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ABSTRACT

Much research has focused on ray-based migration methods, such as Kirchhoff and
Gaussian beam, with special effort required to overcome the multi-pathing prob-
lems that arise in complicated media. Despite advances that enhance the ray-based
methods, many problems related to complex structures have not been fully solved as
yet. Though relatively expensive compared with the ray-based methods, migration
methods based on wavefield extrapolation exhibit advantages in handling complex
structures. Although ray-based methods are still the dominant imaging tool for 3-D
prestack depth migration, with the rapid advancement of computer hardware tech-
nology, we can expect migration algorithms based on wavefield extrapolation to play
a more important role in the near future.

In this thesis I discuss four such related one-way wavefield-extrapolation algorithms
for depth migration of prestack and poststack data: phase-shift-plus-interpolation
(PSPI), split-step Fourier (SSF), implicit w — z finite-difference (FD), and Fourier
finite-difference (FFD). All the algorithms work in the frequency domain, resulting
in natural and similar parallelization of the codes. These straightforward implemen-
tations of one-way methods yield accurate imaging in complicated geological struc-
tures such as the Marmousi model, where ray-based methods require complicated
ray-tracing efforts to image the target zone.

For the most part, these algorithms obtained somewhat comparable migration results
for the two model data sets tested in this thesis (especially the Marmousi model
in Chapter 4). Such a result is not surprising. First, all of them are derived from
the same one-way acoustic wave equation. Second, they are closely linked with one
another, the SSF and FFD methods form the intermediate steps between the phase-
shift and finite-difference methods.

A good choice of migration algorithm is largely dependent on the balance of com-
putation cost and accuracy. The SSF and 65° FD algorithms are relatively low-cost
wavefield extrapolation methods, but they also suffer some loss of accuracy. Being
based on a small-perturbation assumption, the SSF method cannot deal with strong
lateral velocity contrast; the 65° FD algorithm, on the other hand, has accuracy
limited to dips less than about 65°. About twice as expensive as the SSF and 65°
methods, the FFD and 80° algorithms have the ability to handle both rapid lateral
velocity variation and large dips (around 80°). The PSPI and 90° FD algorithms
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are accurate for dips up to 90°, but the 10° increase in the dip ability of these two
algorithms requires a doubling of the cost relative to that of the FFD and 80° FD
methods.
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Chapter 1

INTRODUCTION

1.1 Ray tracing versus wavefield extrapolation?

Many methods for migration of seismic data have been developed and put into practice
over the years. For purpose here, they can be put into either of two categories —
ray-based methods and methods based on wavefield extrapolation, although all of
them are derived from some form of the acoustic or elastic wave equation and depend
more or less on a high-frequency approximation.

Ray-based migration methods, such as Kirchhoff-summation (Schneider, 1978) and
Gaussian beam (Hill, 1990), are currently preferred methods for 3-D prestack depth
migration, mainly because of their target-oriented feature, flexibility in handling ir-
regularly sampled 3-D data, generally good imaging results and relative computa-
tional efficiency. Considering the high computation cost in processing 3-D data sets,
Kirchhoff and Gaussian beam methods are presently the only viable ways to do 3-D
prestack depth migration. The defining characteristic of ray-based methods is their
dependence on ray tracing to get the traveltimes needed for the migration mapping.
In complex geological structures, however, multiple arrivals are a complication that
often causes ray tracing to fail to obtain proper traveltimes, hence leading to poor
subsurface imaging. Recently, several methods have been developed to help overcome
such problems; examples include semi-recursive Kirchhoff migration (Bevc, 1997),
maximum-energy traveltime methods (Nichols, 1996), common-angle image-gather
migration (Xu et al., 1998), and asymptotic inversion (De Hoop, 1998). These meth-
ods, however, only partially solve the multi-pathing problem, and do so at increased
algorithm complexity and computing costs, thus losing some of the advantage of
ray-based methods.

In contrast, methods based on wavefield extrapolation, such as implicit finite-difference
methods (Claerbout, 1985) and the split-step Fourier method (Stoffa et al., 1990),
can naturally handle the multi-pathing problem, leading to more accurate subsurface
imaging. Therefore, although relatively expensive compared with ray-based methods,
wavefield-extrapolation migration methods have often been preferred for 2-D and 3-D



poststack migration, where cost is a less serious issue than for prestack migration.

Compared with ray-based algorithms, another major advantage for wavefield extrap-
olation methods is their simplicity. Without the need for complicated traveltime
computation, solving the partial differential equations (PDE) is nothing more than a
combination of phase-shift and finite-difference operators. Such simplicity also ben-
efits implementation of these algorithms; usually it takes only days to get a new
algorithm into practice, given a suitable starting platform, while the implementation
of an adequate ray-tracing code can take months.

1.2 Some clarification

As I am emphasizing the accuracy of wavefield-extrapolation migration algorithms
over that of ray-based algorithms, I shall make some clarification about how the
advantages are made possible.

First, the trade-off for selecting a migration algorithm is governed by the balance
between cost and accuracy. Although wavefield-extrapolation algorithms are superior
in accuracy, this improvement is largely due to the more expensive numerical methods
used to solve the wave equation. Typically, wavefield-extrapolation methods are an
order of magnitude more costly than the ray-based methods in 2-D prestack migration.
Years ago, one could not afford to do prestack wavefield extrapolation migration; now
it is feasible because of the rapid advance of computer hardware/software technology
in recent years. The price drop for fast RAMs, CPUs and hard-drives makes the
computing power more accessible than in the past; nevertheless, the relative cost of
various migration algorithms remains an important issue. In short, we should not
take the accuracy of wavefield-extrapolation algorithms for granted.

Another issue is how different are the wavefield extrapolation and ray-based migration
algorithms. Before answering this question, let us first look at the similarities between
them. For the majority of migration algorithms, only one-way propagation of wave-
fields is carried out inside the algorithms, i.e., propagation that ignores transmission
and reflection across the layer boundaries, and treats the up-going and down-going
waves separately (usually, with the downgoing wavefield ignored). By doing so, we
linearize the seismic inversion problem, rendering the process applicable.

In ray-based algorithms, the Green’s function for one-way wave equation is computed
by ray-tracing. As most ray-tracing codes yield only a single primary arrival from
source to receiver, usually the first arrival (which often differs from the maximum-
energy arrival), the Green’s function obtained by ray-tracing is incomplete. Thus,



unless extra (costly) steps are taken, ray-based methods are usually single-arrival
methods.

In wavefield extrapolation algorithms, the Green’s function is computed by downward
continuation of wavefields recorded at the surface to all depths. Not only the primary
arrivals, but the total (one-way) wavefield at a given depth is computed; thus, these
approaches yield a more complete Green’s function than do ray-based ones.

For media with simple structure, the Green’s function describing only primary ar-
rivals is adequate for good imaging; for media with complex structure, however, the
complete Green’s function for one-way wave-equation may be essential.

1.3 Comparison of four one-way algorithms

Among the wavefield-extrapolation migration methods, some, such as reverse-time
migration (Baysal et al., 1983), are derived from the two-way wave equation, while
most others depend on approximate solutions to the one-way acoustic wave equation.
Two-way solutions, which are accurate but also expensive, are used mainly for gen-
erating synthetic data. As two-way methods generate unwanted internally scattered
waves for migration, special treatment is needed to suppress these annoying artifacts,
thus making the results of two-way migration resemble more closely those of one-way
migration. In practice, most migration algorithms are based on the less costly one-
way solution. With certain optimization efforts (Jenner et al., 1997), the one-way
solution can reach a high accuracy.

Here, I compared four related, one-way depth-migration methods: phase-shift-plus-
interpolation (Gazdag & Sguazzero, 1984), implicit w-z finite-difference (Claerbout,
1985), Fourier finite-difference (Ristow & Riihl, 1994), and split-step Fourier (Stoffa
et al., 1990). I selected these four algorithms from among other one-way algorithms
because of their close relationship to one another (Riihl & Ristow, 1995). It is of
interest to review their inter-relationship as well as their relative migration perfor-
mance.

Another reason I single out those four algorithms is that they include and generalize
two important members of one-way wavefield-extrapolation techniques, i.e., phase-
shift and finite-difference. Thus, understanding the strengths and weaknesses of the
above algorithms will help us deduce the expected performance of any newly devel-
oped algorithm, which largely depends on extension of the existing methods or some
combination of them.



The four algorithms I compare were developed mainly in the 80s and 90s, with the
exception of the implicit w-z finite-difference method, which was devised in the early
70s and greatly refined throughout 80s. Over these years, many comparisons of these
algorithms have been made. After viewing the results of these comparison, however,
I have identified the following shortcomings in the comparisons.

1. In some papers, such as Gazdag & Sguazzero (1984) and Popovici (1992), com-
parisons were done on relatively simple models so that migration performance,
such as the maximum dip for accurate imaging, could be easily measured. No
examples for complicated models have been shown in these papers.

2. Some comparisons, such as Zhu & Lines (1998), were done for the complex
Marmousi model but against Kirchhoff type algorithms to show their strength
over the ray-based methods; no comparisons with other wavefield-extrapolation
algorithms were done.

3. Theoretical comparisons were done in papers by Ristow & Riihl (1994) and
Le Rousseau & De Hoop (1998) showing that results favor one algorithm over
another. These theoretical analyses, however, do not guarantee that one al-
gorithm is better than another for complex subsurface structure because the
testing environment used may not be representative of that for field data.

4. When migration results on a common data set have been published by dif-
ferent authors, it has not been easy to do comparisons because variations in
picture quality, display method, and scale influence our relative impressions of
the performance of these algorithms. A uniform comparison is needed.

5. The four algorithms that I compared here have never been tested together for
data from the same complex models. It is desirable to test them in a common
environment to assess similarities and differences.

Based on these observations, emphasis of this thesis is on comparing algorithm perfor-
mance on realistic and complicated subsurface model data. I have tested the above
four algorithms on two known models, — the Marmousi model (Versteeg & Grau,
1990) and the SEG-EAGE salt model (Huang & Fehler, 1997). Both models are two
dimensional (2-D) with complicated geological structure, and have posed difficulties
for accurate imaging with ray-based algorithms. With access to prestack seismic
data for the Marmousi model, I have performed common-shot-gather migrations on
the data with both the exact velocity model and smoothed ones. On the other hand,
I applied only poststack migration to the zero-offset data for the SEG-EAGE model.



To make the comparison fair, all the codes used in the experiments were implemented
by the author, and all were developed on a common coding platform. At the time
of writing this thesis, the migration codes have been released to the public domain
for two years. With extensive tests by people from industry and academic institutes,
most errors and bugs in the codes have been fixed, thus reducing the likelihood
that such errors might influence the imaging quality. Also, all the codes have been
parallelized to run on multi-processors machines and computer networks, speeding
up the experiments greatly.

This thesis is organized as follows. Chapter 2 describes the four algorithms and their
inter-relationships. Chapter 3 compares zero-offset migration results on SEG-EAGE
salt model data. Chapter 4 compares prestack migration results on data from the
Marmousi model. Following a discussion on the migration results in Chapter 3 and
4, in Chapter 5 I draw conclusions on strengths and weaknesses of these methods.
Also, I discuss finished and on-going extensions and developments for these algo-
rithms. Appendix A describes how I have parallelized the algorithms and shows their
improvement in performance over that of sequential codes.

1.4 Contribution of this thesis

The contribution of this thesis has the following aspects:

1. As emphasized in the beginning of this chapter, the choice of migration al-
gorithm is largely dependent on the cost of the algorithm and its accuracy
obtained under such a cost. Through the efforts to make fair comparisons of
various one-way wavefield-extrapolation migration algorithms in this thesis, I
have attempted to show readers how those algorithms work for two complicated
models and thus help them make decisions on the choice of migration algorithm
best suited for a specific imaging target.

The quality of any seismic migration is governed not only by the accuracy of the
algorithm, but also by the choice of parameters for migration. By tuning the
migration parameters in examples shown in Chapters 3 and 4, I show alterations
in images that suggest that differences among the migration results of various
algorithms can often be minimized by suitable choice of parameters. Thus, the
preference for a migration method should also consider the ease of handling and
adjusting migration parameters.

2. By developing the migration codes used in these experiments, we obtain valu-
able tools that might be useful for other research tasks. One example is static-



correction research done by Tjan (1995). For that research, accurate migration
and inverse-migration (demigration) tools are needed. With little modification,
the existing migration codes can be turned into demigration and modeling codes
useful for that research. (The major difference between demigration and mod-
eling is that demigration uses the migrated section as the reflectivity function,
while modeling usually use some other function, such as the derivative of the
specified velocity model, as the reflectivity function.) For the study here, I have
implemented exploding-reflector modeling codes by modifying the poststack mi-
gration codes.

Through implementation of these algorithms, I have developed a common cod-
ing platform for efficient development of new migration algorithms. One exam-
ple is the development of an anisotropic prestack migration (Han et al., 1998)
based on the finite-difference algorithm; extension to anisotropic media was fin-
ished within a week because only the core wavefield-propagation part had to be
modified to create the new algorithm.

3. Releasing the code in the public domain [free code through Seismic Unix (SU)]
greatly benefits both academia and small-size companies, where commercial
software is too expensive to be affordable. Also, apparently, no single commer-
cial data-processing package includes all the algorithms compared here; thus,
even large companies can benefit from these codes as well. With the parallelized
migration codes, large-scale migration can be run on both costly multi-processor
computers and inexpensive, heterogeneous PC clusters, providing efficient and
cost-effective solutions for data processing.

Before looking at the migration results, I first review these four algorithms in Chapter
2, giving necessary background knowledge about the various migration methods.



Chapter 2

A COMMON BASIS

Let us start with the 2-D acoustic wave equation. Given a homogeneous velocity
structure, in the frequency-wavenumber domain we have

PP w?
2 —
kP — 57 = FP’ (2.0.1)
where P is the pressure wavefield, z is the depth, w is frequency and v is velocity.
Also k, is the wavenumber in the lateral (i.e., z-) direction. Taking the spatial Fourier

transform in the z-direction, gives the dispersion relationship

2

k24K = :—2 (2.0.2)

2
k, = i,/‘:—z — k2, (2.0.3)

and its corresponding one-way wave equation,

or

oP
5, = Eik:P. (2.0.4)

Here the + signs are for the downward and upward wavefields, respectively. Analytic
solutions of this one-way wave equation are

P(z + dz, ks, w) = P(2, ke, w) expt=4z (2.0.5)

Thus, wavefield extrapolation involves just a simple phase shift in the frequency-
wavenumber domain. To obtain the migrated image, we need to apply the imaging
condition. For poststack migration, this involves evaluating the wavefield when ¢t = 0,



which is just a summation of all the frequency components for position (k;, z). Then
the final image is obtained by inverse Fourier transformation from the wavenumber
domain to the space domain. That is,

Image(z, z) = (FFT)_I[Z P(z, kg, w;)]. (2.0.6)

This formula is the essence of the phase-shift migration method often called Gazdag
migration (Gazdag, 1978). The phase-shift migration method, however, requires lat-
erally homogeneous [i.e., v(z)] media, making it essentially a time-migration method.
Advantages of this method are that it is stable, with no special requirement for the
grid spacing, and it is accurate, capable of migrating reflectors with dip up to and
beyond 90°. Given these advantages, people have attempted to extend it to depth
migration, that is, to deal with lateral velocity variation in a v(z, z) medium.

2.1 Phase-shift-plus-interpolation migration (PSPI)

The pure phase-shift migration method cannot accommodate velocity fields that have
lateral variation because it requires computation in the spatial wavenumber domain.
Gazdag and Sguazzero (1984) offered a method to treat lateral variation in velocity
that uses the central features of the phase-shift method. Instead of only one velocity
at each depth step, they made use of several reference velocities to account for the
lateral velocity variation. At each depth step, the wavefield is propagated in the
(w, k;) domain with each of these reference velocities, yielding multiple reference
wavefields. Then an inverse Fourier transform brings these reference wavefields back
to the (w, ) domain. The true wavefield is obtained by linearly interpolating the
reference wavefields based on the relationship of the local velocity to the reference
velocities.

To maintain high accuracy for small dip, Gazdag and Sguazzero (1984) introduced a
laterally varying time-shift in the (w, ) domain as a preprocessor for the input data.
Specifically, they defined a modified field P*(z) in the space domain

w
*(2) = +i— 1.
P*(z) = P(z)exp] qu(x) dz], (2.1.7)

Then they transformed P*(z) into the wavenumber domain with FFT. In the wavenum-
ber domain, the influence of the previous time-shift is compensated by the ﬁdz term



in the following formula,
P(z +dz) = P*(2) exp [£i(k, F vi)dz]. (2.1.8)

Here, v, is the reference velocity, k, is the vertical wavenumber, defined as ,/(1‘;’7)2 — k2,

and the P* is the Fourier transform of P* from (w, ) to (w, k). Such a time-shift
term is important in the implementation of the PSPI method. Later, when we ex-
amine all the other three algorithms, we find that the spatially varying time-shift is
nothing but the thin-lens term, which appears in all these algorithms. With such a
term in PSPI, the split-step Fourier method (SSF), which has the same term, can be
considered as a special case of PSPI when only one reference velocity is used in PSPI.

Since it works on the complex wavefield, we have two choices for ways to do the linear
interpolation. One is to interpolate the amplitude and phase angle individually, and
the other is to interpolate the real and imaginary parts individually. The periodicity
of the phase angle (27 ambiguity) suggests that we choose the latter because it has
no phase unwrapping problem. Also, the experiments with these two interpolation
schemes show that interpolating the real and imaginary parts individually introduces
less numerical noise and thus produces cleaner image.

The accuracy of PSPI is directly related to the number of reference velocities used at
each depth step, that number depending on the amount of lateral velocity variation
at that depth. In an effort to do automatic reference-velocity picking, Bagaini et
al. (1995) proposed an adaptive choice for the reference velocities at any depth step
determined by the statistical distribution of the velocity within that depth step. His
method determines the reference velocities as those that are most representative of
the velocity distribution at that depth level. In this way, the total computation cost
in PSPI is controlled. Figure 2.1 shows the number of reference velocities I used
for migrating the Marmousi data (see Chapter 4) as a function of depth. Interested
readers may refer to Bagaini et al. (1995) for a full description of the procedure for
the velocity selection.

Another issue for the PSPI method is the wrap-around introduced by the spatial
Fourier transformation from the (w, ) domain to the (w, k;) domain. Wrap-around
is a phenomenon in which the periodically extended wavefield on either side of the
computation domain propagates in from the sides, interfering with the actual wave-
field. For PSPI, although I don’t have an explanation for it, the experimental results
show that the wrap-around is not serious if the number of reference velocities is not
large. In one poststack migration experiment not shown here (Han, 1998a), when the
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Fic. 2.1. The number of reference velocities used in migrating the Marmousi data
with the PSPI algorithm. These numbers are determined by the statistical method
of Bagaini et al. (1995).
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number of reference velocities is less than five, the wrap-around is negligible, but as
a result, the steep reflectors are mistreated because a finer increment in reference ve-
locities is needed. When we introduce too many reference velocities, however, image
quality in the deep section is degraded. To attack this problem, following Cerjan et
al. (1985) I have implemented a damping region on each side of the depth section.
For example, on the left side, I set the damping region empirically to 20 traces as
follows: for 1 < i, < 20 (i, is the output grid-point index in z-direction), I multiply
the wavefield by a Gaussian-shaped spatial function g = exp —[a(20 — 7)?] with a set
to 0.015. The damping region also acts to reduce unwanted reflections from the side-
boundary. Since split-step Fourier (SSF) and Fourier finite-difference (FFD) methods
also work in the dual domains, (w, z) and (w, k), I apply this damping technique to
them as well.

Repeating equation (2.0.3), the dispersion relationship is

2
ko = 44/ 25 — k2.
v

Note that for k2 > ‘:—:, k. is an imaginary number, so the waves are inhomoge-
neous. In a typical phase-shift algorithm, such inhomogeneous waves are ignored in
the downward continuation by putting the corresponding amplitude to zero. Because
such a treatment of the inhomogeneous wavefield is equivalent to applying a boxcar
filter on the data, it generates unwanted numerical noise. In my experiments, the
inhomogeneous wavefield is attenuated by a relatively smoothing wavenumber filter.
Handling the wavefield this way actually benefits the imaging of steep dipping reflec-
tors. These steep features corresponds to the large wavenumbers in the wavenumber
domain. Abrupt truncation of the high-wavenumber portion of the wavefield intro-
duces numerical noise in the form of artifacts with large moveout. The wavenumber
filter is designed as follows. For |k;| > |w/v|, I substitute

into equation (2.0.5), so that the inhomogeneous-wave contribution to the analytic
solution of downward continuation of the wavefield becomes

.. w2 .
P(z+dz, kyyw) = P(z,ksw) expiz"\/’gd

I
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w2 2
= P(z,ky,w)exp  VETTE (2.1.9)

Strictly, physical reality requires that we treat the downgoing and upgoing waves in
different ways — damping downgoing waves and increasing the amplitude of upgoing
(backward-propagating) waves. For numerical stability in the presence of additive
and computational noise, however, we must avoid exponentially boosting the am-
plitude during the wavefield extrapolation. Since the primary idea here is to cause
the inhomogeneous waves to decay smoothly, I select filters with negative exponent.
Therefore, in the implementation, I choose the negative sign in the exponent of equa-
tion (2.1.9).

2.2 Implicit (w-z) finite-difference migration (FD)

Since Claerbout (1985) developed the FD method in the early 1970s, it has been
extensively used in seismic imaging. Unlike the phase-shift migration method, the
FD method works in the frequency-space domain, thus making it suitable to handle
lateral velocity variation. In deriving the FD method, one starts again from the one-
way acoustic wave equation [equation (2.0.4)] in the frequency-wavenumber domain
and approximates the square-root appearing in k, with continued fractions. The idea
of continued fractions is to use the recurrence relationship to approximate a function.
For the square-root function

R=+v1-52 (2.2.10)
where S is some number, the following recurrence relation holds:

S2
1- .
1+ R,

Rpi = (2.2.11)

Note, as n — 00, R, converges to R. For the second-order approximation, we obtain

52
R2=1_2——%S2—

(2.2.12)
Using this equation to approximate the square-root function (2.0.3) in &, and defining
S = 2k, we get

T w
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2
k2=3(1 0.58

o= T 02552 0.255,2). (2.2.13)

Now associating the partial differential operator —i0, with k,, and —i0, with k,, we
get the second-order approximation of one-way wave equation (2.0.4):

oP  w 0.552

o, =+ T o0ese 0'2553)P, (2.2.14)

with

Sz

Ele

0. (2.2.15)

Now, as equation (2.2.14) and (2.2.15) are in the frequency-space (w-z) domain, the v
can freely take the form v(z, z); i.e., velocity can vary from one grid cell of the model
to another. Note that the factor multiplying P on the right side of equation (2.2.14)
contains two terms. The first factor % called the thin-lens term, is responsible for
the lateral variation in velocity; where the velocity is constant, applying this term
is nothing but a constant time shift of the wavefield. The second term, called the
diffraction term, serves to collapse diffraction hyperbolas in the seismic data.

To solve the resulting second-order approximation of the one-way wave equation,
the splitting method is usually used. That is, we first apply the thin-lens term to
the input wavefield, then the final wavefield is obtained by applying the diffraction
term to the intermediate wavefield. The thin-lens term is solved analytically, and
the diffraction term is solved by a method of finite differences. Based on the implicit
finite-difference approximation, the diffraction term is formulated into a tri-diagonal
linear system that can be solved efficiently by Crank-Nicolson method. For the full
recipe for solving the tri-diagonal linear system, refer to (Claerbout, 1985).

Because we used only the second-order continued-fractions approximation, the im-
plicit FD method is accurate for dips up to about only 45°. Also the structure of
continued-fractions approximation further makes it hard to implement high-order ap-
proximations efficiently. On the other hand, many situations require that FD method
handle dips beyond 45°. To resolve the dip limitation of the implicit finite-difference
algorithm, Lee & Suh (1985) used a least-squares optimization technique. First, they
use a cascaded series of equations to match the dispersion relationship,
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w a,-Sz
koope = ;(1 =) . b,-S2)‘ (2.2.16)

i

Here k., is the optimized k,. Then they use least-squares optimization to minimize
the difference between k., and k, by adjusting the variable parameters a; and b; over
the range 0° to 90°. Table 1 (Lee & Suh, 1985), lists values of the maximum dip that
the implicit finite-difference method can handle after optimization. With the help of
optimized equations, the maximum dip for implicit finite-difference can be increased
up to 90°. Also for no increase in computation cost, the optimization extends the dip
accuracy from 45° to 65°. Applying the implicit FD for dip beyond the 80°, however,
yields diminishing returns in terms of improved accuracy versus increased cost.

Dip Accuracy a; b;
45° 0.5 0.25
65° 0.4782 | 0.3763
80° 0.0042 | 0.8739
0.4572 | 0.2226
87° 0.0042 | 0.9729
0.0813 | 0.7441
0.4142 | 0.1508

90° 0.0005 | 0.9940
0.0148 | 0.9194
0.1175 | 0.6145
0.3670 | 0.1057

Table.1 Optimized parameters for implicit finite-difference algorithm (Lee & Suh,
1985).

2.3 Split-step Fourier migration (SSF)

The split-step Fourier method, used since the 1970s, has been applied to fields such
as underwater acoustics and light propagation in optical fibers (Lee et al, 1991).
Stoffa (1990) reintroduced this method into seismic imaging. In more recent years,
this method has been implemented in both 2-D prestack migration (Roberts et al.,
1997) and 3-D poststack migration (Tanis & Stoffa, 1997).

Like PSPI, SSF also involves a wavefield extrapolation in the frequency-wavenumber
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domain and a local velocity correction with the thin-lens term in the frequency-space
domain, but its sequence of operations is just opposite to that of PSPI. For PSPI, the
thin-lens correction is done first, prior to the wavefield extrapolation in wavenumber
domain. Instead of using multi-reference velocities to propagate the wavefield, SSF
uses only one reference velocity, which can be an average velocity, the minimum
velocity, the root-mean-square velocity or an inverse of the average slowness at each
depth step . The choice of the reference velocity among these alternatives is not
critical for the migration results.

SSF is based on perturbation theory, according to which one can split the laterally
varying velocity field into a constant term and a small perturbation term,

v(z, z) = vo(2) + dv(z, 2), (2.3.17)

First we use vp(z) to propagate wavefields in the (w,k;) domain,

P(z + dz, kpyw) = P(z, kg, w) exp [, /(v:z’z))2 — k2dz). (2.3.18)

Then P(z + dz, k,,w) is transformed back to the space domain, and a thin-lens term
is applied to it to account for the lateral velocity variation,

— )dz]. (2.3.19)

P(z +dz,z,w) = P(z + dz,z,w) exp [ii(v(;u z) v L:Z)
: 0

In the above two equations, the P is the intermediate wavefield.
Lee et al. (1991) further showed that the accuracy of SSF can be improved by making

the propagator symmetric, that is, splitting the thin-lens term into two identical parts,

w w o1 w w
) w@)F = GGG T T wE

44 )dz, (2.3.20)

and applying them in the space domain, before and after carrying out the wavefield
extrapolation in the wavenumber domain.

For strong lateral variation of the velocity field, however, the perturbation theory
fails, and more than one reference velocity has to be used for SSF. Logic for use of
multi-reference velocities (MRVL) was introduced into SSF by Kessinger (1992), ne-
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cessitating an interpolation for the overlapping region between two reference velocities
(Wu & Jin, 1997). With multi-reference velocities, however, the cost of SSF increases
to that of PSPI. In my implementation, I chose not to use MRVL in SSF because there
is no need to repeat the job of PSPI. Also, in a later example of prestack migration,
we shall see that strong lateral velocity variation is not a serious problem for SSF
because we can choose a difference single reference velocity for each shot gather at
no greater computational effort than that for a single velocity across the entire line.
This advantage, however, is not available for poststack migration.

2.4 Fourier finite-difference migration (FFD)

Ristow and Riihl (1994) introduced the Fourier finite-difference method as an exten-
sion of the split-step Fourier method. In addition to the SSF operator, an adaptive
FD operator is introduced into the wave-propagator. Below, without derivation, is
the expression for wave propagator in FFD.

w? O I+ IIT 2.4
- 421
v(z, 2)? tor A ( )
w? 02
=24+ L
v2 * 5
II _ w w

v(z,2) v

w vy S2
Hr= v(z, 2) (1 oz, z)) a+bS2’

Here, as before, S2 = v(z, 2)?/w? - 8?/02?, and v, is a reference velocity. For sta-
bility, v, should be chosen to be the minimum velocity along the layer (z, z + dz).
Following Ristow and Riihl, a and b are adjustable coefficients, with a set to 2 and
b= %[(ve/v)* + v /v +1].

As an extension of the SSF method, the FFD algorithm retains the character of
the SSF method — the combination I + I7 is the exact operator shown in the SSF
algorithm. The II7 factor is a higher-order term that improves the accuracy of the
approximated dispersion relationship in the FFD algorithm. With a form close to
the diffraction term in the FD algorithm, the I1I factor can also be formulated into
a tri-diagonal linear system and solved by the Crank-Nicolson method (Claerbout,
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1985). The main difference between this operator and the traditional diffraction term
is the choice of the b coefficient, which is adapted to the velocity variation in FFD
method.

For end-case situations, FFD has different forms. For examples, for a v(z) medium,
since v(z, z) = v,(z), the II and III terms drop, so the FFD method is the same as
the pure phase-shift method. When the lateral variation in velocity is strong, FFD
has action somewhere between that of SSF and FD. In fact, if we choose v, < v(z, 2),
then

w? 0?2 w
I=,|l—+—~— 2.4.22
v 0z v, ( )
w
I+ 1T~ ——
+ v(z,2)’
2
i~ 5

v(z,2) a+ bS2

That is, FFD simply reverts back to a pure FD method. In general, FFD is a hybrid
of SSF and FD, combining features of each.

2.5 Relationships among the various methods

When Stoffa (1990) introduced the SSF method into the seismic literature, he sep-
arated the velocity field into a constant background term and a small perturbation
term. Using the perturbation term as a secondary source in the wave equation, he
derived the SSF method from the phase-shift method.

Riihl and Ristow (1995) further showed that SSF and FFD form a link between the
phase-shift method and the finite-difference method. Similar to Stoffa’s derivation,
they also use the perturbation term as a secondary source in the wave equation. They
then derived the FD method from the phase-shift method in the presence of strong
lateral velocity variation. The SSF and FFD methods are just intermediate steps of
that derivation; specifically, the SSF method is just zero-order approximation of the
FFD method.

It is not surprising that the above four algorithms have such a close relationship. As
approximate solutions to the one-way acoustic wave equation, all of them originate
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from the same dispersion relationship; only the approximation techniques — either
continued fractions or Taylor expansion or combination of both — differ.

For depth imaging, all four algorithms have similar terms that account for lateral
velocity variation. SSF, FD and FFD, have an explicit thin-lens term that makes
them depth-migration algorithms; in PSPI, the interpolation of wavefields in the
frequency-space domain accomplishes the action of the thin-lens term.

While we have emphasized the similarities among them, we cannot ignore the minor
differences that distinguish them from one another. First, they work in different
domains. While the FD method works only in frequency-space domain, the other
three algorithms work in dual domains (frequency-wavenumber and frequency-space);
the Fourier is used to transform the wavefield between these two domains.

In a typical dual-domain algorithm that shuffies between the space and wavenumber
domains, two operations are performed. One is a global operation, i.e., the phase shift
in wavenumber domain with a constant reference velocity; the other is the local phase
shift that corrects the difference between the local velocity and reference velocity in
the space domain, usually with a small-perturbation assumption. The PSPI and SSF
are examples of this case.

One may not think that PSPI also has the small-perturbation assumption in it, but
notice that PSPI requires that multiple reference velocities represent the velocity
distribution in the model as close as possible. This requires that PSPI needs the
difference between reference velocity and local velocity to be small, which a variant
of the small-perturbation requirement.

If we see the FFD method as the SSF plus a FD operator, then we must acknowledge
that the FD operator plays an important role in eliminating the small-perturbation
requirement. That is the reason why the FD operator in FFD is called an adaptive
operator: when the small-perturbation assumption holds, that FD operator is not
important in the overall migration process, but once the small-perturbation assump-
tion breaks, the FD operator becomes the part that primarily influences the final
migration image. We will see this in comparisons between the migration results of
SSF and FFD in Chapter 3, where the velocity ratio around the salt body can reach
1:2.

Contrary to the dual-domain method, the FD algorithm works only in single domain,
the frequency-space domain. Derived in the wavenumber domain, then transformed
back to space domain, the FD algorithm approximates the dispersion relationship
with its localized FD operator. Being a purely local method, the FD method will not
put any limitation on the strength of lateral velocity variation, making it a excellent



19

candidate for depth migration. On the other hand, as both differential operators and
square-root operator are approximated, errors are introduced from these two sources.
When high-order equations, such as the 90° equation, are used in the FD method,
only the error from approximation to the square-root operator is reduced. Additional
care needs to be taken to reduce the error in the finite-difference approximation to
the differential operator. The second-order differential operator is approximated as

2 2
0 ~ ox?

022 " 14 y(da)? Ly’

(2.5.23)

and the % is the differencing operator.

With this formula, the relative accuracy of difference operator is increased because
high-order terms are included in the differencing operation. The coefficient + is an
adjustable parameter that, in principle, would be obtained by maximizing the accu-
racy of (2.5.23) over some specified range of k,. It should be set to 1/12 based on
the Taylor series expansion. However, according to Claerbout (1985), v = 1/6 gives
a better approximation to the differential operator over a wider range of k, and is a
value in common use. Therefore, 1 is called “1/6 trick” parameter (Claerbout, 1985).

A common issue for all the algorithms is how to suppress inhomogeneous waves. As
discussed for the PSPI method, for dual-domain methods (PSPI, SSF, FFD) we can
use a smooth wavenumber filter to remove the inhomogeneous waves in the wavenum-
ber domain. The design of such a filter is related to the dispersion relationship. For
the FD algorithm, we can also use the same wavenumber filter in the wavenumber
domain but at additional computation cost. To control the computing cost for the FD
methods, we use a filter in the space domain. Claerbout (1985) suggested use of a dip
filter (to be exact, it is still a wavenumber filter) to suppress the wavefield at higher
wavenumbers. Without explanation, he suggested that use of a complex frequency
with a small imaginary component for Ry [equation (2.2.11)] in the continued-fraction
approximation to the dispersion relationship in the implicit FD method could accom-
plish the desired dip filtering. By making frequency complex in Ry, the FD algorithm
has an implicitly built-in dip filter at the computation cost of the original FD algo-
rithm.

To show the action of this filter in suppressing inhomogeneous waves, substitute the
complex frequency into the derivation of the continued-fraction approximation. Then
the diffraction term in the 45° FD algorithm [equation (2.2.16)] becomes,
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v T
b = T (2.5.24)

where a = 0.5, b = 0.25, and |e¢/w| < 1.

Defining the normalized wavenumbers as K; = k; %, K3 = k.2, and €= <, equation
(2.5.24) becomes

aK?

T _pr2z_1 -
1 bKl 141 0.5€0

Ks (2.5.25)

Simplifying the above equation and omitting all the €® terms of second order and
above, leads to the imaginary component of K

—i 0.5abe® K}
(1 - bK?2)?

(2.5.26)

In terms of the normalized wavenumber K3, the downward-continuation operator in
equation 2.0.5 is just exp~*¥2, With a = 0.5, b = 0.25, and inserting (2.5.26) for the
imaginary part of K3, we obtain an amplitude filtering term in the 45° FD algorithm
that reads

—eOk2
exp oKD (2.5.27)

where € is the dip filter parameter.

To illustrate the influence of this dip filter on the input wavefield, Figure 2.2 compares
the amplitude response of this dip filter for different ° values. Also shown in the figure
is the wavenumber filter used in the PSPI method. Waves are inhomogeneous for K; >
1.0. The major difference between the family of FD filters (a, b, and ¢) and the PSPI
filter (d) is that the PSPI filter passes all the homogeneous waves undistorted and
suppresses only the inhomogeneous waves, while the FD filter attenuates both types of
waves. The filter in the PSPI algorithm suppresses most of the inhomogeneous waves
rapidly, but, depending on the choice of €, the dip filter in the FD algorithm less
severely removes the inhomogeneous waves. To suppress more of the inhomogeneous
waves, we have to use a large €® value. Unfortunately, the homogeneous waves are
then attenuated even more severely. The difficulty in applying this dip filter, then, is
that the choice of €® unavoidly involves a trade-off in the actions on homogeneous and
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F1G. 2.2. Amplitude variations of the dip (wavenumber) filter for the 45° FD algo-
rithm and the PSPI algorithm. From (a) to (c), € values are 0.1, 0.3, 0.5 for the
FD algorithm. (d) is the wavenumber filter in PSPI algorithm; it has no control
parameter.
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inhomogeneous waves. In contrast, the PSPI filter applied in all the wavenumber-
domain algorithms does not have such a shortcoming. The FD migration results with
different €® values are compared in Chapter 3.

2.6 Relative computation costs

It is difficult to compare computation costs of these algorithms with precision. The
difficulty arises from the fact that we have no good way to determine the cost for the
different numerical operations on various computer platforms. We know that the +
and - operations are far less costly than the * and / operations. On the other hand, all
the methods compared here work in the frequency domain; thus complex operations
cannot be avoided, and usually the cost of such operations is more than several times
that of the pure float operation. Here, to simplify the analysis, I just count the number
of float operations performed in each algorithm. To convert the counts of complex
and other operations to those of float operations, I made the following assumptions.

—

. float multiply and division are the same, counted as one float operation,
addition and subtraction for both complex and float numbers are ignored.
one complex multiply is equal to four float operations,

one complex division is equal to seven float operations,

A T

complicated function calls, such as sin, cos, exp, and sqrt, are each treated as
five float operations.

Also, since all the methods work in the frequency domain, and each frequency com-
ponent is independent of one another, I will just analyze the computing cost for a
single frequency across just one depth interval.

First assume that n, the number of horizontal samples in the space domain, is a power
of 2; then the number of wavenumbers, ng, is just 7. Now, let us list the count of
float operation numbers for the major operations in the four algorithms.

* FFT between space and wavenumber domains — n log, n,
* Phase shift in the wavenumber domain — 24 n; = 12 n,

* FD operator for the FFD method in the space domain — 57 n,
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* FD operator for the FD method in the space domain — 50 n,

* Thin-lens term in the space domain — 15 n,

* interpolation in the space domain — 6 n,

Combining the costs for above operations, we have the computation costs for the four
algorithms:

PSPI with n,.y reference velocities — 21 n + n logyn + nqes (n logyn + 12 n)

Thin-lens term — 15 n
interpolation — 6 n

FFT — (1 + nyes) n logyn
Phase shift — n,.¢f 12 n

SSF — 27 n+ 2 n logyn

Thin-lens term — 15 n
FFT — 2 n logy,n
Phase shift — 12 n

FD with npp cascaded FD operators — (15 + 50 ngp) n

Thin-lens term — 15 n

FD operator — ngp 50 n,
FFD — 84 n + 2 n logyn

Thin-lens term — 15 n

FFT — 2 n logy,n

Phase shift — 12 n

FD operator of the FFD method in the space domain — 57 n,

Based on these estimates for number counts, the estimated costs of the different
algorithms are shown in Table 2. Clearly, the SSF method is the fastest one. PSPI
costs a factor of n,.; more than SSF, and the cost of FFD is between that of the
65° and 80° FD methods, being closer to the latter. In Chapter 3 and 4, I discuss
measured computing times in detail.
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Method \ n 128 256 012 1024 2048
PSPI (n,ef = 3) 9780 | 20300 | 42000 | 86800 | 179000
PSPI (ne; = 4) 11900 | 24800 | 51300 | 106000 | 219000
SSF 4700 | 9750 | 20200 | 41800 | 86500
65° FD (npp = 1) | 8320 | 16600 | 33300 | 66600 | 133000
80° FD (npp = 2) | 14700 | 29400 | 58900 | 110000 | 236000
FFD 20000 | 24300 | 49400 | 100000 | 203000

Table.2 Computation counts for various algorithms on different input data sizes. All
the numbers are computed using the counts shown in this section and rounded to
keep only 3-digit significant numbers. Here n is the input data size; n,s stands for
the number of reference velocities in the PSPI method; and ngp means the number
of diffraction terms used for different orders of the FD algorithm.
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Chapter 3

EXAMPLES OF ZERO-OFFSET MIGRATION

For actual seismic surveys, it is impossible to put sources and receivers together, so
we never have zero-offset data. For simple geological structures, the stacked CMP
(common midpoint) gathers after NMO (normal moveout) correction are close to
zero-offset data. So, for field data, poststack migration is done on stacked CMP data
instead of zero-offset data.

Having reviewed the theoretical background of the four closely related algorithms
in Chapter 2, I now compare their performance for zero-offset migration of data
from the SEG-EAGE salt model (Huang & Fehler, 1997), which was generated for
the exploding reflector model using one-way propagation with a high-order finite-
difference scheme.

3.1 Description of the SEG-EAGE model

Figure 3.1 shows the velocity model used for the comparisons. It is a 2-D slice through
the SEG-EAGE 3-D salt model. This velocity profile contains 320 by 1024 points
with a minimum velocity of 1524 m/s and a maximum velocity of 4480 m/s, and the
grid spacing is about 12 meters in both horizontal and vertical directions. Figure 3.2
shows the zero-offset data generated by Huang & Fehler (1997) with a finite-difference
scheme based on the exploding-reflector model. These data have 1024 traces, with
midpoint spacing of 12 m; each trace has 1024 samples at a sampling interval of 8
ms.

The data provided by Huang & Fehler (1997) and used for comparisons of the different
algorithms resulted in generally satisfactory imaging results. One shortcoming of
those data, however, is that the frequency content of the data was limited because
a 20-Hz Ricker wavelet was used as the source function. In a later section, I also
generated zero-offset synthetic data for this model with my finite-difference modeling
code in order to do experiments with data that have much higher frequencies.

Figure 3.3 shows the “pseudo-reflectivity” section derived from the velocity model
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Fiac. 3.1. 2-D slice of the SEG/EAGE 3-D salt model. The minimum velocity is
1524 m/s and the maximum velocity is 4480 m/s.

26



27

Midpoint (km)

Fic. 3.2. Exploding reflector data for the salt model.

Midpoint (km)

o
LN
S
o
o
-
o
-
N

F1G. 3.3. Pseudo-reflectivity section computed using equation (3.1.1).
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in Figure 3.1. Migration results with the various algorithms will be compared with
this section, the same reflectivity was also used as input for the exploding-reflector
modeling code. Given the velocity model, computation of this section is simple.
The reflectivity is just the derivative of velocity in horizontal and vertical directions,
written as

R = \/(dv/dz)? + (dv/dz)®. (3.1.1)

Some definitions of pseudo-reflectivity are computed from only vertical derivatives.
Because I include the horizontal derivative in the above formula, the three vertical
reflectors at the bottom of the velocity model also appear in the pseudo-reflectivity
section. These vertical reflectors were not included in the synthetic data provided by
Huang & Fehler (1997).

The overall structure in the SEG-EAGE salt model is relatively simple compared with
that of the Marmousi model (Chapter 4). As seen in the velocity model (Figure 3.1)
and the pseudo-reflectivity model (Figure 3.3), the top portion is characterized by
gently dipping reflectors, separated by a major fault in the middle at midpoint lo-
cations around 6 km. The dip for this fault is about 56 degrees, and the velocity is
essentially just depth dependent, as can be seen in the change of gray shades in the
velocity model. Beneath the salt body, the structure is also relatively simple. The
section under the salt is separated into five blocks by four major faults, with dips
ranging from 48 to 54 degrees. Within each block, reflectors generally have mild dip;
the medium is nearly homogeneous in the region below the salt.

The difficulty arises for the wavefield close to and inside the salt body, where the salt
has much higher velocity than that of the surrounding media, which creates strong
lateral velocity variation. The irregular shape of salt body, combined with the high
velocity contrast, cause further trouble for seismic imaging of the region close to the
salt body. The arrows in Figure 3.3 highlight five regions in the velocity model where
we will concentrate on the relative quality of imaging by the four algorithms. Region
C contains a sharp depression at the top of the salt that introduces rapid lateral
velocity change. The dip for this structure is about 52 degrees. In region A, the
reflectors are close to one other; a test of these migration algorithms would be their
ability to restore neighboring reflectors. Region B contains a steep reflector that is
a sharp boundary between salt and the surrounding media that is an extension of
a steep fault beneath the salt body. The dip of this feature is about 50 degrees.
In discussing the results below, I focus attention on the performance of the various
algorithms in these three areas. Regions D and E pertain to the problem of imaging
steep features beneath the salt, which will be discussed later.
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As the synthetic data are free from noise, we need not to worry about the input data
quality. The only preprocessing I applied to the data is a constant time shift for all
the data traces. A 20-Hz Ricker wavelet with peak amplitude delayed by 50 ms had
been used to generate the data. I therefore applied a 52-ms time advance (50 ms
rounded to the nearest 4 ms) to the data so that the peak time for maximum-energy
arrivals would correspond to computed reflection times.

3.2 Migration with the exact velocity model

Before showing the migration results, we can first try to predict the performance
of various methods. As the model has simple structures and mild velocity varia-
tion above the salt body, all the algorithms should work well for the top portion.
For features near the salt body, the SSF method will most likely fail because the
small-perturbation assumption breaks in the presence of high lateral velocity con-
trast. Although the PSPI method involves a small-perturbation assumption as well,
with use of a fine increment in the reference velocities the PSPI method should be
able to handle these features well. As for the FFD and FD method, accurate treat-
ment in the presence of large velocity variation is their stipulated strength, so they
should work well for this model.

3.2.1 Migration comparisons

All the migrations were done with the exact velocity model shown in Figure 3.1. A
frequency range 2-55 Hz was selected to be consistent with the bandwidth of the
source function — the 20-Hz Ricker wavelet. All the experiments, with parallelized
codes of those migration algorithms, made use of about 15-18 CPUs per run. To show
the relative computing time of various algorithms, I recorded computation times for
processing with just a single four-processor computer. One reason is that most of
the computers used in Center for Wave Phenomena (CWP) are also desktop PCs
for personal usage. From time to time, the load of jobs on different computers can
change rapidly. The second reason is that migrations on the poststack data took very
little time when I used more than 15 CPUs; most of the algorithms took no more
than 60 s. For such a short CPU time, many factors, such as the network traffic
can greatly influence the time for migration. For the timing comparisons, the four-
processor machine was dedicated for the computation; I made the timing experiments
only when nobody else was using it. By doing so, the comparisons of computing time
are more fair.



Method | Time (s) | Method | Time (s)
SSF 127 FD65 120
FFD 205 FD80 199
PSPI 1024
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Table.3 Computation time of various algorithms for the SEG-EAGE salt model.

Table 3 shows the computation time for various algorithms. Among them, the SSF
and 65° FD methods, have close computation time, as do the FFD and 80° FD meth-
ods. In Chapter 2, I discussed the theoretical cost for various algorithms. According
to the computation counts there, the SSF and FFD should be faster than the 65°
FD and 80° FD method by, respectively, 30% and 17%, which is different from the
observed results here. The difference might be due to the varying costs of the fast
Fourier transform (FFT) and the rough approximation when I made the counts. The
PSPI algorithm is the slowest by far. I used an average eight reference velocities per
depth step; hence the method was about eight times slower than the SSF method.
Also in this case, PSPI was also about five times more expensive than the other two
relatively costly methods — FFD and 80° FD.

The migration results obtained with the different algorithms are shown in Figures
3.5 through 3.13. As expected, all the algorithms give good results in the shallow
region where the velocity structure is simple. All the gently dipping reflectors and the
50 degree fault crossing them are properly imaged. Most of the top of the salt body
is also well imaged. Beneath the salt, all the algorithms yield variously degraded
results; only the horizontal and mildly dipping reflectors are imaged. Faults D and E
below the salt body shown in the pseudo-reflectivity model (Figure 3.3) are missing
in all the migrated sections. Because all the algorithms have this same problem for
the subsalt imaging, it is natural to question whether this is a data problem or a
problem of imaging. The most direct guess is that the reflections from these missing
faults likely have not been properly recorded in the zero-offset data. To answer these
questions, I address this problem in a later section.

Differences lie along the boundary of the high-velocity salt body. As mentioned
above, the SSF method will most likely fail when the small-perturbation assumption
is violated. As seen in Figure 3.4, all the three small problematic regions in the
previous section were somehow poorly imaged, suggesting that the wrong velocity
has been used in the migration. In Region A, the low boundary of the salt body does
not terminate well, crossing through the fault beside it. For Region B, the dipping
event around 6 km has been shifted compared with migration results from other
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Midpoint (km)

FiG. 3.4. SSF migration.

algorithms. Both detailed features are better seen in the zoomed pictures shown in
Figures 3.14 and 3.15. For the depression region (Region C), the SSF method totally
failed to yield a focused image of the top of the salt; an apparently over-migrated
bowl-shape feature appears inside the salt body.

The failure of the SSF method is due to the large difference between the reference
velocity and local velocity. In my implementation, the reference velocity for each
depth layer is determined as follows:

(3.2.2)

where v, is the reference velocity, v(z;) is the local velocity at each horizontal sample
point, and n is the number of samples in the horizontal direction. Thus, the reference
velocity is just the inverse of an average slowness. As the downward continuation
process goes through the salt body, the reference velocity has more contribution
from high-salt velocity; thus the reflections around the salt body are migrated with
a velocity that is much higher than the correct value. This is especially true for



Midpoint (km)

Fic. 3.5. PSPI migration with automatically picked reference velocities. The
inhomogeneous wave was attenuated with the wavenumber filter shown in
Figure 2.2d.
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Midpoint (km)

Fi1G. 3.6. PSPI migration with automatically picked and then manually refined refer-
ence velocities The inhomogeneous wave was attenuated with the wavenumber filter
shown in Figure 2.2d.
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Midpoint (km)

F1G. 3.7. PSPI migration with automatically picked and then manually refined refer-
ence velocities. The inhomogeneous wave was eliminated with a boxcar wavenumber
filter.
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Midpoint (km)

Fic. 3.8. 65° FD migration: 1/6 trick parameter v set to 0.08; dip-filter parameter
€® set to 0.1.

the small depression region, which has the lowest velocity locally. The consequent
velocity error can be as larger as 100%, so the SSF method has seriously overmigrated
the depression area, and experiments with other reference velocities did not show
improved images. Because the SSF algorithm inherently has weakness for handling
strong lateral velocity variation, I did not try to push it further by tweaking the
parameters in the algorithm. To obtain an improved image with SSF, the easy solution
is to use multiple reference velocities in the SSF algorithm to remedy the small-
perturbation assumption. As discussed in Chapter 2, however, by doing that the SSF
would be changed toward the PSPI algorithm, with its increased cost.

Contrary to SSF, PSPI obtained a generally good image (Figures 3.5 through 3.7)
of Regions A and B. Both reflectors are imaged at the correct location with good
focusing, showing the details of the structures. The FD (Figure 3.8 through 3.10)
and FFD (Figure 3.13) results had similar performance to that of PSPI for these two
regions.

For the depression region (Region C), these three algorithms imaged the reflectors at
the correct locations, but their results show differences in quality.
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Midpoint (km)

Fi1G. 3.9. 65° FD migration: 1/6 trick parameter v set to 0.16; dip-filter parameter
€® set to 0.1.

Midpoint (km)

F1G. 3.10. 65° FD migration: 1/6 trick parameter -y set to 0.1; no dip filter.
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Midpoint (km)

F1G. 3.11. 65° FD migration: 1/6 trick parameter vy set to 0.1; dip-filter parameter
€® set to 0.3.

Compared with SSF, the PSPI method obtained a far better image for Region C.
We can estimate the correct location for the top of the salt dome, but depression
still shows some over-migration. As we know, if the reference velocities are close
to the local velocities, then a good image results. Looking at Figure 3.5, however,
it is obvious that a velocity higher than the local one has been used in PSPI for
imaging Region C. In the PSPI, the reference velocity is automatically determined by
the method of Bagaini et al. (1995). Only velocities that arise with relatively high
frequency of occurrence along each depth step in the velocity profile are likely to be
chosen as the reference velocities. In the velocity model shown in Figure 3.1, Region
C, which has the lowest local velocity and has much smaller lateral extent than the
salt body beside it, is unlikely to have its low velocity automatically picked by the
statistical method.

Manually, I added the velocity inside Region C to the reference-velocity table and did
the migration with this new reference velocity (Figure 3.6). The new image of Region
C is more accurate than that in the original result (Figure 3.5).

In Chapter 2, I suggested use of a smooth wavenumber filter to suppress the inho-
mogeneous wave in the PSPI method, instead of a boxcar filter that will generate
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F1G. 3.12. 65° FD migration: 1/6 trick parameter v set to 0.1; dip filter parameter
€® set to 0.5.

Midpoint (km)

FiG. 3.13. FFD migration.
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F1G. 3.14. Various migration results for Region A; (a) SSF, (b) PSPI with auto-
matically picked reference velocities, (c) PSPI with automatically picked and then
manually refined reference velocities, (d) 65° FD with 1/6 trick parameter v equal
to 0.08, dip-filter parameter €° equal to 0.1, (e) 65° FD with 1/6 trick parameter
equal to 0.16, dip-filter parameter €® equal to 0.1, (f) FFD.
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F1G. 3.15. Various migration results for Region B; (a) SSF, (b) PSPI with auto-
matically picked reference velocities, (c) PSPI with automatically picked and then
manually refined reference velocities, (d) 65° FD with 1/6 trick parameter v equal
to 0.08, dip-filter parameter €° equal to 0.1, (e) 65° FD with 1/6 trick parameter
equal to 0.16, dip-filter parameter €® equal to 0.1, (f) FFD.
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F1G. 3.16. Various migration results for Region C; (a) SSF, (b) PSPI with auto-
matically picked reference velocities, (¢) PSPI with automatically picked and then
manually refined reference velocities, (d) 65° FD with 1/6 trick parameter y equal
to 0.08, dip-filter parameter €® equal to 0.1, (e) 65° FD with 1/6 trick parameter v
equal to 0.16, dip-filter parameter €° equal to 0.1, (f) FFD.
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numerical noise. Here, the difference in performance for these two choices can be seen
in Figures 3.6 and 3.7. Figure 3.7 shows a poorly imaged top boundary of the salt,
and at the base of the depression we see artifacts that do not appear in Figure 3.6.

Because all the dipping reflectors in the SEG-EAGE salt model have dips no more
than 60°, I mainly used the 65° FD algorithm described in Chapter 2 for FD imaging of
this model. This implicit FD method can handle strong lateral variation in velocity
because the FD operator is a localized operator, so we expect the FD method to
yield a good image in migrating the model data. In Figure 3.8, the FD method has
imaged the reflectors in Region C. Both walls of those reflectors have been imaged at
correct location. Nevertheless, the result of the FD algorithm still could be improved.
For example, note that the relatively strong numerical noise that interferes with the
reflections from the flanks of the depression.

As I did with the PSPI algorithm, I adjusted the parameters for the 65° equation in
an attempt to improve the image. The FD algorithm has two parameters: one is the
1/6 trick parameter y mentioned in Chapter 2, which helps to increase the accuracy
of difference operation; the other is the dip-filter parameter €® described by Claerbout
(1985) and also discussed in Chapter 2, which is used to attenuate inhomogeneous
waves.

The FD result in Figure 3.8 is obtained by setting v to be 0.08. Changing the value
of v to 0.16, the image in Figure 3.9 has degraded compared with that in Figure 3.8,
especially the depression (Region C). Although Claerbout (1985) suggested use of 1/6
for v, for the migration of the SEG-EAGE model, v = 1/12 gave a better result.

For the above two results, the dip-filter parameter ¢° has been set to 0.1. Now let
us remove the dip filter (set it to zero). The migration result (Figure 3.10) shows
greatly improved amplitude for the reflectors in Region C. Meanwhile, we also see
more numerical noise in the background throughout the image. Figures 3.11 and
3.12 show the migration results obtained by setting ¢ to 0.3 and 0.5. Compared
with Figure 3.10, they have less numerical noise because of the increased attenuation
of inhomogeneous waves with use of larger €® values. Notice, however, that the
reflections in Region C have been severely attenuated as well. Consistent with the
theoretical analysis in Chapter 2, when applying the dip (wavenumber) filter in FD
algorithm, we attenuate both inhomogeneous and homogeneous waves. Since the
attenuated homogeneous waves relate to steep features in the SEG-EAGE model, the
attenuation of homogeneous waves with use of larger ¢® values is manifested as the
disappearance of the steep portions of the depression in Region C. Because the use
of the dip filter in the FD algorithm can degrade the migration image, we need to
be careful about the choice of €. The plots of the filter responses shown in Figure
2.2 suggest that e = 0.5 is not a severe filter. Nevertheless, the migration result with



43

e = 0.5 significantly attenuates the depression in Region C. The mismatch might be
due to the breakdown of the approximation ¢ < 1.0 for the choice € = 0.5.

Finally, let us see the result from the FFD method (Figure 3.13). The FFD result is
comparable to the improved result of PSPI and FD. The FFD method also has an FD
operator with a similar 1/6 trick parameter . Benefitting from the experiments with
the FD algorithm, I set v to 0.1. Different from the FD algorithm, the dip filtering in
the FFD method works in wavenumber domain; it uses the same wavenumber filter
as in PSPI and SSF to suppress inhomogeneous waves. Thus, the image of FFD has
less numerical noise than that of the FD result without dip filter, but its image of the
depression reflector in Region C is as sharp as that of that FD result.

3.2.2 Zoomed display of the three problematic regions

In previous section, I compared the performance of the four algorithms primarily
on the three regions that most show their differences. Here, let us zoom into those
regions to take a close look. Regions A and B are shown in Figure 3.14 and 3.15.
Only the SSF method shows difference in imaging from that of the other algorithms.
As discussed above, this is due to the breakdown of small-perturbation assumption
in the SSF method. Other methods work well for regions A and B because they can
handle severe velocity variation.

Images of the depression in Region C by various algorithms are shown in Figure 3.16.
The SSF method did a particularly poor job in imaging this feature; the velocity
contrast for this reflector is beyond capability of the SSF method. All other three
algorithms do better in imaging the depression, but still with significant differences
in image quality, which can be altered by adjusting the special parameters in each
algorithm.

3.2.3 Missing steep features beneath salt

Most of the algorithms did adequately in imaging the salt body and the shallow
portion above the salt. None of them, however, obtained a good image of steep
features beneath the salt. To see whether or not the problem is due to shortcomings
in the algorithms, I used the 90° FD method to migrate the model data (Figure 3.17).
This result shows no improvement over that of other approaches and that of the low-
order FD algorithms. The horizontal and mildly dipping features below the salt body
have been properly imaged. The steep events, especially in Regions D and E in the
middle of the velocity section (Figure 3.1), however, are totally missing.
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F1G. 3.17. Second-order 90° FD migration.
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FiG. 3.18. Simplified salt model with steep reflector beneath the salt
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To explain the problem of missing steep events under salt body, let us see how zero-
offset rays (normal incident on the reflectors) behave for this situation. Figure 3.18
illustrates a simplified salt model, wherein the medium surrounding the salt has a
velocity v;=2500 m/s, and the salt body is represented by a rectangular block with
velocity v,=5000 m/s. Thus the velocity ratio between salt and media around it is
2.0, similar to the ratio in the SEG-EAGE model. The steep reflectors below the salt
have dips of about 50° in the SEG-EAGE model. In exploding-reflector modeling,
zero-offset rays are normal to the reflectors. When a ray reaches the salt boundary,
the incidence angle is the same as the dip of that reflector; thus, in Figure 3.18,
60, is 50°. According to Snell’s law, the incidence and transmission angles have the
relationship,

. . ()
sin @, = sin 6, —.
(%1

Here sin 8,=2sin 50°=1.53. As sinf, > 1.0, the transmitted waves become inhomo-
geneous, and thus cannot be observed in the unmigrated data. Inspection of the un-
migrated data (Figure 3.2) confirms the absence of reflections from the steep subsalt
features. This is not the result of any aperture-size limitation, so simply increasing
aperture size for modeling and migration will not solve the imaging problem. Be-
cause no reflections from the steep subsalt events exist in the unmigrated data, those
features cannot be imaged. Therefore, the final migrated image has no contributions
from those steep subsalt features.
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Chapter 4

EXAMPLES OF PRESTACK MIGRATION

In this chapter, the four algorithms are applied to prestack data, on the Marmousi
model (Versteeg & Grau, 1990). Before showing results, let us consider differences
between prestack and poststack migration.

For poststack migration, the stacked data are treated as zero-offset data, and then
one-way propagation is applied to these data using the exploding reflector model
(Claerbout, 1985). Finally, the imaging condition involves just taking the wavefield at
zero time for each depth step through the downward continuation, which corresponds
to summing up all the frequency components in the frequency domain.

If the geologic structure is complicated, the stacked data cannot properly represent
zero-offset data, and poststack migration cannot cure shortcomings in the data. We
need to perform prestack migration. Similar to poststack migration, in prestack
migration, the wavefield propagation is still performed by a one-way propagator.
Now, however, the source and receiver wavefields are propagated separately, i.e.,
forward propagation of the source wavefield and backward propagation of the receiver
wavefield.

The imaging condition in prestack migration is significantly different from that of
poststack migration. Suppose both source and receiver wavefields have been prop-
erly propagated to a certain depth step; let the source wavefield be denoted by S
(incident wave), the receiver wavefield by R (reflected wave), and the reflectivity at
that depth by W (Earth impulse response). These three functions are linked by the
convolution operation in the time-space domain; expressed in the frequency domain,
the relationship is

R=SW. (4.0.1)

The goal of prestack imaging is to obtain the reflectivity W; thus, the imaging con-
dition is just division in the frequency domain
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R
W=— 4.0.2
o (4.02)
which, in practice, is modified to
RS*
W= 00— 4.0.
SS*+¢ (4.0.3)

where S5* is the complex conjugate of source wavefield, and ¢ has a small constant
value to keep the numerical stability, avoiding the possibility of division by zero.

If we assume that the source wavefield is a propagating Dirac delta function, SS* is
just unity in the frequency domain, so the denominator becomes just a scaling factor.
The imaging condition can thus be further simplified to

W = RS™. (4.0.4)

Aside from the difference in imaging condition, prestack migration differs from post-
stack migration in the input data format as well. Unlike the poststack migration,
which works on only a single trace at each midpoint, prestack data sets are much
larger and can be sorted as either common-shot gathers, common-receiver gathers, or
common-offset gathers. Sorting of the data is based on the geometry of source and
receiver positions for the given input traces.

The shot record, or common-shot gather, is a collection of traces that have the same
source position, and is thus just the physical wavefield recorded along the Earth’s
surface when a source is excited. The common-receiver gather is, in a sense, a recip-
rocal of the common-shot gather, wherein source and receiver positions are switched.
That is, it is a collection of traces that were recorded at the same receiver position.
Prestack migrations using these two different data arrangements yield the same re-
sults for the PP data (P-wave source and reflected P-wave data), but they differ for
mode-conversion data such as the PS data (P-wave source and reflected SV-wave
data). In this case, the common-shot gather might be PS data, while the common-
receiver gather is SP data (effectively, SV-wave source and reflected P-wave data).
In common-offset data, traces are organized by constant offset between source and
receiver.

The migration algorithms based on wavefield extrapolation, such as the four al-
gorithms compared in this thesis, can work with either common-shot gathers or
common-receiver gathers. For them to work on common-offset data, they can be
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applied repeatedly, each time with a single-trace migration (each trace is treated as
a shot gather). Single-trace migration is just what Kirchhoff-type migration does. In
that approach, a traveltime table is first built by ray tracing, providing an incomplete
Green function that accounts for only primary arrivals, as opposed to the whole wave-
field. Then all the traces in the input data are processed one by one — a single trace is
read in, and its amplitudes are distributed to all the possible output points according
to information in the traveltime table. So Kirchhoff migration operates independent
of the input data arrangement. For wavefield extrapolation techniques, however, it
is computationally expensive to mimic what Kirchhoff migration does; building the
complete Green function and storing it is impractical for routine processing of 3-D
prestack data (2-D prestack migration is also expensive, but with advances in com-
puter hardware technology, it does not pose a computational challenge, even with a
low-cost PC cluster).

4.1 Marmousi model

The Marmousi model (Versteeg & Grau, 1990) originated from a 1990 workshop for
testing different migration velocity analysis (MVA) techniques. A complicated geo-
logical model was designed by Institute Francais Du Petrole (IFP), and synthetic data
were computed using a finite-difference solution to the 2-D acoustic wave equation.
A band-limited filter was applied to suppress some of the numerical noise from the
synthetic data. Since then, the Marmousi model have been used extensively as an in-
dustry benchmark for migration velocity analysis and prestack migration algorithms.

Within the Center for Wave Phenomena (CWP), at Colorado School of Mines, this
model has also been studied by several students over the years. Liu (1995) applied
his analytic migration velocity analysis technique to the Marmousi model data us-
ing an implementation of Kirchhoff migration. Salinas (1996) used and extended
Liu (1995)’s Kirchhoff migration code to study the influence of near-surface time
anomalies on imaging the complex structure, testing the Kirchhoff datuming method
on the Marmousi model data. Tjan (1995) worked on the residual static-correction
technique for the complex structure based on implicit finite-difference migration and
demigration; he demonstrate the effectiveness of this technique on the Marmousi data
contaminated by arbitrary static shifts. Later, Jenner et al. (1997) imaged this model
with a more accurate implicit FD migration algorithm; he also attempted to repeat
the work of Tjan (1995) with that implicit FD migration/demigration algorithm. Le
Rousseau (1998) tested his implementation of the generalized phase-screen migration
algorithm on the Marmousi model as well.

The velocity model of the Marmousi data, shown in Figure 4.1, contains 369 (lateral)
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F1aG. 4.1. Velocity model for the Marmousi data. The minimum velocity is 1500 m/s
and the maximum velocity is 5500 m/s.



50

Midpoint (km)
2 3 4 5 6 7 8 9

et e o st 8, st st et ot

oo

Time (sec)

F1G. 4.2. Shortest-offset (200 m) Marmousi data.
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Fiac. 4.3. Pseudo-reflectivity model for the Marmousi data.
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by 750 (vertical) grid points with lateral spacing of 25 m and vertical step size of 4
m. An initial test showed that resampling the vertical interval to 8 m generates
reasonable imaging results for all the migration algorithms, so the velocity model has
been resampled to 369x375 points for all the migration results shown here.

The 2-D synthetic data (a shortest-offset section is shown in Figure 4.2) were com-
puted by a finite-difference scheme that solves the acoustic two-way wave equation.
A total of 240 shot gathers were generated, with a shot spacing of 25 m. The source
position starts at midpoint position 2 km and ends at 8 km. Within each shot gather
are 96 traces with a 25 m group interval; the near-offset is 200 m and the far offset is
2750 m; with 750 samples at 4-ms interval, each trace contains 3 s of data.

Similar to the SEG-EAGE model, a pseudo-reflectivity model is computed via equa-
tion (3.1.1) and shown in Figure 4.3. Most of the imaging difficulties highlighted later
are at locations indicated by black arrows in this model.

Compared with the SEG-EAGE model, the difficulties in imaging the Marmousi
model are more related to the complexity of the geological structures than to strong
velocity variation. We do have two particularly high-velocity layers on the left and
right sides at the depth of 2.5 km, with the highest velocity in the model — 5500
m/s. These two blocks have a simple wedge shape, with a dip less than 5°, so they
are not difficult to image. The strong velocity contrast in these two areas make them
standout with strong amplitude in the final image.

The main region of difficulty in imaging the Marmousi data is the target zone (Region
A), a low-velocity wedge located at (z=6.5 km, 2=2.5 km). As waves from the sur-
face propagate through the complicated structures above the target zone, errors that
arise from inaccurate imaging algorithms (such as conventional Kirchhoff algorithms)
will accumulate; once reaching the target zone, these accumulated errors distort the
wavefield, thus degrading the target zone image unacceptably. In the migration re-
sults shown below, however, all the four algorithms compared here readily image the
target zone, so for the wavefield-extrapolation techniques used here, the target zone
is no longer a difficulty.

Above the target zone is an anticline structure (Region B). This structure contains
several thin layers within it, and the velocity contrast between each layer is weak.
Though the structure of this anticline is simple, the image for this structure can again
be distorted by accumulated errors due to complexity of the overburden.

In the middle of the model, are three major faults spanning midpoints from 4 km to
7.5 km, going as deep as 1.8 km. From left to right, the dips for these faults are about
37, 50, and 70 degrees. The shallow part (Region F) of these three faults has strong



52

Midpoint (km)

Depth (km)

F1G. 4.4. Zero-offset FFD migration on the shortest-offset (200 m) data with the
exact velocity model shown in Figure 4.1.

velocity contrast; thus the amplitude in the pseudo-reflectivity model (Figure 4.3)
is strong. The deep part of these faults has mild velocity contrast, so we do not
expect to see the image of these faults directly in the migration results shown later.
Instead, the positions of the faults can be estimated by comparing the images of
gently dipping reflectors on either side of the faults. Within the faulted zone, several
subtle structures (Regions C, D, and E) need our special attention because images of
those small structures can be distorted by errors in migration.

Away from the faulted area, on the left and right sides of the shallow section, the
model has relatively simple structure. The velocity variation is weak both laterally
and vertically, and most of the reflectors have dips less than 10 degrees. For imaging
these two regions, we can expect even a time-migration algorithm, such as the phase
shift method (see Chapter 2), to work well.
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4.2 Zero-offset migration on shortest offset data

Let us first see how zero-offset migration works on this complicated model. As men-
tioned in the description of the Marmousi model, zero-offset data are not generated
for this model, so the nearest offset (200 m) data (shown in Figure 4.2) were used in
the experiments, treating it as zero-offset data. Because all the algorithms gave the
similar imaging results, only the results of the FFD algorithm are shown. Figure 4.4
is the FFD migration result using the exact velocity model (shown in Figure 4.1).
Although this zero-offset migration on the shortest-offset data presents all the major
features, the imaging result is noisy and inaccurate. Most of the reflectors are not
imaged at their exact position. Even though the migration is done on synthetic data,
the imaging result is not free from noise. This noise is mainly the numerical noise in
the synthetic data inherited from the modeling process; such noise cannot be totally
removed by the bandpass filter applied to the model data.

The poor image of zero-offset migration shows the misfit between the migration algo-
rithm and the shortest-offset data. The poststack migration is based on the exploding-
reflector model, which requires the input data to be zero-offset data. Although the
shortest-offset data have been used in this migration, the 200-m offset made enough
difference between the required zero-offset data and the nonzero-offset data used in
migration to result in a distorted image. We thus have to use prestack depth migration
algorithms to obtain a proper image of the complex Marmousi model.

4.3 Prestack migration with the exact velocity model

In the prestack migration of Marmousi data, a 25-Hz Ricker wavelet was used as the
source function for the downward continuation of the source wavefield. To compensate
the 40-ms time shift of the peak in the wavelet of the supplied Marmousi synthetic
data from zero time, I have shifted the source function the same amount time.

The computations made use of the parallel version of the prestack migration codes
implemented in the PVM environment (Han, 1998b). Using 19 Pentium PCs, the total
processing time for the Marmousi data was about 25 minutes for the SSF method
(the fastest of the methods).

The relative computation times for various algorithms are close to those predicted
from the computation counts discussed in Chapter 2, and the relative efficiency of
those algorithms is similar to that for the results in Chapter 3. Because an average
of 4.3 reference velocities at each depth step was used for the PSPI migration, the
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Fi1G. 4.5. SSF migration.
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Fi1G. 4.6. PSPI migration with automatically picked reference velocities. An average
of 4.3 reference velocities per depth step was used in the migration.
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FiG. 4.7. PSPI migration with automatically picked and then manually refined
reference velocities.
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FiG. 4.8. 45° FD migration.
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F1G. 4.9. 65° FD migration.
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FiG. 4.10. 80° FD migration.
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F1G. 4.11. 90° FD migration.
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FiG. 4.12. FFD migration.
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PSPI method is about four times more costly than SSF. The cost for FFD is slight
less than twice that of the SSF, and the cost of FD65 is between that of SSF and
FFD. The cost of FD80 is about 20% higher than that of FFD.

As seen in the migrated depth sections shown in Figure 4.5 through 4.12; all four
algorithms provided good imaging of the Marmousi model. Specifically, all of them
did well in imaging the anticline in the deeper section. The prestack migration results
are greatly superior to that of zero-offset migration on the shortest-offset Marmousi
model data.

The excellent result (Figure 4.5) for the SSF method may seem a little surprising
because, in Chapter 3, the zero-offset result with the SSF method was not as good
as those for the other three algorithms. Here, for a highly complicated model, the
SSF method generated a result that is comparable in quality to that of the other
algorithms. The explanation is as follows. In prestack shot-gather migration, each
of the shot gathers has limited illumination area. Even though the overall geological
structure might be complicated, the local region illuminated by such a shot gather
has relatively limited velocity contrast. Therefore, a different velocity can be used
for each shot gather. Consequently, the SSF' method does not face problem of the
extreme lateral velocity variation that it does in zero-offset migration. For the same
reason, we can infer that SSF will not work well if we use it to do prestack common-
offset migration because the velocity variation across the entire common-offset section
is large. Thus, SSF will not be a good choice for common-offset migration of the
Marmousi data.

The PSPI result shown in Figure 4.6 was obtained using the automatic picking of
reference velocities based on the statistical methods proposed by (Bagaini et al., 1995).
The geological structure is well restored with this PSPI result; however, amplitudes
are somewhat weak for the shallow portion. I manually refined the reference velocities
to make sure velocities in some small but important areas has been included in the
reference velocities. The amplitude (especially Region E) has been improved in the
revised PSPI result (Figure 4.7). Thus, the amplitude behavior of PSPI seems related
to the choice of reference velocities, but the interpolation of the wavefield in PSPI
is another possible source of problems. A full investigation of amplitude treatment
by wavefield-extrapolation algorithms (not done here) is needed to understand the
problem.

The different-order FD algorithms yield similar results in Figures 4.8 through 4.11.
Among them, the computational effort for 80° FD algorithm is twice of that for 65°
algorithm, and that for the 90° algorithm is about four time that of the 65° algorithm.
Although the faulted area has steep faults larger than 65°, the reflections from those
faults are weak and do not contribute significantly to the final image. Thus, for the
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Marmousi model, the higher-order FD algorithm cannot show its advantage over the
45° and 65° algorithms.

The FFD algorithm yields a result similar to that of the FD algorithms. The ad-
vantage of FFD is that it can handle strong velocity contrast, while attenuating
inhomogeneous waves (using the same smoothing filter as in PSPI) better than do
the FD algorithms. Here, in the Marmousi example, however, FFD did not show
much advantage because the low-cost SSF and 65° FD methods obtained similar re-
sults with only half the cost of the FFD algorithm. Therefore, FFD has no advantage
here.

The marked regions in the pseudo-reflectivity section (Figure 4.3), such as regions
C, D and F, show some differences (such as in the continuity of the reflectors and in
amplitude) among the various migration results. Those differences can be reduced
by tweaking the special parameters for each of the migration algorithms. However,
in practice with field data, without knowledge of the exact model in mind, it would
be difficult to know which result is closer to representing the truth.

The similarity in migration results for all the algorithms suggest two things. First, all
the algorithms can handle a model as complex as the Marmousi model. The Marmousi
model is a good example to show the inability of Kirchhoff migration to cope with
complex situations such as multi-pathing problems (Zhu & Lines, 1998; Bevc, 1997).
In contrast, for wavefield-extrapolation methods when the exact velocity model is
known, migration of moderately steep features in complex structures (without huge
velocity contrast) is not a challenge. As shown in Chapter 3, however, migration with
sharp velocity contrast poses a big challenge for these algorithms.

Second, the Marmousi model is not a good example to show the difference in these
algorithms. Although this model is complicated, it lacks sharp velocity contrast in
areas covered by different shot records; thus we cannot see differences in migration
results such as in those for the SEG-EAGE model. In the upper portion of the
Marmousi model are steep faults. However, reflections from those faults are so weak
that they hardly contribute to the final images. We mainly identify those faults
through the less steep layers cut through by those faults. Therefore, the Marmousi
model is not suitable to demonstrate the ability of algorithms to handle steep features.
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Chapter 5

CONCLUSIONS AND FUTURE WORK

Of the four one-way depth-migration methods tested on the two model data here,
SSF was the fastest. Although in the example of the zero-offset migration on SEG-
EAGE model with extreme lateral variation, the SSF method was distinctly less
accurate than other methods, its performance on the Marmousi model is comparable
to that of other three methods. This good performance for prestack migration is
understandable because, in shot-gather migration, different reference velocities can
be chosen for each gather at no additional cost since each shot gather has limited
illumination area; thus prestack SSF has less velocity error in the presence of large
lateral velocity variation than it would for zero-offset (or constant-offset) SSF. Thus,
although a good candidate for shot-record migration, the SSF method will not be a
good candidate for prestack common-offset migration.

The other three methods gave comparable results for the migration of the model
data. That is because they are derived from the same dispersion relationship and are
able to handle strong lateral variation in velocity. Their differences in the migration
results are mainly a quality-control issue that can be solved by adjusting the specific
parameters in each algorithm. Given the comparable accuracy in migration results,
choosing a proper migration method out of those three will largely depend on the
specific requirements of the target project.

The PSPI method is the most expensive of the methods because accurate results re-
quire that the increment in the reference velocities are small enough to accommodate
the full range of lateral velocity variation encountered for any given velocity model.
This method often requires three to four reference velocities per depth step as com-
pared to only one reference velocity in the SSF method. On the other hand, the PSPI
algorithm can handle steep dips, up to 90°. Thus, for imaging targets that contain
steep features in complex structure, the PSPI method will be a good choice.

The FD algorithm uses a local approximation to the dispersion relationship in the
space domain. Such a feature enables it to handle strong velocity contrasts. The FD
algorithm is dip-limited, however, due to the truncation error in approximating the
dispersion relationship. The dip-limitation can be removed by using more cascaded



61

diffraction terms at several times of additional computation costs. In general, the
FD algorithm is preferable when the imaging target has strong velocity variation, but
moderate dips.

The FFD algorithm was designed as an extension for the SSF method, wherein a FD
operator is added to the SSF method to enhance the ability to handle strong lateral
velocity variation. Thus FFD overcomes shortcomings in the SSF method due to
the small-perturbation assumption. Adding the FD operator, however, makes FFD
twice as expensive as the SSF method. In general, the cost and accuracy of the FFD
method are comparable to those of the 80° FD algorithm.

Except for the FD approach, all approaches are dual-domain algorithms that shuttle
between the frequency-wavenumber and frequency-space domain. One benefit of this
shuttling between domains is that it is convenient to design filters in the wavenum-
ber domain to attenuate post-critical inhomogeneous waves. As pointed out by Li
(1991) and Graves & Clayton (1989), these dual-domain methods consequently have
more flexibility than the FD algorithm in eliminating numerical noise caused by the
inhomogeneous wavefield, thus yielding images with less numerical noise. In the FD
algorithm, an implicit dip filter (actually a wavenumber filter) is used to suppress the
inhomogeneous waves. The advantage of this filter is that it can be implemented at
no additional computation cost. However, trying to attenuate inhomogeneous waves
will inevitably attenuate some homogeneous waves as well. One suggestion will be to
implement a wavenumber domain filter for the FD algorithm as well, but with 100%
and 50% increase in computation cost for the 65° and 80° FD algorithms, respectively.
For such a case, the FFD method is preferable because its cost is close to that of the
80° FD algorithm and already has the wavenumber-domain filter built into it.

Besides comparing these four algorithms, I addressed the problem of missing steep
subsalt events encountered for all the algorithms. Using Snell’s law, we find that
the wavefield related to steep subsalt features is inhomogeneous within the salt and
thus would not be recorded. Consequently, no reflections from the steep reflectors are
available for imaging them, no matter how large the aperture we used in modeling
and migration.

In this thesis, I focus the comparison of these algorithms on their performances in
2D migration. We can expect the relative accuracy seen here to hold for 3D data as
well. The extension from 2D to 3D is straightforward for PSPI and SSF, involving
only an additional Fourier transform in the crossline direction. It is more difficult
to take FD and FFD to the 3D domain because of the numerical anisotropy caused
by splitting the FD operator in the inline and crossline directions. To compensate
for such numerical noise, multi-direction splitting (Ristow & Riihl, 1995) may be
required, but at increased computation cost for FD and FFD. It seems, therefore,
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that 3D imaging will give more preference to the PSPI and SSF methods.

Because the Earth’s subsurface is generally anisotropic, data processing techniques
that take anisotropy into account are required when the magnitude of anisotropy is
so large that it cannot be ignored. Also, with ocean bottom seismic (OBS) data, in
some cases converted-wave sections may be superior to conventional P-wave data.
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