&
L\w\d@% cwp-a9

November 2001

Microlocal analysis of wave-equation
imaging and generalized-screen
propagators

<

Jérome H. L. Le Rousseau

— Doctoral Thesis —
Geophysics

Defended October 26, 2001

Committee Chair: Prof. James McNeil
Advisor: Prof. Maarten V. de Hoop
Co-advisor: Prof. John A. Scales
Committee members: Prof. Gregory Beylkin

Prof. Paul A. Martin
Prof. Gary R. Olhoeft
Prof. Roel Snieder

Center for Wave Phenomena
Colorado School of Mines
Golden, Colorado 80401
(1) 303 273-3557






Abstract

The imaging procedure of reflection seismic data can be generated by an extension
of the ‘double-square-root equation’ to heterogeneous media, which yields the process
of wave-equation imaging. We carry a high-frequency analysis of the wave-equation
imaging operator and show that it is microlocally equivalent to asymptotic approaches
(e.g., Maslov-Kirchhoff/GRT). In an imaging-inversion procedure we characterize the
medium with a smooth and a singular part. The singular part essentially represents
reflectivity, while the smooth part is used for the computation of wave propagation.
For asymptotic schemes such as Maslov-GRT one can create angle common-image-point
gathers (ACIG) that represent a redundancy in the data with two angles as parameters:
azimuth and scattering angle at the image point. We show that with wave-equation
based methods we can also extract those ACIGs via a stationary-phase analysis. It
is then possible to exploit such a redundancy for velocity analysis, i.e., invert for the
smooth part of the medium.

In wave-equation-based methods the propagator can be represented by a Hamil-
tonian path integral. Such a path integral accounts for the formation of caustics and
coupling between modes. The main problem with path integrals is the computational
complexity of their numerical evaluation. We have developed a method that reduces
the computational complexity of such evaluation, at the cost of adjusting the shape of
wave fronts. The result is an algorithm that, for each propagation step, is built from
a multiplication, a forward Fourier transform, a multiplication, and an inverse Fourier
transform, where the transform is in the horizontal directions and may be windowed.
Since this algorithmic structure coincides with that of the classical phase-screen prop-
agator, we denote our approximations as generalized screens (GS). We have designed a
hierarchy of approximations of increasing accuracy. First developed for acoustic media
we have extended the GS approach to elastic media, in which, the continuous coupling
between P and § waves is honored. We show various modeling examples as well as
imaging results for field data and illustrate the prediction of multipathing in complex
structures. We compare the GS approach with other wave-equation and asymptotic
~ schemes. Those results demonstrate the accuracy of the GS method for the modeling
and imaging of seismic data in complex geologic structures.
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Chapter 1

Introduction

The key component in the modeling, imaging, and inversion of reflection seismic data,
is accurate computation of wave propagation, in particular, propagation between seismic
sources, subsurface scattering points, and receivers. For asymptotic methods (e.g., Maslov-
Kirchhoff) the handling of caustics has to be done explicitly (De Hoop & Brandsberg-
Dahl, 2000). Difficulties arise if caustics and pseudocaustics (i.e., caustics in the slowness
variables) are closely spaced. In addition the continuous coupling between P and S waves
can not be honored. We propose alternative approaches to cure those shortcomings.

A scattering theory that follows the ray picture but accounts for full-wave behavior
has been developed by De Hoop (1996). The method consists of three main steps: (i)
decomposition of the field into two constituents, upward or downward propagation along
a preferred direction (here vertical), (ii) computation of the interaction (coupling) of the
counter-propagating constituents, and (iii) re-composition of the constituents into observ-
ables at the positions of interest. Such a method is based on an extension of the Bremmer
coupling series to multi-dimensionally varying media. Bremmer’s method decomposes the
wavefield into a recursion of one-way propagations and up-down reflections-transmissions.
The one-way operators propagate waves in the preferred vertical direction and account for
scattering in the transverse direction while reflection-transmission operators account for
scattering in the vertical direction. Thus, the method first generates a wavefield dominated
by downward propagation, then generates a ‘first’ upward propagating wavefield, then a ‘sec-
ond’ downward propagating field, etc. In this manner, multiple reflections are accounted for
in a controlled manner. We therefore distinguish two classes of multiple scattering: one in
which the multiples are identified with respect to the projection of their propagation paths
onto the vertical direction (depth), and one where the multiples are identified with respect
to the projection of their propagation paths onto the horizontal plane. In the asymptotic
framework of wavefront analysis, paths are rays. The first class of multiple scattering is
associated with ‘turning rays’ and ‘internal multiples’ as well as ‘surface multiples’, the
second, possibly combined with the first class of multiple scattering, is associated with
‘multipathing’.

The Bremmer series in acoustic media have already found application in Van Stralen
et al. (1998), where the one-way wave operator is approximated with an accurate optimal
finite-difference algorithm based on a rational expansion, as opposed to the generalized-
screen expansion by Le Rousseau and De Hoop (2001b).

The propagator in the generation of this series is based on a Hamiltonian path-integral
representation (De Witte-Morette et al., 1979; Fishman & McCoy, 1984a; Fishman & Mc-
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Coy, 1984b). By summing over all possible path such a representation accounts for not only
the energy traveling along the stationary paths (rays) but also for the transport along non-
stationary paths. These path integrals reveal any possible multipathing. The path integral
generalizes Gazdag’s phase-shift migration operator (Gazdag, 1978). In Gazdag’s method,
wavefield continuation is achieved through a phase multiplier (forward lateral Fourier trans-
form - phase multiplication - inverse Fourier transforin) that emphasizes vertical propaga-
tion. While this method is valid in laterally homogeneous background media, it has to be
generalized if the medium is laterally heterogeneous. In particular, we replace it by our
path integral. A realization of the Hamiltonian path integral is made possible by the Trot-
ter product formula: Integrations in phase space are performed rather than on the space
of all paths. They correspond to the extrapolation of the wavefield in depth. The Trotter
representation is characterized by a limiting process with the number of extrapolation steps
going to infinity and the step size going to zero. In this limiting process every path is taken
into account. We describe the Trotter product formula by means of microlocal analysis!,
essentially with the aid of pseudodifferential and Fourier integral operators (Hormander,
1985a; Hormander, 1985b; Duistermaat, 1996). Asymptotic-ray description of propagat-
ing waves follows from the Trotter product formula by a stationary phase analysis. Such
analysis yields a common ground for inversion and velocity analysis for asymptotic meth-
ods, e.g., ‘Maslov-GRT’ (De Hoop & Brandsberg-Dahl, 2000) and wave-based methods,
‘“Trotter-Bremmer’.

The problem with the path integrals is the computational complexity of their numerical
evaluation. To propagate waves across a thin slab one has to perform a Fourier transform
of the wavefield in the horizontal directions, a phase shift and an inverse Fourier transform.
The phase shift is a function of both the space variables (input and output points) and
phase variables (wavenumber). The sequence of operations has therefore to be performed
for every output point at the next depth level (and every wavenumber if there is dependency
on the input point) which yields a high computational complexity. De Hoop et al. (2000)
(Chapter 3) and Le Rousseau and De Hoop (2001b) (Chapter 4) have developed a method
that dramatically reduces the computational complexity of such evaluation, at the cost
of departing from the exact shape of wavefronts. The result is an algorithm that, for
each propagation step, is built from the sequence: (several) forward Fourier transform(s),
multiplication, inverse Fourier transform, multiplication ~where the transform is in the
horizontal directions and may be windowed. Since this algorithmic structure coincides with
that of the classical phase-screen propagator, we denote our approximations as generalized
screens (GS). To achieve such a structure, the phase shift is expanded in a series that
separates space and phase dependencies. The series expansion constitutes the GS expansion.
Truncating the GS expansion at increasing orders yields a hierarchy of increasingly accurate
approximations. The number of forward (fast) Fourier transforms in the algorithm depends
on the number of terms used in the GS expansion but does not depend on the number of
nodes in the horizontal direction for which the wavefield is computed. Underlying these

'For a review of the fundamental concepts and tools of microlocal analysis see Appendix A. In short,
microlocal analysis is the study of the wave front sets of distributions.
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approximations of the exact phase-shift is an expansion of the medium wave-speed model
simultaneously into smoothness and magnitude of variation with respect to a background
medium.

The original phase-screen method was designed for multiple forward scattering of
waves. It included phenomena such as focusing and defocusing. The applicability of
the phase-screen method generally requires that the screen interval satisfies the following
criteria: small medium variations (weak scattering), laterally smooth medium variations
(narrow-angle scattering), and even smoother variations in the preferred direction (negli-
gible back-scattering). With the GS approach, we access the accuracy of the phase-screen
method, and extend it to larger-contrast, wider-angle, and back-scattering. Our approach
accounts for the multiple scattering through the generalized Bremmer series (De Hoop, 1996;
Van Stralen et al., 1998; Le Rousseau & De Hoop, 2001b), and accounts for multipathing
through the GS propagation (De Hoop et al., 2000; Le Rousseau & De Hoop, 2001b).

1.1 Microlocal analysis of the Trotter product formula

The framework of wave-equation imaging with the so-called double-square-root equa-
tion is presented in Chapter 2. With the aid of the Trotter product formula, one can
generate a realization of the Hamiltonian-path integral representation of the Green’s func-
tion associated with the one-way (or single-square root) wave equation. (Such a one-way
wave equation is obtained by a directional wavefield decomposition that separates up- from
down-going waves.) In this approach the wavefield is extrapolated from one depth to the
next, in a number of steps increasing to infinity (and the size of the steps going to zero). This
limiting process shows how every path between the input and output points is taken into ac-
count in the evaluation of the extrapolated wavefield. We interpret each extrapolation step
as the action of a Fourier integral operator [see Hormander (1985b) and Duistermaat (1996)
and Appendix A] on the wavefield. The Trotter product formula representation is then the
composition (i.e., the cascade) of those. Fourier integral operators can be used to solve wave
equations. They offer the proper tools to follow the propagation of singularities of the data
(initial/boundary conditions) into the wavefield (see Appendix A). This interpretation thus
enables us to analyze the propagation of singularities. We show, via, stationary-phase anal-
ysis, that the Trotter product formula representation and the asymptotic approach (e.g.,
Maslov canonical operator) coincide on the wave front set of the wavefield, i.e., that the first
one yields a Fourier integral operator, and that its amplitude satisfies the proper transport
equation. The stationary phase analysis also reveals a Hamiltonian-like system with depth
rather than travel-time as a parameter. Away from so-called turning rays, we show the
Hamiltonian flows associated with the Trotter product formula representation and with the
asymptotic method to be equivalent.

The double-square-root equation (Claerbout, 1986) generates the wave-equation seis-
mic imaging procedure. In particular, we show that the (Maslov-)Kirchhoff and the wave-
equation imaging procedures are microlocally compatible and hence should yield the same
result on the singular support of the image, i.e., the reflectors. We design a wave-equation
imaging scheme honoring the redundancy in the data with two angles as parameters: az-
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imuth and scattering angle at the image point [i.e., the characteristic strips in the wavefront
set of seismic data (Stolk & De Hoop, 2000)]. Thus we can generate scattering-angle/azimuth
common image point gathers (ACIGs) of the type introduced in Kirchhoff-style imaging pro-
cedures (Brandsberg-Dahl et al., 2000). ACIGs are used for amplitude inversion as well as
in tomography (De Hoop et al., 2001b; Brandsberg-Dahl et al., 2001). We show numerical
examples of those common image-point gathers.

1.2 Generalized-screen propagator

In Chapter 3, we present the foundations of the GS approximation for scalar wave
scattering. The scattering is first subjected to directional decomposition, which consists of
three main steps: (i) decomposing the field into two constituents, those propagating upward
and downward along the vertical direction, (ii) computing the interaction of the counter-
propagating constituents, and (iii) re-composing the constituents into observable quantities
at the positions of interest. Decomposition is beneficial because it leads to computationally
efficient algorithms for the scattering of waves, and it can be used to separate different
propagation phenomena, which is of importance, for example, in the interpretation and
inversion of seismic data.

The directional wavefield-decomposition procedure generates a system of coupled one-
way wave equations. The one-way wave equations account for transverse left-right scatter-
ing. The two one-way wave equations are coupled by the reflection /transmission operators
that account for vertical up-down scattering. The solution of those one way wave equations
can be represented with the Trotter product formula. The Hamiltonian in the phase of
the propagator is the vertical wave slowness (vertical wavenumber divided by frequency)
symbol? which depends both on (lateral) phase and (lateral) space coordinates. For lat-
erally homogeneous media the space dependency vanishes, which yields a fast algorithm
for the numerical evaluation [Gazdag phase-shift operator (Gazdag, 1978)]. However, in
laterally heterogeneous media, such an approach yields a tremendously large computational
complexity. For each depth extrapolation the computation of the wavefield at each output
point requires a forward Fourier transform, a phase multiplication, and a inverse Fourier
transform. Our aim is to significantly reduce the complexity to that of a small number of
Fourier transforms and phase multiplications. Nonetheless, we want to preserve the shape of
the wave front as much as we can, i.e., preserve the microlocal properties of the propagator.

To achieve such a simplification, we separate the phase and space dependencies of the
vertical slowness symbol, which appear in the phase of the exact wave propagator. This is
achieved by a (polyhomogeneous) expansion of the symbol with respect to a background
and perturbation medium (the two combine to form the exact medium) which constitutes
the GS expansion. The vertical slowness symbol is responsible for the transverse scattering.
Subjecting the vertical slowness symbol to the separation of phase-space coordinates thus
induces an adjustment of wave theory and scattering, yielding deformations of the wavefront

?See Appendix A for a definition of symbols.. A symbol represents the action of an operator in the Fourier
domain.
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Figure 1.1. The screen representation for one-way propagation in a
laterally heterogeneous medium. Azj is the vertical extrapolation
step, a is the generalized phase shift, i.e., the term that depends on
the wave number in the GS expansion, while £ is the generalized
screen, i.e., the term that depends on the spatial coordinates in the
GS expansion. The shaded area represents a high wave-speed zone,
e.g., a salt structure.

shapes. In doing so we have designed a hierarchy of approximations of increasing accuracy.
Here, the preferred direction of propagation is vertical. Hence, we impose maximum accu-
racy at vertical propagation while the errors at larger propagation angle decrease with the
increasing number of terms used in the GS expansion. We can view the action of the screen
propagator as a propagation in the background medium, first corrected for accuracy at ver-
tical propagation (split-step Fourier) and then further corrected by passing the wavefield
through the screens of the various order terms in the GS expansion representing the lateral
variations in the wave speed (see Figure 1.1).

In Chapter 3, we also introduce the Bremmer coupling series, which allow coupling of
the up-going and the down-going fields through the reflection and transmission operators.
Again, to simplify their numerical evaluation we derive a GS-like approximation of those
operators.

1.3 Algorithms based on scalar generalized screens

In Chapter 4, we first present the GS representation of the thin-slab propagator and
cast that result into numerical algorithms that we apply to modeling and imaging.

In the GS framework, for each depth level we distinguish a constant background
medium from a rapidly fluctuating contrast. The GS expansion of the vertical slowness
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symbol yields a hierarchy of O(N log N) algorithms. Here, N is the number of nodes in
the horizontal directions, where the wavefield is measured and continued. A key issue in
developing the algorithmms is that of unitarity: By expanding the exponential of the phase
function in the propagator, exp[i¢] ~ 1 + i, we destroy the unitarity of the exact propaga-
tor. The cascade of successive (depth) extrapolations then yields errors in the amplitudes by
boosting some amplitudes, usually those associated with wide-angle propagation. We have
to re-enforce unitarity of the propagator after having built a fast algorithm. Other issues
such as the presence of branch points for the numerical evaluation of the GS propagator are
addressed in Chapter 4.

Our accuracy analysis is carried out primarily by modeling. We analyze the migra-
tion operator before stacking, which is conventionally performed in the process of imaging.
We focus on multipathing and ‘second’-arrival energy. Because a proper treatment of such
phenomena is the key to imaging in complex regions. We analyze the accuracy of the GS
method in complex structures using synthetic models that exhibit significant multipathing:
the IFP (Institut Francais du Pétrole) two-dimensional (2D) Marmousi model and the SEG-
EAGE 3D salt model. These two models represent two fundamentally different geological
situations. In the Marmousi model, complexity arises from faulting and tectonic deforma-
tion in a sedimentary region. In the SEG-EAGE 3D salt model, it arises from the intrusion
of a salt body the wave speed of which is significantly higher than that in the surrounding
formations. These models commonly yield poor imaging below these complex structures.
With the help of the GS propagator, which we prove to be accurate in these situations,
we illustrate that the origin of this problem is possibly associated with multipathing. We
illustrate the modeling capacity of the GS method both in 2D and 3D. We compare the
GS method with some of its competitive algorithms. All these algorithms account up to a
certain degree for multipathing: one-way (split-step Fourier, Phase-Shift-Plus-Interpolation
method (PSPI)), two-way (finite differences). For completeness, we also show some prestack
depth migration results in 2D for the Marmousi model. We apply the GS migration-imaging
algorithms to field data in Chapter 6.

1.4 Extension of the scalar formulation of generalized-screen methods to TI
media

In Chapter 5 we extend the scalar GS algorithm developed for P waves in isotropic fluid
media (Le Rousseau & De Hoop, 2001b) (Chapter 4) to quasi-P (qP) waves in transversely
isotropic (TI) media with a vertical axis of symmetry. In this way, S waves are ignored,
but the wave front shapes are properly approximated. To preserve the structure of the
isotropic GS algorithm, we employ the rational approximation of the dispersion relation
for qP waves in TI media by Schoenberg and De Hoop (2000). In this approximation, we
match the values, slopes and curvatures for the slowness at vertical and grazing incidence.

We carry out an accuracy analysis of our discretized approximations in the BP-Amoco
Valhall model (Brandsberg-Dahl et al., 1999; Thomsen et al., 1997). We also investigate
the impact of the approximation of Schoenberg and De Hoop (2000) on the polarization
vector associated with the qP waves.
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1.5 3D case study

To further test the GS approach to wave propagation we apply the associated imaging
operator (cf., Chapter 2) to field data. We use TotalFinaElf’s L7D data set and velocity
model. The main feature of this 3D marine data set from the North Sea is the presence of
an intrusive salt body in a surrounding sedimentary sequence. Subsequent tectonic events
created faults at various depths that we hope to identify in the imaging process. The
salt body yields large lateral wave-speed variations, which makes the imaging procedure
challenging for Fourier-transform based wave-extrapolation methods (Stolt, 1978; Gazdag
& Sguazzero, 1984; Stoffa et al., 1990). Such a data set therefore seems adequate for
the testing of the GS propagator for depth imaging. We first illustrate the post-stack
migration performance, showing the extent to which such processing fails to account for
multipathing. We illustrate this aspect further by exhibiting isochrones in a 2D section
of the the SEG/EAGE salt model. Not taking multipathing into account in such complex
regions usually yields poor imaging. We also illustrate the importance of multiple scattering.
For 3D pre-stack imaging, we make use of a common-azimuth approximation (see Biondi
and Palacharla (1996) and Appendix D) which is motivated by the marine acquisition
geometry used for the L7D data set. We compare the accuracy of the GS propagator and
a hybrid PSPI/split-step Fourier propagator. Those results confirm that pre-stack imaging
in complex regions requires multipathing and that the GS approximations predict such a
multipathing accurately. To illustrate that wave-equation imaging is microlocally equivalent
to Kirchhoff/GRT imaging-inversion (De Hoop et al., 2001a) (Chapter 2) we compare our
GS results with those with a Kirchhoff approach.

1.6 Generalized-screen approximation for elastic waves

In actuality, the propagation of waves takes place in an elastic subsurface. In a strongly
heterogeneous subsurface, the scattering leads not only to multipathing but also to multi-
mode propagation along each path: the qP wave is continuously coupled to qS waves. In
its simplest manifestation, the qP arrivals may have partly traveled through the subsurface
as ¢S. It is not difficult to obtain such a path through a salt structure, with application to
imaging below salt. In Chapter 7, I present the foundation of the GS approximation for
vector wave scattering and the resulting algorithm for propagating elastic waves.

To arrive at an eflicient screen algorithm that is multipathed and multi-mode, we need
to find a vectorial vertical slowness (square-root Hamiltonian) to replace the scalar one. In
a derivation of this kind, we have to keep in mind that, due to horizontal heterogeneity, in a
full-wave formulation we cannot separate the different modes of propagation, though in the
high-frequency approximation this separation is implied. We make use of the elastic wave-
field decomposition procedure of De Hoop and De Hoop (1994) as a point of departure.
With the one-way elastic wave equation at hand, we can represent the solution with a
Hamiltonian path integral, and as in the acoustic case use the Trotter product formula to
obtain a realization of the path integral. The path integral representation accounts for all
possible paths and therefore accounts for multipathing and the continuous mode coupling.
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To obtain a proper GS representation we make the choice of using the right symbol of the
vertical slowness operator. Other possible choices are discussed.

To decrease the computational complexity of the propagator we expand the vertical
slowness symbol in terms of a background and a perturbation medium, which yields a sep-
aration of the space phase dependencies of the symbol. Here we manipulate matrices of
symbols rather than scalar symbols as was done in the acoustic case. Non-commutativity
issues for symbol matrices yield a more involved analysis than in the scalar case. By diago-
nalizing the vertical slowness symbol, we exhibit the pseudodifferential operator that allows
us to separate P and § waves. We discuss the possibility of expanding the phase-shift ex-
ponential with the vertical slowness symbol in either its non-diagonal or diagonal form. We
show that the expansion in the diagonal form yields more accurate approximations. We also
introduce the use of two different background media to prevent the introduction of artificial
branch points in the propagating-wave regime. Those choices yield a particular structure
for the elastic GS propagator that we describe extensively. The resulting propagator is an
extension and generalization of Wu’s complex screen method (Wu, 1994). As in the acoustic
case, the GS method stays close to the path-integral representation for wave propagation,
so multipathing and continuous mode coupling are naturally taken into account.

We show numerical results of the behavior of the elastic GS propagator and the con-
tinuous P-S mode coupling in particular.

1.7 Notice

This thesis is a collection of papers that were written to be published independently.
They are collected here as chapters. At the beginning of each chapter, we indicate the
journal to which it has been submitted or in which it has been published. Those articles
are self-contained. For this reason, some sections are duplicated. The duplicated material
throughout the thesis is as follows: The directional wavefield decomposition procedure can
be found in Sections 2.3 and 3.3 in the acoustic case; the Trotter-product representation of
the one-way wave propagator can be found in Sections 2.4, 3.4, and 7.4; Sections 3.6 also
has much in common with Sections 7.5 and 7.6.

Those journal articles (De Hoop et al., 2001a; De Hoop et al., 2000; Le Rousseau &
De Hoop, 2001b; Le Rousseau & De Hoop, 2001c; Le Rousseau & De Hoop, 2001a) have
various coauthors. While the author has made major contributions to those articles, he
acknowledges their contributions here.
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Chapter 2

Symplectic structure of wave-equation imaging: A
path-integral approach based on the
double-square-root equation’

2.1 Summary

We cairy out high-frequency analyses of Claerbout’s double-square-root equation and
its (numerical) solution procedures in heterogeneous media. We show that the double-
square-root equation generates the adjoint of the single-scattering modeling operator upon
substituting the leading term of the generalized Bremmer series for the background Green’s
function. This adjoint operator yields the process of ‘wave-equation’ imaging. We finally de-
compose the wave-equation imaging process into common image point gathers in accordance
with the characteristic strips in the wavefront set of the data.

2.2 Introduction

Directional wavefield decomposition is a tool for analyzing and computing the propa-
gation of waves in configurations with a certain global directionality, such as waveguiding
structures. The method consists of three main steps: (i) decomposing the field into two
constituents, and propagating them upward or downward along a principal or preferred
direction, (ii) computing the interaction (coupling) of the counterpropagating constituents
and (iii) recomposing the constituents into observables at the positions of interest. (The pre-
ferred direction is ‘vertical’ whereas the directions orthogonal to the preferred direction are
referred to as the ‘lateral’ directions.) The method allows one to ‘trace’ wave constituents in
a global coordinate system in a given medium, and thus distinguish constituents that have
been scattered along the up/down direction a different number of times. It also allows the
separation of head waves from body waves. The (generalized) Bremmer series superimposes
all the constituents (‘multiples’) to recover the full, original wavefield (De Hoop, 1996).

In the framework of remote sensing and inverse scattering, tracing waves helps in
the interpretation and separation of constituents prior to the inversion of the observed
wavefield (De Hoop, 1998). Directional decomposition maps the ‘two-way’ wavefield into
constituents that satisfy a coupled system of ‘one-way’ wave or ‘single-square-root’ equa-
tions. In large-scale configurations in which the coupling is weak, wavefield computations

This chapter as been submitted to Geophysical Journal International with M.V. de Hoop and B. Biondi.
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can be restricted to a single one-way constituent. In the fields of ocean acoustics (Tappert,
1977; Collins, 1989), seismics (Claerbout, 1970), and integrated optics (Hadley, 1992), this
observation has been exploited extensively; for a more complete list of references in this
matter, we refer the reader to Van Stralen et al. (1998). The decomposition procedure is
applied in an assumed computational embedding.

The double-square-root equation (Claerbout, 1986) generates the wave-equation seis-
mic imaging procedure. In particular, we show that (Maslov-)Kirchhoff and wave-equation
imaging procedures are microlocally compatible and hence should yield the same result on
the singular support of the image. We design a wave-equation imaging scheme honoring the
characteristic strips in the wavefront set of seismic data (Stolk & De Hoop, 2000), i.e., the
redundancy in the data with two angles as parameters: azimuth and scattering angle at the
image point. Thus we can generate scattering-angle/azimuth common image point gathers
(ACIGs) of the type introduced in Kirchhoff-style imaging procedures (Brandsberg-Dahl
et al., 2000). ACIGs are used for amplitude inversion as well as in tomography (De Hoop
et al., 2001b; Brandsberg-Dahl et al., 2001).

The exact decomposition procedure is summarized in Section 2.3. In Section 2.4 we
analyze the one-way wave (‘single-square-root’) equation. We introduce a sequence of ap-
proximate representations of the one-way propagator which in a certain limit converges to
the ‘true’ one. Each member of the sequence corresponds to a finite cascade of thin-slab
propagators. We investigate the propagation of singularities by individual members of the
sequence and discover a condition for the proper treatment of caustics. We show that the
limit of the sequence propagates singularities precisely in accordance with ray theory. The
one-way theory is invoked to develop a (sequence of) imaging operator(s) (Section 2.5).
Such an operator follows from an optimization approach to inverse scattering based on the
reciprocity theorem of time-correlation type (De Hoop & De Hoop, 2000). The one-way
propagator is applied to the source excitation and the measurement traces simultaneously.
In fact, the imaging operator kernel solves Claerbout’s (1986) ‘double-square-root’ equation
in smoothly varying media [see also Clayton (1978) and Popovici (1996)] and hence extends
the usual constant media analyses. We analyze the symplectic structure of the imaging
kernel and extract a procedure to generate common-image-point angles gathers (ACIGs).
To interpret such gathers, in Section 2.6, we develop a method based upon microlocaliza-
tion to estimate the normal direction to the isochrones. A numerical example is shown in
Section 2.7. ACIGs are the input to seismic amplitude inversion and (residual) velocity
analysis. With the tools developed in the main text, we assess in Appendix D the extent
to which the reduction to the computationally efficient ‘common azimuth continuation’
approach (Biondi & Palacharla, 1996) can be applied.

If the medium of the configuration were laterally homogeneous, the directional decom-
position becomes an algebraic operation in the lateral Fourier or wavenumber domain [see,
e.g., Kennett (1985)]. In such a medium, the phase-shift method (Gazdag & Sguazzero,
1984) is amongst the fastest (and accurate) one-way algorithms. In this method, in the lat-
eral wavenumber domain, the phase shift is simply proportional to the vertical wavenumber;
the vertical and lateral wavenumbers are connected through an algebraic dispersion relation.
As soon as the medium becomes laterally heterogeneous, it still is advantageous to carry out
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the analysis in the lateral wavenumber domain, but without leaving the lateral space domain

an observation well established in the field of microlocal analysis [see, e.g., Treves (1980a;
1980b)] and applied by Fishman and McCoy (1984a). The lateral space-wavenumber do-
main constitutes the (lateral) phase space. Through the Fourier transforms, the space and
wavenumber domains are ‘dual’ to one another. In the directional (de)composition — and
in the downward and upward propagation, and in the reflection and transmission due to
variations in medium properties in the preferred direction — we now encounter pseudodif-
ferential operators the symbols of which are defined on phase space, and lead to a calculus
that generalizes the algebraic manipulations in the case of a laterally homogeneous medium
[see De Hoop (1996) and Section 2.

Unfortunately, numerical evaluation and application of pseudodifferential operators
arising from the wave scattering problem are, in general, involved. Hence, approximations to
their symbols are sought for to improve computational efficiency. We mention the hierarchy
of increasingly accurate approaches: one-way finite-difference, i.e., 15°, 45° (Claerbout,
1970; Claerbout, 1986) and optimal rational (De Hoop & De Hoop, 1992; Van Stralen
et al., 1998), Hale-McLellan filter (Hale, 1991a), Fourier split-step and phase and generalized
screens (De Hoop et al., 2000; Le Rousseau & De Hoop, 2001b; Le Rousseau & De Hoop,
2001c), Phase-Shift-Plus-Interpolation (Gazdag & Sguazzero, 1984), uniform asymptotic
(De Hoop & Gautesen, 2000), and spectral projection (normal modes) (Fishman et al.,
2000). In this chapter, we treat the exact and approximate cases jointly.

The wave-equation approach to seismic imaging, analyzed here, is advantageous, in
particular, if the Earth’s properties’ complexity is such that caustics (and pseudocaustics)
develop. Its geometrical-ray counterpart, the high-frequency approach, has been discussed
in Burridge et al. (1998). The approach is applicable, not only in exploration seismology
but also in crustal seismology, imaging teleseismic body waves for detailed lithospheric
profiling (Bostock & Rondenay, 1999). Examples of subsurface complexities are salt domes
and (shallow) magma chambers.

2.3 One-way wave equations

For the details of the derivation of exact one-way wave equations, we refer the reader
to De Hoop (1996). Here, we restrict ourselves to a summary. Let p = acoustic pressure
[Pa], v, = particle velocity [m/s], p = volume density of mass [kg/m?], k = compressibility
[Pa~!], ¢ = volume source density of injection rate [s71], and f; = volume source density
of force [N/m?]. We assume that the coefficients £ and p are smooth, and constant outside
a compact domain. This provision enables us to formulate the acoustic wave propagation,
when necessary, as a scattering problem in a homogeneous embedding. The smoothness
entails that the singularities of the wavefield (in particular the ones in the neighborhood
of the wave arrival) arise from the ones in the signatures of the source distributions. The
formation of caustics, associated with scattering in the lateral directions (‘multipathing’),
is captured in the approach developed in this chapter.

To be able to make use of the standard calculus of pseudodifferential operators, we
should carry out our analysis in the time-Laplace domain (Widder, 1946). To show the
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notation, we give the expression for the acoustic pressure,

Pz, s) = /:; exp(—st)p(z,t)dt . (2.1)

Under this transformation, assuming zero initial conditions, we have d; — s. In the Laplace
domain, the acoustic wavefield satisfies the system of first-order equations

xKp+sptr = fi, (2.2)
sKp+ 0Dy = §. (2.3)

However, for the purpose of the microlocal analysis to follow, we will invoke the Fourier
(transform) limit, s — iw. (The condition Res > 0 allows to compute the square root
Hamiltonian, i.e. the vertical slowness symbol. See below.) Since we allow the medium to
vary with all coordinates and hence also with coordinate in the preferred direction, we are
forced to carry out the wavefield decomposition from the system of first-order equations
rather than the second-order scalar ‘Helmholtz’ equation.

The evolution of the wavefield in the direction of preference will now be expressed in
terms of the changes of the wavefield in the directions transverse to it. The direction of
preference is taken along the zs-axis (or ‘vertical’ axis) pointing into the subsurface and
the remaining (‘lateral’ or ‘horizontal’) coordinates are denoted by z,, u = 1,2. Since we
allow the medium to vary with all coordinates and hence also with the coordinate in the
preferred direction, we are forced to carry out the wavefield decomposition from the system
of first-order equations rather than the second-order scalar Helmholtz equation.

2.3.1 The reduced system of equations

The decomposition procedure requires a separate handling of the horizontal compo-
nents of the particle velocity. From equations (2.2) and (2.3) we obtain

Uy = ip_lw—l(auﬁ - fu) ) (2.4)

leaving, upon substitution, the matrix differential equation

(0361 +iwArg)Fy = Ny, Ay = Ars(ze, Dysas), D,

€=

Oy s (2.5)

in which é7; is the Kronecker delta, and the elements of the acoustic field matrix are given
by '

Fi=p, Fy=1;, (2.6)
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the elements of the acoustic system’s operator matrix by

A =An=0, (2.7)
A12 =P, (28)
Ay = —D,,(p_lD,,) Tk, (2.9)

and the elements of the notional source matrix by
Ni=fs, Np=D,(p'f,)+. (2.10)

It is observed that the right-hand side of equation (2.4) and A;; contain the spatial deriva-
tives D, with respect to the horizontal coordinates only. D, has the interpretation of
horizontal slowness operator. Further, it is noted that A;, is simply a multiplicative oper-
ator.

2.3.2 The coupled system of one-way wave equations

To distinguish up- and downgoing constituents in the wavefield, we shall construct an
appropriate linear operator L;; with

Fy=LWwy, (2.11)
that, with the aid of the commutation relation
(03, L14)(-) = 85(L14()) — L1s85(-) = (33L1s)(-)

(since the operator fII J depends on the z3 variable, whereas it only acts on z; and )
transforms equation (2.5) into

L1y (38 0 + iwAja)War = —(8sL1)) Wy + Ny, (2.12)
as to make [XJM, satisfying
ArjLya = LijAgar (2.13)

a diagonal matrix of operators. We denote L, as the composition operator and Wy as the
wave matrix. The matrix expression in parentheses on the left-hand side of equation (2.12)
is diagonal and its diagonal entries are the two so-called one-way wave operators. The
first term on the right-hand side of equation (2.12) is representative for the scattering due
to variations of the medium properties in the vertical direction. The scattering due to
variations of the medium properties in the horizontal directions is contained in A Jar and,
implicitly, in L;; also.

To investigate whether solutions of equation (2.13) exist, we introduce the generalized
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. = (+ . .
eigenvector operators LS ) columnwise according to

~

LW=1,, L9 =10L,. (2.14)
Upon writing the diagonal entries of Ay, the generalized eigenvalue operators, as
Ay =T Ay =T (2.15)
equation (2.13) decomposes into the two systems of equations
Apg 5 = EB1E) (2.16)

By analogy with the case where the medium is translationally invariant in the horizontal
directions, we shall denote I'®) as the vertical slowness operators. Notice that the operators
ﬁ(li) compose the acoustic pressure and that the operators f,gi) compose the vertical particle
velocity from the elements of W), associated with the up- and downgoing constituents.

In De Hoop (1996) an Ansatz procedure has been followed to solve the generalized
eigenvalue-eigenvector problem (2.16) in operator sense: choosing the acoustic-pressure nor-
malization analog, we satisfy the commutation rule

[Am!iéi’, Appdy)=0. (2.17)

In this normalization, we find the vertical slowness operator or generalized eigenvalues to
be

f‘(+) = _f‘(—) = f‘ = Alﬂ s A = 1412;121 N f‘2 = A (218)

is the characteristic operator equation, while the generalized eigenvectors constitute the

composilion operator
- 1 I
i=(y 4 ) (219)

with ¥ = A;;f‘ denoting the vertical acoustic impedance operator. With respect to the
normalization, note that we have decomposed the pressure viz. according to Fy = W +Ws.
In terms of the inverse vertical acoustic impedance operator, the decomposition operator

then follows as
L I v!
L 1=%<I _}}_1). (2.20)

The (de)composition operators account for the radiation patterns of the different source
mechanisms and receiver types.
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Using the decomposition operator, equation (2.12) transforms into

(038101 + iwAia)War = — (LY (@ L) Wi + (LY e Nay (2.21)
— ~ e %;—-ﬂ
image < coupling initial values

which can be interpreted as a coupled system of one- way wave equations. The coupling
between the counter-propagating components, W; and Wo, is apparent in the first source-
like term on the right-hand side, which can be written as

0y

i (oud) = (; éf) , (2.22)

in which 7" and R represent the transmission and reflection operators, respectively. (The
goal of the double-square-root propagation, to be explained in Section 2.5, is to image the
kernel of the coupling operator.) In the acoustic-pressure normalization analog, we find

R=-T=1V"18Y). (2.23)

The second, primary, source term on the right-hand side of equation (2.21) is chosen in
accordance with the Helmholtz Green’s function: A volume injection point source will
result in Ny, = 0, Ny = 6(z — = ') and hence the inhomogeneous term in equation (2.21) will
reduce to a vector with components

(L7 12Ne = (L7 Vo Np = L(V 7YY (wp, 25 24) @ 6(z3 — ) (2.24)

where V! indicates the Schwartz kernel of ¥ 1,

2.4 Trotter-product one-way wave propagator

To analyze the solutions of the system of one-way wave equations we introduce the
inverse of the one-way wave operator, G(*) = (8; + iwl"#))~!. The one-sided elementary
kernels G i)(ac#, x3; x,, 24) associated with these operators are the so-called one-way Green’s
functions. They satisfy the equations

(03 + 1Wl)GH) = §(z,, — al,) (x5 — ), (2.25)

together with the condition of caueahty enforcing that G decays as 3 — +oo. Now,
consider the case G = G(t), G = G() and I = I'H). The operator G acts on a test field @
as

(Gt) (., 73) = / / Gz 32, ¢) (e, €) deh dery d( - (2.26)
CeER Jul eR
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Let us define the initial-value problem of determining the function U (T, x3;C):
(83 +iwl)U =0 for 23 > ¢, U(x,,¢;¢) = a(z,,,C) - (2.27)

Then it is observed that

3 N

(Ga)(z,,23) = / Uz, 23;¢) dC . (2.28)

(=-00

2.4.1 The product integral

We note that the vertical slowness operators at different levels of z3 do not neces-
sarily commute with one another due to the heterogeneity of the medium. Thus we ar-
rive at a ‘time’-ordered product integral representation (De Witte-Morette et al., 1979) of
the one-sided propagators [cf., equation (2.27)] associated with the one-way wave equa-
tions (De Hoop, 1996; Fishman & McCoy, 1984a; Fishman & McCoy, 1984b) where ‘time’
here refers to the vertical coordinate z3,

U ay;05) = +H(F[zh — za)) { [] expl-iwl®(,0)d¢] pal,ah),  (229)

)
(=z3

where H denotes the Heaviside function. Equation 2.29 expresses the ‘accumulation’ of
infinitesimal solutions of the one-way wave equation 2.25: In this expression, the oper-
ator ordering is initiated by exp[—iwf‘(.,zg)d(] acting on «(.,z%) followed by applying
exp[—iwl(.,¢) d(¢] to the result, successively for increasing .

2.4.2 The ‘square-root’ or vertical slowness operator symbol, the Trotter
product

If the medium in the interval [z}, 3] were weakly varying in the vertical direction, the
Trotter product formula can be applied to the product integral in equation (2.29). This
results in the Hamiltonian path integral representations (De Witte-Morette et al., 1979)
with ‘measure’ D for the Green’s functions,

G (2, 23520, 74) = £H(F[ah — z3)) / D(z), ) (2.30)
P
I3
exp | —iw / a¢{ol(deat’) + )" ¢ o} | |
(=

P being a set of paths (z,((), o}/(¢)) in (horizontal) phase space satisfying z, (¢ =x4) =
!

Ty, , T,(( = x3) = x,; see also Schlottmann (1999). In equation (2.30), 4(*) is the left
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symbol? of T je.,
F(i) (-'L'/UDI/§ C) exp(_iwaafva) = '?(i)(a";n ¢, au) exl)(_iwa’aza) > (2'31)

where «, indicate the horizontal slownesses The path integral in equation (2.30) is to be
interpreted as the lattice multi-variate integral

M AM—1
g"(i)(m#,wg;mf,,mg) = +H(F([z} — x3]) A}i_l}:)o/n(w/%r)?da(lz)dag') H dw(lJ)drz;gf)
=1

j=1
exp —in{aﬁ,’”(xSf’ =z D) +4H (@B, G, o) M Ay} (2.32)
where
(e =Gk — 5M ' Azs (2.33)
with :1;,(0) = wﬂ , a:fLM) = x,, and Azz = z3 — z4. All the integrations are taken over the
interval (—oco,00), M~1Az3 is the step size in ¢, and (:z;ff), a,(,] )) are the coordinates of a

path at the discrete values (; of ( as j=1,--- , M.
To account for the source-radiation pattern [cf., equation (2.24)], we invoke the Volterra
composition

¢ (zy, z3; T, T5) —>/g $,L,$3,£I,',,,(L‘3) (y 1)(:1;,,,a:,,,3:3)d:v'1'd:1:'2'= (2.34)

/g( )(z yx3; 2, 28) (w/2) da(o)da()

x%g} 1(.'L,,,o:,(,o),7:3)exp[ 1wa(0)( 0 _ ]dw(o)dm(o)

LN

R(z! (0) ( ):l:’)

where ~! is the dual (or right) symbol of ¥ ~!. Then equation (2.32) changes to

gA(i)(xu,xI;;:B;nmg) = (235)
M-1
H(F[zh - 1:3]) hm /H (w/2m) 2da11 dey @) H d:c(] d:z:(])R
7=0
X exp l:_lwz{a (k l)) +’7(ﬂ: ( Etk)ac_k’al(/k))M—lAm3}

In preparation of the microlocal analysis of the Green’s functions, we now introduce the

2To highlight (medium) symmetries the Weyl symbol is the preferred choice, whereas the dual symbol
has algorithmic advantages (Le Rousseau & De Hoop, 2001a).
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wavevectors
KW =wa) | K = wy® (2.36)

for k=1,..., M, which components together at k = M will relate to the cotangent vectors
appearing in the wavefront set of G(*). Note that Kéi) = Kéi)(m,“ ¢, K,;w). Then, in the
time domain, the Trotter product formula can be written as the limit of a sequence of the
form

GEIM (2, 23,8 2, 74) = (2.37)

M 2 A1
/ 1 1 () 3 7(0) () 1.0
:I:H(q:[azs—:vg])/ﬂ{%dw i];IO Cy dK,’dK, jl;[o dz;”’dzs 'R

M
X exp [—i STHEB @R — 21 4 KD 2P, G, KB w) M~ As} | expliwt)
k=1

and similarly without the radiation pattern R. We have assumed that the source is operative
at t = 0. In general, shifting this instance to t', yields

GEWM (5 wa ty2! ) = (2.38)
1 T (L) @ TT 460 )
+H(F[z — .’1:3])‘/IR gdw/H (Er-) dKkPdK] H dzi’dzs’ R
=0 7=0
distl'igutions comgg;itions

M
X exp [—iZ{K((,k)(m‘(,k) — -0y 4 Kéi)(m,(f), (i K 0) M~ Azs} | expliw(t — t')) .
k=1

As before, for simplicity of notation, we will restrict our analysis again to § = G(1),
K; = K§+). Equation (2.38) is a simplified representation of the actual compositions
of thin-slab propagators: Each composition is in horizontal space and time. However, the
integrals over the successive times result in Dirac measures in the difference of successive
frequencies. Those measures have been integrated out in Equations (2.37),(2.38), conveying
the conservation of frequency.

2.4.3 The canonical relation

For operators with kernels of the form (2.38), the propagation of singularities is con-
trolled by the phase function. This is described by the canonical relation. With the canon-
ical relation we recover the geometrical (ray) aspect of wave propagation. The canonical
relation is a Lagrangian manifold [see also (Kendall & Thomson, 1993)].
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The phase function in equations (2.37), (2.38) is given by

d(z,t, 8"t (2D cenr—1, (K rchens, w) (2.39)
= w(t—t) - fj {Ké’”(z‘a’“’ — ) + KE (2, Gy, Kﬁ“,w)M—lAmg} ,
k=1
with
KP (@), G K, w) = Vwrel@l, 6) 2 - KPKP (2.40)

in accordance with the eikonal equation, and where &’ = (s', s3) with s3 = 0 (corresponding
with £ = 0), & corresponds with & = M, and where p = 1,2 and » = 1,2. We have
Azs = z3 — s3 = x3. We further introduced the principal part K™ of K3; the remaining
exponentials

exp [—i{Ks(fE,(lk), G K w) — K™ (2P, C_k,Kﬁk),w)}M_lAms]

are contained in the ‘amplitude’ of G and account for phenomena not associated with the
wavefront set. This remaining exponential factor is (a symbol) of order —1 and can therefore
be considered as an amplitude.

Then the phase is homogeneous in ((K,(,k) Vi<k<ar,w)® [see also Duistermaat (1996)].
Note that the operator R in equation (2.38) is pseudodifferential and does not move the
wavefront set. Let us collect the phase variables according to

0= ((D)icicm—1, (KP)1chans,w) . (2.41)
The stationary point set, ¥4, is defined as (‘prime’ indicates taking the gradient)
Yo = {(=,t,8,t,0) | (¢')o(z,t,8',t,0) =0} . (2.42)

Thus, the defining equations of the stationary point set, 34, are

(@), 0 = -K+KMY - MAzy (K, (o, 6, kP w) = 0,
() = =28 + 2l — M Az (K™ i, (@), G K w) = 0, (243)
, ) —
(e = (=) - M Az T (KE™ )y (2, G K w) = 0,

forc=1,2andl=1,--- M -1, k=1,--- M.

®Note that the ‘intermediate’ space variables, (z\’) 1<i<anr—1, in equation (2.38) behave appropriately
through the composition of Fourier integral operators (Hérmander, 1985a, p.295) and (Hormander, 1985b,
p.20).
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L3

Figure 2.1. One-way scattering process: The true bicharacteristic is approached by a finite-

difference square-root Hamiltonian system. To each depth level is associated a position

vector (azgk) ,:zrgk)) and a wave (cotangent) vector (K 1(k+1), KSHU)-

In Appendix B, it is shown that the phase is non-degenerate for M sufficiently large.
Hence the phase is clean with excess 0, and the mapping

2¢—) A¢ y (244)
(ma ta 8’, t,a 0) = (:B, ta _Kff\2/1+1)3 —K3'- ws 8,1 t,a K§,12), —UJ)
= (il!, ta (¢l)flh (¢I)t; s', tla (¢I)8'7 (¢/)t’))

is a diffeomorphism. The stationary point set, ¥4, is a submanifold of the manifold

{(z,t,8',t,0)}. Ay is the associated Lagrangian submanifold in the cotangent bundle as-

sociated with the manifold of points {(x,¢,s,#')}. In the mapping above, K ff\;ﬂ) is given

by
; G in! / x /i
K = K+ M7 Ay (K ™)z, 4 (oM, Cur, KM, ) (2:45)
following equations (2.43) while for M large enough,
(¢’):E3 ~-Kj3 = _Kgrin(mg\'l)’ C_.M, K5A1+l)aw) (246)

(cf., Appendix C) on the stationary point set.

Observe that the (finite) system of equations defining the stationary point set, g, is
derived from a complex-analytic square-root Hamiltonian, K}™, see Section 2.4.5 below.
The solution of this system can be interpreted as a set of bicharacteristics on a lattice



J. H. Le Rousseau / Wave-equation imaging and generalized screens 21

as illustrated in Figure 2.1. Omitting so-called turning rays, through a finite-difference
approximation in the vertical (z3) coordinate, this system yields in the limit M — oo the
Hamilton system that defines the geometry of asymptotic ray and Maslov high-frequency
solutions (Kendall & Thomson, 1993; De Hoop & Brandsberg-Dahl, 2000) to the wave
equation.

The canonical relation, Cy, is then obtained by twisting the Lagrangian submanifold
Ay

Cy = {(m,t,—K{g]H),—Kg,w; s',t',—K{g,w) .

(z,t, —Kff;“l), —K3,w; s’,t’,K{}Q). —w) € Ay ,} , Ki= Kgri"(a:,ngHl),w).

2.4.4 Propagation of singularities

Let G denote the time-domain counterpart of the previously defined G [cf., equa-
tion (2.26)]. Then G(,,.,.;8(,0,ty) = G(d(s’ — 8{) ® §(t' — t})). We denote the wavefront
set of this Green’s function as WF(G). With the aid of the canonical relation Cy, we find
that

WF(G) = CpoWF(5(s' — sh) ® 8(t' — t1)) (2.47)

so that

WF(g)={(m,t,s,—w) 3y th, K1) (w,t,s,—w;sa,ta,Kf,‘;,—w)ec¢}, (2.48)

which means that the cotangent vector, &, is the cotangent vector at & associated with the
bicharacteristic joining the source, sj, and the point @, with initial ‘slope’ or ‘slant’ given
by w‘lK,Sl), and ‘one-way’ travel time (¢ — ;).

2.4.5 Square-root Hamiltonian system

Let H be the Hamiltonian associated with the (original wave equation’s) propaga-
tion process: H = H(z,K,w). By the implicit function theorem, if (H')g, # 0 at
(zo, Ko,wop), there exist a neighborhood U of (xg, K¢, wq) and a unigque function, Hs, such
that H(z, K,w) = 0 is equivalent to K3 — Hs(z, K1 2,w) = 0 and H3(z, K 2,w) has the
same degree of smoothness as H(x, K,w). Also, the implicit function theorem states that

(H3')ay = —(Ho/(H)Ky, i=1,2,3, (2.49)
(Hy)x, = —(H')k./(H)k,, i=12, (2.50)
(Hy')y = 0, (2.51)
(Hs')o = —(H)w/(H)rk; - (2.52)
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We set
F(.’B,K,w) = Kg - H3(.’B,K1’2,w) .

Then, in the considered neighborhood U, F' and H have the same Hamiltonian flow:

d:l?,'

K - (F\k, = —(H3") i, = (H') ./ (H g, , i=1,2, (2.53)
‘L—”? = (P, =1, (2.54)
W e = (e =~ (), =123, (2.55)
j—é = (F)y = ~(H)o = (H)o/(H ) s (2.56)
‘;_‘Z = —(F');=0. (2.57)

Because of equation (2.54), the flow of F is parametrized by ¢( = z3. Now, if 7 is the
parameter for the Hamiltonian flow associated with H, we have

d:133 "
=3 — F(H) k. 2.
dT +( )I 3 ( 58)
which implies
d¢ = +(H,)I\'3d7 ) (259)

which relates evolution in depth to evolution in time. (This relation is at the basis of the
theory of one-way wave propagation.) Hence the equivalence of the two Hamilton systems
and their solutions.

In the present case,

H(z, K,w) = —w + ¢(z)|K]| (2.60)

and (H') g, = 0 implies that K3 = 0. In view of equations (2.49)-(2.52), for the equivalence
of Hamiltonian flows to apply, any bicharacteristic for which K3 vanishes at some point, a
so-called turning ray, must be excluded (see also Appendix B). In an open set f C R? x R3
which closure is away from these bicharacteristics, F' is then simply defined as

F(z,K,w) = K3 — \/Jw?c(z) 2 - K, K, . (2.61)
In the present case, we therefore have Hs = K} rin,
In the process of discretizing system (2.53)-(2.56) we take A( = M 'Az3 and subdi-
vide the depth or vertical range into M steps. We recover system (2.43), hence the earlier
interpretation of flow in terms of bicharacteristics on a lattice.
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2.4.6 Amplitude of the propagator kernel

To analyze the amplitude behavior of the Trotter product representation for the one-
way Green'’s function, we consider equation (2.38) to be the composition of M Fourier
integral operators [see Le Rousseau et al. (2001)]. The kernel of each constituent oper-
ator is a distribution with an oscillatory integral representation. The phase of each such
representation is of the form [cf., equation (2.39)]

¢®) = KB (@P - 2F V) - KPP a®, G KB w®) M ATy (2.62)
+w(k)(t(k) _ t(k—l)) )
In the composition it follows that all w*) = w; we have (M) = ¢ and +(© = .
We will first establish that, in the stationary phase approximation, the oscillatory

integral representation of each constituent distribution yields a change of coordinates on
the Lagrangian manifold A¢(;.-). The stationary point set, E¢(;..), follows from

KP

- —— M_IAZL‘;; =0,
K (2, G, K wih)

(d’(k))ll\,c(;k) = _(mg‘k) - xz(rk—l)) +

and a likewise equation for (¢(’°)); ) = 0 determining the travel time. The equation above

can be solved for :L'f,k) as a function of K((,k) if the Hessian,

(k) prin
K OK.

k _ I 3 -1
(¢ )),Il(l(‘k)m‘(’k) = —O0p— (K§’“")2 2 M " Azs (2.63)
K @®)? e

q C
(KP™M3 e

M_IA:E;;,

= —0u—

is non-singular [by virtue of the implicit function theorem (Dieudonné, 1969)]. Here, the
speed c is evaluated at (a:Y:Q), (x). Having the functions a:,(,k) implicitly defined, we apply the

chain rule to arrive at

. k
01(]“):55") 3K§k):l;(l)
k
—1
(¢(k))lll(f;\-)$§k) (¢(k)),1/(§k)zgk) (¢(k))l;\,§k)l\,§k) (‘/’(k))lll‘.fk)l(ék)
- . (2.64)
(¢(k))7(§k)zgk) (¢(k))lll(ék)zgk) (¢(k)),;\,§k)h,§;\.) (¢(k))lll(ék)1(ék)
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Since ® “
SRV WAY/S
l d (¢ )]‘»l(k)a:gk) (¢ )]\»l(k)wgk) 1
im det =1,
M—o0 (¢(k))u (¢(k))// '
K{Malk) K2l

we conclude that as M — oo,

(k) (k) (k)ym (k)
31\,1(:.‘)3,1 3,\,;&-)1‘1 (¢ )Kfl\-)l\,flr) (¢ )ka)l\,ék)
det — det ,
(k) (k) (k)1 (k)yn
81\,51\-)222 31(;1.-).%2 (¢ K o) (¢ )Kék)Kék)

which confirms that in the stationary phase approximation (generating the determinant on
the right-hand side) we retain a coordinate transformation (generating the determinant on
the left-hand side) in accordance with the Maslov representation of the Green’s function.
The condition of non-singularity is satisfied if we enforce [cf., equation (2.63)]

( prin)3 Y
M~ Agy < —3—||c—1a_(k)c-1“ , (2.65)
[yl e

where the first factor on the right-hand side is bounded in view of its homogeneity prop-
erty (degree 0). Observe that if the medium were laterally homogeneous, M could simply
be chosen equal to 1. The same condition appears in the proof that the compositions
in equation (2.38) preserve the geometrical aspects of the propagation of the singulari-
ties (Le Rousseau et al., 2001). Note that the vertical stepsize is bounded in terms of a
norm of horizontal medium derivatives.

Second, we establish that the stationary phase approximation of each constituent os-
cillatory integral representation, in particular the initial one (k = 1), reproduces the geo-
metrical spreading i.e., the solution of the transport equation. Using equation (2.62), we
find that

k) k)\n
(¢( ))ka)K{A-) (¢( ))ka)Kék)

det

_ (w2 (MS)? (2.66)
) - 2 Kprin 4 M ' .

The equation (¢(k))('u @) = 0 leads to the relation

(0 ey _ w0 Axg
C2K:[3)lln M

so that

Az3 (t(k) — t(k—l)) CQKgri"

e 5 (2.67)
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Substituting this equation into equation (2.66) then yields

(k) (k)ym —1/2
(¢ ) (")I'U') (¢ )ka)]\’ék) (Kplm)Q M B Kgrin

det w®  Azz ot — kD)

(2.68)
( ), (A)I\,(L) (¢ )K(A)I,(A)

in which #¥) — ¢*=1) represents the travel time to cross the k" slab. We recognize the geo-
metrical spreading - for z*=1) (k) fixed - as well as the radiation pattern of a vertical force
(W™ 'K ) which is 1emoved by the initial decomposition introduced in equations (2.24)
and (2.35) - the factor w™! accounts for the fact that we employ the particle velocity rather
than displacement.

2.5 Trotter-product double-square-root propagator

In the remote sensing problem one places sources and receivers at the surface (z3 = 0).
Sources (at s12) generate acoustic waves, which scatter at points © = (z;92,z) in the
subsurface and are observed at rj as a function of time ¢. (The 3" axis points into
the subsurface.) To image the observations, the sources and receivers’ measurements are
propagated into the subsurface in a presumed background medium back to the time when
the scattering took place (Claerbout, 1986). The thus obtained operator is composed of a
propagator of the previous type associated with the source and a propagator of the previous
type associated with the receiver.

2.5.1 The imaging kernel

Using, for example, arguments based on reciprocity (De Hoop & De Hoop, 2000), it
follows that the process of seismic imaging can be written in the operator form?

(IWs)(z1,2, 2 1/27T)/// T12,%7;51,2,T1,2,1)

W2($1’2,’r‘1,2, )dt d31d32d7']d'r2 y (269)

“i.e., the adjoint of the operator generated by the first-order (single-backscattering) term of the generalized
Bremmer series
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where W, represents the (upgoing component of the) data. Here, 7 denotes the distribu-
tional imaging kernel which can be written as the Trotter-product representation

IM(:I:I,Q,z;sl,g,rl’g,t) = /(1/27r)dw (2.70)
R
M o g M1 . . N
/ / [T(/2m2d& P dE (172m)2dR AR T dsdsPdrPar RR
RAM+1) JpdM i—0 3=0

M
X exp [ - iZ{Egk)(sy:) _ sg""l)) + I’(‘v(k)(rgk) _ r(k_l))

o o
k=1

+ | Ka(sl), G, B, ) + Ka(ri1), G, KU, )| M Ay ] exp(iwt) ,

forming a sequence, with Azz = z and

0 0 M M
Sg’% = 31’2 ’ T§’2) = 7'1,2 s S§’2) = r§,2) = ,’L‘1’2 5 CO = 0 , C]\’[ =z, (2.71)
~ ~
Py r

The imaging kernel follows the simultaneous downward continuation of sources (variables
with 7 ) and receivers (variables with 7 ) in accordance with the one-way Trotter product
represented by equation (2.37). In the absence of turning rays, in the high-frequency ap-
proximation, the kernel will approach é(t — T'((r12,0), (1,2, 2), (s1,2,0))) with T denoting
two-way travel time. (This expression has the form of a pull-back within the distributions
in x.)

Let us now rotate coordinates at each level to (intermediate) ‘midpoint’ and ‘offset’,
ie.,

k k k k k k
np = bgeed oy - AR, (2.72)
K12 = K1,2 +K1,2 3 kl’g = K1,2 — K1,2 .

Such change anticipates the estimation of the wavefront set of the imaging kernel. We have

ds{dsydrPar) = 16 dy? dysdn?dny |
dKVAKPdRPaR) = L akPak(ak dkl)
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and we write the distribution kernel of the double-square-root propagator, J, as the sequence

TM (@12, 23512, b2, 15 BT) /(1/27f)dw (2.73)
M-—1
L / / H (1/2m)2dK Ak (1/2m)2dkPdky) T] dyl?dyddnVdny RR
RAAI41) RAM ; =0
M
x exp(iwt) exp [ - iZ{Kt(,k)y‘(,k) — K®yk=1) 4 EEIp k) EE Rk 4
k=1

(Ko = 1B, G, S — k), w)
TRy + B, G, J(EP + kD), w)] M7 Azg) ] :

subject to

yg?% = y1,2 (midpoint) , ygf\é{) =212, Ig% hio (offset) , hgg) = hil'g . (2.74)

\,.4
Y h

In the limit M — oo, we write
(JW2)($1’2,Z; hllr:12) B (1/27() 16 /// ‘7(181,2,2:; y1,2, 11,1’2, t; h'lr’g)
XWQ(yI’Q — h1’2,y1,2 + h1,2, t) dy;dyadhydhs dt (2.75)
and the image with the sequence in equation (2.70) is obtained at h’f} =0. (Jlhim=0=T.)
2.5.2 The canonical relation of the imaging operator (hi™ 12 =0)
The phase function associated with distribution (2.73) is given by

O(z,y1,2, h1 2,1, (y,(f))lgth-l, (KN 1<hents <hﬁ)>l§l§1\l—l, (k&N 1<kenr,w)

M
=t = 3 { KO - y0) + KO — 1)
k=1

+M—1A$3 [Kgrin(il/,(f) - hl(ik)’ é-ka %(Kzsk) - kl(/k))7w)

+Kprm(y(k) +h( ) C ’%(K’Sk) +k:,(,k))~.w):| } , (2.76)

where p = 1,2 and v = 1,2 and ¢ = (yil‘zl ), z). If we collect the phase variables,

0 = (Y 1<icnr—1, (KPY1<renr, (Y 1<icnr—1, (B 1cpenr,w) (2.77)
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the stationary point set, Lo, is defined as

Yo = {(z,y12,h1,2,1,0) | (¢)o(x,y1,2,h12,8,8) =0} . (2.78)

The defining equations of the stationary point set, X4, are then
in!
@) = K+ KD - LREY), 0l — 10,0 3D~ KO0

(EDY, <y<’>+h,<f>,g,%(Kyuk,(f’),w)}M-lAzg=o, (2.79)

@ = =+~ LRI ) — 1D, G JED - K9, 0)

+(K§rinl)1\'a (y;(;k) + h'Lk)a C—ka %(Klgk) + ’l"l(/k))’w)} %M—1A$3 =0, (280)

S —
(@),0 = —kf,“+k5,’+“—{ = (B3 )a, () ~ BY, G (KD = kD), w)
+(K§’“"')ma(y,(f)+h(’ G L(KP + kD), w)}M‘lAm3=O, (2.81)
(@) = —h{ +hFN - { — (B3 i,y — R, &, 3K — k), w)
HEDP™) i, (yF) + hP, G, L(KE) + kD), )} Azy=0,  (2.82)
M " -
(®'), = t—M-lAmZ{(Kg““ Yoy = hP, G, LED — k), w)
k=1

HEE™ )i + B, Gy (KD + kD), )} =0, (283

foro=1,2andl=1,--- ,M—-1,k=1,--- ,M. In analogy with the analysis of the one-way
wave propagator, one can view the solution of the system of equations (2.79)-(2.83) as an
approximation on a lattice of the geometry of the Maslov high-frequency solution of the
two-way scattering process, as represented in Figure 2.2.

An extension of the proof of Appendix B shows that the phase ® is non-degenerate. The
associated Lagrangian submanifold of the cotangent bundle associated with the manifold of
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L3

Figure 2.2. Bicharacteristics and wave vectors in the two-way scattering process.

points {(z,y12, h1,2,t)}, is now given by

Se — As (2.84)
(may1,27h1,2’ta0) = (wa _Kff\2/1+1)a_KB;yl,Qah1,2’taK§’12),k$}2)1w)
= (:D, ((I)/):c; Y1,2, hl,?: ta ((I)/)‘yl,z, ((I)I)hl,'u ((I)I)t) )

following equations (2.45)-(2.46) for the source and receiver contributions:
—KMAD o (R R‘(/M-f-l)) :
in accordance with the transformation to midpoint; Kj is given by
K102, JUREHD — K0, 0) 4 RS, HURETH 4 KD ).

As before, the canonical relation, Cy, is obtained by twisting the Lagrangian submanifold
A(Da

Co = {(-’Da —Kl(f\é[+1), —K3;y1,2,h1,2,t,—Kff2’,—k&?, ~w) ‘
(2, ~ K\ ™Y~ Ky, ot KU kY, w) € Ag } .

The so-called isochrone, the projection of the canonical relation onto the subsurface for
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- K9y s y©) B0 0 Rl
’ B — p )
h {
A\ ~(k+1) o , ~(k ]\
K ¥ R .
s(l"‘ E : ! '
= (A1)

(K£,2 )a K3) ==

Figure 2.3. Isochrone: illustration of a subsurface section of the canonical relation in the
two-way scattering process.

fixed two-way travel time ¢ and source and receiver, i.e., fixed h;2 and y; 9, is shown in
Figure 2.3.

2.5.3 The isochrone and its cotangent directions

The isochrone is given as the singular support of Zy = I(§(s'—8{)Q4(r' —r)) @d(t—to))
[cf., equation (2.69)], which is distributional in (z, 2, 2) for given s, r( and ¢;. Here, we are
not just interested in the singular support but rather in its wavefront set: WF(Zy). With
the aid of the canonical relation previously defined, we have

WF(Zp) = CooWF(8(s' — 8) ® 6(r' — 7)) @ 6(t — to)) (2.85)

so that
WF(Zy) ={(az,s) } 3wy by o, K, K, 0
=;yh, b, to, K9, k), —w) € C 2
(w7'-‘7y0, OatO) 1,20 71,2y LU)E [ g (86)

which means that the cotangent vector, =, is the sum of the two cotangent vectors at «
associated with the two bicharacteristics joining the source, s, the scattering point, z,
and the receiver, r{, with initial ‘slopes’ given by w"llz',(,l),w‘ll?,sl), and ‘two-way’ travel
time to as illustrated in Figure 2.3. The limit M — oo can be understood with the use of
Appendix C.

To find a parameterization for the canonical relation and an expression for the cotan-
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gent vectors E, we reconsider the wave vectors (k = 1)
1 ~
K1(,2) - wp81 2 KEZ) p7‘1.2 ’ W,
dual to (s12,71,2,t), as well as (k = M)

~

(K (M+1) Kgrin( 1A21)7CMﬂ (M'H))) — E at (5121’2,2) s

(K(l\1+l) K g";),g ,,KIMJrl ) = at (z19,2),

defining, through the canonical relation,

—E+¢E,

1]

dual to (z1 2, 2).
The polar angles associated with the covector E are denoted by (fz,v=). We now
introduce the parameters scattering angle and azimuth {9,%} at (z; 2, 2) according to

cos? = |€| € [€]'E,
cosyP = ro-ry,
where
ry = [sind] ' E]T'EALEITENEITE, (2.87)

and 7o is given as the vertical vector pointing up (negative z3 direction) in the plane
orthogonal to E as illustrated in Figure 2.4.
By analyzing Figure 2.4, we find that through the canonical relation

k§M+1) WF & — & (2.88)
= _Z—w) sin (%19) [sin(y=) sin(+)) + cos(f=) cos(y=) cos(v)] ,

C((E]’?,Z

kgﬂl+l) \’\éF 22_%:'2 (289)

= _ sin (19) [cos(¢=) sin() — cos(f=) sin(vz) cos(®)]

C($1,2,z)

M+1 M+1
(k{0 R

which define, given (0=, =), a mapping (9, ¢) — )- On the other hand, we

have
' 2w
KOS me e 19 =)sin(f=) , 2.90
1 1 (z1.2,2) cos (§9) cos(¢z)sin(f=) (2.90)
KM W 2 20 (L9) sin(ye) sin(0) | (2.91)

C($1,2,Z)
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Figure 2.4. Euler angles associated with the two-way scattering process. Left: The unit
vector-with positive first component along the intersection of the vertical plane containing
E and the horizontal plane is denoted 7, /5. We then denote ro = E x r, s2- Right: call

the unit vector in the direction { E It lies along the intersection of the scattering plane
(€, {) with the plane orthogonal to E, i.e., (ro, 7;/2). The azimuth angle is defined as the

angle between r, and 7¢, while the scattering angle ¥ is defined as the angle between E and

3

while

1) ~ / M M
Ks(uip O 5L = kip ) + Ka(wly (KT + K
WF 2w

ey = ot cos(30) coslls) . (292

= 3 =

We observe that the construction of Z35 out of Z,Z is independent of azimuth in view of the
isotropy of the medium here.

In general, we will have four unknown angles (9, 9), (6=, ¥=) and four accessible spec-
tral variables, (kg{g +1),K 1(,1\2”1)). They are a manifestation of offset and midpoint in the
subsurface. The mentioned scattering angle and azimuth together form the set of parame-
ters along the characteristic strips in the wavefront set of the single-scattered seismic data
[see Stolk and de Hoop (2000)]. It is along these characteristic strips that we can verify the

velocity model by differential semblance.
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2.5.4 Angle-gather imaging condition
The process of imaging, through the path integral, induces a composite mapping
R Bl SR (9, )
To highlight the redundancy in the data, the redundancy being parameterized by (9, ), we

will create images as a function of (9,). To this end, we carry out a final Fourier transform

of the kernel of the double-square-root propagator, J*, with respect to (h(lM), th)), viz.

jM(ml’g,z;yl,g,hl,g,t; (9,4)) :/(1/27r)dw/ dh(lM)dth) (2.93)
RZ

M-—1
. /R o /R o H 1/2m)2dK (VdK Y (1/2m)2dk dkS) TT dydysdn?dn RR
=0

M
x exp(ik{M TV R exp(iwt) exp [ - iZ{K((,k)yf,k) — KBy k=) o pGe) p (k) _ (k) pk—1)
k=1

# [Ro(0f2 WG U = k) + Kol + 19 G JOKED + K] b1 ) |

subject to the substitution

kgMH) = —% sin (39) [sin(yz) sin(y) + cos(f=) cos(y=) cos(v)] ,
kéM'H) = c(afﬁ)- sin (30) [cos(yg) sin(¢)) — cos(fz) sin(y=) cos(v)] .

(M)

We consider the outcome at y; ,” = ;2 as a function of (9,), which defines the angle com-
mon image point gather at depth z. Such angle gathers are controlled by dip (6=, ¥=,). To
create these gathers we therefore need to determine the direction of the isochrone cotangent
vector, which is the subject of the next section.

2.6 Multiresolution approach to determining the migration dip (isochrone
cotangent direction)

In the simplest situation, let ¥ = ¢¥= = 0 (‘in-line’ scattering). Then we obtain the
angle 9 out of the ratio

(M)
tan (%19) = ki

(2.94)

p
=3

and we just have to determine Z3. In general, we will have to determine both (6=, 9=). We
will do so by a careful windowed Fourier analysis.
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The estimation of the isochrone cotangent direction, known in seismology as the mi-
gration dip, can be carried out with the aid of a continuous wavelet transform. Let

o7 (x) = 71 p(r %) (2.95)

be a symmetric, smooth function (Gaussian for example), and define the spatial Fourier
transform (indicated by 7) PJ combined with a cut-off ¢ as

Pl f(€,x) = exp (3i&a;) [+ P, (€) (2.96)

with

Yo (y) =¢"(y — ) . (2.97)

If ¢ is Gaussian, its Fourier transform 1/;;,;,5 is Gaussian also.

For f we now substitute the distribution imaging kernel Z, and employ the Fourier
transform xzy = (ygf\;),z) — (Kff;”l),Kg) = Ey. Then (x,Zy) does not belong to the
wavefront set of Z if there is a conic neighborhood of (¢, Z¢) such that on this neighborhood

foralla, N > 1,
|P;Z(z, TE)| < Ca’NT_N for 7>1,a'<|E|<a,

aresult due to Folland, and Cérdoba and Fefferman (Folland, 1989). Taking the complement
of such conic neighborhoods yields the singular direction associated with the isochrone.

2.7 Numerical example

We will briefly discuss an example of applying the method to synthetic data in the
presence of caustics. The model (Brandsberg-Dahl et al., 2000) (two-dimensional) contains
a low-velocity lens (Figure 2.5). It further consists of two layers separated by a ramp-like
interface that represent a target reflector with an adjacent fault.

The upper layer has constant gradients. The seismic data were generated by a time-
domain finite-difference approach (the dominant frequency of the source signature was
35Hz). The vertical component of a typical shot gather over the lens is shown in Fig-
ure 2.6 (the direct arrival has been removed from the shot gathers by remodelling without
the reflector present).

For the imaging we invoked the generalized screen approximation for the Trotter prod-
uct (De Hoop et al., 2000; Le Rousseau & De Hoop, 2001b). First we focus on a horizontal
location to the right of the lens where small scattering angles correspond with single-pathing.
The ACIG is shown in Figure 2.7(a). The perfect alignment of events confirms the redun-
dancy in the data. Second, we generate an ACIG at a location where multipathing domi-
nates [Figure 2.7(b)]. Still the seismic event is unfolded. Since we used the true model in
our imaging, the events in the ACIGs are ‘flat’ so that the differential semblance with angle
vanishes. An incorrect model would have resulted in ‘non-flat’ events in the ACIGs, whence
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Figure 2.7. ACIGs for a) location (2) and b) location (1) of Figure 2.5. No boundary

condition were used for this computation which resulted in the artifacts close to 1000 m
depth in a).



J. H. Le Rousseau / Wave-equation imaging and generalized screens 37

the differential semblance can be used as a mismatch criterion for tomographic inversion
(De Hoop et al., 2001b; Brandsberg-Dahl et al., 2001).

2.8 Discussion

In this chapter, we have presented a microlocal (high-frequency) analysis of the double-
square-root equation and its possible solution schemes. The double-square-root equation
generates the wave-equation seismic imaging procedure. In particular, we found that
(Maslov-)Kirchhoff and wave-equation imaging procedures are microlocally compatible and
hence should yield the same result on the singular support of the image. More precisely
they are equivalent if all the data are used (and the dataset is complete, i.e., 5D). However,
high-frequency methods (Brandsberg-Dahl et al., 2000; Brandsberg-Dahl et al., 2001) show
artifacts in ACIGs with a moveout (with angle) that are not visible in the results of Sec-
tion 2.7. Such differences suggest that in the angle domain the two methods are not fully
microlocally equivalent and call for further studies.

As far as the solution schemes of the double-square-root equation are concerned, we
found a fundamental condition for the step size in depth that plays an important role in
complex (strongly heterogeneous) velocity models. Finally, we designed a wave-equation
imaging scheme honoring the characteristic strips in the wavefront set of seismic data,
thus generating scattering-angle/azimuth common image point gathers (ACIGs) of the type
introduced in Kirchhoff-style imaging procedures. ACIGs are used for amplitude inversion
as well as in tomography.

With our approach, ‘true-amplitude’ aspects of the imaging procedure in inhomoge-
neous media can be addressed also, viz. via the composition of the adjoint (solution of the
double-square-root equation) and the forward scattering operator (first term of the gener-
alized Bremmer coupling series). In the case of laterally homogeneous media such analysis
has been carried out (Deregowski & Rocca, 1981; Dubrulle, 1983; Ekren & Ursin, 1999).

We analyzed the case of acoustic waves. The tools needed to extend the current theory
to mode-coupled elastic waves my be found in Le Rousseau and De Hoop (2001a).
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Chapter 3

Generalization of the phase-screen approximation
for the scattering of acoustic waves!

3.1 Summary

With the use of Fourier analysis, we describe the propagation and scattering of acous-
tics waves in smoothly varying, heterogeneous, media. The starting point is the generalized
Bremmer coupling series solution — distinguishing multiple up/down scattered constituents

to the wave equation, which requires the introduction of pseudo-differential operators.
Then, we introduce a class of approximations to these pseudo-differential operators with
the structure of the classical phase-screen method for one-way wave propagation. These
approximations induce a fast, iterated, marching algorithm for the evaluation of the Brem-
mer series. The algorithm consists of multiplications by multiple ‘screen’ functions in the
lateral space domain and generalized ‘phase shifts’ in the lateral wavenumber domain; the
shuttling between the two domains is accomplished by the fast Fourier transform. Our
scheme extends the use of the classical phase-screen method in the following ways: we
consider larger medium variations; we enhance the accuracy for wider scattering angles;
we introduce (de)composition operators to incorporate any desired source- or receiver-type
with the appropriate radiation characteristics; we include the backscattered field with the
aid of the generalized Bremmer coupling series.

3.2 Introduction

Directional wavefield decomposition is a tool for analyzing and computing the propaga-
tion of waves in configurations with a certain directionality, such as waveguiding structures.
The method consists of three main steps: (i) decomposing the field into two constituents,
propagating upward or downward along a preferred direction, (ii) computing the interaction
(coupling) of the counterpropagating constituents and (iii) recomposing the constituents into
observables at the positions of interest. (The preferred direction is ‘vertical’ whereas the
directions orthogonal to the preferred direction are referred to as the ‘lateral’ directions.)
The method allows one to ‘trace’ wave constituents in a given medium, and thus distinguish
constituents that have been scattered along the up/down direction a different number of
times. It allows the separation of head waves from body waves also. The (generalized)

'This chapter was published in Wave Motion, 31, (2000) pp.43-70, with M.V. de Hoop and R.-S. Wu.
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Bremmer series superimposes all the constituents (‘multiples’) to recover the full, original
wavefield (De Hoop, 1996).

In the framework of remote sensing and inverse scattering, tracing waves helps in the
interpretation and separation of constituents prior to the inversion of the observed wavefield
(De Hoop, 1998). Directional decomposition maps the ‘two-way’ wavefield into constituents
that satisfy a coupled system of ‘one-way’ wave equations. In large-scale configurations
in which the coupling is weak, wavefield computations can be restricted to a single one-
way constituent. In the fields of ocean acoustics (Tappert, 1977; Collins, 1989), seismics
(Claerbout, 1970), and integrated optics (Hadley, 1992), this observation has been exploited
extensively; for a more complete list of references in this matter, we refer the reader to Van
Stralen et al. (1998). However, to arrive at ‘fast’ one-way algorithms in the mentioned
applications, various approximations to the decomposition underly their designs.

If the medium of the configuration were laterally homogeneous, the directional decom-
position becomes an algebraic operation in the lateral Fourier or wavenumber domain [see,
e.g., Kennett (1985)]. In such a mediumn, the phase-shift method (Gazdag, 1978) is amongst
the fastest (and accurate) one-way algorithms. In this method, in the lateral wavenumber
domain, the phase shift is simply proportional to the vertical wavenumber; the vertical and
lateral wavenumbers are connected through an algebraic dispersion relation. As soon as the
medium becomes laterally heterogenous, it still advantageous to carry out the analysis in the
lateral wavenumber domain, but without leaving the lateral space domain — an observation
well established in the field of micro-local analysis [see, e.g., Treves (1980a)] and applied
by Fishman and McCoy (1984a). The lateral space-wavenumber domain constitutes the
(lateral) phase space. Through the Fourier transforms, the space and wavenumber domains
are ‘dual’ to one another. In the directional (de)composition — and in the downward and
upward propagation, and in the reflection and transmission due to variations in medium
properties in the preferred direction — we now encounter pseudo-differential operators the
symbols of which are defined on phase space, and lead to a calculus that generalizes the
algebraic manipulations in the case of a laterally homogeneous medium [(De Hoop, 1996)
and Section 3.3]. Unfortunately, numerical evaluation and application of pseudo-differential
operators arising from the wave scattering problem are, in general, involved. Hence, ap-
proximations to their symbols are sought for to improve computational efficiency. The
phase-screen method (Stoffa et al., 1990; Wu & Huang, 1992) provides one such approxi-
mation and leads to an algorithm with computational complexity comparable to the one
of the phase-shift method in laterally homogeneous media. A competing approximation is
the rational one, analyzed in detail by De Hoop and De Hoop (1992) and Van Stralen et
al. (1998).

The reason why the phase-screen approximation leads to an efficient algorithm is, that
its associated symbols reveal a separation of phase-space coordinates. We will use this obser-
vation as the starting point for developing a general class of approximations: the generalized
screen approximations. It comprises enforcing a separation of phase-space coordinates in
the symbols of the pseudo-differential operators that generate the generalized Bremmer
series. The one-way algorithm, inside the Bremmer series, yields an approximate realiza-
tion of the phase-space path-integral representation for one-way propagation (Fishman &
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McCoy, 1984b; De Hoop, 1996); the Hamiltonian of this path integral is the vertical wave
slowness (vertical wavenumber divided by frequency) symbol subjected to the separation
of phase-space coordinates (Section 3.4). Now, the vertical wave slowness and the lateral
wave slownesses are connected through a symbol composition equation. The path integral
extends the phase-shift operation to laterally heterogeneous media; its generalized screen
realization is founded upon a continuous shuttling between the lateral space and lateral
wavenumber domains using the fast Fourier transform (Section 3.6).

Subjecting the symbols, in particular the vertical wave slowness symbol, to the sepa-
ration of phase-space coordinates, induces an ‘adjustment’ of wave theory and deformations
of the wavefront shapes. The accuracy of the generalized screen approximations is most
accessible in phase space by analyzing the (approximate) vertical wave slowness symbols as
functions of the lateral wave slownesses (lateral wavenumbers) pointwise in lateral space. In
the high-frequency approximation, i.e., up to principal symbols, these functions generate the
slowness surface, the polar reciprocal of which creates the Huygens wavefront (Section 3.6).
In Section 3.7 we discuss the generalized screen representations of (de)composition; in Sec-
tion 3.8 we introduce the generalized screen representations of reflection and transmission.
The marching algorithm associated with the generalized Bremmer series and leading to
the wavefield solution is summarized in Section 3.5; in this algorithm, the thin-slab prop-
agator of Section 3.6, the reflection and transmission operators of Section 3.8, and the
(de)composition operators of Section 3.7 are to be substituted.

A framework of marching algorithms and path integrals for wave propagation has been
established by McCoy and Frazer (1987). The method of phase screens has been widely
used for one-way wave propagation in smoothly varying, heterogeneous media. In particular,
the method has been applied to light transmission through the atmosphere (Ratcliffe, 1956;
Mercier, 1962; Martin & Flatté, 1988), propagation of light in optical fibers (Feit & Fleck,
1978), propagation of radio signals through the ionosphere (Buckley, 1975; Bramley, 1977;
Knepp, 1983), propagation of acoustic waves in the ocean (Flatté et al., 1979; Thomson &
Chapman, 1983), and propagation of seismic waves in the earth (Stoffa et al., 1990). More
recently, the screen method has been introduced for elastic waves (Fisk & McCartor, 1991;
Fisk et al., 1992; Wu, 1994). The phase-screen approach has also been applied in media
that are not smoothly varying at all: Berry (1979) analyzed the intensity fluctuations of an
incident plane wave scattered in a fractal medium.

Classically, the phase-screen method was designed for multiple downward scattering
of waves, the downward direction being the preferred direction of propagation. Thus it
included phenomena like focussing and defocussing, i.e., ‘multipathing’ of the characteristic
set. The applicability of the phase-screen method generally requires that the screen interval
satisfies the following criteria: small? medium variations (weak scattering), laterally smooth
medium variations (narrow angle scattering), and even smoother variations in the preferred
direction (negligible backscattering). In this chapter, we access the accuracy of the screen
method, and generalize it to larger-contrast (larger range of medium variations within a
screen interval), wider-angle, and back scattering. The higher the order of the generalized

2By small it is meant small enough for the Born approximation to be valid.
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screen approximation, the more parameters occur that shape the wavefront. The order
controls the accuracy.

Given the order of the generalized screen approximation, its accuracy can still be
enhanced by replacing the (fast) lateral Fourier transform by a windowed lateral Fourier
transform, the windows following an imprint of the major lateral changes in medium prop-
erties (Section 3.6). One may wonder whether the underlying windowed, lateral Fourier
basis could be even further improved upon. De Hoop and Gautesen (2000) have accom-
plished such an improvement, incorporating all one-way wave phenemona, at the cost of
computational efficiency.

3.3 Directional wavefield decomposition

For the details on the derivation of the Bremmer coupling series solution of the acoustic
wave equation, we refer the reader to De Hoop (1996). Here, we restrict ourselves to a
summary of the method. Our configuration is three-dimensional.

Let p = acoustic pressure [Pal, v, = particle velocity [m/s], p = volume density of mass
[kg/m?], k = compressibility [Pa~!], ¢ = volume source density of injection rate [s~!], and
fr = volume source density of force [N/m?]. We assume that the coefficients x and p are
smooth, and constant outside a compact domain. This provision enables us to formulate
the acoustic wave propagation, when necessary, as a scattering problem in a homogeneous
embedding. The smoothness entails that the singularities of the wavefield (in particular the
ones in the neighborhood of the wave arrival) arise from the ones in the signatures of the
source distributions. The formation of caustics, associated with scattering in the lateral
directions (‘multipathing’), is captured in the approximation procedure developed in this
chapter.

We carry out our analysis in the time-Laplace domain. To show the notation, we give
the expression for the acoustic pressure,

o0
ams) = [ exp(=st)plom, 1)t (31)

t=0
Under this transformation, assuming zero initial conditions, we have 8, — s. In the Laplace
domain, the acoustic wavefield satisfies the system of first-order equations

Op+sptx = fr, (3.2)
SKp+ 00, = ¢. (3.3)

The evolution of the wavefield in the direction of preference can now be expressed in terms
of the changes of the wavefield in the direction transverse to it. The direction of preference
is taken along the z3-axis (or ‘vertical’ axis) and the remaining (‘lateral’ or ‘horizontal’)
coordinates are denoted by z,, p = 1,2.

Since we allow the medium to vary with all coordinates and hence also with coordinate
in the preferred direction, we are forced to carry out the wavefield decomposition from the
system of first-order equations rather than the second-order scalar ‘Helmholtz’ equation.
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3.3.1 The reduced system of equations

The decomposition procedure requires a separate handling of the horizontal compo-
nents of the particle velocity. From equations (3.2) and (3.3) we obtain

la[t = _p_ls_l(a/tﬁ - fu) s (34)
leaving, upon substitution, the matrix differential equation

A - - A “ 1
(0301,5 + A1 )Fy=N;, Ay =A;(zy,Dy;z3), D, = ~20y (3.5)

in which d; ; is the Kronecker delta, and the elements of the acoustic field matrix are given
by

Fi=p, F=4d, (3.6)

the elements of the acoustic system’s operator matrix by

Ay =Ar=0, (3.7)
Aip=p, (3.8)
Ay =-Dy(p7'Dy) + &, (3.9)

and the elements of the notional source matrix by
Nl =f3a N2=Du(p_1fu)+q- (310)

It is observed that the right-hand side of equation (3.4) and A 1,J contain the spatial deriva-
tives D, with respect to the horizontal coordinates only. D, has the interpretation of
horizontal slowness operator. Further, it is noted that A; 5 is simply a multiplicative oper-
ator.

3.3.2 The coupled system of one-way wave equations

To distinguish up- and downgoing constituents in the wavefield, we shall construct an
appropriate linear operator L; j, pseudodifferential in lateral variables, z; and o, with

Fr=1L;,Wy, (3.11)

that, with the aid of the commutation relation (83f11, J) = [83,.21["]], (since the symbol of
L; j depends on the z3 variable, whereas L; ; only acts on z; and x9) transforms equation
(3.5) into

L1,y (030001 + sAyp))Way = —(83L1 7)) Wy + Ny, (3.12)
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as to make A J,M, satisfying
Al,Ji?J,Al = ilI,JAJ,A[ ) (3.13)

a diagonal matrix of operators. We denote ﬁl, J as the composition operator and WM as
the wave matrix. The matrix expression in parentheses on the left-hand side of equation
(3.12) is diagonal and its diagonal entries are the two so-called one-way wave operators.
The first term on the right-hand side of equation (3.12) is representative for the scattering
due to variations of the medium properties in the vertical direction. The scattering due to
variations of the medium properties in the horizontal directions is contained in A J,ar and,
implicitly, in fll, J also.

To investigate whether solutions of equation (3.13) exist, we introduce the column

)

matrix operators Lgi according to

LW =fpy, B =1Lp,. (3.14)
Upon writing the diagonal entries of [\J’A/[ as
Ay =T | Ayy =10 (3.15)
equation (3.13) decomposes into the two systems of equations
Ap L9 = B PE) (3.16)
By analogy with the case where the medium is translationally invariant in the horizontal

directions, we shall denote ['®) as the vertical slowness operators. Notice that the operators
IAlgi) compose the acoustic pressure and that the operators flgi) compose the vertical particle
velocity from the elements of Wy, associated with the up- and downgoing constituents.

In De Hoop (1996) an Ansatz procedure has been followed to solve the generalized
eigenvalue-eigenvector problem (3.16) in operator sense: choosing the acoustic-pressure nor-

malization analog, we satisfy the commutation rule
(L5, Agp i) = 0. (3.17)

In this normalization, we find the vertical slowness operator or generalized eigenvalues to
be

~

P = PO) =P =AY2 | A=Ay,4,; 2=A (3.18)

is the characteristic operator equation, while the generalized eigenvectors constitute the
composition operator

2 /11,2 A1,2
L_< 2 ) . (3.19)
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With respect to the normalization, note that we have decomposed the pressure (up to a
multiplication by density) viz. according to F = F +F1 , F1 = A1 2W1 and F = A1 oW
In terms of the inverse vertical slowness operator, I! = A~1/2 the decomp031tzon

operator then follows as
1 -
. r
L 1=%( L2 e ) : (3.20)
1,2

The (de)composition operators account for the radiation patterns of the different source
and receiver types.
Using the decomposition operator, equation (3.12) transforms into

(030,01 + sA1ar)War = —(L7 Y 1 (OsLar, k)W + (L~ 1.0Nag (3.21)

which can be interpreted as a coupled system of one-way wave equations. The coupling
between the counter-propagating components, W; and W5, is apparent in the first source-
like term on the right-hand side, which can be written as

[~ Y(&sL) = ( :’; ? ) , (3.22)

in which T and R represent the transmission and reflection operators, respectively. In the
acoustic-pressure normalization analog, we find

—T == %Ai%(a;;/i],z) %f‘ (83f‘) ) R = - Al_,jlz(a3fil,2) % (83F) (3-23)

N|—

3.4 The one-way wave propagator

To arrive at a coupled system of integral equations that is equivalent to equation (3.21)
and that can be solved in terms of a Neumann expansion, we have to invert the operator
occurrmg on the left-hand side. We set G(*) = (85 + sI"(¥))~1. The one-sided elementary
kernels G(*) (xy, T3; 2, x5) associated with these operators are the so-called one-way Green’s
functions. They satisfy the equations

(05 +sTH)GH) = 6(x, — x),) 8(z3 — 25) (3.24)

together with the condition of causality enforcing tllatAG(i) decays as z3 — Fo0.
Now, consider the case G = G(), ¢ = G(Y) and T = I'(*). The operator G acts on a
test field 4 as

Ciewas) = [ [ Glapmnisl, ¢ ilal,¢) deldah dc (3.25)
(ER Jz! eR
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Let us define the initial-value problem of determining the function U (xp, 235 C) satisfying
(03 4+ sD)U = 0 for w3 > ¢, U(zy,¢;¢) = iy, ) . (3.26)

Then it is observed that

T3 N

(Gi) (2, 3) = / O (20,033 C) dC - (3.27)

{=—o00

3.4.1 The product integral

We note that the vertical slowness operators at different levels of 23 do not necessarily
commute with one another due to the heterogeneity of the medium. Thus we arrive at
a ‘time’-ordered product integral representation (De Witte-Morette et al., 1979) of the
one-sided propagators [cf., equation (3.26)] associated with the one-way wave equations
(De Hoop, 1996; Fishman & McCoy, 1984a; Fishman & McCoy, 1984b) where ‘time’ refers
to the vertical coordinate 3,

U (. ay05) = £H(F[zh — 23)) § ] exp(-sI™®)(,¢)d¢] 3 al.,a5) | (3.28)

(=2}

where H denotes the Heaviside function. In this expression, the operator ordering is initiated
by exp[—sT'(.,z}) d¢] acting on i(., z}) followed by applying exp[—sI'(.,¢) d(] to the result,
successively for increasing (.

If the medium in the interval [z}, 23] were weakly varying in the vertical direction, the
Trotter product formula can be applied to the product integral in equation (3.28). This
results in the Hamiltonian path integral representations (De Witte-Morette et al., 1979)
with measure D for the Green’s functions,

G (2, 23 2, 7h) = +H(F[h — 3)) /P D2, o) (3.29)

T3

exp [—s / d¢{io (deag) +4% (o, ,a'u’)}] = £H(F[zh - 23]) §) (ay, w357l 24) |
(=3

P Dbeing a set of paths (z},(¢), a;/(¢)) in (horizontal) phase space satisfying T, (¢ = x3) =

), » T,(¢ = x3) = z,. In equation (3.29), 4(*) is the left symbol of I'¥), ie.,

Iz, Dy ) exp(~isaozs) = 43 (24, ¢, o) exp(—isagz,) . (3.30)
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The path integral in equation (3.29) is to be interpreted as the lattice multi-variate integral

M A -1
G (e yialaf) = £H(Floh — oal) Jim [ [[(s/2n7d0 a0’ T[ dafaay
=1

i=1
M
exp | —s Y _{ia®(@F) — 2{=V) + 55 (@B, ¢ — LM~ Azs, o) M Azy) (3.31)
k=1
with :vflo) =z, xftM) = zy, and Azz = x3 — z4. All the integrations are taken over the

interval (—oo,00), M~'Azs is the step size in ¢, and (xff), o )) are the coordinates of a

path at the discrete values (j of (asj=1,--- , M.

3.4.2 The thin-slab propagator

If Az is sufficiently small (thin slab), the lattice multi-variate integral reduces to
(M =1)

8 @il 5) = [ (5/2m)2delfdas
exp[—is &) (z, — x.,)] exp[—s '“y(i)(mu,a:g - %AIII:;,OZZ)AZB;;] . (3.32)

Thus, thin-slab propagation is composed of a forward Fourier transform, a multiplication
by a phase factor (the phase is the vertical slowness left symbol) and an inverse Fourier
transform. Switching from left to right symbols? yields

3 @ azialy ) = [ (/20 dalld
exp|—is o/l (z, — z! )] exp[—s ¥ (2!, 23 — 3Az3, o)) Azs) . (3.33)

With the vertical slowness left symbol is associated a cokernel

¥(ap, ¢, a) =/ Rexp(isaﬂmu)f?(zﬂ,g,af,)dx1d$2. (3.34)
Tu€

Thus, in the Fourier domain, the thin slab propagator can written in the form [cf., equation
(3.32))],

G (235 0, 7) = / dz,dzs
)

explis (@ — alf) ) exp[~54 (@, 73 — L Azs,all,5)Axs],  (3.35)

The right or dual symbol 4r is related to the left symbol 4 according to
Yr(zp, ¢, 00) ~ explifa, Dz, ] (24, ¢, ). We will omit the subscript r whenever it is clear from the
context which symbol is meant.
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and may, for small Azs, be approximated by
g(i)(au,x;;; o, o) ~ 8(ay, — aZ) - s&(i)(aﬂ - aﬁ,mg - %Axg,aﬁ,s)Am +--- . (3.36)

This representation shows the interaction of Fourier constituents exp(—isa,x,) explicitly.

3.5 The generalized Bremmer coupling series

3.5.1 The coupled system of integral equations

Applying the operators with kernels equation (3.29) to equation (3.21) we obtain a
coupled system of integral equations (De Hoop, 1996). In operator form, they are given by

(61, — K, )Wy =W, (3.37)

in which W(© denotes the incident field. In our configuration the domain of heterogeneity
will be restricted to the slab (0,z5"], and the excitation of the waves will be specified
through an initial condition at the level z3 = 0, viz.

Wl(o)(.’ltﬂ, x3) = / " Gt (Tps T35 xy,,0) W (z;,0) dz} dzfy (3.38)
zl,
Wi (z,,23) =0, (3.39)

in the range of interest, z3 € [0,2§""]; the second equation reflects the assumption that
there is no excitation below the heterogeneous slab. The integral operators in equation
(3.37) are given by

~ ~ ms ~ ~ ~
(Ko W) (@, 3) = /C 0 / Rg<+>(zu,x3;x;,c)(Twl)(x;,g)dm'ldxgdg, (3.40)
— ;1;:/6

~ ~ x3 ~ A A
(Ry2W2) (2, 3) = /( 0 / G i, O(RWa) ) O do Ay dC, (3.41)
= :c:,E

exit.
T3

(Ko W) (2,0, 73) = /C / GO s ORI}, ) dnf dhdC - (3.42)
i€

=3
mexn

(KooWa)(zp, 73) = /(

3
=x3

/ G w52, (W) (@), C) dof dadC . (3.43)
i €

They describe the interaction between the counter-propagating constituent waves.
We can represent the action of the one-sided Green’s kernels by product integrals, viz.,

W, z3) = f[exp[—sf(”(-,é’)dc'] Wi(.,0), (3.44)
{=0
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while

(Kl,lwl)(.,ms)=/:z IT exp[—sTH (¢ d¢] ¢ (TWA)(.,¢) dC (3.45)
= Le=¢

and so on.

3.5.2 Bremmer series

If s is real and sufficiently large, the Neumann expansion can be employed to invert
(07,5 — K;,y) in equation (3.37). Such a procedure leads to the Bremmer coupling series,

o0
Wi =Y W, in which W =K, ,WV ™ for j>1, (3.46)
i=0

can be interpreted as the j-times reflected or scattered wave. This equation indicates that
the solution of equation (3.37) can be found with the aid of an iterative scheme. This
iterative scheme and its computational aspects are discussed in detail by Van Stralen et
al. (Van Stralen et al., 1998, III.C). On the basis of Lerch’s theorem (Widder, 1946), we
only need the individual terms for s on some real half line to get back to the time domain;
the earlier condition ‘sufficiently large’ does not play any role in this respect.

3.5.3 An iterated marching algorithm

To arrive at a marching algorithm nested in an iterative scheme, consider the j-times
reflected constituent wave. We split the interval [0, z§'""] into M thin slabs with thickness
Aivg. Set

WP (. kbas) = I (o R) + I3 (1K) (3.47)

)

J=12,--- and k =0,1,--- , M, where [cf., equation (3.46)]

Gk = KWl V) kAc) (3.48)
k) = KioWd ) ( kAxs) . (3.49)

Upon comparison with equation (3.45) we find that

. kAzs | kAz3 . o
10 k) = /C } T expl—s0 (., ¢y d¢) § XY)(,¢) d¢, (3.50)
= &=

with

X900 =@FWI)(,0). (3.51)
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Similarly,
. kAzs kAxs
0= [ 1'[ expl—sT(H(,¢')d¢’] b X9)(,0)dc (3.52)
¢=0 C'=
» mgxit kAx3 . o
L)k = - /C . { IT expl-st(.,¢) dg’]} XI (.0 d¢, (3.53)
TRET L ¢=¢
with
X0(,0) = BV )(,0) (3.54)
X900 = @WI 0, (3.55)
X0,0) = @WF ) (,0) . (3.56)

To construct the iteration scheme, we carry out the following steps. Let P denote the
thin-slab propagator

kAzs

P(.,k)={ 11 exp[—sf<+’<.,<')d<’]}- (3.57)

¢'=(k—1)Azs

We approximate the kernel of this propagator by equation (3.32) with 2% = (k — 1)Az3 and
z3 = kAz3. Then, using the semi-group property for the product integral,

ICAII:;;

f%f;’(.,k):{ [T expl-st(.¢ dc]}

¢'=(k—-1)Azxs
(k—1)Az; [(k-DAzs G
/( H exp[—sD(H(,, ¢ d¢ XIJ1 ¢)d¢

=0

¢'=¢
kAx3 kAzs X
+ / [T expl-=sE™ (¢ d¢) p XP(,¢)dc, (3.58)
<=(k_1)Az3 ¢'=C
which can be written as
I k) = PR IZ) (k= 1)+ QY (k) (3.59)

where

) kAzs kAxs L
Mok = [ TT expl-st)(,¢ac] § X9)(,0)dc. (3.60)
= ¢'=¢
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Recursion relations similar to the one in equation (3.59) can be found for the other elements
of I, viz.,

190k = P(EVID (k= 1)+ QY)(,k
Ik = Plok+1)I0k+1)+ QY

Here

A7) kazs = A (+) ' / (7)
QAM=AWM [T expl-s0(,¢hac) p X)L ae,  (362)
TETHIEE L ¢=¢

. kAz3 ¢ . oy
QY (k) = /( [T explsTO(,¢Nd¢p XT(,0d¢. (3.63)

=(k+1)A1}3 <I=kAz3

Equations (3.61) describe a marching algorithm, the top one going forward and the bottom
one going backward.
The initial values for the recursion scheme (3.61) are given by

19 (2,,0) = 0, (3.64)
1)z, M) = 0, (3.65)

again, for j =1,2,.--.

3.5.4 Numerical issues

The implementation of the iterative scheme is as follows. It is initiated by the calcu-
lation of the incident field, WI(O), according to

WO, kAzs) = P(LEYWO(, (k — 1)Azs) for k=1,2,--- M, (3.66)
with initial condition
Wi9(.,0) = Wi(,0), (3.67)

according to equation (3.38). During the forward marching, at each of the discrete levels,
)A(S,ll) are computed and stored; X'SIQ) are set to zero. The procedure is continued by the
backward propagation defined by the second iteration in equation (3.61). At each of the
discrete levels, WQ(I) is computed [equation (3.47)] and used to calculate X%) ; the latter
quantity is stored as before. The scheme continues to switch from backward to forward

propagation based on the first iteration in equation (3.61), and so on.
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phase shift

screen

Figure 3.1. The screen representation for one-way propagation.

To evaluate the elements of QU), we apply the trapezoidal rule. Then
QU)o k) = fAwy [XU)( kAzs) + P(, B XT)(, (= DAzg)| ,  (3.68)
)

QT (k) = ~hAzy [XF)( kAws) + P,k +1) XP)(, (k+DAz)| . (3.69)

which formulas are accurate O((Azx3)?).

In the remainder of this chapter, we will derive approximate, screen representations
for f‘, 15, I~! and R. This will lead to an overal multiple screen representation of the full
solution of the acoustic wave equation.

3.6 Screen representation of the propagator

There exists a wide variety of techniques to approximate the vertical slowness symbol
to speed up the computation of the one-sided propagator equation (3.31) generated by
equation (3.32). Here, we pursue the perturbative, split-step Fourier approach (Stoffa et al.,
1990) to arrive at a generalized-screen expansion of the propagator. A schematic view of
this expansion is shown in Figure 3.1 (the symbols will be explained in the later analysis).
Underlying the generalized-screen approach is an embedding procedure.

To introduce the embedding, consider a thin slab, [z%, 23], with thickness Azy =
z3 — z5. We introduce a background medium in the slab, with parameters p° x°. The
background medium, or embedding, is constant in the slab, but may vary from one slab to
another:

pO(C) = po(m3) 3 HO(C) = K‘O(w3) 3 C € [3:{3,3:3] .
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3.6.1 The vertical slowness left symbol, contrast formulation

In the acoustic pressure normalization analog, the characteristic differential operator
in equation (3.18) is given by

A=-D,D,+kp—p " (Dup) D, — p H(D2p) + p~2(Dyp)? (3.70)

with left symbol & = a(z,,(, o). For the further analysis, we will employ a contrast for-
mulation. Having introduced in the interval [z}, z3] a background medium with parameters
p°, k0, the medium perturbation is given by

0
(o) = A1 gl = S (3.71)
= (k)7 = (002, (3.72)

for ¢ € (24, z3).

We will now expand the left symbol & of A simultaneously in medium contrast (the
order is indicated by a superscript) and in symbol (or operator) order (this order is indicated
by a subscript). Thus, expanding & in medium contrast, yields the decomposition 4 =
4% +a! + 42, while expanding the individual terms appearing in the decomposition further
into symbol order, leads to

4% = a9 =02 + ()2 (3.73)
for the background, and
al = aj+al +a), (3.74)
and
8" = a§ = (p°)%p %(Dye,)’ (3.75)
for the contrast. Here,
a3 = ()%, —c %, (3.76)
a = —pp (Duey) iay (3.77)
8 = —p°p 1(DZey) . (3.78)

Given the symbol 4, we now have to construct the vertical slowness left symbol 4(*)
defined in equation (3.30). This symbol satisfies a characteristic equation following the
composition of operators in equation (3.18) (De Hoop, 1996):

€Xp [_iaaf,Dmf,] ’7(.’1,',“ G, a:;):)'(a::f’ ¢ o) = é(m#, ¢ o). (3.79)

(1‘11 o, )=y a0)
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(The composition equation for the associated Weyl symbols follows from the work of Fish-
man and McCoy (1984a)). This equation defines the generalized slowness surface and
has solutions 4(*). The two branches are YE) (24, ¢, ) such that Re{4#(*)} > 0 and
Re{4(7)} < 0. Due to the local up/down symmetry of the medium we have 4(+) = —4(=),
Note that as s — oo the composition of symbols tends to an ordinary multiplication, and
the solution of equation (3.79) reduces to the principal parts of the symbols. The principal
part of the vertical slowness symbol corresponds to the vertical gradient of travel time,
in accordance with the eikonal equation (which can be obtained from the high-frequency
approximation of the path integral (De Hoop, 1996).

3.6.2 Scaling

The solution, ¥, to equation (3.79) will be constructed by means of a (polyhomoge-
neous) series expansion following the expansion of & introduced above. To ease the iden-
tification of medium-contrast and symbol orders in the construction, we introduce two
dimensionless parameters, ¢ associated with the medium constrast and € associated with
the symbol order. With these parameters, we control the magnitude of our medium contrast
(¢) and the smoothness (2) also, i.e.

Cn(-T;nC) = Een(QIB;uC) ) Gp(muao = 5ep(9$uao . (3.80)
With
Ppt = l-ee,+eel,
(P°)’p? = 1-2e,+3e%€2,
(%) 'k = 1—ce,+e%e?,
()?c? = 1+e(ey—ex) —c'ex (ep —ex),

up to O(g?), we rewrite the expansion of the symbol & associated with the characteristic
operator as [cf., equations (3.76)-(3.78)]

4y = 5(‘30)_2{ep_en[1 + € (ep — &) - ex(ep — &)+ ]k, (3.81)
5,% = —£f {1 —£€p + 82 9,2, + .- } (Duep) iy, 3 (382)
4y = —e{l—ce,+e%e2+---} (Dley), (3.83)

while [cf., equation (3.75)]
8 = 20 {1—2ce, +---} (Due,)?. (3.84)

We have introduced the scaled horizontal slowness operators D, which differentiates with
respect to Qr,: D, = Q7 !D,. The expansions shown above appear in the Born series
also (see Appendix E), which occurs naturally in the parameters p and k. Here, we will
treat the expansions in equations (3.81)-(3.84) between braces as single expressions and
thus reparametrize the series for the characteristic symbol.
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The symbol &j is directly related to the screen function S, 1 (Wu & Huang, 1992)
which we will encounter in the later analysis. Let €.-1(z,,() denote the relative medium
slowness perturbation for ¢ € [z}, z3], then

. - . 1 3
A () 261, €1~ s(ep—ex), while S, = A’E3/ €~1d¢.  (3.85)

Noj—

These approximations are OQ(e?).

3.6.3 Perturbation expansion of the vertical slowness left symbol

We will solve equation (3.79) by method of expansion. In view of the contrast for-
mulation, the vertical slowness in the laterally homogeneous embedding is introduced [cf.,
equation (3.73)]

Caam \/32(1'3:01/ \/a2 + [c%(3) |72=19 (333,@'/) if (e [533’933] (3.86)

We suppose that the vertical slowness symbol can be appoximated by a perturbation, 4!
say, superimposed on the vertical slowness in the laterally homogeneous embedding,

’?(xuagval/as) = 70(m3aal/) +’?1 (ZB[L'»C: a,,,s) if C € [$§3$3] . (387)

First, let us expand the vertical slowness perturbation, asymptotically into the mag-
nitude of the medium perturbation, i.e.

ﬁ/l(:c,,,(,a,,, 8) ~ Zgn ﬂ["](mu,C,au,S) } (3.88)

n=1

this expansion, though carried out in the space of symbols, has similarities with the Born
series expansion [see, e.g., A.T. de Hoop (1991)]. Associated with the Born approximation
is the condition

C(ZE#,C) 2 CO(m3) s (389)

which for the symbols guarantees that no artificial branch point will enter the propagating-
wave domain. Also, note that this expansion breaks down where the exact symbol fails to
be analytic.

Second, we expand the series (3.88) further in terms of the smoothness of the medium
perturbation,

77[”](-’13;“(,011/, Z Qm 77[[;‘] . (zp,C 0, 8) . (3.90)

The leading term of this expansion represents the high-frequency approximation or the
principal part. We will suppress the dependencies on ¢ and s in our notation.
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While substituting these expansions into equation (3.79), we observe that for k > 1,

= (3.91)

(:1:;, al, )=(@u,a0)

ZA;( ) [a‘ “00,7") (@, o) + (95 C05, 4" )(w#,au)] (DETDE A ) (@ )

( laa'D ) (.’L“, )’3’(113:,,&1,)

hence

= (3.92)

(33;1 @l )=(Ty,00)

k o0 %
B\, e O i .
N [ R0 DD SE LI P
n'=1

m'=0

ay)

o0 00
X l(agl_eagg'yo)(mm au) + Z e Z am (3,’:238 )77[[711] m])(xu, au)

Upon substituting the expansions (3.88)-(3.90) into equation (3.79), we will collect terms
of equal order in . These terms are then separated in orders of Q2. We will carry out our
analysis up to O(2?).

The terms O(£%) yield equation (3.86), viz.

(%)% = &) [k = 0] (3.93)
which is O(Q°). The terms O(g) decompose into

29" nfy] = a} [k = 0] (3.94)
which is O(Q°), and

29" nﬂ —i (3%70) a.-,,n[li) a [k =0,1]
270 ny) = (0a,7°) Dz, mjg)) [k = 0,1](3.95)
—3[(32,7)(D2,nfi]) + 2(8a1 00,7°) (D, Dayly)) + (2,7°) (D2, D] = 85 [k =2]
which are O(2!) and O(Q?), respectively. The terms O(e?) decompose into
()2 +29° 73] =0 [k = 0] (3.96)
which is O(Q°),

2’7{}}77[[5% +29° 77{3]] —1(8a,7°) (Dmanﬁf) i (8%77[[3) (D xanm) [k =0,1] (3.97)
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which is O(Q2), and

2° 77{3]1] (?7{%]])2 + 277[[11]]77[[111] [k =0]
= i[(9a,7°) (D2, mjg)) + (auny}) (Do mlg)) + (e, nlg)) (D, 1)) [k = 1]
— 31(02,7°)(D2,7[3)) + 20, 0as7°) (D, D11 + (92,7°) (D2, 7f2) [k = 2] (3.98)
+(02,m D211 + 2(00, Bayny) (D, D)) + (@2, N OZ, D] (k=2
= 42

which is O(Q?). Etc.
Solving the equations O(Q°), i.e. for 77[[7;]], we observe that the constituent symbols
generate an expansion of the type

o0
o= fad+ah ="\ 1+ (ab/a9) ~+° + > e nly] (3.99)
n=1
which could also be rewritten as

ad +al =4/al /1 + (a3/ad)

and expanded in a Taylor series accordingly. The first three terms of expansion (3.99) are
illustrated in Figure 3.2. In this figure, we have carried out the rotations in the frequency
and slowness domains

s=iw, a,=—ip,.

Solving the equations O(f2), i.e. for 7][[(7;]]

an expansion of the type (De Hoop, 1996, Section VIII)

, we find that the constituent symbols represent

1
S A
1 S o ln]
= - - 0 25‘1 1+(A1 é'(] +liaa Dzaé:l :| ~ €n7n :
2(70)3 [1 + (a%/ag)]:;/? [(’Y ) 1 [ aQ/ 2)] 2 ( 2) nX::l }[0]

[é% (43 + 5] + %iaa(Dz,,éé)] (3.100)

which takes into account the rate of change (gradient) of the medium properties in the
lateral directions.
3.6.4 Screen reduction

The recursion for the solution of the vertical slowness left symbol described by equa-
tions (3.93)-(3.98) reveals that the expansion in ¢ implies a separation in the phase space



58 Chapter 3. Generalized screens

GSP1  GSP2

Figure 3.2. Principal parts of the generalized screen vertical slowness
left symbols: zero order (GSPO0), first order (GSP1) and second order
(GSP2). ‘Split-step’ refers to the phase screen.

coordinates, z,, and «,, of the constituent symbols in equation (3.90):

aln] Alnl

77{1 ~m) (T ) 25[1 —m] (Tn) Q) (@), m=0,1,-- (3.101)

We will illustrate the implications of this expansion for the case n = 1 and m = 0, when
we have one term only. To simplify the notation, in this case, we omit the counter .
Representation (3.101) is depicted in Figure 3.1.

The separation of variables is why our lattice integral equation (3.31) will reduce to a
screen propagator (Wu & Huang, 1992). Equation (3.101) implies the following structure
for the cokernel [cf., equation (3.36)] of the vertical slowness operator,

— —

77%;1] m](au f[[?] m]( —a ) EL] m]( ay), m=0,1,- (3.102)

which reveals how Fourier constituents (‘plane’ waves) interact. Asymptotically, we have

5[[?] (0t = l) ~ 572 {gllfl_m](O) 5y — alt)
HQ (Dg &1 1))(0) (o, 6) (0t — ) + -+ } _

Let us consider the expansion for the vertical slowness left symbol up to O(¢) and
O(2°). Using equation (3.99), we arrive at

. 1
n[[:]](:vu,a,,) = 11]](7',u) {H(au) ; E[[ll]] = 38, CLH =—5 - (3.103)
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We denote this first-order expansion as the wide-angle screen approximation. (How the
wide-angle screen approximation relates to the local-Born approximation is discussed in
Appendix E.) Observe the occurrence of the branch point associated with the background
medium, which is artificial. Ignoring the artifical branch point, we now Taylor expand the

(1]

factor ap] about , = 0 (limiting to narrow angles). Up to zero-order,

am(a,,) ~ aH(O) =cl, (3.104)

which leads to the phase-screen or split-step approximation, which is also shown in Fig-

ure 3.2. For various applications, the second-order expansion in o? is sufficiently accurate,

alll(a) = @~ }(e)? o + 3P (02)? (3.105)

These expansions are illustrated in Figure 3.3. Note that, upon carrying out the Taylor

(1]

expansion of apy in «,, we can replace the background from minimum value in the thin slab
to average value, thus enhancing the accuracy (Stoffa et al., 1990). This replacement also
represents the transition from the phase-screen to the split-step Fourier approach. Some
wavefronts associated with Figures 3.2 and 3.3 are shown in Figure 3.4. Using Huygens
principle, we can now anticipate the evolution of a wavefront in a heterogeneous medium.
In all the approximations, independent of order, the propagation speed in the horizontal di-
rections is ¢, which causes any of our approximate instantaneous wavefronts to fold inwards
away from the true instantaneous wavefront. As such, the generalized-screen approximation
differs, for example, from the paraxial approximation where the accuracy with propagation
angle is independent of the medium (Claerbout, 1970; Van Stralen et al., 1998). But, like
in the paraxial approximation, critical-angle phenomena are not modelled properly within
the generalized-screen approximation.

The contribution to the left symbol O(e) and O(f2) follows directly from equation
(3.95) as

1 a1 .
n{o{ = 341 5 + §(Dz,8}) —5%3 (3.106)
(")
which extends the wide-angle approximation equation (3.103).

3.6.5 Optimization

Rather than accepting a given order of expansion, we will discuss a way — introducing
intermediate parameters — to smear out the error of our approximation in phase space. In
particular, we will be concerned about the errors in travel times along the wave-constituent
characteristics, and try to minimize those. Such errors are associated with the principal
parts of the symbols.

As an example, consider the wide-angle approximation (3.103). By shifting the back-
ground medium branch points in this expression, we can ‘bend’ the principal part of the
slowness curve. We will exploit this bending in an optimization procedure. In equations
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branch point
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GSP1 split-step=GSP1,0
GSP1,2
Figure 3.3. Taylor expansions of the principal part of the first-order

generalized screen (GSP1) vertical slowness left symbol: zero order
(GSP1,0) and second order (GSP1,2).

(3.87) and (3.103), we introduce parameters [y, 51 according to

Plesa) > VBoad + @@ 2, all(a) :

T R 1 [P

If the range of scattering angles is limited, by adjusting S, 31, indeed the branch points
troublesome branch point in a

(3.107)
can be moved inwards. However, upon applying the Taylor series expansion (3.105), the
EH is removed; then we set
0

instead.

V(zs,0) =1 @s,0),  afli@) > @ = 1) foad + 1) fila

2)2 (3.108)
For the purpose of optimization, we will turn the composition equation (3.79) into a
weak form, viz., we introduce the error function

err(x,,(,s) = (3/27r)2/da1da2

exXp [_i aa{, Da:{,] '3'(37;“ ¢, a:ﬂ S)ﬁ(mf,, ¢, ay,s)

(3.109)

2
- a(mua ¢ ay,s)
(z},al,)=(zp,00)

bl
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Figure 3.4. Wavefronts associated with the various
generalized-screen approximations.

measuring an L? average over the horizontal slownesses up to the branch points (i.e., over
the ‘propagating’ slowness surface). Restricting the error function to O(Q0), i.e. the vertical
gradients of travel time, yields

ext ) (2,1, ) = (5/20° [ (3110

N 2 2
!70(373, ay) + Z e" 7]{111]](3:#’ Cay)| — ﬁ,g(iltﬂ, ¢,0p)| dajdasy .

n=1

The misfit in the optimization for parameters fy, 5; is then simply the integral of the error
function over horizontal space. This integration reflects the variation of the medium in the
horizontal directions. Thus, for the O(2°) optimization problem, we might integrate over
the associated range of medium slownesses instead.

Enforcing the parameters fp, 51 to be equal ensures that the approximate expression
(3.107) contains a single branch point only. To ensure that the approximate expression
reduces to a screen representation, the parameters should be independent of z,,.

3.6.6 The screen propagator

We will now return to the basic symbol structure equations (3.87),(3.103) and analyze
what this structure implies for the thin-slab propagator given in equation (3.32). In general,



62 Chapter 3. Generalized screens

with equation (3.87) we get

§(+)(wu,$3;mfj,$3 — Axg) ~ /(3/27r)2da daj exp[—is ali(zy — z})] (3.111)
exp[.—s {(¥(z3 — Az3, o) + ﬁl(mu, T3 — %A:[:g, ap)} Azg) .
Invoking the first-order generalized-screen approximation (3.103) yields
exp[—s {1*(z3 — Azs, ) + 4 (z,, T3 — 3Az3,0l)} Azs) (3.112)
~ exp[—se 5[[11]] (T, 3 — A:):g)a[ll( lAmg, 0) Azg]
exp—s¢ £{)) (2, 73 — $A33) [af)} (w5 — 1A73,0)) — af}|(z5 — §Azs,0)] Azy]

e
exp[—s7’(z3 — Azs, o)) Azs)

~ exp|—se & (2, 73 — $Az3)al}) (3 — $Aw3,0) Aws]
{1—35»5[[}]](%,563 LAz3) [afj] (w3 — $Am3,0]) - aftl(zs — $A33,0)] A:I:g}
exp[—s7°(z3 — Azs, a!!) Azs]
! sAL3 | 0.01] (o) — gl
22 Je el @, lali] (o al) - el 0] <1

Note that € cof - (c°)~1S,-1 represents the absolute medium slowness perturbation, while

a“]( o) — [1] , 0)] vanishes at normal incidence (¢! = 0) and is bounded by c® as o/la!l —
[1] Ayt

Substituting equation (3.112) into equation (3.111) results in
iz, 2352, 13 — Axs) =~ exp[—se{l[:]](:c,,,xg - %A.’E3)G{H($3 — $Az3,0) Az
{/(s/27r)2da doy exp[—is &ix,] exp[—s7°(z3 — Axz,l) Axs] explis oz,
—s¢ 5[[:]](513#,1‘3 — 1Az3) Az /(s/21r)2da'1'dag exp[—is allz,] (3.113)
[GH}(ZE,?, - %Am,a") H}( %A:z:;;,O)] explis o/l z!,
exp[—s7°(z3 — Azs, o) A }



J. H. Le Rousseau / Wave-equation imaging and generalized screens 63

which, switching from left to right symbols [cf., equation (3.33)], can also be written as

/‘ da:'ldmég('*')(a:u,zy,;wf,,wg — Azg)() ~ /(3/27r)2da'1'do/2' (3.114)
exp|—is &y z,] exp[—s 7’ (x5 — Azs, &) Azs| Ny agy
{/dx’ldw.'z exp[is allx!] exp[—se flli]](a:f,,zg - %A.’L‘;})G{H(.’E;} — 1 Az3,0) Azs] (-)
—sAzx3 [am(xg - IAz3,0l) - a{H (z3 — 2Ax3,0)] / dz' dz) exp[is i’
65[[:]](112:,,1'3 - %A(Bg) exp[—ssﬁ[[:]](:z:f,,mg - %A:l:g)am(m;; - %A:Eg,O) A.’E3]()}
In this expression we have introduced a (windowed) normalizing operator N to restore

the appropriate amplitude behavior which was destroyed by the Taylor expansion of the
exponential in equation (3.112),
e i) e

1+1ig

N{y(1+p+iq)} = yexp(ig) ‘1 + 1_qu

Every additional order in the generalized-screen expansion (3.99), in equation (3.113) re-
quires an additional inverse Fourier transform. The phase-screen approximation is obtained
by omitting the second terms — proportional to Azs — in expressions (3.113), (3.114). The
numerical procedure is discussed in Le Rousseau and De Hoop (2001b) (Chapter 4) and is
illustrated in Figure 3.5. This figure is the counterpart of Figure 3.4.

The key simplification of the ‘exact’ thin-slab propagator accomplished by the (gen-
eralized) screen approximation is, that the inverse (scaled) Fourier transforms with respect
to a) no longer have to be evaluated for each x,, separately; compare equation (3.113) with
equation (3.32). This feature was inherited from the split-step Fourier or phase-screen ap-
proach, and also appears in the action of the F?eudo-diﬂ’erential operators involved in the

n
Bremmer series computation. The functions 2[1—m] (z,) in equation (3.101) constitute the
generalized screen, while the functions (AL[T]_m] () extend the ‘phase shift’, see Figure 3.1.
Further, we note that the concept of generalized screen has been inspired by the Rytov
approximation.

In equation (3.113) we recognize the Laplace-domain Green’s functions in the background
medium,

/(s/?w)zda'{da'?’ exp[—s {ic)(z, — x) + 7% (x3 — Azs, o)) Azs}]
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Figure 3.5. Wavefield snapshots associated with the various
generalized-screen approximations.

[the pressure response due to a vertical point force] and
/(3/27r)2da'1'da'2' a{ﬂ(mg — $Az3,0)) exp[-s{ial(z, — z}) + %3 — Az3, 0l)) Azs}]

[the pressure response due to a point injection source]. This is no surprise, as is illuci-
dated in Appendix E. With the aid of the Cagniard-De Hoop method [see, for example,
Achenbach (1973)], the transformation of those functions back to the time domain can be
carried out analytically. (Such a procedure was carried out for the paraxial approximations
by De Hoop and De Hoop (1992).) The (space-)time domain expression for §{*) can then
be obtained also, using the facts that multiplication by the exponential in the first line of
equation (3.113) transforms into a time shift, whereas multiplication by s in the third line
becomes a time differentiation.

3.6.7 The windowed screen propagator

To improve the accuracy of our propagator for a given order, we briefly consider the
extension of the generalized-screen approach based on a single reference or background
medium to one with multiple reference media. Thus, per window, the medium contrast is
reduced. To this end, we will have to localize our analysis in the horizontal directions. For
this we will employ the windowed Fourier transform:

/dm’ldwg exp(is &zl ] x(z), — 7))
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with the associated inverse transform
/dx_ldm_gx*(:v,, —I,) /(s/27r)2da'1'da'2' exp[—is o z,]
such that
/ dz7dzs [x(z, — ) = 1.
Equation (3.114) in windowed form, for example, becomes
/dmldm g+ ( (T4, T3; 2, T3 — Az3)(+) =~
/dﬂd.’l;_gx*(:l;,, - I) /(3/27r)2da'1’dag exp[—is a)z,]
exp[—s7°(z3 — Az, o) A:z:;;]/\/'ag,Am{ / dz' dz} explis alhz!,
x(z, — T,) exp[—se 5[1] (z),,z3 — $Az3)a H(:L‘g sAz3,0) Azs] (+)
—s Azs [am T3 — 1A:1:3, " — m( lA:I:;;,O)]
/dwldwzx(z —T,)explisalx I]6§[1] ), T3 — SAT3)
exp[—se 5[1] (z,, 3 — lAa:3)a{H(:1;3 - %A.’B3,0) Aa:g](-)}

Each window is associated with a particular reference medium.

3.6.8 The P(hase) S(hift) P(lus) I(nterpolation) propagator

If, in each window, the medium is supposed to be constant, and if the windowing
is replaced by interpolation, we recover the P(hase) S(hift) P(lus) I(nterpolation) proce-
dure (Gazdag & Sguazzero, 1984). Let us return to the thin-slab propagator in equation
(3.32). In PSPI we restrict our vertical slowness left symbol to its principal part [cf., equa-
tion (3.99)],

(+)(IIJ# 3—--A.’E3, ”)

~ Yz, T3 — 5AT3, ) = \/é,g(a:g — Azs, o) + 4l (zy, T3 — 5Az3)

whereas we sample the thin-slab propagator at the coordinate values {:1; } —; such that the

set {71 ( mL), T3 — —Am;;, 0)}._, regularly samples the range of medium velocities encountered
across the current slab. Let

§D (z3;2), 23 — Axg) = /(s/27r)2da'1'da’2'

exp[—is o () — 2 )] exp[—s 41 (x Ef),.’l,';; - $Az3,a)))Axs] (3.115)
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which are simply homogeneous medium propagators. The thin-slab propagator
§(+)(.,x3;wf,,:vf3) at any z, is then obtained by carrying out an interpolation based on

{g(l) }{:1'
3.7 Screen representations of the (de)composition operators

3.7.1 The composition operator

For the generalized-screen expansion of the composition operator [cf., equation (3.19)]
we have to expand (the symbol of) the vertical slowness operator itself. The action of
the vertical slowness operator I'*) can be cast in a form compatible with the thin-slab
propagator (equation (3.111)) and represented by its Schwartz kernel (Schwartz, 1966b;
Hormander, 1990) C*), obtained from the left symbol 4(*t) through the inverse Fourier
transforms,

¢+) (a:u,:v:,; z3) = /(3/27r)2da'1'da'2’ exp[—is &} (z, — z)] '“)'(’L)(:z;u,mg,aZ) . (3.116)

In accordance with equation (3.114) the Schwartz kernel for the vertical slowness is thus
approximated by

CA(+)($“,$L;:L'3) ~ [ (s/2m)2da)dd exp|—is ot x,] v (3, o) explis ollx!)

+e 5[[%]](:13#, T3) GH%(%,O) o(zy — ) (3.117)
te € (z,,22) / (s/2m)2dc! ot exp|—is o' z,]
[am(xg, all) — a{ﬂ(mg,, 0)) exp[is o}zl ] .
Switching from left to right symbols yields
CH(x,, 25 23) ~ /(s/27r)2da’1'da'2' exp[—is o1 x,] ¥ (23, o)) explis olx!
+e f[[;]](mua 3) a{ﬂ(ms, 0) d(zy — z},) (3.118)
+ [ (s/2mdalfda expl-is alollof (as, ) - af (a3, 0)
sﬁl[lll](xf,,mg) explisaliz]] .

In the wide-angle approximation, we substitute equation (3.103) in the equations above.
With optimization it would be equation (3.107) or equation (3.108). Every additional order
requires an additional inverse Fourier transform.

The phase-screen approximation is obtained by omitting the third terms on the right-
hand sides of equations (3.117)-(3.118).
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3.7.2 The decomposition operator

The screen representation of the decomposition operator [cf., equation (3.20)] requires
a screen approximation of the inverse vertical slowness operator. To this end, the reciprocal
vertical slowness symbol must be expanded as in equations (3.88)-(3.90). The reciprocal

vertical slowness operator is of order —1 and hence we denote its constituent symbols as
—1{n]
7’[ L—m]"
As a consequence of the expansion in ¢, the constituent symbols are all separable in

the phase space coordinates, z, and «,,

- y~ 1 A=1[7]
77[ 11[ ]m](wu’al/) = 2}\:6[ 1-m] ("I"It) a‘[ 1—-m] (al/) m=0,1,--- (3'119)

(If n =1 and m = 0 we have one term only in which case we omit the \.) The expansion
for the reciprocal vertical slowness left symbol up to O(Q°) (the principal parts) follows the
series

1 1 1 R —
~ = - ~ 5+ Y ety (3.120)
4! 20 4 al 0 70 (1]

a+ay  7°y/1+(a5/a9) n=1

Up to O(e) we arrive at the wide-angle approximation,
~1(1] i 1] -1 _ 141 —ip)
M- (Tp, o) = [ (zu)a; Ay (o), f[ 1 %a2 v Oy = W . (3.121)
Carrying out a Taylor series expansion about a, = 0 to zero order yields

a ' ew) = al[0) = ()7, (3.122)

which leads to the phase-screen or split-step approximation.
In analogy with equation (3.120), the O(2) correction term is found to be (De Hoop,
1996, Section VIII)

1 a o Py . A
2 [a + & ]-J/2 l:a'% [ag + a'%] + %laﬂ(Dwo a‘%):l (3123)
1

T T 2(/9)5[1 + (al/ad)pr2 [(70)25% [1+ (83/83)] + 3ias(Dy, 4)) ] Zs T

Up to O(e) we get

(3.124)

which extends the wide-angle approximation equation (3.121).
The Schwartz kernel of the inverse vertical slowness operator has a representation as
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in equation (3.117) or (3.118).

3.8 Screen representations of the reflection/transmission operators

The interaction operator in equations (3.22)-(3.23) allows a screen representation as
well. The interaction operator consists of a superposition of contributions from the density
variations and the vertical wave slowness variations.

The symbol of the multiplication operator %1:11_’%(83/11,2) (density variation) on the
right-hand side of equation (3.23) follows as

1

2 (D3e,) ~ 2c(Dzep) + - - (3.125)

1
O3p) =€ ——————
(9sp) 2(1+ce,)
which reveals an inherent separation of phase space coordinates.
The symbol of the operator %F‘l(agI‘ ) (vertical wave slowness variation) on the right-
hand side of equation (3.23) requires the composition of symbols

)
(:1:;, ,ae, )=($Il Q)

%exp [—iBO.QDm;] ’y_l(zu, T3, al) (039)(z), z3, )
in which we employ the expansions in accordance with equations (3.101) and (3.119). The
principal part is thus found to be [cf., equations (3.99), (3.120)]

1 (Osi1) = D3[ad + a3 3[4 + al]
~ 3V1) — = N N ~
21 489 [1 + (a3/a9)] 4(7°)?

[1 ~ (a}/a9) +] : (3.126)

In Figure 3.6, upon applying a centered difference to the vertical derivative 83, the (ex-
act) principal part of the reflection left symbol (the left-hand side) is compared with the
plane-wave reflection coefficient. In equation (3.126), the expansion in €, again, reveals a
separation of phase space coordinates in the constituent terms.

Carrying out a Taylor series expansion about a,, = 0 to zero order yields

(3.127)

which leads to the phase-screen or split-step approximation to equation (3.126).
In analogy with equation (3.120), the O(€2) correction term is found to be

1 1140 | =l 20 4 alyyal | 1720 4 ali2¢a al
————— | —5[a5 + 45| (Asfas + 45]) 41 + 5[40 + 45]°(054
5[a0 + Al 5lao + 5] (Os[ay + 85]) &) + 385 + 45]%(054,)

—ias(33(83 + 43)) (Dy, 83) + Yiag (85 + 45] (Dy, asaé)] . (3.128)
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Hence, to O(¢) we get

2 (00 [—%(v")"’ (95a3) a1 + 3(+°)" (B51)

—iag(8383) (Dx, 45) + Fias (7°) (Da, B38)) (3.129)

which extends the wide-angle approximation (leading order in equation (3.126)). In Ap-
pendix F the relation between the transmission symbol and the wide-angle screen correction
to the vertical slowness symbol is discussed.

3.8.1 The screen reflection kernel

The Schwartz kernel of the interaction operator has a representation as in equation
(3.117) or (3.118). As in the subsection on the screen propagator, we will show the repre-
sentation of the screen reflection kernel explicitly for the principal symbol, up to the second
order in €.

As in equation (3.112), we separate the contribution to the kernel from the symbol at
‘vertical incidence’, i.e. «j, = 0. Thus, with [cf., equations (3.73) and (3.76)-(3.78)]

[é'g + é%](:l)#,xg, 0) = [c(:l,‘ﬂ,.'ltg)]_Q 3
we rewrite equation (3.126) in the form

L (B3¢ %) (zy, 73)
(0591) (2, 73, 00) ~ T4 2(zy,73)

2;),1 + %(830_2)(:5#’373)

(3.130)

[(ag(m; a) a%(:vlg,m) ~ 820 29) ([ag(zgl, a)l? [ag(a;,onz) +]

In Figure 3.7, upon applying a centered difference to the vertical derivative Js, the exact
principal part of the reflection left symbol is compared with its first and second order
generalized screen approximations, in accordance with the equation above.
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The Schwartz kernel then follows as [cf., equation (3.117)]

4e2 ("I";t ) 3;3)

+1(83¢ )z, 3) /(3/27r)2da'1'da'2' exp[—is ol z,]

1 1
(‘0 m 30 ) exp[is agmf,]
3.2(323, au) 8.2(1173, 0)

—i(33c—2)(:1:u,:1:3)é%(xﬂ,atg)/(s/27r)2da'1'da'2' exp[—is alzs)

1 1
( - ) explisalzl].

[5'8(3;37 (IZ)P [é'g($3,0)]2

ﬁ(xﬂ,mf,;a:g) o oz, — ) (3.131)

3.8.2 Comparison with the De Wolf approximation
According to equation (3.46) the leading order backscattered field is given by

Wi = Ky W | (3.132)
which can be cast into a recursion for féll) using equation (3.61). This equation bears
resemblance with the De Wolf approximation (Wu & Huang, 1995) though the interaction
operator follows from scattering across level surfaces rather than from thin volumes. The
algorithm is described by equation (3.63) (J = 2) for the slab [kAzs, (k + 1)Azs).

3.9 Concluding remarks

We have developed a class of screen-like algorithms for the multi-dimensional (gener-
alized) Bremmer coupling series. The key ingredient was a separation of variables of the
vertical slowness in horizontal phase space. This separation originated from an embedding
procedure and an expansion of all relevant quantities in magnitude and smoothness of the
medium contrast with respect to the embedding. Our scheme has added to the standard
phase-screen method in the following ways: we considered larger medium variations in the
lateral directions; we enhanced the accuracy for larger scattering angles; we introduced
(de)composition operators to incorporate any desired source- or receiver-type with the ap-
propriate radiation characteristics; we have taken care of the backscattered field with the
aid of the Bremmer coupling series. The backscattered field includes phenomena like turn-
ing ray waves; the screen propagator accounts for focussing and defocussing effects also.
The screen approximation, however, does not model critical-angle phenomena such as head
waves, though it captures some of the evanescent wave contributions.

The methodology followed in this chapter provides a platform from which one can
evaluate the generalized-screen expansion for wave propagation and scattering up to any
desired level of accuracy. However, the validity of the methodology is restricted to the
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- 8 %

Figure 3.6. The centered difference (in z3) representation of the prin-
cipal part of the reflection symbol (dashed) and the corresponding
plane-wave reflection coefficient (solid): real parts. The relative dif-
ference between the two is shown at the bottom.
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GSP1
-40

GSP2

Figure 3.7. Principal parts of the generalized screen reflection left
symbols: first order (GSP1) and second order (GSP2). The exact
reflection symbol is dashed. The relative differences between the
generalized screen and the exact reflection symbols are shown in the
bottom part.
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time-Laplace domain. Termwise, with the aid of complex analysis, the generalized-screen
expansion can be reformulated and given appropriate meaning in the time-Fourier domain

taking special care of the branch cuts associated with the vertical wave slowness in the
embedding.

Not only have we investigated the accuracy of the generalized-screen approximations
on the wavefront using the locally frozen values for medium properties; we have analyzed
the influence of the rate of change of the medium properties also. Our formulae can be used
to quantify the leading-order contribution to the scattering process due to those rates.

The computational complexity of our algorithm is given by (2+m) (N log N+ N) where
m is the order of the generalized-screen approximation, and N is the number of nodes at
which the wavefield is sampled in the horizontal directions, multiplied by the number of ver-
tical steps and by the number of terms in the Bremmer series. In principle, this complexity
is comparable to the one associated with the P(arabolic) E(quation) algorithms. However,
implicit, stable PE algorithms require the solution of a (sparse) system of equations at each
vertical propagation step. Whatever method used, in three dimensions, the computational
complexity of the solution procedure will be greater than the one of the generalized-screen
approach.

There are various fields of application of the method presented in this chapter. One
concerns the numerical implementation of wave equation solvers in acoustics and electro-
magnetics. Some, benchmark numerical results have been published by Le Rousseau and
De Hoop (Le Rousseau & De Hoop, 1998). Otherwise, in the study of propagation of waves
in smoothly varying random media, the method has been proven to be useful. Finally, the
lowest order approximations discussed in this chapter have already found application in
seismic imaging (Huang & Wu, 1996; Wu & Jin, 1997; Huang et al., 1999). A first step
towards extending the procedure to elasticity can be found in (Wu & Xie, 1994).
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Chapter 4

Modeling and imaging with the scalar
generalized-screen algorithms in isotropic media!

4.1 Summary

The phase-screen and the split-step Fourier methods, which allow modeling and migra-
tion in laterally heterogeneous media, are generalized here so as to increase their accuracies
for media with large and rapid lateral variations. The medium is defined in terms of a
background medium and a perturbation. Such a contrast formulation induces a series ex-
pansion of the vertical slowness in which we recognize the first term as the split-step Fourier
approximation and the addition of higher-order terms of the expansion increases the accu-
racy. Employing this expansion in the one-way scalar propagator yields the scalar one-way
generalized-screen propagator. We also introduce a generalized-screen representation of the
reflection operator. The interaction between the up- and downgoing fields is taken into
account by a Bremmer series. These results are then cast into numerical algorithms. We
analyze the accuracy of the generalized-screen method in complex structures using synthetic
models that exhibit significant multi-pathing: the IFP 2D Marmousi model and the SEG-
EAGE 3D salt model. As compared with the split-step Fourier method, in the presence of
lateral medium variations, the generalized-screen methods exhibit an increased accuracy at
wider angles of propagation and scattering. As a result, in the process of migration, we can
choose a member of the family of our generalized-screen algorithms in accordance with the
complexity of the medium (velocity model).

4.2 Introduction

The concept of screen approximations to the propagation of waves has been around
for many years. The phase-screen approximation has been applied to light transmission
through the atmosphere (Ratcliffe, 1956; Mercier, 1962; Filice, 1984; Martin & Flatté,
1988), propagation of light in optical fibers (Feit & Fleck, 1978), propagation of radio
signals through the ionosphere (Buckley, 1975; Bramley, 1977; Knepp, 1983), propagation
of acoustic waves in the ocean (Flatté et al, 1979; Thomson & Chapman, 1983), and
propagation of seismic waves in the earth (Stoffa et al., 1990), renamed as the split-step
Fourier method. More recently, the phase-screen method has been extended to elastic

"This chapter was published in Geophysics, 66, (2001) pp.1551-1568, with M.V. de Hoop.
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waves (Fisk & McCartor, 1991; Fisk et al., 1992; Wu, 1994).

The original phase-screen method was designed for multiple downward scattering of
waves, the downward direction being the preferred direction of propagation. It included
phenomena such as focusing and defocusing associated with multi-pathing. The applica-
bility of the phase-screen method generally requires that the screen interval satisfies the
following criteria: small medium variations (weak scattering), transversely smooth medium
variations (narrow-angle scattering), and even smoother variations in the preferred direc-
tion (negligible backscattering). With the generalized-screen (GS) approach, we access the
accuracy of the phase-screen method, and generalize it to larger-contrast, wider-angle, and
back-scattering.

In realistic geological models, heterogeneity in medium properties is such that the
phenomenon of multiple scattering is significant. We distinguish two classes of multiple
scattering: one in which the multiples are identified with respect to the projection of their
propagation paths onto the vertical direction (depth), and one where the multiples are
identified with respect to the projection of their propagation paths onto the horizontal
plane. (The analysis underlying this distinction is shown in Chapter 3.) In the asymptotic
framework of wavefront analysis, paths are rays. The first class of multiple scattering is
associated with ‘turning rays’ and ‘internal multiples’ as well as ‘surface multiples’, the
second, possibly combined with the first class of multiple scattering, is associated with
‘multi-pathing’.

Seismic imaging and inversion are now commonly applied to regions where geologic
complexities are present. An important part of the seismic energy is not contained in the
‘first’ arrival. An accurate prediction of multi-pathing and ‘second’ arrivals is the key to
a better processing. A ray-theoretic treatment of the multi-pathing is not straightforward
and is algorithmically rather involved (De Hoop & Brandsberg-Dahl, 2000). Wave extrapo-
lation methods are able to predict multi-pathing (second class of multiple scattering), with
no need to follow the formation of caustics explicitly. Also, with 3D surveys becoming
standard practice, fast 3D algorithms are in demand. On the one hand, the full 3D ex-
tension of finite-difference methods is costly and restrict their application. One the other
hand, methods such as the phase-screen (Ratcliffe, 1956) and the closely related split-step
Fourier (Stoffa et al., 1990) methods yield a faster 3D algorithm. They are, however, limited
in their capacity to predict large-angle propagation where significant lateral heterogeneities
are present. Because of their attractive properties (3D, multi-pathing), we propose, here, to
generalize this latter family of algorithms, enhancing their accuracy. Since this algorithmic
structure coincides with the one of the classical phase-screen propagator, we denote our ap-
proximations as generalized screens. Also, we propose to predict the first class of multiple
scattering by the introduction of the Bremmer series (De Hoop, 1996).

Our approach accounts for the first class of multiple scattering through use of the
generalized Bremmer series (De Hoop, 1996), and for the second class of multi-pathing by
means of the GS propagator (De Hoop et al., 2000).

A scattering theory that follows the ray picture but accounts for full-wave behavior has
been developed by De Hoop (1996). It is based on an extension of the Bremmer coupling
series to multi-dimensionally varying media. Bremmer’s method decomposes the wavefield
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into a recursion of one-way propagation operators each using the previous wavefield as a
source. Thus, the method first generates a wavefield dominated by downward propagation,
then generates a ‘first’ upward propagating wavefield, then a ‘second’ downward propagating
field, etc. In this manner, multiple reflections (class one multiples) are accounted for in a
controlled manner. The Bremmer series in acoustic media have already found application
in Van Stralen et al.(1998) where the one-way wave operator is approximated with an
accurate optimal finite-difference algorithm based on a rational expansion as opposed to a
GS expansion.

The propagator that generates the Bremmer series can be represented by a Hamiltonian
path integral (De Witte-Morette et al., 1979; Fishman & McCoy, 1984a; Fishman & McCoy,
1984b; De Hoop, 1996) that accounts for not only the energy traveling along the ray but
also for the transport along non-stationary paths. These path integrals contain all possible
multi-pathing. In the path integral, ‘time’ is identified with depth, and ‘momenta’ are
identified with the horizontal wave slownesses which, in the ray-theoretic limit, coincide with
the horizontal components of the gradient of travel time. The (square-root) Hamiltonian,
appearing in the phase of the path integral, is identified with vertical wave slowness, which,
in the ray-theoretic limit, coincides with the vertical component of the gradient of travel
time (De Hoop, 1996).

The problem with the path integrals is the computational complexity of their nu-
merical evaluation. De Hoop et al. (2000) have developed a method that dramatically
reduces the computational complexity of such evaluation, at the cost of approximating the
acoustics (the shape of wavefronts). The result is an algorithm that, for each propagation
step, is built from the sequence: forward Fourier transform, multiplication, inverse Fourier
transform, multiplication -where the transform is in the horizontal directions and may be
windowed. We have designed a hierarchy of increasingly accurate approximations. Underly-
ing these approximations is an expansion of the medium wave-speed model simultaneously
into magnitude and smoothness of variation.

We analyze the accuracy of the GS method in complex structures using synthetic mod-
els that exhibit significant multi-pathing: the IFP 2D Marmousi model and the SEG-EAGE
3D salt model. These two models represent two fundamentally different geological situa-
tions. In the Marmousi model, complexity arises from faulting and tectonic deformation in
a sedimentary region. In the SEG-EAGE 3D salt model, it arises from the intrusion of a salt
body the wave speed of which is significantly higher than in the surrounding formations.
These models commonly yield poor imaging below these complex structures. With the help
of the GS propagator, which we prove to be accurate in these situations, we shall illustrate
that the origin of this problem is possibly associated with multi-pathing.

We first present the GS representation of the thin-slab propagator as well as the re-
flection operator. These results are then cast into numerical algorithms, and our accuracy
analysis is carried out by modeling primarily. We analyze the migration operator before
stacking that is conventionally performed in the process of imaging. We focus on multi-
pathing and ‘second’-arrival energy. We illustrate the modeling capacity of the GS method
in 2D and 3D. For completeness, we show some prestack depth migration results in 2D.

Throughout this chapter, we assume that the medium is isotropic. In Le Rousseaun
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and De Hoop (2001c) (Chapter 5), we extend the method to media that are transversely
isotropic with vertical symmetry axis.

4.3 The scalar generalized-screen propagator

4.3.1 The scalar one-way Green’s function

Selecting the direction of preference along the z3-axis (or ‘vertical’ axis) and denoting
the remaining (‘transverse’ or ‘horizontal’) coordinates by z,, pp = 1,2, the one-way acoustic
Green’s function G*) is defined by the equation

(03 F iwl (2, 235 Dy)] g(i)(mu,az;;;x;,,xg) =0z, — :I:L) d(z3 — %) (4.1)

in the frequency-space domain. The one-way Green’s functions propagate waves in an
arbitrary inhomogeneous medium, ignoring class one multiples, taking class two multiples
into account. The left-hand side of equation (4.1), 93 F iwI', is the one-way wave operator.
The choice of sign discriminates upgoing (G(~)) from downgoing (G(*)) Green’s functions.
For uniform density p, the operator I' satisfies the characteristic equation,

F2:Aa AZC_Z_DUDII) (42)
where c is the medium wave speed and

1
iw

D, 3y , (4.3)

has the interpretation of horizontal slowness operator; I' = I'(z,,z3;D,) is the vertical
slowness operator. In equation (4.2) and throughout the chapter we use the summation
convention for repeated indices.

For variable density media, De Hoop (1996) derived that

I? = -D,D, +kp—p ' (Dyp) D, = p~ (D, Dyp) + p~2(Dup)(Dyp) , (4.4)

equal to the transverse Helmholtz operator in the acoustic pressure-normalization analog
(De Hoop, 1996; De Hoop et al., 2000); p is the volume density of mass [kg/m?], and & is
the compressibility [Pa~!], with the wave speed defined as ¢=2 = kp.

The thin-slab propagator In the present development, it is advantageous to use
the Laplace transform with respect to time, ¢, and the Fourier transform with respect to
the horizontal spatial coordinates, z,. We introduce the notation

s = —iw, (4.5)

1
a, = .ik-,, =-=k,, (4.6)
1w S
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where w and &, are the frequency and the horizontal wavenumber components (the inverse
Laplace transform is anticipated to be evaluated along the Bromwich contour). In the
Laplace (s) domain with Re(s) > 0, the operator A becomes strictly elliptic, which enables
us to consider any of its fractional powers with the aid of pseudodifferential calculus (Treves,
1980a). Here, we are interested in its square root, I'. Using the Fourier transform with
respect to the horizontal spatial coordinates we can associate with I' and A their ‘left
symbols’ (Treves, 1980a; Hormander, 1985a), v and a respectively, i.e., let ¢ be a test
function, then

(TCo)(zy,x3) = /(s/27r)2da1da2/dm'ldx'2 exp[—is(z, — 7)),
7(:1:#’373;0‘1/) ¢(IIJL,$3) 3

(Ad)(zp,x3) = /(s/27r)2da1da2/dm'1dx'2 exp[—is(z, — z})ay)

a’(zll., I3; al/) ¢(z',ua $3) )
where the symbol a is obtained, after equation (4.4), as
a=a,a, +kp—p ' (Dyp)ia, — p~ ' (D,Dyp) + p~*(Dup)(Dup)

since i, is the left symbol? of D,. For uniform density, a reduces to a,a, + kp, consis-
tent with equation (4.2). Equation (4.2) transforms into a characteristic equation for left
symbols:

€xXp [_iaa{, Da:{,] '7(17113 a:,)'y(:nf,; au) = a'(mu; au) , (4-7)

(@00, )=(2u,av)

as given by symbol calculus of pseudodifferential operators (Treves, 1980a; Hormander,
1985a; De Hoop, 1996, equation (A12)).

With the vertical slowness left symbol, the one-way Green’s function, ¢¥), from
equation (4.1) can be represented by a Hamiltonian path-integral representation (Cohen-
Tannoudji et al., 1977; Schulman, 1981; Fishman & McCoy, 1984b; De Hoop et al., 2000).
We define the scalar one-way propagator, g(*), through

G) = +H(las — a4) ¢,

where the Heaviside function H generates the Dirac distribution in equation (4.1) (cf.,
Appendix G). For a sufficiently small vertical step Azz = x3 — 2% (thin slab), and a
medium sufficiently smooth, the Hamiltonian path-integral representation for the one-way

?(Du¢)(zy, x3) = [(s/2m) darda: [ drideh i, exp[—is(zs — 2, )as] (), x3).
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thin-slab propagator reduces to (see Chapter 2) (De Hoop et al., 2000):

9 (@, w33 7, 75) ~
/(1/27r)2dk'1dk2 explikq(zs — zi,)] exp[tiw y(z,, T3; iky /w) Az3]
= /(s/27r)2da1da2 exp[—is @, (2, — z},)] exp[Fs y(zy, T3; ) Azs),  (4.8)
with
T3 = T3 — %A$3 =5+ %Am;; .

In the limit of a laterally homogeneous thin slab, -y will not depend on z,,, and the thin-
slab propagator reduces to Gazdag’s phase-shift operator (Gazdag, 1978). The operator is
composed of a forward Fourier transform, a multiplication by a phase factor (the phase
is proportional to the vertical slowness) and an inverse Fourier transform. In the general
case of equation (4.8), the thin-slab propagator has a similar structure except that the
phase factor is dependent upon the output point, z,. Every output point requires its own
evaluation of equation (4.8), which represents a considerable computational effort. The GS
approximation of the thin-slab propagator enforces a simplification of this computational
complexity, while allowing laterally varying media.

High-frequency approximation Throughout this chapter, we will use a ‘high-fre-
quency’ approximation. Then the pseudodifferential operator I' reduces to its principal part
I't, and the associated left symbol, 7, reduces to its principal symbol, 4;. The principal
symbol, 71, follows from taking the high-frequency limit of equation (4.7) (cf., Appendix
H):

Y1(Tp, T35 ) = \/[c(nﬂﬂ,:cg)]‘2 +ayay . (4.9)

The triplet (i, i, y;) represents the components of the gradient of the travel time. Then,
the scalar one-way thin-slab propagator becomes

g(i)(mu,:vg;m;,,mg) ~ (4.10)

/(s/27r)2da1da2 exp|—is ag (T, — z,,)) exp[Fsv1 (2, T3; ) Axs) .

Note that the wavefront set (Hormander, 1990) of propagator (4.10) is equal to the one of
propagator (4.8). Singularities of the wavefield propagate along the characteristics which are
solely determined by the principal parts of the pseudodifferential equation (4.1) (Hérmander,
1985a, Theorem 18.1.28). Using the principal part only, we do not alter the geometrical
aspects of the wave propagation, i.e., the wavefront set. Any departure from the principal
parts results in smoother contributions (e.g. on a Soboloev scale) to the wavefield.
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4.3.2 Generalized-screen principal-slowness surface

The contrast formulation For the subsequent analysis, we employ a ‘contrast
formulation’ that allows us to take lateral heterogeneity into account in the thin-slab prop-
agation. In the slab [z}, z3] we introduce a background medium with wave speed . The
background medium is constant in the slab, but may vary from one slab to another. We
express this by letting ¢ = ¢®(x3). A medium perturbation term u is then introduced as

Wy, 23) = [c(zy, z3)] 2 — [*(x3)] 2. (4.11)

To avoid having an artificial branch point enter the propagating-wave domain (see below),
we impose the condition

(z3) < ez, () for (€ [z},x3) . (4.12)

We will expand the principal symbol of the vertical slowness left symbol, 7;, into the
perturbation u about the background medium.

Generalized-screen expansion Assuming small vertical medium variation across
the thin slab, i.e., if the thin slab is sufficiently small, we set

Y (¢ ) = V[O(x3)] "2 + apa,
=1(z350) for ¢ € [z},23], (4.13)

the vertical slowness associated with the background medium. The principal symbol of the
vertical slowness, 71, can then be decomposed into a background component, 7%, and a
perturbation , 71, i.e.,

7 (-'B;n T3;0) = 70(373; ay) + 711 (IL‘#, T3;0). (4.14)

To find an explicit form for ] we use relationship (4.9), which can be rewritten as

(@35 00) = /[ O(23)] 2 + ulzy, 73) + e

= 7(3; ) ,\/1 + [;‘(a:‘—x"’) , (4.15)

0(1735 au)]2
and expand the result in a Taylor series according to
(@ 235 ) = 70 (35 00) + 711(:12,“%3; a,)

O(z3; ) + Z J[’Y[u:r:uc,xmg])ga 7 +o(ufzy, z3))" (4.16)
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where

1 1-3---(25-3
aj = (—1)7*1 T )| (4.17)

In practice, we shall limit ourselves to the fourth-order expansion,

N , 1u(zy,z3) 1 [u(zy,23))® | 1 [u(z,,z3))®
Y@y, 235 00) = (23 00) + 570(:1:2;01,,) - §[7°(m:;au)]3 E[fyo(mlg;a,,)]*?

w(z,, 3)|}
_%M + o(u(zy, 23))". (4.18)

It is important to note that in each term of the expansion, the dependencies on z,, and on a,
are factorized. This property will induce the structure of the GS propagator. Justification of
expansion (4.16) is given in De Hoop et al. (2000), where the full symbol +y is analyzed; here
we have restricted ourselves to its principal symbol, y;. Where normal mode expansions of
the one-way propagator apply, the factorization, in fact, occurs naturally (Fishman et al.,
2000).

Phase-screen and split-step Fourier approximations The phase-screen approx-
imation follows from expansion (4.16) by setting n = 1 and approximating 1/9° by its
zero-order Taylor expansion in ¢, about 0 (vertical propagation),

(@, x3300) = 70 (23500) + 1 & ulzy, z3) . (4.19)

This leads to the approximation of the vertical slowness symbol employed by Stoffa et
al. (1990), since

u=c?— ()2 20) e - ()7,
which yields with equation (4.19),
T (37;“1"3; au) =~ 70(373; au) + [C(:Bu, 3:3)]_1 - [00(5173)]*1 ) (4'20)

as found in the split-step Fourier method.

Figure 4.1 illustrates the principal slowness surfaces (y; as a function of the horizontal
slowness p = \/—a,a,) of the GS expansions for n = 1,2 and 3 as given in equation (4.16),
and the split-step Fourier one. The split-step approximation approaches the actual slowness
surface by simply vertically shifting the background slowness surface. Adding higher-order
terms in the GS expansion, the shape of the slowness surface is improved and, hence, the
accuracy for wider-angle propagation is increased. This observation indicates that for the
extension to anisotropic media, the split-step approximation does not have the degree of
freedom to shape the slowness surface appropriately (Le Rousseau & De Hoop, 200lc;
Thomsen, 1998); the influence of the anisotropic parameters occurs only at non vertical
propagation.
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4 branch point

>

Figure 4.1. Principal parts of the generalized-screen vertical slowness; zero-order (GSPO0),
first-order (GSP1) and second-order (GSP2) as a function of the horizontal slowness p. Also
shown is the principal part of the vertical slowness for the split-step Fourier method. The
principal part of the exact vertical slowness is shown with the inner dashed curve.

\

GSP1 GSP2

The GS expansion as shown in equation (4.16) reveals the introduction of recipro-
cal powers of 7° and hence contains branch points at a,a, = —[c°]~2, as illustrated in
Figure 4.1. The vicinity of the branch point should be treated carefully. To ensure that
the branch point is out of the propagation regime within the thin-slab, we have chosen ¢’
smaller than the minimum medium wave speed within the slab, as illustrated in Figure 4.1.
Unlike the GS expansion, the split-step Fourier method does not suffer from the presence
of a branch point. The choice of a background wave speed ¢ greater than the minimum
wave speed in each thin-slab is therefore possible for this approximation. One may then
choose, for example, the mean or the median of the medium velocities in the slab as a refer-
ence. Different choices yield different operators; It is not obvious how to find the ‘optimum’
background medium.

In the phase-screen approximation [cf., equation (4.19)], the Taylor expansion of 1/~°
in a0, was truncated after the first term. The accuracy of this approximation is increased
by simply adding more terms, e.g.,

M2 235 0) =0 (@35 0) + § ulzy, 23) [(23) ~ jewen(®(@3)’],  (4.21)

yielding an angular correction in the vertical slowness. The accuracy, however, is bounded
by the accuracy of the first-order GS expansion (Chapter 4, Figure 3.3) (De Hoop et al.,
2000, Figure 3).
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4.3.3 The scalar generalized-screen propagator

With the analysis given in equation (4.16), we write equation (4.10) in the form

g(i)(.’L'“,iL’g;.'I);,.’Bg) ~ /(S/27T)2da1d02 exp[—is ay(z, — z})] (4.22)
- exp[Fs {71°(@3; @) + v (€, T35 00)} As]
where
T3 =x3 — 5Az3 = 23 + 3AT3 . (4.23)

Expanding the exponential, we seek an approximation of the propagator that matches the
structure of the GS expansion. We therefore expand the perturbation term about vertical
propagation and write

711 (m,u: Z3; aI/) = 711 ("Bua 1235 0) + [711 (1’.#1 Z3; CY,,) - ’Yll (wua Is; 0)] 3
and
exp[Fs (Vi (Tu, T3; ) — 71 (T, £3;0)) Az] ~ (4.24)
1Fs [711(2:”,:23; ay) — 7%(:1:,,,:23;0)] Azs .
Expanding the exponential separates dependencies of the propagator on z, and on «,,
which allows spatial dependencies to be taken out of the Fourier integral (4.22). We have
accomplished that the inverse Fourier transforms with respect to «, no longer have to

be evaluated for each z, separately, which is the key simplification of the GS propagator
compared with the ‘exact’ thin-slab propagator. We obtain

9 (@, z35 20, 73) ~ g"F @y, 7532, 78) + ¢'H (3, 735 2], 25) (4.25)
with
go(i)(mﬂ, x3; ), 24) = exp[Fs7y) (xp, Z3;0) Azs] (4.26)
. /(s/27r)2da1da2 exp[—is ay (s — )] exp|Fs 7y’ (Z3; o) Az3]
and

gl(i)(mﬂ,wg; ), 74) = exp[Fs 7y, (zp, T3;0) Azs] (4.27)
. /(3/2%)2da1da2 exp[—is ay (x5 — z)] exp[Fsy’(Z3; ) Axs)

<Az [4:3(711(-'1:;u573§O‘U) _7%(1;#’523;0))] .
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Since

u(z,,, x3)) o o
7 :I’[L)q"'}) Z ][’Y xl 0]2] 1 [C(:E/LJ-TS)] 1—[00(1,'“,:173)] 1*

which is a spatial phase correction term that may be found in the split-step Fourier method
(Stoffa et al., 1990), we obtain

9" @y, 23320, 2%) = exp [Fs ([c(zp 23)] 7" ~ [O(F3)]7F) Azs] (4.28)

. /(s/27r)2da1da2 exp[—is @, (x5 — 2})] exp[Fs°(T3; ) Az .

The leading-order constituent term of the GS propagator, g°*), is the propagator of the
split-step Fourier method, i.e., a propagator associated with the background medium for the
thin-slab and a phase correction term in space that is accurate for the vertical propagation
only. The higher-order term in the GS propagator then follows as

gl(i)(mﬂ,mg;zz,wg) = exp [:Fs ([c(xu,zfzg)]_l — [CO(:Eg)]"l) A.’Bg] (4.29)
. /(s/27r)2da1da2 exp[—is ag(z, — 2})] exp[Fs°(Z3; ) Axs]
<Az [Fs(n (2 T35 ) — 71 (T4, 2350))]
which, upon replacing v} by its truncated expression as in equation (4.16), gives

') (2, 235 7)), 75) = exp [Fs ([e(zp, 23)] 7" — [(3)] ") Azs] (4.30)

. :F3A$3Z{a.j [u(:z:,t,i;;)]j/ (s/27)2dedes exp|—is ag (z, — )]
j=1

- 1 1
‘exp(Fs 7" (25; ) Azg] [[70(3—;3; a5 T [70(53;0)121‘—1]} '

The second constituent term of the GS propagator, g'(*), arises from the higher-order terms
of the GS expansion. We call n the order of the GS approximation. As mentioned, the
higher the order, the higher the accuracy for wide-angle propagation.

The split-step Fourier propagator simply yields a shuttling between the frequency-
horizontal space and frequency-horizontal slowness domains and a multiplication in each
domain. Fach additional term of the GS expansion (4.16) requires an additional inverse
Fourier transform in space as expressed in equation (4.30). As the computational com-
plezity of the downward continuation in the split-step Fourier method is proportional to
2N1Ns logy NNz (N, denoting the numbers of samples in the z,-direction), the complex-

th

ity of our n*"-order GS approach is proportional to (2 + n) N, Ns log, N;No.
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4.3.4 Normalization of the scalar generalized-screen propagator

The Taylor expansion of the exponential in equation (4.24) destroys the unitarity of
propagator (4.8) and hence the amplitude characteristics of the propagator; depending on
the wavenumber, or the local angle of propagation, part of the energy may be amplified or
attenuated incorrectly. It can also lead to a numerical algorithm that is unstable over a
large range of downward continuation. To restore, approximately, the amplitude behavior,
we apply a normalizing operator and obtain the GS propagator ggsp

gl(i)(:z;ﬂ,x;;;:z::),:z:g)
9°® (zy, x3; ), 74)

+
05 (@ st 2) = ¢°F) (2, w3 2, 2) N [1 +

the division being carried out in some stable sense, and the normalizing operator N being
given by (De Hoop et al., 2000)
-1
[1 + 2 ] .
141¢g

In effect, this normalization corrects for the error introduced by the expansion of the ex-
ponential in equation (4.24), and restores the amplitude behavior exactly in the case of a
constant perturbation u, i.e., a medium with wave speed higher than the reference wave
speed.

N1 + p + ig] = exp(iq) }1-{--1%@

4.4 The scalar generalized-screen algorithm

Here, we discuss the GS algorithm based upon equations (4.22) through (4.30). We
denote the (one-way) wavefield by W, and carry out the wave propagation in the frequency
domain, with each frequency component computed independently. The downward contin-
uation for modeling and imaging with the one-way propagator is performed according to
the decomposition of the vertical slowness symbol into one background term and a series of
perturbation terms as in equation (4.16).

Let the current depth be set to zh = z, and set Z3 = =% + L Axz; as before. Following
3 37T 3 g

equation (4.30), we introduce the intermediate field quantities wy,--- ,w, according to
(step 1)

wo(zy, s) = exp [—s Azxs ([C(:Eu,(l_:g)]_l — [co(ig)]_l)] W(z,, z5,s) ,

wq (iﬂp, 3) = =S A:1:3 a u(:z;u,f::;) wo(a:,,, 3) )

wa(xy, 8) = —s Az ap u*(zy, T3) wo(Ty, 8)

'wn("l;u, 8) = —sAr3 ay un(w;u z3) wO(:Bu, s) -

The quantity wp represents the split-step Fourier term; the higher-order terms increase the
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accuracy for wider-angle propagation. The intermediate field quantities are then Fourier
transformed to the horizontal-wavenumber domain (step 2),

wi(ay,s) = /wj(xﬂ,s) exp [~iz, ks dx), (4.31)
= /'wj(wu,s) exp [iszo00] dzy,, j=0,--- ,n.
The wavefield at depth z3 = 2 + Azj then follows as
W (z3; o, 8) = wo(a, s) exp[—sAxzy’(z3;a,)]

~N[1+Qf“(a”’s) (7( ! )—00(5:3))

wo(ay, s) 0(z3; 00

+.--+‘f’"((“"’s) ( . —[c°(:r:3>12"—1)]-

wo(a,s) \[v(Z3; 0]t

(step 3). Finally, we carry out the inverse Fourier transform W (zs;a,,s) — Wy, xs;s),
(step 4).

The sequence of steps illustrates the shuttling between the frequency-horizontal space
domain and frequency-horizontal wavenumber domain that is performed with the GS ap-
proach. The method departs from the exact solution through the (approximate) expansion
of the vertical slowness operator. The case of a constant medium perturbation provides
insight in how wavefronts evolve based on Huygens’ principle (Huygens, 1690; Hormander,
1990). Let the background medium be characterized by a wave speed ® that is 2/3 of the
true wave speed. The top of Figure 4.2 shows (instantaneous) wavefronts constructed as
the polar reciprocal of the local slowness surface shown in Figure 4.1. In the bottom part
of Figure 4.2 we show numerical impulse responses of the one-way propagator for different
orders of generalized screens, as well as for the split-step Fourier method. For a constant
perturbation, the predicted wavefronts and the actual computed wavefronts can be overlain
exactly. The exact response is plotted dashed in the top part of the figure. Note that the
accuracy varies with propagation angle (or migration dip upon imaging), and that this ac-
curacy varies with (local) medium perturbation. In all the approximations, independent of
order n, the propagation speed in the horizontal directions approaches ¢, which causes any
approximate wavefront to fold inwards away from the true wavefront. Indeed, the normal to
any slowness surface in Figure 4.1 is horizontal or converges to horizontal when the horizon-
tal slowness is 1/c°. As such, the GS approximation differs, for example, from the paraxial
approximation where the accuracy with dip is independent of the medium (De Hoop &
De Hoop, 1992). The GS inaccuracy at horizontal propagation is inherited from the GS
expansion of the vertical slowness symbol. Note, however, that for non-horizontal propaga-
tion, including very large angle propagation, any accuracy can be obtained depending on
the order of the GS approximation chosen. We should also note that the large error seen
here for horizontal propagation is due to the choice of ¢’: ¢ is only 2/3 of the actual wave
speed c.

Figure 4.3 compares 3D computations for the first four orders of the GS propagators
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3

Split-step Fourier

GSP2

Figure 4.2. Wavefronts in a constant-perturbation medium associated with the various
generalized-screen approximations: second-order (GSP2), first-order (GSP1) and split-step
Fourier; top: as calculated as polar reciprocal of the slowness surface; the exact and back-
ground wavefronts are shown dashed; bottom: numerical wavefront.
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Figure 4.3. 3D wavefield snapshots in a constant-perturbation medium associated with
the various generalized screen approximations: fourth-order (GSP4), third-order (GSP3),
second-order (GSP2), first-order (GSP1), and split-step Fourier. The exact wavefield is
shown dashed.
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Figure 4.4. Part of the Marmousi wave speed model used to generate the snapshots of
Figure 4.5(a), Figure 4.5(b) and Figure 4.7 to Figure 4.12. The star locates the position of
the source. The maximum wave speed is 5500 m/s (black). The minimum wave speed is
1500 m/s (white).

and for the split-step Fourier method. Again, the dashed curves show the true wavefront
location. From Figure 4.3 we conjecture that, as a rule of thumb, the split-step Fourier
method is accurate up to 179, the first-order GS is accurate up to 349, the second-order
GS up to 489, the third-order GS up to 55°, and the fourth-order GS up to 62°, when
such a perturbation occurs (the background wave speed being only 2/3 of the actual wave
speed). The rate of convergence with order is also suggestive in Figure 4.3. As in any Taylor
expansion, the first terms in the GS expansion bring the main contribution to the operator,
and the higher-order terms have lesser contributions, slowly increasing the accuracy.

4.5 Branch points

The terms in GS expansion contain powers of 1/9% increasing with order [cf., equa-
tion (4.16)]. These powers induce branch points at a,a, = —[c’]72, corresponding to
grazing propagation in the background medium (cf., Figure 4.1). The branch points also
appear in expansion (4.30) for the GS propagator.

For a constant-perturbation medium, the normalization operator exactly compensates
the errors arising from the expansion of the exponential in equation (4.24). Yet, in laterally
heterogeneous media such as the Marmousi model (cf., Figure 4.4), these approximations
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Figure 4.5. Snapshot of the wavefield at time ¢ = 0.95 s computed with the second order of
the generalized-screen method, (a) no contour deformation applied, (b) contour deformation

applied as in Figure 4.6. Figure 4.4 shows the wave speed model used and the source
location.
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Figure 4.6. Applied contour deformation.

can create errors that can be boosted by large values of 1/4° close to the branch point.
Figure 4.5(a) shows a snapshot of the wave field, computed with the second-order GS
algorithm, in the region of the Marmousi model shown in Figure 4.4 when the wavenumber
is allowed to get close to the branch point. The source is located at a star in Figure 4.4. The
result is noisy; the noise is associated with high-angle propagation, i.e., when wavenumbers
reach the vicinity of the branch point.

In equation (4.30), the path of integration in the ;-plane should be chosen appropri-
ately around the branch cuts. To avoid getting too close to the artificial branch points, we
use contour deformation in the complex plane, as illustrated in Figure 4.6. Comparing the
result in Figure 4.5(a) with that in Figure 4.5(b), where the contour deformation has been
applied, note the removal of the noise associated with high-angle propagating energy.

In practice, all factors appearing in the GS algorithm are computed on the actual
deformed contour except for the intermediate field quantities in the wavenumber domain
that are evaluated on the real axis. The latter quantities are assumed to vary smoothly in
the vicinity of the real axis and hence are approximated by their values on the real axis
as evaluated with the (fast) Fourier transforms. We therefore make a zero-order Taylor
approximation for the regions where the contour departs from the real axis. On the one
hand, the higher the power of [y°]~!, the further the path should depart from the real axis
in the vicinity of the branch points; thus we use different deformations for the different
terms in the GS expansions. On the other hand, such incomplete contour deformation does
affect the source signature. This enforces us to keep the contours as close as possible to the
real axis. Hence, the precise choice of contours is a compromise.

4.6 Accuracy analysis

We illustrate the accuracy of the GS algorithm for two scenarios: the 2D Marmousi
model, and the SEG-EAGE 3D salt model. Our analysis emphasizes numerical modeling.
We generate Green’s functions and focus our observations on second-arrival energy and
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Figure 4.7. Snapshot of the wavefield at time ¢ = 0.95 s with the full two-way acoustic
wave equation.

multi-pathing. Imaging invokes an averaging (stacking) process; to learn about the prestack
migration operator, we hence favor to analyze modeling instead. We shall, however, show
depth-migration results in the Marmousi model.

4.6.1 Modeling

Marmousi model The medium complexity and the maximum propagation angle
determine the sophistication of the approximation required. To illustrate this, we consider
a region of the Institut Francais du Pétrole (IFP)’s Marmousi model that includes the tar-
get reservoir (Figure 4.4). A point source (star) is located at the reservoir horizon, below
a complex part of the model (anticline, unconformity, faults) that exhibits significant hor-
izontal wave speed variations. Being based on actual geology (Bourgeois et al., 1991), the
Marmousi model introduces complexities that can be encountered in practice. The source
is excited at time t = 0, and the pressure field is imaged at time t = 0.95 s, creating the
snapshots in Figure 4.7 through Figure 4.10. For comparison, we modeled the two-way
wavefield with the full acoustic wave equation (finite-difference time-domain, second order
in space, second order in time), and shall use that wavefield (Figure 4.7) as a reference
(the computational complexity of the full acoustic wave equation method in 2D, and even
more so in 3D, compares unfavorably with the fast algorithms developed here). In model-
ing the upgoing wavefield, we compare the GS method with the split-step Fourier and the
phase-shift-plus-interpolation (PSPI) methods. In the PSPI method (Gazdag & Sguazzero,
1984), wave components are upward or downward continued as if the medium were laterally
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Figure 4.8. Snapshot of the wavefield at time ¢ = 0.95 s with the split-step Fourier method.
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Figure 4.9. Snapshot of the wavefield at time ¢ = 0.95 s with the
phase-shift-plus-interpolation method (PSPI).
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Figure 4.10. Snapshot of the wavefield at time ¢ = 0.95 s with the fourth order of the
generalized-screen method.

homogeneous but using several reference velocities to accommodate lateral wave speed vari-
ations: in the frequency-space domain, at any point in depth, an interpolation is performed
using two fields associated with the two adjacent reference velocities.

Unlike the GS methods, the split-step Fourier method does not suffer from the presence
of a branch point. We can therefore use a background wave speed c® that is greater than the
minimum wave speed in each thin-slab. In Figure 4.8, we use the arithmetic mean of the
wave speed across the thin-slab as a reference wave speed. Use of the median [% (Cmaz — Cmin)]
for the reference wave speed would give a poor result (not shown here). Use of the same
reference wave speed as for the GS method (i.e., the minimum wave speed in the thin slab)
yields even poorer result, for it increases the contrast between the true medium and the
background medium.

With the number of reference velocities chosen for the PSPI method, we guaranteed a
better accuracy, but at higher cost, than that of the split-step Fourier method. To compare
algorithm accuracies, we look at the degree at which the wavefront is curved downward or
upward with respect to the full-acoustic wave-equation generated wavefront. The split-step
Fourier (Figure 4.8) result gives an impulse response with a wider shape (upward curved)
for the first arrival than the full-wave result, whereas the PSPI method (Figure 4.9) gives a
correct general shape for the first arrival. Neither of these methods gives, however, accurate
images of the second-arrival energy (although the PSPI method still yields a better result).
This second-arrival energy results from multi-pathing associated with the complexity and
the heterogeneity of the Marmousi model. The multi-pathing here occurs with scattering at
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Figure 4.11. First trace on the left of the snapshots shown in Figures 4.7, 4.8, 4.5(b), 4.10,
and 4.9: (1) finite difference, (2) split-step Fourier, (3) second-order generalized-screen, (4)
fourth-order generalized-screen, (5) phase-shift-plus-interpolation (PSPI).

reasonably wide angles. For the split-step Fourier method, the limited accuracy for wide-
angle propagation explains the poor modeling for the second-arrival energy. For the PSPI
method, inaccuracies are attributable to the linear interpolation scheme.

To begin with the results of the various orders of the GS method, the second-order
algorithm (Figure 4.5(b)) creates a wave front whose shape, as expected, is slightly curved
downward with respect to the full-acoustic wave-equation wavefront. As the order of the GS
expansion increases, the GS wavefront matches the true one more closely. The wavefront
of the fourth-order solution (Figure 4.10) closely approaches the true wavefront. With
the second-order GS method (Figure 4.5(b)) one can already see good definition of the
second-arrival energy, due to a higher accuracy for wide-angle propagation than that in
the split-step Fourier method. The better positioning and modeling of the later-arrival
energy constitutes a key contribution to the imaging of complex structures such as those
in the Marmousi model where these arrivals carry a significant part of the energy. Observe
that subtle differences in Figures 4.8 through 4.10 represent differences in positioning of
the order of a hundred meter according to the scale used. To highlight the conservation
of source signature for the different orders of the GS expansion — under the incomplete
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Figure 4.12. Snapshot of the wavefield at time ¢ = 0.95 s with the fourth order of the
generalized-screen modeling the three first terms of the Bremmer series. Some amplitude
differences can be observed with Figure 4.7. These are mainly due to a low order (GS) rep-
resentation of the reflection operator (see Appendix I) while some reflections are associated
with wide-angle propagation especially close to the source (see Figure 4.4).

contour deformation — and the finite-difference, PSPI, and split-step Fourier approaches,
we extract a single trace on the far left out of the snapshots shown in Figures 4.7, 4.8, 4.5(b),
4.10, and 4.9. These traces are combined in Figure 4.11. Observe that the ‘arrival’ of the
fourth-order GS and PSPI methods align with the one obtained with the finite-difference
computation, unlike the ones obtained with the split-step Fourier and the second-order GS
methods. At these propagation angles, the fourth-order GS approximation suffices whereas
the lower orders would not. The source signature, in particular in the fourth-order GS
approximation, is clearly preserved at the expense of creating a weak precursor associated
with the compromise in contour deformation. Such precursor is also visible in Figures 4.5(b)
and 4.10.

Furthermore, when taking multiples into account, wide-angle propagation can be par-
ticularly significant, as mentioned before. Incorporating multiples is achieved with the use
of the Bremmer series (De Hoop, 1996; Van Stralen et al., 1998; De Hoop et al., 2000), which
necessitates the introduction of a GS representation of the reflection kernel (Appendix I).
It is illustrated in Figure 4.12, where the fourth-order GS algorithm is used to calculate
the first three terms of the Bremmer series. The first term corresponds to the upcoming
energy as given by the one-way operator. The second term corresponds to energy that first
travels upward then downward. The third term corresponds to energy that travels upward,
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Figure 4.13. Vertical profiles across the center of the SEG-EAGE salt model. The asterisk
locates the position of the source; the dashed line indicates the region detailed in Figure 4.14

through 4.18. The maximum wave speed is 4500 m/s (black). The minimum wave speed
is 1500 m/s (white).

downward and upward again. Here, we also make use of the first-order GS representation
of the reflection operator as described in Appendix I. Note that some of the multiple events
found in Figure 4.7 are missing because they would belong to yet higher-order terms in the
Bremmer series. Note in Figure 4.12 that some branches of the wavefronts do propagate
almost horizontally and accurate results require higher order GS.

SEG-EAGE 3D salt model For a 3D modeling demonstration, we use the SEG-
EAGE 3D salt model. Significant multi-pathing occurs in this model, and we shall illustrate
how well the GS propagator accounts for this. Figure 4.13 shows two vertical profiles of wave
speed across the SEG-EAGE 3D salt model, one parallel to the so-called in-line direction,
and the second one parallel to the orthogonal cross-line direction. The profiles intersect at
the center of the model. As in the Marmousi model, we place a point source in the zone
of interest, i.e., beneath the salt body. The source location is represented by an asterisk in
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Figure 4.14. Snapshot of the wavefield at time ¢ = 1.2 s with the second order of the
generalized-screen method; in-line section. The three horizontal dashed lines represent the
depth location of the horizontal sections of figures 4.16 through 4.18.
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Figure 4.15. Snapshot of the wavefield at time ¢ = 1.2 s with the second order of the
generalized-screen method; cross-line section.
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Figure 4.16. Snapshot of the wavefield at time ¢ = 1.2 s with the second order of the
generalized-screen method; horizontal section at depth 1500 m. The dashed lines represent
the vertical sections as shown in figures 4.14 and 4.15. A weak precursor associated with
the compromise in contour deformation is visible.
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Figure 4.17. Snapshot of the wavefield at time ¢ = 1.2 s with the second order of the
generalized-screen method; horizontal section at depth 1000 m. The dashed lines represent
the vertical sections as shown in figures 4.14 and 4.15.
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Figure 4.18. Snapshot of the wavefield at time ¢ = 1.2 s with the second order of the
generalized-screen method; horizontal section at depth 500 m. The dashed lines represent
the vertical sections as shown in figures 4.14 and 4.15.
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Figure 4.13. Note the stairstep shape of the base of the salt body. We expect this artificial
roughness, which is due to the coarse sampling of the model in depth, to create diffractions
that will appear as ‘noise’ in the wavefield.

In our example, the source is excited at time t = 0 and we use the second-order GS
algorithm to image the field at time t = 1.2 s (snapshots in Figure 4.14 through Figure 4.18).
Both the in-line section in Figure 4.14 and the cross-line section in Figure 4.15 show that
second arrivals carry a significant part of the upgoing energy. They both show that, with
the geometry of the salt body, partial waveguiding can occur, which could imply that a
significant part of information is contained at large offsets in the scattered field recorded at
the surface. Note the occurrence of a triplication in the cross-line section in Figure 4.15.
The various horizontal sections of the 3D image (Figure 4.16 through Figure 4.18) illustrate
the strong imprint that the salt structure imposes on the wavefront. The deepest slices
(Figure 4.16) intersect the salt body, which explains the higher ‘noise’ level also visible in
the vertical sections; this noise, again, corresponds to diffracted energy from the rough salt
bottom.

4.6.2 Imaging

Laterally varying medium The difference in accuracy between the split-step Fou-
rier method and the GS approach is illustrated with a 2D imaging experiment (Figure 4.19).
The 2D section is composed of various reflectors with dips ranging from 0° to 75°. The
wave speed profile is characterized by a gradient with a horizontal component of 0.1 s~! and
a vertical component of 0.4 s~!. Figure 4.19 shows results after migrations of a zero-offset
section (not shown) with the split-step Fourier algorithm and the fourth-order GS method.
In the split-step Fourier result, reflectors steeper than about 45° are mispositioned with an
error that grows with dip. Again, the accuracy with dip is a function of the lateral medium
variation for both the split-step Fourier method and the GS approach. In the GS generated
section, reflectors are accurately positioned because the wide-angle propagation, associated
with the steepest events, is better handled. Note that the steepest event appears weaker on
the GS generated section than on the split-step Fourier section. This is due to the proximity
of the branch point to the propagation angles associated with the steepest reflector dip. The
cascade of the expansion of the thin-slab propagator and the normalization are progressively
less accurate for the phase as one departs from vertical propagation and constant medium
perturbation. This introduces some amplitude inaccuracy.

Application to prestack depth migration To illustrate the accuracy of the dif-
ferent GS expansions for imaging, we incorporated the GS algorithm in prestack depth
migration of shot gathers using the entire Marmousi data set (Figure 4.20). In the migra-
tion procedure, the fields associated with the source and receivers are downward continued.
For each point in the subsurface the two fields are correlated at zero time lag (Claerbout,
1986).

Figures 4.21(a) and 4.21(b) compare the images obtained with the split-step Fourier
version of the phase-screen method and the second-order GS approach. The latter gives a
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Figure 4.20. Marmousi wave speed model.The maximum wave speed is 5500 m/s (black).
The minimum wave speed is 1500 m/s (white).

better result; because of the two additional correction terms appearing in the expansion,
dipping events are more accurately positioned and better focused by the GS approach.
Regions where significant differences occur are highlighted in Figures 4.21(a) and 4.21(b).
The anticline (above the reservoir) of the Marmousi model poses a challenge to imaging
for any migration algorithm because of multi-pathing and wide-angle scattering. The GS
method accommodates these phenomena better than does the split-step method and yields
more continuity in, and less deformation of, the reflectors.

4.7 Discussion

The generalized-screen (GS) wave extrapolation method is based on the decomposition
of the medium into a background component and a perturbation. In lowest order, the GS
approximation may be simplified to yield the phase-screen and split-step Fourier methods.
The GS method extends these two methods and can accommodate more significant and
rapid horizontal wave speed variations. In the process of migration, the GS method provides
a choice of algorithm suitable for the complexity of a particular medium.

With the GS representation of the propagator is associated a vertical slowness symbol
that generalizes the phase-screen and split-step Fourier symbol and has the dependencies
on the spatial coordinates and the dependencies on the wavenumber factorized, inducing
the structure of the GS propagator. The GS expansion of the vertical slowness symbol is
justified in De Hoop et al. (2000). The GS expansion provides a fundamental simplification
of the one-way operator; the propagator does not have to be evaluated at every output point.
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Figure 4.21. Prestack depth migration of the Marmousi data (a) with the split-step Fourier
method, and (b) with the second-order generalized-screen method. Highlighted are features
where clear differences can be observed between the two sections.
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We obtained an algorithm that works as a shuttling between the frequency-horizontal space
domain and the frequency-horizontal wavenumber domain. Each additional term in the
GS expansion increases the accuracy. This amounts to an additional Fourier transform for
each additional order in the expansion. In anisotropic media such as transversely isotropic
media with a vertical symmetry axis, the influence of the anisotropic parameters in the
vertical slowness symbol occurs only at non-vertical propagation. The split-step-Fourier
type approximation (Stoffa et al., 1990) does not have the degree of freedom to account for
anisotropy or to shape the slowness surface appropriately, because of its accuracy restricted
to near-vertical propagation. The GS methods can be extended to these media as shown in
the companion chapter (Le Rousseau & De Hoop, 2001c) (Chapter5).

We illustrated the GS propagator’s accuracy primarily through modeling. The mathe-
matical accuracy analysis of the GS approximation was carried out by De Hoop et al. (2000).
Here we focused on its numerical counterpart. We chose two synthetic models, both repre-
sentative of the real world: the Marmousi model (off-shore Africa) and the SEG/EAGE 3D
salt model (Gulf of Mexico). Each of these models provided insight into the capacity of the
GS method to perform wave extrapolation, and showed how it compares with the split-step
Fourier method, as well as PSPI and full-wave time-domain finite-difference methods. The
GS modeling capacity is illustrated in both 2D and 3D. In this chapter we focused on the
computation of Green’s functions rather than on imaging. Imaging invokes an averaging
procedure that hides propagation inaccuracies of the various methods. For completeness,
however, we showed some prestack imaging results in 2D.

We have compared the GS method with some of its competitive algorithms. All these
algorithms account up to a certain degree for multi-pathing: one-way (split-step Fourier,
PSPI), two-way (finite differences). Another approach to approximate the one-way propaga-
tor (4.10) is the filter approach. Like our approach, the filter approach aims at approximat-
ing the propagation of singularities. Unlike our approach, it does not yield a comprehensive
recursion that generates increasingly accurate one-way propagators on and away from the
wavefront set. The filter approach was introduced by Holberg (1988) and Blacquiére et
al. (1989), and extended to 3D by Hale (1991b; 1991a). Those methods are described and
compared to the GS method in Appendix J. Concerning the filter-McClellan approach the
following can be said: (i) the filter will not be exact even in an (almost) homogeneous
medium, (ii) the accuracy of the filter will depend on the sampling rate which for fixed
frequency will depend on the local medium properties, i.e., the accuracy will vary with
location, (iii) the same remarks apply to the McClellan transformation, (iv) intrinsic insta-
bility enforces dense sampling to ‘open up’ the wavefront set. These features are avoided in
the GS method. As far as the computational complexity is concerned, the filter-McClellan
and GS methods compare as follows, 52N, — 46 (Hale, 1991a) versus (2 + n) log, N1 No.
Typically, N, = 20, n = 2, N; = Ny = 103, whence the filter-McClellan approach is more
than 10 times less efficient than the GS method.

The GS method, with its (2+n)N; N, log, N1 N computational complexity (n is the or-
der of the GS approximation and N, are the numbers of samples in the z,-direction), makes
feasible ‘wave equation’ modeling and imaging in 3D. Finite-difference methods extend to
3D, but yield algorithms with greater computational complexity. In comparison, the com-



J. H. Le Rousseau / Wave-equation imaging and generalized screens 109

putational complexity of the split-step Fourier method follows as 2N; N, logy Ny Ny, whereas
the computational complexity of the PSPI approach is (1 + nyer) N1 N2 logy Ny Ny + 2N No,
where n.er is the number of reference velocities dependent on the degree of lateral hetero-
geneities. Nowadays, 3D surveys are common, and some areas present geologic complexities
where multi-pathing cannot be ignored. Unlike traditional efficient asymptotic methods
(such as Kirchhoff) that use a single arrival (first or maximal energy), the GS method can
predict the effect of multi-pathing. The introduction of the Bremmer coupling series yields
a computation of the two-way Green’s functions. The GS-Bremmer approach yields a tool
box that can be used for processing multiples, velocity analysis, and inversion (De Hoop
& De Hoop, 2000). The lowest order GS approximations has already found application in
seismic imaging (Huang & Wu, 1996; Wu & Jin, 1997; Huang et al., 1999).
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Chapter 5

Scalar generalized-screen algorithms in
transversely isotropic media with a vertical
symmetry axis!

5.1 Summary

The scalar generalized-screen method in isotropic media is extended here to trans-
versely isotropic media with a vertical symmetry axis (VTI). Although wave propagation
in a transversely isotropic medium is essentially elastic, we use an equivalent ‘acoustic’ sys-
tem of equations for the ¢P-waves which we prove to be accurate for both the dispersion
relation and the polarization angle, in the case of ‘mild’ anisotropy. The enhanced accu-
racy of the generalized-screen method as compared to the split-step Fourier methods allows
the extension to VTI media. The generalized-screen expansion of the one-way propagator
follows closely the method used in the isotropic case. The medium is defined in terms of a
background and a perturbation. The generalized-screen expansion of the vertical slowness
is based upon an expansion of the medium parameters simultaneously into magnitude and
smoothness of variation. We cast the theory into numerical algorithms, and assess the accu-
racy of the generalized-screen method in a particular VTI medium with complex structure,
viz. the BP Amoco Valhall model, in which multi-pathing is significant.

5.2 Introduction

In realistic geological models, heterogeneity in medium properties is such that the phe-
nomenon of multiple scattering is significant. Wave extrapolation methods are able to ac-
count for multi-pathing, with no need to follow the formation of caustics explicitly. However,
their computational complexity is significant and hence fast, approximate, algorithms are
of interest, in particular for 3D configurations. Methods such as the phase-screen (Ratcliffe,
1956) and the closely related split-step Fourier (Stoffa et al., 1990) methods yield fast 3D
algorithms. They are, however, limited in their capacity to predict large-angle propagation
where significant lateral heterogeneities are present. Because of their attractive properties
(3D, multi-pathing), De Hoop et al. (2000) and Le Rousseau and De Hoop (2001b) general-
ized the latter family of algorithms, enhancing their accuracy. With the generalized-screen
(GS) approach, the accuracy of the phase-screen method is extended to larger-contrast,

'This chapter was published in Geophysics, 66, (2001) pp.1538-1550, with M.V. de Hoop.
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wider-angle, and back-scattering. We propose here to extend the GS method further to
anisotropic media, in particular to transversely isotropic media with a vertical symmetry
axis (VTI media). The enhanced accuracy resulting from the GS approach becomes a
necessity in the application to VTI media.

The one-way propagator can be represented by a Hamiltonian path integral (De Witte-
Morette et al., 1979; Fishman & McCoy, 1984a; Fishman & McCoy, 1984b; De Hoop, 1996)
that accounts for not only the energy traveling along the ray but also for the transport along
non-stationary paths. These path integrals contain all possible multi-pathing. In the path
integral, ‘time’ is identified with depth, and ‘momenta’ are identified with the horizontal
wave slownesses which, in the ray-theoretic limit, coincide with the horizontal components
of the gradient of travel time. The (square-root) Hamiltonian, appearing in the phase of
the path integral, is identified with vertical wave slowness. The GS approach yields a fast
algorithm for the path integrals.

Wave propagation in VTI media is essentially elastic. Yet, in various applications the
propagation of ¢P waves only is considered as if the medium were acoustic (Alkhalifah,
1998a; Alkhalifah, 1998b). Following the concept introduced by Alkhalifah (1998a) and
the methodology of Schoenberg and De Hoop (2000), we introduce an equivalent ‘acoustic’
system of equations for VTT gP-wave propagation. This first-order system, rather than the
induced second-order wave equation, is required to arrive at the appropriate directional
wavefield decomposition procedure that leads to the one-way wave equation and its associ-
ated propagator. In Appendix K, we show the accuracy of the equivalent ‘acoustic’ system
for the gP-wave propagation not only for the dispersion relation (Alkhalifah, 1998a, (A-9)),
i.e., the wavefront set, but also for the polarization vectors. In Appendix L, we follow the
procedure introduced by De Hoop (1996) to decompose the wavefield into up- and down-
going components. Doing so, we introduce the vertical slowness operator for the equivalent
‘acoustic’ medium and give the general form for the one-way wave propagator in such a
medium.

We analyze the accuracy of the GS method in complex VTI structures using the
BP Amoco VTI Valhall model (Brandsberg-Dahl et al., 1999). This model induces signif-
icant multi-pathing and is representative of a North Sea geology. In the Valhall model, a
so-called ‘gas cloud’ in the overburden creates a low velocity zone for ¢P waves. This geo-
logic situation yields poor imaging below the ‘gas cloud’ with standard single-path methods
using the qP-gP events only. With the help of the GS propagator, which we prove to be
accurate in these situations, we shall illustrate that the origin of this problem is possibly
associated with multi-pathing.

We first present the dispersion relation for ¢P waves in VTI media and the approxi-
mate, yet accurate, simplification discussed by Schoenberg and De Hoop (2000). Starting
from that simplified dispersion relation, we derive the GS representation of the thin-slab
propagator in VTI media. The results are then cast into a numerical algorithm. We carry
out our accuracy analysis through modeling and therefore indirectly analyze the prestack
migration operator. We focus on studying multi-pathing and second-arrival energy.
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5.3 The scalar generalized-screen propagator in transversely isotropic media
with a vertical symmetry axis

For transversely isotropic (TI) media, the dispersion relation associated with gP-wave
propagation is not quite as simple as in the isotropic case [e.g., see (Le Rousseau & De Hoop,
2001b, (9))]. Because the phase velocity is a function of phase angle, the slowness surface is
not a sphere. Nevertheless, to apply a GS-type expansion (De Hoop et al., 2000; Le Rousseau
& De Hoop, 2001b) as in the isotropic case, one would like to have a dispersion relation
as close as possible to the one for the isotropic case. This is accomplished here by using
a rational expansion of the dispersion relation in TI media developed by Schoenberg and
De Hoop (2000), the first order of which can be made accurate by means of an appropriate
limiting procedure (Alkhalifah, 1998a; Alkhalifah, 1998b).

5.3.1 Transversely isotropic media with a vertical symmetry axis

Throughout the chapter, we shall treat the gP wave as a scalar wave. In the scalar
approximation, we neglect any type of mode conversion. We consider the case of TI media
with a vertical symmetry axis (VTI), so without loss of generality one can confine attention
to a single vertical plane.

An elastic medium is defined by its stiffness tensor (Cjj;). With the so-called Voigt
notation (Thomsen, 1986), one can represent the medium by a 6 x 6 matrix in accordance
with

ijorkl: 11 22 33 32=23 31=13 12=21.

Ll 4 \
1 2 3 4 5 6

In the case of a TI medium, the non-zero entries are given by

c1 c11 — 2¢e6 €13
c11 — 2cg6 c1y c13
[# C C:
13 13 33 ) . (5.1)
55
Cs5

C66

5.3.2 Simplified dispersion relation for gP-wave propagation

We select the direction of preference along the z3-axis (or ‘vertical’ axis) and denoting
the remaining (‘transverse’ or ‘horizontal’) coordinates by z,, u = 1,2. Terms ¢;; represent
the elastic moduli ¢;; divided by the density p, and thus have dimension of velocity squared.

In the present development, it is advantageous to use the Laplace transform with re-
spect to time, ¢, and the Fourier transform with respect to the horizontal spatial coordinates,
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z,,. We introduce the notation
s = —iw, (5.2)

1 1
&, = T ku = — = k'u s (53)
1w S

where w and k, are the frequency and the horizontal wavenumber components. Let v, be

the vertical slowness?,

k3

= — 4
84! w (5 )

where k3 is the vertical wavenumber. We denote u the particle displacement. We work in
a vertical plane without loss of generality and use « instead of a; and @y (@? = a,y).
We write uj;, and u3 as the horizontal and vertical components of the particle displacement
respectively. Throughout the chapter we use the summation convention for repeated in-
dices. From the Christoffel equation [associated with equation (5.1)], describing the wave
propagation in the time-Laplace space-Fourier domain,

CE a2 4 Geem? G &2 )i
< cria” +cssyp — 1 (G55 + C13)iay ) < Uh ) — ( 8 ) , (5.5)

(Cs5 + C1z)iay  —és50® + C337f — 1 u3
we obtain the dispersion relation

¢11855(a®)? — [(é11 + E33)éss + E?| o] + &33855(77)°
+(E11 + &5)a? — (E33 +E5)72 +1 =0, (5.6)

expressing the vanishing determinant of the system of linear equations (5.5), where
E? = (&1 — &5)(C33 — C55) — (€13 + E55)° - (5.7)
To analyze the gP-wave behavior, we carry out the change of variables
X =-éna®; Z =iy, (5.8)

The dispersion relation becomes

~ ~ ~ E2 ~
955 x2 4 [<6ﬁ+cﬁ> + ]XZ+(:§Z2 (5.9)
C11 C11 €33 C11€33 €33
—<1+‘fi)x— (1+fﬁ)z+1=o,
Cs55 C55

and can be rewritten as Z = 1 — X + f(X, E?), in which f can be expanded in terms
X (1 — X). This ensures accuracy at both normal (X = 0) and grazing (X = 1) incidence.

2We explain the subscript 1 in 7; in Appendix L.
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The exact solution for the gP slowness depends weakly on ¢;3 and ¢s5 individually but
strongly on @ = ¢13 + 2¢55 in the case of ‘mild’ anisotropy [for detailed discussion on ‘mild’
anisotropy, see Schoenberg and De Hoop (2000)]. Alkhalifah (1998a) and Schoenberg and
De Hoop (2000) propose then the following transformation

513 - a, 555 —0. (510)

In this limit, equation (5.9) simplifies to

1- 1—~&f X|z=1-X, (5.11)
- (-a)

C11C33

which is an exact rational representation of Z [Alkhalifah, 1998-a, (A-9); Schoenberg &
De Hoop, 2000, (37),(38)].

More generally, this limit (5.10) can be applied to the vector wave equation as is
done in Appendix K. There we show that not only is approximation (5.10) accurate for
the dispersion relation, i.e., for the wavefront set [note that we recover equation (5.11) in
equation (K.32)], but also for the polarization vectors of the gP waves.

If we introduce Thomsen’s parameters £ and § (Thomsen, 1986)

ci1 — €33
2033
5— (c13 + 55)2 — (€33 — c55)?
2c33(c33 — ¢55)

with § becoming

2 2
6 _ a” — C33
- 2
2c34

’

in the framework of the limit (5.10), and use ¢, as the vertical ¢P-wave wave speed, i.e.,

cy = \/C33,

relation (5.11) becomes

9 ol+ c2a?(1 + 2¢)

=co 1
1= 67z 2c¢202(6 —€)’ (5:12)
which, away from a vertical plane, can be written as
1+ [ev()]? apary, [1 4 2e(2)]
. = | , -2 . 5.1
"N (.'z:,a,,) \/[C\- (iB)] 1— 2[6\/ (m)]g o, [6(:1:) — 6(2})] (‘) 3)

Note that letting € and J go to zero leads to the dispersion equation in the isotropic case, as
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it should. The vector (ie;,icg,7y1) is the gradient of travel time consistent with the eikonal
equation. We use the dispersion relation (5.13) to derive the anisotropic scalar one-way
propagator.

5.3.3 The scalar one-way propagator

For a sufficiently small vertical step Axjz, and a sufficiently smooth medium, the Hamil-
tonian path-integral representation for the one-way thin-slab propagator reduces to the
Fourier representation (De Hoop et al., 2000):

g(i)(xu,mg;xi,,mg) =

/(3/27r)2da1da2 exp[—is ag(zs — z,)] exp[Fsvi(zy, T3; ) Axz),  (5.14)
with

!
Azz =1x3 — 23,

I3 = T3 — %A:B;; =:Eg+%AIB3 R

and where v; is given by the dispersion relation (5.13). In Appendix K, we introduce
an equivalent ‘acoustic’ system for the elastic propagation of ¢P waves in VTI media. In
Appendix L we work out the wavefield decomposition from this equivalent ‘acoustic’ sys-
tem similar to the decomposition in the isotropic case (De Hoop, 1996). Also, we show
that v, has the interpretation of the symbol of the principal part of the vertical slowness
operator, i.e., the value of the vertical slowness symbol if we freeze the medium locally
[‘high-frequency’ approximation; see also Appendix H]. Then the expression of the one-way
wave propagator follows the same as in the isotropic case, hence the form of equation (5.14).

In the limit of a laterally homogeneous thin slab, v; will not depend on z,, and the
thin-slab propagator reduces to Gazdag’s phase-shift operator, introduced in the isotropic
case (Gazdag, 1978). The operator is composed of a forward Fourier transform, a mul-
tiplication by a phase factor (the phase is proportional to the vertical slowness) and an
inverse Fourier transform. In the general case of equation (5.14), the thin-slab propagator
has a similar structure except that the phase factor is dependent upon the output point,
z,. Every output point requires its own evaluation of equation (5.14), which represents
a considerable computational effort. The GS approximation of the thin-slab propagator
enforces a simplification of this computational complexity, while allowing laterally varying
media.

5.3.4 Generalized-screen principal-slowness surface

Medium parameterization and contrast formulation For the subsequent anal-
ysis, we employ a ‘contrast formulation’ that allows us to take lateral heterogeneity into
account in the thin-slab propagation. In the slab [z}, z3] we introduce a background medium
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with vertical medium wave speed, c?,, and the two Thomsen’s parameters 0 and §°. The
background medium is constant in the slab, but may vary from one slab to another. We
then introduce a triplet of medium perturbations:

’Uq.r(.’l)ﬂ,ﬂjg) = [c\"(mﬂamﬁl)]_? - [C?, (-'1;3)]—2 ’ (515)
ue(mu: 11:3) = 6("‘6#’ $3) - 60(273) ’ (516)
us(zy,z3) = 6O(xy,x3) — 8%(x3) . (5.17)

We will expand the vertical slowness left principal symbol, v, into the perturbations u,,
U, and us about the background medium.

Generalized-screen expansion Assuming small vertical medium variation across
the thin slab (the slab is sufficiently thin), we set

1+ [V ]2a,a,(1 + 269)
0oy Y — o [[-01-2 b
7 (Gew) \/[c" 1 —2[c) 2, (80 — €9)

=%(xs; ) if ¢ € [25,73], (5.18)

consistent with equation (5.13) evaluated in the background medium. The principal symbol
of the vertical slowness, 7y, will be expanded in u,, u., and us. This can be done, for
instance, by first expanding <y, in u,, then in u., and finally in us. The principal symbol of
the vertical slowness, -y;, can be decomposed into a background term, 7%, and a perturbation,

7,
N(@p, x3; ) = V0 (23300) + V1 (T, 735 ) - (5.19)

When expanding in the three variables u,, u., and us simultaneously, we discard terms
that contain products of perturbation terms. We justify this approximation by recognizing
that the primary deformation of the slowness surface is caused by the perturbation in
the medium-vertical slowness squared; variations in the anisotropy parameter influence the
higher order terms. This yields the form,

M~ Yoy + Ve + Vg > (5.20)

where 7, , 7., and v, follow the general structures

Nuy,

Yoy @usT3i00) = D Py j(as; ) [uy (g, 23)) (5.21)
i=1
Ny,

71_11,5 (wua$3; a,) = Z"/’e,j($3§ ay) ['l"e(muaz.'})]] ) (5.22)

j=1
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Tlu6

’Yzlt,; (Tp, 235 000) = Zz/;g,j(m; ay) [u,;(a;“,a;g)]j . (5.23)
i=1

In practice, we limit ourselves to an expansion up to the first order in the anisotropy-
parameter perturbations (n,, = n,; = 1) , and to fourth order in the medium-vertical-
slowness-squared perturbation (n,, < 4), compatible with the isotropic case (Le Rousseau
& De Hoop, 2001b, (18)). Here, the use of equation (5.13) is particularly fruitful for it
allows us to avoid using intricate formulas for the different terms of the GS expansion. The
first-order expansions in each perturbation are given by

— 4] (3)2ary oy (6° — Oy

Yoy (T, T35 Q) = uy (Tp, T3) [1 Aley (za)] . fj,)(m) G Cl) (5.24)
 2[c) (23)]* () ? (8% (23) — €%(x3)) (1 + 26%(x3))
0’(.T3; au) ’
& (23)]2 ()2 0(p
Vo (T, T3; 00) = ue Ty, 73) lev (z3)] (a(m?cs)-i_ 20" (z3)) , (5.25)
. _ [C(‘],(:U3)]2a,,a,,’)'0 (m3§ all)
Yoy (Tu, T33 00) = us(zy, T3) 1—-2[c) (z3)]?a, (69 (z3) — €%(z3)) ’ (5.26)
where

o(z3;,) =2 (1 — 2[c?,($3)]2auau(50(:1:3) - 6:0(:123)))2 Y(z3;00.) . (5.27)

Note that, in each term in equations (5.21) through (5.23), dependencies on z, and «,, are
separated. As in the isotropic case (Le Rousseau & De Hoop, 2001b), this property induces
the simplified structure of the GS propagator.

The accuracy of each term, 7, , vy, , and 7., can be considered independently. The
expansion term 'y,l“, provides the same accuracy as its counterpart -y in the isotropic case
(Le Rousseau & De Hoop, 2001b, (16)). Figures 5.1 and 5.2 illustrate the increasing accuracy
of the GS expansion of the vertical-slowness principal symbol (y; as a function of the
horizontal slowness p = v/—a,a,) in the contrast in medium-vertical slowness squared, u,.
In Figure 5.1 the medium is characterized by elliptic anisotropy, i.e., ¢ = §. In Figure 5.2
the medium is anelliptic (here ¢ = 0.2 and 6 = 0.0). Adding higher-order terms in the
GS expansion (in the medium-vertical-slowness-squared perturbation, u, ), the shape of the
slowness surface improves, as it is in the isotropic case (Le Rousseau & De Hoop, 2001b).

A first-order expansion in the perturbation u. in ¢ proves to be sufficiently accurate
up to 50° as illustrated in Figure 5.3, where the contrast between the actual ¢ and the
background £ is 0.2. This accuracy is comparable to the one of 'y}“, with the second-order
expansion in the contrast in medium-vertical slowness squared, u,., and is sufficient for most
practical purposes. The behavior of the GS expansion for the perturbation in § is illustrated
in Figure 5.4. Although the contrast between the actual (local) and the background values
is 0.2, the GS expansion shows a close to perfect result. For all practical purposes, the
leading term is sufficiently accurate. This is due to the fact that equation (5.13) is exact
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GSPO

branch point

I L/ \\<

GSP1  Gsp2

p
(@’

V 1+2€ J 1+2¢€

Figure 5.1. Principal parts of the generalized-screen vertical slowness, as a function of the
horizontal slowness p, in the elliptical VTI case (¢ = 0.3 ,d = 0.3) in a constant-wave speed
perturbation medium: zero-order (GSPO0), first-order (GSP1) and second-order (GSP2).
The principal part of the exact vertical slowness is shown with the inner dashed curve.
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GSPO
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Figure 5.2. Principal parts of the generalized-screen vertical slowness, as a function of

the horizontal slowness p, in the VTI case (¢ = 0.2 ,d = 0.0) in a constant-wave speed
perturbation medium: zero-order (GSPO), first-order (GSP1) and second-order (GSP2).
The principal part of the exact vertical slowness is shown with the inner dashed curve.
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GSP1

\/ 1+2€

Figure 5.3. Principal parts of the generalized-screen vertical slowness, as a function of the
horizontal slowness p, in the VTI case in a constant-¢ perturbation medium: zero-order
(GSP0) and first-order (GSP1).The principal part of the exact vertical slowness is shown
with the inner dashed curve.
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GSP1

Figure 5.4. Principal parts of the generalized-screen vertical slowness, as a function of the
horizontal slowness p, in the VTI case in a constant-d perturbation medium: zero-order
(GSPO0) and first-order (GSP1).The principal part of the exact vertical slowness is shown
with the inner dashed curve.

at vertical and grazing angles while § influences the slowness at intermediate angles only.
Also, in equation (5.13) § appears in the denominator. This avoids the creation of a branch
point when expanding in us.

Unlike the generalized screens, the split-step-Fourier type approximation (Stoffa et al.,
1990) does not have the degrees of freedom to account for anisotropy, i.e., to shape the
slowness surface appropriately where lateral heterogeneities are present. Le Rousseau and
De Hoop (2001b) show that the split-step Fourier method is accurate for near-vertical
propagation only. The influence of the anisotropic parameters (e.g., € and 4) in the ver-
tical slowness symbol occurs only at non-vertical wave propagation. As mentioned before,
variations in the anisotropy parameters are of higher order than variations in the medium-
vertical slowness squared, ¢, 2. The influence of the anisotropy parameters is comparable
to the higher-order terms of the GS expansion that are absent in the split-step Fourier for-
mulation (Le Rousseau & De Hoop, 2001b; Thomsen, 1998). In laterally varying medium,
taking anisotropy into account in the framework of the split-step Fourier approximation
does not enhance the accuracy of the vertical slowness principal symbol, «;, and, hence, of
the associated propagator [cf., next section and Le Rousseau and De Hoop (2001b)].

The explicit GS expansion as shown in equations (5.25) and (5.26) reveals the intro-
duction of reciprocal powers of v° and hence contains branch points at a, a, = —[c%]72/(1+
2e%). The vicinity of the branch point should be treated carefully. We refer the reader to
Le Rousseau and De Hoop (2001b) for the treatment of branch points. To ensure that the
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branch point is out of the propagating regime within the thin-slab, one has to choose ¢

smaller than the minimum medium vertical wave speed, and to choose £ smaller than the
minimum ¢, within the slab as illustrated in Figures 5.1 through 5.3.

5.3.5 The scalar generalized-screen propagator VTI media

We have seen that the GS expansion of the slowness surface in the VTI case is quite
similar to the one in the isotropic case. The GS expansion of the propagator is hence similar
as well,

gt (T4, T3; T, T) ~ /(s/27r)2da1da2 exp[—is ag(zs — 7)) (5.28)
- exp[Fs {7(Z3; @) + Yy, (B0 T33 ) + Vo (T B33 @) + ¥, (T, B33 )} Ay

As in the isotropic case, we perform the expansion of the exponential in 'yi‘, about vertical
propagation (Le Rousseau & De Hoop, 2001b, (24)). For the two additional terms, 7}“
and %lw the expansion of the exponential simplifies because these terms vanish at vertical
propagation. One can thus decompose the propagator as

g o gOE) 4 guv(F) 4 gue(d) 4 gus(F) (5.29)

where cross terms have been discarded when expanding the exponential in fy}“, . The leading
term in equation (5.29) is

9" (@, x3327,, 23) = exp [Fs ([ev (@, 23)] 7' — () (23)] ") A (5.30)

. /(s/27r)2da1da2 exp[—is oy (75 — 2))] exp[Fs7°(Z3; ) Axs],

with 4% given by equation (5.18). This term corresponds to the propagator of the split-step
Fourier approach when extended to VTI media. The phase factor applied in the space
domain corrects for vertical propagation only. Next order contributions, g*v &), g#(+) and
g have the same form: for g"v(#) we have

g ® (@, 252),, 75) = exp [Fs (lev (24, 33)] " = [c)(3)] ) As] (5.31)
. /(s/27r)2da1da2Am3 explis as(z, — z})] exp[Fs7°(Z3; ) Az

' q: SA:B3 [713,\/ ($l£’ "23; al’) - ’Y‘Lll,v (m[“ 3_73; 0)] ’
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which gives, upon substituting equation (5.21),

9" @y, w3300, 2%) = FsAwzexp [Fs ([ev (0, 23)]) " — [(a3)] ") Axs] (5.32)

. Zv{[zt(mu,i:g)]j /(s/27r)2da1da2A:E3 exp[—is ay(zy — z})]
=1
. exp[:FS ’)/0(513; a,,) Awg] ["/)\",j (523; Ol,,) — "/’V,j (§3; 0)]} .
ue ()

For the term g , the expression [y} (z,,Z3;0,) — Yo (@, Z3;0)] inside the Fourier in-
tegral should be replaced by 'yllls (xy, Z3; ); we find

35 a3 1y ) = exp [ (e (o2 — (@)} ) Ay (539
. /(s/27r)2da1da2A:1:3 explis oy (T, — 2))] exp[— F s7%(Z3; ) Axs)
- F sAzg 71115 (T, T35 00)

which gives, upon substituting equation (5.22),

9" (2, x3; 7, 75) = FsAzzexp [Fs (fev (2, 23)] 71 ~ [(F3)] 1) Azz]  (5.34)
. Ze{[ue(a:u,:i‘g)]j /(3/27r)2da1da2A$3 exp[—is ag(zs — z})]

J=1

: exp[:}:s 70(3_73; au) AwS] 1/}€,j (53; au)} .

For the term g*s(+), the expression [y, (Zy, Z3; @) — VL, (zp, 3;0)] inside the Fourier inte-
gral should be replaced by -} s (Ty, T35 ). In each constituent propagator, guv(F) | gue(F)
and g%+ the spatial dependency of the propagator can be taken out of the integral,
since it has been separated from the wavenumber dependency via the GS expansion. The
GS algorithm in the VTI case therefore has the same structure as in the isotropic case
(Le Rousseau & De Hoop, 2001b). The additional computational complexity as compared
with the isotropic GS algorithimn is of the order of two additional inverse Fourier transforms
for the first-order terms in u, and us.

Figures 5.5 and 5.6 show the (instantaneous) wavefronts associated to the slowness
surfaces shown in Figures 5.1 and 5.2 respectively. Figures 5.7 and 5.8 are associated
with Figures 5.3 and 5.4. Figures 5.5 through 5.8 also show the numerical response of the
GS propagator in VTI media subject to the same constant perturbation as in Figures 5.1
through 5.4.

As the computational complexity of a Fourier transform is N1 Ny logy (N1 N2) (N, de-
noting the numbers of samples in the z,-direction), the complexity of our ntMorder GS
algorithm is proportional to (2 + n) Ny Ns logy(N1Ns), where n is the cumulative order of
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Figure 5.5. Wavefronts in a constant-wave speed perturbation VTI medium (¢ = 0.3 ,6 =
0.3) associated with the various generalized-screen approximations: second-order (GSP2),
first-order (GSP1); top: as calculated as polar reciprocal of the slowness surface; bottom:
numerical wavefront. The artifacts at the bottom correspond to wrap-around in time and
boundary conditions on the sides of the model.
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Figure 5.6. Wavefronts in a constant-wave speed perturbation VTI medium (¢ = 0.2 ,6 =
0.0) associated with the various generalized-screen approximations: second-order (GSP2),
first-order (GSP1); top: as calculated as polar reciprocal of the slowness surface; bottom:
numerical wavefront. The artifacts at the bottom correspond to wrap-around in time and
boundary conditions on the sides of the model.
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Figure 5.7. Wavefronts in a constant-¢ perturbation VTI medium associated with the first-
order(GSP1) approximation; top: as calculated as polar reciprocal of the slowness surface;
bottom: numerical wavefront. The artifacts at the bottom correspond to wrap-around in
time and boundary conditions on the sides of the model.
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Figure 5.8. Wavefronts in a constant-é perturbation VTT medium associated with the first-
order(GSP1) approximation; top: as calculated as polar reciprocal of the slowness surface;
bottom: numerical wavefront. The artifacts at the bottom correspond to wrap-around in
time and boundary conditions on the sides of the model.



J. H. Le Rousseau / Wave-equation imaging and generalized screens 129

the GS expansion in the three perturbation terms (uy, u., and us), i.e., n = ny, +n,, + My -
Again, in most practical cases, taking n,, = n,, = 1 provides sufficient accuracy; then the
computational complexity of the GS method is (4 + ny,. ) N1 Na logy (N1 N»).

5.4 The scalar generalized-screen algorithm

Here, we discuss the GS algorithm based upon equations (5.30) through (5.34). We
denote the (one-way) wavefield by W, and carry out the wave propagation in the frequency
domain, with each frequency component computed independently. The downward contin-
uation for modeling and imaging with the one-way propagator is performed according to
the decomposition of the vertical slowness symbol into one background term and a series of
perturbation terms as in equations (5.21) through (5.23).

Let the current depth be set to z§ = 2, and set Z3 = z% + 3Az3 as before. Following
equations (5.32) and (5.34), we introduce the intermediate field quantities wg,w;,--- ,w,
(to simplify the notation n,, is replaced by n in this section only), w,, and ws according
to (step 1)

wo(Ty, 8) = exp [—s Az ([C‘/(:B#,if;})]—l - [c?,(:f:g)]_l)] W(z,,x5,3) , (5.35)

wi(Ty, 8) = —5 Axz uy (2, T3) wo(zy, s) , (5.36)
wa(zy,s) = —s Azs ’U,?,(:Eﬂ,il_I;;) wo(Zy, S) , (5.37)
Wn(Zy, 8) = —s Azz uy (xy, T3) wolzy, s) , (5.38)
we(muas) = —sAz3 'U'e(-'”u’ z3) wO(fL',uas) ’ (5.39)
ws(Ty, 8) = —s Azz us(xy, T3) wo(zy, s) , 5.40)

motivated by the expansions in u, u., and u;.

The higher-order terms in uy, u., and u; increase the accuracy for wider propagation
angles. Again, for practical purposes, we limit ourselves to the first-order expansion of
the principal slowness symbols in Thomsen parameter perturbations , u, and us. The
intermediate field quantities are then Fourier transformed to the horizontal-wavenumber
domain (step 2),

wi(ay,s) =wj(ky/s,s) = /wj(:nu,s) exp [—izsko] dz,, (5.41)

= /wj(mu,s) exp [istoaq] dz,, j=0,1,--+ ,n,ed.
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The wavefield at depth z3 = z + Awx3 then follows as [cf., equations (5.32) and (5.34)]
I’i/(mli; Gy, 3) = 'lDO(am 5) exp[—SAﬂrg’)’O(ﬂ_Zg; au)]
’lU](OZ,,,
1+ —2 [ahe (s 8) — Py (0,
N1 O () = 31 0,9)]
’U)n(a‘,,
+oo— (ay,s v (0,8
wo(au’ 8) [7/)\ ,n v ) 1/\ ,’Il )]
we(aua )
'wO(aVa )

'wts(al/) )

wo(ay, s)

(step 3), the divisions being carried out in some stable sense, and the normalization operator,
N, being given by
[1 +r2]
1+1g

The Taylor expansion of the exponential in equation (5.28) destroys the unitarity of the
thin-slab propagator, hence the introduction of the normalization operator (De Hoop et al.,
2000). Finally, we carry out the inverse Fourier transform W (z3; o, s) — W (x, z3; s) (step

4)-

1:/fsl(al/a ) 1/)6,1(aua3):| s

. . p
N[1+p+ig] =exp(ig) 1+ ——
(1 p-+id] = explia) |1+ 2

5.5 Accuracy analysis

We illustrate the accuracy of the GS algorithm with the BP Amoco VTI Valhall model.
We base our analysis on numerical modeling. We generate Green’s functions and focus our
observations on second-arrival energy and multi-pathing. Imaging invokes an averaging
(stacking) process; to learn about the prestack migration operator, we hence prefer to
analyze modeling instead. Depth-migration results for the isotropic case are, however,
presented in Le Rousseau and De Hoop (2001b) (Chapter 4).

The wave speed model (vertical wave speed for ¢P waves) of the VTI Valhall model is
illustrated in Figure 5.9. This model, created by BP Amoco (Brandsberg-Dahl et al., 1999),
is based on real data studies of the Valhall field in the North Sea. Profiles for Thomsen’s
parameters ¢ and ¢ are shown in Figures 5.10(a) and 5.10(b), respectively. Note that the
model contains fine detail of the vertical wave speed. Because of the presence of gas in
the overburden of the reservoir, attenuation and multi-pathing occur which yields poor
imaging of the gP waves for conventional asymptotic methods (first arrivals or maximum
energy arrivals). ‘Gas clouds’ act as a dissipative and low wave-speed zone for the gP waves.
Alternative methods, such as imaging using converted waves, have been applied to obtain
better imaging (Thomsen et al., 1997). The ¢S waves are indeed not affected by the presence
of gas.

We place a point source beneath the reservoir (at depth 3900 m). The source location
is represented by an asterisk in Figure 5.9. The source is excited at time t = 0. The
propagating ‘pressure’ field is imaged at time t = 1.6 s. We compare results generated with
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Figure 5.9. Vertical wavespeed of the VTI model of the Valhall field. The asterisk locates
the position of the source (at depth 3900 m); the dashed line indicates the region detailed
in Figure 5.11(a) and Figure 5.11(b). The vertical arrows labeled 1 to 4 show the location
of the traces shown in Figure 5.12.
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Figure 5.10. VTI model of the Valhall field for (a) ¢ and (b) 4.
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Figure 5.11. Snapshots in the Valhall model at time ¢ = 1.6 s of the pressure field (a)
with the full elastic wave equation and (b) with the second order of the generalized-screen

method. A weak precursor associated with the compromise in contour deformation is visible
(see Chapter 4).
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the full elastic wave equation (finite-difference time-domain, fourth order in space, second
order in time) modeling (Figure 5.11(a)) with the GS (second order in the perturbation
in the medium-vertical slowness squared and first order in the perturbation in ¢ and 9)
method (Figure 5.11(b)). We use the wavefield modeled by the full elastic wave equation as
a reference. The € section exhibits not so ‘weak’ anisotropy in parts of the model: ¢ reaches
values as high as 0.3. Yet, the dispersion relation (5.11) used in VTI media for the GS
method is accurate, since it requires ‘mild’ (Schoenberg & De Hoop, 2000) and not ‘weak’
anisotropy (Thomsen, 1986).

The wavefront in the finite-difference section shows significant multi-pathing at various
locations, due to lateral variations in the medium properties, especially due to the ‘gas
cloud’, i.e., ‘gas lenses’. Also, one can notice significant multiple scattering due to the fine
layering of the model. Comparison with Figure 5.11(b) shows the capability of the GS
method to accurately model wave propagation in a complex medium. The wavefront of
the GS method closely resembles the reference one. In Figure 5.12, we show comparisons
of traces extracted from the snapshots shown in Figures 5.11(a) and 5.11(b) at the four
locations indicated in Figure 5.9. Note that the accuracy of the GS propagator follows
according to the behavior observed in Figures 5.1 to 5.8: the wavefront bends inwards for
large angles of propagation associated with significant medium variations in the overburden.
Introducing additional terms in the GS expansion in the perturbation in the medium-
vertical slowness squared, u,, yields increased accuracy as illustrated in Le Rousseau and
De Hoop (2001b) with the Marmousi model. The traces in Figure 5.12 reveal the occurrence
of internal multiple scattering that is accounted for in the finite-difference method but not
in the GS approach. The computation of the multiple scattering can be addressed by
the introduction of higher order terms in the Bremmer series, the one-way propagator
representing the leading order term (De Hoop, 1996; De Hoop et al., 2000; Le Rousseau &
De Hoop, 2001b).

In Figures 5.11(a) and 5.11(b), and also in Figure 5.12, note that second-arrival energy
is accurately positioned. The better positioning and modeling of the later-arrival energy
constitutes a key contribution to the imaging of complex structures, where these arrivals
carry a significant part of the energy. The poor imaging obtained with single-path methods
using PP events [as illustrated in Thomsen et al. (1997)] originates from the multi-pathing
induced by the ‘gas cloud’ which we show here. Approaches taking such multi-pathing into
account lead to an accurate imaging of the reservoir with PP events only (Brandsberg-Dahl
et al., 2000). We do not address the question of attenuation due to the gas cloud here,
though attenuation can be accounted for in the GS approach (Le Rousseau et al., 2000).

The efficiencies of the finite-difference and the GS algorithms for the computation
of the previous snapshots compare as follow. The computational complexity of the time
domain finite-difference approach is given by M Ny No N3 N; where M is the size of the finite-
difference stencil (M is about 25 in our case) and N, (1 = 1,2), N3, and N; are the number
of samples in the horizontal, vertical, and time directions. The associated computational
complexity of the GS is given by N,N3(4 + ny,. )N1 N3 logy (N1 N2) where N, is the number
of frequencies used in the computation. The major difference in computational complexities
can be attributed to the difference between Ny and N,. Typically, N; is 10 to 100 times
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Figure 5.12. Traces extracted from the two snapshots in Figure 5.11, which spatial locations
are shown in Figure 5.9. For each pair of traces, the trace on the left corresponds to the
full elastic wave equation computation, the trace on the right to the the second order of the
generalized-screen method computation. Weak precursors associated with the compromise
in contour deformation are visible (see Chapter 4).
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larger than N,,.

5.6 Discussion

The generalized-screen (GS) method is based on the decomposition of the medium
into a background component and a perturbation. The GS method can accommodate more
significant and rapid horizontal wave speed variations. Its enhanced accuracy (as compared
to the phase-screen and split-step method) allows accurate modeling of the wavefields in
complex structures where multi-pathing is significant. Unlike the phase-screen and split-
step methods, the GS method extends to laterally heterogeneous media with low symmetry,
such as transversely isotropic media with a vertical axis of symmetry (VTI). The medium is
then characterized by additional parameters (e.g., Thomsen’s parameters € and § (Thomsen,
1986)), for which background and perturbation terms are defined. Expansion with respect
to the anisotropy parameter perturbation terms are truncated to their lowest order term
for this accuracy is sufficient in most practical applications.

With the GS representation of the propagator, ¢(*), is associated a ‘generalized’ ver-
tical slowness, 7% + ’y}“, + 'yés + 7115’ in which the dependencies on the horizontal spatial
coordinates and the dependencies on the horizontal wavenumber coordinates are factorized.
This induces the structure of the GS propagator. The GS expansion provides a funda-
mental simplification of the one-way propagator. We obtain an algorithm that is based on
a shuttling between the frequency-horizontal space domain and the frequency-horizontal
wavenumber domain. Each additional term in the GS expansion increases its accuracy -
an additional Fourier transform is required for each additional order in the expansion (in
the perturbation in the medium-vertical slowness squared and the anisotropic parameters).
The extension of the GS algorithm to orthorhombic media can be accomplished in a similar
fashion.

We have illustrated the GS propagator’s accuracy primarily through modeling. The
mathematical accuracy analysis of the GS approximation was carried out by De Hoop et
al. (2000). Here we focus on its numerical counterpart. We chose the BP Amoco VTI
Valhall model as a synthetic model representative of a geologic situation. We focused on the
computation of Green’s functions rather than on imaging because, doing so, we do not hide
any details in a prestack migration operator; imaging involves an averaging of these details.
The extension of the GS method from isotropic to VTI yields an accuracy comparable with
its isotropic counterpart. The wavefront modeled with the GS method approaches closely
the true one even for second-arrival energy due to multi-pathing in complex structures.

The GS method, with its (4 + n,, )N1Nology(N1N2) (ny, is the order of the GS
approximation in the medium-vertical-slowness-squared perturbation, u,, and N, are the
numbers of samples in the horizontal directions) computational complexity, makes feasible
‘wave equation’ modeling and imaging in 3D VTI media.
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Chapter 6

3D depth imaging: A case study

6.1 Summary

We illustrate the performance of the generalized-screen propagator on real data for
3D zero-offset and pre-stack depth imaging. We use TotalFinaElf’s L7D data set from
the North Sea. The data acquired is that of a 3D marine survey thus containing limited
azimuthal coverage. The subsurface shows significant tectonic deformation including the
intrusion of a salt body in sedimentary sequences. A common-azimuth transformation is
applied prior to the 3D pre-stack depth imaging procedure. We compare the performance
of the generalized screen propagator with that of a hybrid PSPI/split-step Fourier method.
3D pre-stack results confirm the more accurate handling of multipathing by the generalized-
screen method. Comparison are also given with Kirchhoff migration results. The results
differ mainly in the texture of the image and not in the wave front set of the image. Using
synthetic models of similar structure (the SEG/EAGE salt model) we further illustrate the
importance of multipathing as well as that of multiple scattering.

6.2 Introduction

The generalized-screen (GS) method (De Hoop et al., 2000; Le Rousseau & De Hoop,
2001b) (Chapter 3, 4, and 5) has been developed for the reduction of the computational
complexity of the Trotter product representation of the depth imaging operator (De Hoop
et al., 2001a) (Chapter 2). This imaging operator solves the so-called double-square-root
equation (Claerbout, 1986; Popovici, 1996). Such a reduction is accomplished with a finite
number of terms in the GS expansion at the cost of approximating the wave front set of the
propagator as part of the imaging operator. In Le Rousseau and De Hoop (2001b) (Chapter
4), an extensive accuracy analysis of the propagator was conducted concluding that with
the hierarchy of approximations at hand multipathing and wide-angle propagation could be
accurately predicted by the GS propagators. Here we apply the GS approach to a real data
example.

We use TotalFinaElf’s L7D data set and velocity model. The main feature of this 3D
marine data set from the North Sea is the presence of an intrusive salt body in a surrounding
sedimentary sequence. Subsequent tectonic deformation created faults at various depths
that we hope to identify in the imaging process. The salt body yields large lateral wave-
speed variations, which makes the imaging procedure challenging for Fourier-transform
based wave-extrapolation methods (Stolt, 1978; Gazdag & Sguazzero, 1984; Stoffa et al.,
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inline direction (km)

Figure 6.1. 2D section in the inline direction extracted from a 3D stack of TotalFinaElf’s
L7D data set.
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1990). Such a data set then seems adequate for the testing of the GS propagator for depth
imaging.

We first illustrate the zero-offset migration performance upon applying a transforma-
tion to zero offset to the data (reducing the acquisition variables by 2). Zero-offset migration,
based upon the exploding reflector model, however, fails to show whether multipathing is
properly accounted for. The isochrones (and canonical relation) of the pre-stack (multiple
offset) imaging operator can be much more complex than the ones of the zero-offset imag-
ing operator because the pre-stack migration allows for paths to differ in the up and down
propagations between the source, the scattering point and the receiver. We illustrate this
aspect further by showing isochrones in a 2D section of the the SEG/EAGE salt model.
Not taking multipathing into account in such complex regions leads to partial imaging only,
and the generation of artifacts.

For 3D pre-stack depth imaging, in view of the marine acquisition, we transform the
data to common azimuth (reducing the acquisition variables by 1). To reduce the computa-
tional complexity we then apply a global common-azimuth approximation [see Biondi and
Palacharla (1996) and Appendix D]. Such an approximation assumes a single azimuth for
downward continued data at all depths. We compare the accuracy of the GS propagator
and a hybrid PSPI/split-step Fourier propagator [for details on the PSPI propagator see
Gazdag and Sguazzero (1984); for details on the split-step Fourier propagator see Stoffa
et al. (1990) and Chapter 4] with the same common-azimuth approximation. While the
two methods yield similar performance for the zero-offset migration of the L7D data set,
the pre-stack results are in favor of the GS method. A precise comparison of computa-
tional complexities of the different methods can be found in Le Rousseau and De Hoop
(Le Rousseau & De Hoop, 2001b) (Chapter 4): The GS method compares favorably. The
results confirm that pre-stack imaging in complex regions relies on multipathing and that the
GS approximations predict such multipathing accurately. To illustrate that wave-equation
imaging is microlocally equivalent to Kirchhoff/GRT imaging-inversion (De Hoop et al.,
2001a) (Chapter 2) we compare our GS results with those with a Kirchhoff approach.

Though multipathing is the common theme in this chapter we illustrate the effect
of internal multiple scattering on the imaging also. To control the generation of internal
multiples in a synthetic example (2D section of the SEG/EAGE salt model) we use the GS
method combined with the generalized Bremmer series approach (Le Rousseau & De Hoop,
2001b) to model the data and the hybrid PSPI/split-step Fourier approach to image the
data. The artifacts are interpreted.

6.3 The L7D data set

TotalFinaElf’s L7D 3D marine data set was acquired in the North Sea. The subsurface
contains a salt dome structure which implies strong lateral wave-speed variations. Such a
geology and the subsequent complexities are typical for data sets from the North Sea. Strong
lateral variations result in transverse left-right scattering of waves and is at the origin of
significant multipathing and illuminations problems. This makes this model and data a
challenge for imaging methods.



crossline direction (km)

140

depth (km)

Chapter 6. 3D depth imaging: A case study

inline direction (km)

0 5 10
O 1 1

5000

t 4000
3000

2000

Figure 6.2. Synthetic 2D wave-speed model for the L7D field.
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crossline direction (km)

Figure 6.4. Vertical section in the crossline direction of the 3D pre-stack common-azimuth
image of the L7D data set with the second-order GS propagator. The inline distance is
7150 m. The white arrows point to the graben structure and the base of the salt.
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Figure 6.5. Vertical section in the inline direction of the 3D pre-stack common-azimuth
image of the L7D data set with the second-order GS propagator. The crossline distance is
3000 m.
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Figure 6.6. Horizontal section the 3D pre-stack common-azimuth image of the L7D data
set with the second-order GS propagator. The depth is 1050 m.
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Figure 6.7. Vertical section in the crossline direction of the 3D pre-stack common-azimuth

image of the L7D data set with the second-order GS propagator. The inline distance is
8300 m.
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In Figure 6.1 we show a 2D section of the 3D zero-offset data where the salt structure
can be identified. In Figure 6.2 we show a wave-speed model synthesized from the model
used for imaging the L7D data as well the final image itself. Even though this wave-speed
mode] was not used in the processing of the data it gives a rough idea of what the model
looks like.

Further geologic information is obtained from the image sections. For orientation, the
locations of the vertical sections of L7D images used in this chapters are shown in Figure 6.3.
Figure 6.4 shows a vertical section in the crossline direction of the 3D pre-stack common-
azimuth image of the L7D data set evaluated with the second-order GS propagator. In
Figure 6.4 one can see the effect of the intrusion of the salt body in the sedimentary layers.
A graben structure along with faults can be identified in the upper part of the section.
Note that the base of the salt body is clearly visible in this section. We observe noise
associated with the (pre-stack) imaging operator especially in the upper part of the model.
Also, boundaries were not perfectly absorbing. Those are due to not enough tapering and
padding on the side of the model. Figure 6.5 shows a vertical section in the inline direction
of the same 3D image. Again the base of the salt body can be identified while its flank can
be located with the help of the surrounding sedimentary layers. In this image no turning
rays were used yielding no image of the flanks themselves. (The Bremmer series (De Hoop,
1996; De Hoop et al., 2000) could be used to include those.) Figure 6.6 shows a horizontal
section of the same 3D image. It illustrates how a large scale body such as a salt dome
can penetrate sedimentary sequences. Such local tectonics induces erosion off the dome’s
flanks, and the depositional patterns, such as channels, associated with this erosion are
well resolved. The quality of the focussing of the fault in the salt gives confidence in its
positioning. The L7D data set also exhibits a normal fault with an offset of several hundred
meters as can be seen in the crossline section in Figure 6.7.

The data underwent standard pre-processing such as deconvolution, geometrical spread-
ing correction and multiple attenuation. Before wave-equation imaging, the data were reg-
ularized in source-receiver geometry; thus they could be subjected to regular fast Fourier
transforms as needed in the algorithms used here (GS and hybrid PSPI/split-step Fourier
propagators). A transformation to common-azimuth (AMO) was applied prior to the 3D
pre-stack depth imaging procedure. Zero-offset data were obtained with the application of
a transformation to zero offset (DMO).

6.4 3D zero-offset depth migration

In this section we test the GS propagator on zero-offset data from L7D. A vertical
section of the migrated image obtained with the second-order GS propagator can be found
in Figure 6.8. The section shows that 3D wave propagation is properly handled yielding
an acceptable result. Note that the base of the salt is imaged. Some of the reflectors lack
continuity including one associated with deep sedimentary formations. Note also the noise
associated with the imaging operator in the upper part of the model. A comparison between
Figures 6.5 and 6.8 shows that the pre-stack method improves the quality of the image in
particular for the base of the salt body and the continuity of the deeper reflectors. It also



146 Chapter 6. 3D depth imaging: A case study

inline direction (km)
0 2 4 6 8 10 12

Figure 6.8. Vertical section in the inline direction of the 3D zero-offset image of the L7D
data set with the second-order GS propagator. The crossline distance is 3000 m.
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Figure 6.9. Vertical section in the inline direction of the 3D zero-offset image of the L7D
data set with a hybrid PSPI/split-step Fourier method. The crossline distance is 3000 m.
Note the difference with Figure 6.8 in the artifacts in the strongly heterogeneous part of
the medium, e.g., the salt body.
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yields a better definition of the flanks of the salt body. A proper handling of multipathing
is the main cause for such an improvement.

Figure 6.9 is the result of the same zero-offset migration with a hybrid PSP1/split-step
Fourier propagator. The wave extrapolation over a vertical step Azz is performed with a
split-step Fourier approximation with various background wave speeds, v, < v < -+ <
vpn—1 < vpn. If we use the spatial coordinates & = (z;2,3), then at each node (z1,2), in
the next depth section, z3 + Azs, there is a j such that v; < v(z19,23 + Az3) < Vit
where v(z1 2,23 + Ax3) is the actual wave speed at (z12,z3 + Azs). The wave field at
(z1,2, 23 + Az3) is then computed as an interpolation of the two wave fields associated with
v; and v; ;. (An oscillatory integral interpretation of this procedure is given in De Hoop
et al. (2000).) The additional interpolation feature yields a more accurate propagator than
a simple split-step Fourier propagator. A comparison of the sections in Figures 6.8 and 6.9
shows differences in the artifacts in the strongly heterogeneous part of the medium. With
the (quantitative) analysis of Chapter 4 one would expect a degradation of the image when
using a split-step Fourier approximation despite the interpolation procedure. However in
Chapter 4 we have shown that differences in accuracy between the two approximations were
mainly associated with multipathing and wide-angle propagation. In zero-offset processing
multipathing is not accounted for properly since one assumes that the stationary path is
the same for waves going up and going down, invoking normal reflections. Hence a zero-
offset testing showed that 3D wave propagation is honored by the two wave extrapolation
(Trotter) methods but could not reveal the accuracies of the two methods.

6.5 Illustration of multipathing in the imaging kernel

In Chapter 4 we illustrated the importance of multipathing looking at one-way wave
propagation. We show how this naturally extends to the imaging kernel. For that purpose
we use a 2D section of the SEG/EAGE salt model as shown in Figure 6.10. We apply the
imaging operator to one single trace. This allows one to observe various impulse responses
associated with different times, since the trace contains several seismic events in time. The
singular supports of these responses, i.e., the isochrones, correspond to the source and the
receiver positions associated with the given trace.

We first compute such a migration impulse response with a single-arrival Kirchhoff
migration scheme (Figure 6.11-a). It naturally yields isochrones with no triplications. If
we now make use of the first five arrivals in the Kirchhoff migration scheme, we obtain
isochrones that show triplications (Figure 6.11-b). The differences between the two wave
fronts are quite significant and advocate once again a proper handling of multipathing in
imaging procedures in complex regions such as salt bodies. Note that the isochrones in
Figure 6.11 in fact correspond to a low-dimensional projection of the canonical relation of
the imaging operator (Stolk & De Hoop, 2000; De Hoop et al., 2001a).
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Figure 6.10. A 2D section in the inline direction of the 3D SEG/EAGE salt model. The
arrow shows the source and receiver position (zero-offset) for the single trace migration of
Figure 6.11

6.6 Common-azimuth 3D pre-stack depth migration

We turn now our attention to the 3D pre-stack depth imaging of TotalFinaElf’s L7D
data set. Exploiting the narrow range of azimuths in the acquisition (marine acquisition) we
employ a common-azimuth approximation [see Biondi and Palacharla (1996) and Appendix
D]. Via a stationary-phase analysis in one variable, this approximation suppresses an inte-
gral in the Trotter product representation of the imaging operator (see Chapter 2). This
yields a lower computational complexity at the cost of approximating some of the 3D scat-
tering effects (see Appendix D). In Section 6.3 we already introduced the migration results
obtained with the second-order GS propagator. In the GS results many geological features
of the model are recovered. Note that subsalt features are identifiable. An improvement of
the wave-speed model could yield better results in the deeper part of the model. This could
be achieved according to the method exposed in De Hoop et al. (De Hoop et al., 2001a)
(Chapter 2) and the velocity analysis scheme of Brandsberg-Dahl et al. (Brandsberg-Dahl
et al., 2001).

6.6.1 Comparison with a hybrid PSPI/split-step Fourier scheme

Having noticed the importance of multipathing for pre-stack imaging we now compare
the performance of the second-order GS propagator with the one of the hybrid PSPI/split-
step Fourier propagator. In Figures 6.13 and 6.15 we show inline sections at two different
crossline distances (1500 m and 3000 m) for the two methods. In both figures we point out
with white arrows the features that show significant differences between the two methods
applied. Those differences are mainly located in the middle-upper part of the model. In
the deep section of the model, such as the base of the salt body, the two methods yield
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Figure 6.12. Vertical section in the inline direction of the 3D pre-stack common-azimuth

image of the L7D data set with the second-order GS propagator. The crossline distance is
3000 m.

inline direction (km)

Figure 6.13. Vertical section in the inline direction of the 3D zero-offset image of the L7D
data set with a hybrid PSPI/split-step Fourier method. The crossline distance is 3000 m.
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Figure 6.14. Vertical section in the inline direction of the 3D zero-offset image of the L7D
data set with the second-order GS propagator. The crossline distance is 1500 m.
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Figure 6.15. Vertical section in the inline direction of the 3D zero-offset image of the L7D
data set with a hybrid PSPI/split-step Fourier method. The crossline distance is 1500 m.
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Figure 6.16. Horizontal sections the 3D pre-stack common-azimuth image of the L7D data
set with a) the second-order GS propagator and b) a hybrid PSPI/split-step Fourier prop-
agator. The depth is 1050 m.
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Figure 6.17. Horizontal sections the 3D pre-stack common-azimuth image of the L7D data
set with a) the second-order GS propagator and b) a hybrid PSPI/split-step Fourier prop-
agator. The depth is 1125 m.
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Figure 6.18. Horizontal sections the 3D pre-stack common-azimuth image of the L7D data
set with a) the second-order GS propagator and b) a hybrid PSPI/split-step Fourier prop-
agator. The depth is 2250 m.
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comparable results. In the features highlighted in Figures 6.13 and 6.15 some faults and
reflectors are better imaged and focussed with the second-order GS propagator. To further
highlight those differences we show horizontal sections that correspond to the middle-upper
part of the model in Figures 6.16 and 6.17(b). These horizontal sections further confirm
a better imaging of features such as faults with the GS method. We also highlight some
reflectors the continuity of which is enhanced by the GS method. In the deeper part of
the model, horizontal sections show some differences between the two migration results. In
Figure 6.18 the depth is set at 2250 m. As in shallower parts the faults are better resolved by
the GS propagator. One of those faults correspond to the major fault visible in Figure 6.7.
Overall the real data case shows better results for the GS propagator as far as reflector
continuity and definition of the faults for the L7D data set.

6.6.2 Comparison with a Kirchhoff scheme

GSPCAM-120-small.ps.gz To further assess the imaging performances of the GS ap-
proach we now compare it to a Kirchhoff scheme. Figure 6.19 shows the corresponding
result. This Kirchhoff scheme only uses the most energetic arrival, i.e., does not honor mul-
tipathing. It should be noted also that the same regularized data was used for the Kirchhoff
imaging. One sees that the bottom of the salt and the general geologic structures are im-
aged. This confirms that apart from differences in texture wave-equation-based methods
and asymptotic methods yield similar images on the wave front set (De Hoop et al., 2001a)
(Chapter 2). As in the previous comparisons between the two wave-equation schemes (GS
and hybrid PSPI/split-step Fourier), differences are noticeable in the upper part of the salt
body (as marked with white arrows in Figure 6.19). There, a better imaging is obtained
with the wave-equation based methods with more focussed reflectors. The upper part of
the model actually shows complexity and lens-like wave-speed perturbations as shown in
Figure 6.2. One can therefore suspect the occurrence of multipathing in the upper part
of the model, which is properly accounted for by the wave-equation methods and not by
the single-arrival Kirchhoff scheme. To further exhibit the differences in focusing in that
shallow region we show a comparison of horizontal sections in Figure 6.20. It should be
noted that those differences correspond also to dipping reflectors. Hence, a limited aperture
in the Kirchhoff scheme can also yield a poor imaging. The bottom part of the model, e.g.,
the salt bottom, does not exhibit such differences. Multipathing must not be so significant
in that part of the model, possibly because of illumination from the right hand side of the
model instead of directly through the salt body. This further explains the little differences
found between for the two wave-equation scheme (GS and hybrid PSPI/split-step Fourier)
in the lower part of the model (see Figures 6.12 and 6.13).

6.7 The influence of multiple scattering on depth imaging

The generalized Bremmer coupling series (Chapter 3) (De Hoop, 1996; De Hoop et al.,
2000) give the capability to control the up-down multiple scattering when modeling seismic
data. This opens the door to the investigations of the importance of multiples in imaging and
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Figure 6.19. Vertical section in the inline direction of the 3D pre-stack image of the L7D

data set with a) the second-order GS propagator (common azimuth scheme) and b) a single-
arrival Kirchhoff scheme. The crossline distance is 3000 m.
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Figure 6.20. a) Horizontal sections the 3D pre-stack common-azimuth image of the L7D
data set with the second-order GS propagator; b) Horizontal sections the 3D pre-stack
image of the L7D data set with a single-arrival Kirchhoff scheme. The square pattern in b)
is due to travel time grid interpolation. The depth is 1050 m.
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Figure 6.21. 2D image of the synthetic data generated by the second-order GS propagator.
Only the primary arrival was generated. A hybrid PSPI/split-step Fourier propagator was
used in the imaging procedure.

inline direction (km)
2 4 6 8 10 12

Figure 6.22. 2D image of the synthetic data generated by the second-order GS propagator.
The primary arrival and the first multiple were generated with the Bremmer series. A
hybrid PSPI/split-step Fourier propagator was used in the imaging procedure. The model
of Figure 6.10 shows only strong contrasts in wave speed at the the transition between the
water and the subsurface and at the salt boundaries. This allows to identify multiples. The
label ‘s’ denotes water-layer multiples; ‘i’ denotes internal multiples, i.e. internal to the salt
body; ‘t’ denotes multiples associated with the top of the salt body and the water surface;'b’
denotes multiples associated with the bottom of the salt body and the water surface; ‘tb’
denotes multiples with the path surface-top salt-surface-bottom salt-surface.
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a proper treatment of those. To illustrate this point we show imaging results on synthetic
data that were generated with the aid of the Bremmer series. The imaging was performed
with a hybrid PSPI/split-step Fourier propagator as described above. The modeling was
done with the second-order generalized-screen propagator as the generator of the Bremmer
coupling series. The model used is the same as in Figure 6.10. We simulated a marine-
type seismic data acquisition. In Figure 6.21 the data used contained the primary arrival
only, i.e., the first two terms in the Bremmer series. One can see that the model is properly
imaged. Some subsalt features are not properly in place due to a poor handling of wide-angle
propagation by the hybrid PSPI/split-step Fourier method. In Figure 6.22 the data used
contained the primary reflected data as well as the first multiple, i.e., the first four terms
in the Bremmer series. The imaging then exhibits ‘phantom’ reflectors due the non-proper
handling of the multiples. (For instance the deeper part of the section in Figure 6.22 shows
strong multiple events; the deepest one are associated with the salt body boundaries.) For
the treatment of field data, prior to an imaging-inversion, multiples are usually attenuated.
However a proper treatment of those will yield an improvement in image quality, including
signal to noise ratio.

6.8 Conclusion

The case study of TotalFinaElf’s 3D North-Sea L7D marine data set is conclusive. We
not only illustrate the capability of the GS method for 3D depth imaging, both zero-offset
and pre-stack, but we also confirm that the accurate prediction of and the accounting for
multipathing is key to an optimal image in complex regions. The GS approach falls into the
category of wave-equation imaging. The GS propagator with its higher accuracy at wide-
angle propagation and scattering performs superior to a hybrid PSPI/split-step Fourier
propagator on the L7D data set. For this data set we have shown enhanced resolution and
improved positioning of faults and texture of some reflectors. While a proper treatment
of multipathing is a key step towards improved imaging, the question remains whether
the inclusion of internal multiples could improve the imaging further. To improve the
computational efficiency of the GS method further, we can employ (i) a multi-grid approach
adapted to the constituent frequency bands, (ii) adapt the variable step size (in depth) in
terms of the lateral rate of change in wave speed (De Hoop et al., 2001a), and (iii) adapt
the GS order of expansion with the maximum lateral wave-speed variation. To improve
upon our subsalt imaging, the use of mode converted (S) waves seems to be natural. A
vector GS theory has been developed for elastic wave propagation accounting for phenomena
such as the continuous mode coupling between P and S (Le Rousseau & De Hoop, 2001a)
(Chapter 7).
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Chapter 7

Generalized-screen approximation and algorithm
for the scattering of elastic waves!

7.1 Summary

We describe the propagation and scattering of elastic waves in heterogeneous media.
Decomposing the elastic wavefield into up- and downgoing constituents allows the intro-
duction of the ‘one-way’ wave equations and propagators. Such propagators account for
transverse scattering and mode coupling. The generalized-screen expansion of the sym-
bol of the one-way wave equation in medium contrast and medium smoothness induces an
approximation of the propagator with an associated computational complexity of the one
of the phase screen approximation. The generalized-screen expansion extends the phase-
screen approach. It allows for larger medium fluctuations and wider-angle propagation. We
illustrate the accuracy of the generalized-screen with numerical examples.

7.2 Introduction

The multi-mode elastic phase-screen approximation to one-way wave propagation was
introduced by Fisk and McCartor (1991; 1992), fundamentally refined by Wu (1994) and
simplified by Wild and Hudson (1998). Wu (1994) extended the scalar phase-screen ap-
proach for modeling acoustic waves to elastic waves and, in that process, developed the
vector complex-screen approximation. In the acoustic case De Hoop et al. (2000)(Chapter
3) and Le Rousseau and De Hoop (2001b) provided a systematic treatment and generaliza-
tion of the phase-screen approach, maintaining its algorithmic structure while developing
a hierarchy of increasingly accurate approximations of the one-way wave propagator. The
generalized-screen (GS) method allows for larger medium fluctuations, wider-angle propa-
gation, and back-scattering. In this chapter, we carry out the likewise extension of Wu’s
complex screen approximation, which results in the elastic GS expansion.

A scattering theory that follows the ray picture but accounts for full-wave behav-
ior has been developed by De Hoop (1996). The method consists of three main steps:
(i) decomposing the field into two constituents, propagating upward or downward along a
preferred direction (here vertical) , (ii) computing the interaction (coupling) of the counter-
propagating constituents, and (iii) re-composing the constituents into observables at the

"This chapter, co-authored by M.V. de Hoop, has been accepted for publication in the Quaterly Journal
of Mechanics and Applied Mathematics
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positions of interest. Such a method is based on an extension of the Bremmer coupling
series to multi-dimensionally varying media. Bremmer’s method decomposes the wavefield
into a recursion of one-way propagations and up-down reflections-transmissions. The one-
way operators propagate waves in the preferred vertical direction and account for scattering
in the transverse direction while reflection-transmission operators account for scattering in
the vertical direction. Thus, the method first generates a wavefield dominated by down-
ward propagation, then generates a ‘first’ upward propagating wavefield, then a ‘second’
downward propagating field, etc. In this manner, multiple reflections are accounted for in
a controlled manner. The Bremmer series in acoustic media have already found application
in Van Stralen et al. (1998) where the one-way wave operator is approximated with an
accurate optimal finite-difference algorithm based on a rational expansion as opposed to
the GS expansion by Le Rousseau and De Hoop (2001b).

The propagator that generates the Bremmer series can be represented by a Hamiltonian
path integral (De Witte-Morette et al., 1979; Fishman & McCoy, 1984a; Fishinan & McCoy,
1984b; De Hoop, 1996) that accounts for not only the energy traveling along the ray but
also for the transport along non-stationary paths. These path integrals contain all possible
multi-pathing. In the path integral, ‘time’ is identified with depth, and ‘momenta’ are
identified with the horizontal wave slownesses which, in the ray-theoretic limit, coincide with
the horizontal components of the gradient of travel time. The (square-root) Hamiltonian,
appearing in the phase of the path integral, is identified with vertical wave slowness, which,
in the ray-theoretic limit, coincides with the vertical component of the gradient of travel
time (De Hoop, 1996).

The problem with the path integrals is the computational complexity of their numerical
evaluation. To propagate waves across a thin slab one has to perform a Fourier transform
of the wave field in the horizontal directions, a phase shift and an inverse Fourier transform.
The phase shift is a function of both the space variables (input and/or output points) and
phase variables (wavenumber). The sequence of operations has therefore to be performed
for every output point at the next depth level (and every wavenumber if there is dependency
on the input point) which yields a high computational complexity. De Hoop et al. (2000)
have developed a method that dramatically reduces the computational complexity of such
evaluation, at the cost of departing from the exact shape of wavefronts. The result is an
algorithm that, for each propagation step, is built from the sequence: (several) forward
Fourier transform(s), multiplication, inverse Fourier transform, multiplication —~where the
transform is in the horizontal directions and may be windowed. To achieve such a structure
the phase shift is expanded in a series which separates space and phase dependencies. The
series expansion constitute the GS expansion. Truncating the GS expansion at increasing
orders yields a hierarchy of increasingly accurate approximations. The number of forward
(fast) Fourier transforms in the algorithm depends on the number of terms used in the
GS expansion but is not proportional to the number of nodes in the horizontal direction
for which the wavefield is computed. Underlying these approximations of the exact phase-
shift is an expansion of the medium wave speed model simultaneously into smoothness and
magnitude of variation with respect to a background medium.

The concept of screen approximations to the propagation of scalar waves has been
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around for many years. The phase-screen approximation has been applied to light trans-
mission through the atmosphere (Ratcliffe, 1956; Mercier, 1962; Filice, 1984; Martin &
Flatté, 1988), propagation of light in optical fibers (Feit & Fleck, 1978), propagation of
radio signals through the ionosphere (Buckley, 1975; Bramley, 1977; Knepp, 1983), prop-
agation of acoustic waves in the ocean (Flatté et al., 1979; Thomson & Chapman, 1983);
in the seismic literature the phase-screen approximation is known as the split-step Fourier
method (Stoffa et al., 1990). The isotropic phase-screen method has been extended to P
waves in anisotropic hexagonal media (Le Rousseau & De Hoop, 2001c¢).

The first extension in 2D of a phase-screen approach to elastic waves was that of Lan-
ders and Claerbout (1972). Hudson (1980) followed a similar procedure in 3D. Their papers
assumed a single principle wavenumber. Fisk and McCartor (1991) treated the P and §
constituents as two separate fields. They simulated the scattering effects by passing the P
and § waves through two separate screens. The PS conversion was obtained by projecting
the distorted P-wave component to the corresponding S-wave component. Such projections
do not truly account for conversions and certainly not for continuous mode coupling. Such
inconsistencies are naturally removed in our GS approach. Wu (1994) generalized the split-
step Fourier algorithm to elastic wave propagation and applied a small angle (parabolic)
approximation to obtain his elastic complex screen. Wu maintained consistency with Thom-
son and Chapman’s ‘wide-angle’ scalar phase screen (Thomson & Chapman, 1983) when
applying a small angle approximation for the interaction term only keeping the propaga-
tion part unchanged. Out of our GS approach follows also an alternative split-step Fourier
method. A ‘vector’ GS expansion has already been introduced for electromagnetic wave
propagation by Le Rousseau et al. (2000), where they show that losses can be accounted
for in the GS approach.

For large scale geophysical configurations, efficient 3D propagation algorithms are in
demand. On the one hand, full-wave 3D finite-difference and finite-element methods are
costly. One the other hand, the phase-screen approach, though approximate, yields a much
more efficient algorithm in 3D. The phase-screen method was designed for multiple down-
ward scattering of scalar waves, the downward direction being the principle direction of
propagation. The screen method is a marching algorithm in which computation of the next
wavefront requires only knowledge of the current wavefront. It includes phenomena such as
focusing and defocusing associated with multi-pathing.

In strongly heterogeneous media we have to be concerned with the continuous coupling
between P and S waves. In particular a primary P wave gets converted into S wave energy
almost everywhere. To illustrate this, we consider a region of the Institut Francais du Pétrole
(IFP)’s acoustic Marmousi model (Bourgeois et al., 1991)(Figure 7.1) that is representative
for the upper crust of an off-shore region in west Africa. A point source (star) is located at
a medium interface below a truly heterogeneous part of the model (anticline, unconformity,
faults) that exhibits significant horizontal wave speed variations. The source is excited at
time ¢ = 0, and the pressure wavefield is imaged at time ¢ = 0.95 s, creating the snapshot
in Figure 7.2 computed with the scalar GS method (Le Rousseau & De Hoop, 2001b) for
an explosion source. Note the occurrence of significant multi-pathing due to the complexity
of the medium. Le Rousseau and De Hoop (2001b) showed that such multi-pathing is
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Figure 7.1. Part of the Marmousi wave speed model used to generate the snapshots of
Figures 7.2 to 7.4(b). The star locates the position of the source. The maximum wave
speed is 5500 m/s (black). The minimum wave speed is 1500 m/s (white).
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Figure 7.2. Snapshot of the pressure wavefield at time ¢t = 0.95 s computed with the second
order of the generalized-screen method for an explosion source. Figure 7.1 shows the wave
speed model used and the source location. The gray scales represents amplitudes. A weak
precursor associated with the compromise in contour deformation is visible (see Chapter 3).

accurately predicted by the GS method, because the GS method stays close to the path-
integral representation for wave propagation. We now consider an elastic model where the
P wave speed is given by Figure 7.1 and the S wave speed is simply given as half the P
wave speed. All the following snapshots were computed by the elastic GS method which
is the subject of this chapter. Again since the GS method stays close to the path-integral
representation for wave propagation, it has no difficulty to account for continuous mode
coupling between P and S. In the case of a horizontal point force, the horizontal particle
velocity at time ¢ = 0.95 s is shown in Figure 7.3(a); the vertical particle velocity at time
t = 0.95 s is shown in Figure 7.3(b). The position of the P wavefront is identical to the one
in Figure 7.2. Note the occurrence of mode coupling between the P and S wavefronts. Note
also that S-wave energy is generated at the source. To observe the occurrence of S waves
from converted P waves only we now invoke an explosion source. The horizontal particle
velocity at time t = 0.95 s is shown in Figure 7.4(a); the vertical particle velocity at time
t = 0.95 s is shown in Figure 7.4(b). In particular, comparing Figure 7.4(a) with Figure 7.2
illustrates the significant mode coupling occurring in such a medium.

We first introduce the wavefield directional decomposition procedure (Section 7.3).
Directional decomposition maps the ‘two-way’ elastic wavefield into constituents that sat-
isfy a coupled system of ‘one-way’ equations (Section 7.3.2). We then introduce the sub-
sequent path-integral representations of the associated one-way wave propagators which
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Figure 7.3. Snapshot of (a) the horizontal particle velocity and (b) vertical particle velocity
at time ¢t = 0.95 s computed with the first order of the generalized-screen method for a
horizontal point force. Figure 7.1 shows the P wave speed model used and the source
location.
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Figure 7.4. Snapshot of (a) the horizontal particle velocity and (b) vertical particle velocity
at time ¢ = 0.95 s computed with the first order of the generalized-screen method for an
explosion source. Figure 7.1 shows the P wave speed model used and the source location.
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are composed of a (cascade of) (i) forward Fourier transform, (ii) a multiplication by a
phase factor, (iii) and an inverse Fourier transform (Section 7.4.1). Through the Fourier
transforms, the space and wavenumber domains are ‘dual’ to one another. The applied
phase-shift is proportional to the square-root Hamiltonian, an amplitude (Treves, 1980a)
of the pseudodifferential operator that accounts for the scattering due to heterogeneities in
the horizontal directions. We identify this operator as vertical slowness operator since the
square-root Hamiltonian associates with vertical wave slowness. We discuss the choice of
such an amplitude and make the choice to use the right (or dual) symbol (Treves, 1980a;
Hormander, 1985a; Shubin, 1987) of the vertical slowness operator.

The outline of the further analysis is as follows. We distinguish two parts. Part one
focuses on the construction of the square-root Hamiltonian. Part two discusses the imple-
mentation of the associated one-way propagator. [Part one] Concerning the square-root
Hamiltonian we have to solve an operator characteristic equation (Section 7.3.2) which in-
duces the characteristic equation for the respective symbols (Section 7.5.3). As far as the
right-hand side of the equation is concerned we distinguish the following steps: (i) Intro-
duce a scaling to ensure ellipticity of the characteristic partial differential operator and (ii)
decompose the operator symbol into terms of decreasing operator order (Section 7.3.3);
(iil) switch from standard (left) to dual (right) symbol representation to simplify the nec-
essary renormalization of the one-way wave propagator in the GS approximation (Sections
7.3.3 and 7.4.1); (iv) introduce an appropriate embedding and invoke a medium contrast
formulation (Section 7.5.1); (v) re-expand decomposition (ii) with respect to smoothness
and magnitude of medium contrast (Section 7.5.2) and (vi) introduce associated scaling
parameters (Section 7.5.4). As far as the equality is concerned we employ the composition
calculus of pseudodifferential operators (Section 7.5.3). As far as the left-hand side of the
equation is concerned we distinguish steps: (i) introduce an expansion for the root (solu-
tion) of the type invoked for the right-hand side (v) which we anticipate from the framework
of microlocal analysis (Section 7.5.5); (ii) substitute the expansion into the characteristic
equation and identify terms of equal orders which leads to (iii) a recursion of symbol-matrix
equations (Section 7.5.6); (iv) solve these equations with the aid of a diagonalization proce-
dure to be taken in the embedding only (Section 7.5.7). The outlined procedure leads to a
symbol expansion in which the space and phase dependencies are term-wise separated (the
GS expansion).

[Part two] Concerning the one-way wave propagator we distinguish the following steps:
(i) Introduce its Trotter-product representation (Section 7.4.1) out of which (ii) we extract
the thin-slab propagator (Section 7.4.2); (iii) substitute the background and contrast terms
for the square-root Hamiltonian appearing in the phase of the thin-slab propagator (Section
7.6.1); (iv) separate (approximately) the P and S constituents in the embedding (Section
7.6.1); (v) the embedding term is left in the exponential. The exponential containing
the contrast terms is expanded about vertical propagation (first-order Taylor) and (vi)
obtain an explicit split-step and contrast contribution (Section 7.6.2); (vii) substitute the
GS expansion for the vertical slowness right symbol in the contrast contributions of the
propagator (Section 7.6.3); (viii) renormalize to restore unitarity after the expansion of the
exponential in (v) (Section 7.6.4).
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7.3 Directional wavefield decomposition for elastic waves

The point at which the wave motion is observed is specified by the coordinates {z,, z2, 3}
in a right-handed, orthogonal, Cartesian frame of reference. The direction of preference or
principal direction is taken along the z3-axis (or ‘vertical’ axis) and the remaining (‘lateral’,
‘horizontal’, or ‘transverse’) coordinates are denoted by x,, 1 = 1,2.

In the case of an instantaneously reacting medium, the elastic wavefield satisfies the
linear hyperbolic system of first-order partial differential equations,

poy; — 7y = fi, i=1,2,3, (7.1)
—Oi7ij + Cijt 5 (Ot + Oktr) = cijkr b, 4,5 =1,2,3, (7.2)

where 7;; = stress, 9; = particle velocity, p = volume density of mass, c¢;;x; = stiffness tensor,
fi = volume source density of force, iLij = izji = volume source density of deformation rate.
The volume source density of force term, f is of importance for explosion sources, e.g.,
air-gun, while the volume source density of deformation rate term, iz, describes rupture
mechanisms, e.g., earthquake sources (Dahlen & Tromp, 1998). The hats ( ~ ) are here used
to denote the time domain. They will be removed once in the Laplace domain. For the
analysis that we follow here we assume p and c;;; to be smooth whereas f and izij are
allowed to be distributional.

The causality of the wave motion can be taken into account by carrying out a one-sided
Laplace transform with respect to time, ¢, taking the Laplace-transform parameter, s, which
in general is complex-valued, to be in the right half (Re(s) > 0) of the complex s-plane. To
show the notation, we give the expression for the particle velocity, at & = (1, z2, z3),

(o}
vi(z, s) :/ 0;(x, t) exp[—st|dt . (7.3)
0
Under this transformation, we have 9, — s. For an isotropic medium, we have
cijit = (Kp' — 265 ")04i0k1 + kg " (G0t + Sudjk) (7.4)
with kp = (A +2p)"! and ks = p~!, where A and u are the Lamé parameters depending
on the spatial coordinate only.

7.3.1 The reduced system of equations

In preparation of the directional decomposition, we extract the horizontal stresses, i1,
T12, T22 through

d3vs = kp (kp' hag + A(hi1 + hoo) + 8733 — M(O1v1 + Dova)) (7.5)
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which yields
—T11 = S_l K,]_;lhll + /\(h22 + h33) - n‘,’;lalvl - /\32’1)2 (76)

—AKp (H;lhg,‘} + )\(hu + /7,22) + 8733 — )\(51’01 + 327)2)> )
|

—Tyy = s ! ’-K,I_DIhQQ + A(h11 + hsg) — Aoyvy — 5;1821)2 (7.7)
—Akp (I‘.’.]_31h33 + A(h11 + hoo) + sm33 — AM(O1v1 + 32v2)> J \
—T2 = s ' [265"h1o — k5! (O1va + dvy)] . (7.8)
Let
D,=-s1'9,, v=1,2, (7.9)

represent the horizontal slowness operators. We introduce the composite field vectors Fy,
I=1,2as

Fl = (Ula v2, —TZ;3)T with TéB = F‘.‘}J/2p_l/27—33 ) (710)
Fy = (-, —Té3a”3)T with 7{3 = HE/ZP_I/Q 713 and 73 = "?13/29_1/2 T3 . (7.11)

Here, we have normalized the traction entries to the dimensions of particle velocity following
De Hoop and De Hoop (1994). In the Laplace domain, the system of equations (7.1)-(7.2)
can then be cast in the form

(03615 + sOpy(zy, Dy, 23))Fy = Ny — E1,Fy (7.12)

where the differential operators O is a 2 x 2 matrix. The form of system (7.12) prepares for
the diagonalization performed in the next section. Each block Oyy, I,J =1,2,is a3 x 3
matrix given by O;; =0, O =0 and

(rsp)'/? 0 —-Dy
012 - 1/2 0 1/2 1/2 (K‘SP)I/QI 2 _D2
—sf o2 Di (a5 P pl 2 ) w2 p 2 Da(g P p %) (kpp)'

O3 has entries (O91)s5, 1,7 = 1,2, given by

(Oa)n = w2072 [p— Dy (dnD;-) - Da (k5' Dy )] ,
(O21)12 = —R}g/?p—l/? [D1 (d12Ds ) + Dy (K’EIDI )] ,
(O2)is = —ryd’p '/ [Dl (,\H}D/2pl/2 )] ,

(O21)31 = =A&p(D;1-),(021)33 = n},ﬂpl/? .



J. H. Le Rousseau / Wave-equation imaging and generalized screens 171

Upon interchanging D; and Ds, the terms (Og1)21, (O21)22, (O21)23, and (Ogq)32 are ob-
tained from (O21)22, (O21)11, (O21)13, and (Oa; )31, respectively. When such ‘symmetry’ is
present, we can restrict our analysis to the entries ‘11°, ‘12’, ‘13’, ‘31’ and ‘33’ and infer
results for the remaining entries. The parameters d;; and d;2 were introduced by De Hoop
and De Hoop (1994), and in an isotropic medium reduce to

du = ApA+p)A+2p) 7" =4k (ks — Kkp) (7.13)
diz = 22p(\+2u)7" =2x5% (ks — 2kp) . (7.14)

The 6 x 6 matrix =, originating from the normalization of the traction entries (7.10)
and (7.11), has three non-zero entries: Z33 = n},/Qp‘l/Qa;g(ﬁ;l/?p]/?) and
H§/2p_1/233(fi§1/2p1/2).

In the left hand side of system (7.12) we collect the terms in which medium parameters
are subjected to differentiations in the horizontal directions. After diagonalization the left-
hand side will account for the left-right scattering in the horizontal directions while the right-
hand side will generate the up-down scattering in the vertical direction. The terms Zj; F)
should occur on the right-hand side of system (7.12) because they involve differentiations
of the medium parameter with respect to the vertical direction.

The (notional) source vectors, Ny, I = 1,2 are given by

T
N = (27113,2’?'23»"6}3/2/’_1/2f3) and

1

Zqq = Zss =

"éé/zp_l/z [f1 + Di(di1hi1 + dizhao) + Da(2k5" hy2)]

N, = RIS/QP_W [f2 + Da(di2h11 + dirhao) + D1(265 hag)] | (7.15)
ngl(ng —2kp)(h11 + ho2) + hss

7.3.2 Directional decomposition

To achieve a directional decomposition of the elastic wavefield, we diagonalize sys-
tem (7.12) — note that the vertical derivative contribution is already diagonal in the left-hand
side of system (7.12). We write

Fr =L Wy, (7.16)

where Wy is the composite wave vector, and W; and W will be shown to relate to the
down- and up-going wave constituents. The matrix L;; represents the change of basis in
the diagonalization of system (7.12), i.e., is composed of the generalized eigenvectors of O.
We call Lr; the composition operator; L is a pseudodifferential operator (Shubin, 1987;
Treves, 1980a; Hormander, 1985a) acting on the horizontal coordinates, z; and z5. Note
that the elements of the wave matrix, W;, may be physically ‘non-observable’. We now
show the construction of such an operator L.

Substituting the composition equation (7.16) into system (7.12) we obtain the following
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system

a3L1JW’J+8012L2_]WJ = —EyLigW;+ Ny, (7.17)
SO LigW; + 3LoyWy; = —EoiLigWjy+ No . (718)

Using the commutation relation

(03, L1s)(-) = 03(L1y(-)) — L1s03() = (83L1s)(-) , (7.19)

(since the operator L;; depends on the z3 variable, whereas it only acts on z; and z5) we
obtain

Ly jOsWy + 5 O12LoyWy = —((03L1y) + E11L1s)Wy + Ny, (7.20)
8O0 L1yWy + LygsW; = —((03L2g) +ZE1L1))Ws+ Ny (7.21)

We shall construct the appropriate linear operator, Ly, such that the left-hand side of this
system attains the form

L1j(03650m + sAjn)War = —((03L1y) + ZErx L)Wy + Ny (7.22)

such that the linear operator Ay; is diagonal. The two diagonal entries of A;; will have
opposite signs and be pseudodifferential with respect the horizontal directions, i.e., for
I =1,2 Ajr = Arr(zy, 23, D1, D). The diagonal entries of 838547 + sAjar therefore have
the form of up- and down-going one-way wave operators, which have the appearance of a
first-order hyperbolic operator in z3 and ¢. Here the vertical direction, z3, represents the
evolution (continuation) parameter.

The associated generalized operator eigenvalue-eigenvector problem is represented by

O12Lo1 = LuAn, Oi2Lp = LigAg, (7.23)
O21L1y = LaAn, OanLip= Lyly, (7.24)

which is obtained by comparing systems (7.20) and (7.21) with system (7.22). Let the
diagonal entries of A;; be denoted as

A =T | Ay =T0)
To solve the generalized eigenvalue-eigenvector problem, we introduce the Ansatz
(L27,021012) =0, J=1,2. (7.25)
It follows that I'®) must then satisfy the characteristic equation

P — 4 A =090, (7.26)
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(we call A the characteristic operator) while the Li; and L5 must satisfy
[055'L14,00.012] =0, J=1,2. (7.27)
Reflecting the up-down symmetry of the medium, the solutions of equation (7.26) are
) — P = 45 . (7.28)

The square-root of A is well defined (with the aid of pseudodifferential calculus for instance
(Treves, 1980a)) because we require Re(s) > 0. If we want to relax such a condition, i.e.,
s — iw we need to apply a microlocal cut-off; this corresponds to ‘filtering’ out so-called
turning rays (see Sections 7.3.3 and 7.4.1). Up to smoothing contributions I'*) are the
unique square-roots of A.

Note that because of the normalizations (7.10) and (7.11) of the traction entries, 7,3,
i = 1,2,3, the entries of the matrix operator A have consistent dimensions, slowness squared.
Its square root, I', has the interpretation of vertical slowness operator.

A possible solution of equation (7.27) constitutes the generalized eigenvectors, L, com-
posing the composition operator

[ O12 Op2
L_( . _F> . (7.29)

In terms of the inverse vertical slowness operator, I'"! = A~1/2 the decomposition operator
then follows as

0—1 I‘\—l
-1 _ 1 12
L'=1 ( o3 _po ) . (7.30)

The (de)composition operators account for the radiation patterns of the different source
and receiver types.
Using the decomposition operator, system (7.22) is transformed into

(03010 + sAr )Wy = —(L™ N 15((0sLyx) + Egr L)Wk + (LY yNy (7.31)

which can be interpreted as a coupled system of one-way wave equations. The coupling
between the counter-propagating components, W, and W5, is apparent in the first source-
like term on the right-hand side, which can be written in the form

—L7Y(&sL) = ( ; g ) : (7.32)

in which T" and R represent the transmission and reflection operators, respectively. We find

—T = 301, (83012) + 5T 1(8sT) , R = -L03,'(8;012) + 317 1(85T) . (7.33)
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7.3.3 The characteristic operator

The differential operator A = (A;j) [see equation (7.26)] can be identified with the
transverse Helmholtz operator (De Hoop, 1996), and is given by

A = prs— kg p {01 (41 D1((55p)'/2 )] + D2 [5' Dal(sp) /2 )| (7.34)
-D [)\hlp(Dl fc;l/zplﬂ')]} )

Ap = _515/2p—1/2 {Dl [t1112D2((f’»’SP)1/2 ')] + Dy ["‘@101(("65@1/2 ')] (7.35)
~D1 [Msp(Dy g Pp2]

Ay = 513/ 25172 { ~ pDy + Dy [d1D? ] +2Ds [k5'DaDy <] + Dy [di2D3 -] (7.36)

-Dy [>\"‘3PP ] } )
Ay = —/\KPDI(K.ls'ﬂpl/Z )= 'iPDl("&El/QPlﬂ') ; (7.37)
Ass =  Akp(D?+ D3)+ prp . (7.38)

The (left) symbol? of D, is defined as iq,, the horizontal slowness. We decompose the
symbol a of the characteristic operator, A, according to the symbol order,

a = a[g + an) + ao) - (739)
This ordered polyhomogeneous expansion is defined according to
afp—j)(Ty, T3; sQu, SKP, K3, sp) =s*77 a[Q_j](wu, T3; Qy, Kp,KS, p) - (7.40)

Note that the i** term in decomposition (7.39) then contains i**-order derivatives of the
medium parameters. This will give us control over the smoothness of the terms in the
GS expansion of the vertical slowness symbol with respect to the medium variations (see
Section 7.5).

The principal part afg) = (aijm) corresponds to the higher-order term, i.e., the ‘high-

2The (left) symbol h of a differential or pseudodifferential operator H in R" is defined as

(Ho)(@) = (s/27)" / / explis(zs — yo)ao] (@, @) p(y) dy de .

Note that because of the conventions used here we have changed variables, a = £/s, in the original Fourier
transform. The right symbol h, of H is defined as

()@ = (5/20)" [ [ expl-istar — vo)ac] e (3, @) o) dy der
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frequency’ approximation of the symbol (Hormander, 1985a, Chapter18), which is then
given by

ai = ksp+ 3af — 2;;,3,;510@ + a2, (7.41)

aizp = 200965 (ks — Kp) | (7.42)

azp = 2072k (kp — ks)iar + 472k P (kg kp — Di(ed + ai0d), (7.43)

azip = P2 P (kp — Kg)icu (7.44)

as3fg) = kpp+ (26p — ns)ngl(a% + a%) . (7.45)
(2]

The principal symbol, a9}, is of interest since it governs the propagation of the singularities,
i.e., the geometry of the wave propagation (Hormander, 1985a, theorem 18.1.28). The
eigenvalues of the symbol matrix ap are ksp+aya, = cgz + ayay, with multiplicity 2, and
kppt+aya, = c;2+a,,a,,, with multiplicity 1. Thus det(ay)) # 0, which implies that A is an
elliptic partial differential operator. This guarantees the existence of its (pseudodifferential)
square-root, I' (Treves, 1980a, proposition 4.2). This is however not valid anymore if the
condition that Re(s) > 0 is relaxed. The eigenvalues of the symbol matrix ajy) can then
be zero for some values of a; and s that correspond to (P and S) turning rays. With
pseudodifferential cutoffs we can ‘filter’ out those turning rays and still use microlocal
techniques to compute the square-root of A away from those turning rays. This is usually
done in practice when one uses the Fourier transform in time rather than the Laplace
transform in time. For an alternative method to compute the square-root of A that goes
beyond the reach of microlocal analysis in the case of fluid-acoustics we refer to De Hoop
and Gautesen (2001).

Note that in the present chapter, the analysis is carried out with the right (or dual)
symbol calculus (see Section 7.4.1). The correspondence between left, a;, and right, a,., sym-
bols of pseudodifferential operators is given by (Treves, 1980a; Hormander, 1985a; Shubin,
1987)

a‘/) = €Xp [iaaa Dza] a’l(xu’ al/) ) (7'46)

—mpl
=1,

ar(:z:;l,

shown here for the characteristic operator, A. Note that the principal part, a), is shared
by the left and right symbols.

Following equation (7.40) we decompose the right symbol a, according to the symbol
order: a, = ap + ar(1)+ar[g) +ar[_1]- In Appendix M, we show the entries of the term ar(1)-

7.4 The one-way wave propagator

In this section we introduce the Trotter-product representation of the one-way wave
propagator (Section 7.4.1) out of which we extract the thin-slab propagator (Section 7.4.2).
To arrive at a coupled system of integral equations that is equivalent to equation (7.31)
and that can be solved in terms of a Neumann expansion, we have to invert the operator
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occurring on the left-hand side. Such Neumann expansion induces the Bremmer coupling
series. We refer the reader to De Hoop (1996) and De Hoop et al. (2000) for details and
discussions on the Bremmer series [practical implementation of the Bremmer coupling series
can be found in Van Stralen et al. (1998) and Le Rousseau and De Hoop (2001b)].

We set G(F) = (93 + sI'®))~1, The one-sided elementary kernels Gz, x3; 2, 74)
associated with these operators are the so-called one-way Green’s functions. They satisfy
the equations

(85 + sTNGHE) = §(x, — 2) 6(z3 — z4) , (7.47)

together with the condition of causality enforcing that G(*) decays as z3 — 0.

7.4.1 The Trotter product representation

If the medium in the interval [z}, 23] were weakly varying in the vertical direction,
the Green’s function G(*), can be represented by a Hamiltonian path integral (De Witte-
Morette et al., 1979), with measure D on configuration space, i.e., the space of all possible
paths between the input point ' and the output point & (Robbin & Salamon, 1993),

g (2, 235 ), T3) = TH(F[zh — 23]) /P’D(:I:Z,aﬁ (7.48)

T3
exp [—s /( ,d<{ia:;(d<z:;)+m§*~>(x;:,m:1,c,a’;)}] :

=z3

P being a set of paths (z},(¢), e(¢)) in (horizontal) phase space satisfying x},(¢ = x}) =
a:ji ) :UZ(( = x3) = z,. Path integral representations for wave propagation were also
considered by Fishman and McCoy (1984b). The path integral (7.48) is an integration
over all the possible paths that connect the input point ' and the output point & with
the proper phase evolution. It therefore not only accounts for energy traveling along the
rays (stationary paths) but also for the transport along non-stationary paths. It then
naturally contains all possible multi-pathing, and mode-coupling. The phase function in

the propagator (7.48) is responsible for shape of the wave front set. The important term
in the phase is 'y((,i) 3. It generates the pseudodifferential operator I'®) (vertical slowness
operator): for ¢ a test function (¢ € C§°)

(TD ) (@, ¢) = (3/21)° / dofldol!

[ datass expl-is(o 24)at] 25 (@, ) ab0)

3To be more precise only the principal part of 'y,(,i) is responsible for the shape of the wave front set. The
rest of the amplitude 'y,(,i) is of order 0 and so is its exponential (Hormander, 1971, proposition 1.1.8). That
part therefore contributes to the amplitude of the fundamental solution.
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In this sense the one-way wave propagator accounts for the transverse scattering. There
is not a unique choice for 'y¢(li) in this representation of the action of ) (Treves, 1980a,
proof of Theorem 4.1). We refer to 7,(li) as to an amplitude of I'®) (Treves, 1980a).

With the Trotter product formula (De Witte-Morette et al., 1979; Schulman, 1981),

the path integral in equation (7.48) is to be interpreted as

K K-1
G (25, 25) = £H (o — za)) lim / [T(s/2m)%de"dal” T do’dzy’
i=1 j=1

K
exp | —s Z{ia((,k)(:zzs,k) — 21y 4 ’y,(li)(m,(f),m,(f_l),gk — 1K Az, oYK~ Azs)

k=1
(7.49)
with :I:LO) = a:;l ., IEELK) = z,, and Azz = x3 — . All the integrations are taken over the
interval (—o0, 00), K~ ! Ax; is the step size in ¢, and (:L'Ef), a,(,] )) are the coordinates of a path
at the discrete values (; of ( as j = 1,--- , K. The Trotter product formula representation

of the path integration shows how every path, now on a lattice, between the input point =’
and the output point x is taken into account.

Note that for finite K, and Az3 small enough propagator (7.49) can be interpreted as a
Lagrangian distribution (Hérmander, 1985b). De Hoop et al. (2001a) show that it can then
be viewed as the kernel of the composition of K Fourier integral operators (Hormander,
1985b; Treves, 1980b; Duistermaat, 1996). Observe that this is possible because one has
inserted a (pseudodifferential) cut-off function in order to stay away from so-called ‘turning’
rays (De Hoop et al., 2001a).

The issue of operator ordering in path integration (Mayes & Dowker, 1972; Dowker,
1976) is reflected by the particular choice of fy,(li) in the phase function in propagator (7.49).
A possible choice, commonly made in the context of quantum mechanics, is the Weyl symbol,

fyt(,,i) (Hormander, 1979; Hérmander, 1985a); then
1 @), 2V, G~ 3K Axs, ) = 45 (@) + 2 7D) /2,6 - 5K T Axy,af)

The Weyl symbol calculus offers advantages such as the separation of heterogeneity from
anisotropy (Fishman et al., 2000) but implies more complex (implicit) numerical algorithms.

Here, we make the choice of the right (or dual) symbol, 'y,(-i):

7 @, 2t 7V, G — 3K Azs, o)) = A @, G - 5K Ay, oY)

The GS expansion of the symbol (see below) breaks the unitarity of the exponential of
the phase function in the oscillatory integral representation of the propagator which is

(approximately) repaired by a normalization. This normalization procedure occurs in the
Fourier (a; — a9) domain, which enforces the use of the right symbol. The asymptotic
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relation between the right and Weyl symbols is given by
'71(-:|:)($;u Ck — %K_IA_'):3, a’u) = exp[%iaaaDa:a] 'Y'l(ui)(mua Ck — %K_IAIB;;, au) -
No matter what choice we make for fy((li) in propagator (7.49) it will have dependencies on

both the spatial and Fourier variables. This induces high computational complexity for the
direct (numerical) evaluation of propagator (7.49).

7.4.2 The thin-slab propagator
If Azj is sufficiently small (thin slab), propagator (7.49) reduces to (K = 1)

/d:v'ldm'Q g(i)(.'l:u,a:;;;a:f,,wg)(-) ~ /(3/27r)2da'1'da'2' exp[—is & z,]
/d:z:'ldmé explis o'z ] exp[—s v F) (!, z3 — 3Az3, al)) Azs)(-) . (7.50)

Thus, thin-slab propagation is composed of a forward Fourier transform coupled to a multi-
plication by a phase factor (the phase is proportional to the vertical slowness right symbol)
and an inverse Fourier transform. Wu’s point of departure is the analysis of (plane) wave
scattering from the thin slab in the Born approximation combined with a paraxial approx-
imation (Wu, 1994). Thus Wu’s approach accounts for small-angle scattering with weak
medium contrasts and does not treat any back scattering. We employ no such approxima-
tions.

7.5 Generalized-screen recursion for the vertical slowness symbol

We show now that we can separate the space and phase dependencies of the vertical
slowness right symbol. This will induce the reduction of the computational complexity of
the (thin-slab) propagator. To obtain such a separation we first introduce an embedding
and invoke a medium contrast formulation (Section 7.5.1); we then expand the symbol of
the characteristic operator, A, with respect to smoothness (operator order) and magnitude
of medium contrast (Section 7.5.2) and introduce the associated scaling parameters (Section
7.5.4); we introduce an expansion of the vertical slowness right symbol of the type invoked
for the symbol of A, which we anticipate from the framework of microlocal analysis (Section
7.5.5); we substitute the expansion into the characteristic equation (Section 7.5.3) and
identify terms of equal orders which leads to a recursion of symbol-matrix equations (Section
7.5.6); we solve these equations with the aid of a diagonalization procedure to be taken in
the embedding only (Section 7.5.7). Such expansion of the vertical slowness right symbol is
denoted as the generalized-screen expansion of the symbol. In this expansion the space and
phase dependencies are term-wise separated. The analysis here involves matrix symbols
rather than scalar symbol in the acoustic case. We analyze the form of the terms in the
expansion in a basis that (approximately) separates P and S contributions (this basis is
associated to the embedding only) and compare with the scalar case. On one hand, in the
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first order terms in the GS expansion of the principal part of the vertical slowness symbol,
we note that the diagonal entries of correspond with the first-order term of the mode-wise
scalar screen expansion. On the other hand the off-diagonal entries contribute to the mode
coupling.

Insertion of the expanded symbol in the thin-slab propagator (7.50) then yields the
generalized screen thin-slab propagator (Section 7.6).

7.5.1 Contrast formulation

We introduce a background medium, with parameters p°, hc(}g, and fsg- in the slab [z}, 3]
with thickness Azs = xz3 — 4. The background medium is constant within the slab, but
may vary from one slab to another: p%(¢) = p%(z3), K%(¢) = k%(z3) and k2(¢) = k% (z3)
for ( € [z%,23]. We shall employ a contrast formulation. The medium perturbations, €,
ep, and eg, are given by

kp(zn ) = mples) L+ ep(zu, O] Rs(@u () = w3(xs) [1+ s ()], (7.51)
p(Tu,¢) = po(mS) [1+ep(zp, Q)] 5 (7.52)

for ¢ € [2%, z3]. The wave speeds follow as

1/2 0
1

p = (6pp°) 12,

cp = (kpp)~ cs = (rsp) M7, &= (k") M. (7.53)

The background parameters should be chosen in such a way that the introduction
of artificial branch points in the propagating-wave regime is avoided. This implies the
conditions (De Hoop et al., 2000; Le Rousseau & De Hoop, 2001b): cp(z,,() > ¢h(z3),
cs(zy, ¢) > c2(z3). However, because of the coupling between the P and S constituents in

the wave matrix, W, this also implies the two additional conditions

cp(zp, ¢) > c3(x3) ,  cs(@p, () > cpl(xs) . (7.54)

On the one hand, the first condition in equation (7.54) is naturally satisfied. On the other
hand, the second condition in equation (7.54) enforces the choice ¢%(z3) = ¢%(z3), which
would lead to inaccuracies in the further development. Instead, to circumvent those, we
shall introduce two background media: one for each (P and S) constituent of the wave
matrix (see Section 7.6 on the generalized-screen propagator).

7.5.2 [Expansion of the characteristic operator symbol

We shall now expand the right symbol a, of A, simultaneously in medium contrast (the
order is indicated by a superscript) and in symbol (or operator) order (this order is indicated
by a subscript). Expanding the right symbol a, in symbol order yields the decomposition

ar = Gplg) + 1) + (0] + Gr—1) (7.55)
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whereas expanding each term in medium contrast yields
(ZT[2] ~ a‘T{Q{ + Z a1-{22]] 3 a1-[1] ~ Z ar{zl]] , a’T[O] ~ Z (Lr{z)]] , aT[_l] ~ Z ar{ﬂll . (756)
i=1 i=1 =2 1=2

We show the first three terms of the expansion of the principal part a,.{g% = ajg). The

background term, a{g} = (a,.,ij{g}), zero order in medium contrast, zero order in operator
order, is given by

arufy = 30F+0f — 202[c3Peh] 2+ [4) 2, (7.57)
aroly = 200a2[c}[chs] 2, (7.58)
arisly = —2(chs] 2Yion — 4ilh] *cPilad + arad) (7.59)
armly = —[chs] %Sl , (7.60)
argaly = (172 + ol (2eh] 2~ []2) (7.61)

with [c%¢] 72 = [¢2]72 — [¢%] 2. This background term is diagonalized according to

arfy) = MO [2°]? [M°)1 (7.62)
where 70 is the diagonal matrix
P = diag ([c3] 72 + avaw, (3] 2+ avan, (D] 2+ aa) (7.63)

[m

which reveals the three wave speeds of the P- and S-wave polarizations in the background
medium. The diagonalizing matrix is given by

- 14+ 2P ()] - 2ide
MO = ——\/% [1 + 2[003]2((1,,0,,)] \/.—ir;l(;-: 2icga2 , (764)

—cg,/a,,a,, 0 1
- and its inverse by

Tow Vo 2svad
[MO]—1= i _ _im 0 . (765)

vavay vayan

icgag icgag 1+ 2[cg]2(aua,,)

Observe that only the S wave speed appears in the separation of the P and § constituents
of either wave matrix component.
Higher-order terms in both medium contrast and operator orders can be found in Ap-
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pendix N. First-order terms in symbol order account for the gradient in medium properties.

7.5.3 The characteristic symbol equation

Given the symbol a,, we now have to construct the vertical slowness right symbol,
7. This symbol satisfies a characteristic equation following the composition of operators in
equation (7.28) (Treves, 1980a; Hérmander, 1985a; Shubin, 1987; De Hoop, 1996):

exp [1 aa'aD:l:é,] ’yr(xuaC:ala-)’Y‘r(m:ﬂC:aU) = CLT(.’L'M,C,O[,,) : (766)

(:L';: o )=(xp,a0)

This equation defines the generalized slowness surface. The two branches are 'yﬁi) such that

the real part of the eigenvalues of 'y§+) are positive and the real part of the eigenvalues of 'y(_)

are negative. Due to the local up/down symmetry of the medium we have 'y,(.+) = —’y,(-_).
Note that as s — oo the composition of symbols tends to an ordinary multiplication, and the
solution of equation (7.66) reduces to the principal parts of the symbols. The eigenvalues
of the principal part of the vertical slowness symbol correspond to the vertical gradient
of travel time for the three polarizations, in accordance with the eikonal equation [which
can be obtained from the high-frequency approximation of the path integral, see De Hoop

(1996)).

7.5.4 Scaling

The solution to equation (7.66), <y, will be constructed by means of a (polyhomo-
geneous) series expansion following the expansion of a, introduced above. To ease the
identification of medium-contrast and symbol orders in the construction, we introduce two
dimensionless parameters, x associated with the medium contrast and Q associated with
the symbol order. With these parameters, we control the magnitude of medium contrast
(x) and smoothness (f2), i.e.,

GP(muaC) = XeP(QfEu,O s GS(wuaC) = XeS(Qwu,C) ) fp(-'L'mC) = Xep(QmuaC)- (7.67)

We introduce the scaled horizontal slowness operators D, which differentiates with respect
to Qz,: D, = Q 'D,. Then, we have, for instance D,ep(Qz,,() = D,ep(Qx,,¢) which
explicitly shows the operator order through the power of 2. Thus, a{%]_i] is homogeneous
of degree ¢ in 2 and homogeneous of degree j in x. The introduction of scaling factors
facilitates the identification of terms of the same order in medium contrast and medium
smoothness in the following treatment.
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7.5.5 The expansion of vertical slowness right symbol

In view of the contrast formulation, the vertical slowness in the laterally homogeneous
embedding is introduced as

~ 1/2 .
V(G082 [algllan, )] =1 (e3,00) if € € [25,9] (7.68)

We assume that the vertical slowness symbol can be represented by a perturbation, 7, say,
superimposed on the vertical slowness in the laterally homogeneous embedding,

'71'(37;“(: «y, 3) = ’70(533, au) + 'Y} (III,L,C, a,,,s) if C € [$§,~ $3] . (769)

First, let us expand the vertical slowness perturbation, asymptotically in the magnitude
of medium perturbation, i.e.,

e}
7}(wﬂ’gaaua3) ~ ann[n](muaCaamS) . (770)
n=1

This expansion bears resemblance with the Born series expansion.
Second, we expand the series (7.70) further in terms of the smoothness of the medium
perturbation,

)
77["](%,(,06./,8) ~ Z Qm n[[;l]_m](wpag,auas) ) (7.71)
m=0

where the n{?]_ m = (n,]{;’]_ m]) are 3 x 3 matrices. The leading term of this expansion

represents the high-frequency approximation or the principal part. We shall suppress the
dependencies on ¢ and s in our notation.

7.5.6 Recursive solution procedure
While substituting expansions (7.70) and (7.71) into equation (7.66), we observe that
for k > 1,

(a';l 7a:/ )=($u )al’)

kY . - _ _
() 641608 082" o )+ (0,021 )] (DD )

(+iaa{, D:c{, )k')'r (xm af,)%(mﬁn ay)

Y
Mw
<o

Il
Naghs

k ad 1 e ’ !
(§) s S 3 om0k Ol )
m/'=0

n'=1

£=0
o0 oo
l(aé;:”aﬁn")(z,“ ay) + 3 X" D (@A ok ) @ o)
n=1

m=0



J. H. Le Rousseau / Wave-equation imaging and generalized screens 183

Upon substituting expansions (7.70) and (7.71) into equation (7.66), we collect terms of
equal order in x. These terms are then separated in orders of 2. We shall carry out our
analysis up to O(Q?).
The terms O(x?) yield equation (7.68), namely
(+")* = afy [ = 0] (7.72)
which is O(Q°). The terms O(x) decompose into [cf., De Hoop et al. (2000)]
7V iy +mfif A0 = ol [k = 0] (7.73)
which is O(Q°), and
7° 1) + nlg} 7° + 1 (82,7°) Dz, my]) = al] [k =0,1] (7.74)
which is O(2), and
7 iy 0l 20 + (0, 7°) (Da, ) [k =0,1] (7.75)
— $1(02,7°)(O2,11)) + 2(9a 00,7") Dz, Dayriy) + (82,7°)(D2,l1]) = alf) ke = 2]
which is O(92?). The terms O(x?) decompose into
1 2] 2] .0 _ [ -
(77[[1]])2 + 'YO M) + 77[[1]] '70 =0 [k=0] (7.76)

which is O(Q0),

ﬂfifﬂ[[éf + 77{3]] W{H +7° ?7[[3} + n{(f]] 7" +1(0a,7") (Dm.,n[[ff) [k=0,1] (7.77)
+i (0, 7’[[;]]) (Dzan[[}]]) = am [k =0,1]

which is O(£2), and

7’ 7,}311] + nﬁ]l] v+ (n{éf)z + n{H n{l_]” + n{l_]u nfﬂ [k=0] (7.78)
+ ((80,7°) (Da,mig)) + (B, 11}) O mig)) + (e, mig)) Oz, 3] [k = 1]

— $1(02,9")(OZ,11)) + 2(9e1 0¥} (D, Dayff)) + (82,7°) (02,1} k=2
+(92, 1)) (D2, 111 + 2(0y Doy y)) (D Daynft)) + (02,02, f1h] [k = 2
_

(0]

which is O(Q?). Higher order terms can be obtained, if desired.
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7.5.7 The vertical slowness right symbol

The preceding analysis yields the (asymptotic) construction of the symbol v,. Here,
we give the formulae for the first three terms of the principal part of the vertical slowness
symbol, ;. Equations (7.72)-(7.78) can be solved by means of the diagonalization

70 = MOxO[MOT | (7.79)

where M? and [M?]~! are given in equations (7.64)-(7.65). We express the terms n[[;l]_m] in

MO]~!. The term 9! = ?91”[1] then follows
1]

the eigenvector basis, i.e., 7™ . = MO =

(1-m] ™ [1-m]
from equation (7.73) as

01-2 0
onll = 12 ey, ol = sl CS\/aVO‘V

= (es +€p)
(1] 2n, 301] ) »)
n o _ [eg]? m_ p] 2
1922[1] YT R (es+€), a3 331 = (6P +¢€p)
0 1-2.0 2(
(1] —_ [CPS] Cov/ CpQy (1 - 2[05] O‘ual/))
2931[1] = 2(x0. + 70y) (es +¢€p)

the other entries being zero. This term is used in the first-order GS approximation. The
term ﬂﬁ% can be found in Appendix O. Note that the diagonal entries of ﬁm correspond
with the first-order term of the mode-wise scalar screen expansion (De Hoop et al., 2000;

Le Rousseau & De Hoop, 2001b). Likewise, the diagonal entries of ﬁﬁ% in Appendix O
contain the second-order term of the mode-wise scalar screen expansion. The off-diagonal
entries of 19[ l'and 19[1] contribute to the mode coupling.

The 1ecursnon f’m the solution of the vertical slowness right symbol described by equa-
tions (7.72)-(7.78) and Figure 7.5 reveals that the expansion in x implies a separation in
the phase space coordinates, z,, and «,, of the constituent symbols in equation (7.71):

n njA
1911{1] m) mu,au 26”{1] m] ) (Pz]{l] m](a,,) , (7.80)

which is required for the screen reduction of the one-way propagator (De Hoop et al., 2000).

Figure 7.6 illustrates the real and imaginary parts of the principal slowness surfaces (as
a function of the horizontal slowness p = \/—a,«,) for a pure P constituent in a constant-
perturbation medium. Figure 7.7 illustrates the real and imaginary parts of the principal
slowness surfaces for a pure § constituent in a constant perturbation medium. GSPO stands
for the vertical slowness symbol associated with the background medium, vy. The ratio
between the medium properties (here P and S wave speeds) of the actual medium and the
background medium is 1/3 here. The vector split-step Fourier approximation corresponds
to a vertical shift of the slowness surface to match the true one in the vicinity of vertical
propagation (as in the acoustic case (Stoffa et al., 1990)). The labels (1) and (2) correspond
to the choice of matrix M that separates the P and S constituents of the wave matrix. In
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don
[ 1] ] )
do m M e e o7y
1] H
a[Z—m] n[l.—m.] e o o

[MO]-—I MO

7] Mo )
imm] ——p— "i=m]

Figure 7.5. Computation of v} =

[n]

nom Mi—m) with the recursion procedure.

case (1) the diagonalization is carried out in the actual medium, whereas in case (2) it is
carried out in the background medium [see equation (7.64)]. Figures 7.6 and 7.7 illustrate
that separating the P and S constituent in the background medium result in an acceptable
approximation. GPS1 stands for the first-order screen approximation, i.e., the GS expansion
of the vertical slowness symbol is truncated after the term ﬁm Adding higher-order terms
to the GS expansion, the shape of the slowness surface is improved and, hence, the accuracy
for wider-angle propagation is increased.

7.6 The elastic generalized-screen propagator

In this section we substitute the background and contrast terms for the square-root
Hamiltonian appearing in the phase of the thin-slab propagator (Section 7.6.1); we then
separate (approximately) the P and S constituents in the embedding (Section 7.6.1); the
embedding term is left in the exponential. The exponential containing the contrast terms
is expanded about vertical propagation (first-order Taylor) and we obtain an explicit split-
step and contrast contributions (Section 7.6.2); we finally substitute the GS expansion for
the vertical slowness right symbol in the contrast contribution of the propagator (Section
7.6.3); we renormalize to restore unitarity after the expansion of the exponential in Section
7.6.2 (Section 7.6.4).

7.6.1 Symbol substitution and separation of P and S constituents

We shall now return to the basic symbol decomposition (7.69) and analyze what this
implies for the thin-slab propagator, see equation (7.50). In general, with decomposi-
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Figure 7.6. (a) Real and (b) imaginary parts of the principal parts of the generalized-screen
vertical slowness for P constituents: zero-order (GSP0) and first-order (GSP1). Also shown
is the principal part of the vertical slowness for the split-step Fourier method with P and S
constituents separated in (1) the actual medium and in (2) the background medium. The
principal part of the exact vertical slowness is shown with the inner dashed curve.
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Figure 7.7. (a) Real and (b) imaginary parts of the principal parts of the generalized-screen
vertical slowness for S constituents: zero-order (GSP0) and first-order (GSP1). Also shown
is the principal part of the vertical slowness for the split-step Fourier method with P and S
constituents separated in (1) the actual medium and in (2) the background medium. The
principal part of the exact vertical slowness is shown with the inner dashed curve.
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tion (7.69) we obtain
/dxlldmé g(i)(muaw.'i;fﬂfu lé)() =~ (781)
[ (5722 daaaexpl-is o] (K()) (s
where

(K()(z3,0) /dwldrz:gexp[lsa" ! (7.82)
eXp[:FsAa:;; {’Y (:Eg, ) +’Y7 il,'u,il:g, }](

and z§ = 23 — Azg, T3 = z3 — 3Az3. Note that equations (7.81) and (7.82) reveals the
structure of the propagator induced by the use of the right symbol. The symbol matrices
7% and ! do not commute in general. Yet, as Azs tends to zero,

exp[Fs (1° + 7)) Axs] = exp[Fs 7 Axs] exp[Fs v Azs] + O(sAx3)? . (7.83)

This yields the following simplification of equation (7.82)

(K()(&3,0) =~ exp[FsAz3 7 (Z3, ]/dwldm2 explis o/lz!,

x exp[FsAzs v (2, 23, @)](-) - (7.84)

As before, we diagonalize the symbol matrix v using equation (7.79) and transform the
perturbation accordingly as v} = M%}[M°)~!. Equation (7.84) then takes the form

(K(-))(Z3, ) = M°(&3, ) exp[FsAzz n°(Z3, ) )]
X /dmldz'g explis oy al,] exp[FsAxs ) (z),, T3, o)) | [M°] ' (z3,0))(-) . (7.85)
In this form we separate (approximately) the P and S constituents. (This decomposition is
carried out in the background medium and not in the actual medium.)
7.6.2 Expansion of exp(FsAxzs w})
We then expand exp[FsAxsn} (:E ,I3,q,)] about vertical propagation (a,a, = 0),
exp|FsAxz ! (a: , T3, )] = exp[FsAzz 7, (:1: ,Z3,0)]
X exp[ZFsA:B3 {7!' (m;u z3, 0 u) ( 1 X3, 0)}]
~ exp|FsAzzm (:L‘ ,Z3,0)][1 F sAzz {n} (] T, T3, aZ) -7} (:1:;“1':3,0)}] . (7.86)

Note that approximations (7.83) and (7.86) are consistent with the assumption that Az
is small (thin slab). Expansion (7.86) accounts both for P and § wave propagation and
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Figure 7.8. Real part of the vertical slowness symbols associated with propagator (7.84)
with exp[FsAzs~}] expanded (1),(2) after separation of P and S constituents, (3) before
mode separation in the background medium. (1) corresponds to a separation in the actual
medium, (2) in the background medium. In Figures 7.6 and 7.7, cases (1) and (2) are
consistent with the present figure.

its structure resembles the one for scalar waves (De Hoop et al., 2000; Le Rousseau &
De Hoop, 2001b). Thus, we have expanded exp[FsAz3 7}] about vertical propagation rather
than exp[FsAzzy!]. In the process of truncating the expansion this makes a difference as
illustrated in Figure 7.8.

Substituting expansion (7.86) into equation (7.81) results in a decomposition of the
thin-slab propagator, i.e.,

9 (@232, 4) = 7 (@, 233 21, 4) + g1 ) (2,53 2,25 | (7.87)
where
/dx'ldm'z gN(i)(xu,mg;zL,mg — Azs)(-) = /(s/27r)2da'1'da'2' exp[—isaliz,]  (7.88)
x M%(z3, olt) exp[FsAz3 7°(Z3, a)] XN(.'II:“ Z3, )

X /dm'ld:l;'Q explis oix! | exp[FsAzs w) (:L‘;“fl—23.0)][M0]_1(133,aZ)(') ,

for N = 0,1, where X% = 1 and

Xl(mL,fg,aZ) = (F)sAxs{r} (2}, T3, ) — W}(a::“:ig,O)} . (7.89)
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When N = 0, propagator (7.88) is denoted as the vector split-step Fourier approximation.
Here the vector screen is implicitly given by M%(z3, o/f)x} (2,5 23,0)[M°] " (z3, o).

7.6.3 Substitution of the generalized-screen expansion

We shall now invoke the GS expansion for «}(z!,, Z3,a) — 7r1(.'1, ,Z3,0). To this end,

we reconsider

I

7T11. = [MO]_I’)’:MO = Z[MO] 177[[;1] m] 0 = Zﬂ{’lll]_'m] 3

n,m n,m

which upon substitution in equation (7.89) gives

X' (), T3, 00) = sAa:;;Z{q?{llml (2!, 23, 0))) — 19{?1 ) (23,00} . (7.90)
Invoking the screen reduction (7.80), we obtain

/da:'lda;'Q gl(i)(wu,a:g;wfj,mg)(-) - /(3/27r)Qda'1’da'2' exp[—is allzy]

x MO (3, 0))(F)s Az exp[FsAzs 1 (5, )] D S (T[T (@ zsiaf) , (7.91)

m,n \

where T{ll m) is the operator defined by

3
(T2 Ok @nasal) = 3 {(eafih @ al) - ()2 00,0} [ detazs
j.k=1
x explis oya,] explFs Ay (), 23, 0)] (6 )1y (Ts B3) (M) (33, ) (); -
(7.92)

Equation (7.91) combined with equation (7.92) reveals the following structure: multiplica-
tion, Fourier transform, multiplication, inverse Fourier transform. The key simplification
is, that the forward Fourier transform with respect to z] no longer has to be evaluated
for each «], separately; compare propagator (7.93) with propagator (7.50). This feature
was inherited from the GS expansion of the vertical-slowness right symbol: The functions

5[[1"] m](‘”#) in equation (7.80) constitute a family of ‘generalized screens’, while the functions

w{?l m](a,,) extend the concept of ‘phase shift’ (De Hoop et al., 2000).
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7.6.4 Normalization

The GS thin-slab propagator is finally defined as

/dil:’ldeQ gg;.),,(zu,:z:g;mf,,:vg, — Az3)(-) = /(s/27r)2da day exp[—is ol z,] (7.93)

X MO(:E:;, all) exp[FsAzs 7'('0(523, al)]

xN{/dwld:L2 explis aiz) | exp[FsAxz m) (z},,23,0)] [Mk]] Yz, a)(-)

F)sAzs Z Z[’I‘K‘])‘m] W@y, z3;0) } .

mmn X

In this expression we have introduced a normalization operator N to restore the ampli-
tude behavior that was destroyed by Taylor expanding the exponential in equation (7.86),
(De Hoop et al., 2000). N acts on a component of the wave matrix separated into P and
S constituents. We apply the normalization for each constituent separately in accordance
with (De Hoop et al., 2000)

N{y(1+p+iq)} = yexp(iq) |1 P

-1
p
|, ly=1. .
. [1+ ] ly] (7.94)

1+iq

Above (see section on contrast formulation), we pointed out the necessity of introduc-
ing two background media. We set up two parallel computations, one in the background
c(};, COS, and one in the background cg-, cg-, see Figure 7.9. Note that we have written the
diagonalization in terms of cg and hence both computations have the diagonalization pro-
cedure in common. The parallel computations are initiated by separating the wave matrix
into P and § constituents. In one computation, a computational § is introduced ( §’). In
the parallel computation, a computational P is introduced ( P’). The computational P’
and S’ constituents affect the physical P and S constituents through mode coupling only.
In fact, as shown in Figure 7.9, the wave matrix is reconstructed by extracting the physical
P and S constituents from the parallel computation.

The case of a constant medium perturbation provides insight into how wavefronts
evolve based on Huygens’ principle (Huygens, 1690; Arnold, 1978; Hormander, 1990). Let
the ratio between the medium properties (here P and § wave speeds) of the actual medium
and the background medium be 1/3. Figure 7.10 and Figure 7.11 show (instantaneous)
wavefronts constructed as the polar reciprocal of the local slowness surfaces shown in Fig-
ures 7.6 and 7.7. We have generalized here the results obtained with the GS method in the
acoustic case (De Hoop et al., 2000; Le Rousseau & De Hoop, 2001b). For non-horizontal
propagation, including large angle propagation, any accuracy can be obtained by increasing
the order of the GS approximation chosen.

As the computational complexity of the downward continuation in the split-step Fourier
method is proportional to 3 - 2 - Ny N;log, N1 N, (N, denoting the numbers of samples
in the z,-direction), the complexity of the GS approach is proportional to 2 -3 - (2 +
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Figure 7.9. Practical implementation of the two backgrounds for the GS propagator. The
actual P constituent along with a computational S constituent is computed in the back-
ground characterized by c‘}g, and cg. The actual S constituent along with a computational
P’ constituent is computed in the background medium characterized by c%, and cg.
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Figure 7.10. Wavefronts in a constant-perturbation medium for a pure P constituent asso-
ciated with the first-order (GSP1) GS approximation and split-step Fourier, as calculated
as polar reciprocal of the slowness surfaces shown in Figure 7.6; the exact and background
wavefronts are shown dashed.
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vector split-step
Fourier

depth

Figure 7.11. Wavefronts in a constant-perturbation medium for a pure S constituent asso-
ciated with the first-order (GSP1) GS approximation and split-step Fourier, as calculated
as polar reciprocal of the slowness surfaces shown in Figure 7.7; the exact and background
wavefronts are shown dashed.
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Figure 7.12. Model used in the numerical computations shown in Figure 7.13. A source is
exited near a vertical interface where both P and S wave speeds increase. The wavefront of
an incident P wavefield is shown after it has reached the interface.

(g‘))NlNg logy N1 N2 (the first factor of 2 arises from the introduction of two background
media), where n is the number of terms used in the GS expansion of the right vertical slow-
ness symbol. Here we only considered the computational complexity for the GS propagator
associated with the GS expansion of the principal part of the vertical slowness symbol.

7.7 Numerical results

We illustrate the behavior of the generalized-screen propagator in a simple, yet, rep-
resentative situation. Recall that the action of the (pseudodifferential) vertical slowness
operator accounts for transverse scattering only. Hence, consider a medium characterized
by a vertical interface (simplified salt flank) representing an increase (from left to right) in
both P and § wave speeds. A source is located in the low wave speed region. Figure 7.12
shows the geometry of the problem and the behavior of the wavefront of an incident P wave
when encountering the interface. A reflected and a transmitted P wave appear as well as
a reflected and a transmitted S wave. Note the discontinuity of the body wavefront at the
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Figure 7.13. Numerical wavefront of the vertical particle velocity for (a) the vector split-step
Fourier method and (b) the first-order GS method, in the geometry described by Figure 7.12
with a source characterized by a horizontal point force. Exact parts of the wavefront are
shown dashed.
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Figure 7.14. Enlargement of Figure 7.13(b) to illustrate the prediction of a headwave (see
white arrow).

interface, which implies the creation of a head wave. The medium on the left of the interface
is used as the reference medium in the computation of the GS propagator. Inaccuracies in
the GS propagator therefore occur in the medium on the right of the interface. We illustrate
the accuracy with the number of terms in the GS representation of the vertical slowness
symbol in Figure 7.13(a) and Figure 7.13(b). In these figures the source is characterized
by a horizontal point force and the vertical particle velocity is computed. As expected, the
propagator in the (left) background region gives a close to perfect result. In Figures 7.13(a)
and 7.13(b) the white dashed lines follow the wavefront set of Figure 7.12. In both fig-
ures, in the right region, the accuracy decreases with propagation angle as predicted by
Figures 7.6 to 7.11. As expected from the previous analysis, the first-order GS propagator
matches more accurately the true wavefront set than the vector split-step Fourier propaga-
tor. In Figure 7.14 we show an enlargement of Figure 7.13(b) to point out the presence and
position of the head wave connecting the two P constituents of the wavefront.

Note that continuous mode coupling within the GS thin-slab propagator induces the
mode conversions at the vertical interface.

The source in Figures 7.13(a) and 7.13(b) is a (regularized) Dirac distribution as it
occurs on the right hand side of equation (7.47). Radiation patterns are not imposed to show
the action of the propagator only; hence the decay of amplitude at horizontal propagation,
even for the incident wavefront.

To illustrate the § to P mode coupling we place the source closer to the vertical interface
and only consider an incoming S wave. The numerical results of the vector split-step Fourier
and GS methods are shown in Figure 7.15(a) and Figure 7.15(b). The source used to create
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Figure 7.15. Numerical wavefront of the horizontal particle velocity for (a) the vector split-
step Fourier method and (b) the first-order GS method, with an incoming shear wave at a
vertical interface with a source characterized by a horizontal point force.
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these figures was a horizontal point source while the horizontal particle velocity is computed.
To clearly show the transmitted and reflected P waves we enhanced the contrast. Note the
prediction of the head wave in the § wavefront.

7.8 Discussion

For large scale geophysical configurations, efficient 3D propagation algorithms are in
demand. On the one hand, full-wave 3D finite-difference and finite-element methods are
costly. One the other hand, the phase-screen approach, though approximate, yields a much
more efficient algorithm in 3D. The phase-screen approximation breaks down at large-
angle scattering associated with significant lateral heterogeneity. In this chapter, we have
developed the elastic generalized-screen propagator that extends the phase-screen approach.
It allows for larger medium fluctuations and wider-angle propagation. Similarities with the
acoustic case were found. In the basis of P and S polarization vectors (in the background
medium), we have recognized the diagonal entries of the first order term in the GS expansion
(of the principal part of the vertical slowness symbol) as that of the mode-wise scalar GS
expansion. The off-diagonal entries of contribute to the mode coupling. Similar observations
can be made for higher-order terms. The number of terms used in the generalized-screen
expansion yields a hierarchy of increasingly accurate approximations of the one-way wave
propagator. We have given an explicit recursion for the computation of the terms in the
GS expansion. The GS method represents a reduction of the computational complexity of
the ‘exact’ thin-slab propagator: its complexity is proportional to the complexity of a (fast)
Fourier transform and the number of terms used in the generalized-screen expansion of the
vertical slowness symbol.

The GS method stays close to the path-integral representation for wave propagation.
It has no difficulty to account for continuous mode coupling between P and §. Since multi-
pathing is naturally contained in the path integral, the GS method does not require following
the formation of caustics. This is a particular advantage if caustics and pseudocaustics (i.e.,
a caustics in the slowness variables) are closely spaced. Uniform asymptotic methods such
as the Maslov representation for wave propagation (Maslov & Fedoriuk, 1981; Kendall &
Thomson, 1993; De Hoop & Brandsberg-Dahl, 2000) do not account naturally for these
effects.
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Chapter 8

Concluding remarks

Wave-equation imaging and inversion rely on wave extrapolation operations. The
exact propagator (Trotter) exhibits a high computational complexity. The wave front set
of the exact propagator depends on its phase function. In the phase function, the vertical
slowness symbol is responsible for the transverse left-right scattering. It is then responsible
for phenomena such as focusing and defocusing, i.e., multipathing. By modifying the exact
symbol we alter the prediction of such scattering. In the GS expansion of the vertical
slowness symbol the lowest terms give exact propagation in the vertical direction while
additional terms yield an increasing accuracy for wide-angle propagation. For processes
associated with a preferred direction of propagation such as seismic data imaging (vertical
direction) the GS expansion offers a range of adapted approximations. If the medium
becomes complex, wide angle propagation along with multipathing becomes significant.
Higher-order terms in the GS expansion of the vertical slowness symbol are then necessary
to predict such multipathing phenomena. It this sense, we may say that the GS expansion of
the vertical slowness symbol allows one to control the microlocal properties of the propagator
and to keep the wave front set of the computed wavefield as close as required to the true one.
An extensive quantitative analysis of the accuracy of the GS approximation was provided.
This enables to understand the propagation of errors.

We have illustrated the accuracy of the GS propagator with modeling and imaging.
We have compared the GS approach with some of its competitive algorithms. One-way
(split-step Fourier, PSPI, filter), two-way (finite differences). All these algorithms account,
to a certain degree, for multipathing. We have in addition tested the performance of the
GS propagator for imaging on field data using TotalFinaElf’s L7D data set from the North
Sea. The main feature of this 3D marine data set is the presence of an intrusive salt
body surrounded by a sedimentary sequence. For this data set we have shown enhanced
resolution, improved positioning of faults and some reflectors. We have confirmed with this
dataset that the accurate prediction of and the accounting for multipathing is key to an
optimal imaging in complex regions.

The success of the GS analysis we carried out relies on some microlocal techniques,
namely the calculus of pseudodifferential operators. It allows us to avoid ad hoc techniques
such as the introduction of the Born approximation to account for transverse left-right
scattering and further paraxial approximations in each extrapolation (thin) slab (Wu, 1994).
In addition the subsequent ‘GS’ calculus for the vertical slowness symbol yields a hierarchy of
increasing accuracy for the propagation of waves through (geologically) complex structure,
e.g., salt bodies. The extension of the GS approach to elastic waves relies on the ‘GS’
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calculus of the (matrix) vertical slowness symbol. Again such calculus keeps the microlocal
approximation of the exact symbol under control while allowing for a proper treatment of
multipathing, and the continuous mode-coupling between the P and S polarizations. This
continuous coupling between P and S waves can not be honored by asymptotic methods.

Wave-equation imaging was shown to be equivalent to (Maslov-)Kirchhoff on the wave
front set of the image. This was further illustrated by results on field data where the two
approaches yield mainly differences in texture in the images. In addition the high-frequency
analysis of the wave-equation imaging yields a condition on the vertical extrapolation step
and on the lateral medium variations to avoid missing caustics. This ensures a proper
treatment of multipathing. Finally, this high-frequency analysis yields similar scattering-
angle/azimuth common image point gathers (ACIGs) as those introduced in Kirchhoff-style
imaging procedures. ACIGs are used for amplitude inversion as well as in tomography. This
analysis opens the door to wave-equation-based tomographic algorithms where differential
semblance can be used as a mismatch criterion.

Following the high frequency analysis of the wave-equation imaging we have shown how
the common-azimuth approximation reduces the computational complexity of the imaging
operator. Such an approximation is made at the cost of approximating some of the 3D
scattering effects on the wave front of the imaging kernel itself (see Appendix D). Such an
approach calls for improvements, i.e., a better approximation of the wave front set. High-
frequency analysis of the wave-equation imaging procedure with the help of microlocal
analysis will be necessary for such an undertaking.

In this thesis we only addressed the imaging procedure leaving out the normal operator
necessary for the inversion. The study of the normal operator and the full inversion proce-
dure in the microlocal framework naturally constitute a further direction of investigation.
The hope is to be able to approximate the full inverse yielding some local operation.

Seismic data imaging is based on a single scattering approximation, i.e., ignores in-
ternal multiples. For the treatment of field data, prior to an imaging-inversion, multiples
are usually attenuated. While a proper treatment of multipathing is a key step towards
improved imaging, the question remains whether the inclusion of internal multiples could
further improve the imaging.
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Appendix A

Fundamental concepts and tools of microlocal
analysis

Microlocal analysis is the study of singularities (of a wave field for instance) as well
as their ‘high-frequency’ orientations (directions of propagation); the two combined form
the wave front set. In direct and inverse wave propagation problems, microlocal analy-
sis provides mathematical tools to follow the propagation of singularities, even in rather
complex media (in the presence of caustics). In a remote sensing experiment, most of the
information is contained in the wave front set of the data. Microlocal analysis thus offers a
suitable framework for inverse scattering theory.

Microlocal tools are often used to construct parametrices of some partial differential
equations (PDEs), e.g elliptic and strongly hyperbolic. A parametrix is a fundamental
solution E up to a smooth contribution' (Treves, 1980a). In the case of elliptic PDEs
parametrices can be obtained using pseudodifferential operators (¥DOs). For strongly
hyperbolic PDEs? parametrices can be obtained with the aid of Fourier integral operators
(FIOs). For constructions of such parametrices see for instance Treves (1980a; 1980b). In
this thesis we use ¥DOs to construct the square-roots of elliptic partial differential operators.

In this appendix we also present concepts from the fields of symplectic geometry and
differential geometry which are of ‘every-day’ use in microlocal analysis. These concepts
are especially important to understanding the propagation of singularities, which is at the
heart of the (inverse) scattering theory and its applications to seismic data processing.

For basic references on the theory of distribution we refer the reader to Schwartz
(1966a), and Friedlander (1998). For more advanced treatments see Schwartz (1966b),
Treves (1967), and Hormander (1990). A good review of definitions and properties of
distributions can be found in Chazarain and Piriou (1982).

Let 2 be an open set of R". We recall that distributions on 2, D’(£2) are continuous
linear maps on the space of smooth compactly supported function on 2, C°(£2). We denote
by £'(£2) the space of distribution with compact support on .

'By smooth we mean infinitely differentiable everywhere.
*For definitions of strongly hyperbolic PDEs see Treves (1980b), Chpt.6 Def. 1.1, Treves (1975), Sects.
15 and 16, or Hérmander (1985a), Chpt. 23
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Figure A.1. Localization of a distribution. A smooth function with compact support is
multiplied to the distribution leaving out most of the distribution. This allows to isolate
the singular behavior at a particular point.

A.1 The wave front set of a distribution

The wave front set is one of the most fundamental notions in microlocal analysis and
its application to seismic data analysis. In reflection seismic data the information exploited
in both inverse and imaging methods as well as in subsequent interpretations is primarily
contained in the wave front set of the data. The wave front set represents the high-frequency
information in the data. Once the source wavelet is (approximately) suppressed from the
data by deconvolution, the events in the seismic data are characterized by the singular
support of the data, which corresponds to the so-called reflectivity series. The notion
of wave front set further introduces the orientations of those singularities. This includes
information such as slopes and so-called ‘move-out’.

Distributions in R® can be localized to a neighborhood V of a point z € R* by
multiplying them by a test function ¢ € C°(R™), i.e., ¢ is smooth and compactly supported,
such that supp¢ C V. The singular support of a distribution © on R" is the set where the
distribution is not smooth (sc. C*): z ¢ singsupp wu, if and only if there exists ¢ €
CP(R™) with ¢(x) # 0 such that pu € C°(R"). The localization procedure is illustrated
in Figure A.1. In this figure one sees that the localization allows to focus on some of the
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Figure A.2. The wave front set.

singularities of the distribution. This is needed for the identification of the orientation of
the singularities by means of a Fourier transform.

Once a distribution « is localized in the neighborhood of a point z, if we take its
Fourier transform, then the orientations of the singularities will be identified with the set
of directions of non-rapid decay at oo, denoted by Z(pu): & ¢ S(pu) if and only if & # 0
and there exists a conic neighborhood V' of &, i.e., a neighborhood invariant by positive
scaling, such that

VN e N, sup(1 + [¢))Y|pu(¢)] < oo,
13=1%

where pu is the Fourier transform of pu. Note that ¥(pu) is closed and conic in R”.

If we want to identify the directions of the singularities at the point z rather than in
a neighborhood of z, we have to shrink the support of ¢ to {z} or more precisely we define
the cone ¥, (u) as

Sa(w) = [ eu),
©

where the intersection is taken over all test functions ¢ such that ¢(z) # 0. Finally, we are
ready to define the wave front set of u as

WF(u) = {(z,£) € R* x (R*\0) | £ € So(w)} = | {2} x Sa(u) .
TeR?

The projection of the wave front set onto the base space naturally yields the singular support
of the distribution. In Figure A.2 we give an illustration of what the wave front set is in
a simple case. In Figure A.1 It should be observed that some points x can be associated
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with more than one singular direction £&. This naturally occurs in the presence of caustics
in some wavefield.

In summary, we localize the singularities, i.e., the high frequency information, in space
with the help of test functions and in the wave number domain by identifying the directions
of non-rapid decay.

For a detailed treatment of wave front sets and examples see Hérmander (1990, Chpt.
8).

A.2 Pseudodifferential operators

A.2.1 Basic definitions, symbols, amplitudes, composition

¥DOs generalize partial differential operators (PDOs), hence their name. Define D; =

—i0;, 1 < j < n. In multi-index notation (Treves, 1980a) with @ = (ay,--- , ;) we have
D* = D{"D5*---Dg». Define also |a| = 3°;«;. Consider now the PDO, P(z,D) =
_la|<m @alz)D®. For instance the Laplace operator, A, is written as -D?-D}-...-D2.

The action of a PDO on a test function, ¢, can be written with the help of the Fourier
transform ¢ of ¢ as

P(z,D)p(z) = (2m)" / @Op(z, ) B(¢) de
=(2m)™" / / Y p(x, £) (y) de dy ,

with p(z,€) = ZI al<m aq ()€™ . ¥DOs are a generalization of such a representation which
allow for more general forms of p(z,£). For this purpose we define, S™ = S™(R" x R"),
the space of symbols of order m as the set of all @ € C°(R" x R") such that for all , 3
(multi-indices), and for all compact K C R, there exists C, g,k such that

lagaga(-'ﬂ,f” < Ca,ﬂ,K(l + |§|)m~a , TEK, L€ R* . (A]-)

For example, a polynomial of order m in £ is a symbol of order m. Note that the terms of
the polynomial are homogeneous of degree equal to their order (aq(z)(A)® = X\%aq(x)EY).
Estimate (A.1) generalizes the concept of homogeneity. Noting that S™ C 8™ if m < m/,
we define
S =()8m.
meR
For a € S™ we define the operator Op(a) as

Op(a)p(z) = (2m) " / / @ V04(z,¢) p(y) de dy , ¢ € CX(R?). (A.2)

The operator Op(a) is called the ¥DO associated with the symbol a, while a is called the
(left) symbol of Op(a). Note that for all ¢ € C°(R™) Op(a)yp is a smooth function because
of estimate (A.1). Furthermore, a ¥DO can be extended to map £'(R") into D'(R"). Note
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that the (left) symbol depends on the output variable, z. On the other hand, there exists
a symbol a, such that the same operator can be rewritten as

Op(a)p(z) = (2m)" / / @V, (3, €) p(y) dé dy .

Note that the symbol depends then on the input variable, y; a, is called right or dual symbol
and the relation between left and right symbol is given by (Treves, 1980a)

a(x, é) — ei(Dny€>a7.(y’ £)|y=m .

We now define amplitudes as symbols on R?® x R*. Amplitudes also can be used to define
UDOs. A ¥DO, B, with amplitude b(z,y,£) is defined by its action on a test function ¢:

Bo(x) = (2n)™ / / =IOz, y.€) ply) dE dy .

Such an operator can always be put in the form of definition (A.2) (Treves, 1980a). We
therefore recover the previous definition. A ¥DO can thus have more than one amplitude.
Note that amplitudes of ¥DOs depend generally both on the input point, i, and the output
point, z. Left and right symbols are both admissible amplitudes for a ¥DO. However, up to
S~ contributions the left and right symbols of a ¥DO are uniquely defined (Treves, 1980a;
Hoérmander, 1985a). We thus see that the same operator can have various representations
depending on the choice to use left or right symbols or an admissible amplitude.

The so-called Weyl symbol, a,,, is a particular case of an amplitude which allows the
operator A to be written in the form

Ap(@) = (2" [ [ e300, (2L 6) pty) deay

In the case of (classical) polyhomogeneous symbols, i.e., symbols that are asymptotic
series of homogeneous terms with decreasing integer orders going to —oo, we define the
principle part as the term with the highest degree of homogeneity. A principal part may
also be defined for more general symbols. Since we mainly deal with polyhomogeneous
symbols here (e.g., the generalized-screen expansion of the vertical slowness symbol), we
refer the reader to Hormander (1985a) for such a definition. Note that the principal symbol
is the same for both left and right symbols.

The composition of two ¥DOs, Op(a;) and Op(az), yields a ¥DO with symbol given
by (Hérmander, 1985a, Thm. 18.1.8)

a(z,€) = PP a, (z,m)as(y, £)| (A.3)

n=¢, y=z '

Note than if one restricts oneself to the principal part only, the composition formula (A.3)
is then simply the product of the two principal symbols. In the case of the composition of
two PDOs, note that the series representation of equation (A.3) naturally truncates.
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A.2.2 Action on wave front sets

We now present microlocal properties of ¥DOs, i.e., how they affect wave front sets.
For this purpose, we first define the characteristic set of a ¥DO. If a,, is the principal
symbol of A, a ¥DO of order m, A is said to be non-characteristic at (zg,&) € R" x R*
(i.e., (zo,&o) not in the characteristic set of A) if there exists a neighborhood V' of (z9, &)
, such that

|am(, &) = c|¢|™ for large [¢], (z,§) €V .

If a,, is homogeneous this definition is then equivalent to a,,(zo, &) # 0. Such a definition
is therefore compatible with that of the characteristic set of PDOs. The set of characteristic
points is denoted CharA. When the characteristic set of a ¥DO is empty, it is called an
elliptic YDO. We then have the microlocal property of ¥DOs (Hérmander, 1985a):

Vue&'(R*), WF(Au) C WF(u) € WF(Au) U CharA .

Such an estimate shows how the singularities of the right-hand side of a pseudodifferential
equation propagate in the solution. In the case of an elliptic ¥DO we then have:

Vue&'(R"), WF(Au) C WF(u) C WF(Au) ,

i.e., the classical result that there is no propagation of singularities associated with an
elliptic operator. An example of an elliptic operator is the Laplace operator.

A.2.3 Particular notations

In various chapters of the thesis, we have changed variables, a = £/s, in the original
Fourier transform. The symbol h of a ¥DO H is then defined as

(H)(@) = (s/20)" [ [ expl-is(an — )] hiz,a) ply) dy dar

Then the symbol of D, = —s713,, i.e. the differentiation operator in the lateral directions
zy, v = 1,2, scaled by the Laplace parameter s (cf. Chapter 3), is icr,. For instance the
symbol of the transverse Helmholtz operator of Chapter 3,

A=-D,D, +rp~p ' (Dyp) Dy, — p"1(D2p) + p~2(Dup)?

as found in equation (3.70), is

A =aya, +rp—p ! (Dup)iay, — p(DEp) + p~2(Dup)? .

For elementary introductions to the subject of ¥DOs see Saint Raymond (1991) and
Folland (1995). For more advanced treatments, see Treves (1980a), Hérmander (1985a),
and Shubin (1987).
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PTO Py -

Figure A.3. Two charts on a manifold.

A.3 Some concepts from differential and symplectic geometry

For basic references on manifolds and differential geometry see Spivak (1965) and
Choquet-Bruhat et al. (1996). For more advanced sources we refer the reader to Dieudonné
(1972) and Michor (1991). For a treatment of symplectic geometry we refer the reader to
Abraham and Marsden (1978) and Homander (1985a, chapter 21)

A.3.1 Manifolds

Manifolds generalize the concept of surfaces. A Hausdorff® topological space X is
called a manifold of dimension n if every point of X has a neighborhood homeomorphic
to R*, i.e., if V is such a neighborhood, there exists a mapping ¢ from V onto R" that
is invertible (bijective), continuous and its inverse is also. A pair (V, ) is called a chart
of X; V is called the domain of the chart. A family of charts (V;, p;)ic; such that the
domains (V;);c; cover X is called an atlas. If furthermore for all 4,5 € I, ;o goJTI is a
diffeomorphism of ¢;(V; N'V;) onto ¢;(V; N V) (i.e., a mapping that is invertible and such
that it is infinitely differentiable and its inverse is also) the atlas and the manifold X are
said to be smooth. Those notions are illustrated in Figure A.3. Consider a chart (V, ). We

3By Hausdorff it is meant that two points on X can be separated in the topology of X [see for instance
Treves (1967) or Bourbaki (1966).]
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T&/

Figure A.4. The tangent space of X at x.

only consider smooth manifolds here. For all z € V, we can write ¢(z) = (21(2), - -- z,(z)).
The functions zx, 1 < k < n are called the coordinate functions for the chart (V, ).

A manifold X of dimension k, which is a subset of a manifold Y of dimension n, is
called a submanifold of Y if for all z € X there exist a chart (V,¢) of Y, such that z € V
and in this chart X is defined by 2y = --- =z, = 0.

A map f from a manifold X with atlas (V;,;)ic; into a manifold Y with atlas
(Wj,1j)jes is said to be a C” diffeomorphism if it is bijective and for all z in X, and
for all (4,5) € I x J with z € V; and f(z) € Wj, 9 o f o ;! is 7 times continuously
differentiable at ¢;(z) € ;(V;) and its inverse at 9;(f(z)) € ¥;(W;) is also.

A.3.2 Tangent and cotangent bundles

At every point z of a manifold X we can define the tangent space, T, X. This can be
done by defining the tangent space as the set of all vectors tangent, at z, to smooth curves
on X passing through z. We then define the tangent bundle of X as

TX = | {2} x T X .
zeEXN

For R" we naturally have TR* ~ R® x R". Every tangent bundle locally has such a
structure. One should however keep in mind that generally the tangent bundle is not
globally a Cartesian product. Figure A.4 illustrates the intuitive notion of tangent space.

The tangent space of X at z is a vector space of dimension n . One can therefore
introduce its dual Ty X. One can then define the so-called cotangent bundle as

T*X = | J{z} x T3 X .
zeXN

For R* we have T*R" ~ R"™ x R*. In the forward and inverse Fourier transforms we



J. H. Le Rousseau / Wave-equation imaging and generalized screens 221

encounter the inner product (z,&). Since on R" the tangent space is identified with the
space itself, £ is then considered as a dual variable of z, i.e., the cotangent variable. This
allows us to define the wave front set of a distribution on R" as a subspace of T*R". Noting
that the wave font set is geometrically invariant, i.e., does not depend on the local chart
used, this further enables us to define the wave front set of a distribution on a manifold
(Hormander, 1990, Chpt. 8.1).

If X is a submanifold of Y, we can view the tangent space of X at z, T, X, as a
subspace of the tangent space of Y at z, T;Y. In the cotangent space of Y at z, T;Y, there
are then vectors orthogonal to those in T, X. We denote this set as N, X and define the
conormal bundle of X as '

NX = | J{z} x N X .
TeEN

N X is then a submanifold of T* X and its dimension is the same as that of Y.

A.3.3 Symplectic and Lagrangian manifolds

The archetypical example of a symplectic manifold is given by T*R™ along with the
2-form o with the local representation

U=dei/\d:1)i,
1

Le., if (u,v) and («',v’) are in the tangent plane of T*R" at (z,¢&), T(; ¢ T*R",
0((“’,”), (ul7vl)) = <ulav> - (u7 U,) :

More generally a manifold S of dimension 2n along with a 2-form ¢ is said to be symplectic
if o is smooth, non-degenerate, and closed. By non-degenerate we mean that

Ve € S,Vu € TS, (W€ TS, o(u,v)=0)= (u=0),

and by closed we mean that do = 0 where d is the exterior derivative (Choquet-Bruhat et al.,
1996; Abraham & Marsden, 1978). The symplectic manifold (S,0) has locally the same
symplectic structure as T*R™ (Darboux theorem) (H6rmander, 1985a, theorem 21.1.6). A
subset I' of T*IR" is said to be conic is it is not affected by positive scaling in the ¢ direction,
ie., if (z,€) € T then for all t > 0 (z,t£) € T.

Let (S,0) be a symplectic manifold, say T*R", a submanifold £ is Lagrangian if its
dimension is n, i.e., half the dimension of S, and o [= 0, ie., for all z € L, T,L is its
own orthogonal with respect to 0. An example of a Lagrangian submanifold of T*R" is the
conormal bundle N X of a submanifold X of R*.

If (S1,01) and (S2,092) are two symplectic manifolds, a Lagrangian submanifold of
S1 x Sy with respect to the symplectic form o7 — 09 is called a canonical relation from
Sy to S;. With ‘Lagrangian submanifolds’ we usually refers to those associated with the
symplectic 2-form o, + o9.
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A.3.4 A fundamental example

We show the importance of canonical relation with an example relevant to seismic mod-
eling and imaging. High-frequency methods make use of the (bi)characteristics of the wave
equation. To do so one solves the corresponding Hamiltonian system with travel time as the
flow parameter. Such a system is solved in the cotangent bundle of R". In local coordinates,
(z,€), x corresponds to the position while £ corresponds to the momentum. (See Hirsch and
Smale (1974) for a simple explanation of the cotangent nature of the momentum in classical
mechanics.) If we write the Hamiltonian flow as Fy(zo, &) = (Fiz(xo,&0), Fie(z0,&0)) then
for all admissible time ¢

Ci = {(Fi,z(z0,&0), Fie(x0,€0); 20, €0) | (%0, &0) € T*(R™)}

is a canonical relation because Hamiltonian vector fields preserve the symplectic form, o on
T*(R") (Abraham & Marsden, 1978). One could also include travel time and frequency in
the canonical relation (Stolk & De Hoop, 2000). We omit those for simplicity.

It is common to refer to the cotangent bundle 7*X as phase-space. When solving
for the Hamiltonian flow, i.e., tracing rays in phase-space, one actually builds a correspon-
dence ‘table’ between points in phase-space. Two points (z1,£;) and (z9,&2) are related
to each other if there is a ray that connects them with travel time ¢, in other words if
(z2,€2;21,€&1) € Ci. The canonical relation C; therefore gives such a correspondence and
as shown in Section A.4 yields all the information necessary to follow the propagation of
singularities, i.e. the evolution of the wave front set.

The canonical relation, Cy, is of dimension 2n in the present example. It is a submani-
fold of T*(X x X). Projections on spaces of lower dimensions can be singular. If one chooses
to ignore the dimensions associated to momentums, i.e., projects C; into X x X, singulari-
ties of such a projection correspond to caustics. This is illustrated in Figure A.5. One sees
that on caustics one needs cotangent (momentum) variables to smoothly parameterize the
canonical relation.

Canonical relations are therefore important geometrical objects that control the propa-
gation of singularity. Their high dimensionality make them cumbersome to handle directly
and projections to lower dimensional space can be singular. The introduction of phase
functions can be a cure to those issues.

A.3.5 phase functions

Let X be a manifold of dimension n, e.g., R", and ¢(z, ) a smooth real valued function
in an open conic set I' C X x (RV\0) which is homogeneous of degree 1 in 8, i.e., $(z, \§) =
Ap(z,0) for all A € R. Then ¢ is called a clean phase function if d¢ # 0 and the stationary
point set

So = {(2.6) | Bp(x,6) = 0}

is a smooth manifold with tangent space defined by the equations d(9dp¢) = 0. If the number
of linearly independent equations d(dp¢p) = 0 is N — e we call e the excess of the phase. The
phase is said to be non-degenerate if e = 0. The dimension of the stationary point set, Sy,
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Figure A.5. Caustics and singular projections of the canonical relations.

is n + e. Furthermore the set
Ap = {(x,€) | £ = 8u9(x,8), Ogp(,0) = 0 for some 6 € RV \0}

has dimension n and is a locally conic Lagrangian submanifold of T X.

Conversely, given a conic Lagrangian submanifold A in T*X, for every point of A,
say (z,€) in local coordinates, we can locally parameterize A by a non-degenerate phase
function ¢ in a conic neighborhood of (z,£) (Hérmander, 1985a, theorem 21.2.16). Hence a
high dimensional object such as a Lagrangian submanifold (or a canonical relation) can be
locally represented by a single function. This remarkable property is exploited in chapter 2.

Let X and Y be two manifolds. If ¢(z,y,60) is a phase function on X x Y x (RV\0)
then

Mg ={(2,&,y,m) | & = 8:9(z,y,0), 1 = Iyd(z,y,0), Dy, y,6) = O for some § € RV \0}

is a Lagrangian submanifold in 7" X x T*Y for the symplectic 2-form o, + oy.

C¢ = {(1’3,5,?/,77) I (ﬂf,ﬁ,y, "‘77) € A¢}

is then a canonical relation from T*Y to T*X. Canonical relations are sometimes called
twisted Lagrangian submanifolds (they are Lagrangians associated with o1 — 09). When a
canonical relation is a graph it is called a canonical transformation. Canonical relations are
the geometrical objects used to characterize the propagation of singularities through the
application of Fourier integral operators.
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A.4 Fourier integral operators and oscillatory integrals

We start this brief introduction to FIOs with the definition of so-called oscillatory
integrals (OIs). Let £ be an open set of R*. Ols are (finite) distributions on Q with an
integral representation that makes sense via regularization (see Hérmander (1990, Sect. 7.8),
(1971, Sect. 1.2)and see below). Let ¢ be a phase function on a open cone T of  x (RV\0)
for some N, i.e., ¢(z,0) is real? smooth, homogeneous of degree 1 in 6, and non critical in
I' (d¢ # 0). Let also a € S™(Q2 x RY), i.e., a symbol of order m (see estimate (A.1)).

The symbol a is also chosen to have support in some closed cone, FF C T'U (X x {0}).
Then for u € C°(N) the integral

I(au) = // @0 (2, 0) u(z)dzdd

is well defined. It is clearly defined if, for instance, « is rapidly decreasing and from this it
can be extended to all symbols in a unique manner. Such an integral is then called an OI.
The symbol a is also referred to as the amplitude of the OI. In addition, the linear form, Z,
on CX(Q)

T: uws Iy(au)

is a distribution of order < k with m + N < k. One can further prove that if the phase
¢ and the symbol a depend continuously on a parameter, the OI does also. It is thus
remarkable that in the framework of Ols, many integration procedures become licit (change
in integration order, differentiation under the integral sign).

The regularization procedure can be performed in several different manners. On one
hand, if x € C*(R"), we have

t—o0

Iy(au) = lim // e?(@9) g(z,0) x(8/t) u(z)dzdo .

On the other hand, one can construct a first-order differential operator L such that e*® is
left invariant by *L. Then

Iy(au) = // @0 Ik (a(x,0) u(z)dzdd, keN,

which is well defined for large enough k [use estimate (A.1)]. Note that similar definitions
and analysis of OIs can be done for more general symbols (Hoérmander, 1990, Def. 7.8.1) as
well as different types of phase functions.

The stationary-point set,

Sy = {(x,0) € T' | Op¢(x,6) = 0},

‘or of positive imaginary part



J. H. Le Rousseau / Wave-equation imaging and generalized screens 225

gives an estimate of the singular support of the OI as the projection of S, N F on Q. Such
an estimate is sharp and the actual singular support depends on the behavior of the symbol
a on Sy (Hormander, 1971, Props. 1.2.4 and 1.2.5). The stationary point set also leads to
an estimate for the wave front set of the OI:

WF(Z) C {(z,0:9(2,0)) | (z,0) € S4NF}.

When the phase is clean the stationary point set, Sy, of the phase function is a submani-
fold (Hormander, 1985a, Def. 21.2.15). Then

A¢ = {(:Ea ¢.{c('7;79) I (:B,H) € S¢} )

is locally a Lagrangian submanifold of T7%(f2). In the case when 2 = X x Y, with X and Y
open subsets of R™ and R? for some m and p (m + p = n), the OI defined by such a phase
function, ¢, as well as a symbol, a, may be viewed as the kernel of an operator (Schwartz,
1966b; Treves, 1967; Hormander, 1990), A, from C2°(Y) into D'(X). Such an operator is
called a (local) FIO. If ¢ has no stationary point as a function of (y,0) for all z € X, A
maps C°(Y') into C*°(X). If ¢ has no stationary point as a function of (x,0) for ally € Y,
A can then be extended from £'(Y) into D'(X). A phase function that satisfies both these
properties is called an operator phase function (Hérmander, 1971, Def. 1.4.4).
To the Lagrangian submanifold, A4, one can associate the canonical relation,

Co ={(z,&y,—n) | (z,6,9,m) € Ay} .

This canonical relation gives the proper geometric tool to follow the propagation of singu-
larities through the application of the FIO:

WF(Au) C Cypo WF(u) .

Two properly supported FIOs associated with operator phases can be composed, and the
resulting operator will be an FIO if the two canonical relations compose cleanly (Hérmander,
1985b; Treves, 1980b).

For a given conic Lagrangian submanifold A in 7%(2)\0, the space of Lagrangian dis-
tributions of order m, I (€2, A), is defined via regularity properties along A. A distribution
u € I"™(Q, A) if and only if

Ly Lyw€ ®H 0(9),

where the L;’s are first-order ¥DOs with principal symbols vanishing on A (for details on
Besov spaces PHl(‘s’ﬁ, s € R, 1< p < oo, see Hormander (1985a, Appx. B.1)). Elements of
I'™ (£, A) have their wave front set contained in A and they can be (locally) represented by
Ols with clean phase functions that (locally) characterize A. One can associate to these
Lagrangian distributions a principal symbol in an geometrically invariant way. This symbol
appears as a section of the Maslov bundle over A tensored with the half-density bundle
over A (Treves, 1980b; Hormander, 1985a; Hormander, 1985b; Duistermaat, 1996). In
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Section A.3.5 it has been seen that a Lagrangian submanifold can be locally parameterized
by a clean phase function. When no causitcs are present, i.e., the projection 7 into the base
manifold X is onto, then no phase variable are required. However, in the presence of caustics
the minimum number of phase variables required is given by the corank of 7. Passing from a
local representation with no phase variables to a local representation where phase variables
are required and passing back to a local representation with no phase variables, i.e., going
through a caustics, affects the Maslov index (Hormander, 1985a; Hérmander, 1985b). This
is observed in the Maslov bundle component of the FIO amplitude, i.e., the FIO amplitude
naturally carries the change of phase when passing through caustics. Those effects are
described in Duistermaat (1996).

IfACTHX)\0OxT*(Y)\0 and is closed in T*(X x Y)\0, operator with kernels in
I'™(Q, A) are called (global) FIOs (Hérmander, 1985b, Sect. 25.2). Because of the properties
imposed on A, such operators map C°(Y') into C°°(X) and can be readily extended to map
&'(Y) into D'(X). In the particular case where A is the conormal bundle of a submanifold
of Q, I™(Q, A) is the space of conormal distributions. If X = Y, conormal distributions are
essentially kernels of ¥DOs (Hormander, 1985a, Sect. 18.2).

For a complete treatment of the subject of FIOs see Hormander (1971), Duistermaat
and Hormander (1972), Hormander (1985a; 1985b), Duistermaat (1996). For a more phys-
ical perspective see Maslov and Fedoriuk (1981).
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Appendix B

Non degeneracy of the phase function

For ¢ in equation (2.39) to be a clean phase function, we have to check that the
stationary point set, 3,4, is a submanifold. We do so by checking that the system of
differentials d(¢’)g, for all the parameters 6 of the phase function, has constant rank. If so,
the number of linearly independent differentials is then equal to 4M — 1 — e, with e the
excess. Then Ay, as defined in equation (2.44) is a Lagrangian submanifold of dimension
7, and the stationary point set, 34, is of dimension 7 + e (Hérmander, 1985a, p.292). We
shall prove here that the excess, e, is even zero, i.e., the phase function is non-degenerate,
for M large enough in a sense that we shall precise.

The structure of the matrix of the components of the differentials d(¢')g is shown in
Figure B.1. The block matrices with the stars in Figure B.1 are given by

1= M7 Ay (KBS ) i (w)) G, K )
—M Ay (KE™ )z i, (21, G KL, )
'“M_lAm,g(Kgrin"):l:‘zlll(l (m[(f), 5[7 K’S”) (l))
-1- ]\J_IA:I:3(I{:E}Wln )mzlfz(mg): G, l(/l)aw)
If we can enforce these blocks to have a dominant diagonal by choosing M large enough,

the columns of the matrix in Figure B.1 are then linearly independent. To this end, it is
sufficient to prove that

w’K, | Oc7!
Kprin ¢ oz
3 H

i
(K3™ Nz, = (B.1)

is bounded. In the scattering region considered, dc~!/8z,, is bounded, and so is ¢~!. Also,
w2K, /KP"™ is homogeneous of degree 0 in (w, K,)) for K, and w large, and bounded for K,
and w small since we restrict ourselves to an open region on the canonical relation which
closure is away from the ‘turning’ rays, i.e., where K} > ¢, > 0!. The second order

derivative (K% rin”)m” k, is therefore bounded, which completes the proof.
Remark — The same argument proves that one can globally parameterize the station-

ary point set, and subsequently the canonical relation, by ($(11\2[ ),:I:g,K ff\él+l),t,w) by use

'such restriction is accomplished with the help of a cut-off function y multiplied to the amplitude in
equation (2.38)
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Figure B.1. Matrix of the differentials of (¢')g.
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of the implicit function theorem applied to the discrete square-root Hamiltonian system of
equation (2.43) characterizing the stationary point set, 4. Because of this global param-
eterization of the canonical relation we do not have to explicitly account for caustics, as
needs to be done with asymptotic methods.
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Appendix C

Approximation of the cotangent vector (¢’),, on
the canonical relation

First, recall that
(e = (k — )M 'z — z5) + 2% . (C.1)

The partial derivative of the phase function with respect to z3 is then given by

M
(#)es = =M KPP &, KB w) (C.2)
k=1

M
. g o )
_M—l(m3 _ -13,{3) ZM—I(k _ %)(Kgrm )13($,(;h):<kaK1SL)aw)
k=1

M
. _ - ) —
=-M"! {Z S @), G, KB, w) + (G — o) (KE™™ gy (28, G, Kﬁ’”,w)} .
k=1

We may interpret the (z3 — 2%)(¢')z, as a Riemann sum along the bicharacteristic, B,
parametrized by ¢ (as it is in the present square-root Hamiltonian system), which gives us
the limit as M — oo:

lim (¢')g, = — (23 — 75) " /B (KD + (¢ — ) (K™ )0 ) (2, (0), ¢, Ko (C), w)dC . (C.3)

M—oo

Note that, here, we face two limiting processes: one corresponds to the Riemann sum
converging to the integral, the other one to the discrete bicharacteristics approaching the
‘true’ bicharacteristics.

Now, on the bicharacteristics we have

¢ L6 = K @,(0.¢, K (0] =

[KE™ 4 (¢ — o) (KE™ ) ) (2,(0), 6 Ko (O w) (C.4)
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since

dK,
o dC -

dz,

(Kprm )a:a Y

; 0 (C.5)

+ (K:[;rin’)K

(set up the Hamiltonian system for F defined in equations (2.53)-(2.56)). We therefore
obtain

L (¢')ey = —KP™(z,(23), 3, K, (23), w) . (C.6)

Moo

For M large enough (in the compact region considered) we therefore have the following
approximation:

(¢)as = —KE™ (&M, Car, KM, w) (C.7)



J. H. Le Rousseau / Wave-equation imaging and generalized screens 233

Appendix D

The common-azimuth approach

As a special case of the analysis presented in this paper, let us consider data (the
scattered field) that is restricted to ko = 0 (‘common azimuth’). After the restriction, we
apply the imaging operator with kernel equation (2.73) to the data, subject to

hi% =0, M=1.

Removing the radation patterns, for the sake of simplification, we obtain
II(IL'LQ,Z;yl’g,hl,o,t;O,O) = /R(1/27r)dw (D.1)
XL /R (1/2m AR VAR (1 /20 k) k)
x exp(iwt) exp [ —i{KWMz, — KMy, — kgl)hl +
[ G, KL~ 9),6) + Ko 1 RSP 4 K, 0)] ) |

We will now integrate out the phase variable kél) with the aid of stationary phase. The

stationary phase condition follows simply from equation (2.82):
(Kgrinl)lﬁ(m,ua C_‘la %(Kl(ll) - kl(/l))’w) = (Kgrinl)l(z (:BLHC_I) %(KISI) + k:l(ll))aw)’ (DZ)
which can be rewritten as

K — k) KD + k)

. _ K , (D.3)
Kgrm(xu, ¢, %( '(11) _ k,(,l)),CU) Kgrm(:l:u, (1, %(Kl(ll) + kl(ll))7w)

On the wavefront set, this equality implies that the slowness (cotangent) vectors associated
with the rays from the source and the receiver at depth ¢; restricted to the (2, 3)-plane must
have the same direction.

The solution kél) for kél) is given by

1) K{«[})rin(m[“ C_la %(Kfl) + kgl))7 O,UJ) - Kgrin(wl.h C—‘la %(Kfl) - kgl))a O) UJ)

KD - K : > _ > .
? 2 OKP g, G LED +5Y),0,0) + KP™ (G, LK — kY)Y, 0,0)
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Figure D.1. Bicharacteristics satisfying the common azimuth assumption.
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We leave the computation of the Hessian to the reader.
Extending these results to M > 1 invokes the assumption that on the stationary point
set,
W =hY =hy=0 for2<k<M-1,

ie., hgk) does not change (Biondi & Palacharla, 1996). Then the expression between braces
in equation (2.82) must vanish. This requires that, on the stationary point set, the relation

B _ gt P

(k)
I"? — 22 P(k’+) 3 (D4)

where

plkt) Kgrill(y/(;k) + hflk)’gk, %(Kl(k) + k_gk))’o’w)

K™ (y®) — b0 G, Lk® — k®)) 0,w) .

holds. On the wavefront set, this equality implies that the slowness (cotangent) vectors
associated with the rays from the source and the receiver at any depth (. restricted to the
(2, 3)-plane must have the same direction (but jointly could differ from one depth level to
another), see figure D.1.

An alternative approximation is the offset-plane-wave approach (Mosher et al., 1997).
There the assumption is invoked that, on the stationary point set,

KY =k for2<k<M.

Then the expression between braces in equation (2.81) must vanish, which is certainly
possible in a horizontally layered medium.
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Appendix E

Comparison of the wide-angle-screen with the
local-Born approximations

Dividing up the propagation range into thin slabs, and applying a Born approximation
to each of them, Wu and Huang (1992) found the following spectral-domain propagator,

5(+)

3 (s w35 0, ) ~ exp[—s7°(x3, o) z3)
5 g (—s) Az f 1 0 1Nt
{ (ap — ) + 2[(z3) 27 (23, ) 0 (e, T3, @, T5) p expl[sy” (x3, o), )z3]
where
?(auam&afnxg) = _én(a# - a:“’)’o(l'g,a“) - ’)’0(233,&:,))

+[CO(.’L'3)]2[G’GQ:7 + 70("33, aﬂ)70(x3a a:/)] g/)(au - a;u 70($37 a#) - ’YO(:L‘3, a:/)) )

arising from the contrast-source radiation patterns, and in which
3 1 T3

= ]- . ~ = . ~
e | aceplisastiinton), fp= 5o [ dt exmlisoadllon.)

=
A.’I) —— —t
3 =z} =z}

are windowed Fourier transforms with respect to the vertical coordinate.
Applying a lowest order difference paraxial approximation to the perturbation term in
the thin slab propagator, viz.,

(23, 0) —7°(x3,0),) = Oloy —dl), (E.1)
aody +7°(x3, )7 (3,0)) = [O(z3)] 72 + Oeyy — ), (E.2)

we arrive at

f~éya, - a),,0) = éxay — a,,0) .
Upon comparing now the spectral-domain propagator with equations.(3.36)-(3.36), we find
an expression, 3
1 flop, 3,0, 25)
Y(zs,ap)  2[c(z3)]?

which, in view of equation (E.1), is directly related to the cokernel [equation (3.102)] asso-

70(373’ aﬂ) +



238 Appendix E. Comparison with the local-Born approximations

ciated with the wide-angle approximation equation (3.103). Out of the expression for the
cokernel, we can extract the screen S.-1 [cf., equation (3.85)]

1 ‘gc" (au - ain 3;3)

v (z3, o) [c®(x3)]?

’?(a/l - a:“ 3 — %AII,';;, a;n 5) = 70(1'3’ a:/) + (E3)
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Appendix F

Comparison of the wide-angle-screen
approximation with linearized transmission
coeflicients

To account for horizontal medium variations, we introduced the leading-order scatter-
ing correction equation (3.103):

1 0y—1
- 0 ay 0 (") e
— A0 ~y L e F.1
m-—-7 270 Y 2¢0 (70)2 ( )

In comparison, the scattering due to vertical medium variations is given by equation (3.126),
ie.,

Bl +ad] (85
4(%)? 20 (49)2

d3%1) (F.2)

1
s (
2n
which constitutes the linearized transmission(/reflection) coefficient.
Upon discretizing the vertical derivative, the two expressions above become directly
related.
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Appendix G

Relationship between one-way Green’s function
and propagator

The propagator, g(*), associated with the one-way wave equation satisfies the pseu-
dodifferential equation

(05 & sT) ¢F) (2, 23; 2, 2%) = 0, (G.1)
complemented with the initial condition
9 (@, w3 = i@l o) = 6z — 2,) - (G-2)

Let us consider a function ¢(z,,z3) that satisfies the one-way wave equation also. With
properties (G.1) and (G.2), we have

¢(IL'#,$3) = /d$,1d$,2 g(i)(z#vwiﬁm{u)mg) ¢(m:)’$g) I (G3)

hence the terminology propagator. We now prove that the function G™*)(z,,zs;2!,2})
defined as

G (2, 335 20y, 7) = £H ([ — 25]) ¢ (2, 23521, 25) (G.4)

is a Green’s function associated with the one-way wave equation. H is the Heaviside func-
tion. Applying the one-way operator to expression (G.4) yields

(05 & sT) ) (2, 233 7),, 75) = g (wy,, 23; 7),, 73) B3 H(£[z3 — 23))
+H(+[z3 — 24]) [0 £ sT) ¢ (x,, z3; 7)), 2h) (G.5)
The second term in equation (G.5) vanishes because of property (G.1), hence
(05 & sT) &) (T, T3; Ty, Th) = ig(i)(mu,mg;w;,mg) [+6(z3 — 3)]

= 9 (2, @3 = oyl o) Ol — )
= §( — o) b(ws — o) (G.6)

which is the defining equation for the one-way Green’s function. The occurrence of the
Heaviside function, enforces the Green’s function to be causal; the propagator is not.
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In this paper, we define a one-way Green’s function with respect to the preferred spatial
direction (z3). In the field of Quantum mechanics, the same arguments are used to define
the one-way Green’s function in time using the propagator that satisfies the Schrodinger
equation (Cohen-Tannoudji et al., 1977).
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Appendix H

Reduction to the principal parts

Using the composition rule for symbols of pseudodifferential operators (Treves, 1980a),
the operator equation,

I?=A, (H.1)
is transformed into an equation for the corresponding left symbols (De Hoop, 1996):

!

exp [~ g, Day ] ¥(3 0y )y (s ) —a(@gm),  (H2)

()00, )=(zps000)
where v is the left symbol of T and a is the left symbol of A, i.e.,

I'(zy, z3; D)) exp(isaszs) = v(2u, 3; ) exp(isa,zy)
A(z,,x3;D,) exp(isast,) = a(zy, T3; ) explisayzq) -

From the form of A in the acoustic-pressure-normalization analog of equation (4.4) (De Hoop,
1996) we have

a=kKp+ayoy — p_l(D,,p)ia,, - p_l(D,,D,,p) - p_Q(D,,p)(D,,p) . (H.3)

As s = oo the composition of symbols tends to an ordinary multiplication, and the solution
of equation (H.2) reduces to the principal parts, v, and ap respectively, of the symbols:

MN(Zp o)1 (T a) =a2 = kp+ apa, = c?+ayay . (H.4)

Referring to the contrast formulation made here and in De Hoop et al. (2000), the
‘high-frequency’ approximation of equation (H.4) can also be expressed by assuming that
the vertical-slowness symbol depends only on the magnitude (¢) of the medium perturbation,
but not on the smoothness () of the medium perturbation, i.e., v, is O(9°) .
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Appendix I

The generalized-screen representation of the
reflection operator

The thin-slab propagator given in equation (4.8) is the one associated with the one-
way wave equation. To recover the two-way wave propagation one has to make use of the
Bremmer series, as described by De Hoop (1996). The first term of the series is the one-way
wavefield; the second term is the first (class one) multiple; the third term is the second
multiple, etc. The evaluation of each term of the Bremmer series requires the use of the
reflection operator given as

R=3T71(8sD), (L1)

for constant density and a continuous medium. We associate to R its left symbol, r,

R¢($u, x3) :/(3/27")2dalda2/d$,1d$12 7'(-'17#,5173; ay) exP[_is(l‘a - m:;)aa] ¢(m'luam3) .

In the framework of the present ‘high-frequency’ approximation, R reduces to its principal
part Ry, with r reducing to its principal symbol r;.

In a similar fashion as in Appendix B, one can show that such reduction to principal
symbol, yields

ry = 0 (1.2)
21

At a horizontal interface, the reflection symbol is simply the reflection coefficient, but this
is not true for a non-horizontal interface. For a non-horizontal interface, the reflection of
an incoming wave is split between the one-way propagation operator and the reflection
operator. The reflection operator is responsible for the interaction between the up- and
downgoing constituents of the wavefield. The one-way wave operator describes the trans-

verse scattering.
Like 7, the reflection symbol 7 can be expanded by introducing the same background
medium and perturbation as within the thin slab through which propagation takes place.
Here, we present the GS expansion of the reflection symbol in a medium sampled at discrete
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points. At an interface located at z3, the reflection symbol can be expressed as

\Agy = 1! (T, 23 0) — M(Tpy 255 00) (13)

(2, 235 € -
g 7 (flf';ta-'l;;-;au) + 7 (113;11 Zg ;au) ,

where
T3 =3 — %Amg ,
and
:1:;" =xz3+ %A:v3 .
Upon introducing a background medium and a perturbation on both sides of the interface,

i.e.,
U(wu,ﬂ?g) = [c(muamzs_)]_Q - [co(m:;)]—2 ’
and

u(xu,ﬂ?é*) = [c(mu, $+)]_2 - [CO($§)1-2 )

one can expand the reflection principal symbol with respect to these two perturbations. In
the GS expansion of the one-way thin-slab propagator, the expansion of the exponential in
equation (4.24) yields accuracy in the vicinity of vertical propagation. We want to enforce
such accuracy for the expansion of the reflection operator as well, and thus write

(@, 233 ) = 11(Th, 23;0) + [r1(zp, 235 00) — 71(2p, 23;0)] - (1.4)

We denote ) (z3; @) the reflection symbol associated with the upper and lower background
media. We then expand 71 (z,,T3; a,) — 71(xy, 23;0) with respect to the perturbations u at
z3 and w;', which, to first order, yields

1Ty, T35 00) > T2y, 23;0) — 7‘?(.’1)3;0) + 7‘(1)(323; ay) (I.5)

+a’1_ (‘IL'3; au)u(muamg) + ai*-(x3; a,,)u(:vu, ZB;) )

with
0

o B _ A(z3)?
Y ( 39 ) ([CO(mz-;-)]2 + [co(m3 )]2) + Co(a:g )CO(-’B;) + —[ Co(-(ms':F))]

70(z3 ,00)

a; (z3;00p) =
1 (@3500) a(:z;;,m;,a,,)

s 0(zF
200 [ (z3)]" O (3) (1 + :Y,OE:;ZV;)

n , (16)

o(a:;',:z:g, ay)
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and

0(27 2 °@)]”

st (el s ) et - G

+ . _7E Q) < (3;3)
3 FRade I Rad %
a0, [(z3)]" () (1+ <w3 ) (L7)
a(:z;r,:bg Q) ’ .

where

o(zf, ey, @) = Azs {2z, @) + %27, 0,)]° [(25) + (z5)]

The superscript ‘—’ refers to the upper medium and the superscript ‘+’ to the lower one,
whereas the subscript refers to the order in the GS expansion. We have

ay (z3;0) =0, af(z3;0)=0.

Figure 1.1 illustrates the GS expansion of the real part of the reflection symbol at
an interface where the upper medium is characterized by a constant perturbation and the
lower medium by a zero perturbation. In the top of the figure, the exact reflection symbol
(dashed) and the first two GS approximations are shown as a function of the horizontal
slowness p = y/—a,a,. The bottom part of Figure I.1 shows the relative error of the
first two GS approximations. Note the increasing angular accuracy as the order of the GS
expansion increases. This accuracy will be required to predict multiple scattering at large
offset. However, in the vicinity of the critical angle, all orders break down.

Note that to compute the nth term in the Bremmer series, the reflection operator is
only applied n times to the wavefield while a cascade of thin-slab GS propagators is applied
for each of the terms. Such cascade implies an accumulation of errors associated with the
inaccuracies of the thin-slab GS propagator (e.g., propagation very close to the horizontal
direction). Such accumulation of error does not occur when applying the GS reflection
operator, since we usually consider the first few terms in the Bremmer series only.

The GS representation (here, first order) of the principal part of the reflection operator
then follows as

(R1) (2, 03) ~ / (s/27)2day das / dz,dzly expl—is(zo — 2. )] (18)

(@, 23;0) = 1{(23;0) + (233 ) + @ (235 0 Ju(zy, 73)
+af (z3; o )ulzy, 23] blay,23)
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GSP2 : 1
GSPC&‘:\\~ k
GSP2 o/
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GSP1 L e
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-20
GSP1 //
-40
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Figure I.1. Top: real part of the principal parts of the generalized-screen reflection symbols:
first-order (GSR1) and second-order (GSR2) as a function of horizontal slowness p. The
principal part of the exact symbol is shown dashed. Bottom: relative error of the first-order
and second-order GS approximations.
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which can be written as
(R19) (2, 23) = (r1(2), 735 0) — 10(23;0)) (2, 73) (1.9)
+/(s/27r)2da1da2/d:1:'1dm'2 r(z3; ) exp|—is(z, — z))a,] ¢(z, z3)
+u(z,, z3) /(s/27r)2da1da2/d:1:'1da:'2 ay (z3; 00) exp[—is(zy — z))as] d(z),, 23)
+u(zy, 4 ) /(S/ZW)Qdaldag/dw'ldx'Q al (x3; ) exp[—is(z, — x))ag] $(2), x3) ,

yielding the reflection operator (Schwartz) kernel R, (Schwartz, 1966b; Treves, 1967; De Hoop
et al., 2000)

Ri(p, Ty, T3) = (r1 (24, 23;0) — 1) (23;0)) 6(z, — z),) (L.10)
+/(s/27r)2da1da2 r)(z3; ) exp[—is(zs — )]
+u(zy, z3) /(s/2ﬂ)2da1da2 ay (z3; ) exp[—is(z, — ), )]
+u(zy, 73) /(s/27r)2da1da2 al (z3; ) exp[—is(z, — z})ay] .

The concept of reflection kernel was introduced by Berkhout (1982, sections 4.6 and 6.2),
Wapenaar and Berkhout (1989, section II1.3.3), De Bruin et al.(1990). Equations (1.9)
and (I.10) can directly be cast into a numerical algorithm. Each additional term in the GS
expansion of the reflection operator requires two additional Fourier transforms.
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Appendix J

Comparison with the filter-McClellan approach

Another approach to approximate the one-way propagator (4.10) is the filter approach.
Like our approach, the filter approach aims at approximating the propagation of singular-
ities. Unlike our approach, it does not yield a comprehensive recursion that generates
increasingly accurate one-way propagators on and away from the wavefront set.

Here, we compare the accuracy and efficiency of the GS method with the explicit
extrapolation induced by the filter approach introduced by Holberg (1988) and Blacquiére
et al. (1989), and extended to 3D by Hale (1991b; 1991a). In 2D (p, v--- = 1) this approach
is based on the construction of a finite-length filter,

(N-1)/2

2 hp 6(z1 — nAz;)
(-N+1)/2

which matches the local thin-slab propagator. The matching is carried out in the Fourier
domain and hence

Np—1
H(K')=ho+2 ) hncos(k'n), (J.1)
n=1
where k' is the wave number scaled by the sampling rate, i.e., k' = —say Az, and N;, =

(N + 1)/2 is the number of independent coefficients (imposing appropriate symmetries
amongst the h,’s), should resemble

exp[—syi(z1, Z3; 01)Azg] ,

upon applying transformations (4.5)-(4.6). With the aid of Chebychev polynomials, Tj,,
H(K') can be written as a function of cos k', viz.,

Np—1
H(K)=ho+2 Y T(cosk') = J(cos k') . (J:2)

n=1

In 3D, k' = \/k'? + k']. To preserve the algorithin’s efficiency, the same 2D filter is used
but is now combined with an approximation of cosk’ proposed by McClellan (1973) - to
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obtain an approximate circular filter:
cos(k') = G(k}, k) = =1+ 3(1 + cos k})(1 + cos kj) . (J.3)
Hale’s (1991a) improvement of this expression is given by
cos(k') ~ G(k, ky) = —1+ 3(1 + cosk})(1 + coskj) — §(1 — cos 2k{)(1 — cos 2k}) , (J.4)

where ¢ ~ 0.0255.
We now seek to associate a vertical slowness symbol with the filter. Because of the
match, this symbol should be given by

YH(Tp, ) = log J(G(—s a1 Az, —s ag Azy))  with Aze = Az, (J.5)

B sAxs
where the dependency on the transverse directions, x, is contained in the coefficients hy’s.
We observe that the dispersion relation which characterizes the propagator is dependent
on the frequency and the spatial sampling rate. Note also that the use of a circular filter
requires the same sampling rate in the inline and crossline directions (different sampling
rates would require the design of an elliptic filter).

In Figures J.1 and J.2, we illustrate both the accuracy of the filter and the accuracy
of the McClellan transformation for two different sampling rates. In Figure J.1, grazing
incidence corresponds to half Nyquist which yields the accuracy claimed in Hale’s exam-
ples (Hale, 1991b). In Figure J.1, grazing incidence corresponds to 0.8 Nyquist and one can
see the degradation of the accuracy of the McClellan transformation at large propagation
angle. In these examples, we use all the coeflicients h,’s to match the thin-slab propaga-
tor. In practice this cannot be done for it implies a non-unitary propagator. Hale (1991b)
solved this problem decreasing the amplitude smoothly to zero beyond half Nyquist. This
impacts the propagation of energy at wide angle, in view of the cascade of extrapolations.
Figures (J.3) and (J.4) show the computations of the wavefront sets associated with the
vertical slownesses shown in Figures J.1 and J.2. The wavefront sets are truncated when
the vertical slownesses become complex, which does not happen in our GS approach. Note
that in both Figures J.1 and J.2, the vertical slownesses become complex where their real
parts depart from the exact one. Also note that the present analysis yields wavefront sets
resembling the numerical wavefronts given by Hale (1991a).

Concerning the filter-McClellan approach the following can be said: (i) the filter will
not be exact even in an (almost) homogeneous medium, (ii) the accuracy of the filter will
depend on the sampling rate which for fixed frequency will depend on the local medium
properties, i.e., the accuracy will vary with location, (iii) the same remarks apply to the
McClellan transformation, (iv) intrinsic instability enforces dense sampling . These features
are avoided in the GS method. As far as the computational complexity is concerned,
the filter-McClellan and GS methods compare as follows, 52N;, — 46 (Hale, 1991a) versus
(2 + n) logy Ny No. Typically, N, = 20, n = 2, N; = N = 10, whence the filter-McClellan
approach is more than 10 times less efficient than the GS method.
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Figure J.1. (a) Real and (b) imaginary parts of the vertical slownesses associated with the
filter-McClellan approach. The ‘inline’ curve correspond to the 2D filter (J.1) The ‘45°’
curves correspond to the 2D filter combined (1) with approximation (J.3) and (2) with
approximation (J.4) at a 45° azimuth. The true vertical slowness is shown dashed. In the
present case grazing incidence corresponds to half Nyquist. Compare with Figure J.2.
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Re(y,)

/

inline p
(a)
Im(yH )
p
(2) 45
(1)
inline
(b)

Figure J.2. (a) Real and (b) imaginary parts of the vertical slownesses associated with the
filter-McClellan approach. The ‘inline’ curve correspond to the 1D filter, The ‘45°’ curves
correspond to the 1D filter combined (1) with McClellan’s and (2) with Hale’s approxi-
mations of the circular filter at a 45° azimuth (Hale, 1991a). The true vertical slowness
is shown dashed. In the present case grazing incidence corresponds to 0.8 Nyquist. (c)
Wavefronts computed as polar reciprocals of the slowness surfaces; the exact wavefront is
shown dashed. Note the truncation of the wavefronts.
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Figure J.3. Wavefronts computed as polar reciprocals of the slowness surfaces shown in
Figure J.1; the exact wavefront is shown dashed.
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Figure J.4. Wavefronts computed as polar reciprocals of the slowness surfaces shown in
Figure J.2; the exact wavefront is shown dashed.
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Appendix K

Equivalent ‘acoustic’ system of equations for VTI
qP-wave propagation

VTI media are essentially elastic media. Yet, in various applications the propagation of
gP waves only is treated as if the medium were acoustic. Following the concept introduced by
Alkhalifah (1998a) and the methodology of Schoenberg and De Hoop (2000), we introduce
an equivalent ‘acoustic’ system of equations for VTI gP-wave propagation. This first-order
system rather than the induced second-order wave equation, is required to arrive at the
appropriate directional wavefield decomposition procedure that leads to the one-way wave
equation and its associated propagator. We show the accuracy of the equivalent ‘acoustic’
system for the ¢P-wave propagation not only for the dispersion relation (Alkhalifah, 1998a,
(A-9)), i.e., the wavefront set (Hérmander, 1990), but also for the polarization vectors.

K.1 Exact VTI system and limiting equivalent ‘acoustic’ system

The medium being VTI, we work in a vertical plane without loss of generality. In an
elastic medium, the wave equation is given by the second-order hyperbolic system

paf’u.i — aj (Cijlcl Oug) = fi, for i =1,3, (K.1)

where u;=particle displacement (m), p=volume density of mass (kg/m?), C;jx=stiffness
tensor (Pa), and f;=volume source density of force (N/m?). In the VTI case, system (K.1)
reduces to

pd2u; — 0 (c1101u1 + c1303u3) — 03 (cs5(F3ur + Byuz)) = f1 , (K.2)
pOZus — 85 (c1301u1 + c3303u3) — Oy (cs5(O3ur + Bruz)) = f3 (K.3)
according to the stiffness matrix (5.1) and the Voigt notation.

Let a = ¢13 + 2¢55 be fixed. Alkhalifah (1998a) and Schoenberg and De Hoop (2000)
propose then the following transformation

i3 = a, (K.4)
cs5 = 0. (K.5)

Taking the vertical ¢SV-wave speed equal to zero yields an equivalent ‘acoustic’ system;
however, as noticed by Schoenberg and De Hoop (2000), keeping c;3 + 2¢55 constant, as is
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done here, does not affect dramatically the shape of the ¢P-slowness surface in the case of
‘mild’ anisotropy. The second-order system (K.2)-(K.3) thus becomes

paful -0 (c1181u1 + aag'u.g) =fi, (KG)
pOfus — 05 (adiuy + c3303u3) = f3 . (K.7)

We define a pseudo-pressure, p, as
p = — (adiuy + c3303u3) . (K.8)
Then equation (K.7) takes the form
pOius + d3p = f3 (K.9)

which is an equation that appears in the isotropic acoustic case also (De Hoop, 1996, (I1.6)).
From equation (K.8) one can extract dsus,

1
d3us = ——p — —dyuy (K.10)

€33 €33

which upon substitution in equation (K.6) yields

a2 a
{paf -0 [(011 - —) 0 ] } uy + 0 (— ) p=h, (K.11)
€33 €33

which we rewrite as

Ouw + 6, (i ->p=f1, (K.12)
C33
with
2 a?
061, 01) = p0F — b [(cu - ;) o ] | (K.13)

The principal part, O, of the differential operator O is given by

2
Oz(at,al) = pr - (011 - Z';) 8f s (K.14)

and its principal symbol, 0y, follows, upon replacing d; and 0, by their respective symbols,

s? and —isa, in the Laplace-Fourier domain, as

2
0o2(s, @) = ps® + (cu — ;l;) a?. (K.15)

In the case where a? < ¢ c33, which we assume here, the differential operator O is strongly
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elliptic!. We can therefore invert it (Treves, 1980a), and hence with equation (K.12),

w=-0"lo (2 )| prois. (K.16)
€33
Substituting equation (K.16) into the definition (K.8) of the pseudo-pressure, p, we obtain
1 ,
%uy+{————5010*[al<ﬁ-)]}p=:—iiao—V1. (K.17)
€33 €33 €33 €33

Using the particle velocity, v, instead of the particle displacement, u, we obtain the system
of equations

pows + dp = f3, (K.18)
Bsvs + {i - 280! [al (‘—‘ )] } op = ——5 0795 .  (K.19)
€33 C33 C33 C33

Defining the ‘acoustic’ field matrix, Fy, I=1,3, as

F3 = 3, (K.21)

we obtain the matrix differential equation
(0361, + A1, 40))Fy = Ny, (K.22)

where the elements of the acoustic system operator matrix, A; j, are given by

A = 0, (K.23)

A = p, (K.24)

hpy = {i—ial 0! [61 (i )]} (K.25)
€33 €33 €33

Ay = 0. (K.26)

The source matrix, Ny, I = 1,3, is given by

Ny = f3, (K.27)
Ny=—29,0718,f, . (K.28)
€33

Observe that in the limiting case c¢1; = ¢33 = a, we recover the exact form of the acoustic-
matrix differential equation for an isotropic-acoustic medium (De Hoop, 1996, (II-9) through
(11-16)); then the linear operator O reduces to p 97.

"Note that the case a® > ¢11¢33 would induce a pole in expression (K.31) for the vertical slowness 7, i.e.,
the phase velocity would have a zero.
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K.2 Dispersion relation for the equivalent ‘acoustic’ system

To obtain the dispersion relation, i.e., to derive the (micro-local) eikonal equation, we
consider a (locally) constant medium (‘high-frequency’ approximation). Then the linear
operator O reduces to its principal part Os. Upon applying a Fourier transform in the
spatial coordinates, z; and z3, and a Laplace transform in time, ¢, to system (K.22) thus
replacing 9, 03, i, and O by their respective symbols, s?, —svy;, —isa, and o9, we set the
determinant of system (K.22) equal to zero:

2 1
ps* [%05182(12 +—|-s"%=0, (K.29)
33 €33
which can be written as
a2 2
Za 1
y2 = s +—. (K.30)

o2 4t o G
14¢ha ésaa 33

Note that the term ¢;; represents the elastic moduli ¢;; normalized by density, p. The
previous equation simplifies to

1 ~ 2
¥ = e , (K.31)
- a
€33 (1 + (1 — 611&33) a2)
which yields
(12
[1_(1_~ i )X]Z:l—X, (K.32)
C11C33

when carrying out the change of variables (5.8). The dispersion relation defines the slowness
surface (7; as a function of —ia), and hence the phase velocity, as the reciprocal of the
slowness. Figure K.1(a) illustrates the relative error between the approximate phase velocity
given by equation (5.11) and the exact dispersion relation using the measured moduli of
Greenhorn shale (Jones & Wang, 1981); the stiffness coefficients in (km/s)? are

Cl11 = 14.47 , €33 = 9.57 , Cp5 — 2.28 , C13 = 4.51 .

See also the papers by Alkhalifah (1998a; 1998b).

K.3 Polarization angle

Here, we study the (micro-local) behavior of the polarization vector. Upon applying a
Fourier transform in the spatial coordinates, ; and z3, and a Laplace transform in time,
t, to system (K.22) thus replacing 8;, 03, and 9, by their respective symbols, s?, —sv;,
and —isa, we can derive the polarization angle, T, of the ¢P wave in the framework of the
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Figure K.1. (a) Relative error between the approximate phase velocity as given by dispersion
relation (5.11) and the exact phase velocity as a function of the phase angle 8, in the case of
Greenhorn shale. (b) Gray curve: exact polarization angle as a function of the phase angle
0, in the case of Greenhorn shale; black curve: Error in degrees between the approximate
polarization angle as given equation (K.33) and the exact polarization angle.
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approximation proposed by Schoenberg and De Hoop (2000)

uq iyia
tanY = — =

w7 K.
us 1+ ¢p1a? (K.33)

Note that the polarization angle given by equation (K.33) is the limit of the exact polariza-
tion angle in VTI media for the ¢P wave (Tsvankin, 1996, (42)) when applying transforma-
tions (K.4) and (K.5). In the current notation, the exact polarization angle is indeed given
by

(€13 + €s5)iay (K.34)

tan T = = - .
1+ Cua2 — 055’)%

Figure K.1(b) illustrates the degree of accuracy offered by the approximation proposed
by Schoenberg and De Hoop (2000) for the polarization angle in the case of Greenhorn
shale (Jones & Wang, 1981).

From the value of the polarization angle in the ‘mild’ anisotropy approximation, T,
we can recover the exact polarization angle, T¢, as

(c13 + cs5)iaf
iaay; — cs5(7§)2 tan T

tan T¢ = tanT , (K.35)

where 7{ is the vertical slowness principal symbol in the exact VTI case. Using the fact that
71 = 7§, i.e., that the dispersion relation is weakly affected by the present approximation,
this relation simplifies to

(c13 + c55)ic

tanT . K.
ica — cs5yp tan T an (K.36)

tan Y€ =

The fractional term can be shown to be quasi insensitive to transformations (K.4) and (K.5)
in the case of ‘mild’ anisotropy.
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Appendix L

Directional decomposition of the wavefield in the
‘acoustic’ VTI approximation

L.1 Characteristic equation for the vertical slowness operator

Directional wavefield decomposition maps the ‘two-way’ wavefield into counterpropa-
gating constituents that satisfy a coupled system of ‘one-way’ wave equations. The direc-
tional decomposition procedure exposed in De Hoop (1996) can readily be applied to the
equivalent ‘acoustic’ system of equations (K.22) derived in Appendix A. In the time-Laplace
(s) domain, the one-way wave operators follow as

03 £ sT", (L.1)
where I is obtained from the characteristic equation, ' = A, and is given by
I=Az, (L.2)

where A is called the transverse Helmholtz operator and is here given by

{00 ()]}

The characteristic equation (L.2) transforms into a characteristic equation for left symbols:

=a(z1;0) , (L.4)

exp [_iaa’Dz'l] v(@1;d)y(zh; @)
(z1,0")=(z1,0)
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