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ABSTRACT

Implementation and application of amplitude-preserving prestack Kirchhoff depth
migration/inversion is of great interest for the detection of hydrocarbons (petroleum
and natural gas) in the oil industry. 3-D prestack depth migration is considered
as the ultimate imaging technique for complex geological structures. The analysis
of amplitudes on recorded seismic data has contributed a great deal to exploration
success and will become increasingly important in the near future. This thesis aims
to be a contribution in that direction.

Ray-theoretic modeling requires accurate amplitude as well as phase both for forward
modeling and Kirchhoff inversion, among other applications. There are no analytical
solutions to the ray equations in realistic earth models; thus, we must use numerical
solutions to solve problems of interest. For 3-D applications, it is a challenge to
develop numerical modeling codes that require reasonable CPU time while achieving
sufficient amplitude accuracy to be useful in applications. This thesis describes a ray-
theoretical modeling method that produces all the quantities needed in the Kirchhoff
inversion.

The concern of efficiency in 3-D application motivates to examine the use of analyt-
ical ray tracing techniques on tetrahedral grids. Here, a discussion of validity and
accuracy of dynamic ray tracing on a tetrahedral model versus a Cartesian gridded
model is included. For the case of linear sloth (slowness squared or inverse wavespeed
squared), analytical solutions of the ray equations do exist, leading to an efficient com-
bined numerical-analytical technique in tetrahedral models. However, the wavespeed
model generated by this technique is not sufficiently smooth to produce numerically
accurate amplitudes. Recent attempts to further smooth the physical model defeat
the advantage of speed of the algorithm because the smoothness conditions across the
faces of the tetrahedra generate a coupled system of equations of a size proportional
to the number of tetrahedra in the global physical model. This is not practical in 3-D.
Thus, a standard smoothed physical model on a Cartesian grid is likely to lead to a
computer code of competitive CPU speed, when amplitude accuracy—dynamics—is
of as much concern as traveltime accuracy—kinematics.

The application of smoothed velocity models presents a new challenge to the dynamic
ray tracing, namely, how to incorporate the transmission coefficients of the “true
interface” of the background model into the Greens functions. Here, a new technique
was devised. In that technique, a transmission coefficient is introduced at each of the
course grid steps of the Runge-Kutta method. Thus, in regions of rapid change in the
smoothed model-representing the interfaces of the original model-the transmission
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coefficient of the discontinuous model is built up cumulatively, through the transition
region. In regions of more slowly varying velocity, the cumulative effect is nearly
equal to a factor of unity. Numerical tests against analytical models indicate that this
method provides adequately accurate transmission effects in the forward propagation
direction needed for the ultimate Kirchhoff inversion program.

Another feature adopted in the forward modeling is the wavefront construction tech-
nique. In that method, the size of triangular plates connecting three nearby rays
on the isochron (surface of constant traveltime) is used as an indicator of adequate
density of rays. When at least one of the criteria for density of rays are violated,
data at new points on the wavefront are interpolated into the family of rays and
the wavefront construction continues. In this manner, the method does not require
excessive density of rays at small traveltimes in order to maintain adequate density
of rays at larger traveltimes. The resulting Green’s functions are always defined on
a fine enough wavefront grid to allow for acceptably accurate interpolation onto the
Cartesian grid needed for the Kirchhoff inversion. The technique also permits multi-
pathing (caustics) and computes amplitude propagation along each of the branches
of the wavefront.

Sample implementations of the dynamic ray tracing algorithm are shown. Three
examples are included, with each indicative of a situation that is common in ap-
plications. The accuracy of the smoothing procedure is tested by application on a
horizontal-interface model with strong velocity contrast, where it is shown that the
amplitude and traveltime adequately match an analytical solution of the discontinuous-
model problem in the forward propagating direction. Also addressed is the problem
of multi-pathing and caustics and we show that the method produces amplitude and
phase on all arrivals at depth. The final example is taken from a section of the
SEG/EAGE salt dome model. Here, the method properly characterizes the sparse
penetration of rays into the salt dome, itself, as well as the transmission below.

Three-dimensional (3-D) prestack depth migration is an accurate model-consistent
approach for imaging media with complex structures. The ability to localize process-
ing to target zones gives Kirchhoff migration some CPU advantage over alternative
3-D prestack migration algorithms. Furthermore, other prestack depth migrations
do not have demonstrated extensions to inversion. Thus, Kirchhoff prestack depth
migration in 3-D is a relatively popular choice for heterogeneous media applications.

True amplitude Kirchhoff inversion is aimed at performing two tasks: to estimate an-
gular dependent reflection coeflicients, and to calculate the corresponding reflection
angles from seismic data. The approach of Bleistein-Cohen is a high-frequency inverse
method that combines the acoustic Kirchhoff theory with the WKBJ approximation
and the multi-dimensional stationary phase method. Here, the weight functions in
Kirchhoff inversion are recast as ray-theoretic expressions that are well-suited for an
efficient computer implementation that uses the dynamic ray tracing. It was found
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that the proposed method in the open literature for computing the Beylkin determi-
nant for common offset data is based on an erroneous assumption about the relative
orientation of two polarization directions at the source and receiver points. Polariza-
tion arises out of a method that reduces the 3D computations into 2D computations
on locally plates orthogonal to the rays from the source and receiver to the output
point. Thus, the author re-derived the reduction process necessary for the computa-
tion of the Beylkin determinant.

The true amplitude Kirchhoff inversion is applied to 3-D modeled data. The ap-
plications show that angle-dependent reflection coefficients are accurately estimated.
The corresponding reflection angles are accurately estimated from seismic data by a
technique that uses two simultaneous diffraction stacks.
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GLOSSARY OF MATHEMATICAL SYMBOLS

subsurface position

medium velocity

traveltime
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monotonic parameter along ray, with dr = do /v?
ray-centered coordinates

unit vectors in ray-centered coordinate system

ray parameter coordinates

slowness vector

Jacobian of transformation from (1,72, 3) to (z1, z2, z3)
ray

interface

points along the ray

ray-theoretic transmission coeflicient

complete transmission coefficient

transform from (y1,72) to (g1, ¢2)

transform from (1, y2) to (p1, p2)

matrix representation of (ej, ez, e3) in Cartesian coordinates
second derivatives of the traveltime field with respect to (g1, ¢2)
KMAH index from S to R

quadratic sloth (slowness square) function

basis functions of ray trajectory in Laplace domain (see Section 2.3)
dfi(o)/do, basis functions of slowness vector in Laplace domain
(see Section 2.3)

source position

receiver position

offset

source spectrum, Fourier transform of f(t)

background wave sound speed above the reflector
perturbation of slowness squared field

parameters labeling source/receiver points

total traveltime from source to scattering point to receiver
product of WKBJ amplitude

ray-theoretic reflection coefficient

spatial weighting factor

phase of complex amplitude

WKBJ Green’s function
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Multi-valued Green’s Function

Chapter 1

INTRODUCTION

The goal of seismic migration/inversion is to estimate the subsurface structure and
medium parameters from observations at the upper surface. Such inversion processes
are closely related to forward modeling. Forward modeling including scattering
of waves uses the wave equation to synthesize the earth’s response for a given
set of model parameters. On the other hand, in the inverse scattering prob-
lem, the scattered wavefield is observed at the boundary surface of the earth, and
the unknowns to be determined are the material parameters and their discontinuity
surfaces—reflectors. In the field of seismic exploration, such an inverse scattering
problem is called migration or imaging — an inversion operation involving rear-
rangement of seismic information elements so that reflections and diffractions are
plotted at their true locations. In this thesis, I address both the forward and inverse
scattering problems.

1.1 Estimation of Green’s function by dynamic ray tracing

Accurate and efficient forward modeling is a key part in 3-D prestack migration and
inversion. The forward modeling can be done in several ways, with the wave equation
being the common starting point for all the methods. In finite-difference, finite-
element or spectral methods (Kelly et al., 1975; Mitchell & Griffiths, 1980; Farra,
1990), the wave equation is solved directly. This class of methods is computationally
slow, but generally takes all wave modes into account. At the other extreme, “first
arrival” methods such as the finite-difference solution of the eikonal equation (Vidale,
1988; Podvin & Lecomte, 1991; Sethian & Popovici, 1999) or shortest-path methods
using graph theory (Saito, 1989; Klimes & Kvasnicka, 1994) have been introduced.
However, these methods suffer from the disadvantage that they are restricted to the
computation of first arrivals only and they produce unreliable amplitudes.

In ray tracing methods (Cerveny, 1987; Hubral, 1980; Cerveny, 1995; Virieux &
Farra, 1991), new differential equations are derived from the wave equation under the
high-frequency approximation. These methods are event oriented, which means that
the wave mode to be computed (e.g., a primary reflection from a specific horizon) is an
input parameter to the method. If just one (or a few) wave modes are wanted, the ray-
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tracing methods are generally superior to the more comprehensive finite-difference,
finite-element or spectral methods in terms of CPU efficiency. They are also superior
to the first-arrival methods in terms of providing multiple arrivals, amplitude and
phase. Ray-tracing methods provide a reasonable compromise between accuracy and
computational efficiency among various seismic modeling methods. Thus, I apply the
ray tracing in the estimation of all the wavefield model data needed for 3-D Kirchhoff
inversion.

Estimation of the ray data can be carried out either by numerical solution of ray-
tracing equations in general smooth grid-based models or by piecewise analytic
solutions for certain simple velocity functions in tetrahedral models. In the method
of analytic ray tracing, or cell ray tracing, the whole medium is divided into suitable
cells (usually, tetrahedra in 3-D), in which the velocity can be approximated by sim-
ple functions that permit analytic ray solutions. The ray in the whole model is then
obtained as a chain of analytically computed segments. On the other hand, in the
method of numerical ray tracing, general smooth gridded models (possibly separated
by smooth interfaces) are assumed. The estimation of the ray path, traveltime, am-
plitude and other ray data is based on numerically solving a system of first-order
partial differential equations. For the 3-D Kirchhoff inversion, generating the Green’s
functions for all source/receiver points and all subsurface output points is computer-
intensive, even when the computations are only carried out on a subset of those
points with data generated at every grid point through interpolation. This leads
to examming the possibility of applying analytic solutions in tetrahedral models for
amplitude estimation. That method provides fast ray tracing, especially for linear
velocity models in each tetrahedron. Here, the discussion of the two categories of
ray tracing comes to the conclusion that the analytic approach in tetrahedral cells
does not likely offer efficient algorithms in dynamic 3-D applications (Wang & Bleis-
tein, 1998), where accurate amplitudes as well as traveltimes are required. Despite
rejecting this method, I studied it in enough detail to re-derive a form of solution
that is significantly simpler and computationally faster than the one proposed in the
literature.

1.2 Wavefront construction on dynamic ray tracing

Where a fast solution of all ray contributions to a set of receivers from a shot point
is desired, ray tracing is efficiently realized by the wavefront construction technique.
Wavefront construction was first introduced by Vinje et al. (1993). Extensions and
modifications on this technique include (Chilcoat & Hildebrand, 1995; Vinje et al.,
1996; Meng & Bleistein, 1997; Lucio et al., 1996). In contrast to classical ray shooting,
where single rays are propagated through the medium, wavefront construction is ray
tracing using a wavefront oriented parameterization. Wavefronts consisting of rays
arranged in a triangular network are propagated stepwise through the model. At each
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time step, the differences in a number of parameters between each pair of rays on the
wavefront are checked. New rays are interpolated whenever this difference between
pairs of rays exceeds some predefined maximum value. A controlled sampling of the
wavefront at all time steps is thus obtained. Ray data at receivers are given by linear
interpolation between every two successive wavefronts. Multiple-event values can be
obtained when different sequences of wavefronts pass the same receivers. The strength
of the wavefront construction method is that it is robust and efficient. It is suitable for
various kinds of ray-tracing methods and velocity distribution representation—either
tetrahedral models or smooth grid-based models. In this thesis, I develop a new 3-D
forward modeling module that uses physical model smoothing, dynamic ray tracing
and wavefront construction.

1.3 Common-offset Kirchhoff inversion

Implementation and application of amplitude preserving prestack Kirchhoff depth mi-
gration/inversion is of great interest for the detection of hydrocarbons (petroleum and
natural gas) in the oil industry. The use of 3-D migration is motivated strongly by 3-D
complex model studies, and three-dimensional prestack depth migration (PSDM) is
an accurate (model-consistent) approach for imaging media with complex structures.
The ability to localize processing to target zones gives Kirchhoff migration some CPU
advantage over alternative 3-D PSDM algorithms. Furthermore, other PSDM’s do
not have demonstrated extensions to inversion. Thus, Kirchhoff PSDM in 3-D is a
relatively popular choice for heterogeneous media applications.

The pioneer works on incorporating the true amplitudes of arbitrary medium in the
Kirchhoff diffraction summation are Newman (1975), Cohen and Bleistein (1979),
Clayton and Stolt (1981), Tarantola (1984), Berkhout (1985), Cohen et al. (1986),
Bleistein (1986; 1987) and Bleistein et al. (1987). The significance of these pa-
pers is that the inversion formulas give not only a reflector map but also an esti-
mate of the angularly dependent reflection coefficient on the reflector. The approach
of Bleistein-Cohen is a high-frequency inverse method that combines the acoustic
Kirchhoff theory with the WKBJ approximation and the multi-dimensional station-
ary phase method. This approach provides a bridge between the classical migration
techniques and more mathematically sophisticated high frequency techniques based
on the generalized Radon transform (Beylkin, 1985; Miller et al., 1987; Beylkin &
Burridge, 1990).

The dependence of the Bleistein-Cohen method on the structure of the operator
makes the approach significantly different from Kirchhoff migration in the interpre-
tation of the output. The difference is in the spatial weighting which leads to an
output proportional to the reflection coefficient in the inversion formula. In addition,
based on the use of the Kirchhoff approximation as a starting point for deriving this
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formula, Bleistein-Cohen (2000) call it Kirchhoff inversion. In the seismic explo-
ration community, this is also called amplitude preserving prestack Kirchhoff
migration or true amplitude Kirchhoff migration. Throughout this thesis, I
will use the term Kirchhoff inversion and refer to the approach of Bleistein-Cohen as
Bleistein-Cohen inversion. Many recent works on Kirchhoff migration/inversion for
a hierarchy of more difficult background velocities and source/receiver configurations
have been carried out; see Docherty (1987a; 1991), Dong et al. (1991), Schleicher et
al. (1993), Hubral et al. (1991; 1996), Tygel et al. (1993; 1996), Hanitzsch (1995;
1997), Ou (1995), Xu (1996), Sun and Gajewski (1997; 1998), Gray (1997), Albertin
et al. (1999). In this thesis, I focus on common-offset geometry and 3-D general
background medium.

One difficulty in the implementation of Kirchhoff inversion for the common-offset
configuration and general media is the estimation of the Beylkin determinant in the
Bleistein/Cohen inversion formula (Bleistein et al., 1987; Bleistein, 1987; Bleistein
et al., 2000). Cerveny and de Castro (1993) proposed a method for computing the
Beylkin determinant by dynamic ray tracing. Hanitzsch (1995) has applied this ap-
proach to 2-D amplitude-preserving Kirchhoff migration/inversion and found valuable
applications in amplitude variation with offset (AVO) and amplitude versus angle
(AVA) analysis. Here, I modify Cerveny and de Castro’s approximation, and apply
it in 3-D heterogeneous structures. This method does not require the numerical mea-
surements of any elementary area connected with the ray field or the determination
of the derivatives of traveltimes, which play an important role in some other methods
that have appeared in the recent literature, such as (Schleicher et al., 1993; Sun &
Gajewski, 1998).

1.4 Synthetic data sets

For common-offset Kirchhoff inversion, the computer process is similar to a traditional
kinematic Kirchhoff migration algorithm. The challenges arise from the computation
of the accurate amplitude 3-D WKBJ Green’s function and the spatial weighting
factor for such common offset data. Here, I use the dynamic ray tracing code to pro-
duce all the needed quantities. Two synthetic examples are tested by applying the
common-offset Kirchhoff inversion algorithm. Positioning and amplitude accuracy
are tested through these examples. Amplitudes in migrated sections are estimates
of angle-dependent reflection coefficients, provided proper weights are applied in the
diffraction stack migration to correct for amplitude loss due to geometrical spread-
ing. The Bleistein-Cohen inversion provides those proper weights. The technique of
double Kirchhoff inversion, that is, using two different weights, produces fairly ac-
curate estimates of reflection angles from seismic data. Therefore, this technique is
particularly well suited for an AVA analysis.
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1.5 Content overview

Chapter 2 starts with the estimation of Green’s functions, which play an important
role in the inversion procedure. First I discuss the possibility of applying analytic
solutions in tetrahedral models for amplitude estimation, and conclude that this ap-
proach cannot provide us accurate and reliable amplitudes. Instead, I develop an
efficient and flexible 3-D forward modeling module that uses dynamic ray tracing and
wavefront construction methods on a general smooth velocity field. Technique and
implementation details are included in this chapter. Since I use a general smooth
gridded velocity model which does not handle the transmission coefficients resulting
from the layered models, I propose a method of re-introduction of transmission coef-
ficients into the Green’s function solution of the smoothed medium. A discussion of
Maslov asymptotics at caustics is also included in the last section of this chapter.

Sample implementations of the dynamic ray-tracing algorithm are presented in Chap-
ter 3. Three examples are included, each example being indicative of a situation that
is common in applications.

Chapter 4 is devoted to the theory of true amplitude Kirchhoff inversion. The weights
are recast into ray-theoretic expressions that are well suited for an efficient computer
implementation that uses dynamic ray tracing. The proper weighting function for the
common-offset configuration and 3-D acquisition dimension is given in this special
form for computer implementation.

I show details of the implementation of the inversion theory in Chapter 5. The
true amplitude Kirchhoff inversion accurately estimates angle-dependent reflection
coefficients in modeled data. Examples of inversion on synthetic data are also shown
in this chapter .

Finally, I show benchmark results in Chapter 6.

1.6 Software developed

For this research, I have developed some 3-D true amplitude Kirchhoff inversion
algorithms and software. The algorithms and software include: 3-D dynamic ray
tracing and 3-D inversion codes. Both include new results developed in this project
and mentioned briefly above. The software has been tested using modeled and field
data.
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Chapter 2

ESTIMATION OF 3-D MULTI-VALUED GREEN’S FUNCTION BY
RAY TRACING

2.1 Introduction

Accurate and efficient forward modeling is a key part of 3-D prestack migration and
inversion, among other applications. In this chapter, I describe a ray-theoretical
modeling method that uses smoothing of models, dynamic ray tracing and wavefront
construction. All the quantities in the Kirchhoff inversion formula can be determined
by that method.

Here, I address the problem of accurate and efficient determination of multi-valued 3-
D maps for traveltimes and amplitudes, as well as other ray-related variables through-
out the target zone from any shot and receiver position. The current interest in 3-D
seismic imaging has considerably increased the importance of 3-D ray-tracing methods
in wave-field computations. Among seismic modeling methods, ray-tracing methods
provide a reasonable compromise between accuracy and computational efficiency. For
the computation of traveltime, various methods have been described. Among those,
the finite-differencing (FD) method, i.e., a FD-solver of the eikonal equation, has re-
cently become widely used for calculation of “first arrival” traveltimes (Vidale, 1988).
However, this method suffers from the disadvantages that it is restricted to the com-
putation of first arrivals only and it produces unreliable amplitudes. Both are severe
disadvantages for Kirchhoff-type inversion algorithms, such as the Bleistein/Cohen
inversion (Bleistein et al., 1987; Bleistein et al., 2000), where the calculation of am-
plitudes is necessary to determine the weighting factor in heterogeneous media. Fur-
thermore, in complex media, such as near salt domes and in sub-salt regions, later
arrival traveltimes should be considered to obtain better image quality. Amplitudes
can be used, among other things, to find most energetic arrivals.

Simultaneous computation of traveltimes and amplitudes is possible by dynamic ray
tracing (DRT'), which provides accurate multiple arrivals, amplitude and phase. Esti-
mation of these ray data can be carried out either by numerical solution of ray-tracing
equations in general smooth grid-based models or by piecewise analytic solutions for
certain simple velocity functions in tetrahedral models. Among the choices of ray
tracing procedures, the simplest and fastest solution of the ray tracing system is usu-
ally based on its analytic solution, wherever the complexity of the model allows one.
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This is usually referred to as analytic ray tracing or cell ray tracing. Generally, the
whole medium is divided into suitable cells (usually, tetrahedra in 3-D), in which the
velocity can be approximated by simple functions that permit analytic ray solutions.
The ray in the whole model is then obtained as a chain of analytically computed
segments. The analytic ray tracing is usually performed for models in which either
the velocity, v(z), or 1/v(x), or 1/v%(x), is a linear function of Cartesian coordinates.
The simplest analytic solution for heterogeneous medium is that for constant gradient
of squared slowness, also referred to as linear sloth media (Cerveny, 1987; Meng &
Bleistein, 1997). However, this assumption leads to tetrahedral cells with artificial
second-order discontinuities at their interfaces. As a consequence, this approach pro-
duces unreliable amplitude coefficients across the internal boundaries. Koérnig (1995)
proposed a method using quadratic sloth. In this approach, the squared slowness and
its gradient with respect to spatial variables are continuous across each cell bound-
ary. The analytic solutions for such a velocity function are determined by using the
Laplace transform. Also, the computation of amplitude can be largely simplified by
calculating the ray Jacobian directly from the analytical ray equations. However,
determining the cell constants in quadratic sloth is rather difficult. The model design
leads to a huge matrix inversion problem and is impractical in 3-D. Only 2-D imple-
mentation of the traveltime computation was carried out by Koérnig (1995). I have
concluded that the analytic approach in tetrahedral cells does not likely offer efficient
algorithms in dynamic 3-D applications.

Traditionally, numerical DRT is performed by shooting a fan of rays from the source
and extrapolating traveltimes and amplitude away from the rays into their nearby
regions (Cerveny, 1987; Virieux & Farra, 1991; Sun & Biondi, 1995). The main disad-
vantage of the conventional shooting method is the lack of control of ray density in the
search fan. Therefore, it is hard to reach a favorable compromise between efficiency
and reliability, especially in complex 3-D models. It also produces shadow zones in
areas of large velocity contrasts. The wavefront-construction traveltime-computation
method (Vinje et al., 1996) offers a solution to this problem by dynamically adding
rays as needed. In this method, rays are maintained in a triangular network, and are
traced stepwise in traveltime through the model. The wavefronts are then obtained
automatically as a by-product of the ray tracing. In this chapter, the idea of wavefront
construction is applied to 3-D models for estimation of both traveltime and ampli-
tude coefficients. The dynamic interpolation of new rays assures that the wavefront
is equipped with sufficient ray density at each computational step. Linear interpola-
tion of traveltime with respect to the simulated wavefronts and linear interpolation of
amplitude in terms of tube cross-sectional area are performed at grid points that fall
into the sub-volume formed by every two successive wavefronts. A grid point can be
passed by different sequences of wavefronts and, thereby, multi-valued arrivals can be
detected and recorded. In this manner, all the grid points in the model are equipped
with accurate—perhaps multi-valued—traveltimes and amplitudes.
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In the following sections, I first discuss the possibility of applying analytic solutions
in tetrahedral models for amplitude estimation and explain why I rejected this ap-
proach. Then, I propose a smooth gridded-model representation for the purpose of
computational efficiency. Thereafter, I address some important issues in numerical
DRT, such as interpolation of new rays and estimation of parameters at grid points. I
also propose a method of re-introduction of transmission coefficients into the Green’s
function solution of the smoothed medium. Finally, I include a discussion of Maslov
asymptotics at caustics in the last section.

2.2 Dynamic ray tracing

This section is a review of the dynamic ray-tracing theory, based on Cerveny (1987;
1995). The acoustic wave solution we seek is in the form,

Az, zo) e (@To) (2.2.1)

the leading order of an infinite series in powers of 1/iw. Here, 7(x, @) and A(z, o)
are the traveltime and amplitude at ® = (z;,9,z3) corresponding to the source
o = (Z10, T20, Z30). They are solutions of eikonal equation,

1
2 _
Vr(z,xo)* = (@)’ (2.2.2)
and transport equation,
2VA-V7+ AV?r =0, (2.2.3)

respectively. In equation (2.2.2), v(x) is the velocity at x.

2.2.1 Ray-centered coordinate system and the ray-parameter coordinate
system

I begin by introducing two coordinate systems involved in DRT — the ray-centered
coordinate system and the ray-parameter coordinate system. The ray-centered
coordinate system, denoted by (g1, ¢2,¢3), is a curvilinear orthogonal coordinate
system associated with any selected ray €2 (see Figure 2.1). One coordinate, say gz,
corresponds to any monotonic parameter along the ray, such as the arc length s,
the traveltime 7 or the parameter o, with dr = do/v?. Here, I take g3 = 7, the
traveltime of the ray (2 away from the source. Thus, the traveltime, itself, is one of
the coordinate axes in the ray-centered coordinate system. Coordinates ¢; and ¢,
form a 2-D Cartesian coordinate system in the plane ¥ perpendicular to 2 at g3 = T,
with the origin at €.
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Y

v X3

FiG. 2.1. The ray-centered coordinate system. ej is tangent to the ray path Q. e;
and e; form a plane perpendicular to e3. 7; and 7, are the ray parameters that
specify the ray, usually they are either the take-off angles (shown in this figure) or
the slowness-vector components at the source.

The vector basis of the ray-centered coordinate system connected with € is formed
at any arbitrary point g3 = 7 of ray 2 by a right-handed triplet of unit vectors
ei(7), ex2(7), e3(7), as shown in Figure 2.1. The vectors e;(7) can also be viewed as
polarization vectors for isotropic media, when elastic wave propagation is considered.
The unit vector ez determines the direction of the displacement vector of P waves,
which is always linearly polarized. Especially important are unit vectors ey, e;, since
they determine the polarization of S waves, when we are dealing with vector solutions
of the elastic wave equation.

The ray parameter coordinates, (1, 72,73), are defined as follows: 7; and 7, are
the ray parameters that specify the ray; usually they are either the take-off angles or
the slowness-vector components at the source; 73 is any monotonic parameter, s, 7
or o, along the ray.

The Jacobian J of transformation from ray coordinates, (1, 2,73), to the general
Cartesian coordinates, (z;,Z2,3), is an important factor in computation of the ray
amplitude (Bleistein, 1984). The ray amplitude has the following form,

const

Az, xg) = , (2.2.4)
||
with o )
T1,T2,73
J=det | —/——=|. 2.2.5
© la(71,72)73)] ( )
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Here, J is the Jacobian, the constant is determined by the choice of (1, y2,73).

2.2.2 Equations of dynamic ray tracing system

The rays are defined as the characteristics of the eikonal equation (Bleistein, 1984).
That is, using the method of characteristics, one transforms the eikonal equation to
the following six ray equations:

dT - p‘l)

dp.,; 1 8’!) .

-— = —— =1,2,3. 2.2.
dr v dz;’ ' 7 (22.6)

Here, z;(7) denotes the coordinates of position along the ray; p;(7) denotes the compo-
nents of the slowness vector, 7 denotes the traveltime along the ray, and v(x) denotes
the velocity. The system (2.2.6) is often referred as the kinematic ray tracing
(KRT) system.

Differentiating the KRT system (2.2.6) with respect to the ray coordinates 7; and
applying the Taylor approximation up to second-order in g; generates the dynamic
ray tracing system. The DRT system can be expressed in many forms and in
various coordinate systems. The simplest form of the DRT system is obtained in
ray-centered coordinates connected with the ray 2 (Cerven}'r, 1987):

dQ 9
2 P
dr v
dP 1
-— = —=V 2.2.
dr v Q (2.2.7)
where Q, P and V are 2 x 2 matrices defined by
Og; Op; ..
Qi': ) ij — ) Z)J=1127
] 0’)’]’ J a’)’j
o2
Vii = v(@) = Hyv uHy;j, ,7=1,2, (2.2.8)
aqiaqj 1=¢2=0
Hy =iy - €, k,l1=1,2,3.

Here, i; are basis vectors in a general Cartesian coordinates (x1, 22, 23) and H is the
transform matrix from (g, ¢2,¢3) to (z1,2,3); an element Hy, represents the kth
Cartesian component of basis vector e;. Elements V;; of the matrix V' are the second
derivatives of velocity v with respect to ¢;, and equivalent to the second derivatives

11
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(a)

(b) B’

F1G. 2.2. Two types of caustic points along ray propagation. (a) At a caustic point
of the first order, the ray tube shrinks into an arc, perpendicular to the direction of
propagation. (b) At a caustic point of the second order (focus point), the ray tube
shrinks to a point.

with respect to x; under transformation H. Therefore, dynamic ray tracing (2.2.7)
requires continuity of the velocity field up to second derivatives.!

The matrix Q is a transformation matrix from the ray parameters v;,, to the ray-
centered coordinate g;, g2. Its determinant measures the ray Jacobian (2.2.5), and is
also called the geometrical spreading factor, i.e.,

J =98 4er0. (2.2.9)

B dvs

The matrix P is a transformation matrix from the ray parameters 7,7y, to the
slowness-vector component in the ray-centered coordinate system. The KRT system
(2.2.6) computes the first derivatives of the traveltime field, while the DRT system
(2.2.7) relates the second derivatives by the relationship,

M(r) =PQ L. (2.2.10)

where M is 2 x 2 matrix M of second derivatives of the traveltime field with respect
to the ray-centered coordinate g1, g2, M; ; = 8°1/dq;0q;.

12
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2.2.3 At caustics

At caustics, the ray Jacobian (2.2.5), or the determinant of the matrix Q vanishes.
In 3-D structures, there are two kinds of caustics depending on the dimension of
the range? of the matrix. The ray tube may shrink to a caustic surface (envelope
of rays) that is perpendicular to the direction of propagation (a caustic point of
the first order); or the ray tube may shrink to a point (a caustic point of the
second order), see Figure 2.2. In passing through the caustic point of the first
order, the ray Jacobian J changes sign and the argument of J'/? takes on the phase
shift +7/2. Similarly, in passing through the caustic point of the second order, the
phase shift is +7. The phase shift due to caustics is cumulative; if we pass through
several caustic points along the ray, the total phase shift is the sum of the individual
phase shifts. This is often referred as the KM AH index, which was introduced by
Ziolkowski and Dechamps (1980), acknowledging the work by Keller (1958), Maslov
(1964), Arnold (1967) and Hérmander (1971) on this problem. The signs of the phase
shifts are determined by the signs of the analytical signal. In general, the traveltime
is decreased by the number of KMAH index times 7/2w (Kravtsov & Orlov, 1980).

2.3 Discussion on analytic ray tracing

Typically realistic velocity models seldom allow general, analytic solutions of the ray-
tracing system. However, analytic ray tracing plays an important role in wave-field
computation. In particular, analytic solutions are valuable in the cell approach, in
which the whole model is subdivided into a set of tetrahedral cells with simple veloc-
ity functions within cells. The models allowing analytic solutions are usually those
with either the velocity, or slowness, or squared slowness being a linear function of
Cartesian coordinates. As mentioned above, this constraint does not provide enough
smoothness at all boundaries for amplitude estimation. In this section, I discuss the
analytic solutions for quadratic sloth media.

Tt is the numerical sampling across tetrahedral interfaces that causes amplitude instability when
the second derivative is not continuous.

2The range of a matrix is the vector space of all nonzero vectors that result from the product of
the vector with this vector.

13
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2.3.1 Analytic ray tracing in a quadratic sloth medium

The quadratic sloth distribution, denoted by g, is defined as a quadratic function in
space,

1

Q(ml>m2,x3) = m

= A+ 2Bi-'17i + Cijxi:vj. (2311)

Here and throughout this thesis, repeated indices in a term indicate summation (sum-
mation convention). The analytical solutions of raypaths for this distribution were
found by Kornig (1995) using the Laplace transform to the eikonal equation (2.2.2).
In the Laplace domain, the ray coordinates, X;(s), are ratios of polynomials of sixth
and seventh order, respectively, in s, the Laplace variable corresponding to o, the ray
tracing integral variable with do = v2dr. The expressions for the ray trajectories,
z;(0), can be obtained explicitly by inverse Laplace transform of X;(s) using partial
fraction expansions of the Laplace transform. Depending on the distribution of eigen-
values of Cj;, the solutions of z;(c) are generalized into seven different forms. For
each case, the ray trajectories are in the general form

zi(0) = wi fr(0), 1=1,2,3, k=1,2,...,7. (2.3.12)

Here, the w;;’s are weighting factors, which are functions of z;9, pio, B; and Cj;, with
Zip and p; being the initial position and slowness components; fi(o) are the basis
functions corresponding to the inverse transform of the partial fraction expansions
of the Laplace transform. One of them is unity; the others are either low-order
polynomials in o, or trigonometric, or hyperbolic functions.

Now I propose an alternative to Kérnig’s (1995) approach to calculate the amplitudes
along rays. Notice that the fi(o)’s in (2.3.12) are functions depending only on o, and
w;’s can be expressed in terms of 0, pjo, and constants B; and C;;. Therefore, if we
choose v, = p1g, 72 = pPoo and y3 = o in (2.2.5), the ray Jacobian J can be calculated
analytically,

= det{J,-jkjk(a }, (2313)
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with summation over the repeated index, k, and

ju(0) ={ Z‘:Z) i;l; (2.3.14)

In the above equations, gx(c) = dfi(o)/do, k = 1,...,7. The coefficients J;;, can be
expressed for all seven cases in (2.3.12). Notice that expression (2.3.13) has taken the
place of the DRT system (2.2.7); and it is less computationally costly than solving
the eight integrations in small time steps.

2.3.2 Why not use analytic ray tracing?

This approach of making the quadratic sloth assumption in tetrahedral models has
eliminated the smoothing procedure across the internal interfaces. However, the con-
stants A, B; and Cj; in (2.3.11) are usually not known in advance for a given physical
model. They have to be determined from the discrete model. The assumption of
quadratic sloth is equivalent to the continuity of both ¢(x) and the gradient of ¢(x)
across the internal cell faces. Therefore, the 10 constants A, B; and Cj; in one tetra-
hedron cannot be determined from the velocity values at its four apices only, but also
depend on the values in the neighboring cells. Such a model design problem for all
the tetrahedral cells leads to a huge matrix inversion problem. If the whole model
is divided into N cells, the size of the coupled system of equations is proportional
to 10V, making the computation very time consuming. Furthermore, this inverse
system is not always solvable, or has solutions in a least squares sense, at best. This
is impractical in 3-D and considerably limits the applicability of this approach.

From the above discussion, we see that although the assumption of quadratic sloth in
tetrahedral models provides accurate amplitudes, this assumption leads to a difficult
and inefficient numerical problem for determining the cell constants. This problem
exists in all extensions to quadratic physical models, not just to the quadratic sloth
model. We conclude that analytic ray tracing in tetrahedral models is not likely to
give us an efficient module for dynamics, although it has its applications in traveltime
calculations.

2.4 Wavefront construction on smooth gridded models

2.4.1 Model representation

The smoothness of the velocity model representation is critical to the calculation of
amplitudes. The integration of the DRT system (2.2.7) requires continuity of the
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(a)

Fi1Gg. 2.3. The wavefront is represented as a triangular network. Each triangle is
determined by its three neighboring ray endpoints on the wavefront. (a) a 3-D view,
and (b) a planar view of the wavefront at a fixed time in a homogeneous medium.

velocity field up to the second derivatives. Here, in order to guarantee the velocity
distribution is smooth enough for traveltime and amplitude calculation, I apply a
smoothing filter to the whole velocity model. Many ray tracing procedures (Farra,
1990) involve a type of spline interpolation for the evaluation of velocities at arbitrary
points. Spline interpolation, however, is a time consuming procedure. Here, we
define the velocity model on a fine grid (about three or four grid points per shortest
significant model wavelength) and pre-calculate its first and second derivatives at
all grid points by finite differences of second order. Then, for the evaluation of the
velocities and their derivatives at arbitrary points we use linear interpolation. For the
smooth models defined on fine grids, the difference between this linear representation
and a spline representation of the model is negligible.

When the considered model contains discontinuous velocities, however, a smoothing
procedure must be applied to guarantee that the velocities vary smoothly. Thus,
for the sake of computational efficiency, the interface conditions are eliminated here
by using proper smoothing and a densely sampled grid model. Below, we study
implications of this smoothing.

2.4.2 Wavefront construction

Here and below, I focus on numerically solving (2.2.6) and (2.2.7) for smooth grid-
ded models. I will apply the technique of wavefront construction (WFC) to both
kinematics and dynamics.

In the wavefront construction method, a relatively small number of rays are shot ini-
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Fic. 2.4. The ray tracing algorithm has criteria to check and keep the size of each
triangle and the propagation-direction derivation of every two adjacent rays within
some pre-defined maximum values. When these ray-coverage conditions are violated,
new rays are added such as the darker rays in the second wavefront and the darkest
rays in the third wavefront. The original triangles are subdivided into new triangles.

17
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tially. They differ from each other by the two take-off angles, and are extrapolated into
the zone of interest by solving (2.2.6) and (2.2.7) numerically with appropriate initial
conditions. Required accuracy of traveltime and amplitude can be approached by
various standard numerical procedures, such as Runge-Kutta or predictor-corrector,
for example.

At any computational step, the wavefront is obtained as a by-product of the ray
tracing. Figure 2.3 shows one wavefront. The wavefront is represented by triangular
plates that connect every three neighboring ray endpoints on the WF. The nearby
rays in 3-D are then defined and organized by such a triangular mesh consisting of the
internal ordering of connecting endpoints in each triangle and adjacent triangle(s) to
each of its sides. The processes of checking, interpolating new rays and estimating grid
point parameters (described below) are all performed within such a triangular net-
work. Rays are added and the original triangle is subdivided into new triangles when
certain criteria, restricting the size of the triangular plates, are violated. Figure 2.4
is an illustration of dynamically adding rays along ray tracing. Three wavefronts are
displayed in this figure. A set of initial rays (lightest) pass through the first wavefront
and no new rays are added. At the second wavefront, the darker rays are introduced
and the original triangles are subdivided into new triangles, because the original tri-
angles failed one of our sizing criteria at this wavefront. The lightest and darker rays
with their attendant triangles are propagated to the third wavefront. There, again,
new triangles are added along with the darkest rays; and so on. In this manner, the
wavefront always has sufficient ray density without a priori estimation of the number
of rays needed, or by imposing an excessive ray density on initiation. For complex
3-D velocity models, the wavefront surface may be very complicated, folding in on
itself at some parts, for example; however, no tears or holes in the interior of the
surface are allowed. In this sense, the wavefront is complete. On the other hand, a
grid point can be passed by different sequences of wavefronts; multi-valued arrivals
can then be estimated and distinguished by their initial take-off angles.

Figures 2.5 through 2.7 show ray tracing in a linear sloth model; that is, the velocity
increases with depth with constant gradient of squared slowness. Figure 2.5 shows
some in-plane rays. Double-arrivals are observed. The two co-located arrivals differ
from each other by their take-off angles and traveltimes. Rays generated by using
wavefront construction are shown in Figure 2.6. New rays are added at different
computation steps whenever the ray coverage becomes too sparse. Figure 2.7 is one
wavefront recorded at traveltime 0.8 s. The outer part of wavefront is generated by
the up-going rays with large take-off angles, and the inner part of wavefront is formed
by the down-going rays with small take-off angles. The edge of the wavefront sits in
the caustic surface. Because of the double-arrivals, the wavefront is folded on itself
in some places. This phenomenon is common in complex velocity models.

The most attractive advantage of the WFC method is that it is more efficient than
the conventional ray tracing method because the number of rays is increased only
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F1G. 2.5. Rays in a linear sloth model. Double-arrivals are observable. The
dimension in this figure is 2 x 2 km in horizontal directions and 2 km in depth

direction.
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F1G. 2.6. Rays generated by wavefront construction in the same linear sloth model.
The dimension in this figure is 2 x 2 km in horizontal directions and 2 km in depth
direction.
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Fi1G. 2.7. Wavefront in the same linear sloth model. The dimension in this figure is
2 x 2 km in horizontal directions and 2 km in depth direction.

as needed to keep the density of rays approximately constant. In addition, WFC
gives better ray coverage, especially in areas of large geometrical spreading where
conventional ray tracing may give no arrivals. Furthermore, compared to FD-solvers,
the WFC method is not restricted to the calculation of first arrivals only. Amplitude
and other ray theoretical quantities are also available. Thus, it meets the requirements
for accurate modeling of amplitude as well as phase, a requirement for inversion as
opposed to migration.

2.4.3 Ray interpolation

The wavefront construction method is largely dependent on the procedure of inter-
polation of the wavefront at each step. New ray endpoints must be added along the
simulated wavefront and must have the propagation direction that the rays would
have had if they had been shot from the source. This section addresses an algorithm
for accomplishing these requirements. This implementation was derived from a 2-D
interpolation provided by D. Hanson (private communication).

Rays diverge and wavefronts expand throughout the wave-field. When new ray end-
points are needed to maintain a certain ray density on the wavefront, the whole
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FiG. 2.8. Interpolation of new rays and estimation of grid parameters are performed
in a ray tube. (a) Interpolation of a single new ray. The two ray endpoints and their
propagation directions form two straight lines in 3-D. An “approximate” center can
be defined as the midpoint of the line segment that connects the two straight lines
at their points of shortest distance. This approximate center, along with the two ray
ends at the old WF, form a fan and a circular curve connecting the two ray end points.
The new ray position is then found along the dividing direction from the approximate
center and at its intersection with the circular curve. Then the interpolated ray is
traced from the old to the new WF. (b) Simple ray cell with an interior grid point.
Ray data are estimated with respect to the two simulated WFs.

triangular network will have to be reorganized. The criterion for this interpolation
can be that the area of triangles must not exceed a pre-specified limit, or that the
angle deviation of the slowness vectors of two adjacent rays cannot be too large. New
rays are always added in between the pairs of existing rays in order to meet the cri-
teria for size and angle difference of triangular plates on the wavefront. Figure 2.8(a)
illustrates the interpolation of a single new ray. The two ray endpoints and their
propagation directions form two straight lines in 3-D. An “approximate” center can
be defined as the midpoint of the line segment that connects the two straight lines
at their points of shortest distance. This approximate center, along with the two
ray ends at the old WF, form a fan and a circular curve connecting the two ray end
points. The new ray position is then found along the dividing direction from the
approximate center, and at its intersection with the circular curve. Other parameters
along the new ray are interpolated linearly.

There are other alternative methods of interpolating new rays, such as the parame-
terization of a wavefront by a third-order polynomial (Vinje et al., 1996). However,
they require special treatment in the vicinity of caustic points, since only rays be-
longing to the same phase must be used to determine quantities of the new ray. The
method described here does not have such a requirement. Moreover, we do not use
the curvature of the wavefront obtained from DRT for the interpolation to keep the
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problems of KRT and DRT separate. I have found this method stable.

2.4.4 Grid interpolation

Another interpolation procedure in DRT is the estimation of ray data at the output
Cartesian-grid points. This is our final goal of the ray-tracing algorithm. The grid
interpolation is performed within ray tubes, which are prism-shaped bodies bounded
by three rays and the triangles that connect them on the two WFs. First the grid
points falling into (or close to) each cell are found. Then, the traveltime can be
estimated at each grid point in a way similar to the interpolation procedure for new
rays (see Figure 2.8(b)). The approximate center is determined by the three rays with
ray endpoints on any of the two WFs, and the distances from each grid point to the
approximate center and to the simulated wavefront are calculated. The traveltime at
the grid point is then recorded as ¢y + d/v, with £, the time at the wavefront, d the
distance of the grid point away from the wavefront, and v the velocity at the grid
point.

The above procedure is not suitable for interpolation of amplitude because the isochrons
surface is usually not the iso-amplitude surface. Here, we apply linear interpolation
for amplitudes, which is based on the assumption that the amplitudes vary only
slowly; otherwise, the validity conditions of the underlying asymptotic theory would
be violated. Since the ray Jacobian—the determinant of @) in (2.2.7)—is proportional
to the cross sectional area of the ray tube, we interpolate the ray Jacobian linearly
with respect to the triangle areas on the two wavefronts.

Another parameter that requires interpolation at every grid point is the initial shoot-
ing direction, i.e., the initial take-off angles of the ray that would reach the grid point
if the ray actually had been traced. This parameter is stored in order to distin-
guish between arrivals, because two arrivals at a grid point cannot have almost equal
take-off angles.

2.5 Transmission coeflicients

In seismic processing, two types of velocity models are commonly used: models that
consist of (often homogeneous) layers, and heterogeneous models without interfaces.
The first type of velocity model is usually constructed by layer stripping methods. The
second type of model usually results from methods that perform a global optimization
to determine the velocity. Accurate amplitude requires velocity models to be smooth.

Velocity models of the second type do not contain interfaces, but for velocity models of
the first type, transmission loss at interfaces can have significant influence on Green’s
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ﬁk+ 1\

R

Fi1G. 2.9. Ray 2 from S to R strikes several interfaces.

function amplitudes. In the previous sections, the dynamic ray tracing is performed
on a general smooth gridded model, even where there were real interfaces. The
transmission coefficient has been taken to be unity, because the smooth solution does
not take account the transmission coefficient. When a ray strikes a real interface,
a reflection or transmission coefficient should be included in the Green’s function.
In this section, we discuss the re-introduction of transmission coeflicients into the
Green’s function solution of the smoothed medium.

In smooth media, the amplitude determined by the transport equation is continuous,
and we can estimate it using equations (2.2.4) through (2.2.7). Let us consider a ray
Q and two points S and R situated on 2. Then the transport equation leads to the
following relationship between the amplitudes at S and R if there is no transmission
loss:

v(R) detQ(S)

A(R) = L’(S) detQ(R)] exp[—z'§<p(R, S)A(S), (2.5.15)

with ¢(R, S) the KMAH index from S to R.

Assume that the ray 2 strikes n interfaces, 3y, ..., %,, at points, P, ..., P, between
the points S and R (see Figure 2.9). P, (k = 1,...,n) denote the points coinciding
with P, but corresponding to the transmitted branch of the ray. Therefore, the ray 2
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F1G. 2.10. Each ray segment hits an interface. The transmission coefficient is
computed at each ray endpoint.
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from S to R is divided into n+1 segments, with P, = S and P,,; = R. By connecting
all the ray segments along S and R, the continuation relation for the amplitudes of
acoustic waves becomes,

v(R) detQ(S)

where

n+1

o(R,S) =3 (P, Pi_1),
k=1

n

w:ﬂnm=gnm[

k=1

v(P) cosz'(Pk)l : : (2.5.17)

v(P;) cosi(Py)
20(Py41) cosi(P) .
v(Piy1) cosi(Pr) + v(Px—1) cosi(Px)

T(F) =

Here, i(P;) is the acute angle of incidence and i(P;) the acute angle of transmis-
sion. T(Fy) is the standard plane wave transmission coefficient at P,. T° is called
the complete transmission coefficient. It is equal to the product of the normalized
transmission coefficients at all points of incidence between S and R.

Comparing equations (2.5.15) and (2.5.16), we notice that the difference between
the smooth amplitude solution and the one in layered structures is the factor 7°.
In the ray-tracing algorithm, a smooth gridded velocity model is assumed, so the
location and shape of the interfaces are not known. Here, I propose to modify the
amplitude at each endpoint along ray tracing. Suppose Pi,..., P, are m ray end
points along the ray between S and R, which are predicted by the dynamic ray-
tracing method discussed in this chapter. Factors needed in (2.5.17) are the cosines
of the incident and refracted angles, while the velocities are already interpolated in the
ray-tracing procedure. Now assume that each ray segment hits an interface as shown
in Figure 2.10. For the calculation of the cosines, I use the following approximation,

V'a,v(Pk) = (va(Pk_1)+va(Pk))/2,
cosi(Py) = p(Pi_1)- Vgv(Pr), (2.5.18)

cosi(Px) = p(P)- Vgu(P),
where Vzv(Ps-1) and Vzv(Fy) are the gradients of the velocity at P,_; and P,

which point to the direction of the normal to the interface that passes through the
points Pr_; and Py; p(Px-1) and p(Px) are the slowness vectors at points Py_; and

25



Lan Wang

Py, respectively.

Approximation (2.5.18) estimates angularly dependent transmission coefficients at
arbitrary incident and transmission directions. The extra computation cost of this
method is basically two inner products at each point along the ray. In the next chap-
ter, an example of applying this method is given for a model with strong velocity
contrast. In regions away from interfaces, the cumulative effect including this trans-
mission coefficient is a factor near unity. In regions of rapid variation, the cumulative
effect yields a good approximate of the transmission coefficient.

2.6 Maslov asymptotics

Normal asymptotic ray theory (ART) gives the solution for wave equation in the
spatial domain. Its disadvantage is that the discontinuities or smooth heterogeneities
in the model can lead to regions where the rays form envelopes of varying degrees of
complexity—caustics— where straightforward ray theory breaks down. It is impor-
tant to note that the actual solution does not have these singularities; the problem is
that the simple structure, A exp{iwr}, is not valid in these special regions.

Maslov’s method (Maslov, 1964; Chapman & Drummond, 1982; Kendall & Thomson,
1993; de Hoop & Brandsberg-Dahl, 1998) provides an alternative representation of
the asymptotic wavefield that does not break down near caustics. In this approach,
the ray trajectory, which is normally considered in the spatial domain, is viewed
more generally in the six-dimensional phase space consisting of position and slow-
ness. The solution in the physical space is a projection of the solution in six indepen-
dent variables. However, the asymptotic solution for other mixed coordinates—other
projections—in phase space can also be found. For instance, transform methods find
the solution in the mixed domain where the horizontal slowness replaces one spatial
coordinate. The reason for considering asymptotic solutions in the different mixed
domains is that, in general, the singularities in different domains do not coincide.
Thus, a nonsingular asymptotic solution in some alternative three-dimensional sub-
set of the six variables in phase space can always be found. Maslov asymptotic theory
extended this idea to heterogeneous media, and the asymptotic solution in a mixed
domain (position and slowness) is obtained by a canonical transformation from the
spatial domain. The method is useful because the singularities in the mixed and spa-
tial domains are at different locations, and Maslov theory provides a uniform result
by combining the solutions in the different domains.
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2.6.1 1-D Maslov — first-order caustics

Equation (2.2.6) defines the ray trajectory in six dimensions £ X p. The Maslov
solution is in the form of a Radon transform that introduces one or more slowness
coordinates as parameters. This is done by applying the partial Legendre transfor-
mation.

At points of first-order caustics in & space domain, the cross-section of a ray tube
is reduced to a line, and the KMAH index increases by unity or a phase retardation
of m/2, which corresponds to one eigenvalue vanishing in (2.2.5). Here I assume
the first-order caustic is not parallel to the z;-axis (otherwise, we can transform
whichever of the original coordinates is most nearly normal to the caustic surface and
the discussion still holds). In this case, (p1,x2,3) constitute the proper coordinates
on the Lagrangian manifold over a region 2; that will provide a nonsingular solution.
Let X; denote the point in the plane (zs,z3) = constant where the wave front has
(projected) slowness p;. The mapping p; — X represents a change of coordinates
on the Lagrangian manifold. This can be achieved by the following partial Legendre
transform ¢ of 7,

d(p1, T2, T3, ") = 7 [X1(p1, T2, X3), T2, T3; '] — P1. X1 (D1, T2, 23). (2.6.19)

Here, &’ denotes any reference point along the ray 2. Differentiating equation (2.6.19)
with respect to p;, and taking into account that Ox,7 = p, it follows that

Op, ¢ = —X, for z9,25 fixed (0;,¢ = pa,0ns¢ = p3 for p; fixed) . (2.6.20)

The function ¢ in turn defines a hypersurface consisting of points (p, 2, z3,1) satis-
fying ¢ — ¢(p1, z2, z3; ') = 0. Notationally, we describe this hypersurface by

{(p1, 22, 23,1) | t — $(P1, T2, T3; ") = 0}.
The Legendre transformation can be re-applied to ¢ to yield
(X1, T2, 23; ') = ¢(p1(X1, T2, T3), T2, T3; ') + X1p1 (X1, T2, T3),
The original traveltime function is recovered, and it follows that
Ox, 7 =p for xy, 23 fixed (0p,7 = p2, 0,37 = p3 for z; fixed). (2.6.21)
Now we construct the phase function in the (p;, s, z3) domain,

I(p,z;2') = d(p1, 22,23, 2") + pray
(2.6.22)

= 7(X1(p1, 22, 23), T2, x3; &) + p1(z1 — X1(p1, T2, 23)) .
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The above expression is the arrival time at z; of a ‘p; wave’ reaching X; at time
7(X1, Z2, z3;&"). At 1 = X (p1, %2, x3) this phase is stationary, i.e.,

87' 3X1 aXI
0,9 -’ = — - — X)) — -
6X1 6X1
= —_— — X, - -
D Bp, + 1— D By
= I — X1 (pl, Za, .’133) =0. (2623)
The stationary phase argument leads to
W(pz), ;') = 7(x;2'), and Vzd((pz),z;z') =g, (2.6.24)

on the bicharacteristics.

The (‘one-way’) Maslov asymptotic representation on a given region, §;, of the La-
grangian manifold (py, 22, z3) is given by
iw\ 3

Uz, 2’ ,w) ~ (%) X / dp, B(py, z3, x3; ') expliw I(p1, x; )],  (2.6.25)
where B(py, T2, z3; ') is the weighting constant to be determined. We can consider
the WKBJ seismogram as being constructed by decomposing the point source into
p1 waves, propagating each wave using ART, and recombining the p; wave at the
receiver.

Away from caustics, I apply stationary phase (Bleistein, 1984) to (2.6.25), and obtain,

B(pla T2, 511"3) exp [’I,Sgn(w)%[l —_ Sgn(aple)]] exp[’iw’r(w, :z:')](2626)

Uz, z’,w) ~ T
|6P1X1|2

where |9, X1| # 0. Expression (2.6.26) should agree with the following ART result:
Aexp [z'w'r(:c,:z:') — igsgn(w)w(w, a:’)] .

Here, ¢(x, ') is the KMAH index from @’ to . This implies

B(p1, 72, 73) = v(@) , (2.6.27)

‘agpl’x27$32
a 71,492, T

(Sl
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and
—isgn(w)% [2¢0(z; ") — (1 — sgn(8, X1))] = 0. (2.6.28)

Equation (2.6.28) implies that the first-order caustic occurs at |0X;/dp;| = 0, and
0X,/0p1 changes signs when passing through a first-order caustic.

At the caustics, the normal ART, AexpliwT(z,z’) — imsgn(w)p(x, x’)/2], breaks
down, but (2.6.25) is still valid. Applying a higher-order stationary phase analysis to
(2.6.25) and supposing |6%X,/0p?| # 0, we obtain,

Ue,2',w) ~ O (|w| % |w|?) = O (|wl?). (2.6.29)

This expression means that the asymptotic Green’s function near caustics is larger
than the solution away from caustics, through the higher power in w. In the inversion
formulas (see next chapter), the two Green’s functions appear in the denominator.
Therefore, when substituting the above expression into the inversion formula, the con-
tribution at |0.X;/dp:| = 0 is of lower order in w than those points with |0.X; /8p;| # 0.
This suggests to us that we can ignore the contribution at the caustic points in the
migration/inversion process. If, at the caustic points, |8?X,/8p?| = 0, we can ap-
ply higher-order stationary analysis at those points, which leads to even lower-order
terms in inversion formula.

2.6.2 2-D Maslov — second-order caustics

At a point of second-order caustics in x-space, the cross-section of a ray tube shrinks
to a point. Two eigenvalues in (2.2.5) vanish, and the KMAH index increases by two
with a phase shift of 7 in the stationary phase analysis. In this case, the caustic
points are also singularities in 1-D Maslov domain (p;, 2, z3). That is, the second-
order caustics and 1-D Maslov caustics coincide. Hence, expression (2.6.25) cannot
give a useful amplitude. We need to consider the 2-D Maslov mapping (z1, o, z3) —
(p1, P2, z3). Here we assume the second-order caustics are not parallel to the (z;, z5)
plane (otherwise a proper coordinate rotation can be applied). The phase function in
the (p1, o, x3) domain can be constructed by the partial Lengedre transform,

ﬁ(ph D2, ; ml) = T(xh T2, X3, m’)

+p1(z1 — X1(p1, p2, 73)) + p2(22 — X2(p1, P2, 23)).(2.6.30)

Note that at z; = X;(p1, p2, 23), z2 = X2(p1, P2, x3), this phase is stationary, and the
stationary phase argument leads to

I(pz)1, (px)2, @; ') = 7(x;2"), and VeI((pz)i, (Pz)2 T; ') = Py,
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2-D Maslov has to be applied to remove the second-order caustics.

Uz, z',w) ~ (;—:) X / d®p B(p1, pa, T3; @) expliw 9(py, pa, x; &')],  (2.6.31)

We can apply multi-dimensional stationary phase analysis to (2.6.31) as we did in the
previous subsection. The same conclusion follows. That is, the contribution at the
caustics to modeling is higher order in w, but to inversion it is lower order in w.

Note that in regions in physical space where simple solutions of the form, A exp{iwr}
exist, we can obtain them by applying the method of stationary phase to the Maslov
representation. The transformation to the (p;, s, z3) domain (2.6.25) removes only
one zero from the Jacobian, and the point at which the Jacobian has two zeros is
still a singularity in the (p;, z2, z3) domain. In order to obtain a nonsingular, asymp-
totic expansion at these points, a second-order transformation (2.6.31) is necessary.
Third-order zeros of the Jacobian are not possible for the seismic system as they
imply infinite velocity. Equations (2.6.25) and (2.6.31), which involve one and two
slowness integrals, respectively, are computationally more expensive than the WKBJ
calculation. Therefore, except at or near second-order caustics, Chapman (1982)
preferred expression (2.6.25) for numerical calculations. Maslov (1964) developed a
method to obtain a uniform asymptotic solution which is valid everywhere and elim-
inates the problems due to the caustics in any domain. The solution is obtained by
simply blending together the various asymptotic solutions, A exp{iwr} and equations
(2.6.25) and (2.6.31), with weighting functions. This is expensive.

Another disadvantage in the Maslov computation is the difficulty of distinguishing
between physical caustics and ‘pseudo-caustics’— the singularity points in mixed
phase domain (p;,z2,z3) or (p1,ps,z3) that are not coincident with the physical
caustics. Theoretically, since rays do not cross in phase space x X p, it is always
possible to choose a projection for which they do not cross. However, in the numerical
computation, singularities in different domains are often located close to each other,
and it is hard to separate the pseudo-caustics from the physical caustics. This limits
the application of the Maslov integral asymptotic solution.

On the other hand, carrying out the stationary phase analysis for the Maslov integral
representation, we find that the asymptotic Green’s function near caustics is larger
than the solution away from caustics, largely by being of higher power in w. Since
in the inversion formulas, the two Green’s functions appear in the denominator and,
hence, the contribution of regions near caustics is lower order in this processing than
is the contribution from regions away from caustics. This suggests to us that we
can simply zero out the contribution from the neighborhood of caustic points in the
migration/inversion process by tapering.
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Chapter 3

EXAMPLES OF DYNAMIC RAY TRACING

In this chapter, I provide some sample implementations of the dynamic ray trac-
ing algorithm discussed in the previous chapter. Three examples are included, each
example is indicative of a situation that is common in forward modeling and migra-
tion/inversion.

3.1 Introduction

For the first test, I construct the wavefield for a model consisting of a single horizontal-
interface, with a strong velocity contrast. The numerical output for the smoothed
model is compared with analytic solutions for the underlying discontinuous model.
The comparison aims to assess the accuracy of the transmitted amplitude, as well as
of traveltime. This is the direction of most interest to us for application to Kirch-
hoff inversion. In this example, both of the numerical outputs with and without
transmission coefficient implementation are compared with the corresponding ana-
lytic solutions.

The dynamic ray-tracing algorithm is also applied to a model consisting of a low-
velocity lens inclusion in an otherwise vertically monotonic velocity distribution. This
earth model produces rays that exhibit multi-pathing and different kinds of caustics.
Here, the first arrivals at depth are not always the most energetic arrivals. The test
demonstrates separation of the various arrivals by the computer code.

The final example is based on a section of the SEG/EAGE saltdome model. The
output demonstrates the ability of this method to treat the extreme contrasts across
the saltdome interface and into the subsalt region underneath the dome.

3.2 Example I — horizontal-interface model

The preconditioning (smoothing) of the velocity model needed in this method leads
to a question of the accuracy of the traveltimes and amplitudes transmitted through
a sharp interface. This first simple example tests that accuracy.
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X (km)

Z (km)

2

Fi1G. 3.1. Rays in horizontal-interface model of strong velocity variation. The ve-
locities are 2 km/s in the upper layer and 4 km/s in the lower layer. The region of
intermediate shading indicates the effective width of the zone of velocity smoothing
across the interface.

X (km)

Y

2.0—\

F1G. 3.2. Traveltime comparison for horizontal-interface model. The solid curves
depict the in-plane wavefronts, or isochrons, computed from the smoothed model;
the dashed curves depict the wavefronts for the analytic solutions.
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Fi1Gc. 3.3. Amplitude (-log) comparison for horizontal-interface model. The solid
curves depict the computed level curves of amplitude from the smoothed model and
the dashed curves depict the level curves for the analytic solutions, with transmission
coefficient set equal to 1 throughout.

Inversion requires a smooth velocity function in propagating regions. Interface shapes
must be described by smooth functions as well. Here, I choose an alternative treat-
ment of interfaces. That is, I smooth velocities across those regions, as well, and
then introduce an approximate transmission coefficient, as described in Section 2.5.
The inversion then delineates the discontinuous surface where the background model
was continuous. This ray-tracing method requires a velocity field that has continu-
ous first and second derivatives everywhere. Thus, as the processing moves deeper
into the subsurface, the earth model used for ray tracing and the earth model deter-
mined by inversion in the overburden disagree. Nonetheless, inversion requires that
the transmitted wavefield remain reasonably close to the wavefield of a discontinuous
overburden. The example chosen here provides a first test of the agreement of the
transmitted wavefield produced numerically by using a smoothed velocity model and
an analytical wavefield produced from the underlying discontinuous model.

The velocity model (see Figure 3.1) consists of two homogeneous layers, separated by
a horizontal interface. The velocities are 2 km/s in the upper layer, and 4 km/s in
the lower layer. Velocities in the region surrounding the interface between the two
layers are smoothed by a smoothing operator based on damped least squares (Liu,
1994), so the interface is replaced by a smooth transition zone (see Figure 3.1). This
smoothing is actually applied to slowness—inverse velocity. It has been our experience
that this provides the most accurate traveltimes and amplitudes. Figure 3.1 shows
rays traced in the smoothed velocity model. Rays propagate across the interface
zone smoothly, with post-critical rays smoothly refracted upward after entering the
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Fi1a. 3.4. Amplitude (-log) comparison for horizontal-interface model. The solid
curves depict the computed level curves of amplitude from the smoothed model and
the dashed curves depict the level curves for the analytic solutions, with the trans-
mission coeflicient implementation.

smoothed transition zone. The rays with near critical take-off angles refracted into
the transition zone and formed a transition wavefield similar to a head wave.

Figure 3.2 shows the traveltime comparison. The dashed curves are the analytic
in-plane wavefronts, and the solid curves are computed results. The two solutions
are shown to be in good agreement in this figure. This indicates that the ray trac-
ing method can produce accurate traveltimes even in the presence of large velocity
contrast in the original model.

From equations (2.2.6) and (2.2.7), we can see that the computation traveltime re-
quires smoothness of velocity gradient while the amplitude requires smoothness up to
the second derivatives of the velocity. Therefore, the amplitude accuracy is of greater
interest in this example. Solving equations (2.2.7) directly for the two constant-
velocity layer model, we can get the following analytic amplitude solution for this
model:

1
m, z < 08km,
A(zx) = T .,z > 0.8km, (3.2.1)

cos? a

47r\/ (Ry + Z2Ry)(Ry + 2R, %)
"M (41

cos?a
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F1c. 3.5. Same as in Figure 3.4 but for a two-layer with velocities above and below
the interface are 2 and 2.5 km/s, respectively.

with

2vp cosa
T = —.
V2 COSa + vy COSQ

(3.2.2)

Here, a and a are the incident and transmitted angles; v; and v, are the velocities
above and below the interface; R, and R, are the lengths of the ray paths in the first
and second layer with take-off angle a.

Figure 3.3 shows the amplitude comparison, with the dashed curves showing the
level curves of amplitude for the analytic solution, and the solid curves used for the
computed results. In this comparison, the transmission coefficient across the interface
is set equal to one. Thus, I am only checking the agreement of the ray Jacobians for
the smooth and the discontinuous velocity models. The only difference in these two
solutions is at the near-critical region. We expect this difference arising from the
replacement of the sharp interface by the smooth transition zone.

Figure 3.4 shows the amplitude comparison with the numerical calculation of the
transmission coeflicient included in the numerical solution and the analytical trans-
mission coefficient (3.2.2) included in the analytical solution. Once again, the two
solutions agree with each other at the incident wavefield and the transmitted wavefield
with small transmission angle. However, the agreement of the two solutions is de-
graded largely at large transmission angles. Seen from Figure 3.4, the disagreement of
the numerical estimate of the transmission coefficients with the solution tends to have
an angular dependence. Since the model picked here has strong velocity contrast—the
normal reflection coeflicient is 0.3, a small range of pre-critical incident angles span
to a large range of refracted angle. The instability of the transmission coeflicient
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FiGc. 3.6. Amplitude (-log) comparison for horizontal-interface model. The solid
curves depict the computed level curves of amplitude from the smoothed model and
the dashed curves depict the level curves for the analytic solutions, with the trans-
mission coefficient set to 1.

computation may be caused by the rapid changes in the transmitted angles. There-
fore, the accuracy checking is carried out on a flat-interface model with a relatively
smaller velocity contrast, 2 km/s above the interface and 2.5 km/s below. Figure 3.5
shows the amplitude comparison on such a velocity model. Notice that the numerical
estimate of the amplitude agrees with the analytic solution with a wider refracted
angle range. For the accuracy check with error less than or equal to 1%, the dip angle
is about 15° wider. This indicates that our transmission coefficient computation does
depend on the rapidness of velocity variation.

Amplitude accuracy shown in Figures 3.4 and 3.5 is not favorable at large transmitted
angles. Further tests are carried out on checking with the following parameters: (1)
smoothing length, (2) velocity sampling size, (3) ray tracing step size (in traveltime)
and (4) ray coverage density. The smoothing size (the number of velocity samples in
the smoothing widow) is tied to the gradient of the velocity through the smoothing
region. Too larger a smoothing length gives less accuracy in the transmitted angle and
therefore less accurate amplitude. Too small a smoothing length will cause irregular
behavior of rays at near critical, because in this case the ray tracing validity condition
is not met. The velocity sampling size also has influence on the amplitude accuracy,
because the velocities and their derivatives at ray endpoints along the central ray are
linearly interpolated from the velocities and their derivatives at the surrounding grid
points. This grid size should be related to the gradient of the velocity. However,
for finer velocity grid size, smaller ray tracing step size is needed for the transition
zone. Finer ray coverage density is also need to make the output amplitude look
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FiGg. 3.7. Amplitude (-log) comparison for horizontal-interface model. The solid
curves depict the computed level curves of amplitude from the smoothed model and
the dashed curves depict the level curves for the analytic solutions, with the trans-
mission coefficient implementation.

smoother for large transmitted angles. These four factor are related to each other,
which bring certain difficulty in finding the best combination of them to provide best
amplitude accuracy. In addition, finer ray tracing step size and denser ray coverage
imply the longer computing time for the same size of target zone of the wavefield.
Figures 3.6 and 3.7 show the comparison of computed amplitudes of finer mesh size
and the analytic solutions, without and with the transmission coefficients included.
In both figures, the numerical output has less (almost no) irregular amplitude above
the interface and better agreement with the analytic solutions for the transmitted
region.

Figures 3.2 through 3.7 indicate that even in the presence of a sharply discontinuous
interface in the original velocity model, our ray tracing method provides accurate
transmitted traveltime and amplitude. The traveltime has a better agreement with
the analytic solution because it requires less smoothness in velocity than the ampli-
tude computation. When the transmission coefficients are included, our numerical
estimate is less accurate. However, with proper choices of the ray tracing parame-
ters, the method can produce the numerical calculation of amplitude with fairly good
accuracy.

37



Lan Wang

0 1y
- S5 e e 4‘
“ % ws‘»"-"»famm.mﬁ -
N
3-

Fi1G. 3.8. Lens model. A spherical low-velocity lens is wedged into high-velocity
surroundings.

/ / /
F1a. 3.9. Rays in the lens model. The color represents the traveltime along the ray.
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Fi1aG. 3.10. Traveltime of first arrivals in the lens model.

X (km)

F1G. 3.11. Amplitude of first arrivals in the lens model.
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F1G. 3.12. Amplitude of most energetic arrivals in the lens model.

3.3 Example II — lens model

This example demonstrates the ability of the code to deal with multi-pathing and
caustics. Multiple arrivals are a common phenomenon in heterogeneous media. One
would expect a focusing of energy in the low-velocity region and a defocusing in the
surrounding high-velocity region. In the presence of multi-pathing, later arrivals may
carry more energy, and the amplitude coeflicients exhibit phase shifts arising from
passage through caustics. Therefore, it is important for the forward modeling algo-
rithm to have the ability to find all the possible arrivals and amplitude coefficients.
It should be remarked that the current code deals with only the more standard caus-
tics of isotropic media. More exotic caustics produced by anisotropy do not lend
themselves to adjustment via a simple KMAH index (de Hoop & Brandsberg-Dahl,
1998).

Figure 3.8 shows the velocity distribution of a lens model. A spherical-shape low
velocity lens is included in an otherwise high velocity zone, with velocity monotoni-
cally increasing with depth. Figure 3.9 shows some in-plane rays, fired at the center
of the upper surface. Due to the symmetry of the velocity model, only rays traced
in one vertical slice are displayed. The rays bend, and multi-pathing occurs in the
lower part of the model. The color represents the traveltime along the rays. Notice
that, for equal traveltimes, the rays traveling outside the lens penetrate deeper than
do the rays that pass through the lens; the velocity in the lens is lower than in the
surrounding medium, leading to longer traveltimes at comparable depths.

Three kinds of caustics are observed in this example. The most visible caustic is the
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F1G. 3.13. KMAH index of (a) first arrivals; (b) second arrivals; (c) third arrivals.

inverted cusped structure just below 2 km. In the neighborhood of the cusp, itself,
rays from each side of the central axis approach the caustic curve, but have not reached
it yet and rays have already impinged on the caustic and moved on. As one moves out
along the flank of the caustic, below it, there are only two nearby caustic rays, one
that has not yet passed through the caustic and the other that has. We emphasize
these caustic rays because ray theoretic models that characterize the wavefield here
require representations in terms of Airy functions and their generalizations. In this
development, we model the wavefield only before and after the caustic and not in the
caustic transition zone. Thus there is the cusp of the caustic—the minimum depth
of crossing rays—and the smooth flank of the cusped surface. This accounts for two
caustics.

The third caustic is less apparent in this figure because it requires 3-D visualization
for clearer depiction, but it can still be described in this figure. Below the cusped
surface, we see rays crossing on the center vertical line. In 3-D, these are two rays
of an entire sheet of rays of a surface of revolution. This is the third type of caustic.
That is, rays with the same polar take-off angle and varying azimuthal take-off angle
form a caustic on the axis. Varying the polar angle moves the caustic point along the
axis.

For each of these caustics, the Jacobian used in amplitude calculations vanishes. Thus,
the Jacobian matrix has at least one zero eigenvalue and corresponding eigen-vector
that characterize the direction in which the cross-sectional area of a ray tube has
shrunk to zero. At the cusp, two eigenvalues vanish, corresponding to variations with
respect to the two initial take-off angles. Along the flank of the cusp, the principle
direction of vanishing corresponds to the vanishing of the Jacobian with respect to
variations in the polar angle, while at the on-axis caustic below the cusp, the vanishing
is with respect to variations in the azimuthal angle.

Figure 3.10 shows the first-arrival traveltime. In the triplication region, the shapes of
the wavefronts are those generated by connecting the ray endpoints that have been
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traced from outside the lens. The pull-up of the wavefronts under the lens is due to
the low-velocity in the lens.

Figure 3.11 shows the amplitude of first arrivals. The amplitudes shown in this plot
are consistent with the ray coverage in Figure 3.9. The high intensity of amplitude
in the region of the cusp characterizes the relative increase in the density of rays.
The WKBJ wavefield modeling is not accurate near caustics where the computed
amplitude approaches infinity. The code sets a threshold above which the amplitude
is replaced by an upper bound to stabilize the code. The difference shown in the
amplitude between first- and second- order caustics is caused by the averaging of
the ray amplitude inside a ray tube of prescribed size. The actual caustic surfaces
form a set of measure zero in 3-D. Thus, we anticipate that this approximation in
caustic regions will not seriously distort the amplitude of the migration output, except
perhaps, at image points that are also caustic points of the ray fields for the Green’s
functions from source and receiver. In fact, the entire theory employed for inversion
breaks down in the neighborhood of such points, and even the imaging produced by
migration alone is somewhat suspect.

Figure 3.12 shows the amplitude of most energetic arrivals. Figures 3.11 and 3.12
show the same amplitudes in the upper part of the figure, including the region on
axis directly below the source point. These are regions in which the first arrival is the
most energetic arrival. On the other hand, the amplitudes are quite different in the
triplication region below the cusped caustic. The amplitudes of the most energetic
arrivals in this region are formed by those rays that have traveled through the lens. As
noted in the ray plot, Figure 3.9, these rays are slower. Hence, the first arrivals and
the most energetic arrivals are predictably different here. The difference in position
between the first arrival and the most energetic arrival can be 1 km or more.

Figure 3.13 shows the phase shifts in the triplication region, the area surrounded by
the cusp surface. The first arrivals reach the receiver grid points from outside the
lens (see Figure 3.9). Therefore, no phase shifts arise along the ray until the rays
approach the axis, on which rays with the same polar take-off angle and varying
azimuthal take-off angle form a caustic with phase shift of /2. The second arrivals
in time also come from rays outside the lens, but from the opposite side of lens with
respect to the center axis. As a result, the second arrivals get a phase shift of 7/2
on the axis and carry it further on to all the grid points in the triplication zone
[Figure 3.13(b)]. The third arrivals, the latest arrivals in time, pass through the axis
right near the cusp. At the cusp, itself, two eigenvalues vanish. The nearby rays first
pass through the caustic on the axis corresponding the vanishing of the eigenvalue
with eigenvector in the direction of azimuthal angle. The rays then pass through the
caustic along the flanks leading out from the caustic. Here, the eigenvalue associated
with the polar angle vanishes. The code is able to detect the two sign changes in the
Jacobian, and results in a phase shift of = at each grid points [Figure 3.13(c)], except
that the ray penetrating vertically has no shift; the program computes a phase shift
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F1G. 3.14. SEG/EAGE salt model. The velocity in the salt (black) is 4482 m/s. 0-4
km in X runs right to left, and 0-4 km in Y runs back to front (GOCAD standard).

of /2 at grid points below the source. Modeling of on-axis propagation, however, is
highly suspect. The cusp is formed by a limit of rays with polar angle approaching
zero. Yet, that limiting ray is associated with a limit of axis-crossings by rays forming
the caustic flanks below and to the right and left. Thus the limiting ray, which would
seem to have initial polar angle equal to zero crosses the axis only once—at the cusp—
while the ray with initial polar angle zero remains on-axis throughout its propagation
path.

3.4 Example III — SEG/EAGE model

The final example uses a section of the SEG/EAGE saltdome model, which is based
on a typical US Gulf Coast salt structure. The complexity of the 3-D salt structure
makes it a benchmark model used to evaluate various 3-D forward modeling and
imaging algorithms. Figure 3.14 shows two orthogonal vertical slices of the velocity
distribution. The velocity in the salt is 4482 m/s, shown in black, much higher than
the velocities in the surrounding sediments. As a consequence, the salt body acts as a
large secondary source that emanates waves from its surface, nearly in all directions.
Such waves, typically, have low energy; however, due to their speed through the salt,
they generate first arrivals in near-salt and sub-salt regions. These waves dominate
the solution of first-arrival eikonal solvers. Some of these waves correspond to head-
waves; others are just low-energy forward propagating parts of solutions. Using such
a traveltime solution for imaging will result in a less than ideal image (Geoltrain &
Brac, 1993).

Figure 3.15 shows one wavefront recorded at 0.9 s with the source located at the
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FiG. 3.15. One wavefront recorded at 0.9 s, with the source located at the center of
the upper surface.

center of the upper surface. Its lower part changes from being spherical, due to the
presence of the high-velocity salt. This structure causes portions of the wavefront
to bulge and expand, especially those parts that have penetrated through the salt.
The boundaries of this bulge are dominated by the pseudo-head-wave arrivals, which
continuously connect the portions of the wavefront that penetrated through the salt
with those that traveled only through the sediments. However, headwaves are low-
energy arrivals that are not useful for imaging applications. Waves traveling directly
from the source, without going through the salt, carry more energy than do rays that
propagate through the salt.

Figure 3.16 is a ray plot, for source at the center of the upper surface. The front face
of this figure shows a vertical slice at x = 3.5 km, which is 1.5 km from the source.
It passes through the salt structure. The rays are shown in this plot, shot off with
a uniform distribution of take-off angles. The feature of adding rays to maintain ray
density was suppressed in this figure so that we could see the relative distribution of
the set of rays around the salt structure, which are initially uniform in take-off angles.
Notice that the density of the post-critical rays that do not enter the salt is much
higher than that of the rays that enter the salt and emerge through the front face.
This indicates that we should expect the amplitude in the salt to be lower than the
amplitude just above the salt. Figure 3.18 is an amplitude plot on the same vertical
slice as the front face of Figure 3.16. Here, the red and yellow colors indicate high
amplitude and the purple color, low amplitude. The high- and low- amplitude zones
agree with what we expected from the ray plot in Figure 3.16. We know from the
previous discontinuous example that the amplitudes near turning are not as accurate
as are the transmitted amplitudes, but they are close enough qualitatively to confirm
the agreement we see between these two figures. Figure 3.17 shows the traveltime
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] Y (km)

Fic. 3.16. Rays in the salt model. This model is rotated when compared to Fig-
ure 3.14. The front face is approximately the Y-Z plane that is shaded in the former
figure.

on the same cross-section. The rapid changes of the wavefronts occur at the salt
boundary.

3.5 Conclusions

We have demonstrated the implementation of a ray-theoretical forward modeling al-
gorithm on three progressively more complex earth models. This method is based on
dynamic ray tracing and wavefront construction in smoothed gridded earth models.
The use of smoothing applied to the discontinuous model stabilizes the ray tracing
while maintaining sufficient accuracy on transmitted traveltime and amplitude co-
efficients. The method of estimation transmission coefficients from smooth gridded
model provide us an alternative treatment of interfaces. The method is capable of
calculating all typical ray-tracing parameters such as traveltime, ray amplitude, slow-
ness vector, etc. It can produce all the quantities involved in Kirchhoff inversion
formula. The adaptability of the method was demonstrated by evaluating the wave-
field in regions of extreme geometrical spreading, such as near a salt wall, in sub-salt
regions, and in presence of a low velocity lens.
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(f) Traveltime at Y=3.5km

(c) Traveltime at X=3.5km

F1G. 3.17. Traveltime slices for the salt model.
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(b) Amplitude at X=2.5km (e) Amplitude at Y=2.5km

Y (km)
2

L35

(c) Amplitude at X=3.5km

FiG. 3.18. Amplitude slices for the salt model.
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Chapter 4

THEORY OF KIRCHHOFF INVERSION

In this chapter, I discuss the theory of inverting the linearized scattered field for the
image of subsurface reflectors and medium parameter variations.

Some basic concepts of prestack migration/inversion are first provided in Section 4.1.
Section 4.2 contains a short review of the approach of Bleistein and Cohen to Kirch-
hoff inversion and the technique of multiple Kirchhoff inversion. The latter offers
a way to estimate the reflection angles on reflectors. In Section 4.3, I discuss the
numerical estimation of the Beylkin determinant. The computation is realized by
the ray-theoretical methods and can be carried out easily by the dynamic ray-tracing
method discussed in Chapter 2. In Section 4.4, I derive the expression of the Beylkin
determinant for a special case—zero-offset. In this case, the weighting factor can be
largely simplified and reduced to a slowly varying factor.

4.1 Basic concepts

4.1.1 Diffraction stacking

Seismic migration is the process that maps the seismograms recorded on the Earth’s
surface into representations of its interior properties. Kirchhoff migration approaches
this goal by linear inversion of the wave equation in terms of integral operators. A
mathematical description of such a process can be written as

m(y) = [ d%€w(, y)FIUE (v (4.1.1)

Here, A is the seismogram recording surface, parameterized by & = (£1,&). The
distribution of sources and receivers is specified by equations x, = x,(§) and ¢, =
xy(&); U is the seismic data recorded along this surface; 7p(€,y) is the sum of
traveltimes from source and receiver to the imaging point y (see Figure 4.1); 7p(€, y)
is also called the diffraction time surface. The filter F denotes the time derivative
in 3-D, or the Hilbert transform of the half-derivative in 2.5-D, of the seismic data U.
w(&,y) is a spatial weighting function that contributes to the integral summation.
Therefore, Kirchhoff-type migration/inversion algorithms can be viewed as weighted
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diffraction summation (or stacking), which is performed for each grid point y in
the target zone to be migrated. Schneider (1978), Berryhill (1979) and Berkhout
(1985) provide extensive references to the Kirchhoff migration method. Descriptions
of the Kirchhoff migration process from the geophysical point of view can be found
in Yilmaz (1987) and Claerbout (1996).

The specific function w(§,y) distinguishes the output m(y) among various migra-
tion/inversion algorithms. When w(€, y) = 1, or unweighted stacking, the stack m(y)
gives a structural image of the medium. On the other hand, when the weight function
is carefully formulated, the weighted stacking can predict the medium parameters, in
addition to a graphical image of the medium. This is referred as Kirchhoff inver-
sion by Bleistein (2000). The weighting function in an inversion algorithm includes
the model-consistent geometrical loss—true amplitude—and the Beylkin deter-
minant, which accounts for any source-receiver configuration and parameterization
in the background propagation speed. This last multiplier could not have been pre-
dicted by a migration approach to the high-frequency inverse problem. In this thesis,
I study the importance and the properties of the weighting factors.

4.1.2 Linearity

The forward scattering problem can be formulated as a sum of two integrals. The
first involves the perturbation as a linear factor of the integral. The second involves
a product of the perturbation and the unknown scattered field at depth. It is argued
that this product is at least quadratic in terms of perturbation, hence nonlinear in the
perturbation. This nonlinear term can be ignored provided that perturbations of the
medium parameters are small. This is the Born approximation [see Bleistein et al.
(2000) for further discussion|. Therefore, the linearization in forward modeling means
that we consider only the linear term of the forward scattering integral equation. This
linear term physically corresponds to the primary reflections—energy that has
been reflected only once and hence is not a multiple. This assumption implies that
all other seismic events, such as multiple reflections, direct waves, refracted waves,
should be viewed as noise and should be attenuated during preprocessing or properly
interpolated in the output.

4.1.3 High frequency

The term “high-frequency data” means that length scales of interest in a medium
must be “many” (in practice, at least three) times as large as the predominant inverse
wavenumber propagating in the medium. When considering the resolution of narrowly
spaced reflectors, the high-frequency condition translates into the familiar Rayleigh
criterion for resolution (i.e., bed thickness > wavelength/4). However, the theory does
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not fail catastrophically if the high-frequency condition is not exactly met (Bleistein
et al., 2000).

Mathematically, the high-frequency approximation implies the use of asymptotic
methods to create high-frequency formulations of the forward and inverse problems
(Bleistein, 1984; Bleistein et al., 2000). The Born approximation, as mentioned ear-
lier, is a small-perturbation assumption that is compatible with the high-frequency
assumption. The WKBJ approximation discussed in Chapter 2 is another fun-
damental tool in the forward modeling. WKBJ-approximate Green’s functions are
high-frequency solutions to the wave equation that assume that the properties of
the medium are slowly varying over several wavelengths. The Kirchhoff approxi-
mation is an assumption relating high-frequency incident and scattered fields. The
method of stationary phase is an important tool for finding approximate analytic
solutions of Fourier-like integrals and for testing inversion formulas.

It should be noted that linearization and the high-frequency assumption are present
in migration, just as they are in inversion. A “small-perturbation” assumption is
hidden within the migration process. Furthermore, migration is based on the ideas
of wavefronts, reflectors, and raypaths—all concepts of high-frequency wave theory.

4.1.4 True amplitude

The aim of a Kirchhoff inversion is to use amplitudes in seismic reflection data in or-
der to invert for a physical parameter at the position of reflectors, e.g., the reflection
coefficient. Amplitudes in seismic reflection data are usually influenced by a vari-
ety of factors (Sheriff, 1975). These include source and receiver factors (e.g., strength
and coupling, geophone sensitivity), geometrical spreading, transmissions, reflections,
attenuation, thin-layer tuning, scattering, and anisotropy, to name a few. The tech-
niques presented below automatically correct the amplitude variations of geometrical
spreading and recover values proportional to the angularly-dependent reflection co-
efficient, provided the uncorrected effects are negligible. These other effects can be
corrected for, if they are quantitatively known.

4.1.5 Migration versus inversion

The words “migration” and “inversion” are, in fact, used to describe related processes.
To some people, seismic migration is strictly an imaging process through which the
seismic data are mapped, or “migrated” into their proper location. To others, the
migration and inversion processes derive maps of local reflectivity from seismic data.
To still others, migration is a method of exploratory data analysis while inversion aims
to make quantitative inferences—to characterize the entire set of models that fit the
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data and are e priori reasonable— about the Earth’s properties. It is now apparent
that all accurate imaging methods can be viewed essentially as linearized inversions
of the wave equation, whether in terms of Fourier integral or direct gradient-based
optimization of a waveform misfit function. People in the exploration community who
practice migration usually are not able to obtain or preserve the true amplitudes of
the data, because of the sequence of processing steps that make up a migration (trace
equalization, gaining, deconvolution, etc). Therefore, they use the traveltime as the
only important parameter and image the reflectors so that the position and shape
of reflectors are more correctly represented. However, there is no attempt to recover
information about the material parameters of the subsurface in traditional migration
procedures.

On the other hand, if we had true-amplitude data, then we could make quantitative
statements about how spatial variations in reflector strength were related to changes
in geological properties. The distinction here is the distinction between imaging
reflectors, on the one hand, and doing a true inverse problem for the subsurface
properties on the other.

The theories in Bleistein em et al. (2000) unify the approach of Kirchhoff-type migra-
tion/inversion algorithms, and provide the exact expression for the weighting factor
needed to recover the medium parameters as well as an image of structure, subject
to the assumed underlying model of forward propagation.

4.1.6 Other geophysical concepts

A common-offset gather consists of a collection of seismograms whose respective
source-receiver separation is a constant value (offset) on all traces. In this thesis,
I only consider flat datum surface. In this case, we can select one distinguished
direction, say, &;-direction, as the orientation of the common-offset vector. The source
and receiver positions are then written as,

Tg = ms(fl - Ihl7§2)7 wg = wg(fl + |h|7£2), (412)

with |h| denoting the constant common-offset.

The common-offset gather is one of the source-receiver configurations used broadly in
the oil industry. Other data collections include the shot record or common-shot
(source) gather—a range of receivers from a single source—and common-receiver
gather—a single receiver from a range of sources.

Band limiting and aperture limiting of data The bandlimited nature of the in-
verse problem can be caused by many factors. These include the frequency response
of the seismic source and receiver, the degree of coupling between the source/receiver,
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Fic. 4.1. Graphical representation of the “stationary triple” composed of the source
position &,, receiver position x4, and reflection point & on the reflecting surface
(Bleistein et. al., 2000).

the propagating medium “earth filter,” and anelastic filtering. Because of the limita-
tions imposed by the high-frequency assumption, the ability to resolve structures of
a particular length scale is limited by the frequency band that is available.

In addition to the bandlimiting in the frequency domain, the recording geometry
introduces a limitation in the wavenumber domain. The aperture limiting may also
degrade the resolution of the image created by inversion, and it gets worse as the open-
ing angle between the incident ray and the reflected ray increases—which typically
occurs as the offset between source and receiver increases.

4.2 The approach of Bleistein-Cohen

In this section, a brief review of the derivation of the the approach of Bleistein-Cohen
is provided. The Bleistein-Cohen approach of Kirchhoff inversion (Bleistein et al.,
1987; Bleistein, 1987; Bleistein et al., 2000), is based on WKBJ ray theory and high-
frequency linearized inversion. The derivation of the theory involves the asymptotic
ray theory, perturbation theory and the method of stationary phase. In the imple-
mentation, the method uses specific spatial weights in the diffraction stack migration,
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and returns an angular dependent reflection coefficient, in addition to a background
model-consistent reflector map of the structure interfaces. The computation time for
such an approach is slightly greater than that needed for kinematic prestack depth
migration, but it introduces a practical method for estimation of quantitative infor-
mation on reflectors (namely, reflection coefficient or impedance contrast).

4.2.1 Review of the derivation

The Bleistein-Cohen inversion procedure starts from a linearized forward modeling
formula and derives a pseudo-inversion of that formula. The linearized forward mod-
eling formula derives from the acoustic Born theory with WKBJ approximation. It
is written in terms of the unknown material parameters that describe the process of
generating the seismic data. The inversion uses a multidimensional stationary-phase
method to solve for the unknown material parameters.

In the Bleistein-Cohen theory, the unknown material parameter is the acoustic wave-
speed perturbation, a(x), a measure of the difference between the background velocity
c(x) and the true velocity v(x):

~1. (4.2.3)

The Bleistein-Cohen inversion starts with the Born-approximate representation of the
recorded scattered wavefield, ug, in terms of the velocity perturbation a(z),

afx)
c*(z)

Here, u;(x4, x5,w) is the incident wavefield and g(zg, &5, w) is the free space Green’s
function corresponding to the point source at x;. In this forward modeling formula,
a term that contains the product of the field ug and the perturbation a(zx) is ig-
nored. This corresponds to the linearization of the forward scattering problem that is
identified as the Born-approximation. It assumes moderate variation of the medium
parameter; Bleistein et al. (2000) has shown how to substantially remove this restric-
tion.

us(eg, T5w) = w2/ d3z ur(zg, Ts,w)g(Tg, Ts,w). (4.2.4)
D

The next step is to invoke high-frequency asymptotics and apply the WKBJ (ray-
theoretic) Green’s function. The approximations take the form,

g(x, T, w) ~ A(x, 20)e™(T:To) = inSBNwW)¢(T,T0)/2, (4.2.5)

Here, 7(x, o) is the traveltime from x, to = and A(z,z,) is the corresponding
amplitude of the ray-theoretic Green function, derived by solving, respectively, the
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eikonal equation (2.2.2) and the (first) transport equation (2.2.3); ¢(x, o) is the
KMAH index from &y to  due to the existence of caustics.

Substitution of the WKBJ Green’s functions into equation (4.2.4) yields the scattered
wave field at @, for the point source at x,,

z, &) u(w, &, w)e ! TE), (4.2.6)

us(Tg, To,w) =~ W F / d3
where

¢(x,§) = 7(x, 25(£)) + 7(x4(£), z),

a(w,ﬁ) = A(w,ws(s))A(wg(g),m), (427)
(z,€,w) = e~ iTSBN(w)[P(T, T 4)+0(Lg,L)]/2

The exponential term pu(x, €, w) accounts for the phase action of caustics.

Bleistein et al (2000), Chapter 5, contains a detailed derivation of the inversion of
(4.2.6). By diffraction theory, all points on the reflecting surface (not just a single
specular point) act as Huygens sources that contribute to the field observed at a
receiver. For a given source-receiver pair, and a given point on the reflector, the
integrand is the product of source strengths times down-going wave times the up-
going wave. Integrating over all the source/receiver pairs, and relating the down-going
and up-going amplitudes, phases, and obliquity, and reflection coefficients, yields the
inversion for reflectivity function

1 2 lh’ y,
) = / fa(y,‘s)lqub(y, l/ i duw

(4.2.8)
'e—iw¢(y’€)ﬂ(y, 6, w)us(:z:g, Ts, w)'
Here,
vy¢(y’ g) aps + Dy
h(y, €) = det B%VW(% &) | = det agj(ps + py) (4.2.9)
agvy¢(ya £) a_é?(ps + pg)

is the Beylkin determinant. In the theoretical development, w?|h(y, £)| is the Jacobian
of transformation between the variables (w, £) and a local wavenumber, k, defined by

k=wVT(y,§).
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Equation (4.2.8) holds for quite arbitrary migration configurations because it contains
the configuration-dependent parameter £ and the Beylkin determinant, which reflects
the influence of the configuration on the inversion. The reflectivity function S(y) has
been shown (Bleistein, 1987; Bleistein et al., 2000) to consist of bandlimited delta
functions having peak amplitudes occurring at the location of the reflector, S, with
size scaled by the incidence angularly-dependent reflection coefficient. That is,

cosf, [
~ R s , f \ 421
BrEAK R(y,9 )7rc(y) /_oo F(w)dw or y on S ( 0)

where 6; is half of the angle between the directions of rays to the source-receiver pair
at reflection point y.

4.2.2 Multiple Kirchhoff inversion

The structure of equation (4.2.8) allows us to alter the weighting factor and estimate
reflection angles or the actual reflected rays. This can be done by simultaneously
applying the diffraction stack with different weights on the same data and the same
diffraction surfaces. Bleistein (1987; 1987) was the first to recognize this idea and
to apply it to obtain reflection angles in addition to reflection coefficients. There, a
‘double diffraction stack’ technique is applied to estimate the reflection angle from
two simultaneously performed diffraction stacks. Tygel et al. (1993) introduced
the general name multiple diffraction stack for this type of technique. Hanitzsch
(1995) applied this idea to 2.5-D amplitude-preserving Kirchhoff migration/inversion,
and found valuable applications in AVO and AVA analysis.

Taking into account the relationship |V,¢(y,&)| = 2cos8;/c(y), and introducing an
extra divisor of |V,¢| in (4.2.8), Bleistein et al. (1987) found the following inversion
operator,

! |h(y, )|
= — [ g2
W) = 5 [ e eP
(4.2.11)
[ iwdw e WOy, £, w)us (g, 25, w).
B1(y) predicts the reflection coefficients at the reflector, S,

o0
BiPEAK ~ R(y,ﬁs)/ F(w)dw, for y on S. (4.2.12)

—00

From the ratio of the outputs of 3(y) and 3,(y), we can estimate cos f; without ever
having determined the specular source-receiver pair that produced the distinguished
value 6,. This, in turn, allows us to determine R(y, 6;) from the output. In Chapter 5,
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my implementation of Kirchhoff inversion is actually based on (4.2.11).

In fact, instead of dividing the weight in 5(y) by |V,¢|, we can multiply by |V,4|,
which leads to,

h .
pav) =$/ deLEz—:gl/ it dw e “0Y ) p(y, €, w)us (g, sw) (4.2.13)
and
BoPEAK ~ R(y,&)%e— /_: F(w)dw, for y on S. (4.2.14)

The ratio of the two outputs, 8; and S,, can as easily be used to determine cos§; as
the ratio proposed above.

4.3 Beylkin determinant

One difficulty in the implementation of equations (4.2.8), (4.2.11), and (4.2.13)
for general media and non-zero offset has been the estimation of Beylkin deter-
minant h [equation (4.2.9)]. For the common-shot or common-receiver geometry,
Ops/0& = 0ps/0& = 0 (common-shot) or Opy/0& = Opy/0€; = 0 (common-
receiver), the Beylkin determinant can be simplified and computed efficiently either
by direct numerical approximation of (4.2.9) or by rewriting (4.2.9) in terms of ray
quantities. Implementations of common-shot/receiver inversion for 2-D, 2.5-D and
3-D have been carried out (Docherty, 1987a; Docherty, 1991; Dong et al., 1991; Sun
& Gajewski, 1997).

For the common-offset geometry, each element in the Beylkin matrix contains a sum
of quantities from the source and the receiver. Bleistein et al. (2000) decompose
the Beylkin determinant into eight terms, some of which can be recognized as be-
ing the Beylkin determinants for the common-shot and common-receiver geometries.

Unfortunately, the remaining terms, which contain the cross products %%"’- X 63—?2;‘1 and

Z—IZ;"— X %%, are not easily simplified. Only solutions in simple background medium
are found. Xu (1996) carried out common-offset inversion in a depth-dependent back-
ground medium. Lateral homogeneity allows him to write the traveltime, amplitude

and weights as functions of offset and depth.

Cerveny and de Castro (1993) proposed a method for computing the Beylkin deter-
minant by dynamic ray tracing. Appendix A contains a review and discussion of it.
The derivation includes finding the mixed partial derivatives with respect to the dis-
tance vector from the two-point eikonal traveltime expression. The mixed derivatives
are found to be written in terms of the ray-centered basis vectors and geometrical
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spreading matrix @ [see (A.1.20) and (A.1.17)]. Then the Beylkin determinant can
be written in terms of these matrices and the source-receiver configuration matrix
by the chain rule. However, one assumption in the derivation of the key formula in
(Cerveny & de Castro, 1993) leads to a computationally intensive implementation.
In Appendix A.2, I point out the problem of that assumption and provide my own
derivation of the correct expression of the Beylkin determinant. In summary, the
Beylkin determinant (4.2.9) can be expressed as the following:

psT+pgT
h(z,§) =det | _4r . umr | (4.3.15)
B, +B,
where

~ MT  ~MT - M ~MT ~.T

B, =T, H(zx,)I Qzl’T(ms,m)I H, (x),

.~ MT  ~MT - M ~MT ~.T

B, =T, Hy(z,)I Q" (x4, )1  H, (). (4.3.16)

Here, T’y and I', denote constant configuration matrices (A.2.21). Q. and Q,,
are 2 X 2 point-source geometrical spreading matrices, which are quantities in the
computation of the Green’s function amplitude [see equation (2.2.7) in Chapter 2]. H
and H ¢ contain the rotation and projection of rays centered in Cartesian coordinates

at source and receiver [equation (2.2.8)]; 1 M is a 3 x 2 matrix [see equation (A.1.15)];
it is part of the 3 x 3 identity matrix. Detailed explanations of the definitions of the
quantities are included in Appendix A and Section 2.2.

Equations (4.3.15) and (4.3.16) are completely general. They hold for arbitrary

source-receiver configuration and arbitrary data acquisition surface. For specific

source-receiver measurement configurations along a particular data surface, equations

(4.3.15) and (4.3.16) can be simplified further. Appendix A.3 contains an expression
~M ~ M . ege

for I'y and I'j . For a planar data acquisition surface, and common-offset configura-

tion, we have fiw = f;w =" Then equation (4.3.16) becomes

B, = H,(2,)Q; " (zs, x)H. " (x)

~ MT _ ~ MT
B, = Hg(wg)Qz,;T(mg,m)Hg (). (4.3.17)

Equation (4.3.17) is the expression of the Beylkin determinant that will be imple-
mented in next chapter. The advantage of this expression is that it can be computed
directly from dynamic ray tracing. @, , and Q, ; are the geometrical-spreading matri-
ces in the determination of the amplitudes. There is no need to introduce computation
of new quantities. Thus, the computing times for the elements in Beylkin matrix bring
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only marginally extra cost to the dynamic ray tracing. This method does not require
the numerical measurements of any elementary area connected with the ray field, or
the determination of the derivatives of traveltimes, which play an important role in
some other methods (Schleicher et al., 1993; Sun & Gajewski, 1997).

For a homogeneous medium, we have Q, ((x,,x) = cr,I, and Q, ,(xy,x) = cryl.
So, for a plane datum surface and constant background wavespeed, the Beylkin de-
terminant, h, can be considerably simplified to,

b (1+ cc;s 0)x3 [(l + l) . (lz + iz)] . (4.3.18)
c Ts Tg Ts Tg

Here, 6 is the angle between the directions of rays to the source &, and to the receiver
x4 at point . Note that 6 is twice the angle of 6, in equations (4.2.10), (4.2.12) and
(4.2.14). Equation (4.3.18) agrees with the corresponding result in Bleistein et al.
(2000).

4.3.1 Comparison with weights of Schleicher, 1993

Schleicher et al. (1993) proposed an alternative expression for the weights in terms
of spatial derivatives of traveltimes in a regular grid. In that approach, the weights
can be computed by using Green’s function computation methods performed in reg-
ular grids. It is suitable for planar configurations—shots and receivers on a surface,
e.g., the Earth’s surface. We should note that the weights in Schleicher et al. (1993)
contain differences in the second derivatives of traveltimes. Green’s function compu-
tation methods that compute only traveltimes (e.g., finite-difference solutions of the
eikonal equation or shortest-path methods) are not suitable because of the numerical
instability of the computation of the second derivatives. However, efficient meth-
ods that compute both traveltimes and their derivatives should, in principle, be well
suited. The inversion formula in Schleicher et al. (1993) is the same as the Bleistein-
Cohen inversion formula except for certain extensions. Schleicher et al. commented
that the exponential term accounting for caustics was not considered in Bleistein et
al. (1987), and they discussed the extension to isotropic elastic inversion. However,
Bleistein-Cohen inversion can account for caustics as explicitly included in equations
(4.2.6), (4.2.8), (4.2.11) and (4.2.13). Schleicher et al. also commented that the
number of ray-branch caustics should be computed by dynamic ray tracing. That is,
when caustics are under consideration, dynamic ray tracing is unavoidable. On the
other hand, Sun and Gajewski (1998) provide a method of compute the ray-branch
caustics from the second-order mixed-derivative matrix of the traveltime function.
Nevertheless, among various forward modeling methods, dynamic ray tracing gener-
ally provides the better compromise between amplitude precision and computational
efficiency. Thus, expressions (4.3.15) through (4.3.17) are more likely to give better
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approximation than the second-order derivatives of traveltime in (Schleicher et al.,
1993).

4.4 Special case — zero-offset inversion

A number of simplifications occur when the offset between the source and receiver is
zero. For this geometry

ﬁs(ms) = ﬁg(wg)’ ﬁs(w) = f{y(w)a QZ,s(ws) :B) = Q2,g(wy’w)’
| . . _ 2cosé,
ps(m) - pg(m) - @63( )7 IVIL‘¢( ’£)| C((I}) .
Therefore,
_ 8 @
o= C(m)d t[HS(ms)Qz_,;T(ws’m)fIiw ()
- % - det(H ,(z,)) - det(Q5 T (zs, ). (4.4.19)

In this case, the inversion formula for g, (y) is

Bi(y) = @/ d?¢ cos as/ iw dw e‘i“’"’(y’g)u(y,ﬁ,w)us(:ng,w,,,w), (4.4.20)

with as being the initial take-off angle at the source(receiver).

Note that (4.4.20) holds for a general medium. The medium is not assumed to be
a homogeneous. Equation (4.4.20) tells us that the characteristic part of the weight
function for zero-offset inversion is just cos as, a slowly varying factor ranging between
zero and one.

4.5 Conclusions

The Beylkin determinant in Kirchhoff inversion is formulated in terms of ray-theoretic
quantities. Thus, the weight function can be totally determined by dynamic ray
tracing. The advantage of writing the Beylkin in terms of ray data is that it can
be easily implemented by dynamic ray tracing. This method does not require the
numerical measurements of any elementary area connected with the ray field, and/or
the determination of the derivatives of traveltimes which play an important role in
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some other methods that appeared in the recent issues of Geophysics.
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Chapter 5

IMPLEMENTATION OF KIRCHHOFF INVERSION

In this chapter, I describe the computer processing for common-offset Kirchhoff in-
version and I also carry out several examples to explore different characteristics.

5.1 True amplitude synthetic data

As described in the previous chapter, the Kirchhoff inversion formula is based on
model-consistent forward modeling. The recorded seismogram ug(zgy,x,,w) is as-
sumed to be true amplitude, containing the effects of geometrical spreading and
reflection/transmission loss due to the subsurface geological properties. The weight-
ing factor in the inversion formula removes these effects as well as the source-receiver
effects, and recovers the angular-dependent reflection coefficient. In this chapter, to
implement and test the theory, I do forward modeling of data that contain the true
amplitudes.

CSHOT (Docherty, 1987b) calculates true-amplitude shot data in 2.5-dimensional
layered acoustic media. The source wavelet is zero phase. At a receiver, the source
wavelet is scaled by an amplitude factor determined from spreading, reflection, and
transmission. CSHOT also takes into account phase shifts due to post-critical reflec-
tions and caustics.

The ideal forward data has an infinite spectrum in the frequency domain. But in
practice, the data can only be of finite bandwidth. With a zero-phase source wavelet,
the reflection events are sinc-like symmetric wavelets with peaks at the location of
the exact two-way traveltimes. After diffraction stacking with the proper weighting
factor, I expect that the migrated/inverted section has wavelet peaks located at the
true depths of the reflectors, scaled by the angular-dependent reflection coefficients.

The peak amplitudes of the synthetic data produced by CSHOT are governed by
geometrical spreading, angular-dependent reflection and two-way transmission coeffi-
cients. Specifically, the peak amplitude for the primary reflection event from the nth
reflector can be written as,
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n—1 1

Apeak,n ~ -Ac X Rn(en) H Ttwaway,i(ei) X 5,
=1

1=

(5.1.1)

Here G is the spreading factor due to the ray propagation. The scaling factor A,
is determined by parameters such as frequency spectrum of the source wavelet, the
number of sampling points and wavelet length. The study of the exact expression for
the A, is out of the scope of this thesis. However, in each experiment the factor A,
is the same for all the reflection events and all the traces. In particular, it remains
unchanged from the zero-offset experiment to the nonzero-offset experiment, and is
independent of the physical velocity model. For example, in the first example in
Section 5.3 (Figure 5.2 and 5.5), factor A, equals to 54.678 for 701 samples per trace
at 2-ms sample interval, 80-ms wavelet length and the source wavelet of 5~45 Hz in
frequency spectrum with the lower bound spanning from 5 up to 15 Hz and the upper
bound spanning from 35 down to 45 Hz.

In equations (4.2.8), (4.2.11), and (4.2.13), the input data first pass through a fre-
quency filter iw, which is equivalent to a normal differentiation in the spatial domain.
In this process, a scaling factor that results from the specific software applied. In
fact, there is no need to look for the exact value of this scaling factor. Instead, I will
seek the overall scaling factor that results from the combination of the const from
the synthetic input data and the const from the frequency filter. This can be done
by performing a zero-offset inversion to get the overall scaling factor, and then use
this scaling factor in the nonzero-offset inversion to get an estimation of the reflection
coefficients.

5.2 Inverse processing sequence

For the common-offset inversion formula in (4.2.11), the computer process is similar
to a traditional kinematic Kirchhoff migration algorithm. It proceeds as follows:

1. Preprocessing of the data. The w integration in (4.2.11) represents a filtering
and inverse transform of the trace ug(x,, €4, w). The frequency filter iw behaves
asymptotically like a normal derivative operator in the spatial domain. Because
this is independent of the £ integration, the computation can be done as a
preprocessing step.

2. Computation of traveltime and amplitude tables for each source-receiver pair
(midpoint). The information needed in the computation of the weighting factor
in (4.2.11) includes traveltime, amplitude, and Beylkin determinant at each grid
point for each source/receiver point. For a 3-D nonzero common-offset inversion,
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the Beylkin determinant is computed from a 3 x 3 matrix with each element
containing a sum of quantities from the source and the receiver [see equations
(4.3.15), (4.3.16) and (4.3.17)]. The nine elements in the Beylkin matrix for
each source/receiver can be determined by eight quantities . These quantities
can be computed by the dynamic ray tracer described in Chapter 4. Therefore,
tables of traveltime, amplitude, and Beylkin matrix elements from each source
and receiver are pre-computed and stored in files.

. The aperture A, which consists of a 2-D grid of points in the £-plane, and the
target zone, V, of the image (the part within the background model for which
the Kirchhoff inversion shall be performed) are determined.

. Summation over trace locations. The input data after preprocessing Step 1, is
read in trace by trace. For each trace, tables of the traveltime, amplitude and
Beylkin matrix at the source and receiver location are input or interpolated
from neighboring tables, if they are not already in the memory. For each trace,
the following steps are repeated for every subsurface point ¥ within target zone
V that falls inside the aperture.

(a) The diffraction traveltime is computed at each y. It is the sum of travel-
times along both ray branches to the source and the receiver specified by
source-receiver configuration. The diffraction traveltime at y will give a
time index in the trace.

(b) The weighting factor at each output grid point that falls inside the aper-
ture is computed. Usually, the table spacing is sparser than the image
spacing and the table grid points are not coincident with the output grid
points. Linear interpolation is used to determine the weighting factor at
each output grid point for that particular source point.

(c) The data value in the trace is obtained by a diffraction traveltime index
and then linearly interpolating between two adjacent samples on that trace.
The contribution to the inversion sum from that particular trace location
is obtained by multiplying this value with weights.

Finally, summing these contributions over all the possible midpoints (traces)
that meet certain anti-aliasing criteria, we obtain the angularly dependent re-
flection coefficient at the particular output point.

5.3 Example 1 — horizontal-interface model

The first example provides a simple test of positioning and amplitude accuracy. The
model consists of four constant-velocity layers, as shown in Figure 5.1. Figure 5.2
shows the zero-offset model data produced by CSHOT. It consists of 200 x 200 traces,
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Depth (km)

Fi1G. 5.1. Velocity model consists of four constant-velocity layers with three
horizontal interfaces. From top to bottom, the layer velocities are 2, 3, 5 and 7.5
km/s.

X (km)

Traveltime (s)

F1G. 5.2. Zero-offset synthetic data of horizontal-interface model.
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Fi1G. 5.3. Output §; for the zero-offset data.

with 701 samples per trace at 2-ms sample interval and 20-m trace interval in both z
and y directions. Here, the synthetic data have amplitudes that are proportional to
those influenced by geometrical spreading, reflection, and transmission.

Figure 5.3 shows the result for 8;—the local reflectivity function. The inversion results
for R and the reflector depths are compared with the exact values in Table 5.1. The
scaling factor is computed by taking the ratio of the exact and computed reflection
coefficients. The actual scaling factor at the three interfaces is not important. The
significant result is that they are close to each other. That is, the ratios of computed
reflection coefficients for the three interfaces are close to the correct values. From
the results in the table, we will use the average scaling factor to be 29.04 for the
nonzero-offset inversion. This factor is a combination of the factor A, in CSHOT
amplitude (5.1.1) and a scaling factor from the frequency filter iw in (4.2.11).

Interface | True d(epth) (km) | Inversion d (km) | True R, | Inversion R; | R;/R;
1 0.4 04 0.2 0.006879 29.07
2 0.7 0.7 0.25 0.008608 29.04
3 1.2 1.2 0.2 0.006891 29.02

Table 5.1 True and inversion results for reflection coefficients R.
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(a) first interface
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1 51 101 151 201
X (traces)

F1G. 5.4. Comparison between theoretical reflection coefficients (dashed) and peak
amplitudes (solid) of zero-offset inversion.

68



Multi-valued Green’s Function

o
~

Traveltime (s)
o
(0]

1.24

Fi1G. 5.5. Synthetic data with offset= 0.5 km.

In Figure 5.4 the amplitudes along each reflector are picked and compared to exact
reflection coefficients. Note that close to the border, the amplitudes are influenced
by the interference with the migration smiles due to the limited aperture. In the
middle of the upper reflector, the amplitudes are slightly affected by a migration
smile from the lower reflector. Since the smiles from deeper reflectors have larger
radius, the degraded amplitudes move in somewhat on the second reflector compared
with that on the first reflector. Apart from these artifacts, the match between exact
and estimated values is good.

Figure 5.5 shows the synthetic model data with offset= 0.5 km produced by CSHOT
for the same velocity distribution. The inversion produces two outputs: for 8; and Ss.
Figure 5.6 shows the result for ;. The amplitudes in the two outputs should differ
by the factor cos 8, where 8 is the specular reflection angle. Tables 5.2 and 5.3 show
comparisons of exact values and inversion results for R and 6 where cos  is obtained
by computing the ratio of R and Rcosf. Therefore, no scaling factor is applied in
the computation of 8. Note in Tables 5.2 and 5.3 that the error in the calculation of
cos @ is much less than that of R and Rcosf. Because the processes for computing
B1 and B, are similar, their errors tend to have the same trend and their ratio is more
accurate than is either of them, individually.
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Depth (km)

Fi1G. 5.6. Output 3, for synthetic data with offset= 0.5 km.

Interface | True d(epth) (km) | Inversion d (km) | True R, | Inversion R; | Error (%)
1 0.4 0.4 0.354 0.3497 1.41
2 0.7 0.7 0.353 0.3468 1.70
3 1.2 1.2 0.229 0.2265 1.00

Table 5.2 True and inversion results for reflection coefficients R.

Interface | True 6 (deg) | Inversion 8 (deg) | Error (%)
1 64.0 63.98 0.03
2 48.67 48.92 0.51
3 33.56 33.62 0.18

Table 5.3 True and inversion results for specular angle 6.

Migration smiles are visible at both ends of the image section in Figures 5.3 and 5.6.
They are caused by the limited aperture of the seismic data acquisition. In Figure 5.7
the amplitudes along each reflector are picked and compared to exact reflection co-
efficients. Similar as in the zero offset case, amplitude distortions due to migration
smiles are observed close to the border. Again, apart from these artifacts, the match
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(a) first interface
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Comparison between theoretical reflection coefficients (dashed) and peak
amplitudes (solid) of common-offset inversion, (offset=0.5 km).
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F1G. 5.8. Comparison between theoretical reflection angles (dashed) and the
computed results (solid) from common-offset inversion.
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3

FiG. 5.9. Velocity model consists of four constant-velocity layers with one dipping
reflector and two horizontal interfaces. From top to bottom, the layer velocities are
2,3,5and 7.5 km/s.

between exact and estimated values is good. Figure 5.8 shows the comparison between
the estimated reflection angles and their exact values.

5.4 Example II — dipping overburden

In this example, we test the positioning and amplitude accuracy for a dipping overbur-
den model. The model consists of a dipping overburden and two horizontal interfaces,
as shown in Figure 5.9. Once again I first perform a zero-offset inversion to find the
scaling factor for model data. Figure 5.10 shows the zero-offset synthetic model data
produced by CSHOT. It consists of 200 x 200 traces, with 1001 samples per trace
at 2-ms sample interval and 20-m trace interval in both z (in-line) and y (off-line)
directions. Because of the varying geometrical spreading, the amplitude for each re-
flection event is not uniform along any given reflection. Figure 5.11 shows the result
for 1, and Figure 5.12 shows the comparison of exact values and inversion results for
R. The scaling factors obtained from the three interfaces range close to 29.1. I will
use this number as the scaling factor for nonzero-offset experiments.
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F1G. 5.10. Zero-offset synthetic data of dipping-overburden model
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F1G. 5.11. Output 8, for zero-offset data in Figure 5.10.

75



Lan Wang

(a) first interface

c 0.3
.9
§ 0.2 e Ay e XLt tinn T 4 =
@
c 0.14
0 T
1 51 101
X (traces)
(b) second interface
c 0.34
.2 - —~—
8 0.2-
i)
@ 0.1
0 T
1 51 101
X (traces)
(c) third interface
c 0.3
S
3 0.2
@
o 0.1-
0 T
1 51 101
X (traces)

F1aG. 5.12. Comparison between theoretical reflection coefficients (dashed) and peak
amplitudes (solid) from zero-offset inversion of the data in Figure 5.10.
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F1G. 5.13. Synthetic data with offset=0.4 km.
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Fi1G. 5.14. Output (5, for nonzero-offset data.
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F1G. 5.15. Comparison between theoretical reflection coefficients (dashed) and peak
amplitudes (solid) of common-offset inversion.
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F1G. 5.16. Comparison between theoretical reflection angles (dashed) and the
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computed results (solid) from common-offset inversion.
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Figure 5.13 shows the model data, produced by CSHOT for the same velocity dis-
tribution with offset=0.4 km. Figure 5.14 shows the result for £;. In Figure 5.15,
the amplitudes along each reflector are picked and compared to the exact reflection
coeflicients. For this model, I computed inversion sections for both 8, and f,, and
computed cos # from the the ratio of R and Rcosf. Figure 5.16 shows a comparison
of the estimated reflection angles along each reflector with the exact angles. Note
that the errors in cosf are much smaller than those of R and Rcosf. Because the
processes for computing 8; and [, are similar, their errors tend to have the same
trend and their ratio is more accurate than is either of them, individually.
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Chapter 6

CONCLUSIONS AND FUTURE WORK

6.1 Summary of major contributions

In this thesis, I studied the ray-theoretic modeling and true amplitude Kirchhoff
inversion. Accurate and efficient forward modeling was a key part of 3-D prestack
migration/inversion, among other applications. True amplitude Kirchhoff inversion
aims at estimating angular-dependent reflection coefficients, and to calculating the
corresponding reflection angles from seismic data.

In Chapter 2, I developed a ray-theoretical modeling method that uses smoothing of
the physical model, dynamic ray tracing and wavefront construction (WFC). Follow-
ing are the main conclusions:

1. The use of smoothing applied to the discontinuous model stabilizes the ray
tracing while maintaining sufficient accuracy on transmitted traveltime and
amplitude coefficients for our inversion technique. The assumption of general
smooth gridded model does not allow for transmission coefficients due to the
large velocity contrast. A method of re-introducing the transmission coefficient
to the smooth amplitude solution is proposed and demonstrated to produce
accurate angular transmission coefficients and therefore provide accurate ray
amplitude.

2. Analytic ray tracing in tetrahedral-based model has its applications in travel-
time calculations. However, the tetrahedral-based approach produces unaccept-
able amplitudes due to the difficulty in efficiently obtaining accurate amplitudes
across internal interfaces.

3. The method efficiently finds all the possible arrivals and is capable of calculating
all typical ray-tracing parameters such as traveltime, ray amplitude, initial take-
off angles and slowness vectors. It can produce all the quantities involved in
Kirchhoff inversion formula.

4. The wavefront construction procedure based on proper interpolation of new rays
makes dynamic ray tracing more efficient and results in a sufficiently dense and
consistent ray coverage throughout the model, even in areas of large geometrical
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spreading. When accurate amplitudes are required, I believe that this is a
competitive method for development of ray-theoretic wavefields.

5. Maslov asymptotics offers a valid amplitude solution at caustics where the con-
ventional asymptotic ray theory breaks down. The stationary-phase analysis of
the Maslov integral representation shows that the asymptotic Green’s function
near caustics is larger than the solution away from caustics, largely by being of
higher power in w. This suggests us that we can simply zero out the contribution
from the neighborhood of caustic points in the Kirchhoff inversion process.

The implementation of this ray-theoretical forward modeling algorithm is demon-
strated in Chapter 3 on three progressively more complex earth models. The adapt-
ability of the method was demonstrated by evaluating the wavefield in regions of
extreme geometrical spreading, such as near a salt wall, in sub-salt regions, and in
the presence of a low velocity lens.

The approach of Bleistein-Cohen to Kirchhoff inversion is reviewed in Chapter 4. It
dictates weights needed in diffraction stack migration in order to account for am-
plitude loss in seismic data due to geometrical spreading and other problems. The
weights are formulated in ray-theoretic notation, which is well suited to an efficient
computer implementation that uses dynamic ray tracing.

The applications of true amplitude Kirchhoff inversion to synthetic models show that
angle-dependent reflection coefficients are accurately estimated. The corresponding
reflection angles are accurately estimated from seismic data by a technique that uses
two simultaneous diffraction stacks. It can straightforwardly be implemented in the
true amplitude Kirchhoff inversion.

6.2 Future work

The success of the 3-D prestack migration/inversion methods depends strongly on
the computation of Green’s functions. In this thesis, I have limited the forward
modeling to a method that uses smoothing of physical model, dynamic ray tracing and
wavefront construction. This choice of ray-tracing method is made on an “objective-
oriented” basis. Nevertheless, the method should be compared with other ray-tracing
algorithms such as ray tracing in layered structures. The latter contains interfaces and
therefore provides a more straightforward treatment of the transmission coefficients.

The true amplitude Kirchhoff inversion, especially in 3-D, is still in an early develop-
ment phase. More testing should be performed using the technique in Chapter 5.

There are several assumptions that preclude the direct application of the true am-
plitude Kirchhoff inversion in practice. For example, the seismic data are assumed
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to contain only compressional primaries from a lossless, isotropic elastic earth. In
practice, multiple reflections, mode conversions, attenuation caused by lossy material
and amplitude, and moveout distortion caused by anisotropy, causes amplitudes to
differ from those needed for the inversion theory in its current form. In addition, the
high-frequency approximation fails to account for the presence of fine detail in the
background velocity model. Removing these limitations requires further development.
Nevertheless, the analysis of true-amplitude Kirchhoff inversion is of increasingly great
interest due to its contribution to the exploration success.
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Appendix A

BEYLKIN DETERMINANT EXPRESSION BASED ON DYNAMIC
RAY TRACING

This appendix contains a review and discussion of the computation of the Beylkin
determinant in Cerveny and de Castro (1993). Derivation details of some key results
in that paper are included here in order to make this thesis self-contained on this
subject.

In this appendix, I use several 2 X 2 and 3 x 3 matrices. To distinguish between them,
I use the circumflex “above the letter for 3 x 3 matrices, and boldface letters for 2 x 2
matrices and vectors. If the same letter is used for both 2 x 2 and 3 x 3 matrices,
e.g., M and M, matrix M denotes the 2 x 2 left upper submatrix of M,

M11 M12 M13
) My M
M:(le Moy, Mzs), Mz(M;: M;z)
Mz Mz Msj

As discussed in Chapter 2, several coordinate systems are involved in ray tracing. We
use the symbol (z) as a superscript to specify the vectors and matrices in Cartesian
coordinates, and the letter itself denotes quantities in ray-centered coordinates.
For example, p®)(z) denotes the slowness vector at point « in Cartesian coordinates,
while p(z) denotes the slowness vector in ray-centered coordinates.

A.1 Two-point Eikonal and its mixed derivatives

We shall consider a central ray  and two points, S and R, on . Let S’ denote
a point situated close to S, and R' close to R. We are interested in finding an
expansion for the two-point eikonal traveltime from S’ to R', T(R',S’), and its
mixed partial derivatives. The latter plays an important role in the expression of the
Beylkin determinant.

We start with the expression for the traveltime field in thg, vicinity of the central ray
in the form of Taylor series, up to the quadratic terms, (Cerveny, 1995)

- (T)

T(R) = T(R) + " (R, R)p®™(R) + %mT(R’, R (R)=(R,R). (A11)
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R,

es Q

////

F1G. A.1. S and R are points situated on the central ray Q. Point S’ locate close to
S and R’ close to R.

)

Here, p®)(R) is the slowness vector at R in Cartesian coordinates, and M ®) is the

matrix of second derivatives of the traveltime field, i.e.,

~ (z) [T () C
M7 (R) = (axiaxj . 1,J=1,2,3,

A~

= H(RMR)H"(R), (A.1.2)

with M (R) being the second derivatives of traveltimes with respect to the ray-
centered parameters. These are quantities computed by ray-tracing (see Chapter 2).
H(R) is the transformation matrix from the ray-centered coordinates to the gen-
eral Cartesian coordinates, H(R) = (e7, eI, eT), with e, e,, €3 being the orthogonal
basis in the ray-centered system (see Figure 2.1).

Taking the derivatives of the paraxial traveltimes (A.1.1), we obtain the slowness
vector at R',

p@(R) = p?(R) + M* (R)z(R', R). (A13)

Using equations (A.1.3) and (A.1.1), we can express the traveltime from S to R’ in
terms of the slowness vectors at R and R/,

T(R) = T(R) + =" (R, R)p“)(R) + %mT(R', R)[P®(R) - pP(R)]. (A.1.4)
Similarly, the traveltime from S to S’ is
T(S") = T(S) + =" (', 8)p(S) + %wT(S’, )P (S") - p@(S)].  (A.15)
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FiG. A.2. Points S’ and R’ are not necessarily in a plane perpendicular to Q. Points
S" and R"” are the intersects of the ray Q with the perpendicular planes to € that
pass through S’ and R/, respectively.

Now we have found the quadratic approximation of the two-point eikonal traveltime
from S’ to R’ in terms of p*(R’) and p®)(S"),

T(R,S') = T(R)-T(S"

= T(R) - T(S) + 3a" (R, R)p(R) + p(R))

—527 (8, )P + p(5)]. (A.16)

The next step is to express p®)(R') and p{®)(S’) analytically in terms of the displace-
ments, (R, R) and x(S’,S). Recall that the dynamic ray tracing system can be
written as an integral matrix system—the ray propagator matrix, along the central
ray. The propagator matrix is non-singular along the whole ray §2 in smooth media;
therefore, we can connect the solution of the dynamic ray-tracing system along differ-
ent segments of the ray through the propagator matrix. Now, denote the projection
of S’ into the plane perpendicular to Q at S by S”, and the projection of R’ into the
plane perpendicular to by R”. Then the ray-centered components of the displace-
ment and slowness vectors, ¢ and p, at S” and R" can be found in terms of the ray

propagator matrix II(R, S),

(45 - nos (133
(S8 QES)(45)) @

In the 4 x 4 ray propagator matrix II(R,S), Q, and P;, are the solutions of the
dynamic ray tracing system (2.2.7) for the initial condition Q(0) = I, P(0) = 0 with
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0 being the shorthand of initial point, which is often called the telescopic point or
plane wavefront initial condition. Q, and P, are the solutions of the dynamic ray
tracing system for the initial condition Q(0) = 0, P(0) = I, which is referred to as
the point source initial conditions. This initial condition is used in the computation
in Chapter 3. The ray propagator plays a fundamental role in dynamic ray tracing.
As soon as the ray propagator matrix is known, we can find the solution of the
dynamic ray-tracing system analytically for any initial conditions, without repeating
the dynamic ray tracing. For a more detailed explanation of the ray propagator
matrix IT(R, S), see Cerveny (1995). In (A.1.7),

( a1 (R") ] q(S") _ - a1(S") ] ,

W= iy | Ll
(A.1.8)
o -pl(R”) ] "o -pl(S”)
p(R") = - pa(R") | ) p(S") = - p2(S") ] .

correspond to the first two ray-centered components of the displacement and slowness
vectors at S” and R”, respectively. They are the only 2 x 1 column vectors appearing
in this appendix.

The solution of (A.1.7) for the slowness vectors at S” and R” in terms of q is

p(S") = Q7'qe(R") - Q5'Q,q(S")

p(R") = P2Q;'q(R")+(P1— P2Q;'Q,)q(S"). (A.1.9)

Notice that the ray propagator II(R, S) satisfies the symplectic property, i.e.,

HT(_OI é)n:(_oI (I)> (A.1.10)

Substituting equation (A.1.7) into the above, it follows that,
Q; P~ P;Q, = -1, and Q7 P, = P;Q,.
This leads to the following expression,
P, - P,Q;'Q, = -Q;'. (A.1.11)
We shall denote by
M(R,S) = Py(R,8)Q;'(R, 9), (A.1.12)

the matrix of the second derivatives of traveltime field at R, due to the point source

95



Lan Wang

situated at S. Similarly, we define M (S, R) = P,(S, R)Q,"(S, R) which represents
the matrix of the second derivatives of the traveltime field at S, due to the point
source situated at R. Based on the chain rule of the ray propagator matrix IT, it
follows that

II(S,R) =II"Y(R, S),
which implies that
P(S,R) = Qi(R,S), and Q(S,R) = -Q} (R, S).
The above two relations imply
M(S,R) = -Q;'(R,S)Q,(R,S). (A.1.13)

Substituting the results of equations [(A.1.11), (A.1.12), and (A.1.13)] into equation
(A.1.9), we obtain

p(S") = M(S,R)q(S") + Q; q(R"),
p(R") = -Q;'(R,S)q(S") + M(R,S)q(R"). (A.1.14)

Now, introduce the decomposition of M,

M=1"mi" + ot (A.1.15)

(10 (0 0 My
I =101}, M = 0 O Moz |.
00 Mz My Mss

Using the relation g(R") = I:IT(R):I:(R’,R), and equations (A.1.2), (A.1.15), and
(A.1.14), we can express the slowness vector p®)(R’) in terms of the displacements
z(R',R) and z(5', S),

with

pO(R) = p?(R)+H(R)M(R)H (R)x(R,R)
= PR+ HR)I"MER)I" H (R)z(R, R)

+MY(R)H" (R)z(R', R)]
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— p@(R)+ AR MR, 51" H (R)z(R,R)

~1MQ; (R, I HT (S)2(8',S) + MY (R HT (R)z(R, R)]

(w)T

= p@(R)+ MO (R, S)z(R,R) - AT (R,9)x(S",S).  (A.1.16)

Here,
AY(R,8) = H(ST"Q; (R, 9)I" H" (R). (A.1.17)

Similarly, we can obtain the following expression for p(®(S5"),

(z)T

pA(S") = p9(S) + M (S, R)=(S', 5) - (S,R)z(R,R), (A.1.18)

(a:)T

with A® (S, R) = (R, S).

Taking into account relations (A.1.16) and (A.1.18), it is not difficult to obtain the
two-point eikonal traveltime from S’ to R', :

T(R,S) = T(R,5)+ 52" (R, Blp® (R)+p(R)
~207(8', S)[p(S") + p(S)

= T(R,S)

+-;—a:T(R’,R) [2p‘”‘)(R)+M(x)(R,S) (R, R) - 4 (R,5)a(5',9)|

(z)T

—%mT(S” S) [2p<$>(5) + (s, R)x(s", 8) — A7 (S, R)x (R’,R)J

= T(R,S)+z"(R,R)p®)(R) — 27 (S, S)p(S)

307 (R, RN (R, ) (R, R) - 527 (8", )M (8, R)=(S',)

(=)T

—zT(R',R)A"" (R,S)z(S", S). (A.1.19)

With equation (A.1.19), we can determine the mixed partial derivative of the travel-
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time,
/) “ (z)
VZ{B(S',S),:E(R’,R)T(R ; S’) =—-A (R, S) (A120)

This is an important equation for the determination of the Beylkin determinant.

Notice that the kernel of A(I)(R, S), (A.1.17), is the geometrical-spreading matrix
Q. (R, S), which also contributes to the computation of the ray-theoretic amplitude.
We shall see that Q,(R,.S) also plays an important role in the calculation of the
Beylkin determinant.

A.2 Computation of the Beylkin determinant
Consider an arbitrary data surface Sy, parameterized by parameters ¢ = (&1,&2). The
source and receiver locations of the seismic experiment are specified by

T, = x4(&1, &), Tg = Ty(&1,62).

The following notations are introduced for the derivatives of source and receiver po-
sitions with respect to the surface parameters,

e
Gra Gea f
Psz %‘%;2%%22, F:]W

0 0 15)

Using equations (A.1.17) and (A.1.20), we can determine the quantities of the second
and third rows in the Beylkin determinant h(z, £),

D
8
Q
8

i
S

>
Q
8

)

Eh

g
L]

8

(A.2.21)

Q

s

' M ~MT ~ T M - M
V?D,{T(m, z,) = -H,(z)I Q, l(ma, z)I  H,(z,)T, =-B,,

) M ~MT - T - M M
V2, ¢ T, 2g) = ~Hy(@) 1" Q@ (wg, )1 H), () = ~ B (A.2.22)

Here, H,(z) = (ei(z), e3(x), e3(x)) and Hy(z) = (el(x), (), eJ(x)) denote the
ray-centered basis vectors at point &, from the source =, and from the receiver Tg,
respectively. The expression for the Beylkin determinant h(zx, &) then reads

ps(z)T + pg (z)T }

h(z,&) =det | ) A.2.23
(z,§) e [ BMT MT ( )

+ B

s 9
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F1G. A.3. Ray-centered basis vectors at  from the source z,— (€3(x), e5(z), €j(z)),
and from the receiver z,—(e{ (), €%(z), e§(x)). If we choose the same unit vectors for
e5(x) and ej(x), perpendicular to the plane specified by e§(z) and e§(x)—pointing
out of the front of the page in this figure, then the four basis vectors ei(z), e§(x),
ef(x), ej(x) are co-planar.
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To simplify equation (A.2.23), Cerveny and de Castro (1993) made the further as-

sumption that the unit vectors, e§(x) and eJ(x), are the same. This common vector

is chosen to be perpendicular to the plane specified by ej(x) and ej(x). Then the

unit vectors ej(xz) and ej(x) lie on that plane too. That is, the remaining basis

vectors e5(x), ef(x), e3(x), ej(x) are co-planar. See Figure A.3. Let @ be the angle

between the directions of rays to the source x, and to the receiver x, at point z, i.e.,
cosf = e5 (z) - e3(x).

Then the transformation from (e(z), e3(x), e3(x)) to (e3(x), e3(x), e3(x)) can be
explicitly expressed as RH ,(x) = H (x), with R being the rotation transform ma-

trix,
X cosf O sind
R = 0 1 0 . (A.2.24)

—sinf 0 cosé@

~ MT  ~ MT ...
Hence, B, + B, can be simplified as

B + B
(A.2.25)
~MT M ~ MT M __ip| aMT, o o T
= MM H (2 1Y Q1 + TV H () 1 QZ;T] "R+ DH ().
Now, let us re-write the first row of (A.2.23) in terms of R and H :(a:),
1
(z)T ()T — s 9
D +ps C(:l!) [63(22) + 63((13)]
(A.2.26)
1 - T - T
= — 11H
) 100 A @)+ [0,0,11H, (=)
= L poyk+ HE () (A.2.27)
= @Y o (). 2.

Finally, the Beylkin determinant (A.2.23) can be written as

h(z,&) = Ldet[

A MT M ~ MT M ___ 1 aMT
) [Ty H(z,)I Q2,:T + T, Hy(xg)I Qz,gl;T]I ]
c\T

0 0 1
det(R + ) - det H, ()

= —i—(l + cos f)detD, (A.2.28)

c(x)
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where, the 2 x 2 matrix D is given by,

~ MT - M ~MT - M
D =T, H,(z,)I Q3,7 +T, H(x)I Q;)". (A.2.29)

Equation (A.2.28) is one of the key results in Cerveny and de Castro (1993). However,
its derivation depends on the assumption of the coincidence of ej(z) and ei(zx). If
we think in terms of the two normal planes to the rays from @, and x,, then, these
two vectors must lie along the intersection of those two planes. In general, if the rays
have torsion, then the choices of e5(x) and ej(x) at each output point will arise from
different initial values of the same two vectors. Therefore, if we start with particular
initial values at x, and x4, then we cannot guarantee the agreement of e$(x) and
ej(x) at depth. Consequently, at each output point, we must introduce a rotation
from the propagating vectors, e§(x), e5(x) and ef(z), ed(x), to new sets of vectors
for which e3(x) and ej(x) are common. Note that the matrices H,, H, at z, z, and
x4, appearing in (A.2.25) have to be the matrices after rotation. This is an expensive
computation. We can only avoid this extra computation in some cases when the rays
have no torsion. Even in these cases, e;(x) can vary in different ways on the rays
from x, and x,. The governing equation for the propagation of e§(z) is (Cerveny,
1995, equation (4.1.14))

ds

The derivative, dp/ds, is closely related to the curvature along the ray, so that this dot
product can be nonzero, even when the torsion is zero. However, for a homogeneous
medium, this derivative is zero and ej(x) is constant on rays. Thus, if ej(x) and
ej(x) are equal initially, they remain equal, all along the ray. Further, for a depth-
dependent medium and for in-plane rays, we need only take the initial value of e to
be in the out-of-plane direction. In this case, the dot product in (A.2.30) is zero and,
again, ej(z) and ej(x) remain equal if they are taken to be the equal out-of-plane
unit vectors, initially. These are a sparse set of cases with insufficient generality for
the arbitrary heterogeneous media to which the method of this thesis is meant to be
applied. Thus, we conclude that it is necessary to use equation (A.2.23) instead of
equation (A.2.28).

42 = 42 <e§ . ?TZ) p. (A.2.30)

A.3 Source-receiver measurement configurations

Equation (A.2.23) holds for an arbitrary source-receiver configuration and arbitrary
data surface So. Now, we consider specific source-receiver measurement configura-
tions along a particular data surface. Assume the data surface, Sy, is given by the
relation, z3 = f(z1,22). The positions of the receivers along data surface Sy are then
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determined by parametric equations,

Zg (51, fz)
Ty = Tg2(&1,62) . (A.3.31)
f(mgl (617 £2)a .'1392(61, 62))

The position of the sources depends on the positions of the receivers. To simulate
general source-receiver configurations, we use the following general expression for

source positions,
Ta ) _ [ 6n o Tg1(€1,&2) + b
Ts2 az Qaa Tg2(&1,&2) bs

Tz = flauzgr + b1, a2z + b). (A.3.32)

Here a;; and b; (I, J = 1,2) are constants. Specific combinations of a;; and b; can
describe common-shot(receiver) and common-offset configurations. For a common-
shot configuration,

an = a2 = ag1 = ax =0, by = T4, by = z5.
For a common-offset configuration,

a;; =axp =1, a2 = an =0, b, = Az, by = Az,.

Using relations (A.3.31-A.3.32), IA“;W and f‘:w can be written as,

0r, Oz,
—55’1— -32”2- akq¥  Gkdko
~ M - M
I, =| 0zp2 Ozgp |, ', = GKqk1 Q2K ko J
! 9& 9% ’

flaikak, fiarkak,
fidh fldi,

I,K=1,2. (A.3.33)
Here we have used the notation,

aIIIg]
= - I,J=1,2,
q1J B¢, )

and

af($1,$2) 6f($1,$2)
g _ S | LA T e) =
fI - ( 31171 )fl-‘l:xgl,xz:zgz , fI ( 6$l T1=T4s1,T2=T52 ’ I 1, 2
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From the above, it follows that f‘M and f‘iw can be expressed in terms of four quan-
tities, (0x41/0&s), (I,J = 1,2).

For a planar data surface, z3 = 0, and f§ = f{ =0,/ =1,2. Let 2, = £; and 5 = &,.
Then, we have

10 10
r'=(o1]|, f'=]o0o1]. (A.3.34)
00 00

Notice that, in this case, the common offset Beylkin determinant is just,

P, T 4 p,@T

h(z, &) = det ) )
H(z,)Q; T (ze, @) H,  (2) + H(zg) Q5 (wy, 2) H,' ()

(A.3.35)

For a homogeneous medium, we have Q, (x5, ) = crsI, and Q, (g, ) = cryl.
The unit vectors e;, e; remain constant along the ray in this case. For a plane datum
surface in a constant background wavespeed medium, h can be considerably simplified
to

_ (I+cos@zs [ 1 1 1 1
h= 3 (rs + rg) (rg + Tg) , (A.3.36)

which agrees with the corresponding result in (Bleistein et al., 2000).
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models; thus, we must use numerical solutions to solve problems

of interest. For 3-D codes that requrie reasonable CPU time while
achieving sufficient amplitude accuracy to be useful in applicationms.
This thesis describes a ray-theoretical modeling method that
produces all the quantities needed in the Kirchhoff inversion.

This approach to the solution of the seismic inverse problem has
experienced high acceptance in the oil exploration community.






