2)

where sina, cosa, sinb, and cos b are given by equations (J.1.4) to (J.1.7).

By substituting equations (J.1.2) and (L.1.2) into equations (J.1.9) and (J.1.10) and

dropping quadratic and higher-order terms in the anisotropic coefficients, we relate the

coordinates y; and y, to the coordinates of the zero-offset reflection point (x§°’,x§°’)

sin 2(¢ — v)

cos? & + ztan ¢ + x&o) , (L.1.3)

Y1 = z[02 + (€2 — d2) — (e2 — d2) cos 2(¢p — V)]
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yp =z . (L.1.4)

Using equations (J.1.2), (L.1.2), (L.1.3), and (L.1.4) to evaluate the derivatives in
equation (I.1.21), we obtain the following linearized approximation for the P-wave

quartic moveout coefficient in orthorhombic media:

AQRT = _(cos? p(—80; — 403 + 12¢; — 4ey + 4(28; — 6y + 263 — 4e; + 3€3) cos 2
—4(d3 — €1 + €) cosda — 3 cos(2a — 6¢) + €3 cos(2a — 6¢)
—202 cos(2a — 4¢) + 2¢5 cos(2a — 4¢) + 46, cos(2a — 2¢) — 352 cos(2a — 2¢)
—463 cos(2a — 2¢) — €; cos(2a — 2¢) — 8; cos 2¢
—669 cos 2¢ + 883 cos 2¢ + 14€; cos 2¢
—865 cos 4¢ + 8€y cos 4 — 269 cos 6¢ + 2€4 cos 6¢
+46, cos(2a + 2¢) — 382 cos(2a + 2¢) — 463 cos(2a + 29)
—€3 c05(2a + 2¢) — 285 cos(2a + 4¢) + 2¢5 cos(2a + 4¢) — 0, cos(2a + 6¢)

+€5 cos(2a + 6¢)))/(64(Vrez)?) . (L.1.5)

Rewriting equation (L.1.5) in terms of 1, & €, — 81, 10 = €3 — o, and 13 = €, — 3 — €9

(Al-Dajani, Tsvankin and Toksoz, 1998), we get

AQRT = —% cos® ¢ [2 cos 2 (1 + cos 2a.cos 2¢) + cos 4¢ — 1]
2tpo Vo

_ 2m
tho Vo

73
tho Vio

cos® ¢ sin” o + sin® o [cos 2ar + cos 2¢)] . (L.1.6)

From equation (L.1.5), we obtain the dip- (o = 0°) and strike-line (@ = 90°) quartic

coeflicients

Adipla=0°) = —% cos* ¢ (1 — 4 sin’ ¢) , (L.1.7)
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1
A‘?’gﬁke(a = 900) = W[4(51 — (52 + 4(53 — 861 + 562 + 4(51 — (53 — 62) COS 2¢
PO Y PO

+((52 - 62) COs 4¢] N (L18)

where tpg is the two-way zero offset traveltime. Rewriting equation (L.1.8) in terms

of m1, m2, and 73 yields

2 ) )
Aihe = -—m[m cos® ¢ — my cos® ¢sin® ¢ + 3 sin® ¢]. (L.1.9)

If ¢ = 90°, the strike-line quartic coefficient becomes

2

AT (= 90°) = — .~ (L.1.10)
tpo Vo

If we set 6 = d, = 6, €, = €2 = ¢, and d;3 = 0 in equation (L.1.5), we obtain the

linearized expression for A, valid for VTT media

2(e—§
AV = __wt?(il_/“_) cos' ¢ (1 4 sin® ¢ cos’ ) . (L.1.11)
PO Y PO

By setting @ = 0° and a = 90° in equation (L.1.11), we obtain the dip- and strike-line

quartic coefficients

AYTI(O’ — 00) — _M COS4 ¢ (1 —4 sin2 ¢) , (L112)
tro Vo
2(e—9
AV (= 90°) = —% cos® . (L.1.13)
tpo Vpo

Equation (L.1.7) has the same meaning as equation (L.1.12). From equation (L.1.7),
it is clear that the dip-line quartic coeflicient vanishes when ¢ = 30°. On the other

hand, from equation (L.1.8), we can see that due to the presence of the plane dipping
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reflector the strike-line quartic coefficient depends on the parameters d3, d2, and €,.
By setting §; = d2 = 4, €, = €2 = ¢, and 3 = 0 in equation (L.1.8), equation (L.1.8)

reduces to equation (L.1.13).

If the dip of the reflector is zero (¢ = 0°), from equation (L.1.5) we obtain the
linearized version of Al-Dajani’s solution (Al-Dajani, Tsvankin and Toksoz, 1998).
This approximation is given as follows

1

4t3, Vi
—(d3 — €1 + €2) cosda]. (L.1.14)

AQRT [—46, — 402 + 03 + 361 + Bex + 4(81 — 62 — €1 + €2) cos 2

Rewriting equation (L.1.14) in terms of 7y, 72, and 73 yields

AQRT [72 cos? & — 3 cos® asin® & + 7 sin® o] . (L.1.15)

12 4
tpo Vo

Although equation (L.1.15) is an approximation, it has the exact azimuthal depen-

dence.
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APPENDIX M

M.1 Time field derivatives

The expression (1.1.21), Appendix I, is not valid if the medium contains more than one
layer. If the medium is horizontally layered and it has a horizontal symmetry plane,
it is possible to apply the technique developed by Al-Dajani and Tsvankin (1998).
Here, we describe a more general approach to model the quartic coefficient in layered
media, which can be used even if the medium contains heterogeneous anisotropic
layers separated by plane dipping or irregular interfaces. This method was developed

by Blyas, Gritsenko and Chernyak (1984) and later was used by Fomel (1994).

The key idea of this approach is to express partial derivatives measured at the sur-
face of the earth in terms of traveltime derivatives that are function of the interval
model parameters. Consider, for example, a model that has only two inhomogeneous

anisotropic layers separated by an irregular interface (see Figure M.1).

In this medium, the traveltime t(s,r) between the source s and receiver r can be

written as

t(s,r) = F(s,z1,22,23,7) = F(20, 21, %2, 23, 24) (M.1.1)

where
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F1G. M.1. Two layer model. The layers are anisotropic and heterogeneous, and are
separated by an irregular interface.

4
F(z0, 21,2, 23,24) = Y ti(Ti1,73) (M.1.2)

=1

z; define the intersections between the rays and the layer boundaries (s = zp and

T = 14), and ¢; is the traveltime in the ¢ — th layer.

From Fermat’s principle, the ray trajectory must correspond to an extremum of all

possible paths between the source and receiver. Thus

OF

oz~ 0, (M.1.3)

where 7 = 1,2,3. Fermat’s principle allows to express derivatives of ¢(s,r) recorded

at the surface of the earth in terms of traveltime derivatives of the individual layers.

Consider the derivative :s—i,;r (Gritsenko, 1984; Blyas, Gritsenko and Chernyak, 1984).
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Differentiating equation (M.1.3) with respect to the source location s

82F 4 62F 3117[

M.1.4
0s0x; ; 01,0 Bs ( )
Expanding equation (M.1.4) gives

62F 81131 62F 3:1:2 32F 8353 . 82F
0x,0z; 0s * Or,0x; Os = Or30x; 8s  0Ox;0s (M.1.5)
Then

82F 83;1 + 62F 63:2 n 82F 8.’133 _ 82F
0r10x; 0s  Ox90x; Os  Ox30x; Os 0z10s

82F 61171 82F 8222 4 82F 8273 0
011019 08 012019 08 013019 OS

0’F 0z, 0*F Oz 0*F 0Ox3

. M.1.

92,073 05 | Drgdzs 05 | Ozsdms D5 (M.1.6)

9%t

On the other hand, using the chain-rule, the derivative 3~ can be expressed as

follows

82t B 62t4 61113

9sOr  Ordzs Os

Thus in equation (M.1.7), we need to express

(M.1.7)

973 in terms of traveltime derivatives of

Jds

the individual layers. This can be achieved by solving the system of equations (M.1.6).

Solving this system, we obtain

1

ds

82F

Ozr30z3

92F
85173 . (8:536:::2

8<F
6::16:1

92 F
dx,0s
8%F 82F
91101, (224}’11) _ (

3 8;5 AN 8;5 7 B a;: 2
T8z EDYE] z30x
O°F ek

EEPLESY

8x90zy dx3zdx3

Substituting equation (M.1.8) into (M.1.7), gives

(M.1.8)
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%ty (3 a;;r ) aazg
x T T L
ordzs B4F 8*F

2
a t _ 3138:3 a:clazl (M 1 9)
0sor (52 AN o oA R o
e | — |\ e | | ot — Toe
FESCES FEPYEN dzodzy dx3drgy

In the case of higher order mixed derivatives, a similar technique can be applied

(Blyas et al., 1984).

The method described above can be used to obtain the azimuthally varying quartic
coefficient for layered media. Thus, the quartic coefficient can be combined with
the NMO ellipse to invert for the medium parameters in an efficient way. The main
advantage of this combination is that it is necessary to trace only the zero-offset ray

to reconstruct the azimuthally varying NMO velocity and quartic coefficient.

The approach illustrated above can also be used to model the moveout of converted

waves (C-waves).



