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Abstract

Although amplitude variation with offset analysis (AVO) has a potential to recover im-
portant reservoir characteristics, quantitative AVO inversion is known to be often unstable.
To improve the stability, prestack P-wave amplitudes can be supplemented by amplitudes
of converted PS-waves. The thesis objective is to build a theoretical foundation for joint
AVO inversion of PP- and PS-waves in anisotropic media.

The quantity to be analyzed in AVO is the reflection coefficient at the target horizon.
Linearized approximations for the reflection coeflicients are frequently used as they provide
a simple analytic insight. The approximations for PP-wave reflection coefficients are well
known, but further development was necessary for converted-wave reflection coeflicients in
anisotropic media. I derive approximations for PS-wave reflection coefficients at a pla-
nar weak-contrast interface separating two weakly anisotropic halfspaces using first-order
perturbation theory. The general expressions are further simplified and analyzed for the
interface separating any two of the following media: isotropic, transversely isotropic with
a vertical symmetry axis (VTI), transversely isotropic with a horizontal symmetry axis
(HTI), and orthorhombic. Numerical tests reveal good agreement between the exact and
approximate coefficients for most models believed to be typical for the subsurface.

I then use the linearized approximations for the joint linear inversion of the PP- and
PS-wave reflection coefficients, establishing theoretical limitations of the inversion and in-
vestigating the influence of errors. Given good-quality, good-coverage data, together with
a priori estimates of the P- to S-wave velocity ratio and one of the velocity or density con-
trasts across the interface, it is possible to recover the remaining contrasts along with the
d-type anisotropy parameter for VTT symmetry, and also the y-type (shear-wave splitting)
parameter for HTI symmetry. The inversion for orthorhombic models is more problematic
and requires additional information. Relative to nonlinear inversion, the linear inversion is
fast and provides important initial information about the medium parameters.

More sophisticated nonlinear inversion of the PP- and PS-wave reflection coefficients
can be used to obtain more accurate estimates of the medium parameters. The nonlinear
inversion algorithm, which I have developed and tested on several examples, strongly ben-
efits from the analytic insight provided by the linear inversion. The accuracy of inverted
results is generally better, and the resolution is higher than that of the linear inversion.
Although still important, less a priori information is often necessary to stabilize the non-
linear inversion, compared to the linear inversion. The nonlinear inversion, however, is time
consuming and must be properly guided.

The developed tools are designed to be used in conjunction with other techniques to
perform quantitative AVO analysis. I discuss some practical aspects of such an analysis in
the last chapter of the thesis.
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The most beautiful experience we can have is the mysterious. It is the fun-
damental emotion which stands at the cradle of true art and true science.
Whoever does not know it and can no longer wonder, no longer marvel,
s as good as dead, and his eyes are dimmed.

(Albert Einstein, 1931)
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Chapter 1

Introduction

In modern seismic exploration, acquisition and efficient utilization of high-quality
three-dimensional multiazimuth, multicomponent seismic data becomes necessary to
properly account for the complexity of the subsurface structure, such as heterogene-
ity and anisotropy. Joint analysis of P- and S-wave reflection data helps in improv-
ing seismic images and obtaining better estimates of important medium parameters.
Generating S-waves in practice, however, is expensive, and in marine environments
is hardly possible. A practical alternative is to use converted PS-waves, or C-waves
(P-waves converted at the target horizon into S-waves), which can be acquired simul-
taneously with the reflected PP-waves. Moreover, high-quality PS-wave reflection
data are often collected in marine surveys, using ocean bottom cable (OBC) acqui-
sition techniques. In recent years, converted PS-waves have attracted significant
interest in the broad seismic community (Stewart & Gaiser, 2000).

Amplitude variation with offset (AVO) analysis is one of the seismic techniques
that may greatly benefit from use of PS-waves. The beginning of the modern era of
AVO analysis can be dated back to 1982 when, in his ground-breaking presentation,
Ostrander (1982) demonstrated on real data how the variation of reflected amplitudes
with offset can be used for direct detection of hydrocarbons. Since then, AVO has
become an important tool of seismic exploration, complementary to seismic imaging.
Primarily used as a purely qualitative method for revealing amplitude anomalies,
AVO indeed proved to be useful not only for detection of hydrocarbon reservoirs
(Ostrander, 1982; Chiburis, 1984; Hwang & Lellis, 1988; Burnett, 1990), but also
for basic reservoir characterization (Smith & Gidlow, 1987; Swan, 1993; Ursin et al.,
1996; Castagna et al., 1998) and, more recently, for reservoir monitoring (Anderson,
1996; Lorenzen, 2000). A remarkable development of AVO techniques over the past
two decades, along with the development of acquisition techniques providing high-
quality data (such as OBC), resulted in an increasing capability of AVO analysis.
Today, the AVO methodology is more quantitative (Demirbag et al., 1993; Mallick,
1995; Cambois, 2000), and can be used to provide estimates of important reservoir
characteristics such as porosity, saturation, crack density, and orientation and content
of the cracks (Riiger, 1998; Bakulin et al., 2000a; Ursin et al., 2001).

Although the theoretical potential of quantitative AVO is promising, many prac-
tical and theoretical problems make successful implementation of AVO inversion dif-
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ficult. One of the most troublesome theoretical problems is that conventional P-wave
AVO inversion is poorly constrained (Jin & Beydoun, 1993; Castagna, 1993; Cam-
bois, 2000). As a consequence, individual parameters of the reservoir cannot be found
uniquely and the recovered quantities may not be sufficiently accurate. For example,
in isotropic media, it is usually impossible to invert for the P- and S-wave velocities
and the density of the reservoir using only P-wave AVO amplitudes (Smith & Gid-
low, 1987; Downton et al., 2000). The problem of constraining the AVO inversion
becomes particularly critical in anisotropic media. It is known that the contribution
of anisotropy to AVO amplitudes is of the first-order (Wright, 1987; Thomsen, 1993;
Riiger, 1997) and should not be neglected. Moreover, proper evaluation of anisotropy
also provides important information about the internal structure of the medium. An
example of practical importance in oil exploration is anisotropy induced by fractur-
ing (Riiger, 1998; Bakulin et al., 2000a); accurate characterization of the fractures
within a reservoir is essential for efficient reservoir management. Taking anisotropy
into account, however, significantly complicates AVO analysis, and introduces further
instability into the AVO inversion.

In order to make the anisotropic AVO inversion viable, more comprehensive
information about the model is necessary. One possibility is to collect wide-azimuth
data and analyze AVO responses for different azimuths [so-called amplitude variation
with azimuth (AVAZ) analysis], as described by Lynn and Thomsen (1990), Mallick
and Fraser (1991), Yardley et al. (1991) and Riiger (1998). As indicated above,
another possibility is to use not only P- but also S-wave reflection amplitudes. A
case study of AVO and AVAZ analyses of pure-mode PP- and SS-wave reflected
amplitudes can be found in DeVault (1997). Although such an analysis is certainly
possible, it requires expensive excitation and recording of both PP and S reflected
data. The amplitudes of converted PS-waves provide a practical substitute for those
of SS-waves as suggested, for example, by Alvarez et al. (1999), Larsen et al. (1999)
and Nefedkina et al. (1999) for isotropic media, and by Bakulin et al. (2000a)
for anisotropic media. Even if pure-mode SS-wave amplitudes are available, the
amplitudes of converted PS-waves may add important independent constraints with
relatively small cost.

The objective of the research presented here is to investigate the contribution of
PS-waves to AVO analysis. The main questions to answer are: 1) what additional
information is contained in PS-wave reflected amplitudes and how can this informa-
tion stabilize the AVO inversion, 2) what is the theoretical and practical potential of
the joint PP- and PS-wave AVO inversion for isotropic and anisotropic media, and
3) how can joint AVO inversion be performed effectively. The focus of the thesis is
on the PP- and PS-wave reflection coefficients rather than total AVO amplitudes.
In AVO and AVAZ, the reflection coefficients at the target horizon (such as the top
of a hydrocarbon reservoir) are the fundamental quantities to be analyzed as func-



P Jilek / PS-wave reflection coefficients and AVO in anisotropic media 3

tions of incidence angle and azimuth. It is beyond the scope of this thesis to address
many other practical and theoretical issues closely related to AVO analysis, such as
amplitude-preserving data processing, correction of AVO amplitudes for noise, am-
plitude calibration, and propagation phenomena. Many of these issues are discussed
in the literature and other issues, especially those regarding converted PS-waves, are
under investigation. Sophisticated methods are also being developed to attack these
problems in complicated heterogeneous anisotropic media. Some pertinent references
are provided in the thesis.

Reflection and transmission coefficients generally are complicated nonlinear func-
tions of medium parameters; in anisotropic media, their closed analytical forms may
not exist at all. Thus, exact expressions of the coefficients usually do not provide use-
ful analytic insight for AVO and AVAZ. Therefore, simplified approximations for the
reflection and transmission coefficients are of great importance in practical AVO and
AVAZ analyses. Although approximations for the P P-wave reflection coefficients for
both isotropic (Bortfeld, 1961; Aki & Richards, 1980; Shuey, 1985) and anisotropic
(Banik, 1987; Thomsen, 1993; Riiger, 1997; Riiger, 1998; Vavrycuk & Psencik, 1998)
media are well developed, corresponding approximations for P.S-wave reflection coef-
ficients were derived only for several simple cases (Aki & Richards, 1980; Nefedkina
& Buzlukov, 1999; Li et al., 1996; Riiger, 1996).

The most general approximations for converted P.S-wave reflection coefficients in
anisotropic media probably have been published by Vavry¢uk (1999). Unfortunately,
the results of Vavrycuk are not well suited for practical AVO analysis. In Chapter 2,
I derive approximate PS-wave reflection coefficients for a horizontal interface sepa-
rating two arbitrarily anisotropic media. The derivation is based on the assumption
of weak contrast of the P- and S-wave velocities and density across the interface, and
weak anisotropy in both halfspaces (hence, so-called weak-contrast, weak-anisotropy
approximations). The resulting formulas are further analyzed for the following sym-
metries and their combinations: isotropic, transversely isotropic with vertical (VTI)
and horizontal (HTI) symmetry axes, and orthorhombic. An arbitrary azimuth of
the vertical symmetry planes is allowed for HTI and orthorhombic media. I write
the coefficients as functions of Thomsen-type medium parameters (Thomsen, 1986;
Tsvankin, 1997a; Tsvankin, 1997b) and incidence and azimuthal angles, and as a
result, obtain relatively simple forms of small-incidence-angle reflection coefficients.
The derived approximations are consistent with the existing expressions derived by
Riiger (1996) for symmetry planes of HTI and orthorhombic media. Discussion of
the approximations and numerical tests of their accuracy using several azimuthally
anisotropic models conclude Chapter 2.

These approximations of PS-wave reflection coefficients, together with the ap-
proximate PP-wave reflection coefficients derived by Riiger (1997) and Vavrycuk &
Psencik (1998), provide a basis for the joint linear inversion of PP- and PS-wave
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reflection coefficients developed in Chapter 3. Using the approximations results in a
considerable simplification of the inversion procedure. Another benefit is clear ana-
lytic insight, which allows us to identify the most stable combinations of the medium
parameters that can be recovered from the AVO response. I discuss the joint linear
inversion in detail for anisotropic media with orthorhombic and higher symmetry.
First, I analyze the theoretical potential of such an inversion with the goal of evalu-
ating which parameters are constrained by ideal noise-free data. The second part of
Chapter 3 is devoted to synthetic tests for data contaminated by errors. The exis-
tence of errors drastically reduces the potential of the inversion, allowing recovery of
only a limited set of the medium parameters.

Chapter 4 describes more sophisticated and expensive joint nonlinear inversion of
the PP- and PS-wave reflection coefficients in anisotropic media. Because the exact
reflection coefficients are used instead of their approximations, the nonlinear inversion
may provide more accurate and reliable results than does the linear inversion but
must be carried out carefully. The main difficulties caused by the nonlinearity of the
problem are described at the beginning of Chapter 4. The inversion algorithm is then
developed, with the consideration of two major requirements: problems attributable
to the nonlinearity must be properly addressed, and the inversion still has to be
computationally feasible. I apply the algorithm to several synthetic examples using
isotropic, HTT and orthorhombic models to study the resolution and stability of the
nonlinear inversion. The addition of a priori information, as well as utilization of
the linear inversion results, prove to be important for the success of the nonlinear
inversion.

Chapter 5 summarizes the results of the thesis and puts them into the broader
context of AVO (AVAZ) analysis. The main practical result of the thesis is the
development of an inversion toolbozx. The individual tools from this toolbox, discussed
in Chapters 2, 3 and 4, can be used either separately or together, depending on the
desired type and quality of the final result. The inversion toolboz is meant to be used
in conjunction with other sophisticated techniques being developed today to perform
advanced AVO analysis.
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Chapter 2

Converted PS-wave reflection coefficients in
weakly anisotropic media

Linearized approximations of PP- and PS-wave reflection coefficients for aniso-
tropic media represent the basic tool of the inversion toolboz. Linearized approxima-
tions are used in conventional AVO analysis for two main reasons. First, unlike the
exact expressions, the approximations provide simple analytic insight necessary for
qualitative understanding of the amplitude signatures of reflected waves. Hence, the
behavior of the reflected amplitudes can be predicted and, consequently, identified in
field seismic data (“bright spots,” induced by the brine/gas interface in porous sands,
is a typical example). Second, using the linearized approximations, a number of useful
characteristics of a specific interface can be recovered from data, making the interface
identification more reliable. Various hydrocarbon indicators (Castagna, 1993; Swan,
1993), for example, are used to distinguish between the “true” bright spots associated
with a brine/gas boundary and “false” bright spots attributable to other lithological
contrasts of less economic interest. In addition to their contribution to qualitative
AVO, linearized approximations often are also sufficiently accurate in the absolute
sense for a reasonable range of incidence angles. Therefore, they may provide a basis
for a quantitative linear inversion for such medium parameters as velocity or density
contrasts across the interface.

Several approximations for reflection and transmission coefficients for isotropic
media can be found, for example, in Bortfeld (1961), Richards & Frasier (1976), Aki
& Richards (1980) and Shuey (1985). The P-wave reflection coefficient for weakly
anisotropic VTI (transversely isotropic with a vertical symmetry plane) media and
small incidence angles was first obtained by Banik (1987) and later extended for
larger incidence angles by Thomsen (1993). Riiger (1996; 1997; 1998) refined Thom-
sen’s (1993) expression and derived a complete set of approximate reflection and
transmission coefficients for VTI media. He further extended the derivation for sym-
metry planes of HTI (transversely isotropic with a horizontal symmetry axis) and
orthorhombic media, provided that their vertical symmetry planes in the incidence
and reflecting halfspaces are aligned. Also, he obtained the azimuthally-dependent
P-wave reflection coefficient for an interface between two HTI media. Finally, PSenc¢ik
& Vavrycéuk (1998) and Vavrycuk & Psencik (1998) presented azimuthally-dependent,
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weak-contrast, weak-anisotropy P-wave reflection and transmission coefficients valid
for arbitrarily anisotropic media. Approximate forms for PS-wave reflection coeffi-
cients for isotropic media are described, for example, in Donati (1998), Larsen et al.
(1999), Alvarez et al. (1999) and Nefedkina & Buzlukov (1999). An approximation of
PS-wave reflection coefficient, derived for symmetry-plane reflection at an HTI/HTI
interface, has been obtained by Li et al. (1996). Riiger (1996) derived the approxi-
mate PS-wave reflection coefficients for VTT media and the vertical symmetry planes
of HTI media.

The goal of this chapter, which can be regarded as an extension of the Riiger’s
(1996) work, is to derive azimuthally-dependent, weak-contrast, weak-anisotropy
PS-wave reflection coefficients for arbitrarily anisotropic media.

2.1 Analytic development

To find a linearized form of the plane PS-wave reflection coefficients for arbitrar-
ily anisotropic media, I follow the approach by Vavrycuk & Psenéik (1998) that they
introduced for P P-wave reflection coefficients (Appendix A). Their derivation is, in
principle, similar to that of Banik (1987) and Thomsen (1993). However, in their
approach a different medium parameterization and more complicated methodology
are necessary in order to account for arbitrary anisotropy.

2.1.1 Perturbation approach

As in the case of exact reflection and transmission coefficients, approximate forms
result from evaluation of boundary conditions satisfied at the interface (i.e., the con-
tinuity of the displacement and traction vectors across the interface). Here, however,
the boundary conditions are evaluated only approximately, assuming weak contrasts
of elastic medium parameters across the interface, and weak anisotropy in both half-
spaces.

As an auxiliary step, consider a homogeneous isotropic full-space separated by
a fictitious planar interface into two halfspaces characterized by the same density p°
and identical sets of density-normalized stiffness coefficients

agir = (02 = 26%)0:50k + B2 (01 + Sudik), (2.1)

where o and 3 represent P- and S-wave velocities (for consistency, I use the same
notation as VavryCuk & PSencik, 1998). I shall refer to such an isotropic space as
the background medium. The elastic medium parameters of the true halfspaces under
consideration can then be expressed in terms of perturbations from the background
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medium as

I I
a’gjl)cl = a?jkl+6a§jl)cl’ (2.2)

I

where I=1 and 2 denote the incidence and reflecting halfspaces, respectively. Assum-
ing that the perturbations 6a1(.;.,)c, and dpt) for both I=1,2 are small, i.e.,

I
|5az('jl)ct| < Ha?ij, 16p"| < p°, (2.3)

(for example, Vavrycuk & Pgencik, 1998, define the norm [ady,|| as
|laf;ull = max|ad,,l), it is possible to simplify the exact boundary conditions by
linearizing them in the perturbations.

Note that conditions (2.3) are equivalent to both the assumption of weak con-
trasts of the elastic parameters a;jx; and density p across the interface, and the as-
sumption of weak anisotropy in both halfspaces (since agjk, corresponds to isotropic
media).

2.1.2 Slowness and polarization vectors

In order to linearize the exact boundary conditions at the interface, the slownesses
and polarization vectors of the incident wave and all reflected and transmitted waves
need to be determined.

Consider a horizontal plane interface [the normal n = (0,0, 1)], and an incident
plane P-wave propagating in the halfspace denoted as 1 and approaching the interface
in the negative z-direction; see Figure 2.1 for the basic convention. For simplicity,
the incidence plane, defined by the normal n and the slowness vector of the incident
P-wave, coincides with the [x, z] plane of the reference Cartesian coordinate system
(later, the formulas are generalized for an arbitrary azimuth; see Appendix B). In ar-
bitrarily anisotropic media, three reflected and three transmitted waves, here denoted
as P-wave (quasi compressional), and S;- and Sp-waves (quasi shear), are generated
at the interface.

Under the assumption of weak anisotropy, the slowness vectors can be written
in terms of perturbations from the slowness vectors in the background medium, i.e.,

where N = 0,1,2,3 correspond to the incident P-wave and reflected S;-, So- and
P-waves, respectively, and N = 4,5, 6 correspond to the S;-, So- and P- transmitted
waves, respectively. The quantities p®™) are the slowness vectors in the isotropic
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INCIDENCE z
HALFSPACE1

p oo > X
SH
REFLECTING o o
HALFSPACE 2 gs' \p'2 p*®

Figure 2.1. Convention for the zero-azimuth reflection and transmission (in the in-
cidence plane [x, z]) in the background medium. The vector m is the normal to
the reflector, p°® is the background slowness vector of the incident P-wave, and
p’W = p®®@ and p°“®) = p®d) are the background slowness vectors of the reflected
and transmitted S-waves, respectively. ¢p and ¢g denote the P-wave incidence and
the S-wave reflection and transmission phase angles, respectively. The vector g%®
denotes the polarization vector of the incident P-wave in the background medium,
and g% and g5 are the reflected SV- and SH-wave’s polarization vectors in the
background medium (g°# points away from the reader, parallel to the y-axis).
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background medium which satisfy the following relations:

pO(O) = po(ﬁ) = sin ¢P/a) 0, Ccos d)P/a)’ (25)

(

p’) =p"® = (singp/e,0,—cosps/B),

p’® = (singp/a,0,—cos¢p/a),
(

p°(4) = p0(5) = (sin¢p/a,0,cos¢s/B),

where « and [ are the isotropic background P- and S- wave velocities, as defined
in equation (2.1), ¢p is the P-wave incidence phase angle, and ¢g is the S-wave re-
flection phase angle (Figure 2.1). The quantities 6p'¥) in equation (2.4) are linear
perturbations of the corresponding background slownesses due to the perturbations
of the medium parameters da;jr; defined in equation (2.2). Using first-order pertur-
bation theory (Jech & Psencik, 1989), Vavrycuk & Psencik (1998) derived analytic
expressions for the perturbations §p(") as linear functions of the perturbations dajkt
(see Appendix A).

Similarly to the expressions for the slowness vectors (2.4), the polarization vectors
can be written as

where N has the same meaning as that in equation (2.4), g°") are the background
slowness vectors, and g} the corresponding linear perturbations, also derived by
Vavryéuk & Psencik (1998) (Appendix A). The P-wave background polarization
vectors are simply given as

g"® = g%® = (sin¢p/a,0,cos dp), (2.7)
@9 = (sindp/a,0, - cosdp).

The S-wave polarization vectors in isotropic media usually are projected onto the
incidence [x, z] plane (SV-wave polarization, here denoted as g5") and the direction
perpendicular to the plane (SH-wave polarization, denoted as g5#); see Figure 2.1.
Jech & Psencik (1989), however, showed that such a choice is no longer acceptable
if the S-wave polarization vectors in a weakly anisotropic medium are to be found
by means of small (linear) perturbations from the S-wave polarization vectors in the
background isotropic medium. To minimize the perturbations, the chosen polarization
vectors in the background isotropic medium must be rotated in the plane perpendic-
ular to the corresponding S-wave slowness vector by a certain polarization angle ®.
Jech & Psencik (1989) and Psencik (1998) derived an explicit analytic expression for
the polarization angle ® as a function of the parameter perturbations da;jx; defined in
equation (2.2). Unfortunately, the angle @ is not a linear function of da;j. This fact
complicates the final approximations for PS-wave reflection coefficients, and their
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application becomes more involved than that for PP-wave reflections, as discussed
below.

For now, I assume that the polarization angle ® is known and is taken as positive
in the counter-clockwise direction from the vector g5 towards the vector g5#. In the
incidence background medium, the polarization angle ® defines the “best” orientation
(best in the sense of minimizing the perturbations) of the components S? and S of
the reflected S-wave in the plane [g5", g5#]. The components S? and S thus replace
the familiar components SV and SH in the derivation below. Similar to SV and SH,
the S} and S? components are mutually perpendicular; their polarization vectors are

"M = (= cos ps cos ®,sin ®, — sin ¢ cos B), (2.8)
g"@ = (cos¢gsin®,cos P, sin Pg sin D).
Clearly, if @ = 0 (as in isotropic media, see Jech & Psenéik, 1989), S? reduces to the
conventional SV-wave (polarized in the g5V direction) and S to the S H-wave (polar-
ized in the g5 direction). The background polarization vectors (2.8), together with
the perturbations introduced in equation (2.6), define the reflected S;- and Sp-waves
in the weakly anisotropic medium.
Similarly, for the transmitted S-waves,

g’ = (cos¢scos ¥, sin ¥, —sin ¢g cos ), (2.9)
g*® = (—cos¢ssin¥,cos ¥, sin g sin ¥),
where ¥ is the corresponding polarization angle in the reflecting halfspace.

Once the slowness and polarization vectors are specified, it is possible to linearize
the boundary conditions at the interface and analytically evaluate all reflection and
transmission coefficients for a given incident wave. For detailed derivation of the
linearized boundary conditions, see Vavryéuk & Psenéik (1998) and Appendix A.

2.1.3 General forms of the approximate PS-wave reflection coeffi-
cients

Appendices A and B describe how the linearized boundary conditions can be
used to derive approximations for the PS-wave reflection coefficients. First, approxi-
mations are obtained for the incidence plane [z, 2] only (Appendix A); then they are
generalized for an arbitrary azimuthal angle of the source-receiver line, denoted in
the following as ¢ (Appendix B). The final and most general formulas can be written
as follows:

Rps, = Rpsycos® + Rpgysin @, (2.10)
Rp52 = —Rpgysin® + Rpgy cosd.
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Here, Rps, and Rpg, are the approximate reflection coefficients of the reflected
PS;- and PS,-waves, respectively, and the angle @ is the polarization angle defined
in equations (2.8). Rpsy and Rpsy depend on the incidence angle ¢p, the reflection
angle ¢g, and the azimuthal angle 9, and are linear functions of the contrasts

AA; =AY — AP, (2.11)
where AS ) and Ag) represent the density normalized elastic medium parameters agimn
of the incidence and reflecting halfspaces, respectively, written in the well-known
Voigt notation (Tsvankin, 2001). Explicit expressions for Rpsy and Rpgy are listed
in Appendix B [equations (B.3)-(B.5)] and will be discussed in detail later.

It should be emphasized that, in the weak-anisotropy approximation, coeflicients
(2.10) determine the amplitudes of the P.S;- and PS,- reflected waves polarized in
the vicinity of the g°(V) and g°® directions, respectively [see equations (2.8)]. Thus,
the true displacements of the reflected PS;- and PS;-waves can be approximated as

U0g" ~ "W). Rpg - U, (2.12)
U®g® ~ " . Rpg - UO,

where U and U® are the true amplitudes of the reflected PS, and PS; waves,
respectively, polarized in the directions of the corresponding polarization vectors g’
and g, and U(® is the amplitude of the incidence P-wave. The perturbations of the
true polarization vectors 5g('), 6gV) [equation (2.6)] are neglected in equation (2.12)
since they contribute to the nonlinear (higher-order) terms only. Relations (2.12) will
be used later to account for the polarization angle ®.

Because of the nonlinearity of the angle @, the coefficients (2.10) are not linear
functions of the medium parameters A;;. Therefore, the term linearized reflection
coefficient, commonly used for P-wave approximations, is not strictly correct for
the converted-wave approximations in equations (2.10). Also, the coefficients (2.10)
contain all 21 contrast parameters AA;; (see Appendix B), compared to only 13
parameters present in the Rpp approximations even in the most general, triclinic
symmetry (see Vavry¢uk & Psencik, 1998).

Another interesting (but not surprising) observation following from equations
(2.10) and (B.3)-(B.5) is that even a vertically incident P-wave can generate a re-
flected S-wave at a horizontal interface. The quantities largely responsible for such a
reflection, in the first-order approximation, are the elastic contrasts AAgs and AAss.
In isotropic media, A3s and Ass vanish, and the conversion at normal incidence does
not exist. This is also true for a horizontal interface between two anisotropic half-
spaces with horizontal symmetry planes. Similarly, we can identify the contrasts
in medium parameters mostly responsible for the “unusual” incidence-plane P-SH
reflections (i.e., the reflected S-wave has a nonzero displacement component perpen-
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dicular to the incidence plane). For instance, for incidence plane coinciding with the
[x,2] plane of the reference coordinate system, nonzero contrasts AAy, AAg, AAsy,
AAszs, AAys and AAsg would generate such a reflection. Hence, this reflection ex-
ists only if [x,z] is not a symmetry plane. Below, I show that the P-SH reflection
can occur, for example, outside the vertical symmetry planes for an isotropic/HTI or
VTI/HTI interface.

Finally, note that the approximate reflection coefficients in equations (2.10) are
derived using a purely isotropic background medium (defined in Section 2.1.1). Dif-
ferent approximations can be derived using, for instance, elliptically anisotropic or
transversely isotropic background. Such approximations may have two main advan-
tages. First, if the true anisotropic symmetry of the medium is close to the symmetry
of the background, smaller perturbations from such an anisotropic background may
be necessary than those from the isotropic background, resulting in a higher numer-
ical accuracy of the corresponding approximations. Second, if the true anisotropic
symmetry of the incident halfspace is close to the symmetry of the background, the
nonlinear polarization angle ® [equations (2.10)] would vanish from the final equa-
tions and hence the PS-wave approximate reflection coefficients become purely linear
(in terms of perturbations AA;;).

On the other hand, if the true anisotropic symmetry of either the incident or
reflecting halfspace differs from the anisotropic symmetry of the background (note
that this inevitably happens when each halfspace has different symmetry), larger
perturbations from the background may be necessary than those from the isotropic
background, resulting in a lower numerical accuracy of the approximations in general.
Also, for anisotropic symmetry of the incident halfspace different from the symmetry
of the background, the approximate reflection coefficients remain generally nonlinear.
Moreover, for isotropic background, approximate reflection coefficients depend on one
background parameter only (the average velocity ratio 3/a, see the next section). For
anisotropic background, however, more background medium characteristics have to
be determined a priori, including anisotropy parameters, orientation of the symmetry
planes of the background, and polarizations of S-waves propagating in such a back-
ground. Of course, an incorrect determination of these background characteristics
may result in a background that is quite different from the true medium. Large per-
turbations are then necessary and, consequently, the resulting approximations may
become less accurate.

I therefore conclude that the benefit of using an anisotropic rather than isotropic
background is not evident. However, it is intuitively clear that although an anisotropic
background may produce higher numerical accuracy of the approximations for some
spectal cases (such as the case of two halfspaces with identically oriented anisotropic
symmetry above and below the interface), isotropic-background approximations are
more universal. Importantly, due to a simpler background parameterization, the
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isotropic-background approximations (2.10) may be better suited for practical appli-
cations.

2.1.4 Coefficients Rps, and Rpg, for orthorhombic media

Here, I specify the general equations (2.10) for an interface between two or-
thorhombic media using the Thomsen-type parameterization of Tsvankin (1997b).
Assuming orthorhombic (or higher) symmetry leads to a significant simplification of
the general equations (2.10).

The first step is to choose the background velocities @ and 3 and the density
p°. Following Banik (1987) and others, the background values are defined as the
arithmetic mean of the corresponding quantities in both halfspaces, i.e.,

1
o = azi(a(1)+a(2)),
o1
B = B=5(8Y+59), (2.13)
1
P = o=+ %),

It is not immediately clear which velocities (i.e., in which direction) in (2.13) should
be averaged for anisotropic media. It has been suggested (Psenc¢ik & Martins, 2000),
however, that for small and moderate incidence angles, the choice of vertical velocities
is appropriate. Small- and moderate-incidence-angle reflection coefficients are also
most important for practical applications.

The choice of vertical velocity is still non-unique for S-waves since, in general,
in anisotropic media there are two vertically propagating S-waves with two different
velocities. Numerical tests I carried out for the approximate Rpp coeflicients suggest
that it is acceptable to choose the S-wave background velocity anywhere between
the two vertical velocities of the S;- and So-waves. The resulting formulas differ
slightly in accuracy, but these differences are often negligible, especially for small and
moderate incidence angles. This conclusion is also in agreement with that of PSenc¢ik
& Martins (2000). Therefore, I define the background velocities (2.13) as the average
of the following velocities of the two halfspaces:

ol =4/A0 gD =4/aD =12 (2.14)

The second necessary step in the derivation is the choice of medium parameteri-
zation. Tsvankin (1997b) introduced an efficient way of parameterizing orthorhombic
media by generalizing Thomsen’s notation for VT media (Thomsen, 1986). Without
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any changes I adopt the following anisotropy parameters (Tsvankin, 1997b):

1 I
G = A= A (2.15)
1 - (n ) .
I 1
2 = ———Agl) _ Ag3) (2.16)
1 - 2A(I) ) .
33
1 I
4 = Afm) ~ A§5) (2.17)
! 24

where I=1,2 represent the incidence and reflecting halfspaces, respectively. Further,
I introduce three other parameters,

I I I
50 A§3) + 2A:(14) — Ags)
)i

= , (2.18)
I
Ags
) AD 424D _ 4D
5 = At 24s —As (2.19)
AD
33
(I (N 1)
IR /h2+2A?"A&. (2.20)
A0
11
They differ from those in Tsvankin (1997b), defined as
i§ I
2453 (A3 — A)
@ _ (Al +A5)— (4AF) - AQ)?
o = D) 20— 4D ’ (2.22)
2435 (A3 — Ags)
A(I) A(I) A(I) (I)

2AD (AT — AF)

Sayers (1994) showed that the anisotropy parameters (2.18), (2.19) and (2.20) rep-
resent linearized forms of the parameters (2.21), (2.22) and (2.23), respectively, and,
for weak anisotropy, the two sets of parameters are numerically close to one other.
Because the parameters (2.21)-(2.23) are nonlinear functions of stiffnesses A;;, they
cannot be used to carry the derivation of the approximate Rpgs, and Rps, coefficients
(that are linearized in A;;). However, although parameters (2.18)-(2.20) must be used
for the derivation, for weak anisotropy either set of parameters can be used in the
final formulas without significantly changing accuracy (Psencik & Martins, 2000). It
should be emphasized that the parameters (2.15)-(2.23) are defined in % Cartesian
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coordinate system with the axes x1, zo and x5 defining three symmetry planes of the
orthorhombic medium under investigation. [This local Cartesian coordinate system
may thus differ from the reference Cartesian coordinate system used to derive gen-
eral equations (2.10).] A generalized form of the parameterization (2.15)-(2.20) for
arbitrary weakly anisotropic media has been introduced by Mensch & Rasolofosaon
(1997) and Psencik & Gajewski (1998).

As shown below, the six anisotropy parameters (2.15)-(2.20) [together with the
background parameters (2.13) and (2.14)] are sufficient for expressing the coefficients
Rps, and Rpg,, whereas orthorhombic media are fully described by seven anisotropy
parameters (plus two vertical velocities). Tsvankin's (1997b) original notation for
orthorhombic media contains the parameters (2.15), (2.16), (2.21)-(2.23) and two
other parameters ; and <,, with the splitting parameter (%) [definition (2.17)] then
defined as an auxiliary coeflicient depending on 7, and 7,. The approximations for
Rps,, Rps,, however, are more sensitive to the difference y; — <, rather than to the
individual parameters v; and ;. Thus, the number of parameters can be reduced
from seven to six. Tsvankin (1997b) shows that the parameter ‘%) reduces to the
difference y; — 7 in the weak-anisotropy approximation.

In the following, I assume that one of the symmetry planes of both orthorhombic
halfspaces is horizontal. The z-axis of the reference coordinate system introduced in
Figure 2.1 lies within one of the vertical symmetry planes of the incidence orthorhom-
bic halfspace (the [z, 23] symmetry plane of the local coordinate system used in the
definitions of the anisotropy parameters above). The vertical symmetry planes of the
reflecting orthorhombic halfspace are rotated with respect to the vertical planes of
the incidence orthorhombic halfspace by an angle denoted as x. Then, the following
elastic parameters vanish:

1 1 1 1 1 1 1
A§4) = Ags) = Ags) = Agz4) = Ags) = Age) = Agtl) =

A =AY = A =AY = AP =0, (229
and

2 2 2 2 2 2 :
A§4) = Ags) = Ag4) = Ags) = A:(M) = Ags) = A«(é;) =

=A% <.

Substituting relations (2.24), along with definitions (2.13)-(2.20), into equations (B.3),
(B.4) and (B.5), and further linearizing them in the anisotropy parameters
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(2.15)-(2.20), yields the final formulas for the PS-wave reflection coefficients:

Rps1 = Rpsycos® + Rpgy sin P, (2.25)
Rp52 = —Rpsysin® + Rpgy cosd.

Equations (2.25) are formally identical to the general equations (2.10). Now, however,

. . 3
i
Rpsy = ViSO L\ cosgpsin gp + Vo0 27
oS Pg COS Pg
.5
+V, cos ¢pp sin® ¢pp + Vﬁsm ¢P, (2.26)
COS Pg
. cos ¢p sin .
Rpsy = H;singp + qu + Hjsin® ¢p
0S ¢s
.3
oS ¢p sin
VH, ¢p sin” ¢p
coS g

and ¢p, ¢s are the incidence and reflection phase angles, respectively. Coefficients
Vi and H, are functions of the medium parameters [equations (2.13)-(2.20)], the az-
imuthal angle ¥ and the angle k. Explicit expressions for V; and H; are given in
Appendix C [equations (C.1) and (C.2)].

Finally, the polarization angle ® in equations (2.25) needs to be evaluated. The
angle ® can be computed analytically as long as all anisotropy parameters of the
incidence medium are known. Equations for ® are given in Appendix D. However, ®
can be also estimated directly from reflection data, which is important for practical
applications.

2.1.5 Coefficients Rpgs, and Rpg, for isotropic, VTI, and HTI halfs-
paces

Since isotropic, VTI and HTI media are special cases of orthorhombic media, the
coefficients Rpg, and Rpg, derived in the previous section can be readily applied for
an interface separating any of two of such halfspaces. In order to do so, the anisotropy
parameters in V; and H; [equations (2.26)] have to be adapted for a specific model,
as shown by Tsvankin (1997b). The anisotropy parameters used for VTI media are
defined as

Ay — Asz
(A13 + Ass)® — (Asz — Ass)?
2A33(As3 — Ass) ’
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| orthorhombic || HTI | VTI |

e 0 €
o) V) .
f),(S) v 0
ot or 6 0 )
6@ or 6 5() )
66) or 6 sV —2¢V) 1o

Table 2.1. Conversion table for the anisotropy parameters (weak-anisotropy approxi-
mation) for VTI, HTT and orthorhombic media. VTT and HTI parameters are defined
by equations (2.27) and (2.28). The symmetry axis of the HTI medium points in the
x-direction.

and for HTT media with the symmetry axis in the z direction,

A=
o= A A_3___;433, (2.28)

sV = (A13 + Ass)” — (Asz — Ass)®
2A33(As3 — Ass) ’
Agq — Ags
2A¢5

v

For a more detailed discussion of the anisotropy parameters for VI and HTI media,
see Tsvankin (1996; 1997a; 2001) and Thomsen (1986). For isotropic media, the
anisotropy parameters vanish in V;, and H; = 0 for all [ = 1, ..., 4; see equations (C.1)
and (C.2).

Table 2.1 shows the conversions between the anisotropy parameters for different
anisotropic models. For example, if the upper medium is VTI, all parameters with
subscript 1 in equations (C.1) and (C.2) have to be replaced by the corresponding
VTI parameters listed in the third column of Table 2.1. Also, for isotropic, VTI and
HTI symmetry, the polarization angle ® in equations (2.25) is determined from the
expressions in Appendix D.
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2.2 Discussion

2.2.1 Comparison of Rps, and Rps, with the results of Riiger (1996)

Although expressions (2.10) and (2.25) are more general that those obtained by
Riiger (1996), the derivation described in this paper is based on the same principle of
linearization of the boundary conditions. Therefore, the derived expressions should
be analogous to those obtained by Riiger (1996) for the anisotropy and symmetry-axis
planes of HTI media (assuming that the symmetry axes of both HTI halfspaces are
aligned). Indeed, expressions (2.25) specified for an HTI/HTI interface (using Table
2.1) with the symmetry-plane rotation angle x = 0 [equations (C.1)-(C.2)] reduce to
Riiger’s expressions if the azimuthal angle is set to 1 = 0° or ¥ = 90° (see Riiger,
1996, Appendix D). (For the azimuths v = 0° and ¥ = 90°, the polarization angle &
is equal to 9, i.e., 0° and 90°, respectively.) Similar agreement has been also reported
for the Rpp reflection coefficient by Vavryéuk & Psencik (1998).

Strictly, the analogy is not exact since expressions (2.25) include the linearized
0 parameters (2.18)-(2.20) rather than the nonlinear parameters (2.21)-(2.23) con-
tained in Riiger's expressions. However, in weakly anisotropic media these two sets
of parameters can be formally interchanged.

2.2.2 Comparison of the coefficients Rps, and Rpg, with the coeffi-
cient Rpp

General equations (2.10), as well as their particular forms for orthorhombic media
[equations (2.25) and (2.26)], indicate that practical application of Rps reflection
coefficients in AVO will be more problematic than that of Rpp coefficients.

The first apparent complication comes from the fact that equations (2.25) in-
clude both the incidence and reflection phase angles ¢p and ¢g, which are related
by Snell’s law at the interface between two anisotropic media (this is not the case
of the approximate Rpp where the S-wave reflection angle ¢g is eliminated during
the derivation). This inconvenience, however, can be easily overcome by using the
weak-contrast, weak-anisotropy assumption.

Since the factor (cos¢g)~! in equations (2.26) is always multiplied by the con-
trasts in one of the medium parameters [contained in the corresponding coefficients
Vi, Vs, Vs, and Hy, Hy, see equations (C.1)-(C.2)], it is possible to use purely
isotropic Snell’s law. The errors associated with such an approximation (i.e., neglect-
ing anisotropy) are of the second order, and thus can be neglected in the linearized
approximation. Therefore,

72
LI _1 ~ 1+ 1% sin? ¢p, (2.29)
oS g 1— g_z sin gp 2¢
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where @ and 3 are defined by equations (2.13) and (2.14). Equation (2.29) was
simplified using the additional assumption of small sin’ ¢p. Numerical tests show
that such an assumption works well for a wide range of @/ ratios, and for incidence
angles corresponding to the offset-to-depth ratios conventionally used in AVO studies.
A similar approach to that used in equation (2.29) can be also used to express the
coefficients Rpg, and Rpg, in terms of either the reflection angle ¢s or horizontal
slowness p;, which may be convenient for some applications. Equation (2.29) can be
directly substituted into either relations (B.3) or (2.26).

The second, more troublesome complication with Rps, and Rpg, arises from the
nonlinearity of the polarization angle ®. For practical applications it is desirable to
eliminate the influence of the polarization angle ® before further analysis.

Such an elimination is straightforward if the incidence medium is either isotropic
or VTI, and cos® = 1 and sin® = 0. Also, for HTI media it is possible to use
relations (D.6), if the azimuth (the angle between the incidence and symmetry-axis
plane) is known. In principle, this should not represent a significant complication
since the azimuth of symmetry-axis plane (as well as isotropy plane) of HTT media
can be estimated by using the traveltimes and polarizations of S-waves or the NMO
ellipses of P- or PS-waves (Grechka & Tsvankin, 1998).

For an incidence halfspace of orthorhombic or lower symmetry, a different data-
based approach has to be used to account for the angle ®. It is convenient to formally
introduce the PS-wave reflection-coefficient vector as

Rps = (Rps,, Rps,), (2.30)

where Rps, and Rpg, are defined by equations (2.25). From equations (2.12), the
vector (2.30) is specified in the coordinate system g%! — g°® and thus only ap-
proximates the exact reflection-coefficient vector Rys = (R%% , R¥% ) specified in the
coordinate system g{tezt — g2zt (Rext and RF are the exact PS-wave reflection
coefficients corresponding to the exact S-wave polarization vectors g(V)¢*t and g(@e=t,
respectively). It follows directly from equations (2.25) that the projection of the
reflection-coefficient vector (2.30) onto the g%V and g5 directions, defined as for
isotropic media (see Figure 2.1), gives the linear components Rpgy and Rpgy. Since
R%! ~ Rps, the linear components Rpsy and Rpgy can be estimated from the pro-

jection of the exact reflection coefficient vector RS (extracted from field data) onto

g°V and g°¥ directions, respectively.

Such a data projection is general and can be applied to any weakly anisotro-
pic medium. For strong anisotropy, the projection may fail to produce satisfactory
results, but equations (2.25) [as well as general equations (2.10)] are designed for
weak anisotropy only. To perform the projection, a sufficiently accurate polarization
analysis has to be carried out, which is, however, always necessary for proper recovery

of the PS-wave amplitudes.
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Finally, it should be emphasized that the approximations derived above should
not be used near S-wave singular points which may exist in anisotropic media (slow-
ness directions in which the slowness surfaces of the S;- and S,-waves intersect or
touch each other, and both waves propagate with the same phase velocity). Due to
the complicated character of the wavefield in those regions, plane PS-wave reflection
coefficients fail to represent amplitude signatures close to singularities.

2.2.3 Components Rpsy and Rpsp

As soon as the components Rpsy and Rpsy are determined, they can be used
in a way similar to that for reflection coefficients Rpp for qualitative AVO and AVAZ
analyses. Moreover, the coefficients Rpsy, Rpsy and Rpp contain different linear
combinations of the same medium parameters (see equations (2.26), (C.1) and (C.2);
for Rpp approximation, see VavryCuk & Psencik, 1998). Therefore, as discussed in
Chapter 3, their joint linear inversion may provide a valuable tool for retrieving those
parameters.

Equations (2.26), together with equations (C.1) and (C.2), show explicit forms
for the components Rpgsy and Rpgy for orthorhombic media. It follows from the
equations that whereas the Rpgy component is a linear function of all anisotropy
parameters (2.15)-(2.17) and (2.18)-(2.20) [or (2.21)-(2.23)], as well as the isotropy
contrasts Ap/p and AB/f3, the other component, Rpsy, includes the anisotropy pa-
rameters only. This is a consequence of the fact that there is only one nonzero
reflection coefficient Rps, = Rpgy in isotropic media [see equations (C.1)-(C.2), and
equations (2.25) for ® = 0°]. A similar analysis shows that only one nonzero coeffi-
cient Rps, = Rpgsy exists for isotropic/VTI, VTI/isotropic and VTI/VTI interfaces
(i.e., any azimuthally isotropic media). All other interfaces generate both P.S; and
PS; reflections, although not necessarily for all azimuths. Notice that none of the
approximations for PS; and PS, contains the P-wave velocity contrast A« /&, which
always appears in the P-wave reflection coefficient.

Equations (2.26), (C.1), and (C.2) also clearly show how different medium pa-
rameters control Rpsy and Rpsy components in different ranges of the incidence
and azimuthal angles. For example, small- and moderate-incidence-angle reflections
are controlled mostly by the parameters Ap/p, AB/B, and 69), 651), 6§2) , :(22), ,AS)
and 'yés) [here, as well as in the following discussion, definitions (2.21)-(2.23) are
used instead of (2.18)-(2.20)]. In contrast, large-incidence-angle reflections are also
substantially influenced by the parameters (5§3) , §3) and egl), egl), 652) and e§2) . The
same sets of parameters control also the Rpp reflection coefficients at the correspond-
ing incidence-angle regions, as shown by Riiger (1997) (additionally, the contrast
Aa/a in Rpp influences both the small- and large-incidence angle reflections). If the
symmetry planes of the incidence and reflecting orthorhombic halfspaces have close
azimuths [small angle « in equations (C.1) and (C.2)], then only the contrasts of the
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anisotropy parameters (A8, A6® | A6®) A9 Ael) and Ael?) determine the
reflected amplitudes.

2.2.4 Approximate Rpsy and Rpgy for small incidence angles

In practical AVO analysis, one often uses reflection coefficients for relatively small
incidence angles. Here, I derive simple forms of small-incidence-angle components
Rpsy and Rpgy from equations (2.26).

Using the approximate reflection coefficients mainly at small incidence angles is
also well justified by the fact that they lose their accuracy at large incidence angles.
This might be surprising since no assumption of small incidence angles has been used
in the original derivation [an exception is equation (2.29) which, however, is not an
essential part of the derivation]. The loss of the accuracy of the linear approximations
for large incidence angles has two main reasons. First, the terms associated with
higher incidence angles contain an increasing number of nonlinear factors (i.e., higher
powers of the elastic parameters) and, eventually, linear factors may vanish from
such terms completely. Because the approximate reflection coefficients consist of the
linear factors only, they cannot properly represent the exact reflection coefficients at
large incidence angles. Second (specific to anisotropic media only), the background
velocities @ and 3 in the approximate reflection coefficients have been selected as
the vertical velocities [see the discussion of equations (2.13) and (2.14)]. Therefore,
with increasing incidence angles away from the vertical, true medium velocities in
anisotropic media deviate from the background velocities, causing additional loss of
accuracy of the approximate reflection coefficients.

To obtain small-angle approximations of Rpgy and Rpsy, we neglect the second
and higher powers of sin @p in equations (2.26). Using expressions (C.1) and (C.2)
and relation (2.29), we arrive at

Rpsy = {—%% - Qg—AB—ﬂ Xl—:——g—)(sg) cos’ (Y — k)
- [mag” ~2g 755)] sin(¢ — k) — ma?) cos” ¢
- [m‘sgl) —2g ’Y@} sin” 1/}} sin ¢p,
Rpsy = { [ﬁ(d&’) ~85)) +g fyés’] sin 2(¢) — k) (2.31)

1 . .
_ |:—-——4(1 ) ((5§2) _ (5&1)) +g ,),§S)] sin 2'(/)} sin ¢p,

where g represents the background velocity ratio g = 3/a.
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Equations (2.31) work well up to incidence angles 15°-20°. To improve the ac-
curacy for larger angles, additional terms with the factors sin® ¢p and cos ¢p sin® ¢p
would have to be included. Unfortunately, this would lead to an increase in complex-
ity, as follows from equations (2.26), (C.1) and (C.2).

By analogy with PP-wave reflection, equations (2.31) represent so-called
PS-wave AVO gradients. Note that the PS-wave AVO gradients are associated with
the term sin¢p, whereas the PP-wave AVO gradient corresponds to sin® ¢p: the
PS-wave AVO gradients can be extracted from data by recovering the linear trends
in plots Rpsy(sin¢p) and Rpsu(sindp). The AVO gradients can be used for fast
rough estimates of the medium parameters as well as for a more sophisticated linear
inversion of reflection coefficients. Joint inversion of the PP- and PS-wave AVO gra-
dients can provide estimates of the parameters 52(1) , 6§2) and ,),Z§S)’ ¢ =1,2 (assuming a
nonzero angle £). Such an inversion cannot be carried out using only approximations
Rpp since the corresponding expressions do not allow one to separate (51(1) from 7§S)
(Riiger, 1997; Riiger & Tsvankin, 1997; Psencik & Martins, 2000).

2.3 Numerical examples

I have tested the accuracy of the approximations (2.25) and (2.26) on several
anisotropic models. Most models here represent fracture-induced anisotropic media,
derived from the results of Bakulin et al. (2000a; 2000b).

For all models, I compute both exact components Rpsy and Rpsy, their ap-
proximations and the corresponding absolute errors as functions of incidence angle
and azimuth (Figures 2.2-2.4). The azimuth is measured from the z-axis of the refer-
ence coordinate system as introduced in Figure 2.1, with the orientation of the z-axis
defined separately for each particular model. The “exact” components Rpgy and
Rpsy are obtained by performing the projection of the exact coefficients Rps, and
Rps, described above [see the discussion related to equation (2.30)]. Thus, an error
associated with such a projection influences the final results. This extraction of the
components Rpsy and Rpsy may simulate a processing sequence applied to field data
to obtain the components Rpsy and Rpgy, which can be subsequently used in AVO
analysis. Approximate components Rpgsy and Rpsy are computed by using equations
(2.26), (C.1), (C.2) and Table 2.1. The absolute error is determined as the difference
between the exact and approximate coefficients.

Figure 2.2 shows the components Rpgy (left) and Rpgy (right) computed for
VTI/HTI interface. The VTI incidence halfspace represents a typical shale layer
overlaying an isotropic medium with vertical cracks that result in HTI symmetry. In
this model, the cracks are gas-filled and a moderate crack density e = 5% is assumed
(the crack density e is defined as [number of cracks per unit volume] x [mean cubed
diameter]; for more detail, see Bakulin et al., 2000a). The medium parameters for
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both halfspaces can be found in the caption of Figure 2.2. The z-axis of the reference
coordinate system is horizontal and coincides with the symmetry axis of the HTI
medium (perpendicular to the cracks).

The component Rpgy in Figure 2.2 is well represented by the approximate equa-
tions. The shape of the approximate component (i.e., its variation with incidence and
azimuthal angles) is close to that of the exact coeflicient. The absolute error is small
for the whole range of angles in the plot. However, because Rpgy increases with in-
cidence angle from zero at normal incidence, any estimates of the coeflicient at small
incidence angles will contain large relative errors. Likely, such a small-incidence-angle
reflection event will be strongly distorted by noise.

The shape of the component Rpgsy is also approximated quite well, but the
absolute errors are comparable to the magnitude of the coeflicient itself. This should
not be surprising since this component is small (note that the component Rpgy is
always zero for azimuthally isotropic media or vertical symmetry planes in azimuthally
anisotropic media) and thus large relative errors can be expected. Therefore, if the
component Rpgy is detected at all in field data, equations (2.26) and (C.2) can be
used primarily for qualitative rather than for quantitative analysis.

Figure 2.3 corresponds to an interface between two orthorhombic media with the
vertical symmetry planes that differ by 30°. This model is represented by two per-
pendicular crack sets with different crack densities in each halfspace. In the incidence
halfspace, the crack density of the cracks parallel to the [zs,z3] plane of the local
coordinate system (one of the symmetry planes) is e; = 3%, and the perpendicular
crack set (parallel to the other symmetry plane) has crack density e; = 5% (for more
details, see Bakulin et al., 2000b). The cracks are dry and embedded in an isotropic
host rock with the P- and S-wave velocities 3.6 km/s and 2.3 km/s, respectively. In
the reflecting halfspace (below the reflector), the crack sets are interchanged (e; = 5%,
ez = 3%) and the isotropic host rock is characterized by the P- and S-wave velocities
4.17 km/s and 2.52 kmn/s, respectively. Additionally, the entire crack system of the
reflecting halfspace is rotated with respect to the crack system of the incidence half-
space by the angle x = 30°. The resulting medium parameters of both halfspaces are
provided in the caption of Figure 2.3. The reference coordinate system is associated
with the symmetry planes of the incidence orthorhombic medium, with the horizontal
z-axis perpendicular to the [xq, x5} symmetry plane. This model represents the most
general configuration that can be treated by equations (2.26), (C.1) and (C.2).

Figure 2.3 (left) shows that the approximation for the component Rpgy is suffi-
ciently high. The absolute error generally increases with azimuth but is small for all
incidence angles plotted (especially for azimuths smaller than 60°). Small differences
in the azimuthal variation of the exact and approximate Rpgy components are associ-
ated with a small value of the first-order term responsible for the azimuthal variation
of the Rpgy approximation. In such a case, the contribution of higher-order terms
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Figure 2.2. Components Rpsy (left) and Rpsy (right) of the PS-wave reflection
coefficients for a VTI/HTI interface as functions of the incidence angle and azimuth:
exact components (top), weak-contrast, weak-anisotropy approximations (middle)
and absolute errors (bottom) defined as the difference between the exact and ap-
proximate components. Parameters of the VTI incidence halfspace: p = 2.0 g/cm?,
Vpo = 2.9km/s, Vgo = 1.5km/s, € = 0.2, § = 0.1, v = 0.1; HTI reflecting halfspace:
p=22g/cm®, Vpy = 3.3km/s, Vjy = 1.8km/s, ") = —0.13, 6(") = —0.14 and
YY) = —0.053; Vas = V/Aus.
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Figure 2.3. Components Rpgy (left) and Rpgy (right) of the PS-wave reflection
coefficients for an orthorhombic/orthorhombic interface as functions of the incidence
angle and azimuth: exact components (top), weak-contrast, weak-anisotropy approx-
imations (middle) and absolute errors (bottom) defined as the difference between the
exact and approximate components. The vertical symmetry planes of the halfspaces
differ by the angle x = 30°. Parameters of the incidence medium: p = 2.1 g/cm?3,
Vas = 3.57 km/s, Vi = 2.16 km/s, ) = —0.14, 6V = —0.14, v = —0.06,
€2 = —0.082, 6@ = —0.082, v® = —0.035, 6 = —0.058; reflecting medium:
p = 23 gfecm®, Vi3 = 4.17km/s, Vi = 2.52 km/s, ) = —0.082, §V) = —0.082,
¥ = —0.035, €? = —0.14, 6® = —0.14, ¥ = —0.06, 6 = 0.05; V33 = v/A33 and
Via = VAu.
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(neglected in the approximations) becomes comparable to that of the first-order term.
The shape of the approximation Rpgy (Figure 2.3 left) is also sufficiently accurate,
at least up to an incidence angle of 30°. Notice that the component Rpsy does not
vanish for azimuths 0° and 90°, as it did in the previous example. This is caused
by the misalignment of the vertical symmetry planes of the incidence and reflecting
halfspaces. Figure 2.3 suggests that expressions (2.26), (C.1) and (C.2) can work
reasonably well even for complicated models.

The final model (Figure 2.4) is derived from the previous one by increasing
the strength of the anisotropy in both halfspaces (by increasing the crack densities
to more than 10%). As expected, the accuracy of the component Rpgy decreased
relative to that from the previous model. Moreover, the azimuthal variation of Rpgy
is no longer approximated adequately. A similar failure is observed for the component
Rpsy. Note that the “exact” components Rpsy and Rpsy have been obtained by
the projection of the exact reflection-vector R onto the g%¥ and g5# directions,
an operation that becomes inaccurate for a strongly anisotropic incidence medium.

Extensive numerical tests indicate that the accuracy of the approximations Rpgy
and Rpsy generally decreases for lower anisotropic symmetries. However, the tests
also indicate that approximations may still work acceptably for strongly anisotropic
models with strong velocity and density contrasts. Also, the accuracy of the ap-
proximate Rpgy component is usually comparable to that of the Rpp approximation
tested previously in the literature. The accuracy of the Rpsy component, however,
will be significantly lower for the reasons mentioned above. In most cases, it will be
impossible to extract the component Rpgsy from field data due to a low signal-to-noise
ratio.

2.4 Summary of Chapter 2

I derived first-order approximations for converted-wave reflection coefficients
Rps, and Rpg, at a weak-contrast horizontal interface separating two weakly aniso-
tropic media of arbitrary symmetry. The general expressions were written explicitly
for an orthorhombic/orthorhombic interface with differing vertical symmetry planes
using Thomsen-type medium parameterization. Also, I obtained simple forms of the
reflection-coefficient approximations for small incidence angles (i.e., PS-wave AVO
gradients). The resulting expressions can be applied for any combination of isotropic,
VTI, HTI and orthorhombic halfspaces.

The expressions for the coefficients Rps, and Rps, are more complicated than
the corresponding ones for Rpp. In order to recover the Rps, and Rpg, coeflicients
from field data, and to extract their linear components (here denoted as Rpgy and
Rpsy), an accurate polarization analysis must be carried out. Moreover, the existence
of S-wave singular points may complicate the recovery and reduce the applicability
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Figure 2.4. Components Rpsy (left) and Rpgy (right) of the PS-wave reflection
coeflicients for a strong-contrast, strong-anisotropy orthorhombic/orthorhombic in-
terface as a function of the incidence angle and azimuth: exact components (top),
weak-contrast, weak-anisotropy approximations (middle) and absolute errors (bot-
tom) defined as the difference between the exact and approximate components. The
vertical symmetry planes of the orthorhombic halfspaces differ by the angle x = 30°.
Parameters of the incidence medium: p = 2.0 g/cm?, V33 = 3.4km/s, Viy = 1.8 km/s,
W = —0.27, 60 = —0.28, y1) = —0.1, €? = —0.19, 6 = —0.20, v@ = —0.07,
63 = —0.11; reflecting medium: p = 2.2 g/cm3, Va3 = 4.2 km/s, Viy = 2.4 km/s,
) = —0.18, 60 = —0.20, vV = —0.08, €? = —0.24, 6@ = —0.25, v& = —0.1,
63 =0.06; Va3 = /A3 and Vyy = /Ay
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of the coefficients.

Numerical tests show good overall agreement of the derived approximations with
the corresponding exact coefficients for models with moderate velocity and density
contrasts, and moderate anisotropy. The accuracy of the component Rpgy is usually
comparable to that of Rpp approximations in the literature. Besides, the approximate
Rpgsy frequently work well even for relatively large incidence angles. Although the
component Rpgy is a direct indicator of azimuthal anisotropy, it, unfortunately, is
usually small and is likely to be distorted by noise. Decreasing accuracy of the
approximate Rpgy and Rpgy generally is expected for lower anisotropic symmetries.

The equations derived in this paper can be further used to analyze the Rps, and
Rpg, coefficients for an interface separating arbitrarily anisotropic halfspaces, includ-
ing TT halfspaces with arbitrarily tilted symmetry axes or orthorhombic halfspaces
that have no horizontal symmetry planes.
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Chapter 3

Joint linear inversion of PP- and PS-wave
reflection coefficients in anisotropic media

Joint linear inversion of PP- and PS-wave reflection coefficients was suggested
and performed for isotropic media, for example, by Alvarez et al. (1999), Larsen et
al. (1999) and Nefedkina et al. (1999). The development of such an inversion for
anisotropic media (as the second tool in the inversion toolboz), is the objective of
this chapter. The results of Chapter 2 provide the necessary theoretical foundation
for the inversion.

The main motivation for developing the linear inversion is its simplicity: it is fast
and allows for a straightforward error analysis. One of the most important contribu-
tions of this tool is its capability to provide relatively simple analytical insight. Such
an insight is essential to recognize (or exclude) possible types of anisotropic symmetry
of the medium, to identify the combinations of the medium parameters constrained
by data, and to suggest the necessary @ prior: information.

In this chapter, I discuss the joint linear inversion of PP- and PS-wave reflection
coefficients for anisotropic media with orthorhombic and higher symmetry. I use the
approximations of the PS-wave reflection coefficients derived in Chapter 2, together
with the approximate PP-wave reflection coefficients derived by Riiger (1997) and
Vavrycuk & Psencik (1998). First, I analyze the theoretical potential of such an
inversion by applying it to ideal, noise-free data. Second, I develop an algorithm
for the more realistic inversion of data contaminated by errors and test it on several
synthetic examples.

3.1 Linear inversion of noise-free data

Performing an ideal inversion of data with no errors is, of course, impossible in
practice. Such an analysis, however, establishes the theoretical limitations of the in-
version by showing the maximum amount of information that can be extracted using
PP- and PS-wave amplitudes. A model of orthorhombic symmetry is used for this
investigation. The results can be immediately applied to any higher anisotropic sym-
metries, such as transversely isotropic media with vertical (VTI) or horizontal (HTT)
symmetry axis (we assume a horizontal reflecting interface throughout), or isotropic
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media. For models with lower anisotropic symmetries (monoclinic, triclinic), or tilt
of symmetry, the analysis would be more complex because of the more complicated
structure of the approximations Rpp, Rps, and Rpgs,. The principle, however, re-
mains the same.

3.1.1 Variation of the reflection coefficients with incidence angle and
azimuth

As in Chapter 2, I assume a horizontal interface separating two orthorhombic
halfspaces. Each orthorhombic halfspace has three mutually perpendicular symmetry
planes, one of which is horizontal. The [z, z] plane of the reference Cartesian coor-
dinate system coincides with one of the vertical symmetry planes of the incidence
orthorhombic halfspace, and the [z, y] plane is parallel to the interface (as well as to
the horizontal symmetry planes of both halfspaces).

Approzimate PP-wave reflection coefficient

A detailed discussion of the approximations of the P P-wave reflection coefficients
in anisotropic media (denoted in the following as Rpp) can be found in Riiger (1997)
and Vavrycuk & Psencik (1998). Under the convention introduced in Chapter 2, Rpp
can be written as (Vavry¢uk & Psencik, 1998)

Rpp = Py + Py sin? ¢ + P, sin® ¢ tan? ¢, (3.1)

where ¢ is the phase incidence angle (for simplicity, the symbol ¢ is used here instead
of ¢p used in Chapter 2), and the terms Py, P; and P, represent the P-wave AVO
intercept, gradient and large-incidence-angle terms, respectively. The intercept is
given by

1AZ 1Ap 1A«
P°“2Z”§ﬁ 2 a (3.2)
As in Chapter 2, « is the vertical P-wave velocity and p is the density, Z = ap is the
vertical P-wave impedance, AX = X, — X denotes the contrast in quantity X across
the interface (the subscripts 1 and 2 refer to the incidence and reflecting halfspaces,
respectively), and X = %(X 1+ X3) denotes the average value of X. The approximate
relation (3.2) is valid for small contrasts Ap and Aa. The P-wave AVO gradient P;
can be written as follows (Vavrycuk & Psencik, 1998):

Py = PP 4 PMgin e cosyp + P sin? o, (3.3)

where 9 is the azimuth of the incidence plane, treated as positive in the counter-
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clockwise direction from the z-axis towards the y-axis of the reference coordinate
system (the incidence plane is defined by the incident P-wave slowness vector and
the normal to the interface). As seen in equation (3.3), the P-wave AVO gradient P,
contains three terms: the term PI(ABS) is azimuthally independent, the PI(M) term is
pronounced mostly at intermediate azimuths (with the maxima at ¢ = 45° &+ £90°,

where k£ = 0,1,2,3), and the Pl(l’) term dominates the azimuthal behavior for larger
azimuths close to 9 = +90°. The explicit forms of PI(ABS), PI(M) and Pl(L) are

1
PI(ABS) _ |:_(5'§2) 5(1) +8ﬂ2fygs))sin2n+5,§2) _ 6%2)_*_

2
Aa ,32 AG
. _ 4
@ a2 G ]’ 34)
1 B :

pM = 3 [(5&2) 5 + 8 nyés)) sin 2&] , (3-5)
1 5’ B

rPE = 3 [—(6&2) 5 +8 zfyés))cos 2k + (6(2) s + 85’)’%5)) - (3.6)

In these equations, @ is defined in equation (3.2) and f3 is the average %(ﬁ1 +03,), where
B and [, represent the vertical S-wave velocities in the two halfspaces, respectively
[corresponding to the stiffness tensor elements Ajgs; see definitions (2.13)-(2.14)]. In
equation (3.4), G = pf3? is the vertical shear modulus. In the weak-contrast approxi-
mation,

—~— +2—. (3.7)

The anisotropy parameters of the incidence orthorhombic halfspace (’y%s) 6?),

5§2)) and the reflecting orthorhombic halfspace ('yés), 6&1), 552)) are defined as in
Tsvankin

(1997b); see equations (2.17), (2.21) and (2.22), respectively. Note that the anisotropy
parameters are defined in the local Cartesian coordinate systems [z;,x9,23); (inci-
dence halfspace) and [z, x9, 23] (reflecting halfspace). For each halfspace j, the
coordinate systems are chosen such that [z, z3]; and [x9,z3]; planes coincide with
the two vertical symmetry planes of the medium. Consequently, the local coordi-
nate system of the incidence halfspace [z, z9,x3]; also coincides with the reference
coordinate system [z,y, z] used in equation (3.1). Finally, the angle k in equations
(3.4)-(3.6) is the misalignment angle defined along with equations (2.24)-(2.26). Un-
der the chosen convention, x is also the azimuth of the [z, x3], vertical symmetry
plane of the reflecting orthorhombic halfspace. If k = 0, the vertical symmetry planes
of the incidence and reflecting halfspaces are aligned.
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The azimuthal variation of the large-incidence-angle term P, in equation (3.1)
can be expressed as

P, = P"BS) 4 PMY sin 29 cos 29 + PZ,(M2) sin ) cos ¢ (3.8)
+PM sin? 1) cos? o + P{Y) sin? 4p.

Equation (3.8) shows that the azimuthal variation at large incidence angles is con-
trolled by five terms. The P(ABS) and P( ) terms are analogous to the P(ABS) and
P( ) terms, respectively, in equation (3.3). Equation (3.8), however, also contains
three intermediate-azimuth terms P(Ml) P2(M2) and PéM‘o’); the P2(M1) term is most

pronounced at azimuths close to 22.5° + k45° (k = 0,...,7), the P(MZ) and P(Ms)
terms influence the behavior of the reflection coefﬁc1ent Rp p mainly at azimuths close
to ¥ = 45°+ k90° (k =0, 1,2, 3) (in general, P2 %) makes a larger contribution). Ex-
plicit expressions for the components are

1
PP = o [4(6@ +e —q))sin’ 2 — (€7 — ) sin®n  (3.9)
A
+ 6g2) - 652) + Ta] )
o
r
pMy 5 |- (6(3) +e - (1))sm4n] (3.10)
1
pMD ) r(egz) ) sin %] (3.11)
1 -
pPMY = 5 _(6§3)+e§2) V) cosdr — (6 4 €@ — (1))], (3.12)
1 -
P = 5| — (€ () _ egl))cos 2k + (€2 egl))] . (3.13)

Equations (3.9)- (3 13) contain the anisotropy parameters eg ), e§2), 6%3) (incidence

halfspace) and 62 , e§2) and 6(3) (reflecting halfspace), which differ from those that
control the AVO gradient [equations (3.4)-(3.6)]. For a detailed discussion of these

parameters [equations (2.15), (2.16) and (2.23)], see Tsvankin (1997b).

Approzimate PS-wave reflection coefficients

In Chapter 2, I derived the approximate PS-wave reflection coefficients valid for
arbitrary anisotropic media in the form

RP51 = RPS‘/COS(I)-FRPSHSiIl‘I), (314)
RPS‘Z = —Rpsysin® + Rpgy cos ®;
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see equations (2.10) for details. As discussed by Jech & Psencik (1989) and in Chapter
2 above, the polarization angle ® is a nonlinear function of the anisotropy parameters
of the incidence halfspace. In Section 2.2.2, (Chapter 2), I showed how the polar-
ization angle ® can be eliminated (using Alford-type rotation) and the components
Rpsy and Rpsy (linear in the medium parameters) can be extracted from reflection
data. Although the component Rpsy may provide useful qualitative information, it
is probably too weak to be extracted from data with the accuracy required for the
quantitative inversion. Therefore, only the Rpgy component is used in the following
analysis.

For the orthorhombic model, the variation of the Rpsy component with incidence
angle ¢ is given by:

Rpsy = Sisin¢ + Sysin¢cos ¢ + Szsin ¢ + Sy sin® ¢ cos ¢
+Sssin® ¢ + Sgsin’ ¢. (3.15)

This equation was obtained by substituting equation (2.29) into equation (2.26) for
the component Rpsy (again using the notation ¢ instead of ¢p for simplicity). Notice
that the S; terms (¢ = 1,...,6) in equation (3.15) consist of linear combinations of
the V; terms (I = 1,...,5) in equation (2.26). In contrast to the Rpp coefficient
[equation (3.1)], the Rpsy component has no AVO intercept (i.e, So = 0 for this
model), and it has two AVO gradients .S; and S,:

S = S8 4 s gintcostp + S sin? 1p, (3.16)
Sy = SéABS) + SéM) sin 1) cos ¢ + S:(ZL) sin® 9. (3.17)
The gradients (3.16) and (3.17) are controlled by the same medium parameters as

is the P-wave AVO gradient P, [see equations (3.3)-(3.6)], but in different linear
combinations:

-1
S = L o) i 315)
205
1 @ (2, L14p
+ 0 -6 - 5—
2(1 - %) 2p
, 1
SM =~ (55 — 65") sin 2k, (3.19)
2(1 -4
-1 1
gl _ —_,(6(2) - 6(1)) cos 2k + —-(5(2) — 6y, 3.20)
1 2(1—§—j) 2 2 2(1_2_2 1 1) (
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and
SéABS) _ ( g } ((552) _ 52()1)) _ Qé és)) sin k (3.21)
2(1- %) a
T : CRCER v
S — (i(é@ — &My +2§ ‘S’) sin 2k (3.22)
2 21 - g_: 2 2 a2 ’
gL _ (_g__(5<2> — My _ 25 <S)> cos 2k (3.23)
2 21 - g) 2 2 @72
o Oy L o)
@(51 —6;7) + 2571 .

The medium parameters in equations (3.18)-(3.23) are defined in equations (3.4)-(3.6).
As pointed out in Chapter 2, the PSV-wave AVO gradients do not contain the
P-wave velocity contrast %. Notice the identical dependence on the azimuth
of the PSV-wave AVO gradients in equations (3.16)-(3.17) and that of the P P-wave
AVO gradient from equation (3.3). Also, the dependence of the PSV-wave azimuthal
components (3.18)-(3.23) on the angle « is similar to that of the PP-wave azimuthal
components from equations (3.4)-(3.6).

Finally, the Rpsy component (3.15) contains four large-incidence-angle terms
S3, S4, S5 and Sg. The dependence of each of these terms on azimuth v is the same
as that in equation (3.8) for the PP-wave AVO large-incidence-angle term. Also, the
dependence of S3, Sy, S5 or Sg on the anisotropy parameters egl), 652), egl), e§2), (5§3)
and (5%3) is identical, to within a common multiplier, to that described in equations
(3.9)-(3.13) for the P, term. As discussed below, the large-incidence-angle terms
Sz, Sa, S5 and Sg represent redundant information and in the idealized case of the
noise-free data are unnecessary. For their explicit expressions see Appendix E.

3.1.2 Inversion of small-incidence-angle terms for noise-free data

The small-incidence-angle terms Py, P, S;, and S, discussed above are of primary
interest in the quantitative inversion. The large-incidence-angle terms are generally
less accurate and may be severely contaminated by noise. Also, a trade-off between
the small-incidence-angle and large-incidence-angle terms for any finite range of angles
reduces the accuracy of the latter.
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In the following, I assume that both the PP- and PS-wave reflections from the
horizon under investigation are available for a sufficiently wide range of incidence
angles and azimuths (in theory, three different incidence angles and three different
azimuths are enough). Also, the reflection coefficients Rpp and Rpgy are assumed to
be extracted from noise-free reflection data. Additionally, I assume that the azimuth
of one of the vertical symmetry planes of the incidence orthorhombic halfspace has
been identified, so the reference Cartesian coordinate system [z, y, z| introduced above
can be properly oriented. This assumption is quite reasonable since azimuthal move-
out velocity analysis carried out for the orthorhombic overburden can be used to find
the symmetry-plane orientation (Grechka & Tsvankin, 1999). Under these assump-
tions, the individual parameter combinations Py, Pl(ABS), PI(M) , and Pl(L) [equations
(3.2), (3.4)-(3.6)] together with S§ABS), SiM), S%L), S:SABS), SéM), and SéL) [equations
(3.18)-(3.23)] can be extracted using corresponding equations (3.1) and (3.3), together
with (3.15)-(3.17).

Let us assume in the following that x # 0. Then the ten combinations F, PI(ABS),
PI(M), Pl(l’), and SfABS), SfM), SI(L), SéABS), SéM), and SZSL) give us ten independent
constraints on the medium parameters. Let us initially assume that the % ratio is
known. Using three combinations (3.5), (3.19) and (3.22), we can recover two medium
parameters (652) - (551)) and 'yés) along with the angle x specifying the azimuth of
one of the symmetry planes of the reflecting halfspace; however, since there are two
perpendicular vertical symmetry planes, there is ambiguity in estimating x. Both
k and k + 90° allow us to satisfy equations (3.5), (3.19) and (3.22), resulting in
estimates of (65 — 6") and 'yés) with opposite signs. The transformation [k —
k £ 90°, ((552) - (Sff,l)) — —((5&2) - 651)) and 72()5) — —755)] is, in the weak-anisotropy
approximation, equivalent to the rotation of the reflecting orthorhombic halfspace by
90° around the z-axis of the reference coordinate system. In other words, the choice
of k¥ or k +90° for orthorhombic media is arbitrary; a particular choice simply defines
the azimuths of the symmetry plane [z, 23], of the local Cartesian coordinate system
of the reflecting halfspace. As discussed below, however, the choice of k or x £+ 90° is
no longer arbitrary for a reflecting halfspace with HTI symmetry.

The recovered combinations ((552) - 6&1)), 'yés), and the angle x can be then sub-
stituted into equations (3.6), (3.20), and (3.23) which allow us to estimate two other
medium parameters (6§2) - 5$1)) and 7§5), and also add a constraint on the velocity
ratio g— Using the new constraint, the original g ratio can be updated, and the inver-
sion can be repeated until the estimated parameters g, K, (6§2) —6&1)), 'yés), (652) —6?))
and %S) satisfy equations (3.5), (3.6), (3.19), (3.20), (3.22) and (3.23).

The results can finally be substituted into the last three equations (3.4), (3.18)
and (3.21). Together with the remaining equation (3.2) and relation (3.7), it is possi-

ble to recover one more anisotropy contrast (5§2) - (5§2) ) and three isotropic contrasts
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The inversion above can be summarized as follows: if noise-free amplitudes of
both PP- and PS- reflected waves for a sufficient range of azimuths and incidence
angles are available, it is in theory possible to invert the small-incidence-angle terms

for the following combinations of the medium parameters:

g . (3.24)
Aa A A

22 ?P, (3.25)
(07 = 6, (67 = 87), (57 — o7, (3.26)
7§s), 1), (3.27)

To recover the combinations of the anisotropy parameters (3.26) and (3.27), the con-
ditions x # 0° and « # 90° are necessary. If Kk — 0° (or K — 90°), a similar analysis
to that above shows that it is impossible to separate the anisotropy parameters of
the incidence and reflecting halfspaces, and the only combinations of the anisotropy
parameters constrained by the data are

(67 ~6") — (657 — o), (6" - o1?), (3.28)

A direct indication that either k = 0° or x = 90° is that all three terms Pl(M) , SfM)
and SéM) vanish [see equations (3.5), (3.19) and (3.22)].

The parameters (3.24)-(3.29) represent the maximum information that can be ob-
tained from the joint inversion of the PP- and P.S-wave reflected amplitudes recorded
at small and moderate offsets.

3.1.3 Inversion of large-incidence-angle terms for noise-free data

If the reflected PP- and PS-wave amplitudes at large incidence angles (¢ > 35°)
are available, the recovered parameters (3.24)-(3.29) can be further used in the in-
version of the large-incidence-angle terms P, [equation (3.8)], and S3, Sy, S5 and Sg
[equations (3.15) and (E.1)-(E.3)] for the parameters egl), e, e§2) , 6%2), 52 and 653) .
The approximations Rpp, Rps, and Rps,, however, rarely have a sufficient accuracy
at incidence angles exceeding 35°. Therefore, the linear inversion of P, S3, Ss, S5 and
Sg is questionable. It is unlikely to provide us with good estimates of the parameters
egl), 621) , e?), e§2) , 6%3) and 6%3) , but can perhaps be used to recover trends of these
parameters, i.e., their relative spatial changes.

From equations (3.8)-(3.13), (3.15) and (E.1)-(E.3), the azimuthal variation of
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the reflection coefficients at large incidence angles is more complex and is controlled
by five terms rather than three. The equations also show that both PP and PS

reflections are controlled by the same linear combinations of the parameters egl),

egl), 652), e§2), 6&3) and 653). Therefore, for noise-free data, just one of the reflection
coefficients is theoretically sufficient to recover those combinations. Redundancy in
using both PP and PS reflected amplitudes, however, can be used to better constrain
inversion of noise-contaminated data.

If the Rpp reflection coefficient has been measured for five different azimuths at
large incidence angles, the terms PQ(ABS), I?Q(Ml), P2(M2), P2(M3) and PQ(L) [see equations
(3.9)-(3.13)] can be recovered. Using the g, x and 42 estimates from the inversion of
the small-incidence-angle terms, the joint inversion of the large-incidence-angle terms
yields the following additional combinations of the medium parameters:

(€2 — My, (€7 — V), (2 — ), (3.30)
6%3) and 6&3), (3.31)

provided  # 0° and & # 90°. If kK — 0° or Kk — 90°, the only combinations that can
be constrained by the data are

(€7 = ") - (67 - &), (&~ ), (3.32
(6 - 62").

w
[9%]

3.1.4 Inversion for isotropic, VTI and HTI media

The inversion results (3.24)-(3.33) for an orthorhombic medium can be applied
without any difficulties to higher anisotropic symmetries, such as HTI, VTI or iso-
tropic. The recovered model parameters (3.24) and (3.25) remain formally unchanged
for all anisotropic models. The anisotropic combinations (3.26)-(3.33) can be con-
verted into the corresponding expressions for VIT and HTI media using Table 3.1.
For example, if the incidence halfspace is VTI and the reflecting halfspace is HTI, all
combinations of the anisotropy parameters with the subscripts 1 and 2 in equations
(3.26)-(3.33) have to be replaced with the corresponding VTI and HTI combinations
listed in the third and second column of Table 3.1, respectively. The same method
was used in Chapter 2 to convert the approximate coefficients Rpgs, and Rpg, derived
for orthorhombic media to the approximations valid for VTI and HTI symmetry (see
Table 2.1). Below, I briefly discuss some special cases.

Isotropic medium. In a purely isotropic medium, all anisotropy parameters in
(3.26)-(3.33) vanish, and x = 0. Then, the g ratio and the isotropic contrasts (3.25)
can be recovered. Notice that using both P P- and PSV-wave reflections, it is possible
to invert, theoretically, for all three isotropic contrasts without additional information.
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| orthorhombic || HTI | VTI |

62 _ 5(M) 6V 0
5@ V) S
) b 0

2 _ M V) 0
2 eV €
E) §V) — 9(V) 0

Table 3.1. Conversion table for the anisotropy parameters in the weak-anisotropy
approximation. The VTI and HTI parameters are defined by equations (2.27) and
(2.28). The symmetry axis of the HTT medium points in the z;-direction of the local
coordinate system in each halfspace.

The P P-wave reflection coefficient alone is insufficient for this purpose, as frequently
discussed in the literature (for instance, see Smith & Gidlow, 1987; Cambois, 2000).

VTI medium. If both halfspaces are VTI, the reflection coefficients are azimuthally
invariant (as correctly predicted by the approximate Rpp and Rpg), i.e., the az-
imuthal terms (3.5), (3.6), (3.10)-(3.13), together with (3.19), (3.20), (3.22), (3.23)
and the azimuthally dependent components of the large-incidence-angle terms (E.1),
(E.3) vanish. Also, the angle x = 0. If the g ratio is known (it can be estimated
from the vertical P- and S-wave traveltimes), the three isotropic contrasts (3.25)
can be theoretically recovered, along with constraints in the anisotropy parameters
(62 — 01) and (e2 — €;). The individual values of &,, d;, €, and €;, however, cannot be
resolved without additional information. The inversion is also possible without the

knowledge of g by simultaneous inversion of small- and large-incidence-angle terms

Aa AB Ap

[i.e., small-incidence-angle terms alone are not sufficient to invert for g, s B 4

and ((52 - 61)]

HTT reflecting halfspace. If one of the halfspaces possesses HTI symmetry, the
reflection coefficients generally exhibit azimuthal variation. If the reflecting halfspace
is HTI, the azimuth of the symmetry axis in this halfspace in general is not zero
(i.e., the misalignment angle k # 0). Using the conversion key from Table 3.1 and
equations (3.24)-(3.27), (3.30) and (3.31), the following medium parameters can then
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be theoretically estimated for HTT media:

B
— K,
(67
Aa AB Ap
C_Y,,B,,D,

) = (55‘/)’
(5 —a") = &,
) = (0 ="y,

M = M,

W=, (3.34)
(@ -y = 4,
@ - = &,
(& -e”) = (& -d"),

3 |4 |4
N R ]
0 = (85" —2¢8").

Notice certain redundancy in equations (3.34). For instance, besides the parameters
(5§V) and 69/) , their difference ((52(,‘/) - 6§V)) can be recovered independently as well.
This redundancy can help to constrain the estimates of 6%‘/) and 6&‘/) in field-data
applications.

An important difference in the inversion for HTI media from that for orthorhom-
bic media results from different specifications of the angle k for these symmetries. For
the orthorhombic reflecting medium, x determines the azimuth of one of the two ver-
tical symmetry planes, and the choice of a particular symmetry plane is arbitrary. In
HTI, however, x determines the azimuth of the symmetry-azis plane, which is princi-
pally different from the other (isotropy) plane. From detailed analysis of the equations
for Rpp and Rpgy, the angle k, and, consequently, the system of parameters (3.34),
can be recovered uniquely, with two exceptions. First, if k = 0 (i.e., the symmetry-
axis planes of the HTT halfspaces above and below the interface are aligned), the data
can be explained equally well with either choice of kK = 0° or kK = 90°, the latter
resulting in the erroneous recovered values of Jév) = 0 and egv) = 0. Second, if in
fact 65‘/) = egv) = 0, two different models with x and k = Kk £ 90° can be found with
identical AVO response. Clearly, if 6§V) = egv) = 0, the direction of the symmetry
axis plane of the reflecting medium is not distinguishable from the direction of the
isotropy plane using approximate reflection coefficients Rpp and Rpgy (although the
orientation of the symmetry planes in general can still be identified as long as v, # 0).
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Besides resulting in incorrect values of 69/) and egv), the wrong choice of « also
results in the recovery of incorrect values of all remaining anisotropy parameters and
the isotropic contrast AB/3. Therefore, knowledge of at least one of those parameters
would eliminate the nonuniqueness, and the azimuths of the isotropy and symmetry
axis planes could be correctly obtained, even for the same symmetry-axis orientation
in both halfspaces (when x = 0°). Note that if the incidence halfspace is isotropic,

then 69) = 0, and the inversion becomes unique.

3.2 Linear inversion of noise-contaminated data

Introducing errors in the input amplitudes compromises both the stability and
resolution of the inversion. In the following discussion, I focus on inversion of the
small-incidence-angle terms only. Although linear inversion of the large-incidence-an-
gle terms is possible in principle, it may not provide reliable results because of limited
accuracy of the approximations Rpp and Rpsy. Moreover, extraction of the large-
incidence-angle terms from data is unstable unless incidence angles exceed 40°.

Theory for linear inversion of noise-contaminated data can be found, for example,
in Tarantola (1987). Appendix F provides some basic definitions used below.

3.2.1 Inversion scheme

The goal of the inversion here is to obtain a set of values for the medium pa-
rameters as close as possible to the actual set (3.24)-(3.29). The inversion takes place
in two steps. First, the best least-square fit of the data representing the PP- and
PS-wave reflection coefficients results in the recovery of some of the small- and
large-incidence-angle terms described below. Second, the extracted small-incidence-an-
gle terms are combined, if possible, to obtain combinations of the medium parameters,
such as those in (3.24)-(3.29). Although the large-incidence-angle terms are not used
in the second (parameter-estimation) step, their influence is accounted for in the first
step, which improves estimates of the small-incidence-angle terms.

For the reflection coefficient Rpp, the system of equations used to fit the noisy
data (i.e., df +eF = [df,df, ...,d§]7, where T denotes the transpose, df is the data
vector free of errors and e® is the vector of corresponding errors contaminating df;
see Appendix F) can be written in the form of equation (F.1), with
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AP x | PABS) | . (3.35)

The forward operator AF is an Nx9 matrix, where N is the number of data points
d? measured at locations specified by (¢;, ;) pairs (¢; is the incidence angle, v; is
the azimuth, ¢ = 1, ..., N). The explicit form of AF can be found in Appendix G.
The components of the model vector mF = [P, PI(ABS), PI(M), Pl(l’), PQ(ABS) , PQ(M 2
pMD pM3) - pUNT 416 defined by equations (3.2), (3.4)-(3.6) and (3.9)-(3.13). In
order to resolve all nine model parameters, at least three different incidence angles ¢
and five different azimuths ¥ must be provided. The stability of the inversion for a
particular azimuthal and incidence-angle coverage can be analyzed by evaluating the
corresponding covariance matrix (see Appendix F for the definition). Such an analysis
reveals, for example, that to obtain large-incidence-angle terms PQ(ABS), PQ(MI), PQ(Mz) ,
PéMz) and Pél’) with reasonable accuracy, it is necessary to use incidence angles
larger than 40°. However, unless the maximum incidence angle is smaller than 25°,
the large-incidence-angle terms should be included in the system (3.35) to improve
the estimates of the small-incidence-angle terms PI(ABS), PI(M) and Pl(L). The linear
system in equation (3.35) can be inverted for the model vector m¥ using well-known
techniques, such as the singular-value-decomposition (SVD) (see Appendix F).

A system similar to that in equation (3.35) can be defined for the coefficient
Rpsy using the corresponding equations (3.15)-(3.23) and (E.1)-(E.3). Analysis of the
resulting covariance matrix reveals, however, that the system based on equation (3.15)
is highly unstable due to the difficulty in separating the terms sin ¢ and sin ¢ cos ¢, as
well as sin® ¢ and sin® ¢ cos¢. The standard deviations of the small-incidence-angle
terms resulting from such an inversion vary approximately within the unacceptable
range 103 — 10* (i.e., they are approximately 10? — 10° higher than the corresponding
terms), even for a full and dense azimuthal coverage and incidence angles up to 60°.
A more stable form of Rpsy than that in equation (3.15) is necessary. For example,
the approximate relation cos¢ ~ 1 — %sin2 ¢ can be used to rewrite equation (3.15)
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as
Rpsy = SSising+ SSysin® ¢ + SSssin® ¢ + S5, sin’ . (3.36)

This approximate relation for cos ¢ holds well up to incidence angle ¢ = 45° (with a
difference of about 6%). Such an error is quite reasonable. Moreover, the approxi-
mations Rpp and Rpgy should be used for much smaller incidence angles than 45°,
Equation (3.36) contains only one PSV-wave AVO gradient

S8, = SS9 4 55M gin 4 cos g + SSP sin? ¢, (3.37)
where
SSUABS) —;(M2 65y — 25489 sin? (3.38)
2(1 + 2)
1 2 (2) AP BAG
+ —— (P =Py _=2F P
2(1+§)( 7% Tad
[ 1
SsM) — |- (5 6(1) +2 sin 2k, 3.39
[ 1
sst — |- 5‘2) 5&V 2 cos 2k 3.40
1
+—(5<2> ) +2§7§S>.
2142 o) o

The large-incidence-angle terms in equation (3.36) can be formally written as

SS; =SSP 4+ §5™MY gin 24 cos 29 + SS™M? sin1p cos
+SSM sin? o cos® o + SS sin? ¢, (3.41)

where 7 = 2, 3 and 4. The large-incidence-angle terms have the same structure as in
the original equations (E.1), but with different multipliers (E.2). Nevertheless, their
explicit forms are not needed for the inversion described below. Then, the system
(F.1) takes the form
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i SSfABS) 7
55
55

SSéABS)

ASx | ssM) | = | 7 . (3.42)

SS£M2)

SS§M3)
55

The forward operator AS is an Nx18 matrix, where N is the number of data points
d?; the explicit form of AS can be found in Appendix G. Analysis of the covariance
matrix corresponding to system (3.42) shows that a sufficient coverage over incidence
angles (up to 35°) and azimuths can provide us with acceptable estimates of the
small-incidence-angle terms SSI(ABS), SSfMl) and SSfL).

Since only one PSV-wave AVO gradient S.S; [equation (3.37)] can be recovered
from noisy data, the number of independent small-incidence-angle terms reduces from
ten [equations (3.2), (3.4)-(3.6) and (3.18)-(3.23)] to seven [equations (3.2), (3.4)-(3.6)
and (3.38)-(3.40)]. The loss of the three constraints implies that the medium param-
eters (3.24)-(3.29) cannot be resolved without additional information.

3.2.2 Synthetic examples

Here, the linear inversion is carried out for four different models: isotropic/VTI
(the incidence and reflecting halfspaces are isotropic and VTI, respectively), HTI/HTI
[both halfspaces are HTI, with aligned (parallel) symmetry axes above and below the
interface], HTIXHTI (the same as HTI/HTI but the symmetry axes are misaligned
by k = 30°) and ORTHO/ORTHO (both halfspaces are orthorhombic with aligned
vertical symmetry planes). For each model, I assume that both reflected PP- and
PSV-wave amplitudes are successfully recovered. Full azimuthal coverage v from 0°
to 360° is available with the azimuthal increment A = 15°. The PP- and PS-wave
data are collected along each azimuthal line for incidence angles ¢ < 35° with the
increment A¢ = 1°. The data are generated using the exact reflection coefficients,
which are contaminated by a uniformly distributed random error of 10%.

Example 1: isotropic/VTI model. The inversion algorithm is first applied
on data from the model of an isotropic/VTI interface (see the caption of Figure 3.1 for
the medium parameters). The upper plots in Figure 3.1 show the differences between
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the exact and approximate reflection coefficients computed as functions of the inci-
dence angle ¢ and azimuth 1 for this model. Noticeable differences can be observed
for incidence angles ¢ > 20° for both PP and PSV reflections and are relatively large
for angles exceeding 25°. Since the inversion is based on the approximate reflection
coeflicients Rpp and Rpgy, the inversion results, even if they are stable, may differ
from the true values. In the following, I refer to such a solution as biased.

The lower plots in Figure 3.1 show the best-fit reflection coefficients obtained
by solving the systems (3.35) and (3.42). In solving these equations, I assume that
symmetry of the incidence and reflecting halfspaces is no lower than VTI. In this case,
the terms P P(L) P(Ml) P(M2) P(M3) P(L) = 0 in equation (3.35),
and SS{™) = SS(L) SS‘M” SS(M2) SS(M3) SS(L) SSMY = SSM?) =
SSMI) = g5 SS(M” = SS‘M"’) SS(M3) 55‘“ = 0 in equation (3.42);
also the reﬂectlon coeflicients are az1muthally invariant [see also equations (3.2),
(3.4)-(3.6), (3.9)-(3.13), (3.38)-(3.41), (E.1), (E.3) and Table 3.1]. This assumption
helps to stabilize the inversion procedure. From the best-fit reflection coefficients, it
is possible to recover the following combinations of the medium parameters (Table
3.2):

1Aa  1Ap
Bo=953 T35
1Aa B\’ AG 1
p(ABS)  _ o2 =425 3.43
! 2 a a) @ T2 (349
1A 3 A 1
sswes) _ 180 FAG 5.

The errors in Table 3.2 are the standard deviations obtained from the corresponding
diagonal elements of the covariance matrix determined as in Appendix F [see equation
(F.3) for the covariance matrix C; it is assumed that data are uncorrelated and
their standard deviations, i.e., the elements of the data error matrix Cy in (F.3),
are obtained from the misfit between the measured data and the best-fit reflection
coefficient; see the lower plots in Figure 3.1]. As expected, the best constrained
parameter is Fy; the parameter SS’§ABS) is also recovered very well. A less stable
result is obtained for the parameter PI(ABS), which is generally much smaller than the
other two. Although the error in Pl(ABS) is probably acceptable, the result is slightly
biased due to the differences between the exact and approximate reflection coefficients
discussed above.

Clearly, the three constraints (3.43) are not sufficient to resolve the five model
parameters (Ap/p, Aa/a, AG/G, B/a and &,); without additional information, Table
3.2 represents the final result of the inversion. In the following, I assume that the
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Figure 3.1. Linear inversion of the reflection coefficients Rpp (left) and Rpgy (right)
for the isotropic/VTI model (Example 1). The upper plots show the differences
between the exact and approximate reflection coefficients, and the surfaces in the lower
plots are the best-fit reflection coefficients; error-contaminated data are marked by the
dots. The medium parameters are: isotropic incidence halfspace - p = 2.50 g/cm?,
Vpo = 3.00 km/s, Vg = 1.20 km/s; VTI reflecting halfspace - p = 2.80 g/cm?,
VPO = 3.60 km/s, VSO =144 km/s, € = 020, 6 = 0.15 and v = 010, Vpo and VSO
represent the vertical P- and S-wave velocities, respectively.

” Py I PI(ABS) | g S§ABS)
exact 0.147 0.016 —0.191
recovered || 0.148 + 0.001 | 0.002 £+ 0.010 | —0.191 =+ 0.002

Table 3.2. Inverted parameters [equations (3.43)] of the Rpp and Rpgy reflection
coefficients for the isotropic/VTI model (Example 1) obtained by fitting the error-
contaminated data (10% uniformly distributed random error) in Figure 3.1.
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Aa AB A AG
= E3 % I |
—exact 0.182 0.182 0.113 0.469 0.150

=0.182 || 0.182+0.000 | 0.151 £0.023 | 0.115 £+ 0.001 | 0.411 & 0.042 | 0.085 + 0.046
=0.182 || 0.217 £ 0.024 | 0.182 £ 0.000 | 0.080 £0.023 | 0.437 +0.022 | 0.073 £ 0.057

{Dp,lb

Table 3.3. Inverted parameters for the isotropic/VTI model (Example 1), assuming
known g = 0.40 and 42 (third row) or —-— (fourth row).

average ratio g is known, along with one of the isotropic contrasts. The £ ratio can
be estimated from the vertical P- and S-wave traveltimes. Estimating one of the
isotropic contrasts is more complicated, but it can be done by using well-log or VSP
data. The first three rows of Table 3.3 show what can be recovered using this a priori
information combined with the results from Table 3 2 The estimate of the isotropic

contrast Aﬂ in Table 3.3 is obtained from estimates 4¢ ¢ and 42 £ [from equations (3.43)]

using the nonlinear relationships between éﬁ, A and Aﬂ [see equation (3.7) for the

linearized form|. Table 3.3 suggests that all isotroplc contrasts can be recovered with
a reasonable accuracy. The estimates of =2 A 5 and A€ are slightly distorted as a result

of the biased estimate of PI(ABS) from Table 3.2. The estimate of the anisotropic
parameter do, on the other hand, is the least stable and also the most biased. The
2 value can serve, however, as a good initial guess for more sophisticated nonlinear
inversion. The 4, estimate from Table 3.3 also indicates that the reflecting halfspace
is VTI and not isotropic. (It is impossible to draw this conclusion from the results
in Table 3.2 alone: the results indicate only that the AVO response is azimuthally
invariant.) Finally, the fourth row of Table 3.3 shows the inversion result assumlng

that the known isotropic contrast is _BF instead of = A”‘ (The result for a known _ﬁe is

almost the same as that for a known %) Using & —5— 1nstead of % results in slightly

Q1

less accurate estimates of 22 and 45, and a slightly better estimate of A—Gf". This is a
common feature observed for all tested models.

Further analysis of the inversion for the isotropic/VTI interface reveals that the
estimates of 42, Aﬂﬂ , %9, and 4§ improve for models characterized by higher 2 ratios.
The opposite is true for the estlmate of the d, parameter (this conclusion seems to
be quite general even for models with HTI and orthorhombic symmetries). Finally,
similar conclusions about the accuracy and stability were also obtained for the more
complicated VTI/VTI problem. In that case, the anisotropy parameter &, is replaced
in the inversion by the difference (d, — 4;).
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| | = S - T G - S
exact 0.231 0639 0.510 0.754 0.407
recovered || 0.230 £ 0.001 | —0.727 £ 0.014 | 0.665 £ 0.020 | —0.873  0.007 | 0.627 £ 0.010

Table 3.8. Inversion for the parameters from equations (3.46) for the
ORTHO/ORTHO model (Example 4) carried out by fitting the error-contaminated
data (10% uniformly distributed random error) from Figure 3.3.

parameter 7y, can be obta,med The accuracy of the difference ((5(V) 6§V) ), as well

as that of the parameter 6( , is lower, although the estimates represent good initial
guess which can be used, for example, in subsequent nonlinear inversion.

Example 4: ORTHO/ORTHO model. The last model (Figure 3.3) consists
of two orthorhombic halfspaces whose vertical symmetry planes above and below the
interface are aligned (x = 0°). The small-incidence-angle terms are

1Aa 1Ap
p = 22, 2F
0 2a 257
(Bs) _ llAa (B AG 1 @ _ 4
() Loy oy, Lo o B\’ s s
Po= _5(52 — 0 )+§(52 =67)=4(=) (' —m), (3.46)
1Ap BAG 1 2 2
gsns) _ _1Ap BAG (62 _ 52y
1 1 B S
SS(L) - _ 5(2) 5(2) 5(1 (5(1) L (S) (8) )
1 *2(1_*_ )( 1)+ ——2(1+ )( 1) a(’)’z -1n7)

As indicated in Figure 3.3, a strong bias in the inversion results can be expected due
the large differences between the exact and approximate reflection coefficients. In-
deed, except for Py, the recovered small-incidence-angle terms (3.46) are significantly
biased (Table 3.8). The estimates however are relatively stable.

Assuming, as before that the ratlo =, the contrast A"‘ , and the anisotropy pa-
rameters 5]( ) , (5(2) and ’y ) of the 1nc1dence halfspace are known it is possible in

principle to recover the remaining isotropic contrasts and the anisotropy parameters
5(1) dy % and 'y . The thlrd row of Table 3.9 suggests, however, that the estimates of

the parameters 5(1) and 5 are unstable. The existence of the two J-type parameters
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| Rer | R oI I S N S
exact 0.147 —0.118 0.029 0.097
recovered || 0.147 & 0.001 | —0.141 = 0.010 | 0.030 % 0.015 | 0.103 + 0.014

| Resy | ssUP9 | ss?™ | g5V |
exact —0.300 0.058 0.093
recovered || —0.332 4+ 0.003 | 0.059 £+ 0.005 | 0.099 £ 0.005

Table 3.6. Inverted parameters [equations (3.45)] of the reflection coefficients Rpp
and Rpgy for the HTIXxHTI model obtained by fitting the error-contaminated data
(10% uniformly distributed random error).

LY; | LY, ac p |
B p G
exact 0.182 0.113 0.469 30.0°
recovered || 0.224 £ 0.043 | 0.113 + 0.001 | 0.548 =+ 0.080 | 32.4° £ 2.5°

[ o) -8 | &Y |
exact 0.125 —-0.160 —-0.060
recovered || 0.121 £+ 0.040 | —0.161 & 0.052 | —0.061 £+ 0.052

Table 3.7. Inverted isotropic contrasts, the azimuth k of the sg/mmetry axis of the
HTI reflecting halfspace, and the anisotropy parameters 7z, ( 6(V 6(‘/) and (5(V) for
the HTIxHTI model, obtained assuming known = = 0.358, A_" = 0.182, 5(V = 0.10
and v, = 0.125.

QA I‘Go
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example, however, the symmetry axes of the halfspaces are misaligned by the angle
k = 30° (the reflection coefficients for such a model differ only in details from those in
Figure 3.2 and are not given here). For this model, none of the small-incidence-angle
terms in equations (3.35) and (3.42) vanish:

1A 1A
P() = "‘_—a —Tp)
2 a 2 p
1Aa B 2 AG 1 / 7 1 ,B ? .
1 A
— 2 oy
1 %
A= |00 (5) ] eomaes 008 (£) ] (3.5
2 a o
sse = 180 BAG . 1w smy | L sm oB e,
2p aG  21+% 2(1+ £) o
SSI(M) = —1_—-(5(V)+2ﬂ'y sin 2k,
2(1+5)
. _
s = |~ +2€72 cos 2k + —5(V) +2ﬁ’)’
2(1+2) a 2(1+ 2)

The estimated combinations (3.45) are listed in Table 3.6, which shows that the
inversion results are quite accurate. The estimate of PI(M) is the least stable, with
accuracy slightly lower than that for the term PI(L).

Further inversion of the combinations from Table 3.6 is highly dependent on the
available a prior: information. For example, if only g is known, it is possible to ob-
tain the “d-type” combinations (5{") - 6§V) cos 2k) and (59/) sin 2k) and the “y-type”
combinations (7, — 1, cos 2«) and (2 sin 2«). Generally, estimates of the y-type com-
binations are significantly more stable than those for the §-type combinations (this is
a general conclusion applicable to any anisotropic symmetry up to orthorhombic). In
the followmg, I assume the “best” possible scenario: the 2 ratio, one isotropic con-
trast ( in this case) and also anisotropy parameters of the incidence HTT halfspace
are known Hence, it is assumed that the parameters of the incidence halfspace have
been estimated, e.g., using NMO analysis (Contreras et al., 1999), so the focus of the
inversion is on the reflecting halfspace.

It follows from Table 3.7 that in this case the remaining isotropic contrasts can
be recovered with sufficient accuracy. Moreover, good estimates of the angle x and
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4
[ ¥ T E T T (@
exact 0.182 0.113 0.469 0.000 —0.160

7-}32 =0.182 {| 0.217+0.026 | 0.112+0.001 | 0.534 £ 0.047 | 0.000 £ 0.034 | —0.166 * 0.035

Table 3.5. Inverted isotropic contrasts and the differences in the anisotropy parame-
ters (y2 — 1) and (Jév) - 69/)) for the HTI/HTI model, assuming known g— = 0.358
and 42 = 0.182.

and

(72 —71), as well as the isotropic contrasts %, %é and éég, provided g is known. The
additional information (compared to the previous isotropic/VTI model) that makes
such a recovery possible is provided by the azimuthal terms PI(L) and S Sfl’). It turns
out, however, that this inversion is highly unstable, resulting in the stable estimate of

only one of the medium parameters — that of the parameter (y; —7,) (with a standard
deviation of +0.035). For example, the parameter (59/) - (5%‘/)) can be found with
an accuracy of about +0.07 which allows for only a very rough estimate. If no other
a priorsi information is available, the inversion does not allow us to estimate the other
parameters. B

As in the previous case, I assume in the following that estimates of {:i and %
are available. Then, by combining the terms Fy, PI(ABS) and SS%ABS) from Table
3.4, it is possible to constrain the remainin% isotropic contrasts and the difference
(6§V) - 6&‘/)). Then, the terms Pl(L) and SS§ ) can be used to obtain the parameter
(72 — 1) and make another estimate on the parameter ((59/) - 5%‘/)), making the final
value of this parameter quite accurate. The results are presented in Table 3.5. Bias
in the estimates %‘2 and éég results from biased estimates Pl(ABS), S S§ABS) and S Sfl’)
in Table 3.4.
_ Regarding dependence of the stability of the inversion on the magnitude of the
g ratio, the general conclusions about the isotropic contrasts for the isotropic/VTI
model hold also for the HTI/HTI model; the conclusion drawn for (4, — J;) remains
valid for ((59/) — 6§‘/)). The parameter (7o — 7;) is better constrained for smaller g
ratios. Finally, the accuracy achieved for the HTI/HTI model is close to that for an
isotropic/HTI model, and also to that for an VTI/HTI model if the §; parameter of
the VTTI halfspace is known [for example from velocity analysis, see Alkhalifah et al.
(1996)].

Example 3: HTIxHTI model. The next model is a modification of the
HTI/HTI model discussed above that contains the same HTI halfspaces. In this
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Figure 3.2. Linear inversion of the reflection coefficients Rpp (left) and Rpgy (right)
for the HTI/HTI model (Example 2). The upper plots show the differences between
the exact and approximate reflection coeflicients, and the surfaces in the lower plots
show the best-fit reflection coefficients; error-contaminated data are marked by the
dots. Medium parameters are: incidence halfspace - p = 2.50g/cm?®, Va3 = 3.00km /s,

i = 1.20km/s, €V) = —0.05, 6") = 0.10, v = 0.13; reflecting halfspace - p =
2.80 g/cm?, V33 = 3.60 km/s, Vi = 1.44 km/s, V) = —0.05, 6" = —0.06 and
v = 0.13; Va3 = /Aszz and Vyy = /Ay, represent the vertical P- and S-wave velocities
respectively, where Aj3; and Ay are the corresponding density-normalized stiffness
coefficients.
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ABS L ABS L
| [ r [ P [ PP ] 5579 | st |
exact 0.147 —0.109 0.080 —0.283 0.059
recovered || 0.146 + 0.001 | —0.130 £ 0.010 | 0.083 +0.014 | —0.309 4+ 0.003 | 0.061 £ 0.005

Table 3.4. Inverted parameters [equations (3.44)] of the reflection coefficients Rpp and
Rpsy for the HTI/HTI model (Example 2) obtained by fitting the error-contaminated
data (10% uniformly distributed random error) in Figure 3.2.

Example 2: HTI/HTI model. Figure 3.2 shows a set of plots similar to
those in Figure 3.1 for the more complicated HTI/HTI model (see the caption of
Figure 3.2 for the medium parameters). The symmetry axes of both halfspaces are
aligned, so k = 0 [for the definition of k, see the discussion of equations (3.4)-(3.6)].
The upper plots of Figure 3.2 show significantly smaller differences between the exact
and approximate reflection coefficients for the HTI/HTI model than those observed
for the isotropic/VTI model, so the bias in the inversion is expected to be smaller.
For this model, from equations (3.5), (3.10)-(3.12), (3.39), (E.1) and (E.3), the terms
pM = pMY — pMD _ pM3) _ g anq SSM = S5MY = SSIMP = SMY =
SSMY = g5MD — ggM¥) — ggM) — g5 M2 — ggM® = 0 in equations (3.35)
and (3.42), respectively. The HTI/HTI interface, however, generates azimuthally-
varying reflection coefficients (see the lower plots in Figure 3.2) with the following
small-incidence-angle terms [see equations (3.2),(3.4), (3.6), (3.38), (3.40) and Table
3.1):

1Aa 1Ap
p, = —=—/—4_-=F
0 2a 257
S\ 2
(aBs) _ 1Ba (BN AG 1 .v) )
P! = 52 2(_) o tall —a),
1 B\’
Y = 56 - -4 () =), (3.44)
1Ap BAG 1 v v
SS(ABS) = _=F_FE=7 _ 5( )_(5( ),
1 275 a 2(1_'_%)(2 1)
. _
S8 = (o) - 6Y) — 22 = )

2(1+£) a

Table 3.4 shows that all five terms are estimated with good accuracy. In theory,
. . . . /
Table 3.4 contains enough information to estimate the model parameters ((SS - 6§V )
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S
I 2 e %Y 55" 5
exact 0.461 0.182 —0.150 —0.100 —0.200

bias 0.753 £+ 0.065 | 0.180+ 0.001 | —0.531 +0.051 | —0.420 £ 0.198 | 0.116 + 0.116
reduction || 0.442 4+ 0.065 | 0.180 + 0.001 | —0.116 £0.051 | 0.103+0.198 | —0.206 % 0.116

Table 3.9. Inverted isotropic contrasts and the anisotropy parameters 'yés), (5&1)

and 652) for the ORTHO/ORTHO model (Example 4), assuming known g = 0.557,

42— (.286, %) = 0.10, 6 = —0.20 and 6 = 0.10. The third row shows strongly
biased estimates obtained by the direct inversion of the results from Table 3.8; the
fourth row shows the results after applying the bias-reduction procedure (see the text
for details).

instead of just one [as in VTI (8,) or HTI ((59/))] causes the loss of stability, and the
data can no longer tightly constrain the parameters. Relatively stable estimates of
the isotropic contrasts %‘2 and %ﬁ, and also the parameter 'yés), on the other hand,
suggests that it may be feasible to recover the trends (relative spatial changes) of
these parameters. The estimated values of the %‘2 and 7§5) , nevertheless, are far from
the true values due to the strong bias (Table 3.8).

The fourth row of Table 3.9 shows the results after applying a process of bias
reduction. The bias reduction process is based on a simple idea: the exact PP- and
PSV-wave reflection coefficients computed for the correct model should be sufficiently
close, at least for small incidence angle reflections (< 20°), to the corresponding ap-
proximate coeflicients Rpp and Rpgy computed for the recovered biased model (such
as the one from the third row of Table 3.9). Knowing the biased model and the
relations between the model parameters and exact and approximate reflection coef-
ficients, it should be therefore possible in principle to recover the correct model as
well. The bias reduction process can be realized in three steps. In step 1, the exact
PP- and PSV-wave reflection coefficients for the orthorhombic/orthorhombic inter-
face are constructed using the estimates from the third row of Table 3.9; the unknown
medium parameters egl), 622), egl), 652), 6§2) and 6%3), which control the large-incidence-
angle reflections, are set to zero (the coefficients are computed only for small incidence
angles < 20°). In step 2, the joint linear inversion of this synthetic data is carried
out (using approximate PP- and PS-wave reflection coefficients as before), result-
ing in new estimates of the medium parameters. Large differences between the new
estimates and the corresponding estimates from Table 3.9 indicate strongly biased
results. In step 3, based on the differences, the original model parameters from the
third row of Table 3.9 are updated (the simple method of halving intervals is suffi-
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Figure 3.3. Linear inversion of the reflection coefficients Rpp (left) and Rpgy (right)
for the ORTHO/ORTHO model. The upper plots show the differences between the
exact and approximate reflection coefficients, and the lower plots show the best-fit re-
flection coefficients; error contaminated data are marked by the dots. The medium pa-
rameters are: incidence halfspace - p = 2.50g/cm?, Va3 = 3.00km/s, V44 = 1.64km/s,
e = —0.15, €? = 0.15, 6 = —0.20, 6@ = 0.10, 6® = 0.15, 49 = 0.10; re-
flecting halfspace - p = 3.00 g/cm®, Vaz = 4.00 km/s, Viq = 2.01 km/s, e) = —0.15,
€@ = —0.25, 6 = —0.10, 6@ = —0.20, 6® = 0.10 and 7¥) = —0.15; Va3 = \/As3
and Vis = /A4, represent the vertical P- and S-wave velocities respectively, where
Ass and Ay, are the density-normalized stiffness coefficients.
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4.3.2 Example 2: HTIxHTI model inversion using large-incidence-
angle reflections

The first anisotropic model to be processed by the inversion algorithm introduced
above consists of two HTI halfspaces whose symmetry axes above and below the
interface are misaligned. The model is the same as the HTIxHTI model from Example
3, in Chapter 3 (see Figure 3.2 for the medium parameters). I again assume that the
azimuth of the symmetry axis of the incidence HTI halfspace is known. In this tutorial
example, the inversion is described in detail. In all other examples below, the analysis
follows the same pattern, so only important differences are highlighted.

Using the same model parameterization as in the corresponding linear inversion
(see Section 3.2.2), the model vector to be recovered can be defined as

Ap Ao AB B ) (v V) oV
me (7’?’_5—’57€§ )76§ ))’Ylaeg )’5§ )772”{': ’ (44)

R

where the isotropic contrasts and the % ratio are defined as in Example 1, the
(V)

anisotropic medium parameters eﬁ"), 5§V), 7 and €, ,Jév) ,7¥2 are defined by equations
(2.28) for the incidence and reflecting halfspaces, respectively, and « is the misalign-
ment angle between the symmetry axes [see equations (2.24)-(2.26) or (3.4)-(3.6)].

As in Example 1, PSM was generated first, using an approximate single value
of the P-wave AVO intercept 0.15 recovered during the linear inversion [see the term
Py in Table 3.6 and equation (3.45)]. Then the nonlinear least squares algorithm
was applied in phase 2, resulting in the recovery of the final 280 models. No a priori
information was used in this phase (also note that no a priori information was needed
to obtain the value of the P-wave AVO intercept 0.15 above). The values of all
isotropic contrasts were allowed to vary within the interval (—1.5;1.5), and the initial
value of the g ratio was 0.5. All anisotropy parameters could vary within (—1;1),
and the angle x within (0°; 90°). Unless defined differently, all these ranges are kept
the same for all inversion examples below.

In contrast to Example 1, many local minima were identified in phase 2 of this
inversion. The threshold criterion was further used to obtain the final set of models
that fit the data. The threshold value was determined at F,,; = 0.55, following the
approach discussed in the end of Section 4.2.

A) _Recovered models below the threshold

Figure 4.3 shows the distribution of the recovered models with Fy,; < 0.55 (199
models out of 280) as a function of the identified global and local minima. Clearly,
the largest set of the inverted models (136 models) corresponds to the identified sharp
global minimum (F,; = 0.09; the minimum was identified with a numerical accuracy
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Figure 4.3. Distribution for the recovered models (Example 2); the 199 models that
fit the data (with the threshold F; = 0.55) are localized mostly at and in the vicinity
of the global minimum (Fg,; = 0.09). The values of the objective function associated
with the other local minima are marked on the horizontal axis.

+0.001). However, there are still many detected local minima (19), corresponding to
63 recovered models. It should be kept in mind that since the model space was not
searched completely in phase 1, there are other possible local minima not shown in
Figure 4.3. The assumption here is that the algorithm detected the global minimum
correctly, i.e., there is no other minimum below F,,; = 0.09.

It should be also emphasized that the term “local minimum?” is used quite loosely.
Strictly, to demonstrate that two models correspond to different local minima, one
should show that they cannot be connected by a path that does not go uphill (such a
test is time consuming, practically impossible in this inversion problem). Therefore,
some of the local minima from Figure 4.3 may belong to the same “basin of attraction”
(Deng, 1997) (corresponding to the same minimum). Nevertheless, this fact has no
impact on the analysis that follows.

Figure 4.4 is analogous to Figure 4.2; it illustrates the character of the conver-
gence. This figure contains all 199 models from Figure 4.3. The plot of the objective
function Fpy; (upper left corner) shows that many different descending paths were
taken; for some models, the descent to either the global or a local minimum was fast
(less than 10 iterations), but some models converged slowly, following more gentle
slopes. A few inversions are characterized by high oscillations of the objective func-
tion. The descending paths of these inversions lie in the vicinity of walls (forbidden
zones) in the model space that strongly restrict the descent along certain directions.



66 Chapter 4. Nonlinear inversion of PP- and PS-wave reflection coefficients

inversion techniques that employ the threshold criterion. In general, it is usually
difficult to recognize and eliminate low-frequency noise from data, and such noise can
result in significantly biased estimates.)

From numerical modeling of exact reflection coefficients (not shown here), even
for interfaces between two strongly anisotropic media of lower symmetry (such as
orthorhombic) and strong velocity contrasts, the reflection coefficients Rpp, Rps,
and Rpg, are smooth, low-oscillating functions in the (¢, ¥/) domain, at least in the
subcritical region. This is also predicted by the linearized approximations, which
suggest that the highest rate of oscillation occurs in the azimuthal domain for large
incidence angles: a maximum of three extrema can be found in any 90° interval within
the range of azimuths v € (0°;360°) [as can be shown using equation (3.8) or (E.1)].
The fact that the physics itself does not allow any strongly oscillating behavior of the
reflection coefficients suggests that it may be reasonable to continue iterations in phase
2 regardless of the use of any threshold (i.e., keep descending to the minimum), as
long as the evolution of the inverting parameters sustains a low-frequency monotonic
character, as can be clearly seen, for example, for the parameter g in Figure 4.2.
On the other hand, the smoothness of the reflection coefficients does not imply that
the objective function (4.2) itself is simple. In fact, it still may contain many local
minima. Although no a local minimum was detected in Figure 4.2, further numerical
modeling of objective functions for different isotropic models indicates that there may
exist models with more than one global minimum, if the contrasts of the medium
parameters across the interface are sufficiently large. In that case, the threshold can
play an important role in localizing the global minimum, as is used in anisotropic
models (see examples below).

Many inversions done for both isotropic and anisotropic models with different
error realizations (keeping the error magnitude of 10%), and also different magnitudes
of errors (up to 20%, see Example 4) support the approach discussed above, as long
as the noise is random. A completely different situation can occur if the data are
contaminated by systematic noise (Example 8 or 9). However, as suggested later
on, the inversion provides indications of the presence of such a noise, if the noise is
sufficiently strong.

Example 1 suggests that the joint nonlinear inversion of PP- and PS-wave reflec-
tion coeflicients can be used to recover the medium parameters of isotropic models [in
the sense of equation (4.3)], if the incidence angles are as large as 45° (although only
slightly worse results were obtained using incidence angles up to 35°; note that the
critical angle for this weak-contrast interface is 56°). The linear inversion developed
in Chapter 3 predicts this possibility theoretically (see Section 3.1.4), provided large-
incidence-angle component of the approximate reflection coefficients are available. In
practice, however, recovery of this component is unstable, and the linear inversion for
all medium parameters is unfeasible without additional constraints.
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Figure 4.2. Inversion for the isotropic model (Example 1). Evolution of the objective
function F,,; and individual medium parameters (as marked on vertical axes) with
increasing number of iterations (horizontal axes). The thick horizontal line in each
plot marks the true value of the corresponding medium parameter. The maximum

incidence angle used is 45°.

| || Ap Ao I Y] | B |
3 a I} a
exact 0.113 0.182 0.182 0.40
0.112—-0.115 | 0.181 — 0.182 | 0.177 — 0.192 | 0.39 - 0.41

recovered

Table 4.1. Inversion results for the isotropic model (Example 1). The true values
(second row) and the recovered ranges of the medium parameters (third row).
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consideration as soon as possible. A similar strategy is also successfully applied for
anisotropic models below, where the models from PSM satisfy an approximate value
of the P-wave AVO intercept obtained from the corresponding linear inversion.

‘The model vector m, which is recovered by minimizing equation (4.2), contains
the following medium parameters:

Ap Aa AB B
m = (Tp,Ta,—"Hg) ) (43)
p a B«
where the isotropic contrasts %, %, —Ag‘g are defined in equations (3.2)-(3.7), and the

average velocities in g are defined by equations (2.13)-(2.14). During the inversion,

the contrasts were allowed to vary within a broad range (—1.2;1.2). The starting
value of the g ratio was chosen as 0.5 (common values of g vary between 0.3 and
0.7). As I concluded from the linear inversion in Chapter 3, the model vector m from
equation (4.3) is recoverable in principle.

For this model, the inversion algorithm detected only a single minimum (with
the value Fop; = 0.08) to which all 280 models converged in phase 2. Figure 4.2 shows
the evolution of the objective function and all medium parameters, as the iterations
proceeded. Figure 4.2 provides a useful insight into the inversion because it allows one
to study not only the variance of the inverted parameters, but also the character and
rate of their convergence (which reflects the topography of the objective function).
Having this insight, it is possible to conclude how well or poorly constrained the
individual parameters are, what parameters are most sensitive to data errors, and
what kind of a priori information would be most valuable to support the inversion.
Inversions for anisotropic models, presented below, particularly benefit from this kind
of insight provided by plots analogous to those in Figure (4.2).

From Figure 4.2, the best constrained parameter with the fastest convergence
(about 10 iterations) is the contrast 22, followed by %3 and %@. The least constrained

parameter (with the slowest convergence), which is still well recovered, is the ratio

It can be also inferred from Figure 4.2 that a priori knowledge of either 32 or

B
would further aid an accurate recovery of the remaining parameters (although no
a priori knowledge was necessary in this case). Table 4.1 summarizes the results of
the inversion, and compares them to the true values. Both Figure 4.2 and Table 4.1
suggest that the estimation of all medium parameters was quite successful.

The results from Table 4.1 were obtained without using any threshold. The
main reason for prescribing a reasonably conservative threshold is to avoid overfitting
the data (fitting the noise results in non existing features artificially introduced in
the model). In my opinion, however, there is no need for such a threshold in this
particular case, as long as we assume that the noise in the data is random and of
high-frequency. (This is a common and reasonable assumption, also used in most

R Q1 R
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4.3 Synthetic examples

In this section, several examples are used to analyse the joint nonlinear inversion
of PP- and PS-wave reflection coeflicients in anisotropic media. Four types of models
are considered: isotropic, HTI/HTI (both halfspaces are HTI, with aligned symmetry
axes above and below the interface), HTIXHTI (the same as HTI/HTI but the symme-
try axes are misaligned by 30°), ORTHO/ORTHO (both halfspaces are orthorhombic
with aligned vertical symmetry planes), and ORTHOxORTHO (as ORTHO/ORTHO
but the vertical symmetry planes are misaligned by 30°). Toward the end of this
section, two other examples are presented to address, albeit in a simplistic way, two
practical problems: an incorrect calibration of the reflection coefficients extracted
from data, and an incorrect assumption about the anisotropic symmetry (explained
below).

Unless specified differently, the synthetic data are generated in the same way as
for the linear inversion and contaminated by the same normally distributed random
error of 10%. The azimuthal data coverage is also identical (4 varies form 0° to 360°
with the increment At = 15°). Because the accuracy of the exact reflection coeffi-
cients does not deteriorate with increasing angle, the large-incidence-angle reflection
coefficients can also be used to improve the results. To analyse this possibility, the
synthetic data are generated for incidence angles ¢ from 0° to 45°, with increment
Ag = 1°.

As before, this inversion assumes high-quality data and dense data coverage.
However, the algorithm does not require either a regular data grid or the recovery of
all three coeflicients (Rpp, Rps, and Rpgs,) at identical data points.

4.3.1 Example 1: Isotropic model

The first example tests the performance of the proposed algorithm on the most
simple model of two isotropic halfspaces. The model used for the test is almost
identical to the isotropic/VTI model used in Chapter 3 (Example 1). The incidence
halfspace is defined by the density p = 2.5g/cm?, P-wave velocity Vp = 3.0km/s, and
S-wave velocity Vs = 1.2km/s. The reflecting halfspace has the density p = 2.8g/cm?,
P-wave velocity Vp = 3.6 km/s, and S-wave velocity Vg = 1.44 km/s.

I carried out the inversion in the two phases described above. No a prior: in-
formation was used, except that I generated the pool of starting models (PSM) such
that the P-wave AVO intercepts and gradients of all models were allowed to vary
only within the intervals (0.14;0.16) and (—0.075; —0.045), respectively. These val-
ues can be well recovered from the linear inversion, as documented in the previous
chapter. Moreover, it is unnecessary to know these values with high accuracy (they
are refined in phase 2). The main reason for restricting the ranges of the P-wave
AVO intercept and gradient in building PSM is to exclude unacceptable models from
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function defined by equation (4.2) (i.e., the 280 best data-fitting models) are used
in the second phase (considerably more demanding on computational time). During
this phase, a local-descent search method, a nonlinear least-squares algorithm (imple-
mented in the Matlab Optimization Toolbox) is used to complete the inversion. This
large-scale algorithm belongs to the class of subspace trust region algorithms, based
on the interior-reflective Newton method (Coleman & Li, 1994; Coleman & Li, 1996).
It is an sophisticated algorithm designed to solve effectively large-scale optimization
problems. This iterative algorithm allows descent from a starting model to the closest
minimum of the objective function, during which further refinement of the starting
model is performed. If the inversion is reasonably well constrained, many from the
280 starting models should converge to the global minimum from many different “di-
rections,” thus mapping the topology of the objective function near the minimum.
Then, statistical tools can be employed to evaluate the final results, such as the mean
values and standard deviations of the recovered medium parameters.

The last question that needs to be addressed is the stopping criterion for the
nonlinear least-squares algorithm. A reasonable commonly used criterion is based on
a threshold, a measure of confidence in the data. This is a prescribed value of the
objective function such that all the inverted models with objective function value
below the threshold are classified as “models that fit the data;” the models above
the threshold are rejected as “unacceptable.” The iterations stop as soon as the
threshold is reached. In principle, however, it is impossible to establish the threshold
objectively and completely eliminate the danger of overfitting or underfitting the data.
In the examples that follow, the threshold is determined under the assumption that
the data are quite accurate (as in the case of the linear inversion, where the data
error is 10%). Each recovered model should fit the data points within a prescribed
standard deviation, whose value is determined as 10% of the value of the P-wave
AVO intercept recovered from data. By accepting this approach, we believe that
the P-wave AVO intercept is recovered within +10% of its true value (in terms of
the standard deviation), and the remaining values of the reflection coefficients are
recovered with the same or better absolute accuracy. Since the P-wave AVO intercept
is the most reliable quantity estimated from data (as shown in Chapter 3), and this
value is usually quite large compared to the rest of the data, the resulting thresholds
seem to be a reasonable choice.

As explained below, however, such a threshold is used only as an auxiliary in-
formation, not as the actual stopping criterion. In the examples presented here, the
inversion stops when the convergence of the medium parameters being recovered no
longer possess a low-frequency trend with increasing iterations. This also corresponds
to small changes of the objective function (1% — 5%) between subsequent iterations.
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function P is designed to: 1) eliminate all models that produce postcritical reflections
from the considered range of angles (only subcritical reflection data are used here),
2) eliminate all visco-elastic models characterized by complex velocities (absorption
is not considered, only real-valued medium parameters are allowed), and 3) eliminate
all nonphysical models (strain energy must be nonnegative). The penalty function
P produces the forbidden zones (walls) in the model space described in the previous
section.

As discussed above, the main difficulty in solving multi-modal inverse problems is
to identify the global minimum of the objective function (4.2) in the model space and
to obtain a measure of the width of the global minimum, which tells us how accurate
are the estimates of the individual medium parameters. The first problem can be
solved by an extensive search over the model space using Monte Carlo-based methods
[see, for example, Mosegaard and Tarantola (1995), Sen and Stoffa (1991), or Stoffa
and Sen (1991)]. Such methods can become, however, prohibitively expensive, and
are not usually efficient for addressing the second problem. In contrast, local-descent
search methods [such as conjugate gradient methods, see Fletcher (1987)] are better
suited to analyze the topography of the global minimum, but their success strongly
depends on the choice of starting model, i.e., they can be easily trapped in local
minima.

None of these methods alone is well suited for the inversion of the reflection coef-
ficients in anisotropic media. For instance, for an HTI/HTT interface with misaligned
symmetry axes (Example 2 below), the model space is 11-dimensional. Taking into
account that a single evaluation of the objective function takes about 30 seconds
(Pentium III processor) and we take only five samples (i.e., five models) in each di-
mension (coarse sampling, not sufficient for any reliable analysis), the time necessary
for evaluation of the objective function on such a grid (5'* points) is approximately
475 thousand years. Soon, it would also become clear that the topology of the ob-
jective function is quite complex, and contains many local minima. Therefore, unless
the starting model is sufficiently close to the true model, the local-descent search
methods would also likely fail to find the true minimum.

My approach to the particular inverse problem here uses a combination of the
two above methods. The inversion tests presented in this chapter are carried out
in two phases. In the first phase, a Monte Carlo-based search of the model space
is performed, and a pool of starting models (referred to as PSM in the following
text) is generated (between 2500 to 3000 models). The model space is searched
within prescribed boundaries of individual medium parameters (which are usually
very broad). Although the search is partly random, the algorithm ensures that each
dimension is covered as densely as possible, given the size of PSM, and any addi-
tional information that may be available about the model is also taken into account.
After the PSM is generated, 280 models with the smallest values of the objective
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Two final remarks regarding nonlinear inversion are appropriate here. First, as
discussed in Snieder (1998), the results of nonlinear inversion are dependent on the
values of the model parameters. In the context of the inversion here, it means that the
stability and accuracy of the model parameters recovered for a particular anisotropic
symmetry can be different for different magnitudes of the anisotropy, although the
anisotropic symmetry (i.e., the forward operator) remains the same. Second, although
bias due to the inaccuracy of the approximations of the reflection coefficients is re-
moved by using the exact expressions, bias can still exist in the nonlinear inversion
(as seen in some examples below). As in the case of linear inversion, bias can occur,
for example, because of a nontrivial null space of the forward operator G(m) from
equation (4.1) or use of an inappropriate form of the objective function [for instance,
the choice of the L, norm in equation (4.1) can produce a large bias if the data error
distribution is far from Gaussian|. Nonlinear inversion may also be subject to the bias
caused by a particular discretization of the model space, finite number of iterations,
or accumulated numerical errors (Deng, 1997), as well as by the choice of the starting
models (see examples below).

Different inversion strategies are designed to handle some of the above difficul-
ties, but because of the large diversity of inversion problems, there does not exist a
universally optimal algorithm (Deng, 1997). A challenging part of nonlinear inversion
is to find an effective strategy that works for a specific inversion problem at hand.

4.2 Inversion scheme

In the inversion for the exact reflection coefficients in anisotropic media, equation
(4.1) takes the following form:

Faj(m) = Npp||RE) — R, (m)|[+Nps, R, — R (m)]] (4.2)
+Nps, |[REY, — R, (m)|| + PR, RS R ).

The data vectors Rﬁ?,i, ngs), and Rg?z are the PP-, PS;- and PS;-wave reflection
coeflicients, respectively, recovered from reflection data as functions of the incidence
angle ¢ and azimuth 1 (for isotropic or VTI media, only one Rpg reflection coefficient
exists). Similarly, the vectors R(}fl)g(m), Rg;l (m) and R(,fg.z,(m) represent the corre-
sponding forward operators (i.e., the exact reflection coefficients) acting on the model
vector m (m varies for different anisotropic symmetries, and is specified in each ex-
ample below). In the synthetic examples below, the normalization factors Npp, N, S
and Npg, ensure even weights of the PP-, PS;- and PS,-wave reflection coefficients
in equation (4.2). These factors, however, can be also used to enhance or suppress a
specific data type. For example, if PS data are more noisy than PP data, use of a
higher factor Npp > Npg, and Npp > Npg, may be appropriate. Finally, the penalty



P Jilek / PS-wave reflection coeflicients and AVO in anisotropic media 59

é forbidden zone
ug local minima
: - .
2 1
> \
2 i Al
2 | .
o / plateau
2
8
= global
[} | minimum

i

™ model parameter m Mo

Figure 4.1. Depiction of possible shape for a nonlinear objective function Fpp; (1-D
case). Local minima, forbidden zones, and plateaus may complicate the localization
and characterization of the global minimum m,. The local minimum ms contributes
significantly to the nonuniqueness of the inversion (see the text). Adopted from
Snieder (1998).

difficult task, is to investigate how errors in the data propagate into the recovered
medium parameters. The problem of resolution and error propagation [called some-
times the appraisal problem (Snieder, 1998)| is usually solved only approximately,
using various sophisticated methods (Snieder, 1991; Mosegaard & Tarantola, 1995;
Sen & Stoffa, 1991; Stoffa & Sen, 1991), in combination with a prior: information.

Forbidden zones (Snieder, 1998), as the one shown in Figure (4.1), are regions in
the model space that cannot be properly investigated because of lack of data (such
as shadow zones) or regions that are disallowed by physics. For inversion of reflection
coefficients, forbidden zones may exist because certain values of medium parameters
are not physically possible (e.g., the condition of nonnegative strain energy is not
satisfied). Such forbidden zones act as walls in the model space that may divert the
search for the global minimum.

The features of objective functions discussed above become particularly trouble-
some with increasing dimension of the model space. For example, for isotropic media,
the model space is four-dimensional, whereas for HTI media it is 10- or 11-dimensional
(see examples below). The higher dimensionality also significantly increases compu-
tational time, especially if the forward problem has to be solved numerically, as
described in the next section. A detailed discussion of the complexity of nonlinear
objective functions can be found in Deng (1997) or Sambridge (1998).
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4.1 Introducing nonlinearity

Although inversion of the exact reflection coefficients may provide better results,
the nonlinear mapping of the model parameters onto the data space (using the exact
reflection coefficients) is a source of significant complication. Some of the most es-
sential problems of nonlinear inversion are highlighted below. A concise overview can
be found, for example, in Snieder (1998). For more detailed discussion, see Tarantola
(1987), Fletcher (1987), Térn and Zilinskas (1989), or Deng (1997).

Similarly to linear inversion, nonlinear inversion can be formulated as an opti-
mization problem, wherein one attempts to minimize an objective (misfit) function
Fop;(m) with respect to the model m:

Foyj(m) = N [|d - G(m)|| + P(m), (4.1)

where d represents the data vector, G is the nonlinear operator acting on the model
vector m, N is an arbitrary normalization factor, and P is a penalty function that
helps to enhance or suppress the desired or unwanted features of the inverted models.
The [[x|| represents a norm of x, usually chosen as the L, (least-squares) norm.
Although equation (4.1) is formally identical to the corresponding linear objective
function [see the discussion of equations (F.1) and (F.2)], the analysis of the nonlinear
function is significantly more complicated.

Figure 4.1 is a schematic plot of a nonlinear objective function for a single model
parameter, depicting several features common for nonlinear problems. The first prin-
cipal consequence of general nonlinearity is that the objective function in equation
(4.1) usually has multiple minima (assuming the L,-norm, a linear objective function
has only one minimum). Any algorithm searching for the minimum of such a multi-
modal objective function thus can lead to a local minimum, and the correct global
minimum may not be identified. The situation becomes more complicated if the val-
ues of F,; at the global and certain local minima are close to each other (which often
happens in practice). Without additional information, the localization of the global
minimum is not guaranteed, and the model recovery becomes severely nonunique (as
suggested by the two different models m; and my in Figure (4.1) that can fit the
data almost equally well). An extensive and systematic search throughout the model
space, often combined with independent information, is thus necessary to obtain a
reliable inversion result.

Plateaus (see Figure 4.1) represent another complication in nonlinear inversion.
They exist as a consequence of medium parameters poorly constrained by the data;
those parameters cannot be resolved (Snieder et al., 1989). In linear inversion, the
problem of resolution is well understood (Backus & Gilbert, 1967; Tarantola, 1987).
In nonlinear inversion, however, it may be difficult just to detect the existence of such
a plateau, and then to map its extent properly in the model space. Another, similarly
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Chapter 4

Joint nonlinear inversion of PP- and PS-wave
reflection coefficients in anisotropic media

The main attribute of the linear inversion discussed in the previous chapter is
its simplicity and fast performance, together with a relatively straightforward error
estimation. The linear inversion also provides a simple analytic insight, important for
understanding the potential of inversion in general (such as the possibility to recover
certain medium parameters or their combinations). Finally, linear inversion helps
to identify the anisotropic symmetry of the model. In contrast, the quality of the
results strongly depends on the available a priori information, and only the medium
parameters corresponding to small- and moderate-incidence-angle reflections can be
recovered (i.e., various combinations of the parameters —Aaﬂ, %Q, %3, ~-type and d-type
coefficients). Moreover, the approximations for the reflection coefficients used in the
linear inversion may break down if the weak-contrast, weak-anisotropy condition is
violated.

A more sophisticated and time-consuming nonlinear inversion can be used as
an alternative to attack the problems above. Clearly, inverting the ezact reflection
coefficients completely removes the bias due to the inaccuracy of the approximate
reflection coefficients (although any nonlinear inversion may suffer from bias due to
other reasons; see the discussion below). Also, the nonlinear inversion may produce
results with better accuracy and resolution, and, possibly, with use of less a prior:
information. Several examples of nonlinear AVO inversion performed for isotropic
media support these suggestions; see, for instance, Stoffa and Sen (1991), Sen and
Stoffa (1991), Dahl & Ursin (1992), Mallick (1995; 1999), Lavaud et al. (1999) or
Kabir et al. (2000).

This chapter is devoted to the joint nonlinear inversion of the reflection coefhi-
cients Rpp and Rps in anisotropic media. Here, I develop the inversion algorithm
(the final tool in the inversion toolboz) and apply it to synthetic data for isotropic,
HTI and orthorhombic models. I then compare the results with those obtained from
the linear inversion in the previous chapter.
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inverting noise-free data can be recovered if the data are contaminated by errors.
Additional a priori information is necessary for successful estimation of the incidence
medium parameters. If good estimates of the g ratio, one of the isotropic contrasts,
and the anisotropy coefficients of the incidence halfspace are available, acceptable
estimates of the remaining isotropic contrasts can be obtained. For VTI media,
also recovery of ¢ parameter is possible, although generally less stable. For HTI
and orthorhombic media, it is feasible to determine the y-type (shear-wave splitting)
anisotropy parameter of the reflecting medium and the orientation of the vertical
symmetry planes of the reflecting halfspace (angle ). Parameter 6() can be further
estimated for HTI media. For orthorhombic media, however, the inversion for the
d-type parameters is practically impossible without additional information about the
anisotropy of the reflecting orthorhombic halfspace.

Finally, large magnitudes of estimated medium parameters (> 0.2) may indi-
cate a strong-contrast interface or strong anisotropy of the medium. Therefore, bias-
reduction process should follow in such cases to evaluate and reduce bias in the
estimates.
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cient). Such a new “corrected” model is then used to construct again exact PP- and
PS-wave reflection coefficients and step 2 is repeated. If the “corrected” model was
not biased, the new inverted model parameters (obtained after the step 2 is repeated)
would be sufficiently close to the corresponding parameters from the third row of
Table 3.9. Several iterations (i.e., repetitions of step 2 and 3) are usually necessary
to reach sufficient agreement between the newly inverted model parameters and the
corresponding parameters from Table 3.9. The last “corrected” model produces AVO
response similar to original data, and its linear inversion results in medium parame-
ters close to those from Table 3.9. Therefore, this final “corrected” model should be
close to the true medium, less contaminated by bias.

There are two main assumptions behind this process. First, the exact reflection
coefficients at small incidence angles are mainly controlled by the linear combinations
of the recovered medium parameters, such as those in equations (3.46). Second,
changes in particular medium parameters from Table 3.9 result in similar changes of
the exact and approximate reflection coefficients (i.e., the derivatives of both the exact
and approximate reflection coefficients with respect to the individual parameters from
Table 3.9 are close to each other). Numerical tests suggest that both assumptions
hold well, except for models characterized by strong anisotropy and strong velocity
and density contrasts. Note that the assumptions apply namely for small-incidence-
angle reflections. The bias-reduction process generally cannot improve estimates of

the medium parameters constrained by large-incidence-angle reflections (such as eg),

622) or 553)). Note also that to perform the bias-reduction process, an algorithm for
computation of exact reflection coefficients must be available.

This bias-reduction process described above was successful for the recovery of
AB/B and ,)és) (fourth row of Table 3.9). The process, however, can only reduce the
bias, not the variance of the inverted results. Therefore, the estimates of the poorly
constrained parameters 6%1) and (52(,2) are still unacceptable.

The analyses for HTIxHTI and ORTHO/ORTHO models illustrate the limita-

tions of the linear inversion using small and moderate incidence angles.

3.3 Summary of Chapter 3

Using the linearized approximations of the PP- and PS-wave reflection coef-
ficients in their joint linear inversion, I analyze results for anisotropic media of or-
thorhombic and higher symmetries.

The analysis of noise-free data, establishes theoretical limitations of such an in-
version. The approximate reflection coefficients allow us to identify the most stable
combinations of the medium parameters that can be theoretically recovered using
small and moderate incidence angles.

Only a limited set of the combinations of the medium parameters obtained by
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| “ exact I Fobj < 0.55 | Fobj <0.12 l Fobj = 0.09 | v and /& known I
22770113 | 0.135+0.064 | 0.117+0.019 | 0.111+0.005 0.115 + 0.001
25170182 | 0.163+£0.064 | 0.180+0.019 | 0.186* 0.005 0.182 + 0.001
221 0182 | 0.134+0.084 | 0.154£0.031 | 0.165+0.020 0.179 + 0.004
8 1 0358 | 0.394+0.027 | 0.387£0.020 | 0.381+0.011 0.375 + 0.003
) 1l —0.050 | —0.051+0.062 | —0.035 + 0.035 | —0.035+0.027 | —0.056 + 0.006
&1l 0.100 | 0.086+0.056 | 0.093+0.035 | 0.100+0.016 0.089 + 0.004
y1 || 0.125 | 0.070£0074 | 0.076+0.069 | 0.087 % 0.060 0.130 +0.014
eV || —0.050 | —0.020 +0.066 | —0.037 + 0.027 | —0.048 +0.007 | —0.055 + 0.002
6877 | —0.060 | —0.026 +0.050 | —0.038 + 0.027 | —0.048+0.010 | —0.055 + 0.003
v2 || 0125 | 0.103+0.061 | 0.112+0.026 | 0.111 +0.017 0.120 £ 0.005
K 30° | 483° £21.6° | 44.8°+17.5° | 39.5° £11.5° 30.18° £ 2.0°

Table 4.2. Inversion results for the HTIxHTI model (Example 2). The medium pa-
rameters (first column), their true values (second column), and their recovered values
using: 1) the threshold criterion alone (F,,; < 0.55; third column), 2) the threshold
criterion supplemented by the results of the linear inversion (Fyp; < 0.12; fourth col-
umn), 3) no threshold criterion; only those models are selected that correspond to the
global minimum (Fy,; = 0.09; fifth column), and 4) the threshold criterion together
with a priori estimates of y; € (0.10;0.15) and 3/a € (0.30;0.40) (sixth column).
The error bars represent standard deviations. The results clearly improve from left
to right.

All these features indicate a complicated topology of the objective function.
Regarding the individual model parameters, Figure 4.4 and Table 4.2 (third

column) clearly show that none of the parameters can be recovered with acceptable

accuracy when only the threshold criterion (F,p; = 0.55) is used (the error bars in

Table 4.2 represent standard deviations). Also, notice a bias in the g estimate in
Figure 4.4. The source of this bias is, of course, different from that reported in the
linear inversion (i.e., due to the low accuracy of the linearized approximations of
the reflection coefficients). The bias here is apparently induced by the choice of the
starting value (0.5) relatively far from the true value (0.358), probably in combination
with some other factors discussed in Section 4.1.

Regarding the character of the convergence of the parameters from Figure 4.4,
some parameters attain their final values already within a small number of iterations
(< 10, such as the isotropic-parameters contrasts), but some parameters converge
much slower (most anisotropic parameters), often in a highly oscillating way. Those
parameters are more sensitive to the noise contaminating the data. In general, the
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Figure 4.4. Inversion for the HTIxHTI model (Example 2). Evolution of the objective
function Fy; and individual medium parameters (as marked on vertical axes) with
increasing number of iterations (horizontal axes) for 199 models that satisfy the data
(Fopj < 0.55). The thick horizontal line in F; plot marks the threshold 0.55. The
thick horizontal line in each parameter plot marks the true value of the corresponding
medium parameter.
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final values of most recovered parameters do not change significantly from the corre-
sponding starting values — a clear indication of a relatively large null-space of this
inversion problem (the concept of null-space is introduced in Appendix F).

Inversion for some better constrained combinations of the medium parameters,
rather than for the model vector m [equation (4.4)], may reduce the null-space. To
find such combinations without any guidance, however, can be a tedious process. At
this point, the nonlinear inversion can greatly benefit from insight provided by the
corresponding linear inversion (Section 3.2.2, Example 3). Figure 4.5 depicts some
combinations of the medium parameters suggested by the linear inversion as being
well constrained. Among them, %Q is defined in equations (3.4) and (3.7), and the
combinations PP, PS, PPcos, PPsin, PScos and PSsin are defined as follows:

,3 2
PP = 5§")+8(5> Yo,

"= ; IR (g) ™
(43
PPcos = PP cos2k,
PPsin = PP sin2k, (4.5)
PScos = PS cos2k,

PSsin = PS sin2k.

The recovered combinations in Figure 4.5 are generally more stable than the indi-
vidual medium parameters. From Figure 4.5 and Table 4.3 (third column), the best-
constrained parameter, as expected, is (%ﬁ + %) Also estimates of some anisotropy

. v v
parameters can be considered as reasonably accurate, such as (es ) _ eg ) cos 2k),

(71 —"y2 cos 2k), (") -eﬁ")), or (dév) —el¥")), and estimates of (¢} sin 2x), (6&‘/) sin 2k)
and (2 sin 2k) are only slightly less accurate. Good estimates are obtained for PPsin
and PSsin as well. Without additional tests, however, it is not clear why similar
combinations PPcos and PScos are not recovered successfully, and how this recovery
depends on k.

B) Recovered models in the vicinity of the global mintmum

The goal of the following analysis is to reveal whether or not a representative
subset of the models in Figure 4.4 would correspond well to the true model and that
could, in theory, be recovered. Such an analysis can be done because the true model
is known. In practice, of course, this analysis is not possible; the threshold criterion
itself does not allow any better recovery than that above without serious concerns
about overfitting the data.
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Figure 4.5. Inversion for the HTIXHTI model (Example 2).
combinations of the medium parameters (as suggested by the linear inversion) from
Figure 4.4 with increasing number of iterations. These combinations are generally
more stable than the individual medium parameters. The thick horizontal line in
each plot marks the corresponding true values.
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| [ exact | Fo; <055 | Fopy <012 [ Fop; =0.09 [ v and B/ known |
82 4 Ba 0.295 | 0.298+0.004 | 0.297+0.001 | 0.297 % 0.000 0.297 + 0.001
3G 0.469 | 0.398+0.115 | 0.419+0.050 | 0.434 +0.041 0.465 + 0.008
V) — €l cos2x || —0.025 | —0.032+0.028 | —0.027 + 0.017 | —0.024+£0.008 | —0.030 £ 0.002
6 — s cos2k || 0.130 | 0.100+0.047 | 0.104+0.029 | 0.112 +0.007 0.116 + 0.001
Y — 7200826 || 0.063 | 0.070+0.038 | 0.065+0.019 | 0.062 % 0.015 0.071 + 0.004
e sin 2% —0.043 | —0.025 +0.041 | —0.035 + 0.018 | —0.043+£0.004 | —0.045 + 0.001
85" sin 2« —0.052 | —0.028 +:0.031 | —0.035 +£0.019 | —0.043 +0.007 | —0.048 + 0.001
2 sin 2k 0.108 | 0.078+0.040 | 0.090 % 0.020 | 0.100 * 0.007 0.103 £ 0.001
V) — V) 0.000 | 0.031+0.116 | 0.001+0.050 | —0.013+0.021 |  0.004 £ 0.004
8 — ) —0.160 | —0.112+0.090 | —0.130 +0.053 | —0.148 +0.009 | —0.144 =+ 0.002
sV _ V) 0.150 | 0.137+0.034 | 0.130+0.017 | 0.135+0.013 0.145 + 0.003
s — V) —0.010 | —0.006 + 0.030 | —0.001 + 0.005 | 0.000 +0.004 | —0.003 + 0.001
PP 0.068 | 0.101+0.075 | 0.095+0.040 | 0.080 * 0.006 0.080 + 0.003
PS 0.067 | 0.071+0.043 | 0.072+0.020 | 0.067 +0.007 0.070 + 0.003
PPcos 0.034 | —0.024 £ 0.100 | —0.006 + 0.074 | 0.014 + 0.032 0.039 + 0.006
PPsin 0.059 | 0.066+0.026 | 0.072+0.005 | 0.072 % 0.005 0.069 £ 0.001
PScos 0.034 | —0.008 % 0.061 | 0.002+0.049 | 0.014 +0.027 0.034 & 0.006
PSsin 0.058 | 0.050+0.025 | 0.057+0.007 | 0.060 % 0.001 0.060 + 0.001

Table 4.3. Inversion results for the HTIxHTI model (Example 2). Selected combi-
nations of the medium parameters (first column), their true values (second column),
and their recovered values using the threshold criterion only (F,,; < 0.55; third col-
umn), the threshold criterion supplemented by the results of the linear inversion
(Fopj < 0.12; fourth column), using only the models corresponding to the global min-
imum (Fp; = 0.09; fifth column), and using the threshold criterion together with
a priori estimates of ; € (0.10;0.15) and 3/& € (0.30;0.40) (sixth column). The er-
ror bars represent standard deviations. The selected combinations (suggested by the
linear inversion) are generally more stable than the individual medium parameters,

see Table 4.2.
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Indeed, the results above improve as models corresponding to local minima with
higher values of the objective function (shown in Figure 4.3) are removed from the
analysis. For example, Figure 4.6 shows only models characterized by F,,; < 0.12
(167 models). A significant improvement is clear for most parameters. Also, the
movement of most of the parameter estimates from their initial values towards their
correct values, previously obscured, is now well pronounced. Figure 4.6 indicates

that some estimates of the medium parameters can be acceptable (52, 42 (v) egv)

P a1 ’

59') or 7,), see also Table 4.2 (fourth column). On the other hand, v, and & cannot
be recovered. Also, Table 4.3 (fourth column) shows that except for (egv) - egv)),
(69/) - (5§V)), PPcos, and PScos, all remaining combinations are well recovered. Note
the exceptionally well constrained ((5§V) - ef_,v)).

Figure 4.7, as a logical continuation of Figure 4.6, includes the 136 models corre-
sponding to the global minimum only (Fy,; = 0.09). Most of the parameters are now
well constrained, as well as all the combinations introduced in Figure 4.5 (see the fifth
columns of Table 4.2 and 4.3). The only unresolved parameters are vy, and x. The
existence of an elongated “valley” in the landscape of the objective function can be
demonstrated, extending along the y; — k dimensions. Therefore, these parameters
individually are not well constrained by data, and their recovery becomes impossible
in principle. As before, notice slightly biased estimate of g, as well as estimates of
(60" — 5fv) oS 2K), ((5§V) — 6, 6V - egv)), PP and PPsin.

Figure 4.7 suggests that the inversion has potential in theory to recover most
of the parameters of the HTIXHTI medium. Such a recovery, however, cannot be
justified in practice, unless supported by some independent constraints, in addition
to the threshold criterion.

C) Recovered models using additional constraints

One possibility of constraining the inversion above is to use the results obtained
from the linear inversion. For example, the most stable combinations recovered from
the linear inversion (without any a priori information) are P, PI(ABS) , PI(M) , PI(L),
SS§ABS), S SfM) and SSfL) [see equations (3.45) and Table 3.6]. These combinations
can be also computed for each model from Figure 4.4, and their mean values and
standard deviations can be estimated, A reasonable argument can be made that the
accuracy (i.e., the standard deviations) of these basic combinations obtained from
the nonlinear inversion should be at least as good as the accuracy obtained from the
linear inversion (see Table 3.6). If not, then the nonlinear inversion probably cannot
provide any other reliable estimates either. Thus, it is possible to select only those
models from Figure 4.4 that comply with this argument. Applying this criterion,
only the models corresponding to Fy,; < 0.12 qualify (this value thus depends on a
particular noise level). From Figure 4.6 and Table 4.2, 4.3, quite reasonable estimates
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Figure 4.6. Inversion for the HTIxHTI model (Example 2). Evolution of the objective
function Fy,; and individual medium parameters with increasing number of iterations
of 167 models characterized by Fi,; < 0.12. The thick horizontal line in F,; plot
marks the threshold 0.55. The thick horizontal line in each parameter plot marks the
true value of the corresponding parameter.
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Figure 4.7. Inversion for the HTIxHTI model (Example 2). Evolution of the objective
function F,;; and individual medium parameters with increasing number of iterations
of 136 models corresponding to the global minimum Fp,; = 0.09. The thick horizontal
line in Fy,; plot marks the threshold 0.55. The thick horizontal line in each parameter
plot marks the true value of the corresponding parameter.
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of %’—’, ae eﬁ"), egv), (59/) and 7y, can be obtained (together with the estimates of most

of their combinations specified above). However, according to Figure 4.7, this method
cannot lead to a complete recovery of all parameters of the HTIxHTI model.

An alternative way how to improve the results from Figure 4.4 is based on
a preori information. A detailed study of the inverted models reveals that the most
valuable @ priori information is the angle x. If k were known within +5°, it would
lead to a complete and stable recovery of all parameters of the HTIXHTI model.
Unfortunately, « is usually one of the parameters to be recovered. However, if the
reservoir thickness is sufficient, k can be estimated from shear-wave traveltimes and
polarizations, or from P-wave moveout analysis (Bakulin et al., 2000a). A natural
replacement for x is the parameter 7,, since this is the only parameter that can lead
to a successful recovery of k (see Figure 4.7). However, this parameter is not suffi-
cient by itself. Another parameter that may be supplied a prior:, in addition to v, is
the ratio g (There are some other possibilities, although less practical.) Figure 4.8
shows all 41 models recovered using the threshold criterion (i.e., models from Figure
4.4} and the following a priori information: ; € (0.10;0.15) and g € (0.30; 0.40)
(these parameters are thus known with 15% — 20% accuracy). Figure 4.8 and the
sixth columns of Table 4.2 and Table 4.3 show that, provided these constraints of
the parameters vy; and g, the remaining medium parameters can be estimated with
significantly improved accuracy. In practice, additional estimates obtained from the
corresponding linear inversion for certain medium parameters or their combinations
(using the same a priori information) can further support this result.

The fact that a priori knowledge of only one parameter (x) is equivalent to
a priori knowledge of two other parameters (y; and g), in terms of parameter esti-
mation, suggests that the number of known parameters required for the inversion may
depend on the magnitude of the anisotropy. For example, if the anisotropy becomes
strong, the principal direction x becomes better defined and less a prior: information
may be necessary. This is an example of how the performance of the nonlinear inver-
sion may depend on the values of the model parameters, as discussed in Section 4.1
above.

In summary, the inversion for HTIxHTI-type models (and, possibly, all models of
higher anisotropic symmetry) is feasible for good quality data and good data coverage.
In order to obtain reliable estimates, however, the inversion should be supported by
both the results obtained from the linear inversion and by a prior: information about
B/a and ,. If a priori information is not available, only certain combinations of
the medium parameters can be recovered (Table 4.3). Nevertheless, when we provide
necessary additional constraints, the nonlinear inversion yields significantly improved
estimates to those of the linear inversion (see Table 4.2 and Table 3.7 for comparison
of the results obtained from the nonlinear and linear inversions). The improvements
are: 1) better resolution of the model (i.e., more model parameters can be often
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Figure 4.8. Inversion for the HTIXHTI model (Example 2). Evolution of the objective
function Fy,; and individual medium parameters with increasing number of iterations
of 41 models picked from Figure 4.4, that also satisfy the following a priori informa-
tion: v; € (0.10;0.15) and B/a € (0.30;0.40). The thick horizontal line in Fop; plot
marks the threshold 0.55. The thick horizontal line in each parameter plot marks the
true value of the corresponding parameter.
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Figure 4.9. Distribution of recovered models (Example 3); the 276 models that fit
the data (the threshold F,,; = 0.20) are more dispersed between the global minimum
(Fop; = 0.04) and the threshold, indicating a more problematic model recovery than
that in Example 2.

recover, such as eﬁ") and egv)), 2) higher accuracy of the inverted model parameters,

and 3) less needed a prior: information. This conclusion is quite general and also is
applicable to most examples below.

4.3.3 Example 3: HTIxHTI model inversion using small- and
moderate-incidence-angle reflections

In practice, large-incidence-angle reflection coefficients are often difficult to ob-
tain, or their accuracy may be poor. Therefore it is of practical importance to under-
stand how the loss of large incidence angles influences the results obtained in Example
2.

Here, I use the same HTIXHTI model as in Example 2, but the maximum in-
cidence angle is reduced to 30° (from 45°). The azimuthal coverage for small and
moderate incidence angles remains the same. The elimination of large incidence an-
gles results in the loss of 375 data points.

I apply the same strategy as in Example 2 to invert this model. Figure 4.9 shows
that the loss of large-incidence angle reflections results in a wider distribution of the
models that fit the data than that in Figure 4.3, with more local minima (37) detected
below the threshold (set at Fy,; = 0.20). This clearly indicates that the inversion for
this model is more problematic.

The analysis of the models corresponding to the global minimum reveals, as
in the previous example, a theoretical possibility to recover the model parameters.
Quite surprisingly, the models at the global minimum are recovered almost as well
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| || exact | Fop; =0.040 | Fop; < 0.050 | B/a and AB/p known |

B2 T 0113 | 0107+0.023 | 0.133%0.056 0.102 + 0.016
22170182 | 0.189+0.023 | 0.163 % 0.056 0.194 + 0.016
2271 0182 | 0.180+0.022 | 0.156 +0.051 0.182 + 0.011
8 1l 0.358 | 0.377+0.016 | 0.379+0.023 0.380 + 0.014

") || —0.050 | —0.043 +0.020 | —0.058 + 0.048 —0.037 + 0.020
& 1l 0100 | 0.085+0.020 | 0.076 +0.040 0.087 + 0.018
v || 0.125 | 0.106+0.048 | 0.097 + 0.050 0.098 + 0.046

e’ || —0.050 | —0.049 + 0.018 | —0.022 + 0.052 —0.051 +0.013

65" || —0.060 | —0.057 +0.019 | —0.036 + 0.043 —0.056 + 0.014
v, || 0.125 | 0.119+0.024 | 0.111 % 0.029 0.119 £ 0.020
K 30° | 385°+124° | 43.3° £ 16.3° 39.7° £ 12.3°

Table 4.4. Inversion results for the HTIXHTI model (Example 3). The medium pa-
rameters (first column), their true values (second column), and their recovered values
using: 1) only those models that correspond to the global minimum (Fopj = 0.04;
third column), 2) the models from Figure 4.9 supplemented by the results from the
linear inversion (Fg,; < 0.05; fourth column), and 3) the models satisfying the thresh-
old criterion (Fo; < 0.20) together with a priori estimates of AB/B € (0.16;0.20)
and B/& € (0.30;0.40) (fifth column). The error bars represent standard deviations.

as in Example 2 (compare the third column of Table 4.4 with the fifth column of
Table 4.2). However, the recovered models corresponding to other local minima, even
those close to the global minimum (in terms of Fy;), are broadly dispersed in the
model space, far from the true model. Therefore, the practical recovery of the medium
parameters is much more difficult than that in Example 2, where large-incidence-angle
reflections are available.

As an example, using the estimates of PI(ABS) , PI(M) , PI(L) , S’S%ABS), SSfM) and
SSfL) obtained from the corresponding linear inversion as before, it is possible to
reject all models with F,,; > 0.050. Despite this low value (i.e., the models with
Fyp; < 0.050 fit the data very well), still none of the individual medium parameters can
be recovered reliably, see Figure 4.10 and Table 4.4 (fourth column). Only some of the
more stable combinations introduced above can be recovered, such as (Ap/p+Aa/&),
(71 — Y2 cos 2K), Yo sin 2, (81) — eV, (68 — &), PS, PPsin and PSsin; see Figure
4.11 and Table 4.5 (third column).

It becomes clear at this point that a priori information is necessary for a more
detailed model recovery. Even then, however, the model recovery is more complicated
than that in Example 2. For instance, using the same a priori knowledge of g and
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Figure 4.10. Inversion for the HTIXHTI model (Example 3). Evolution of the ob-
jective function Fp,; and individual medium parameters with increasing number of
iterations for the 202 models characterized by F,,; < 0.050. The thick horizontal line
in F,; plot marks the threshold 0.20. The thick horizontal line in each parameter plot
marks the true parameter value. None of the parameters is recovered successfully.
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Figure 4.11. Inversion for HTIXHTI model (Example 3). Evolution of selected combi-
nations of the medium parameters (as suggested by the linear inversion) from Figure
4.10 with increasing number of iterations. The thick horizontal lines denote the cor-
responding true values. Several of these combinations are recovered well.
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[ exact | F,; <0.050 [ AB/B and B/ known |

B 4 B 0.295 | 0.296 + 0.001 0.296 + 0.001

L 0.469 | 0.438 £ 0.049 0.458 + 0.018
V) — e cos2k || —0.025 | —0.049 +0.035 —0.030 + 0.020

6 — 60 cos26 || 0.130 | 0.088 +0.045 0.098 + 0.036

v —y2c0s2k || 0.063 | 0.083 % 0.025 0.074 £ 0.016
e’/ sin 2 —0.043 | —0.023 + 0.040 —0.046 + 0.014
85" sin 2k —0.052 | —0.034 + 0.033 —0.050 + 0.013

2 8in 26 0.108 | 0.094 = 0.024 0.104 + 0.011
) — V) 0.000 | 0.036+ 0.087 —0.014 + 0.022
55 — 68 —0.160 | —0.113 + 0.065 —0.143 + 0.022

s — V) 0.150 | 0.134+0.028 0.123 + 0.019
880 — ) —0.010 | —0.014 + 0.022 —0.006 + 0.010

PP 0.068 | 0.090 = 0.032 0.078 + 0.009

PS 0.067 | 0.070 £ 0.014 0.069 + 0.008

PPcos 0.034 | —0.002 + 0.062 0.014 + 0.034

PPsin 0.059 | 0.072+ 0.010 0.070 £ 0.006

PScos 0.034 | 0.004 £ 0.042 0.014 + 0.030

PSsin 0.058 | 0.058 £ 0.006 0.061 + 0.003
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Table 4.5. Inversion results for the HTIxHTI model (Example 3). Selected combi-
nations of the medium parameters (first column), their true values (second column)
and their recovered values using the models from Figure 4.9 supplemented by the
results of the linear inversion (F,,; < 0.05; third column), and using the models
satisfying the threshold criterion (F,,; < 0.20) together with a priori estimates of
AB/B € (0.16;0.20) and B/a € (0.30;0.40) (fourth column). The error bars repre-
sent standard deviations.
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7 as in Example 2 does not lead to any significant improvement, and the results are
similar to those from the previous paragraph (Table 4.4, fourth column). The essen-
tial additional information seems to be reasonable knowledge of one of the isotropic
contrasts (unnecessary in Example 2). Figure 4.12 shows the results obtained with
the following a priori information (82 models from Figure 4.9): 3/a € (0.30;0.40)
[(B/@)true = 0.356] and AB/B € (0.16;0.20) [(AB/B)rue = 0.182]. Figure 4.12 shows
a good recovery of most of the medium parameters; see also Table 4.4 (fifth column)
and Table 4.5 (fourth column). Again, the only unresolved parameters are y; and x.
The poor resolution of these two parameters was indicated already in Example 2. A
reasonable knowledge of ; (with about 20% accuracy) removed the problem. As a
consequence of the loss of large-incidence-angle reflections here, however, knowledge
of 7, has to be almost exact (with accuracy no worse than £5%) to recover x with
the same accuracy as in Example 2. A more practical possibility to be considered is
a priori knowledge of not only AS/B3, B/a and 7, but also either (5§V) or egv). Then
knowledge of these parameters with accuracy 15%-20% is sufficient for stable recovery
of the misalignment angle « also.

Example 3 illustrates an expected loss of resolution for a more limited angle
coverage. Compared to Example 2, more a priors information is necessary to resolve
the model; besides B/o‘z, the essential addition is knowledge of one of the isotropic
contrasts (i.e., Aa/a, AB/B or Ap/p). To recover the angle « in practice, a priori
knowledge of two anisotropy parameters of the incidence halfspace is also necessary
(instead of just one as in Example 2).

With the loss of large-incidence-angle reflections, the output of the nonlinear
inversion becomes remarkably similar to that of the linear inversion, with one ex-
ception: the nonlinear inversion provided quite good estimates of the parameters
egv) and egv) (see Table 4.4, fifth column), whereas these parameters could not be
recovered from the linear inversion. The linear inversion also predicts that these
parameters are poorly constrained by data lacking large incidence angles. This dif-
ference in performance may have several explanations. First, the influence of the
nonlinear terms of the reflection coefficients, which also constrains the parameters
egv) and egv), may be nonnegligible. This, however, does not seem to be the ex-
planation here since the nonlinear terms of the exact PP- and PS-wave reflection
coefficients are small (usually much less than 10%) over the whole region of the in-
cidence angles and azimuths used (i.e., the weak-contrast, weak-anisotropy condition
is well satisfied for this model). Second, even the linearized approximations of the
reflection coefficients contain “medium” and “large” incidence angle terms, associated
with sin® ¢ and sin® ¢ tan? ¢ [¢ is the incidence angle, see equations (3.1) and (3.36)];
these terms were not used in the linear inversion in Chapter 3 but they are dependent
on egv) and egv).

This argument seems to provide a reasonable explanation. For this model, the
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Figure 4.12. Inversion for the HTIXHTI model (Example 3). Evolution of the ob-
jective function Fgy; and individual medium parameters with increasing number of
iterations of 82 models picked from Figure 4.9, that also satisfy the following a prior:
information: AB/j3 € (0.16;0.20) and /& € (0.30;0.40). The thick horizontal line in
F,; plot marks the threshold 0.20. The thick horizontal line in each parameter plot

marks the true parameter. The parameters v; and x remain unresolved.
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medium- and large-incidence-angle terms contribute significantly to the reflection
coefficients at incidence angles between 20°-30°. For instance, for certain azimuths
and incidence angles close to 30°, the term associated with sin® ¢ tan® ¢ in Rpp is
about 1.3 times stronger than the term associated with sin? ¢ (i.e., the P-wave AVO
gradient) used in the linear inversion.

Third, the nonlinear inversion uses both reflection coefficients Rpg; and Rps,,
whereas the linear inversion uses only one projection of the reflection coefficients onto
the SV direction [denoted as Rpgy, see equations (2.10)]. Such a projection may
further reduce the amount of valuable information, especially its nonlinear compo-
nent contained in the polarization vectors inside the expressions for the reflection
coefficients Rps, and Rpgo (see the elimination of the polarization angle ® in Section
2.2.2). Finally, the values of the parameters egv) and egv) can be also constrained
largely by physics. Specifically, these parameters can attain only certain magnitudes,
such that, together with the remaining medium parameters, the model is physically
possible (i.e., the nonnegative strain energy condition is not violated in either the in-
cidence or reflecting halfspace). Thus, even if only the remaining medium parameters
are constrained by data, certain limitations on the values of the parameters eﬁ") and
egv) also exist.

In any case, good recovery of the parameters egv) and egv) should be understood
as another example of how the values of the medium parameters may influence the
performance of the nonlinear inversion (in this case positively). Assuming that the
contribution of medium- and large-incidence-angle terms is essential for the recovery
of egv) and egv) , analysis of approximate reflection coeflicients at those regions provides
the following insight: in general, the recovery should become better constrained with
increasing magnitude of the difference (egv) - eév)) and decreasing magnitude of the
B/a ratio. The value of (egv) - egv)) should be also nonnegligible compared to the
magnitudes of isotropic contrasts Aa/a, AB/B, and AS /B, and also to the difference
(69/) — (5§V)) (these conditions are well satisfied for the model in Example 2 and 3).
More numerical testing needs to be carried out to verify this suggestion.

4.3.4 Example 4: HTIxHTI model: large data errors

Example 4 is another modification of Example 2. This time, the influence of
increasing error in the data is investigated. The same model with the same data
coverage as in Example 2 is used, except that now the data are contaminated by
error that is twice as high (i.e., normally distributed random error of 20%). The
inversion is accomplished by means of the same steps as before.

Without any details provided here, the results of this interesting example can
be simply characterized as “in between” the results of Example 2 and Example 3.
In particular, the amount of @ priori information necessary to resolve this model
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is, of course, higher than that in the case of small data errors (Example 2) but
smaller than that in the case of missing large incidence angles (Example 3). For
instance, reasonable knowledge (with about 20% accuracy) of one of the isotropic
contrasts (such as AB/f), together with §/a and ,, allows for a good recovery of
the remaining medium parameters, basically identical to that reported in Example 2
with a priori knowledge of 3/& and ~; only (see the sixth row of Table 4.2). (Similar
results can be also obtained even without knowledge of A3/, but the inversion has
to be supported by results of the linear inversion, using the estimates of P, Pl(ABS),
Pl(M), Pl([’), SSfABS), SS§M) and SSfL) in the same way as discussed in detail in
Example 2.)

Example 4 suggests that the inversion may be acceptable even if the data are
contaminated by relatively large random errors, as long as the data coverage is suf-
ficient. In terms of resolution, stability and a priori information, the loss of data
accuracy is less harmful than the loss of large-incidence-angle reflections. Therefore,
it may be beneficial to include large-incidence-angle reflections in the inversion even
if the corresponding error is relatively high. Of course, this conclusion holds only if
the noise in data is random rather than systematic.

4.3.5 Example 5: HTI/HTI model

Example 5 is designed to study the consequences of eliminating the angle «
considering models in which the symmetry axes of the two HTI halfspaces are aligned.
Thus, the misalignment angle x = 0° is known a priori. (See the corresponding linear
inversion of the HTI/HTI model in Chapter 3.) The data coverage and the data error
are identical to those used in Example 2. The model vector to be recovered is

Ap Aa A
me <-Tp’_a __IB’§7eg‘/)?&g‘/)’f)’laeg‘/)?(sé‘/) 72) ’ (46)

The distribution of recovered models has basically the same character as that in
Example 2 (Figure 4.3), including the values of the global minimum and threshold.
Further analysis of the results shows, however, that the resolution for this model
is much lower. Even if the data are of high quality, i.e., the models corresponding
to the global minimum can be easily identified (such as those in Figure 4.7), only
the isotropic contrasts Ap/p, Aa/a and AB/B [see equation (4.6)] can be recovered.
This is not surprising, since this was already determined from the linear inversion in
Chapter 3. Estimation of the contrasts (jumps) of the anisotropy parameters across
the interface, however, should be possible.

Using the linear inversion (estimates of Pl(ABS), Pl(M), PI(L), SSfABS), S SfM) and
S SI(L) combinations, see Example 2), it is possible to lower the threshold to the same
value as in Example 2 (i.e., F,;; = 0.12). Table 4.6 (third column) shows several
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best-constrained parameters that can be recovered in this case. In Table 4.6, the
parameters APP and APS are defined as

=\ 2
APP = (55")—55"))+8(§) (11 — 1), (4.7)

1 B
APS = — (6% — o) ( ) :
PS 21+ g) (6 & ') +2 (M = 72)

In agreement with the conclusions of Chapter 3, it is impossible to recover the
anisotropy parameters individually. From Table 4.6 (third column), it is also dif-
ficult to estimate the differences (ng) - dév) ) and (e§V) gv)) separately.

As in the previous examples, including a priori information can improve the
results. Figure 4.13 shows the selected combinations from Table 4.6 recovered for 29
models using again the same a priori information as in Example 2 (i.e., knowledge
of §/a and v, with about 20% accuracy) This a priori information allows one to
separate the difference (6(‘ ) 5(‘ ) from (€ vy _ e5")), see the fourth column of Table
4.6. However, the resolution of the 1nd1v1dua,l anlsotropy parameters is still poor, and
without additional constraints on either 6 ) or el ¥) their recovery is unreliable.

Example 5 provides clear evidence of decreasing resolution of the inversion for
HTI models with uniform symmetry-axis orientation. Without any a priori informa-
tion, only the isotropic contrasts and certain contrasts of the anisotropy parameters
can be recovered. This is fully consistent with the prediction provided by the linear
inversion in Chapter 3. More comprehensive a prior: information can improve the
model recovery, however, to resolve the model vector (4.6) completely, all 3/a, 7,
and either (5( or eg‘ ) a priori estimates are necessary (again, in agreement with the
linear 1nver31on). If this information is available, however, the nonlinear inversion
provides significantly improved model recovery compared to the linear inversion (see
Table 4.6 in comparison with Table 3.5 showing the results of the linear inversion).
Furthermore, based on the results of Example 3 above, additional loss of resolution
should be expected with the loss of large-incidence-angle reflections. Then, an inde-
pendent estimate of one of the isotropic contrasts may be necessary to constrain the
inversion.

Finally, the typical characteristic of this inversion, a particularly large disper-
sion of individual anisotropy parameters coupled with well-focused estimates of their
differences, may be used as an indicator of aligned symmetry axes.

4.3.6 Example 6: ORTHOxORTHO model

The next two examples demonstrate difficulties arising for lower-symmetry mod-
els with a larger number of parameters. The medium in Example 6 consists of two
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Figure 4.13. Inversion for the HTI/HTI model (Example 5). Evolution of the objec-
tive function F,;; and selected combinations of the medium parameters with increasing
number of iterations of the 29 models with Fp; < 0.55 (threshold) and satisfying the
following a priori information: 3/& € (0.30;0.40) and 7, € (0.10;0.15). The thick
horizontal line in each parameter plot marks the true parameter value. See equations
(4.7) for the definitions of APP and APS. All combinations shown on the plot are

well recovered.
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exact Fobj <0.12 B Fobj <0.55

B/& and y; known
2 0.113 | 0.118 & 0.008 0.114 + 0.001
2o 0.182 | 0.180 =+ 0.005 0.183 + 0.001
e 0.182 | 0.171+0.022 0.177 + 0.014
) — V) 0.000 | —0.035+ 0.047 |  0.007 + 0.022
&V — 5V 0.160 | 0.137 -+ 0.046 0.153 + 0.017
M — 7o 0.000 | 0.005 £ 0.022 0.001 & 0.018
(60 — s — (V) — ") [ 0.160 | 0.141 + 0.016 0.146 + 0.006
APP 0.160 | 0.144 +0.016 0.154 % 0.004
APS 0.059 | 0.053 £ 0.012 0.057 & 0.007

Table 4.6. Inversion results for the HTI/HTI model (Example 5). Isotropic contrasts
and selected combinations of the medium parameters (first column), their true val-
ues (second column), their recovered values using the results of the linear inversion
(Fopj < 12, third column) and using the threshold criterion (F,,; < 0.55) together
with a priori estimates of 3/a& € (0.30;0.40) and ; € (0.10;0.15). The error bars
represent standard deviations.
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orthorhombic halfspaces (the same as in the ORTHO/ORTHO model from Chapter
3; see Figure 3.3 for the medium parameters of the halfspaces). The vertical symme-
try planes of the halfspaces are misaligned by the angle xk = 30°. The model vector
now has 19 components and is defined as

Ap Aa A
_ (_f’,—_-a-,—_ﬁ,E,egw,esm,ag”,a@,a@, (4.8)
p a B«
2 2
T S R N S Y S fe) ,

where the isotropic contrasts are defined by equations (3.4) and (3.7), and the aniso-

tropy parameters 'y§1) and 7}2) are

1 1
Ay — A5

1 —

vy = - 4.9
A(I) _A(I)

B = D66 N - (4.10)

Here, the Ag) are the density-normalized stiffness tensor elements [see equation
(2.11)], and I = 1,2 represent the incidence and reflecting halfspaces, respectively.
The remaining anisotropy parameters are defined in equations (2.15), (2.16) and
(2.21)-(2.23).

The results of the linear inversion in Chapter 3 indicate that the parameter
estimation for orthorhombic media is quite difficult. This difficulty holds as well for
the nonlinear inversion. Attempts to recover the model vector from equation (4.8)
without any a priori information entirely failed. Also, these attempts could not
help to identify a priori information necessary to properly constrain the inversion.
Therefore, the inversion below is based on the assumptions used to invert for the
parameters of the ORTHO/ORTHO model in Chapter 3 (linear inversion).

The following @ priori information was incorporated in phases 1 and 2 of the
inversion: 3/a € (0.53;0.58) (B/&rue) = 0.56), Aa/a € (0.27;0.29) ( Ac/&(true) =
0.286), 6 € (—0.21;-0.19) (6) = = -0.20), 62 € (0.09;0.11) (6! = = 0.10),

1(true) — 1(true)
7D € (0.14;0.16) (1} = 0.15) and 1 € (0.03;0.07) (9),,,) = 0.05). Clearly,
these parameters are presumed to be known with high accuracy. The remaining
anisotropy parameters of the incidence halfspace are constrained more loosely:

&) € (<0.19;-0.11) (e(),,) = —0.15), ¢ € (0.11;0.19) (¢{7),,, = 0.15) and
6§3) € (0.0;0.25) (6fzzme) = 0.15). No constraints are used for the other medium

parameters. The focus of the inversion is on the recovery of the remaining isotropic
contrasts (Ap/p and AB/B) and the anisotropy parameters of the reflecting halfspace
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(i.e., a reservoir of orthorhombic symmetry).

The best results were achieved when the inversion was combined with stable
estimates of PI(ABS), PI(M), PI(L), SSfABS), SSfM) and SSfL) provided by the linear
inversion (carried out prior to the nonlinear inversion), as in the previous examples.
In that case, only the following parameters were recovered acceptably (see Table 4.7,
the parameters known a priori are not shown): Ap/p, AB/B, eg), e§2 and . Also

the recovery of the following combinations of the medlum arameters was successful:
(Ap/p + Aa/@), AG/G, (5(3) + 652) (1)), (e} (2) _ (2) ) , PP(ortho) apd pglortho)

where 'y( )~ 'y(l) 752) (in weak-anisotropy approx1mat10n) is defined by equation
(2.17) and
PPl _ (50 _ 50) 4 g (@ ) N (4.11)
o
) _
PS(ortho) — (5(2) _ 552)) +92 (@) ,.)és).
2(1+ 8) a

Notice a bias in the estimates of €. and (¢ — ). These estimates are also the

least stable ones. Neither the parameters (5(1), 5(2), nor their difference (5&1) — 6&2))
(suggested by the linear inversion as a more stable combination) could be estimated
with sufﬁc1ent accuracy. As expected from the linear inversion, inversion for the
parameter (5 also failed.

Further improvement of the results from Table 4.7 seems to be possible only by
adding a priori information about one of the anisotropy parameters of the reflecting
halfspace (i.e., the reservoir). The numerical tests indicate that additional knowledge
of, for example, 551), 6(2), 'yél), or 752), or possibly the difference ('yé ) 752)) could
result in the complete model recovery. This is in agreement with the results of the
linear inversion. In practice, knowledge of the shear wave splitting parameter within
the reservoir 'y(s) 75” 'yé ) could be sometimes available.

In any case, a complete inversion for the ORTHOxORTHO model is a difficult
task. Similar difficulties can be expected for any other models with an orthorhom-
bic reflecting halfspace (such as isotropic/ORTHO, HTIxXORTHO). Of course, higher
anisotropic symmetry of the incidence halfspace reduces the amount of a priori in-
formation necessary for the inversion, increasing the feasibility of the inversion.

4.3.7 Example 7: ORTHO/ORTHO model

In Example 7, the same ORTHO/ORTHO model from Chapter 3 was used to
study the influence of eliminating the misalignment angle « (i.e., the symmetry planes
above and below the reflector are aligned), as was done in Example 5 (see Figure 3.3
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A A3 &) @
| ¥ [ % | & | = :
exact 0.182 0.462 —-0.150 —-0.25 30°
recovered (| 0.190 £ 0.007 | 0.458 £ 0.023 | —0.145 £ 0.012 | —0.216 + 0.023 | 30.5° £ 2.1°
o ~ 3 2
([ w [ & [Fer]
exact 0.468 1.018 0.450
recovered || 0.468 +0.001 | 1.018 £ 0.034 | 0.446 + 0.016
I || 6§2) _ 6&2) | ,yés) PP(ortho) | PS(ortho) l
exact 0.400 -0.132 —0.427 —0.179
recovered || 0.371+0.021 | —0.128 £0.020 | —0.429 +0.012 | —0.178 & 0.008
Table 4.7. Inversion results for the ORTHOxORTHO model (Example 6). The

medium parameters (first row), their true values (second row), and their recovered
values (third row) obtained by using the results of the linear inversion (F,; < 0.26)
and hard constraints on Ao/, B/a, s @), 'y§1) and 'yfz); see the text for more

details. The error bars represent standard deviations. See equations (4.11) for the
definitions of PP(rtho) and PSlortho),

for the medium parameters of the halfspaces). The model vector
Ap Aa AB B >
m = <‘__£,Ta,7137g7 6?),6&2),5%1),5?);5&3) ’ (412)
p o B
(1) (2

1) (2
TN 0, e

b] 62 ? 62 Y 651)’ 5§2)’ 653)’ 751)’752))
is a reduced version of the model vector from equation (4.8), where it is known a priori
that x = 0. This reduction of the number of model parameters should result in a
more stable inversion. On the other hand, as suggested by Example 5 and the linear
inversion, the alignment of the symmetry planes results in lower resolution, since only
the contrasts of the medium parameters are well constrained. However, none of these
expectations is quite met. As in the previous example, the recovery of the model was
not successful without using the same hard constraints on certain medium parameters
of the incidence halfspace as in Example 6. With these constraints, the resolution
is similar to that in Example 6, and the accuracy of the inverted parameters is only
slightly higher than that in Table 4.7.

By comparing the results from Table 4.7 with the results obtained from the
corresponding linear inversion in Table 3.9, one can see again that the nonlinear
inversion is more accurate and yields higher resolution. For this model, however,
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the nonlinear inversion requires just as much a priori information as does the linear
inversion.

Examples 6 and 7 reveal the limitations of the joint inversion of the PP- and
PS-wave reflection coefficients for orthorhombic and lower-symmetry models.

4.3.8 Example 8: Erroneous calibration of the reflection coefficients

The last two examples attempt to address, albeit in a simplistic way, two po-
tential problems in practical applications of the inversion. Example 8 deals with the
problem of erroneously calibrated reflection coefficients. Even if the reflection coef-
ficients are correctly recovered from the reflected amplitudes in the relative sense, it
is still necessary to ascertain their absolute correctness. In practice, this is done by
using various wavelet extraction methods and numerical modeling, using information
obtained from NMO analysis, well-log or VSP data, and using various empirical re-
lationships based on rock physics [see, for example, Dahl & Ursin (1992), Mallick
(1995; 1999) and Cambois (2000)]. A natural question to ask is what happens with
the inversion if the calibration factor is determined with a significant error.

Here, I use the same HTIXHTI model as in Example 2, with the same data
coverage and error contamination. However, the exact (correct) Rpp, Rpg, and Rpg,
reflection coefficients computed for the HTIxHTI model are multiplied by a constant
factor of two, prior to being contaminated with a 10% random error. The mean
amplitude of the synthetic data is thus twice as high as the correct value (which still
provides possible values of the reflection coefficients characterizing a strong-contrast
interface with P-wave AVO intercept close to 0.3).

The generated data are then inverted in exactly the same way as in Example 2 to
recover the model vector m [equation (4.4)]. The distribution of the inverted models
is similar to that in Example 2 (Figure 4.3), but the absolute values of the global
minimum (Fy; = 0.38), threshold (F,,; = 1.80) and all local minima are generally
higher.

More interesting is Figure 4.14 (analogous to Figure 4.7), which contains 137
recovered models corresponding to the global minimum. In terms of the character
of convergence, stability and resolution of the individual medium parameters, Figure
4.14 is similar to Figure 4.7 (see also Table 4.8 in comparison with Table 4.2). The
principal difference is a strong bias in the contrasts Ap/p and Aa/a. A nonnegligible
but somewhat smaller bias can be seen in the 65‘/) and 7, estimates, and a weak bias
is also detected in the estimate of (52(,‘/). In contrast to the strongly biased parameters
Ap/p and Aa/a, the estimates of AB/S, eﬁ"’ and egv) are not biased at all. Hence,
as long as the reflection coefficients are recovered with correct relative variations, the
parameters AB/f, eﬁ"), 652\/) and possibly some other anisotropy parameters may not
be too sensitive to the calibration factor.
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| [ exact | Fo; =038 |
22 || 0113 | 0.325+0.003
aa 11 0.182 | 0.283 +0.002
% || 0182 | 0.186+0.005
2 || 0.358 | 0.390 +0.004
") || —0.050 | ~0.048 + 0.006
s | 0100 | 0.189 + 0.007
v || 0125 | 0.181+0.027
e || —0.050 | —0.049 + 0.001
88 || —0.060 | —0.077 + 0.002
v2 || 0125 | 0.202+0.001
k|| 30.0° | 37.4°+25°

Table 4.8. Inversion results for the HTIxHTI model with erroneous calibration (Ex-
ample 8). The medium parameters (first column), their true values (second column),
and their recovered values from Figure 4.14. The error bars represent standard devi-
ations.

Strong bias in the parameters Ap/p and Aa/a is expected since the PP-wave
AVO intercept, which depends on these two parameters only [see equation (3.2)],
is twice as high as the correct value. The PP- and PS-wave AVO gradients and
large-incidence-angle terms are also distorted by the same factor, but they are con-
trolled by more medium parameters. Hence, those parameters should be recovered
with generally smaller bias than are the parameters Ap/p and Aa/a.

More tests have to be performed to explain why the estimates of the parameters
eﬁ"), egv) and A3/ are not biased. However, the fact that these parameters control
the reflection coefficients generally at larger incidence angles suggests that the error
in calibration factor mostly influences the medium parameters that dominate the
small- and moderate-incidence-angle reflections.

The key to the detection and elimination of an erroneous calibration factor de-
grading the inversion results seems to be, as before, ¢ priori information. From
Figure 4.14, mainly knowledge of the contrast Ap/p or Aa/&, or P-wave impedance
[~ 0.5(Ap/p + Aa/@), see equation (3.2)] can be used to calibrate the reflection co-
efficients. Also a priori estimates (not necessarily highly accurate) of AG/G, 69/)
or (5§V) - e§"') ) are sufficient to detect an error in calibration factor. Note that the
difference ((5&‘/) - eﬁ")) is close to the parameter n (Alkhalifah & Tsvankin, 1995),
which can be estimated from moveout analysis.

It may happen that it is difficult to fit the data and remain consistent with
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Figure 4.14. Inversion for the HTIxHTI model with erroneous calibration (Example
8). Evolution of the objective function Fo; and individual medium parameters with
increasing number of iterations for 137 models corresponding to the vicinity of the
global minimum F,; = 0.38. The thick horizontal line in the F,; plot marks the
threshold 1.80. The thick horizontal line in each parameter plot marks the true
parameter value. Notice the biased estimates of Ap/p, Aa/a, B/a, (59/) and ..
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certain choice of a prior: information. For example, if the same a priori information
as that in Example 2 [i.e., /@ € (0.30;0.40) and 7, € (0.10;0.15)] is used, not
a single model can be found that both satisfies these a priori constraints and fits
the data (i.e., Fyp; < 1.80). Thus, the reflection coefficients can be calibrated in an
iterative fashion, as if the calibration factor was another parameter to be recovered
by the inversion. Of course, this process becomes more stable with increasing data
accuracy and more extensive a priori information. A similar conclusion was drawn by
Mallick (1995), who performed a nonlinear P-wave AVO inversion for isotropic media.
In his inversion, Mallick obtained the correct calibration factor for the PP-wave
reflection coefficient automatically during the data-fitting procedure, without any
a priori information.

Finally, if the calibration factor is not determined properly, and the estimates of
the medium parameters are biased (or the bias is uncertain), the inversion results can
still be useful in the recovery of the relative spatial parameter variations (e.g., over an
oil field), which can be important in reservoir characterization. A similar approach
was used in the P-wave AVO inversion for isotropic media, for example, by Smith
and Gidlow (1987), Ursin et al. (1996) and Kelly et al. (2000).

4.3.9 Example 9: Misinterpreted anisotropic symmetry

The final example demonstrates implications of misinterpreted anisotropic sym-
metry, when a wrong physical model is used in the inversion. This is another serious
potential complication in applying the inversion to field data.

A) Inversion using a higher anisotropic symmetry

In this example, synthetic data are generated by using the ORTHOxORTHO
model from Example 6. However, they are inverted as if the model was HTIxHTI in
an attempt to recover the model vector m from equation (4.4) (Example 2). Such
a wrong a priori choice of the physical model could be common in practice, when a
simpler model is tried first to explain the data.

First strong indications of an erroneous physical model are evident in Figure 4.15.
If the physical model was truly HTIxHTI (or sufficiently close to it), a similar charac-
ter in the distribution as that in Figure 4.3 should be expected. The distribution in
Figure 4.15 has several noticeable differences. First, the whole distribution is shifted
significantly towards larger values along the horizontal axis (F,;; = 1.55 at the global
minimum). This means that the data fit is much worse than that obtained using the
ORTHOxORTHO model (where F;; = 0.20 at the global minimum, see Example 6).
For example, using the same approach as in all previous examples, the threshold can
be determined at Fy,; = 0.70. Clearly, no single model recovered fits the data with
this accuracy. If the confidence in the data quality is high, as it should be in this kind
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Figure 4.15. Distribution of recovered models obtained by using the erroneous
anisotropy model (HTI instead of orthorhombic) (Example 9). Notice a different
character of the distribution compared to that of the previous examples: the abso-
lute values along both axes, the distribution shape, and the number of detected local
minima.

of inversion, the HTIxHTI symmetry does not provide an acceptable explanation of
the data and should be rejected at this point. The second difference between the
distributions from Figure 4.3 and Figure 4.15 is the distribution shape; the global
minimum Fg; = 1.55 of the distribution in Figure 4.15 does not correspond to the
maximum number of recovered models, which is shifted to the approximate value
Fyj = 1.70. Also, the minimum is not sharp (13 models in Figure 4.15 compared to
136 models in Figure 4.3); a larger number of local minima was detected.

Figure 4.16 shows the evolutions of the medium parameters for the models with
Fy; < 2.0, i.e., the models contributing to the most significant part of the distribu-
tion from Figure 4.15 (204 models). The large dispersion of all medium parameters
(namely the isotropic contrasts and 3/@&) is another indication of the incorrectly cho-
sen physical model. The parameter estimates are not accurate enough for any subset
of the recovered models; i.e., the dispersion is high even for the models corresponding
to a single local minimum.

The large dispersion in Figure 4.16 does not vanish with additional a prior:
information. If estimates of 5/& and <, are provided with the same accuracy as
that in Example 2 (which guaranteed good results in Example 2), no significant
improvement in the estimates is detected. Even (Ap/p + Aa/a), by all means the
most stable parameter that can be recovered, exhibits large dispersion. The fact that
the results cannot be improved by adding any a prior: information is further evidence
of the wrongly chosen physical model.
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Figure 4.16. Inversion of data from the ORTHOxORTHO model using HTIxHTI

symmetry (Example 9-A). Notice large dispersion of all medium parameters for the
204 recovered models. The dispersion of the estimates is not reduced by adding

a priori information.



100 Chapter 4. Nonlinear inversion of PP- and PS-wave reflection coefficients

In summary, choosing an incorrect physical model is equivalent to adding a spe-
cial type of systematic noise to the data that causes large dispersion of all estimates,
and even the model parameters that are otherwise constrained well cannot be re-
covered. It may be also impossible to fit the data with reasonable accuracy. Using
a priori information does not improve the model recovery. Therefore, the wrong
model assumption can be often corrected.

B) Inversion using a lower anisotropic symmetry

Here, the situation opposite to that above is discussed. Synthetic data are gen-
erated by using the HTIxHTI model from Example 2 but they are inverted using
an incorrect model of ORTHOXxORTHO symmetry (as in Example 6). The choice
of a lower (more general) anisotropic symmetry is justified in cases when the true
symmetry is unknown. The goal of this example is to examine whether the correct
symmetry can be determined.

Generally, a lower anisotropic symmetry of the model results in a less stable
inversion due to the higher number of the model parameters to be recovered. As
indicated in Example 6, the inversion for ORTHOxORTHO symmetry is usually pos-
sible only for certain combinations of the medium parameters. For example, unless
additional a priori information is available, onl%/ the differences in the anisotropy
parameters (¢; () _ (2)) ((5(1) (5(2)) and (v (1) ), I = 1,2, can be recovered rather
than the parameters themselves. (Note from Example 6 that, although possible in
principle, it may be quite difficult to recover even the differences above.) Unfortu-
nately, to recognize HTIXHTI symmetry with confidence, it is necessary to obtain
the individual amsotropy parameters of the ORTHOxORTHO model and show that
e,l) — 0, 6(1) — 0, 7§ — 0 and 6 — (6(2) 2e§2)) see Table 2.1 and equation (4.9)
applied on HTI symmetry. Clearly, rigorous determination of HTIXxHTI symmetry
from an assumed ORTHOxORTHO model is thus practically impossible.

Another alternative follows directly from Table 2.1. If the true medium has
HTIxHTI symmetry, then the parameters of the inverted ORTHOxORTHO model
should satisfy the following relations:

(2 _ (1) 2 _ 2

(€2 — D) — (¢l ) & — €, (4.13)
((2) 5(1) (5(2) 6(1)) — 552)_5?, (4.14)
O T O N
67—~ () = e .16

As follows from analysis of the approximate reflection coefficients for orthorhombic
media [equations (3.26), (3.30) and (3.31)], combinations of the anisotropy param-
eters on both sides in equations (4.13)-(4.16) can be extracted from data contain-
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ing large-incidence-angle reflections, even without using additional a prior: informa-
tion. Unfortunately, the relations above do not guarantee that the medium nec-
essarily possesses HTIXHTI symmetry. For instance, if the medium parameters of
the ORTHOXORTHO medium satisfy e\) = i), 60 = 600, 6 4 (@ — )y =
(6§2) -6y and 553) + 2(6&2) - egl)) = ((5§2) - 6§1)), then equations (4.13)-(4.16) also
hold. Although this would be quite unlikely, such an ORTHOxORTHO model can
certainly exist.

Next, we carry out the inversion similarly to that in Example 6. Here, however,
no a prior: information is used. First interesting observation is that the distribu-
tion of inverted models has a similar character to that in Example 2 (Figure 4.3).
Most importantly, the global minimum has the same value of the objective function
Fopj = 0.09, i.e., the inverted ORTHOxORTHO model fits the data as well as the
HTIxHTI model from Example 2. Further inversion for all medium parameters of
the ORTHOxORTHO model fails as expected from Example 6. However, certain
combinations of the medium parameters are well recovered, as shown in Table 4.9.
Unfortunately, the differences (e§2) — 652)) and (85 — 6 are not recovered with a
good accuracy, and thus equations (4.13) and (4.14) cannot be verified. Using the
remaining equations (4.15) and (4.16), we obtain the following numerical comparison:

0.123 £0.029 ~ 0.165 + 0.043, (4.17)
~0.011 £0.024 =~ —0.008 - 0.020. (4.18)

Both sides of relations (4.17) and (4.18) are numerically close to each other, which,
together with the same data fits of ORTHOxORTHO and HTIxHTI models reported
above, is an indication that the true symmetry is HTIxHTI.

To support this suggestion, it is desirable to carry out the inversion of the same
data again, this time using HTIxHTI symmetry (which is already done in Example
2). If the HTIxHTI model fits the data as well as the ORTHOxORTHO model (as in
this example), one can conclude that the probability of the model having HTIxHTI
symmetry is quite high.

In summary, although it may be difficult to identify the true anisotropic sym-
metry with absolute confidence, it is usually possible to obtain an indication of an
incorrect (lower) anisotropic symmetry of the model used for the inversion. If such an
indication exists [i.e., certain internal relations between inverted model parameters
hold, as those in equations (4.13)-(4.16)], the inversion should be repeated using the
corresponding model of higher anisotropic symmetry to obtain additional verification,
i.e., comparable data misfits for the models of both symmetries. Of course, the sym-
metry identification becomes more reliable if more a priori information is available,
and for simpler models under consideration.
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| exact | Fu; <012 |

o 4 fa 0.295 | 0.295 + 0.002

L 0.469 | 0.351+ 0.064

el — ? 0.050 | 0.031+0.023

s — %2 —0.100 | —0.092 + 0.031
e 0.125 | 0.082+0.053

(6 4+ €@ — My 0.150 | 0.165 + 0.043
&) — ) 0.050 | 0.061+0.013

o) — 60D 0.060 | 0.073+0.033
7 0.125 | 0.113+0.015

(65 + €2 — My [ —0.100 | —0.008 + 0.020
&P — 0.000 | 0.114 + 0.088

52 — 6 —0.160 | —0.046 + 0.075

Table 4.9. Inversion results for HTIxHTI model using ORTHOxORTHO symmetry
(Example 9-B). Selected combinations of the orthorhombic medium parameters (first
column), their true values (second column) obtained by converting the corresponding
medium parameters of the HTI medium using Table 2.1 (see HTIxHTI model from
Example 2 for model parameters), and their recovered values using the results of
the linear inversion (F,; < 0.12, third column). The error bars represent standard
deviations.
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4.4 Summary of Chapter 4

I invert the exact PP- and PS-wave reflection coefficients in the joint nonlinear

inversion for parameters of anisotropic media. This inversion requires high-quality
data and good data coverage. Tests on several synthetic examples led to the following
conclusions:

1.

The parameters of isotropic media were fully recovered without the need for any
a priori information (assuming that sufficiently large incidence angles exceeding
35° are available).

The parameters of HTIxHTI media (misaligned symmetry axes of the HTI
halfspaces above and below the interface) were successfully recovered using
a priori knowledge of the 3/& ratio and anisotropy parameter ; of the in-
cidence halfspace (both parameters known with 20% accuracy), provided that
large-incidence-angle reflections are available (maximum incidence angle used
was 45°).

If large incidence angles are not available, the inversion for the HTIxHTI model
has to be constrained by the additional estimate of one isotropic contrast (Ap/p,
Aa/a or AB/B). Knowledge of another anisotropy parameter of the incidence
halfspace (such as (5§V) or egv)) further stabilizes this inversion.

Using large-incidence-angle reflections, parameters of the HTIxHTI model were
recovered well even with data contaminated by large errors. The inversion
required a priori knowledge of 3/a, v, and one isotropic contrast, or Bla, 1
and estimates of the PP-wave AVO intercept and PP- and PS-wave AVO
gradients (obtained from the linear inversion). Lower data accuracy is less
detrimental than the loss of the large-incidence-angle reflections.

Inversion for the HTI/HTI model with aligned symmetry axes of the HTI half-
spaces above and below the interface was successful under the same conditions
as those for inversion for the HTIXHTI models above, except that only the
contrasts of the anisotropy parameters across the interface could be recovered
reliably. To recover the anisotropy parameters separately, at least some of them
has to be known a priori.

The inversion for the parameters of orthorhombic media was partially successful,
when a priori information about the anisotropy of the incidence halfspace was
available. Even then, only the isotropic contrasts and the anisotropy parameters

eg) , e§2) and ,Y§S) were recovered, together with a few other combinations of

the medium parameters. It was impossible to invert for the parameters (5&1),
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(552) and (5§3) without more information about the anisotropy of the reflecting
orthorhombic medium.

7. Inversion usually provides sufficient indications of both an erroneous calibration
of the reflection coefficients and an incorrect a priori choice of the anisotropic
symmetry of the model.

If the a priori information listed above is not available, only certain combinations of
the medium parameters can be recovered. The combinations can be determined from
the corresponding linear inversion.

The results of the linear inversion can be used as additional constraints for the
nonlinear inversion. With such guidance, the nonlinear inversion generally provides
higher resolution and accuracy of the inverted model parameters than does linear
inversion, and often less a priori information is necessary.
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Chapter 5

Conclusions and future work

In this thesis, I investigated the contribution of converted PS-waves to AVO
analysis in anisotropic media. I conclude that although using converted waves can-
not guarantee success of AVO analysis, PS-wave amplitudes, as additional source
of information, can substantially help to stabilize AVO inversion. Joint inversion of
PP- and PS-wave reflection coefficients often enable us to extract medium parame-
ters (or their combinations) with good accuracy. This thesis provides the foundation
for such an inversion. Emphasis on limitations of the inversion is an important part
of this research.

The main product of this thesis is the inversion toolbor that contains three
tools: 1) approximate PP- and PS-wave reflection coeflicients, 2) algorithm for joint
linear inversion of PP- and PS-wave reflection coeflicients, and 3) algorithm for joint
nonlinear inversion of PP- and PS-wave reflection coefficients.

Approzimate PP- and PS-wave reflection coefficients are important for under-
standing amplitude signatures as they relate AVO response to the corresponding
individual medium parameters in a simple fashion. Approximate PS-wave reflec-
tion coefficients, here derived for arbitrarily anisotropic media, can be used to reduce
the ambiguity of conventional P-wave AVO analysis; they contain the same medium
parameters as approximate reflection coefficients of PP-waves, but in different lin-
ear combinations. Analytic insight provided by the approximations for anisotropic
media is particularly useful. The first-order contribution of anisotropy to reflected
PP- and PS-wave amplitudes in different ranges of incidence angles and azimuths
can be conveniently evaluated for various anisotropic symmetries. Understanding
the role of anisotropy is especially important for predicting AVO responses from
fractured reservoirs, where anisotropy parameters are related to such fundamental
reservoir characteristics as the orientation of fractures, fracture density and fracture
content. Finally, although the approximate reflection coefficients provide useful qual-
itative description of prestack amplitudes, they lose their numerical accuracy with
increasing velocity and density contrasts across the interface, and increasing strength
of the anisotropy. Also, the approximate reflection coefficients lose their accuracy
with increasing incidence angle.

Algorithm for joint linear inversion of PP- and PS-wave reflection coefficients
is designed to invert the approximate reflection coefficients at small and moderate
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incidence angles, where they usually are sufficiently accurate. The linear inversion
has several notable advantages. It is fast and provides good initial estimates of
well-constrained medium parameters or their combinations. Also, error analysis is
relatively simple. Most importantly, the linear inversion provides useful analytic in-
sight, such as how to parameterize the model, what parameters can be recovered for
particular anisotropic symmetries and particular data coverage, and what a priori in-
formation is valuable for the inversion. It also helps to identify the type of anisotropic
symmetry of the model. Hence, the linear inversion provides important guidance for
the more sophisticated nonlinear inversion.

As an auxiliary tool, I also developed the bias-reduction algorithm. This algo-
rithm allows one to identify and reduce bias (caused by inaccuracy of approximate
reflection coefficients) in estimates of the medium parameters obtained from the linear
inversion. The bias-reduction method cannot, however, increase stability (i.e., reduce
variance) of inverted medium parameters.

Algorithm for joint nonlinear inversion of PP- and PS-wave reflection coeffi-
ctents is a more sophisticated tool that is significantly more expensive than the linear
inversion algorithm. It is designed to invert exact reflection coefficients, which are
complicated nonlinear functions of medium parameters (hence the inversion becomes
nonlinear). I fully agree with Riiger (1996) who suggests that “there is evidently
little hope to carry out blind (meant nonlinear) inversion of the AVO response.”
However, if supported by the linear inversion, the nonlinear inversion allows one to
recover medium parameters with generally higher accuracy and resolution than does
the linear inversion. Also, it usually requires less a priori information, which makes
practical application of the inversion more feasible. The main reason for the higher
efficiency of the nonlinear inversion is a more complete exploitation of reflection data
at moderate and large incidence angles.

The three tools from the inversion toolbox can be used depending on the desired
type and quality of the final result. The approximate reflection coefficients can be used
in qualitative AVO analysis, as discussed above. If good-quality reflection data are
available, linear or nonlinear inversion algorithms can be used to obtain quantitative
estimates of medium parameters. Success of both the linear and nonlinear inversions
depends also on quality of a priori information at hand.

The linear inversion should always be carried out prior to nonlinear inversion. It
is capable of providing estimates of velocity and density contrasts across the interface
as well as shear-wave splitting y-type parameter. Recovery of the §-type anisotropic
parameter is also possible, but the estimate is generally less reliable.

Large magnitudes of recovered medium parameters indicate a strong-contrast
interface or strong anisotropy of the medium. In such cases, however, the estimates
are likely biased, and the bias-reduction process should follow the linear inversion. In
general, I recommend applying the bias-reduction process always when the recovered
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magnitudes of velocity or density contrast (i.e., Aa/a, AB/B or Ap/p) exceeds the
value 0.2, or anisotropy parameters are recovered with magnitudes higher than 0.15.
Note that in order to carry out the bias-reduction process, a tool for computation of
exact reflection coefficients must be available.

The bias-reduction process, however, is not a substitute for the nonlinear inver-
sion. Nonlinear inversion carried out after the linear inversion (and bias-reduction
process, if necessary) can significantly improve the parameter estimates. In addition,
the nonlinear inversion enables one to recover e-type anisotropy parameter. I suggest
that nonlinear inversion should be used always when possible, as the final step in
obtaining quantitative estimates of medium parameters.

Using appropriate medium theories, the inverted medium parameters (i.e., the
parameters constrained by seismic data) can then be related to important rock prop-
erties, such as porosity (Krief et al., 1990), saturation (Gassmann, 1951; Brown & Ko-
rringa, 1975), lithology (Greenberg & Castagna, 1992; Castagna et al., 1985) or frac-
ture characteristics (Hudson, 1981; Schoenberg, 1983; Hudson et al., 1996; Bakulin
et al., 2000a; Bakulin et al., 2000b). This is the ultimate goal of AVO analysis.

Application of the inversion toolbox on field data is the next step, the subject
of future work. In order to do so, the PP- and PS-wave reflection coefficients have
to be accurately recovered from data. Without doubt, this is a challenging task that
requires continuing research. Careful amplitude-preserving data processing is needed.
First, data-acquisition problems (variation in the source strength, geophone coupling,
changes in acquisition geometry) and data-quality problems (cultural or acquisition
random noise, multiples and other interfering wave modes) must be properly eval-
uated to exclude data not suitable for AVO analysis. Then, problems related to
true amplitude recovery must be addressed: source-receiver directivity, polarization
analysis, NMO correction, thin-bed tunning and wavelet extraction (accounting for
offset-dependent wavelet stretching). Finally, reflection coeflicients have to be ex-
tracted from prestack amplitudes as functions of the incidence angle and azimuth. In
principle, the extraction of reflection coefficients requires knowledge of the medium
above the interface (overburden). Clearly, this is one of the most challenging parts of
AVO data processing. Prestack amplitudes should be properly corrected for geomet-
rical spreading, transmission losses, influence of the free surface and other structural
interfaces close to the sources and receivers, and attenuation. They should be also
transformed from offset to the incidence-angle/azimuth domain.

The processing described above has to be carried out for both PP- and P.S-waves;
in anisotropic media, two different PS-waves with different velocities and polariza-
tions are generated at the reflector. Both these waves should be present in the data.
(Using the tools developed in this thesis, it is relatively simple to investigate the
reduced inversion capability if only PP- or PS-wave data are available.) Moreover,
accurate polarization analysis have to be applied to correctly recover amplitudes of
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the reflected waves. Serious practical difficulties are also associated with a proper
correlation of PP- and PS-wave data volumes (Zaengle & Frasier, 1993).

If possible, extracted PP- and PS-wave reflection coefficients should be properly
calibrated. Without calibration, they cannot provide the correct absolute values of
the inverted medium parameters. However, they can still be used to recover relative
spatial variations of the parameters over a reservoir.

True-amplitude processing of 3D multicomponent, multiazimuth seismic data is
certainly not a standard approach in AVO analysis today, but I believe it will become
possible in future. Various amplitude-preserving processing algorithms are docu-
mented in the literature (Castagna, 1993; Resnick, 1993). Some elements of those
algorithms can be modified relatively easily and used for the purpose of the AVO in-
version discussed here. Continuous development of new techniques is also promising.
For example, such troublesome problems of true-amplitude extraction as imperfect
NMO correction and offset-dependent wavelet stretching were recently successfully
treated in a 3D field data example by Jenner (2001). Correction for one of the most
serious propagation phenomena, geometrical spreading, has been suggested for lay-
ered isotropic (Ursin, 1990) and VTI (Ursin & Hokstad, 2001) media. Significant
practical advantage of these corrections is that they utilize standard reflection move-
out data, and knowledge of medium parameters of the overburden is not necessary.
Several possibilities for calibration of reflection coefficients are also documented in
the literature (Demirbag et al., 1993; Mallick, 1995; Larsen et al., 1999; Poth et al.,
2001). Nevertheless, development of new techniques is still needed, especially those
addressing corrections of PS-waves for overburden propagation phenomena. Geo-
metrical spreading of S-waves, for example, is significantly influenced by anisotropy
(Tsvankin, 1995) and appropriate correction has to be developed. Also, while trans-
mission losses of PP-waves may be sometimes negligible (Jilek, 1998) and often are
ignored, they have to be accounted for in the case of PS-waves.

The main argument against the reliability of quantitative AVO analysis is that
corrections for propagation phenomena are usually based on simplified assumptions
(such as horizontally layered media with no lateral velocity variation). For a more
complex heterogeneous, anisotropic overburden, these corrections will likely fail. Their
accuracy in correcting AVO amplitudes at the larger incidence angles, which can
be used to improve significantly the inversion results, is also questionable. Clearly,
without proper corrections, propagation phenomena can damage the valuable AVO
signal. In my opinion, quantitative AVO analysis in such cases should benefit from
true-amplitude prestack migration techniques. For example, a migration algorithm
recently developed by Brandsberg-Dahl et al. (2001) allows, besides obtaining an
image of the subsurface, extraction of reflection coefficients in the presence of more
complex overburden (such as VT heterogeneous layers producing multipathing). The
reflection coefficients are directly obtained as functions of the incidence angle and az-
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imuth. The complexity of the overburden is accounted for in an amplitude-preserving
iterative process, during which the overburden parameters are updated to improve
the quality of seismic images. Further development of this algorithm for the purpose
of multicomponent AVO analysis is, of course, necessary. I believe, however, that the
future of the work documented in this thesis is in cooperation with such sophisti-
cated amplitude-preserving prestack migration methods that will help to extract the
reflection coefficients from data.

The success of AVO analysis resides in the combined effort of geophysics, ge-
ology and reservoir engineering. I hope that this thesis makes a small contribution
that among many others helps to pave the road to improved AVO. Many important
questions, however, are outside the scope of this research and remain unanswered.
Still, I close my thesis with an optimistic remark: as I have learned over the last
few years, the roads leading to successful solutions of todays scientific problems are
seldom straightforward, but we always have a chance to find them, as long as we keep
wandering, with our minds open.
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Appendix A

Linearized boundary conditions and approximate
PS-wave reflection coefficients within the
incidence plane (azimuth ¢ = 0)

Here, I follow the derivation by Vavrycuk & Psencik (1998) for P P-wave reflec-
tion coefficients, applying it to P.S-wave reflections. For consistency, I use the same
notation as that of these authors.

Ezact solution of the reflection/transmission problem

Consider a planar interface with the normal n, separating two homogeneous arbi-
trarily anisotropic halfspaces with the densities p(), p® and the density-normalized
stiffness tensor elements ag,)cl and ag-,)d. A harmonic plane wave incident from the
halfspace denoted as 1 generates three reflected and three transmitted waves P, S,

and S,. The displacement vector of each wave can be written as
uM(z,t) = UM g™ exp[—iw(t — p™V) - z)], (A.1)

where N = 0 corresponds to the incident wave, N = 1,2, 3 correspond to the reflected
S1, Sz and P waves and N = 4,5, 6 correspond to the transmitted S;, S and P waves,
respectively. UM denotes the scalar amplitude (generally a complex number), g
represents the unit polarization vector of the wave N, p™) is the corresponding
slowness vector, and w is the circular frequency. The traction vectors associated with
the displacement vectors (A.1) are

T (g, t) = iw UM XN, (A.2)
where XW) is so-called amplitude normalized traction vector,

XM = pWdungp™, N =0,1,2,3, (A-3)
xM = pPalngMpl, N =4,56.

In equation (A.3), Einstein summation convention over repeated indices applies.
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For a welded contact between the halfspaces, displacement and traction vector
fields must be continuous across the interface. These boundary conditions can be
written in a compact matrix form as follows:

C.U=B. (A.4)
The vector
B =—(g", 0", 9", X", X, X{O)" (A.5)

corresponds to the incident wave of amplitude U® = 1 (the superscript T denotes
the transpose). Also, the 6x6 matrix

1 2 3 4 5 6
4% % T b
gt R S T P N S

¢ = g3 g3 —93
Xl(l) X1(2) X1(3) _X1(4) X1(5) X§6)

(A.6)

contains quantities related to the incident wave. The polarization vectors g) and
slowness vectors p(N ), which are needed for evaluation of the amplitude-normalized
traction vectors X ) [equation (A.3)] and the matrix C, must be determined by
solving the Chrlstoﬂ'el equation,

(asjeplpf™ — 5jlc)g]('N) =0. (A.7)
In general, system (A.7) has to be solved numerically. Finally, the vector
U= (RSURS27RP7T517T32)TP)T (AS)

contains the reflection and transmission coefficients to be found. This vector has to

be determined by solving the matrix equation (A.4), together with the Christoffel
equation (A.7).

First-order perturbation of the exact solution

Using perturbations of the slowness and polarization vectors dp(™) and §g()
introduced in equations (2.4) and (2.6), one can linearize the traction vectors X (V)
defined by equations (A.3) and, consequently, vectors B, U and matrix C [see equa-
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tions (A.5), (A.8) and (A.6)] as

X = XN 4 sx ()

¢ = ¢&'+4C,
B = B’+6B, (A.9)
U = U’+4U.

Substituting equations (A.9) into (A.4) and keeping only linear terms, we arrive at
the final matrix equation for the perturbed vector of the reflection and transmission
coefficients:

oU = (C°)1(6B - 6C - UY). (A.10)

The background vector B® does not appear in equation (A.10) because
C. U® = B®. Since the background medium is a uniform full space, a fictitious
interface in such a medium generates only one transmitted wave of the same type
as the incidence wave. Thus, the perturbed vector U contains all desired reflection
(and transmission) coefficients as perturbations of the vanishing reflection coefficients
in the background medium. Equation (A.10) can be used to obtain the first-order
reflection and transmission coeflicients for all possible types of incidence waves and
arbitrarily anisotropic media.

Approximate PS-wave reflection coefficients within the incidence plane

A specific type of the incident wave determines all the quantities on the right-
hand side of equation (A.10) needed to complete the derivation. For P-wave incidence,
the background reflection/transmission vector U? is given by

U° =(0,0,0,0,0,1)7. (A.11)

This fact considerably simplifies the general equation (A.10), since only the 6th col-
umn of the perturbation matrix 6C has to be evaluated. Thus, equation (A.10) takes
its final form,

5U = (€)' (59 - 59", 69 — 54", 66" — 64",

T
oX( — 6x(”,0x" — ax{”,6x{ — sx") . (A-12)
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As shown in Vavrycuk & Psenéik (1998), the inverted matrix (C°)~! is given by

_ ﬁ2p(l)y cos & sin ® _IB 0 cos @ cos ® _ Bp? sin ¢ ﬂ2(p(i))2 cos ®
(  Zs 2 P 2098 Zs Zs,
B*plY sin & cos $ IB 0 gin ® _sind _51’? cos ¢ _/32(17(1))2 sin @
Zs 2 D1 200 Zg Zg
_19_271_(1] 0 _/3211(1))’ _62(7’1 )2 0 1
(CO)—I — « Zp Zp . 20%
__B*pYY cos ¥ sin ¥ B 0 U _cos¥ _ pplsin¥  B%(pY)% cos ¥ ?
Zg T2 Py COS 2098 Zs Zg
BZplY sin¥ _cos¥ —8 Osin ¥ sin ¥ __Bplcos¥  B2(p?)%sin ¥
Zg 2 D1 2g0ﬂ Zs Zg
\ _ B 0 Y BrmY)? 0 _ 1
a Zp Zp 20%
(A.13)

where Zp, Zg and Y are defined as

Zp = 200°8°pips",
Zs = 20°8°p)p3%,

Y = p0°(1-28°(n)%).

Based on the derivation of Jech & Psencik (1989) and Vavrycuk & Psenéik (1998),
the perturbations of the polarization vectors in equation (A.12) can be expressed as

509 — 5g© = (6¢9 — 5c0) [p?“” - | 0GP — 66, (A14)
o2(ngpp”)

where 7 represents the i-th vector component. Here, p®® is the slowness vector of
the incidence P-wave in the background medium [equation (2.5)], n is the normal to
the interface and « is the P-wave background velocity. §ct™) is the deviation of the
magnitude of the phase velocity of the incident (N=0) or transmitted (N=6) P-wave
in the weakly anisotropic medium from the corresponding magnitude in the isotropic
background. By a linear perturbation of the Christoffel equation, Jech & Psencik
(1989) obtained

1 0

6c® = 5adag;,)clp?(o)gg(o)gk(o)p?(o), (A.15)
1 0

56O = Ladallpl®gl0 0RO,

(0) I)

where g? is given in relations (2.7) and agjk, by relation (2.2). It immediately follows

that

1
(56(6) — 66(0) = 5aAai,-klpq(O)g;-)(O)gz(o)p?(o), (A'16)

1
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where

Aayw = Sali), — Saj), = agy, — agy (A.17)
are the contrasts of the elastic parameters across the interface.

The vectors (SGS.N) in (A.14) describe the deviations of the polarization vectors
in the weakly anisotropic medium from the corresponding polarization vectors in
the isotropic background. Using the approach described in the previous paragraph
(following Jech & Psencik, 1989), it is possible to write

66 — 66 = = Mg 4}V (B — 61 %), (A-18)
where 0y, is Kronecker’s delta. Notice that equation (A.14) describes the perturba-
tions of the polarization vectors from the background due to both the contrasts in
the stiffnesses across the interface and the anisotropy.

Finally, using equations (A.3) and taking into account that m = (0,0,1), the
difference of the first-order perturbations of the amplitude-normalized traction vectors
needed in equation (A.12) can be obtained as

6X% —0X[" = Apalyugy n” + 1" Baisugy " + (A-19)
6 0)y, 0(0 0(0) <, (6 0
p°a$3k,(5g,£ - 591(c ))Pz( '+ poa?Bklgk( )(5195 - ‘5105 ))-
The quantities ady,; and p° are defined in equations (2.2), and Aa;sy is given by
(A.17). Similarly, Ap = p® — p(V) is the density contrast across the interface. The

difference 6g,(c6) - (5g,(€0) is specified by relation (A.14). The term 6p§6) - 6p§0) has a

physical meaning analogous to that of § gl(G) — (591(0); however, it is now applied to the
slowness vector. Using expressions in Jech & Pgenc¢ik (1989) and Vavrycuk & Psencik

(1998) yields the relation

0y _56(6) — (56(0)

(6)
©oTop = 0(0)
D3

op (A.20)

o3
By substituting equations (A.13), (A.14) and (A.16)-(A.20) into equation (A.12), we
can find the approximate P-wave reflection and transmission coefficients. As follows
from the convention above, the approximation for the Rpg, reflection coeflicient is
obtained by using the first row of the matrix (C®)"! in equation (A.12). The result
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can be formally written as

RP51 = f (aaﬁ) p07i,ja@7AA11)AAl37AA147 (A21)
AAs, AArs, AAsz, AAsy, AAss,
AA36) AA457 AA557 AA56) )

where AA;; = Ag) -—Az(.;) are the contrasts in the density-normalized medium parame-
ters agims written using Voigt convention. The second coefficient, Rpg,, can be derived
using the second row of the matrix (CO)‘I; however, it can be also easily obtained
from the coefficient Rpg, by the substitution cos® — —sin® and sin® — cos ®,
since this is the only difference between rows 1 and 2 of the matrix (€)1
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Appendix B

General explicit expressions for the reflection
coefficients Rpg, and Rpg,

To generalize the reflection coefficient Rpg, (A.21) for an arbitrary azimuth
of the incidence plane, the medium parameters AA;; must be expressed in terms of
AAj; defined in the reference coordinate system. The tensor rotation is defined by
the following matrix of directional cosines:

A cosy —siny 0
R=| siny cosyy 0 |. (B.1)
0 0 1

Applying matrix (B.1) to the elements AA[; yields

AAy = AAY cos'y + 20 A, cos? Psin® Y + 4A A} cos® Psiny +
A AL, sin® ¢ + 4A Al cos 1 sin® 1 + 4A Afg cos® 9 sin® ¢,

AAy = AAlzcos®y + AAlsin® ¢ + 2A A cos P sin g,

AAyy = AA cos® —AA;cos®ysiny + AAY, costsin® i — AAhgsin® ¢ +
2A Al cos? 1 sinhp — 2A AL cos 1 sin® 1,

AA;s = AAl cos?ysing + AAlscos®p + AAY, sin® 9 + A Ay cospsin® ¢ +
2A Al cos 1 sin® i + 2A A, cos® 1) sin ¢,

AAy = —AAY cos®Psiny + AA),(cos® Psiney — cosvsin® 1) +
AA g (cos 1 — 3cos®psin® ) + A Ay (3 cos® sin® ¢ — sin? ) +
AAgs(2 cos® Psint — 2 cosysin® ),

Adg = AAL, (B.2)
AAszy = AAj cosy — AAysiny,
AAszs = AAysiny + AAy cosyp,

AAsg = —AAl cosysinty + AAb, costpsinty + AAlg(cos® 1 — sin® 9)),
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AAgs = AAj costsing + AAls(cos® 1 — sin? i) — AAL, costpsin o),

AAss A A}, sin® Psin ¢ + 2A Al cos P sintp + A AL cos? 1),

AAsg —AAj, costpsin® i — AA!; cos® Y sinep + AAY, costpsin® ) + A A, cos i sin e +
AAjg(cos® psiny — sin® 1) + AALs(cos® ¢ — cossin? ).

Relations (B.2) and (A.21) can be used to derive the approximations (2.10) for
the azimuthally dependent reflection coefficients Rps, and Rps, valid for arbitrarily
anisotropic halfspaces. The coefficients contain the components Rpgy and Rpsy
given by

cos ¢p sin® ¢p

Rpsy = v+ vy 0s ¢p + v3 sin op + v4 COS @p Sin ¢p + vs sin® Pp + vg
cos Pg oS (g COS s
.3 .4 .5
v7 sin” ¢ + vg cos ¢p sin® @p + vy sin dp + vyg cos @p sin” gp + vy s ¢.P,
COSs g cos Pg cos j
) cos ¢p sin ¢p sin? ¢p
Rpsy = My + hy cos gp + hasin pp + hy—————— + hs (B.3)
COS Pg COS g COS g
. 3 . 4
he cos ¢p sin® ¢p + hq sin® ¢pp + hg cos G Sin” gp hg sin” ép ,
cos Pg oS ¢g
where the coefficients v; and h; are as follows:
o .
v = W[AA&S COSs 'l/) + AA34 sin ’l,b],
1 .
Vg = W[AA% COS ’(/) + AA34 sin ’l[)],
1Ap 1 2
V3 = —EF + 2(C¥2——IB2)[—AA33 + (AAlg + 2AA55) COs ’(,b +
(AA23 + 2AA44) sin2 ’Ab + (AA;;G + 2AA45) sin 21/}],
B Ap 1 2 2 2 2
Uy = _EF - —_2aﬂ(a2 — '32) [—,B AA33 + (,3 AA13 + 2« AA55) COos ‘w +
(B°AAgs + 202 AAy) sin® ¢ + (B2AAgg + 202 A Ays) sin 240)],
1
vs = o® + 46%)(AAss cos ) + AAsy siny) + (B.4)

2a8(a? — £?) =
(a? 4+ 26%)(A A5 cos® 1) + (AAy + 2AAsg) cos® Ysin ¥ +
(AAgs + 2AAyg) cosPsin® P + A Ay, sin® )],
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Vg

U7

Ug

Vg

V10

11

and

1
2o — ) |
3a%(AAscos® P + (AAyy + 2AAsg) cos® sin g +
(AAgs + 2AAs6) costpsin® i + AAgy sin® )],

2
%% + m&i_—ﬂ?)[(ﬁ? +a’)Adzs —
(B*(AA1s + 48 As5) 4 207 (AAs3 + Adss)) cos® ) —
(,BQ(AAQ;; +4AA) + 202 (AAys + AAy)) sin? ¢ —
(B7(AAss + 4AA) + 20 (AAgs + AAgs)) sin 20 +
a’A A cost i + +a?A Ay, sin o + 402 A A;g cos® 1 sin g +
402 A Agg cos 1) sin® 1 + 202 (A A, + 2A Agg) sin® ¢ cos? ],
%(T_f:m[AA33 — 2(AA3 + 2AAss) cos? i —
2(AAgs + 2AAyy) sin® p — 2(AAszg + 2A Ays) sin 2¢) +
AA;; cos® Y + Adgysin® ¢ + 4A Arg cos® 1 sin 1 + 4A Agg cos ¥ sin® 1 +
2(A Ao + 2AAgg) sin® ¢ cos® ],
—2'B—[AA35 cos Y + AAsgsintyy — AA;scos® i — AAgysin® 2 —
a(a? — §?)
(AAy, + 2AAsg) cos? sint — (AAgs + 2AAy6) cossin® 9],
23
(AApy + 2AAsg) cos? i sin i + (AAgs + 2A Aygg) cos i sin® 1],
132
2(AAsg + 2AAg5) sin 29 + A Ay cos® 9 + AAgysin® o + 4A A6 cos3 ¢ sinv) +
4 Agg cossin® i + 2(A Ay, + 24 Agg) sin® 1) cos® 1],

282 + 3a?) AAss cosy + (2% + 3a?) AAzg siny —

[—AAsscostyp — AAgysiny + AAys cos® Y + AAyysind +

[AA33 - 2(AA13 + 2AA55) COS2 '(,b - 2(AA23 + 2AA44) Sil’l2 'l,b —

h1 = m [AA34 CcOs 'L/) - AA35 sin w],
1
h2 == W[AA;M COSs 1/) — AA35 sin 'l,/)],
1
hg = m[—Q(AAgG + 2AA45) (60 ] 2'l,b + (B5)

(AAlg - AAQg — 2AA44 + 2AA55) sin 2'1/}],
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1
1apa?— )
(52(—AA13 + AA23) + 2&2(AA44 — AA55)) sin 2’(/}],

[(o® + B*)AAszqcostp — (o + B?)AAsssinyp —

,B2AA36 + 2a2AA45) (H0] 2’(/} +

1
2aB(a” - B?)
(a2AA14 + 2,32AA55) COS3 'l,[) + (a2AA25 + 2,82AA46) SiIl3 'l/) + (a’2(AA15 - 2AA46) +
2,32(AA15 - AA25 - AA46)) COS2 'wSiH’lJJ + (2,82AA14 - a2AA24 - 2,32AA24 +
202 A Ass + 2322 Asg) costp sin? 1],

1
m[(AApl + 3AA24 — 4AA34 + 2AA56) CcOS 'l/} +
2(—3AA15 + AA25 + 2AA35 + 2AA46) sin 1/) —
(3AA15 - 3AA25 — 6AA46) CO8 2'1,[) sin '(,b + 3(AA14 - AA24 + 2AA55) COSs 3¢],
1
m[-Q(AAlG + AAQG — 2AA36 — 4AA45) COos 21/) +
(AAH - 2AA13 - AAQQ + 2AA23 + 4AA44 - 4AA55) sin 2’¢ -

1
2(AA16 - AAQ(;) COs 4’¢' + 5(AA11 - 2AA12 + AA22 - 4AA66) sin 4’(/)],

s
8a(a? — 4?)
+(—'AA11 + 2AA13 + AAQQ - 2AA23 - 4AA44 + 4AA55) sin 2’1/) +

2(AAys — AAgg) cosdap — %(AAU — 2AA15 + Adgy — 4AAgg) sin 4¢),

B
Ba(a? — (?)
2(—3AA15 + AAQS + 2AA35 + 2AA46) sin I,b
—(3AA;5 — 3AAgs — 6AA6) cos 2y sinyp + 3(AA1y — Ay + 2A Asg) cos 31)].

[2(AA16 + AAQG - 2AA36 — 4AA45) COs 21,b

[(AA14 + 3AA24 - 4AA34 + 2AA56) COS’l,b +

Here, ¢p and ¢s denote the incidence and reflection phase angles, respectively,

and ¢ is the azimuth of the incidence plane. The quantities A;; are defined above, and
a, B and p° are the background medium parameters (i.e., P- and S-wave velocities and
density, respectively). Again, Az = z(® — z(1) denotes the contrast of any parameter
z across the interface.



P Jilek / PS-wave reflection coefficients and AVO in anisotropic media 129

Appendix C

Approximations Rpg, and Rpg, for orthorhombic
media

In the text, the general approximations Rps, and Rps, [equations (2.10)] are
specified for orthorhombic media. The resulting equations (2.25) contain the compo-
nents Rpsy and Rpsy (2.26), composed of linear combinations of the V; (j=1,..,5)
and H (k=1,..,4) terms, respectively. The V; terms are:

1Ap a?
V = —=— ————
' 2ﬁ+ﬂw—wﬂ

6 cos? 9 — 6 sin? 1,0] ,

5 cos® (1 — )+(52 sin?(1) — K)—

BAp _,BAB aB [z (1)
Vo= e T sy B ot = )+ s (0 - )
6 cos? p — 61 sin? w] - 2§ ['yés) sin?(y) — k) — 1) sin? '(/}] , (C.1)
B Ap ﬁ2 Ap p? : (1) .
Vi = o +2 P + s = ) [—6§2) cos?(vp — k) — 657 sin?(¢) — K)+

&”m§¢+89m#w]+ 52[m®%(w—@+2m§w—nmm%w—aw-

eg)sm (Y — k) — ( (cos® 4 + 2 cos? 9 sin’ ¢) — el ) sin® ¢ — 6()sm (v —K) —
(552 cos?(vp — )+6§3)cos (¢ — k) sin®() — )+(51)sm 1,b+(5$2 cos® ¢ —

(5(3) cos? 1) sin® w] +2'B—2 [’yés) sin2'(1,[1 K) — fyl ) gin '(,b]
Vi = — aﬁBz [ (cos® (v — ) + 2cos2(w — R)sin’(y = k) + & sin' (1) — x) -
el )(cos 1 + 2 cos® ¢ sin? ¢) — Jsin ¢ — 5&1) sin(y — k) — 5§2) cos?(Y — K) +

(5§ ) cos? (¢ — k) sin®(y) — K) + 69) sin® ) + 5? cos? i — 5§3) cos 1 sin’ 1/)] ,
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Vs = —— 5252 [ ) (cos* (¢ — ) + 2cos? (¥ — k) sin?(y) — k))+

()sm (Y —k)— (2)(cos ¥ + 2 cos® ¢sin 9)) — msm P — 6(1)sm (Y — k) —
6(2) cos?(¢) — k) + 652 cos 2(¢h — k) sin® (¢ — &) + 6 sin2 o + 6 cos? 1 —
1 ) cos 24/ sin? w].

The Hj terms are as follows:

~2

B = 4(a2a__ 7 [(552) — &) sin2( — k) + (3 — §?) sin 2¢] ,
B = 4(6;53 32) [(551) ~ 6P sin2(y — k) + (82 — 5M) sin 21/)] n
g [7§S) sin 2(¢) — ) — 7 sin 2¢] ’ )

0% ~ ~ ~ .
o) [[57 = 8 = 50 (cos? (¥ ~ ) — sin®(9) - )+
2(e2 — €M) sin? (o) — )] sin(¢ — k) cos(y — k) + [—5&1) +504
8 (cos? ¢ — sin? ) — 2(et? — €{V) sin? 7/’] sin 9 cos ’p] ’
ap SOOI :
Hi = —5ar—go |5~ 8~ 8 (cos’ (v — ) —sin( — )+
2(e? — €M) sin?(p — )] sin(y) — &) cos(y — k) + [—5{1) +5@4
5%3) (cos?1p — sin® ) — 2(6&2) - egl)) sin? qb] sin ¢ cos 1,/1] .
See the main text for the definitions of the quantities involved. The reference coor-

dinate system is defined as in Figure 2.1, with the horizontal z-axis in the (%1, x3]
symmetry plane of the incidence orthorhombic halfspace.
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Appendix D

Polarization angle ®

Here, I evaluate theoretical expressions for cos ® and sin ® required in equations
(2.25) for the coefficients Rps, and Rps,.

Jech & Psencik (1989) and Psencik (1998) derived general expressions for @ that
can be specified for a particular anisotropic symmetry. Adopting the convention intro-
duced in Figure 2.1 and equations (2.8), the polarization angle ® for an orthorhombic
incidence medium can be written as:

1 A

cos® = [5(1+5)]1/2, (D.1)

B [1 A2
me - B ltq_4
sin B [2(1 D)] ,

if B#0, or
cosd =1, sin® =0 (B =0) (D.2)
otherwise. In (D.1),

D = [A? + 4B%)\/? (D.3)
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and

A = 2A(1)( cos? 1 — 6?) cos? 1 cos? ¢ sin? ps + (D.4)
( ) sin? ) — 5(1))sm 1 cos? g sin® pg +

2A(1)(1+2E(2)) 5% cos? 1) sin? Y(cos® ps + 1) sin? ¢s +

€

(&1

4A(1) ) cos 2 sin? 9 cos® ¢g sin? gpg +
2AD (D) _ ()

24N,V

cos? 1) sin? ¢ sin? g —
sin? ¢ sin? ¢g —

A%)'y(s) cos®(2y) —

2450 (1" = 1)) cos” Y sin® s,

B = A%) 1+ 26(2)) 5 cos 1 sin 1 cos 29) cos ¢ sin? g + (D.5)
248 (€l — €?) cos ysin® ¢ cos ps sin® ps +

A(l) (5(2) 6§1)) cos 1 sin 1 cos ¢g sin® g +
Aé@)ﬂ )cosdzsinz/}cos os,
where 1) = (A(l) A§15)) / 2A§15) (Tsvankin, 1997b), and all the other quantities are
defined in the text.

The functions cos® and sin® are singular (D = 0) for the directions of the
reflected-wave slowness vector corresponding to S-wave singularities, where the
S1- and S;-wave velocities are identical. For such cases, neither equations (D.1) nor
the Rps, and Rpg, approximations (2.25) can be used.

We can proceed in the same way as above if the incidence halfspace is HTI.
However, we can also use the fact that the polarizations of S-waves propagating in
HTI media are known. One of the waves is always polarized within the plane formed
by the slowness vector and the (horizontal) symmetry axis, while the other is polarized
in the isotropy (vertical) plane. These geometrical relationships make it possible to
derive purely “geometrical” expressions for cos ® and sin ® that do not contain any
medium parameters:

cos® = Cos $s COSY (D.6)

/1 — sin? ¢ cos? )’
—sin %

/1 —sin? pgcos?

As before, ¢s and 9 denote the S-wave reflection phase angle and the azimuth of the

sin® =
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incidence plane, respectively. Equations (D.6) are more stable than (D.1), with the
only singular point for ¢s = 90° and ¢y = 0°. Obviously, the incidence angle ¢g = 90°
is far beyond the area of applicability of the approximations.

For a VTI incidence halfspace, the situation is even simpler. One S-wave is
polarized in the incidence plane (SV) and the other is perpendicular to the (SH).
Thus, it immediately follows shat

cos® =1, sin® = 0. (D.7)

From equations (D.7) and (2.25), Rps, for VII media represents the reflection co-
efficient of the P-SV wave (polarized in the incidence plane) and Rpg, represents
the reflection coefficient of the P-SH wave (polarized horizontally). Such a P-SH
conversion is generated if the reflecting halfspace has HTI, orthorhombic, or lower
symmetry [see equations (C.1) and (C.2)], and the incidence plane does not coincide
with a vertical symmetry plane of the reflecting medium.

Equations (D.7) also hold for a purely isotropic incidence medium. In that case,
Rps, and Rpg, correspond to the reflection coefficients of SV and SH components
of the S-wave, respectively; both components travel with the same velocity.



134 Appendix D. Polarization angle @



P Jilek / PS-wave reflection coefficients and AVO in anisotropic media 135

Appendix E

Large-incidence-angle terms of the reflection
coefficient Rpgy

Equation (3.15) of the main text introduces the large-incidence-angle terms Sj,
S4, S5 and Sg. Although they are never used in the inversion described here, they
may be important for inversion of error-contaminated data. In conjunction with
the large-incidence-angle term P, [equations (3.8)-(3.13)], S3, Si, S5 and Sg provide
constraints on the anisotropy parameters egl), e§2) and 6§3) [see equations (2.15), (2.16)
and (2.23)].

For the purpose of the inversion discussed here, it is convenient to represent the

large-incidence-angle terms as follows:

B Ap AG 1) @) (5) (1) 2) (S
1
K; x { [Z((S;(;’) + efj” - egl)) sin® 2k — (egz) - egl)) sin® k + e§2) - e§2)

1
—2 [(6&3) + eéQ) - egl)) sin 4&] sin 24 cos 21

+ (€2 — €M) sin 2&] sin ) cos ¢ (E.1)
+ (6% + €2 — €My cosdr — (619 + ? — egl))] sin® ¢ cos® v

— (& = &) cos 2 — () — )] sin”/’},

where ¢ = 3, 4, 5 and 6 [see equation (3.15)]. All medium parameters in equation
(E.1), as well as the angles ¢ and k, are defined in the main text [see equations
(3.1)-(3.13)]. The constants K; and functions f; differ for each large-incidence-angle
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term. Using the notation g = (3/a)?

and

fs

fa

fs

Appendix E. Large-incidence-angle terms of the coefficient Rpgy

, We can write

1

K3 = m,
K4 = —%,
g
K. = —
® 2(1-g)’
2
g
Ky = -
° 2(1-g)’
119 (50 _ 59y 49
=) ) + g’y sin’ AT g)
449 (50 _ 50 ) ]
0y’ — 0y sin 2k | sin ¥ cos
4(1 _g)( 2 1ﬁ ’l)b
4+9 (2 (1) )
0y —d57) +2g cos 2K —
4(1_9)(2 ) ’Y2 1—g)

——‘/5_’ (857 -59’)) sin® k + ‘[ (5(2) 5&‘”)]

(5(2) 6%”)) sin 2&] sin ¢ cos Y

(5(2)

1 Ap
5(2) _ L 8ap
1 ) 49 P

AG]
+9g

G

L6 — 5V) - 297(5)] sin? 1),

I—-yg
1i§(6(2) 6§1))) cos 2k + 1\/_g (6(2) (5?))] sin? 1,
_42(91__9;) (6 — 6y + 927§S)> sin® k + 2(91;_‘(;)(5(2) 5%) + %féég]
42(91 __gg2) (658 — 6y — s )> sin 2/@] sin v cos ¥
Zo-g (657 = 857 + g7 )> cos 2k + M(5§2) - o) - 927§S)] sin” ¢,
4(1 - g) 4(1-g)
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fe

—<————92 (657 — 5“))) sin? k4 (6 5§2))J
1\ 2(1-9) ’ 2(1 - g)

r 2
) (2) (1) : ;
+ +—2 (6 =6 ) sin 2/«;] sin 1 cos ¥
(+ap= g -

- 2 2
g (2) (1)> g 2 (1)] s 2
+ —t (57 =6 cos2k + ———(6;" — 0 sin” 9.
( 2(1—g)(2 ) 2( —g)(1 ) v

All functions f; above consist of combinations of the medium parameters that can
be obtained by inverting the small-incidence-angle terms. Therefore, all f; can be
taken as known prior to the inversion of the large-incidence-angle terms (E.1). Of
course, errors in f; estimates, obtained by inverting small-incidence-angle terms, thus
propagate to the inversion of large-incidence-angle terms.

Note that equation (3.8) for the P-wave large-incidence-angle term P, [together
with equations (3.9)-(3.13)] is a special case of equation (E.1), where the correspond-
ing function fp, = 342 and the constant Kp, = ;. Therefore, equations (E.1) for
1 =3, 4,5 and 6 do not provide any independent information not contained already
in the P, term from equation (3.8). This redundancy is convenient, however, for
stabilizing the estimates of the combinations of anisotropy parameters (3.30)-(3.33)

in the presence of noise.
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Appendix F

Theoretical basis of a realistic linear inversion

Performing a practical linear inversion, i.e., an inversion of data contaminated
by errors, is equivalent to solving the following linear system:

Am = do + e, (Fl)

where m is the vector of the model parameters to be found, dg is the theoretical data,
vector free of errors, e is the vector of errors that contaminates dg, and the matrix
A characterizes the projection of the model parameters onto the data space. Due to
the presence of errors e, it is impossible to find an exact mathematical solution of
the system (F.1). The system can, however, be solved approximately. An approx-
imate solution m’ is usually found by minimizing the misfit between the measured
and predicted data, so that m’ satisfies the condition min ||(dg + €) — Am'||, where

[|Ix|| = \/Zf\;l z? denotes the Ly norm of the vector x = (x;, Ty, ..., Ty ) (this is known

as the least-squares fitting procedure). It can be shown (Keener, 1997) that satisfying
the above condition is equivalent to finding the so-called generalized (pseudo) inverse
A’ of the matrix A, so that

m = A'(do +e). (FQ)

The generalized inverse A’, which depends on the forward operator A, always exists.
The generalized inverse A’ can be found by several different methods. In this paper, I
use the method of singular value decomposition (SVD) of the matrix A, as described
in Keener (1997).

However, knowledge of the generalized inverse A’ itself does not guarantee a good
inversion result. In practical problems, the forward matrix A from equation (F.1) may
have a nontrivial null space, i.e., some of the model parameters m; (components of
the model vector m) are projected by the matrix A onto the data space as zeroes
(similarly, A with a nontrivial pseudo-null space projects components of m onto the
data space as small values). The more common case of the nontrivial pseudo-null
space means that a particular model parameter is poorly constrained by the data
and the inversion for this parameter becomes unstable (i.e., a small error in the
data results in a large error in the estimated model parameter). The inversion can be
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stabilized in the so-called regularization process designed to recover more stable linear
combinations of the model parameters m; rather than the parameters themselves.
Clearly, the regularization process increases the stability, but decreases the resolution.
Although regularization is extensively used in the inversion described above, a more
detailed discussion is beyond the scope of this paper. For more details, see, for
example, Tarantola (1987).

An important characteristic of the system (F.1) is the model covariance matriz
C that describes how the data errors propagate into the results of the inversion. By
definition, the covariance matrix is given by

C= A'CqA'(D), (F.3)

where A’ is the generalized inverse of matrix A, and the superscript T denotes the
transpose; matrix C, characterizes data errors. If the data d; are uncorrelated with
standard deviations og4; (as I assume for the purpose of this research), C, is a diagonal
matrix with elements Cy,; = 03 (Tarantola, 1987). Similarly, the diagonal elements
o? of the matrix C represent the standard deviations o; of the corresponding model
parameters m]. The off-diagonal elements o;; represent the error correlations of the
parameters m; and m;.
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Appendix G

Forward operators for the linear inversion of the
coefficients Rpp and Rpgy

In the main text, I introduced inversion algorithms using the linearized PP- and
PS-wave reflection coefficients. The inversion scheme for the PP-wave reflection
coefficient [equation (3.35)] contains the forward operator (matrix) AF with elements
Aj; defined as

AL =1,

AL = sin’¢;,

Af; = sin; cos; sin® ¢y,

A, = sin®¢y;sin® ¢, (G.1)
Ag = sin? ¢; tan? ¢;,

Ai’; = sin 24); cos 21); sin? ¢; tan? ¢,

Ai}; = sin); cos; sin? ¢; tan? ¢;,
AL = sin?q; cos® ¢ sin? ¢; tan® ¢;,
Ag = sin2 ’l/}i SiIl2 ¢i tan2 ¢i,

where ¢; are the incidence angles, ¢; are the azimuths, and ¢ = 1,2,... N, where N
is the number of data points.

Similarly, the inversion scheme for the PSV-wave reflection coefficient [equation
(3.42)] contains the matrix AS with the following elements Aj;:

S .

A7} = singy,

Afz, = sin¥; cos ; sin ¢y,
Af3 = sin®4; sin ¢;,

Aj = sin’ gy, (G.2)



142

A
A
A
A

Al
Aty
Azt
Afy
Aiia
Asts
At
Atz
Ailg

Appendix G. Forward operators for the inversion of Rpp and Rpgy

sin 2v; cos 29; sin® ¢;,
sin ); cos ¥; sin® ¢;,
sin? 1; cos? 1; sin® ¢,
sin? 9); sin® ¢;,

sin® ¢;,

sin 24); cos 24; sin® ¢;,
sin v; cos ¥; sin® ¢;,
sin? 1; cos? 1; sin® ¢,
sin? 1; sin® ¢;,

sin’ ¢,

sin 21); cos 2¢; sin’ ¢,
sin 9; cos ; sin’ ¢;,
sin? 1); cos? v, sin” ¢,
sin? ¢); sin” ¢;.



