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ABSTRACT

I introduce a seismic processing technique called Seismic Data, Mapping (SDM) that
transforms recorded seismic data to what would have been obtained for different
recording geometries and environments. Specifically, I propose a SDM operator that
can be applied to solve a variety of important geophysical processing problems such
as offset continuation, Transformation to Zero Offset (TZO), Azimuthal Continuation
(AMO), layer replacement and datuming etc.

The SDM operator is a cascade of prestack migration and inverse migration (demigra-
tion). Because direct implementation of the operator is computationally expensive,
I present an alternative, approximate approach of attractive computational speed. I
use a time-domain approach for both the demigration and migration operators as
well as for the exact and approximate SDM operators.

To provide a self-contained theoretical basis, I also introduce basic concepts in diffrac-
tion theory and study the Born and Kirchhoff modeling equations. I derive the dem-
igration and migration formulas both from the Born and from the Kirchhoff approx-
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Imations to prove the equivalence of these two common approaches. This theoretical
study is supplemented with formulas for the method of stationary phase in the time-
domain. This research put several known results of seismic transformation theory
Into a new context and provides new interesting insights.

Finally, I present an application of SDM to the solution of the true amplitude TZO
problem in vertically inhomogeneous isotropic media.
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INTRODUCTION

In this introduction, I explain the meaning of Seismic Data Mapping (SDM), its
assumptions, limitations, applications, goals and history. Finally I give an outline of
the rest of the thesis.

1.1 Basic concepts

We start by making a short description of the reflection seismic experiment. For
practical purposes, I describe the earth as consisting of series of layers of rocks. The
main target of reflection seismology is to make use of the variation in the proper-
ties of different rocks to find oil and gas traps!. These variations must be mapped
by making use of measurements at or near the surface. The main rock properties
of interest in reflection seismology are density and seismic velocity. The reflection
seismic experiment is similar to the radar or sonar technique where the backscat-
tered energy is recorded to compute distances to targets. In contrast to radar or
sonar, however, in the reflection seismic experiment, the energy travels in a medium
that is heterogeneous, laminated, and subject to discontinuities such as those cre-
ated by unconformities and faults. The elements of the reflection seismic experiment
are the sources (dynamite, vibroseis, airguns, etc.), the earth subsurface (rock layers
bounded by interfaces that we call reflectors) and receivers (geophones, hydrophones).
We record the upward scattered (acoustic or elastic) wavefield by measuring parti-
cle velocity (in geophones) and/or pressure (in hydrophones), which generate electric
signals that are then amplified, filtered, digitized, and recorded in magnetic tapes.
We call these measurements seismic field data. These data or computer—generated
simulations thereof, are what I call Seismic Data (SD). The space of all SD is called
the Data Space (DS); for completeness I add to the data space all the output from any
SDM (not yet defined) process. The signal recorded by each receiver is plotted along
the vertical (time axis) as a seismic trace. A seismic trace is uniquely defined by six
spatial parameters. Three coordinates for the source (Zs, ys» 25) and three coordinates

£

In fact the technology of reflection seismology is also used in the search for waste-disposal sites,
in determining the stability of the ground under proposed industrial facilities, in archaeological

investigations, and for study of the deep continental crust down to and below the Moho (Evans,
1997).
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for the receiver (z4,9,,%,). This thesis treats processing of SD divided into subsets,
such as common-shot, common-offset, etc. Each such subset can be mapped, into
a surface parameterized by a two-dimensional parameter £ = (¢, &). For example,
for a given common-shot gather, fix the three shot coordinates and parameterize the
receivers as 4(&1, &2). Yg(1, &), 24(€1, &2)

1.2 Definition

SDM defines a family of processes that convert one set of seismic data into a different
set of seismic data after either the source/receiver recording configuration and /or the
model] parameters have been changed. The processes included in SDM are specifically
grounded in an underlying geophysical model as will be explained in more detail later
in this section. All processes done under SDM are “true amplitude” in the sense
that amplitude variations attributable to the point-source and reflector curvature
for the input configuration are mapped into the respectively amplitude variations for
the point-source and curvature of the output configuration; therefore the reflection
coefficient is preserved in the output data.

To better understand this concept consider a simple example. Figure 1.1 shows a
common-offset seismic data set corresponding to a horizontal reflector at a depth of
d = 2 km, in a homogeneous isotropic medium, with constant velocity v; = 2 km/s
and semi-offset (half the lateral separation between source and receiver) of A = 1
km. Figure 1.2 shows a data set in depth after prestack migration is appiied to the
set in Figure 1.1. Here we see the reflector located at the correct depth. The peak
amplitude on this traces represents the reflection coefficient for oblique incidence.
Now I apply inverse migration (demigration) to the section in Figure 1.2, to a zero—
offset section assuming a subsurface with a new velocity v, = 4 km/s. The result is
shown in Figure 1.3.

Kinematically, inverse migration creates modeled zero—offset traces for the output
velocity v2. Dynamically, inverse migration introduces the geometrical spreading of
the zero-offset modeling and preserves the oblique-incidence reflection coefficient.

We want to formulate the SDM problem in a precise way and show how to implement
this operator for the solution of a variety of seismic data processing problems.

Given that the cascade of prestack migration and demigration can be expensive for
3D data, we would like to achieve a shortcut for this process. I will refer again to
the same example that started with the data in Figure 1.1 and produced the data
in Figure 1.3. A shortcut to this cascade of migration and demigration process, can
be found. We time shift the data upward by the amount At = 2v/d? + hZ/v, —
2 d/v; and multiply the input amplitude by the ratio of geometrical spreading factors
of the second and the first configuration. This ratio will remove the geometrical

2
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F1G. 1.1. Common-offset section to a reflector in a homogeneous isotropic media.
Reflector depth d = 2 km, velocity v; = 2 km/s, semi-offset A = 1 km.

spreading from the first experiment and include the geometrical spreading from the
second (output configuration) experiment. The shortcut for this simple example
illustrates what we expect from SDM. Figure 1.4 shows a sketch of this process. It is
precisely a shortcut of the cascade of prestack migration and demigration operators
that interests us here. I formulate the problem as the cascade of prestack migration
with demigration. In this case, each of these operators is a surface integral. The
prestack migration is an integral over a particular subset of SD parameterized by
& = (&1,&) and the demigration operator is a surface integral over an isochron (surface
of equal travel time from fixed source to receiver positions). Given that our output
data should not depend on the earth coordinates, the SDM operator collapses to
another surface integral of the data over a given surface (stacking surface). This
reduction is done by using the stationary phase method. We will find also that the
stationary phase method is good for many possible situations, but it fails in some
simple cases (for example offset continuation in constant-velocity media).

3
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F1G. 1.2. Migrated section corresponding to the data in Figure 1.1.

For the simple case of a horizontal reflector, the prestack imaging step reduces to a
combination of geometrical spreading correction, normal moveout and vertica) time—
to—depth correction. The zero-offset modeling consists of depth-to-time conversion
and another geometrical spreading correction. If we keep the velocity v; constant
throughout, these two steps represent the simple process of normal moveout (NMO)
correction. This simplistic example is actually a special case of an important case of
SDM. If the combination of constant-offset migration followed by zero-offset modeling
is extended to handle all dips, not just horizontal reflectors, the SDM is in this case
a Transformation to Zero Offset (TZO) operator. This operator is widely used in
seismic data processing. The TZO operator will be examined in much greater detail
in Chapters 6 and 8.

For horizontal reflectors, the TZO process takes each input data sample to a single
sample in the output data. The full-dip TZO operator provides a better example of
the general SDM integral operators, for which each output data point is a line (or
a surface) integral over many input data points. I will show that aperture for the
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F1G. 1.3. Demigration of the migrated data in Figure 1
line (or surface) of integration for SDM is smaller than that for prestack migration

or modeling. This would translate into computational savings.

In a more rigorous way, SDM is the composition (cascade) of a “true amplitude”
o v
prestack migration operator with a “true amplitude” inverse migration (demigration)

(=]

)

ghts this with the reflection coefficient, by undoing

The prestack migration operator defines the location of the geological
O

the defocussing and focussing due to point—source and reflector curvature created
during the modeling process; the demigration operator creates reflections according
to the new output configuration and weights these reflections with the point-source

and geometrical-spreading factors associated with reflector curvature for the output
configuration. The reflection coefficient of the input configuration is held fixed in this

structures (reflectors) and wei
process.

operator.
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F1G. 1.4. SDM is the cascade of a prestack migration operator with a demigration
operator. The main goal of this thesis is to provides shortcuts for this process.

1.3 Properties of SDM operators

The space of SDM operators is a well-defined algebraic structure. The composition
of two SDM operators is a new SDM operator. This is clear if we see that each SDM
operator is a cascade of migration and demigration operators. The demigration oper-
ator from the first SDM operator combined with the migration operator of the second
SDM operator will produce the identity operator?, the composition is then given by
the prestack migration of the first SDM operator followed by an identity distribution
and the demigration of the second SDM operator. Hence the composition of SDM
operators is another SDM operator. The identity function is an SDM operator. If
we cascade prestack migration with demigration without changing the source/receiver

2Given that our data are band-limited, instead of a pure delta function this identity should be a
band-limited delta function, or a sinc function.

p-
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configuration and without changing the seismic parameters we should get the identity
a operator.

The inverse of a SDM operator is another SDM operator. This inverse is obtained

. by performing prestack migration to the output data with the output seismic param-
eters and then demigrating the result using the input seismic parameters and input
source/receiver configuration.

1.4 Assumptions and limitations

The assumptions in applying an SDM operator are basically those needed to perform
prestack migration and demigration. I derive prestack migration and demigration
operators in Chapters 3 and 4. The assumptions underlaying these derivations will
automatically be inherited by the SDM operator. Some of them are as follows.

e Although the idea of cascading a prestack migration operator with a demigra-

tion operator applies as well to anisotropy, here I develop all the mathematical
formulation based on scalar wave fields for isotropic media.

e The seismic velocity that properly migrates the input data is assumed to be
known.

: e Although changes in density could be considered, by choosing appropriate Green
functions, I assume constant density everywhere.

e High-frequency approximation. I work with the leading asymptotic term of
the asymptotic series expansion of the wavefield, under the assumption of high
frequency.

e All operators derived here are integral operators, so thev consider the data
embedded in a continuous domain. The issues of sampling are not consid-
ered until Chapter 8, where an application to TZO is numerically implemented.
We assume that the input data are not aliased, and that we can adequately

approximate our integral operators via discrete summations for practical imple-
mentation.

e The data represent primary scalar upward—scattered data from single reflector.
The superposition principle applies when a set of layers is to be considered.

1.4.1 Applications

Some of the direct applications of SDM are

~1
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1. Offset continuation and Transformation to Zero Offset (TZO). We can
transform data from a given fixed (input) offset to another (output) offset.
When the output offset is zero, we have, in particular, TZO (sometimes re-
ferred to as dip moveout). Some of the applications for offset continuation are:

e Binning. In practice data, are collected on an irregular grid. For process-
ing purposes I assign a collection of traces around a bin point to that bin.
To increase the accuracy it is desired to perform offset continuation so that
all the traces correspond to the same bin point.

e Reconstruction of missing offsets. We know that for field data, the
near offsets are not recorded. We can reconstruct the near offsets by doing
offset continuation from large offsets. The reconstruction of near offsets
represents a useful tool for velocity analysis (Ji, 1995) and surface-related
multiple elimination (Verschuur, 1991; Verschuur & Berkhout, 1992).

e TZO. Transformation to Zero Offset (TZO) is convenient, since the output
data are then in the state that can be stacked and then migrated using
a poststack migration algorithm. In this sense, TZO is an imaging tool.
TZO also provides tools for doing Amplitude Versus Offset (AVO) analysis.

2. Amplitude Preserving Azimuthal continuation. Biondi and Chemingui
(1994) introduced a partial-migration operator named Azimuth-Offset Move-
out (AMO) that rotates data azimuth and changes the absolute offset. The
AMO operator can be seen as an example of SDM by cascading a migration
operator with a given offset and azimuth with a demigration operator with dif-
ferent offset and azimuth. Chemingui and Biondi (1995) make the AMO a “true
amplitude” process through the cascading of Dip Moveout (DMO) and inverse
DMO (IDMO). Note here that both DMO and IDMO are SDM processes, and
the cascade of two SDM process is another SDM process. Given that marine
data have azimuths that are near zero, the software developed for marine data

could be used for land “acoustic” data after the azimuths are rotated to near
zero azimuth.

3. Transforming mode—converted data to unconverted data. For example,
one could map P-S data to P-P data (Chan & Stewart, 1996). In fact the out-
put data are not truly P-P data since the reflection coefficient of the P-S data
remains. Many of the processing routines designed for P-P data could be used
to process P-S data after the application of this mapping. To perform this
process I assume that polarization analysis has been performed on the data so
that the P-S scalar wavefield is well separated as input to the SDM process.

4. Datuming. This technique is convenient for downward or upward continuing
sources and receivers to map an irregular acquisition topography into a planar
topography. See Sheaffer and Bleistein (1998).

8
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5. Mapping data from complex velocity to simpler velocity. One direct ap-
plication of this could be layer replacement. Yilmaz (1987) shows how layer
replacement can be done by changing the velocity of the overburden by the
substratum velocity (layer replacement). The advantage of this process is that
it removes the distortions and disruptions of the underlying target reflections
due to the raypath bending produced by the complexity of the overburden. We
can perform layer replacement also by performing two datuming processes. The
first datuming process eliminates the undesired layer and the second introduces
the new (desired) layer. The cascade of these two datuming processes is also a
SDM process.

6. Combinations of the above. Chemingui and Biondi (1995) formulate the
amplitude preserving AMO problem as a cascade of DMO and IDMO. Given
that DMO is an SDM process and so its inverse, and that the cascade of two
SDM process is another SDM process, amplitude preserving AMO is a SDM
process. Another example: Traditionally wave-equation datuming (WED) is
done in two steps. Downward extrapolating sources and downward extrapolat-
ing receivers (Salinas, 1996). We can combine both processes into a single SDM
operator.

All the applications named above are SDM operators. Another application that is not
an SDM operator but that can be developed by the use of SDM operators is velocity
analysis. This could be done in combination with TZO. After all offsets are mapped
to zero—offset, events should line up. To the extent that they do not, they provide
the same type of information about velocity errors as does a common-trace gather of
a suite of prestack migrations/inversions.

1.5 History

Dip Moveout (DMO) is historically an archetypical SDM operator. In some way, the
history of DMO is that of SDM. Fabio Rocca (Claerbout, 1985) showed that the DMO
impulse response could be constructed by tracing zero-offset rays (forward problem)
to the prestack migration impulse response (inverse problem). Later, Jorden (1987)
used Rocca’s concept to introduce the “true amplitude” DMO as a cascade of two
integral operators: zero-offset modeling, cascaded with finite—offset inversion. Hubral
et al. (1996) expanded Rocca’s idea of doing DMO to a general process that could
be used to solve a wealth of imaging problems such as: offset continuation, P-SV
converted waves TZO, P-SV to P-P mode conversion and remigration. Their idea
was to use a combination of a forward problem and the inverse problem without the
restrictions of Rocca’s DMO technique. For example, if instead of doing the zero—
offset modeling over the prestack migration impulse response, one performs a different
finite~offset ray tracing, then the result would be an impulse response for offset con-

9
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tinuation. Tygel et al. (1996) developed the mathematical tools for this general
problem based on the concept of Hubral et al. (1996). The mathematical problem is
seen as a cascade of integral operators. The forward and inverse operators used by
Tygel et al. (1996) are the isochron stack (converted into a demigration operator) and
the diffraction stack. An isochron is the geometrical locus of the prestack migration
impulse response. Thus, just as a diffraction stack is a summation over the trav-
eltimes predicted for a point scatterer for a given source/receiver configuration and
background velocity, the isochron stack is a summation over the equi-traveltime lo-
cus for the same source/receiver configuration and background velocity. The cascade
of migration and demigration gives birth to the Configuration Transformation (CT)
operator. The CT operator is simplified by using the method of stationary phase.
CT is then a technique that maps data from any source/receiver configuration into
data from a different source/receiver configuration. Seismic Data Mapping (SDM) is
an extension of the Configuration Transform (CT) technique found in Hubral et al.
(1996) and Tygel et al. (1996). CT assumes that only the recording configuration
is modified, while the medium parameters remain unchanged. The CT needs only a
single ray tracing. That is, only one eikonal and one transport equation needs to be
solved (for all medium diffractors and all possible recording locations). In contrast,
SDM might need two ray tracers —one for the input medium parameters and another
for the output medium parameters. Nevertheless, the same mathematical formalism
used to describe CT is readily extended to the SDM problem.

1.6 Outline

We start (Chapter 2) with the basic physical principles, primarily resting on the
foundation of the diffraction theory. This chapter is included to make this document
self-contained, and it can be skipped by the reader already familiar with the Kirchhoff
and Born modeling formulas. The Born approximative and Kirchhoff approximative
formulas are derived from the scalar Helmholtz equation using perturbation theory
and linear approximations. Chapter 3 shows the derivation of the isochron stack. The
isochron stack is a demigration operator, a modeling (from data) formula that uses
migrated data and velocity information as input. No reflectors have to be defined
in advance since they are implicit in the migrated data. Some of the applications
of demigration and its mathematical treatment are developed here. We show that
the demigration operator can be derived both from the Kirchhoff and from the Born
approximations. The Kirchhoff approximation does not present the constraint of

small perturbations of parameters as opposite to the Born approximation (Burridge
et al., 1993).

Chapter 4 shows the derivation of the migration operator. This derivation is per-
formed in the time domain with the help of the plane-wave expansion of the & function
(Gel'fand & Shilov, 1964). This is at the heart of the Generalized Radon Transform

10
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(GRT) inversion.

Chapter 5 introduces the stationary phase analysis in time domain for one and two
dimensions. Using the two-dimensional stationary phase formulas, I find the leading
order asymptotic terms of the demigration and the migration operators. Here I prove
that the operators locate reflections (demigration) and reflectors (migration) prop-
erly, and they evaluate the right dynamic weights so as to include (demigration) or
remove (migration) the appropriate amplitude variation for point-source and reflector
curvature.

Chapter 6 constructs the SDM operator as a cascade of migration and demigration.
The chained operator is simplified by the method of stationary phase. This gives rise
to a Kirchhoff-type operator. That is an integral over a stacking surface. The weights
in this integral are studied for different acquisition geometries and simplified in terms
of some curvature factors. Here, I illustrate, an application of the SDM problem to
the analytical solution of the 3D TZO problem for a depth-dependent velocity in an
isotropic media is illustrated.

In Chapter 7, I derive the 2.5D demigration, migration and SDM operators. Also the
weight factor for the 2.5D SDM operator is studied in some detail.

Chapter 8 shows a typical application of SDM for TZO in an isotropic depth-dependent
velocity media. This is in a way an extension of the work of Artley (1994) and Art-
ley & Hale (1994). This implementation is in the space-time domain, while Artley’s
implementation was performed in the wave-number frequency domain.

Finally, chapter 9 shows a numerical demonstration of SDM in the form of constant
velocity TZO. The main aspects of SDM, such as kinemtics, point-source and reflector
curvature geometrical spreading effecs, and oblique reflection coefficient are illustrated
in a numerical demonstration.

11
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Chapter 2

THEORY

Here, I introduce the basic mathematical tools to construct operators that perform
practical imaging tasks, such as demigration, migration and Transformation to Zero
Offset (TZO). among others. These problems are studied from the point of view of
diffraction theory. Scales (1993) presented a unified treatment of the Born and Kirch-
hoff approximations from the Helmholtz equation after using some perturbation—
theory concepts and the second Green’s identity. Here, I follow Scales’s approach and
provide further insights into those approximations.

2.1 Fourier Transforms

Many of the results here make use of Fourier transforms. The forward and inverse
Fourier transforms are defined by the relations:

Flw) = /Ooodtf(t)ei""t
2.1)
) = ;1_‘-Re /°°°dw Flw) e,

I will assume below, that all functions f(¢) and F(w) are “well-behaved” in the sense
that these relations can be used. F(w), in the positive real w-axis Im(w) = 0, is seen
as an analytic continuation in the upper half complex w-plane and f(¢) in the positive
real t-axis Im(t) = 0, is seen as an analytic continuation in the lower half complex
t-plane.

2.2 A note on diffraction theory

In this section I find a representation of the scattered wavefield as a superposition
of the contributions of volume and surface sources (scatterers). I start with a given
reflector surface, S, (see Figure 2.1, and assume that the velocity v(2) is known above
Sr. lintroduce a “background” wavespeed ¢(z) equal to v(x) above the reflector. The
acoustic wavefield u(x, z,) at any point due to a unit impulsive point-source at x is

13
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FIG. 2.1. Description of the experiment involving a source and incident wavefield and
a scattering (reflecting)surface. S, is a reflecting surface, &, represents the source
location, u; the input wavefield and z a scatter in the reflecting surface

14
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governed by the Helmholtz equation with velocity v,

r 2
v = %J u(z, z;) = —6(x — x,) (

!\)
SV
~

S

with boundary conditions at infinity

ru(z,z;) bounded, r [———-— —u(z,z,)| =0, as r—oo0, r=z-—x.

These are the Sommerfeld radiation conditions (Bleistein et al., 1996). Mathemat-
ically. these conditions ensure the uniqueness of the solution, and physically they

prevent reflections from infinity, in the case of a causal wavefield (—) and allow radi-
ation from infinity in the case of an anticausal wavefield (=).

The incident wavefield u;, satisfies the wave equation with the background wavespeed
¢()
2

“ws

V- = (e, @) = ~F(@)d( - ).

em—y

Here F(w) corresponds to the band-limited character of the input signal. I will
assume that F(w) = 1.

The total wavefield can be decomposed as
u(z, z;) = u (. z5) + us(z, ),
where us(z, ;) is the scattered wavefield at the point  due to a point—source at .

Let us introduce a quantity o that represents the perturbation between the back-
ground model velocity and the true model velocity:

Since ¢ = v above the reflector, o is zero in this region; clearly o is nonzero below
the reflector. I further assume that o decays smoothly to zero with depth. In terms
of o, the equation for the scattered wavefield can be written as

,,.2
W

[v? . ic;,—} us(@. 20 4) = = au(, 2.,) (2.3
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Now let us introduce a Green’s function for the background model:
[v? < “—Zg] G, r,w) = —6(z —7), (2.4)

where 7 is an arbitrary point in the volume of scatteres D. Now we multiply equa-
tion (2.3) by G and equation (2.4) by us and substract them. Then after integrating
over the volume D and applying Green’s second identity one finds

2

&(r)us(r, 5, w) = /Ddsx G(w,r,w)%au(m,ms,w)
(2.5)
B ]' N aug(m,a:s,w)_ | 0G(z,r,w)
./SLG(:B,T,W) on U,s($,$s,w)-——-é—ﬁ——— dS.

Here ®(r) is 1 if r is in the interior of D, 1/2 if r is in the boundary of D and 0 if
7 is outside of D. We further assume that « goes to zero with distance r = !, fast
enough for the volume integral to converge.

This equation represents the monochromatic (for each fixed w) scattered wavefield
at any point of the acoustic space (7) of study, due to a point-source at ;. It is a
representation of the wavefield in terms of body sources (the volume integral, referred
to here as the Born integral) and surface sources (the surface integral, referred to
here as the Kirchhoff integral). The surface integral, in turn, is computed as the
contribution of monopole sources (first term) and dipole sources (second term).

The scattered wavefield given by equation (2.3) is not uniquely defined. We have still
two degrees of freedom over infinite dimensional spaces. One is the Green'’s function
to be picked, and the other is the boundaries of the volume scatterer. Among all
possible Green’s functions are two important sets —causal and anti-causal Green’s
functions. A causal Green'’s function is to be used in forward propagation (modeling),
while an anti-causal Green’s function should be used for backward propagation of the
wavefield (migration or downward continuation). Here the wavefield in the surface
integral should be u instead of ug. The causal Green’s functions are appropriate for
forward modeling.

At this point, this theory is exact, and no approximations have been made vet. By
assuming that we are interested only in high—frequency data, we can exploit leading~

order asymptotic analysis. For this purpose I choose the causal WKBJ Green’s func-
tion for the Helmholtz equation (2.2). This is given by

G(r,zg,w) = A(r, z,)e=™TTs),

Here, 7 is the traveltime from «, to  and A(r, ;) is the corresponding ray-theoretic

16
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F1G. 2.2. Surface S is the union of the surface Sy and a spherical cap smoothly joined

to Sp but receding to infinity in the =z direction. We are interested on the wavefield
under the surface S;.

amplitude, derived by solving the eikonal equation,

1

T-VT = . T{®s, xs) =0, 2.
V7.V IS (s, z5) =0 (2.6)

and the (first) transport equation

2V7 - VA + AV?r =0, | (2.7)
subject to the condition

dmAir —x, — 1, as r—z; = 0.

Two fundamental modeling formulas can be derived from equation (2.3) by picking
suitable boundaries of the volume of scatterers. One is the Born modeling formula
(known as the Born approximation), and the other is the Kirchhoff modeling formula
(or Kirchhoff approximation). This is the topic of the next two sections.

2.2.1 The Born approximation

Let us first assume that the boundaries of the body scatterer are S = So U Seors
where Sp is an upper bound for the data recording surface and Seo= is a spherical
cap smoothly joined to S, but which recedes to infinity in the -z direction (see
Figure 2.2). Let us discuss why for this particular Green’s function, the surface
integral in equation (2.3) vanishes.

If we consider the volume surrounded by the surface Sy and an upper spherical cap

17
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(Seo— mot in the figure), we find that the volume integral vanishes since the pertur-
bation a(z) is zero there. Now for all points 7 in the lower volume (the volume of
interst) we find that the surface integral in equation (2.5) vanishes (here the surface is
SoU Sec—) given that &(7) = 0 there. Due to the Sommerfeld radiation condition, the
causality of the wavefield u and the Green’s function, the surface integral over that

upper spherical cap should vanish. This implies that the integral over Sy vanishes
too.

Now again, due to the Sommerfeld radiation condition, and the causality of the
wavefield u and the Green’s function, the integral over the surface S, vanishes.

Thus, the integral surface vanishes on the surface S = Sy U Sy, Therefore we have

uslr,ze0) = [ 26l rw) S au(ze,0)
(2:8)
/d3xG )iz— us(T, Ts,w).

Let us characterize the perturbation function « by a small constant parameter ¢ > 0.
That is, & = e ap, where o is a bounded by one.

Let us also, identify

/-2

—_ - 3 W udll L5, &
f= /Dde(:c,r, )czaouz(iv,ics, )

2
(o)
= /Ddsx G(z,r,w) = aous(T, s, )

us = us(Z, €5, w) and A = 1/e. Then equation (2.8) is recast as:
(T = M)us = f

If there are non-zero solutions to this equation when no input wavefield is present
(ur =0, s0 f =0), then the us’s are normal modes (eigenfunctions of the operator T
and the A’s are the corresponding eigenvalues. The geometrical series representation
of the operator (I — AI)~! is given by the resolvent:

Ra(T) ==X "I+ XT"T+ A7 T2+ ) = —e(I T + T2+ ...). (2.9)

If this resolvent operator exists (that is, if it is bounded), then one can writes the
solution to the integral equation (2.8) as:

us = Ry(T) f = —¢f + O(é?).

This series representation is known as a Neumann series, (Kreyszig, 1978). For the
series (2.9) to converge, we need €| T} < 1, (Kreyszig, 1978). In Appendix A, I derive

18
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a convergence criterion for the Neumann series, in the case of constant background

- speed ¢g. I found that a sufficient condition for this happen is by choosing:
2¢2
- az) < W%;: (2.10)

where R is the radius of the smallest ball surrounding the scattering body D. It is
interesting, then, to observe that the perturbation magnitude for convergence should
be determined from the given frequency (w), the scatterer body size (say R), and the
background speed ¢o. The truncation of the Neumman series, so as to make it linear
in €, is the so-called Born approximation. Physically, this means that we neglect the
scattering wavefield with respect to the incident wavefield. I will refer to the scattered
wavefield obtained after the Born approximation as the Born a.pproximation Itisa
remarkable fact that the Born approximation works so well in practice! while only
the leading order term of the Neumman series is considered and the series is not
asymptotic. The Born approximation formula is a linear operator in the perturbation
a, facilitating the inversion for c.. Bleistein et al. (1996) found an inversion formula for
a(z) by identifying the Born approximation integral with a forward Fourier transform.

‘!! Py P—— “ m " H‘I

To evaluate the Born approximation I will use the WKBJ Green’s functions G (r.z,w)
and uy = F(w)G(z,7,«). Substituting the appropriate Green’s functions and ne-
glecting the scattering wavefield contribution to equation (2.8) one obtains:

us(@,, T, w) ~ W2 F(w) / &'z S a(x,§) o), (2.11)

M--w_)n-——'\

where r = z,(§)

(. &) =7+ 75 a(z.&) = Az, z:(£))A(z4(£). z). (2.12)
Here £ is a two dimensional vector that parameterizes the measurement surface and

m=r(@.z). 7= r(e(8), ).

2.2.2 The Kirchhoff approximation

If I now take the volume V' to be the volume bounded by the recording surface S,
and the reflector surface (¥), then, again, the volume integral vanishes since o is zero
in this region. This gives:

us(r, x5, w) = /

SoLt

Ous(x, 5, w)
on

Gz, r,w)]

[G(w, r,w) o j dS. (2.13)

- us(r, z;, w)

1As it is remarkable that, after all, we see useful i images of the interior of the earth assuming that
earth is isotropic and the rock density and seismic propagation velocity are constant!
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The integral over Sy is zero, for the same reasons explained above. Then:

0 LT, W oGz, r.w
us(r, &g, w) =/s {G(m,r,w)}s—(ma'—:———) - us(r,:cs,w)——-%%—)} d¥.

New approximations emerge here. The incident wavefield in the surface will be ap-
proximated by the WKBJ Green’s function u; = F(«)G(z, &s,«). For the scattered
wavefield, I use the Kirchhoff approximation:
0 0
us R Uy

= . — = 2.14)

where R = R(z, x;) is the geometrical-optics reflection coefficient

' L2y 1/2
28%"(‘”’“'3): - {1/03(@ —1/*(z) + [a%r(m, ms)jz}
Rz, z;) = : L

;) i 0 127
5%7(@ ms)' = {l/cz_(:c) - 1/c2(:z:) - [%T(w,ws)j? }

(2.13)

Here, c.(x) is the propagation speed below the reflector. The reflection coefficient
is computed by assuming continuity of the wavefield and its normal derivative across
the reflecting interface (Bleistein, 1984). The normal derivatives are

oG . o :

3, = Wi V(T T, ) A, 25, )™ (&L )

and

8u5 ; 2 wT{L . Lsw)
B, = TWwE WA Vi (z, 25, ©) AT, T4, w)e T E T,

Here, only leading asymptotic order is taken into account.

For data recorded in a surface parameterized by the two dimensional vector & and for
T = x, one finds then:

us(2(£), 2(6),) ~ WF() [ R(z.3,)a(2.8)( - V.6(,8)) €4@Eds.  (2.16)

Here, ¢ and a are defined by equation (2.12); the unit normal # points upward and
0/0n = - V,. Figure 2.3 illustrates the different symbols defined above.
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F1G. 2.3. Description of symbols involved in the Kirchhoff modeling formula. Here
z, represents the source position, z the receiver position, z a reflector point and 7
a normal vector to the reflecting surface at z.

21



O O 9 g GO o g & em e o| @ U B By e 0 /| &2

Herman Jaramillo



N 3

oo o — e

Seismic data mapping

Chapter 3

THE ISOCHRON STACK

The purpose of this section is to derive and study the true-amplitude, inverse—
migration operator from the inverse scattering point of view. Seismic data are band-
limited. Thus, below, when using full-bandwidth distributions —Dirac delta func-
tions, for example— I am describing only the “most singular part” or high—frequency
part of the solution. By using the Dirac delta function, we are able to take advan-
tage of the theory of distributions, carry out asymptotic approximations easily by
recognizing the smooth and sharp operators (especially when taking derivatives, or
introducing factors under the integral sign) and also by exploiting results from the
Generalized Radon Transform (GRT) theory. Only after I obtain the final result will
I introduce a filter on the data. This is a valid argument, since convolution is a linear
and commutative process. Band-limiting amounts to multiplication by a frequency
domain filter or convolution with a time-domain wavelet. This process commutes
with all of the previous processes that I shall have emploved.

3.1 Modeling versus inverse migration

Before studying the operators, let us see some subtle differences between modeling
and inverse migration processes.

¢ Seismic modeling maps acoustic, earth-model parameters to data along a record-
ing surface with a prescribed measurement configuration.

e Seismic imaging maps the recorded data from the surface to the discontinuity
surfaces or singular functions of the modeling parameters (reflectors).

e Seismic inversion maps the recorded data back into the earth-model parameters.

e Seismic true amplitude migration maps the recorded data into imaged data.
The peak amplitude, of these data images, should be the value corresponding
to the oblique-incidence specular reflection coefficient.

e Seismic inverse migration (or demigration) maps true amplitude migrated data
into data that would be recorded for a given set of earth model parameters
and a defined measurement configuration along the recording surface. The
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amplitude of these data has the right geometrical spreading factors but preserves
the reflection coefficient of the input data.

From the above, the output section of a modeling algorithm and an inverse migration
algorithm should be the same; however the input section for the inverse migration
algorithm consists of output data traces with format identical to that of the recorded
data, while the input of a modeling algorithm is an earth model. From the seismic
data processing point of view, the use of cascaded migration and demigration algo-
rithms to solve practical problems such as DMO or offset continuation is preferred to
the use of cascaded inversion and modeling algorithms. The reason for this is that
the output of a migration program is ready to be used as input for a demigration
program, while the output traces of an inversion program have to be pre—processed
(travel times and amplitudes should be picked) before going into the modeling pro-
gram. This pre-processing is not only tedious but a major source of human errors.
Mathematically, there is no fundamental difference between cascading modeling and
inversion operators or cascading demigration and migration operators for solution of
imaging problems. The input and output data of the two cascading processes are the
same. The intermediate data differ from one another but these data are used only
while deriving the final composed operator. They will not be of any use after that.

3.2 The isochron stack as seen from the Born approximation

Here, I show how to recast the Born approximation in 3D - a volume integral - into
an isochron stack — an integral over an equi-travel-time surface- plus an integral
normal to the isochron, or in the direction of increasing time. Let us assume that a
given reflecting surface is described by the equation Ex(x) = 0. The perturbation o
associated with that surface can be written as a(z) H(Zg(z)) where H is the step
function; H is equal to zero above z(x) and equal to unity below. For simplicity in
our discussion, I assume here that the surface is of infinite extent, dividing all of our
three dimensional space into two regions. The Born approximation (2.11) is rewritten
as

Ds(gw) ~ *F () [ % H(Sr(z)) alz, £)eo @), (3.1)

Here, D stands for Demigration or Data, and I will use the B for Born, and K for
Kirchhoff, below.

The WKBJ amplitude factor a, consistent with the wave phenomena that we study,
can be written as

a(z,€) = la(z,£)| T ?, (3.2)
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We now apply the inverse Fourier transform, as given by the second line of equa-
tion (2.1), to equation (3.1). We find

/d3 a(z) la(z,€) H(Sg(x))

*(z)

(3.3)
_1_ Re /oo dww2 eisgn(w)(;:e—iwit—o'(m,é):.
™ 0

The second integral, by the convolution theorem for Fourier integrals, can be written
as —wy(t) * 8"(t — ¢(x, &), where the ¢—phase shift wavelet w,(t) is given by

1 e son(w) o —iw i
Wy(t) = :Re/o dw €'582W) ¢ o=t = Re e A (1) (3.4)
with

1 o< . 1 o0
== [Tave = — [" dwom(w)es

-0

o0

1
= dw (1 + sgnw)e™**

2% —00

= 8(t) — H8()]

being the one-side (analytic) delta distribution. Here % is the Hilbert transform
operator defined by

wirw) =2 [C L0 39)

Tl T —1

(Bracewell, 1986). With this, equation (3.3) becomes

Do(6.t) ~ [ ta =20 E TCRE g1, oz, )y 7

For the moment I will ignore the convolution with the wavelet w(t) and perform this
convolution at the end. We will work then only with the left term, which I call

6 t) /d3 a(m) a( ) (Y‘ ( )) 5”(2‘)—@'(17,&)). (38)

()

Let us proceed. We pick u, a parameter running along a given direction specified by
the unit vector u, such that 9¢/0u # 0, then
dd'(t — o) 00 (t—0)/ou  —u-V,0(t— o)

where V, means gradient with respect to . The substitution of this result in (3.8),
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vields

z) ia(z.§) H(EZr(z)) w -V 20(t—0)
Dy(£.2) ./d3 E(z) u-Vi0o

For the moment, let us think of the integration variables as one coordinate along u,
and the other two orthogonal to u. Then, integrate by parts in the u direction and
keep only the most singular term. The result is

Due,t) = [ &5 S e, €)iu - Ve H(Sa(a) Ts S (5.10)
Now, I rewrite
V. H(Sx(z)) = H' (Sp(2))VoSr(z) = §(Sr(@)V.Sr(@). (3.11)

I remind the reader that H represents the step function. If one uses equation (3.9),
but this time with only a first order derivative of the delta distribution on the left
side, and 2 unit vector v instead of u, one finds that

§(t—0)= 2t (3.12)

Here again I pick v such that v - V,¢ # 0. Using these results, one can rewrite
equation (3.10) as

v -V 6(t — o)
(v-Vz0)(u-V90)
As I did before, let us think of the integration variables as having one coordinate

directed along v, and the others orthogonal to v. Then, I integrate by parts and keep
only the most singular term. The result is

= - /D d*z %M(m, £)I6(Zr(z))u- V,.Zr(x) (3.13)

= - [ &% @( a@,8)v- V.5(Sr(2)) u- V.Sp()

(3.14)
6(t—9)

* 0 Vo) (u-Vag)

Now it is appropriate to collapse the volume integral into a surface integral over the
support of the delta distribution. For this purpose I use the identity

/ B bt - &) = / ...... gv&'%g : (3.15)

z® it=¢(Z,E)

where 2; is the locus of all = points such that t = ¢(z, &), for each fixed ¢ and fixed
source receiver configuration dictated by §&. The proof of this identity is easily seen by
writing the volume integral as a surface integral over the surface ¥; times an integral
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F1G. 3.1. Isochron for a finite offset source/receiver configuration in a constant
velocity medium.

along the normal to that surface. Then, I use

o 6(us) _ O(u3)
=) = = 0)/fw = el

where u3 is the coordinate along the normal to the surface ;.

The set
S ={z:t=0(z.£)} (3.16)

represents the isochron (t-level surface) in the z~domain for each fixed ¢ and &.
Figure 3.1 shows a typical isochron for a constant-velocity medium. Applying iden-
tity (3.13) to equation (3.14) one finds

Du(e.t) = _lez,f‘i_((%!igcjz)l

u - VxER(:c)

v - V. 0(Zr(z)) (v-Vz0)(u-V,0)

t=¢($,€)
27
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FI1G. 3.2. Sketch of the selected normal vectors to the reflecting surface.

At this moment, we have freedom in picking u and v as long as they are not orthogonal
to V.¢. I pick u as the upward unit vector normal to the surface g, and I pick v
as the normal to the isochron £;, that is, along V.¢; Figure 3.2 illustrates this. The
integral is dominated by the stationary, value of Sx(x) on the isochron T;. One can
show that, at stationarity, v = —u = 7. Thus, to leading order, one can modify the
integrand as follows:

L[ g, o) .€) 05(Sal)), |
B e e 2
= [an 20 U280 e ) Vasr@} -

ot A(x) V02 V.0 0n
where 8/0n means normal derivative along 7.
The function,
(@) ~ §(Sr(@)) V. Er(@) (3.17)

is the singular function of the reflecting surface as defined in Bleistein (1987). Fig-
ure 3.3 shows an illustration of v(z). This function is a delta of a single argument,
normal distance to the reflector, peaking at the reflecting surface and plotted in band—
limited form along a normal line to the reflector. After using the singular function ~
one finds

. C)
Dugt)= [ % g

, Ov(z) |
(@, &) —5 L=¢(a:,§) - (3.18)
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/2

F1G. 3.3. Sketch of the singular function of a given surface. As seen here the singﬁlar
function is a collection of band-limited delta functions plotted along a normal line to
the surface.

Now, using the result

5! i : d ' 92
%vz'@?: vaTs+vxTQ§2 =V Tsi

<
8
N

z \F
2 2cos26
- @) 2)
_ 4cos’d
T ()

Here, 0 is half the angle between the slowness vectors V,7, and V.7y: [7s and 7,
are as in equation (2.13)]. Figure 3.4 illustrate these terms. Then, in place of equa-
tion (3.18), one finds

3 « ox) az.£) Ov(z)
D(€,t) = />3, ey, Va6, On

t=¢(x.§)
The coefficient,
_ _o(z)
B Ycos26’

is the linearized Born reflection coefficient. The interpretation of Rp as a reflection
coefficient is explained in Appendix A, where the Kirchhoff-approximate formula
is derived from the Born-approximate formula by replacing Rp by Rgx. With this

29
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F1G. 3.4. Illustration of the vectors V,¢, V, 7, V.7, and the angle 6.

representation of the reflection coefficient, equatior (3.19) becomes

~ a(z, &)} 0y(x) |
Dp(§.1) = /zldzf Es Va0l On g

(3.20)

From Beylkin (1990), the linearized Born reflection coefficient is given by

fz, 26,
Riw.6) = {200

where 6; is the angle between the normal and the ray connecting the source with the
point &, and

K(z)  o(z)
=(z) * oO(x)

f(z,0) = cos @

is the amplitude radiation pattern. Here x(z) = o(zx)/c(x)?, is the compressibility
(reciprocal of bulk modulus), where ¢(z) is the sound speed, and o(z) (reciprocal of
density p), is the specific volume. We have also

p o 1 1 «
K= k- =% 3
v N
1
o = c-0'==-2=9
p P
o _ 1
K -
c
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We find then that:

alx)

R(z.6,) = Tcos 0,

and this is precisely the linearized Born reflection coefficient Rg found above. If I
define 3p(x) = Rp v(x) and introduce the reflection coefficient into the derivative
sign (which asymptotically is a valid step), then one finds

la(x. & |
Dig.t)= [ U0 g0
..4[ sz an t—¢($ g\
At this point we are ready to introduce the wavelet w,(¢) into the Born demigration
operator Dg. We see that the dependence of time, on the right hand side, is through

the evaluation |,_ o(&.L): From equation (3.7) one can see that

Dp((§,1) ~ DL(§, ) = wy(t) (3.21)
o)
a8 8, , | .
Da((,1) ~ [ 5=t pate(a) g (322)
applying equations (3.2) and (3.4) one finds
Dz((&.1) ~ Re / alz 5) 6 () | = A(2). (3.23)
= lt=o(@£)

The real part was moved outside of the integral given that all factors on its left are

real numbers. The phase ¢ was incorporated into the WKBJ amplitude factor a. We
also used the fact that in our formalism sgnw = 1.

This is an isochron stack and represents a mapping from the Born reflectivity data
Bg(x) to the Born modeled data Dg(£.1t).

3.2.1 Comparison with Tygel et al., demigration operator

Tygel et al. (1996) developed a formula to do demigration. Their formula was derived
by assuming that the demigration operator has the form of a Kirchhoff integral over
the source-receiver isochron for each recording time ¢. The weight in this integral
was an unknown. This weight was found by doing stationary phase analysis to their
Kirchhoff-type integral and by knowing the expected zero-order ray-theory, primary-
reflected wave—field. The matching of these two results at the stationary phase point
provided a way to find the weight. A constraint imposed into their demigration
operator is that the isochron is parameterized as z = z;(z,y,t). In this sense I want
to obtain a formula that converts prestack depth migrated data into recorded data.
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Prestack depth-migrated data are represented as vertical traces in depth. Therefore,
I specialize equation (3.20) by projecting it into the depth (z) direction.

Let us introduce /g as the metric correction factor for geological dip (reflector dip) *
when I describe £ in z, y with z = 25(z, y, t); that is, V9dzdy = dE. At stationarity,
both the geological dip and the isochron dip coincide, so \/9 is the same for both. We
have,

1 0z V.0
=== 2
n-f, On 06/ (3.24)

where 1, = (0,0,1), and 72 is a unit vector in the direction of V.0. It then follows
that

V.o

|
T, = = ; . 25
I V9dzdy 3¢/Bzdxdy' (3.23)
8 9z 8 o V.6 8 .
on = no: V9% T 5ja: 0 (3.26)
vy _
&) ~ gé(z—zg,) = 565/325@—/?:3)- (3.27)

We use these results to replace 8v/dn in equation (3.20) as follows.

0~ ! : 25(2’ — 25y)
Ra—n R Vo 0z 00/0z

~ R0 55 {5 )} (329)

Now, equation (3.20) can be rewritten as

a(z,8) V.62 8 R .
Dy(¢,t) ~ [ dzdy oo 5y R dmplz = zy) ey (3.29)

where z; = z;(z,y,t) is the depth coordinate of the isochron, and
mp = 0¢/dz (3.30)

is called the migration stretching factor by Tygel et al. (1994). Again, as I did above,
Dp should be computed by convolving with the wavelet w,,(¢). This would produce
the following result

= A(t), (3.31)

=z7(z,y.t)

Ds(¢.1) ~ Re [ drdywo(z.€) o Ms(a)

i
|
|
]
iz

lg is the discriminant of the first fundamental form of the differential geometry (Kreyszig, 1991).
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where I introduce the notation,

S5

and. following Tygel et al. (1996), I define

’U/‘D((B, é) =

;MB(Q:g) ~ R36(mD(z - 35)) (333)
as the white (full-spectrum) migrated data.

r Now consider the structure of this isochron stack formula. It has two factors and a
] convolution with the one-side delta distribution. The factors are

e The weighting factor (wp) corrects for geometrical spreading, source—directivity,
and stretching and

e the migrated data, Mp(z), are the true-amplitude migration data, correctly
positioned at the reflector location, stretched by the stretching factor, mp. and
weighted by the oblique-incidence linearized Born reflection coefficient, R, but
with no limits in spectra.

Equation (3.31) would match the Tygel et al. (1996) demigration operator if one
multiplies their weight by cos® 8z where 3g is the reflector dip at the stationary
phase point. The differences on the weight are, as explained before, due to errors in
Tygel et al. (1996) as shown in Jaramillo et al. (1997).

The integration surface corresponding to the demigration operator is an isochron
E; for each fixed time ¢ and source/receiver parameter €. This explains the name
isochron stack . It is unfortunate, however, that we are not getting the true reflection
coefficient, but only an approximation that is good only for small contrast o. It
is evident that one cannot account for post—critical reflections, since Rg is a real
number, while the post—critical reflection coefficient is complex. We are tempted to
change the formula by replacing the linearized Born reflection coefficient Rg by the
Kirchhoff reflection coefficient Rx defined in equation (2.13), and then extend the
range of validity of this formula. However, instead of doing this I will derive the
isochron stack formula directly from the Kirchhoff approximation. Thereby, I will
confirm that the change from Born to Kirchhoff reflection coefficient is a natural
action to take.

;_p— = ’—-ﬁ
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3.3 The isochron stack as seen from the Kirchhoff approximation

We now derive the isochron stack equation based on the Kirchhoff approximation,
equation (2.16),

Dr(§w) ~ /2 i R(z.z.)a(x.£)(f - Vio(x, £))e“9 @) 4y, (3-34)

Similar to the Born approach, Dx = ug, also the source signature F(w) = 1 is
assumed. The first objective is to recast this surface integral as a volume integral.
To do this, let us introduce the singular function, v(z), as defined in equation( 3.17).
Then, I can rewrite the right side of equation( 3.34), as

Dg(§.w) ~ w / &’z R(z, z,)a(z, £) (2 - Vo6(, £)) 7(x) €498, (3.35)

As in the discussion of Born—approximate data, I take the inverse Fourier transform
from frequency (w) to time (%), to obtain

Di(&.t) ~ - [z R(z.2,)a(z.£)|(R - V.o(z.£) (@) 8 (t - 6(=,€))

(3.36)
* Wy(l).
The use of identity (3.12) with v = 72 yields
Dk(&.t) ~ /dsx R(z.z;) a(z,£) () 7o - Vi6(t — 6(, €)) * wy(2). (3.37)
Integrating by parts along 72, and keeping the most singular term, vields
5 ,  Ov(= ,
Dr(et) ~ [ &z Rz 2l To st - o(2. ) < u,lo). (338)
After using identity (3.13) and relations (3.2) and (3.4) in this equation, one finds
a(z,§) dv(z)|

Dx(&,t) ~ Re [dS;R(z,z,) ezl 20T/ NG} 3.39

x(€:1) [ =1 R =) T e, (3.39)

In Bleistein (1987), the stationary value of R(x,xs)v(z) was called the reflectivity
function and denoted by 8(x). Since I am using only leading-order asymptotics here,
let us use this replacement and further rewrite the previous result as

£) 88(z. zs)]
Dulg.t)~ Re [ 4z, 0 PE2)
Vg0 l

x A(t). (3.40)
t=¢(Z.§)

We interpret this demigration operator as a mapping function from the reflectivity
data to modeled data.
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We recognize that equation (3.40) is analogous to equation (3.20), with the only dif-
ference being the form of the reflection coefficient. The reflection coefficient R(z,z;)
is the Kirchhoff reflection coefficient defined in equation (2.13), while the reflection co-
efficient Rp in equation (3.20) is the linearized Born refiection coefficient. It is known
that the Kirchhoff approximation, using the geometrical optics reflection coefficient
provides an accurate representation of the reflected wavefield, up to and beyvond the
critical angle of reflection (Burridge et al., 1993), while the linearized Born reflection
coefficient is restricted to a narrow range of incidence angles near normal incidence.
Thus, I have extended the apparent range of validity of our problem. just by working
with the Kirchhoff modeling (approximate) formula instead of the Born approxima-
tion formula. Another point that supports use of the Kirchhoff formula (2.16) is
that this is a surface integral, while the Born approximation formula (2.11) is itself
a volume integral. The transformation of the Born formula into a surface integral
s equivalent (after using the Kirchhoff reflection coefficient) to Kirchhoff modeling.
Therefore, I abandon the Born approach and use only a Kirchhoff-type approach.
We also drop the subscript K, below.

3.3.1 Comparison with Tygel et al., demigration operator

As above, I will project the previous equation along the vertical z—direction. We start
with the migrated data defined in equation (3.33) as

M(z) ~ Rz, z5)8(mp(z - zs)). (3.41)

The isochron stack is then represented by the equation:

i x At (3.42)

iz=zr(z,y,t)

D(&,t) ~ Re /dx dy wp(x. &) %M(m).

As in Born modeling, here the integrand has only two factors. The factor wp(zx, &)
in( 3.32), compensates for geometrical spreading and obliquity of migrating the data.
The other factor is the derivative of the white-reflectivity data, positioned at the
right location, stretched with the correct stretching factor and weighted with the
Kirchhoff-approximate reflection coefficient. This formula corresponds to the demi-
gration formula derived by Tygel et al. (1996). However, the weight derived by Tygel
et al. (1996), would have to be multiplied by cos? 3z where 3z is the reflector dip at
the stationary phase point, to obtain the weight wp(x.€) in 3.32. The differences in
the weights are, as explained before, due to errors in Tygel et al. (1996) as shown in
Jaramillo et al. (1997).

In this and the previous section, then, I have provided simplified derivations of the
more global results of de Hoop and Bleistein (1996). We have converted the Born and
Kirchhoff modeling formulas into a demigration from data formula and also I showed
that for the particular parameterization of the isochron as z = z;(z, ), that formula
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reduces to Tvgel et al. (1996) demigration formula.
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Chapter 4

THE DIFFRACTION STACK

r ' ] "r 4

f

A————

4.1 Introduction

(Gt
b

In this section I find an expression for the migration operator as a diffraction stack.
This diffraction stack operator coincides with the reflectivity function in Bleistein
(1987).

At the end of the chapter I discuss dualities between migration, demigration, as well
as isochron surfaces and diffraction surfaces. For example, an alternative representa-
tion of the migration operator is found by using the superposition principle. Here,
I can migrate by smearing input energy along an isochron (isochron superposition)
instead of summing amplitudes along a diffraction response (diffraction stack). The
idea of smearing energy along an isochron, to do migration, was introduced by Schnei-
< der (1971). Hubral et al. (1996) extended Schneider’s idea to consider the case of
demigration. They show that demigration can be done by summing energy along an
isochron or smearing energy along a diffraction. Here I give precise mathematical
formulation for those statements.

4.2 Previous work

It is a generally accepted principle that seismic migration can be carried out by stack-

ing amplitudes along a diffraction curve and mapping its result into the correspond-
L ing diffractor location. See, for example, Hagedoorn (1954), Lindsey and Hermann
(1985). Rockwell (1971), Schneider (1978), and Schleicher et al. (1993). This problem
has been studied in a more formal way from the point of view of inverse-scattering
- theory by using the Generalized Radon Transform (GRT), starting with Norton and
Linzer (1981), who treated ultrasonic experiments in medical imaging, and followed
by Miller et al. (1984), Beylkin (1985) and others. Bleistein (1987) introduces the
- inverse scattering solution by using the Fourier transform instead of the GRT. An
extension to general anisotropic media is obtained by Burridge et al. (1993).
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4.3 Diffraction stack as inverse of the isochron stack

In this section I derive the diffraction stack operator as the asymptotic inverse of the
isochron stack operator in the time domain by using the plane wave expansion of the
6 function (Gel'fand & Shilov, 1964). This is at the heart of the GRT inversion.

To start, I rewrite equation (3.36) as
D&t ~ [dz5()ae.8) Veo(w.6) &t~ 6(2,€)) * wylt), (4.1)

where 3(z) = R(x,,z)v(z) and I used the fact that at stationarity the unit normal
vector to the reflector 72 and the vector of V.6 are opposite. That is,

7 - Vyd(y.§) ~ —IV,6(y. & (4.2)

By direct convolution it is easy to show that the convolutional inverse of Wy(t) is
given by

w,(t)"! =Ree ¥ A (4.3)

Now after convolving both sides of equation (4.1) with w,(t)~! and taking the time
derivative one finds

Re%e"w DE,t)xA ~ /dsx.b’(x) la(2.£)] [V.8(x,€)! §"(t — 6(2,£)).  (44)

The equation, t = ¢(y, &), defines the t-isochron for a fixed source-receiver configu-
ration dictated by €. Let us pick a point = close to the isochron and denote by y the
points on the isochron. Now, for points y near z, expand ¢ in a Taylor series,

o(z. &) = (y.€) + Vyo(y,€) - (z—y) + ... .

When considering full bandwidth data in the frequency domain or, equivalently, when
considering the “most singular part” of the modeling and inversion output, the sup-
port of the delta function in the previous equation is the isochron itself. For high
frequency data, one can say that  should be close to y, in order to obtain some con-
tribution from the integral. Based on this, we can assume the linear approximation,

so that
§'t—0) = 8"(Vyo-(z—-y))

§"(|IVyov- (z —1y))
= V0|38 w- (z - y)), (4.6)
38
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where v = v(y) is a unit vector normal to the isochron. I remark that for fixed =
and y. the vector v can be varied (over a hemisphere) by varying the source/receiver
location through variations in £. Substituting equation (4.6) into equation (4.4) vields

Regre @ DD o)~ [P23) o@ ) Vit (e -y).  (47)

For each output image point y. let us consider, for the moment, only those v’s in the
lower hemisphere (this would exclude migration dips larger than 90 degrees, imaged
by turning rays). The reason for this will be explained below. I then multiply the
previous equation by

Vy61*/ a(y, ). (4.8)

and integrate over all #’s to obtain

19 :
Re/d -’/“’ 8D(gt) Alt) | ~
=¢(Y.£)
(4.9)
V,0 3 a(z, §)
dv—-¥ 3z 5" (v (x—1y)).
/ ygy/ (v-(z-y)
At this point I can use the plane wave expansion representation of the delta function:
-1)%* _
b —y) = g [ 60 (@ - ) - v)aw (410)

where n is an odd number representing the dimension of the space (Gel’fand & Shilov,
1964). After substituting equation (4.10) for (n = 3) into equation (4.9), one finds

12 i
~Re /d Vm@i 8 D(&.t) = A(2) ) ~ 47*B(y). (4.11)
it=6(Y.§)

The factor 4 in the right hand side comes from the fact that we are integrating only
in half of the sphere; for the full sphere, this factor would be 8. One finds then,
¢? 8 5
Vit -—D(€ t) = At)] - (4.12)
lt=¢(y)£)

At this point we have an inversion formula in terms of an integral over all directions
in the lower hemisphere. To derive the inversion formula in terms of an integration
over the recording surface parameterized by &, we should map the lower hemisphere
into the recording surface. This can be done through the following Jacobian relations:

v v,
dv = \/gd¢ = 6—fx8c",d§

B(y) ~—Re——/d
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. Ov _ ov,
2 8_61 X 6—625 d€
(4.13)
— .1-3._ ODP Op,.
—_ i 3 ' o anom— _—
- vyo. P aé.‘. X a§2d€

Here I used the fact that p-p x 9p/d¢; = 0 with p = V,6(y, £), to eliminate parts
of the triple scalar product arising from differentiation of v = p/ip!. Substituting
equation (4.13) into equation (4.12) vields

Bly) ~ ~Re 5 [ de- — gB(Vyy 5()3, g)E%D(g,t) N Em(y@. (4.14)
where,

r Vyo(y.€) WI
hs(y.€) = det | 5% Vvo(®:6) || (4.15)

| BV6w.8)
is the Beylkin determinant (Beylkin, 1985; Bleistein et al., 1996).

I have a two—fold reason for choosing the integration of migration dips (¢'s) on the
lower hemisphere. Since we allow both positive and negative frequencies (w), we will
have a maximum angular aperture of 360 degrees, which is consistent with the physics
of the problem. That is, for any v direction between —7/2 and 7/2, we have, for
negative frequencies, directions between 7 /2 and 3% /2. This sweeps the whole sphere
once. On the other hand, it can be shown that the Beylkin determinant h changes
sign at horizontal migration dips. In other words, the mapping from the unit sphere
to the recording surface parameter is singular. The meaning of this is that we will
have to split the data set into two data sets, depending on whether the migration
dips are smaller or larger than 90 degrees. Each data set can be processed with the
same formula (4.14).

The set
Er={{&.: &) : t = o(y,€)} (4.16)

defines a diffraction surface. That is the reason for name diffraction stack in equa-

tion (4.14). Figure 4.1 shows a typical diffraction surface for a constant velocity
medium.

To find the frequency-domain counterpart of equation (4.14), I rewrite that equation

40
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F1G. 4.1. Diffraction surface for a finite offset source/receiver configuration in 2
constant velocity medium.

as

hs(y.§) 3 ) - i
.0 Voo O mDE N = A0 6t - 6w:€).  (417)

Now, I use the two-side frequency representation of the delta function given by *

B(y) ~ -—Re— / dé dt

5(t — / dw (=9

Then

h (yﬁ) 0 . o L ptw{t—
Bly) ~ —Re——— / dgdi o 5)3 SoE 5D = A0 /_ " d -9

~ _Re$ / % :B / dus €7° / dt=D(E,t) x & €

!While the convention used in this dissertation is consistent with the one—side delta, distribution,
I am choosing here the two-side delta distribution so I can compare this result with a well known
formula from Bleistein (1987).
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(4.18)

hp(y. ) /_ duries (1 + isgn(w)) e P D(£, w),

a(y.€) \Vyo(y, &

~ Re-é-_—g/dﬁ

where D(&,w) is the Fourier transform function of D(¢,t). For real WKBJ amplitude
a(y.§) and F(w) = 1, Equation (4.18) corresponds to equation (4) in Bleistein (1987).

4.4 Comparison with Tygel et al. (1996)

In order to rewrite equation (4.14) in the notation of Tvgel et al. (1996), I recast our
distributional representation in terms of a distribution in z, as follows. Set

B(y) ~ R(y,z5)v(y) ~ R(y,z:)/96(z — zx)

V0

~ R(y*ms)ao/az

5(2 - 22)

(4.19)
~ V9| R(y,xs) §(mp(z — zg)).

Here g is as introduced above (3.24). Also I use the fact that the geological dip and
the isochron dip coincide at stationarity, so that /g = [V,6|/(06/0z). The factor
mp is defined by equation (3.30). Now from equations (3.41), (4.14), and (4.19)
one finds that

B(y) .
M(y) ~ V05,8 (4.20)
or
7 hB y ﬁ) 0
M(y) ~ —Rer [ et s D) A()it_q,(m . (4.21)
Let us now define
M a2 a(y, €) Vo

so that,

y)~Re [ d€ wirly.€) oD(E1)= A (422)

it=0(Y.& )

This is the diffraction-stack operator as derived by Tygel, et al. (1996). Again, the
difference in the weight is due to errors that are being documented in Jaramillo et
al. (1997). This operator represents a weighted (with weight wy,) stack of data along
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diffraction curves t = ¢(y, &) for each output point z. The output is a true-amplitude
migrated image corresponding to the reflecting model.

4.5 Discussion

4.5.1 The stacking (summing) approach

The isochron stack operator, (3.42),

D(¢,t) ~ Re /dxdy wp(zx, ) -éa-z-M(:c) * A(t)i ; (4.23)

L=z (x:y1t)

and the diffraction stack operator, (4.22),

M(@) ~ Re [ de unle.§) 2DEH =00 . (424
=9

constitute an asymptotic transform pair between the space of seismic reflectors and
the space of seismic reflections. The duality of these spaces is studied in Tygel et al.
(1996). By back-substituting the isochron stack (3.42) into the diffraction stack (4.22)
one can study the resolution operator for the inverse process. Due to limitations
in aperture, this operator differs asvmptotically from the identity operator. The
resolution operator express how well the reconstruction can be accomplished within
the framework of the linear theory. If we do the back-substitution in the other
direction (substituting the diffraction stack operator into the isochron operator) we
can study the resolution in the data space. These types of substitutions could be
introduced by modifying the configuration in one of the two operators. For example,
zero—offset data can be obtained from finite-offset data, by cascading finite-offset
(prestack) migration, which is a modified version of zero-offset migration (poststack),
with zero—offset modeling. Thus, I could obtain “resolution” operators in the image
space (reflectors) and in the data space (reflections). In this general context, processes
such as remigration (Tygel et al., 1996) can be seen as a “resolution” operator in the
image space and TZO could be seen as a “resolution” operator in the data space.
Being resolution operators close to the identity, their spatial support should be small
with respect to the support of their corresponding forward or inverse operators.

4.5.2 The convolutional (smearing) approach

A different and more geometrical approach, to do demigration and migration, can
be derived from the diffraction stack and isochron stack operators as follows. Both
the diffraction stack and the isochron stack operators are linear. Thus, if we derive
impulse responses for these operators, then, by applying the superposition principle,
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we can derive inversion operators from these impulse responses. Interestingly, they
will turn out to be slightly different from those derived above, as we will see below.

Let us assume that D(&,t) = §(£ —&,.t—1y), and find the migration impulse response
by inserting these data into the diffraction stack operator (4.22). Then,

B6(€ —&p. t —to)

.'Ma(m;go,to) ~ /d&u’M(z 6) ot

#=6(x.&)
/d u,M(:z:§ 06(€ — &o.t — o)
mp(z.€) 9z t=6(T.£)
(4.25)
8 w:\’[(w 6)
/ ¢ Ozmp(zx.§) €= Lot~t) t=o(2.€)
_ 0 le(mf £0)
9z mp(, &) ito=o(Z,§,)

For each fixed &, and ty, the equation ¢, = ¢(x, £,) defines an isochron. That is, the
support of a migration impulse response is an isochron; so, migration can be carried
out as a superposition of this impulse response over isochrons. To see how this works,
let us write the data D(€,t) as a superposition of impulses in the following way:

D(&.t) = [ dgodto 6(¢ — &, — to) D(€o: o),

so after applying the migration operator to these data and using linearity of the
migration operator and equation 4.25 yields

M(z) ~ / d€o dto Ms(z: £, to) D(£o, to).

Schneider (1971) shows how migration can be done as a superposition of isochrons
or as a summation along a diffraction surface. His approach is qualitative. Here I
showed the mathematical justification for his statements.

On the other hand, if we assume an impulsive migrated section defined by M (z) ~
d(x — xo), then the inverse migration impulse response will be

35(2: - :L'o)

Da(&; t, $0) ~ /dxdy wD(x: g) Bz

iz=z (zy&t‘

- [ dedy 2un(a. €)é( - z0)

iz:zl (%%& ,t)

~ —agwb(wo 5)5 (4.26)

lzo=27(20,90,8 s i)
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For each fixed z, the equation zp = 2;(zo, o, €, ) defines a diffraction surface. That
1s, the support of the inverse migration impulse response is a diffraction surface; so
inverse migration can be done as a superposition of these impulse responses over
diffraction surfaces according to the formula:

D(&.t) ~ [ dmoDs(&:t,0) M (o).

This formula is obtained in the same way as the migration formula 4.26. That is, by
writing the migration image as a superposition of spikes. Hubral (1996) shows that
demigration can be done by superposition of diffraction surfaces or by stacking along
an isochron. Here I showed the mathematical justification of his statements.

A simple geometrical interpretation of the equivalence between the diffraction stack
and the isochron superposition is sketched in Figure 4.2. Here, for simplicity, the
velocity is assumed to be v = 2 km/s, and the offset is 4 = 0, so the time and depth
plots coincide. Also, I display only the in-line direction of the experiment. The
isochrons are concave semi-circles and the diffraction curves are hyperbolas. The
illustration corresponds to the migration response of a point input that is an isochron
(or semi-circle in this case) and to the migration response of a diffraction surface in-
put (or hyperbola in this case), which is a point. A similar interpretation follows for
the inverse migration process by interchanging the words superposition and stacking.
When stacking is performed along diffraction surfaces we are doing migration, but
when superposition is done with diffraction surfaces we are doing inverse migration.
In this sense stacking along curves is the inverse process of superposition of those
curves. Similarly, when stacking is performed along diffraction surfaces we are doing
migration, but when stacking is performed along isochrons we are doing inverse mi-
gration. In this sense diffraction surfaces and isochrons are duals of each other. The
following table shows a summary of these conclusions.

stack superpose
demig | isochron | diffraction
mig | diffraction | isochron

If the purpose is to migrate a limited subset of input data, then the isochron super-
position is preferred. For example, if a file contains the picked reflections, then the
isochron for each picked event is superposed to obtain the migrated data. On the
other hand if the user wants to obtain a migrated section of a limited output subset,
then the diffraction stack is more convenient. For example, if we want to obtain only a
section in the in-line direction, we stack only on those diffraction surfaces correspond-
ing to points in the in-line direction. An extreme case, would be that of migrating
a single diffractor. It would be more appropriate to sum along the only diffraction
surface corresponding to the diffractor, than to superpose all the isochrons that touch
the diffractor. These remarks apply in a similar way to the inverse migration pro-
cess, by interchanging the words isochron and diffraction surfaces. In practice it is
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F1G. 4.2. (2) The input data are represented by a point (black) and the migration
response is an upward concave semi-circle that can be constructed as i) a superposi-
tion of semi~circles (only one is needed, and here is represented by the gray dots) or
ii) as a diffraction stack where each hyperbola smears the input point to its apex. (b)
‘The output image is a point (black), and it can be computed i) as a superposition of
semi-circles going through the output image point and with their minimum point sit-
ting on a hyperbola(only one hyperbola is needed), or ii) as a diffraction stack,where
each point along the hyperbola is summed into its apex.
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common to find migrated picked events for interpretation purposes. These data sets

can be used to create superposition of diffractions to demigrate the data for different
purposes.
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Chapter 5

ASYMPTOTIC ANALYSIS OF THE DEMIGRATION AND
MIGRATION OPERATORS

In this chapter, I compute the leading-order asymptotic term of the demigration and
migration operators by using the time domain stationary phase method.

I show that asymprotically, the migration operator places refiectors in the correct
location and weights them with the proper oblique (source/receiver) reflection coeffi-
cient. In the same way, demigration maps reflectors into seismic reflections according
to a given source/receiver configuration geometry and given model parameters. The
amplitude on the demigrated data should account for the proper geometrical spread-
ing due to a point-source and reflector curvature, and it should preserve the reflection
coefficient embedded in the imaged data. I refer to the amplitude treatment under
these processes, as true amplitude.

5.1 Preliminary analysis

To find the time domain asymptotic representation of the demigration and migration
operators, I will use the Bleistein et al. (1996) frequency-domain stationary phase
analysis formula. Consistent with our Fourier transforms convention (2.1), I only
consider the use of positive frequencies (w > 0). An advantage of the use of only
positive frequencies is explained in below. One of the factors of Bleistein’s stationary
phase formula is exp {i¢sgn(w) sgn(®) = /4}. For the 3D problem, we will need a
2D stationary phase formula. Here ® would be a 2x2 Hessian matrix. For any
positive or negative frequency, there are two choices of sgn(w). The signature of the
matrix, defined as the number of positive eigenvalues minus the number of negative
eigenvalues, has three possibilities. These are sgn(®) = 0, —1, 1. Given that I want to
transform this back into the time domain; I would have to consider six combinations
(according to the signature of & and sgn(w)). If we restrict our frequencies to be
positive only we could get a more compact expression that would be valid for “only”
three combinations.

I want to find explicit stationary phase formulas in the time domain. The integrations
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that we will deal with here are all of the form,
F(8) = / doydos f(o) A (t - élor), (5.1)

where, o = (01,03), is a vector that parameterizes a given surface (isochron, diffrac-
tion stack, reflector or recording surface). If V,¢ # 0 then the integral can be recast
in terms of lower order boundary contributions. These contributions do not corre-
spond to specular reflections, but to undesired edge effects due to insufficient spatial
aperture. They are tails of deterministic noise that can be suppressed by introducing
a neutralizer (test function, or tapering filter) into the integral. We then can think
of all our integral operators as truly distributional, where the test functions are im-
plicitly assumed. I further assume that there is only one stationary point. That is,
there is only one o such that

Ve6=0 at o =0y (5.2)

and & = (@) at o = oo where ¢;; = 8?0/80:80; are elements of a non-singular
matrix. That is det® s 0. If there are a finite number of stationary points, the
integral operator can be divided in several parts each one having only one stationary
point. To avoid edge effects as above, appropriate neutralizer functions should be
chosen. In our context, the presence of several stationary points indicates the exis-
tence of multiple reflections associated with the same source-receiver parameter £ in
the case of the demigration operator. This means the existence of an isochron that
1s tangent to a reflecting surface in several places. One example is found in syncli-
nal structures, where even triplications can occur, giving bow-tie-shaped reflections.
The worse possible case is given by a reflector that coincides with the isochron in a
continuous set. This creates a focusing with high amplitudes. Here the stationary
phase analysis fails. In the case of the migration operator, several source-receiver
combinations correspond to the same reflection point as happens for diffractors or
geological corners (pinchouts, faults etc). If the primaries reflection-data coincide
with a diffraction surface for a continuous set of source-receiver parameters £, then
we have another type of focusing. Figure 3.1 sketches some examples of this. Here
also the stationary phase method fails. It is interesting to observe that the stationary
phase method would not work for migration in the midpoint domain, where all reflec-
tion strips are seen as diffractions associated with the midpoint. If det® = 0, then
higher-order stationary phase analysis or more sophisticated techniques are required.
As mentioned above, in order to keep this analysis simple I will assume that there is
only one stationary phase point.

Stationary phase analysis of these type of integrals for the small parameter £ > 0 in
a general n~dimensional space is a rather complicated problem. Gel'fand and Shilov
(1964) show the asymptotic series expansion of f(¢) (for Re A (¢t — 9)) in terms
of the small parameter ¢ > 0. They find what the leading order should be for any
n 2 1, and kth derivative (k = 1,2, ..) of the most singular function Re A(t—¢). For
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F1G. 5.1. Left: A synclinal structure is locally coincident with an isochron. The differ-
ence of curvatures along the continuous contact path breaks the method of stationary
phase for doing modeling. Right: The corners on the geological structure produce
diffractions which will coincide with the diffraction stacking path. The amplitude to
perform migration using the stationary phase analysis approach, increases without
bounds as the two diffraction curves get closer.

n =2 (o € R?) and k = 1, the analysis becomes rather simple by using the one-side
frequency domain representation of the analytic delta distribution. Let us start:

1

At—0)== [ dwe ™09 (5.3)
T Jw>0
SO
/ doydos O (t—6)f(o) = — / dor doy 1) / du (i) =2
n w>
(5.4)
1 y
= ——/ odw iw e““‘/da;dog f(o)eo9),
w Jw>
The appropriate stationary phase formula used here (Bleistein et al., 1996) is
. o w(00) gisga(®)F
/daldoz flo) €4%9) ~ 27 f(oo)e . c - (3.3)
w \/ “det P!
o)
_9f( i3 (1+2500) . .
/dm doy AN (t—9¢)f(o) ~ f\Uo,) = , / dw eH00) o=t
\/ detd w>0
(5.6)
: i5 (14 En()
. —2fleo) €30 1 / duse—(t=9(00))
Vet @] 7w Ju>o
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Finally, we have the asvmptotic result

._27.' f(o-o) ei%(z+s:zx2(¢))
J/ det®]

(o1}
~I
~—

/aza1 doy A (¢~ 6)f(o) A (t = é(0))- >.

In some cases the data are collected along one line of point sources. The appropriate
thought experiment is one where the propagation speed and other earth parameters
are independent of the transverse direction. In these cases I want to evaluate the
contributions from the integral along that transverse direction (cross-line) by doing
stationary phase analysis. This gives rise to the so called 2.5D experiment.

I will then perform the integration in equation (5.1) along just the direction oy by
using the method of stationary phase. We have then

e wd(T o) o1 sgn(P2) =S
ot st 1 [ fa it "
(P2,

where og = (01, 020(01)), 020(01) is solution to the stationary phase equation 8¢/0c, =
0 and &, = 8%¢/80% |, By substituting equation (5.8) into equation (5.4) one
finds i

/doldagA(t—o)f \/>/d o)

=020"

(5.9)
X / dus i@ €1550(®2)F o—its(t=6(T0).
w>0
Now
ive=eT Voe Tet = vV iwe ¥ (5.10)
so equation (3.9) becomes
fdoldag A (8 = &) f( \/-fdlf("'0
™ l®2
(5.11)

% / dw /=i e~ (t-6(00)) i (sgn(®2)-1)
w>0
That is,
, , et (sgn(®2)-1) _
/dO’l dO'g A (t - @)f(a’) ~ \/2’/7/d0'1 Y e f(a'o) A'z‘ (t - ¢(0’0)) (012)
V. @2

Here, & (t— 00) is the fractional derivative of the analytic delta distribution, defined
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through the relation:

~

Dyt = 00) = 85(t — o0) —iH [8;((t - a0))] - (5.13)

In Appendix C, I show that the definition of fractional derivatives of the Fractional
Calculus agrees with that shown here. That is a g—fractional derivative of 2 causal
function can be identified with a multiplication in the frequency domain by (—iw)9.
This fact has not previously been shown to be equivalent in the context of the Frac-
tional Calculus. Fractional derivatives as operators of the type (—iw)? are known to
be valid only for causal functions. In general, the Hilbert transform of a causal func-
tion produces a noncausal function. Thus, one cannot apply the fractional calculus
to the Hilbert transform of a causal function. Rather, one must apply the fractional
derivative to the causal function, first, and then apply the Hilbert transform to the
result. In the frequency domain, this amounts to multiplication of filters, which is
a commutative operation. In the time domain, we are performing convolutions, but
with functions that could be not well-defined.

The theory of pseudo-differential operators seems to be a good alternative, to under-
stand this problem, given that the operator (—iw)? is well defined and associated to
fractional derivatives, for causal and (or) non causal functions .

Deregowski and Brown (1983) show that for causal functions

oo e L (000 1H(Y) _

5 /:_oodw -1 ™% = NG <\/Z 5 ) (5.14)
so that half-differentiation can be obtained by convolution with the operator

1 (6(t) 1H(t) - =
d1/2(t) = —ﬁ (% — §t—3/2—l> . (0.1'3)
In particular,
. 1 [6(t=d(o0)) 1H(t-d(o0)) -

81(t — d(op)) = — : - = - . 5.16

3t = ole)) = = <\/(t o0 2(- o) (516)

In conclusion, I derived time-domain stationary phase formulas to evaluate integrals
of the type shown in equation 5.1. These integrals represent a weighted summation
over a surface, of data in the three-dimensional space. These type of operations are
typical in seismic data processes such as Kirchhof migration, demigration and TZO.
Equation (5.7) is used to solve the 3D demigration, migration and SDM problems,
while equation (3.12) is used to solve the 2.5D demigration, migration and SDM
problems. These time-domain stationary phase formulas were derived from their
counterpart frequency-domain formulas found in Bleistein (1984).

! Ahmed 1. Zayed. 1997. Electronic mail communication
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5.2 Asymptotic evaluation of the demigration operator

In this section, I will find the leading order asvmptotic term of the demigration oper-
ator, by using the stationary phase analysis formula derived in the previous section. I
show that asymptotically demigration maps reflectors into seismic reflections accord-
Ing to a given source/receiver configuration geometry and given model parameters.
The amplitude on the demigrated data should account for the proper geometrical
spreading due to a point-source and reflector curvature, and it should preserve the
reflection coefficient embedded in the imaged data.

I start by rewriting the demigration operator as in the formula (3.39)

a{z,§) Ov(z).
V.0 On

D(£,t) ~ Re / d%; R(z. z,) * AR). (5.17)

t=¢(Z,&)

Here t = ¢(x,£), for fixed ¢ and £, defines the isochron surface ;. The singular
function of the reflecting surface is given by

v(z) = 6(¢— 7r) V20|, (5.18)

where 7 (£) corresponds to the reflection time (Bleistein, 1987). Also, 8/8n =n-V;
therefore,

%5@ —7R) =1 - V,6(6 — 7p) = —8(6 — 78)| V46! (5.19)

at stationarity. The minus sign comes from the fact that at stationarity, the nor-
mal vector to the surface n points upwards while the gradient vector V¢ points
downward. Then, equation (5.17) can be written as

D(€t) ~ -Re [dS;R(z.2.)a(z.£)V.6/5(6 - 7r) NO (5.20)
t=¢(x,€)
That is
D(¢.1) ~ —-Re / dS; R(z, ,)a(x, £) V26! A (6 - )] . (5.21)
it=¢(Z,&)

Let us now parameterize the isochron surface ¥; using coordinates o = (0,03),
where the parameters o; and o, define an orthogonal coordinate system along the
plane tangent to the isochron at the stationary phase point. I represent the isochron
as (01,02, 23(0102)], where %3 is plotted along the normal direction to ;5.

The stationary phase condition is described by

Va :@ (:Z:(O‘),g) - TR(&)} = 0: ( .

Ot
N
AY)
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SO one can rewrite equation (5.21) as

D(€.t) ~ —-Re / do /G R(z.z,)a(z, £) [V,0! A (6 — 75) (5.23)
where g is the determinant of the first fundamental form of differential geometry.

Now, since, at the stationary point, 8%3/80;, = 0, for the specific chosen parameter-
ization, then 0z;/00) = 6. 1 = 1..3, k = 1,2 where the Kronecker delta is defined
by

1 ifi=j -

Now the metric tensor g;;, for this surface, is found as follows

6‘xk axk -
gij = = = 8ix O = 045, (5.23)
7 Bo; 0o; J 7 i
so that g = 1.

Stationary phase formula (5.7) produces

47 R(zo, ) a(xo, &) cosh
D(€,t) ~ R
(&1 ~Re clzo)deni®

FE (] 380(8) | 3.5
B2 A (¢ — 7(€)) . (3.26)
§t=¢(w07€)

Here, o = z(o0) is the reflection point, ¢(z) is the P-wave speed of the laver
just above zg, 6 is half the angle between the source and receiver rays at z,. The
matrix @, to within a sign, represents the second-derivative matrix of the refiection
time ¢(z(0), ) with respect to the coordinates of an (arbitrarily oriented) 2-D local
Cartesian coordinate system (o;,03), within the plane tangent to the reflector at
zo(o). In other words, ® is just the Fresnel matrix Hr, introduced by Tygel et al.
(1993). Given that at stationarity the tangent plane to the isochron is the same as
the tangent plane of the reflector, one needs no further rotation to find the Fresnel
matrix. The relation sgn(®) = —sgn(Hp) is due to the fact that the orientation of
the tangent plane with respect to the isochron is opposite to that with respect to the
reflector, since the normal vectors are opposite to each other at stationarity. Tyvgel
et al. (1995) define the Fresnel geometrical spreading factor Lz(x,) as

cosf 317
Lr(xg) = . 35.27
F( 0) C(mo) \/det‘Hpj ( )
In terms of Lr(z) one has
D(&,t) ~ RednR(zo,2:)a(xo.&)Lr(o) A (t — 7R(E))- (5.28)
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The amplitude term a(zo,§) can be written in the form a(zo. €) = Az, &)/ LsLe,
where L5 and L are the geometrical spreading factors from source and receiver,
respectively, and A = A(xy, £) is the total loss in amplitude due to transmission across
all interfaces along the ray. For a complete treatment of amplitudes along the ray,
the reader is referred to Cerveny (1995). After these considerations, equation (3. 78)
turns out to be

D(&.t) ~ Re4n

. :}:G Lr(2o)R(@o,z,) O (t - 72(6)). (5.29)

Now, using Ls¢ = LsLg/Lr (Tygel et al., 1995), where Ls¢ represents the geometrical—

spreading factor for the combined source-receiver event, one finds that

D(£,t) ~ Re 4,~.£R—gc-°fi) A (t - Tr(£)). (5.30)
SG

This is precisely the zero-order ray term corresponding to a reflected event with
reflecting time given by 7g, transmission amplitude loss given by A, source-receiver

geometrical-spreading factor given by Lsc, reflection coefficient given by R(zo, z;)
and isotropic source radiation pattern represented by the constant 47.

5.3 Asymptotic evaluation of the diffraction stack

Here, I find the leading-order asymptotic term of the diffraction stack operator.

I start by rewriting equation (4.14)

hp(z,§) 0 3 ;
s I o et SCURE I e
and insert, the analytical data
DIt x 80) ~ 4n T A (1 7)), (5:32)

Taking the real part of the resulting equation, yields

ARQ: :Bs h (:c,ﬁ) Iy -
B(z) ~ —Re- / R g)ivzqs(:c,g)j A ((, &) — r(E))

(5.33)
AR(z, x;) hp(x, &)

~ Re: / U T E Vel & (R~ 6(2,0))

since A’ is antisymmetric (odd) in its argument. Here 3(z) is a migration operator.
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I extend this formula as a time continuation operator in the following way:

R Z, ms) h3($,€)
‘CSG a(a:,g) :vx@(xg)‘

B(z.t) ~ Re- / de 2&
(5.34)
X A (t - (o(z, &) — 7r())).

The “imaging condition” ¢ = 0 makes of 3(z.t = 0) the migration operator defined
in equation (3.33). Formula (5.34) is already in the form of formula (5.1). The time
domain stationary phase analysis vields

2 AR(z, x;) hB(:z: £, eEtsa(3)

.t ~ _Reﬁsc a(z. &) Ve0(z. &) \/* det @
x  A(t-(o(z.€) — Tr(E))). (5.35)
Here ®,; = a&& (o(x, &) — mr(€ )) eg,) ; the evaluation at, & = £, corresponds to the

two-dimensional parameter that identifies x(£,) and x,(£,) as the source-receiver
combination that selects the specular ray reflecting at point z. The stationary phase
condition implies that the diffraction surface corresponding to the diffractor point =
and the equation t = ¢(z, £) is tangent to the primaries surface ¢ = 7(£). The point
of tangency is &, ¢(, &) = Tr(£))-

Going back to £ = 0 one finds

2 AR(@,3,) hp(z, &) €3C=(3)

(x,t=0) ~ —Re
A ) Lsc a{z. &) V0(x, &) \/ ‘det D!

X A (o=, &) — Tr(&))- (5.36)
Now from,
_ LsLe . A -
Lsg = . and a= Tolo’ (5.37)
follows

2 R(z,x,) hp(x, &) Lp(x) e30+sen(3)

e t=0) ~ R 6 Vi det®)

(5.38)
X D ((x, &) — Tr(E,)).
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Now, Tygel et al. (1995) 2 show that
mp cosf ?

" ha(@. £o)c(z) cos Br

Here, 6 is half the angle between the rays from z to the source and to the receiver,
Bk is the reflector dip and mp is the stretching factor defined in equation (3.30). We
further observe that

[Zp(:c)

det 315183 (5.39)

mp = 00/0z = V¢ - n. = V,0| cos 3p. (5.40)
The substitution of equations (5.39) and (5.40) into equation (3.38) produces
2 cosf , -

B(z.t=0) ~Re @) R(z,z,) O (o(x, &) — Tr(E0))- (5.41)
At stationarity

. . 2cos#

T 5.42
vzo! C(m) (D 4 )

so that equation (5.41) can be written as
Bzt =0) ~ Re!V.o(x, &) R(z. z5) A (6(, &) — r(£0)- (5.43)

Since, for the leading order approximation, we need the reflection coefficient R(z, x;)
to be real. we have that

,3(33 t = 0) ~ :vxo(w’ 60)'R($ 2)3) 5(0(:3 60) - TR(&O)): (5'44)
and using equation (3.18) one finds
5(z) ~ R(z, z;) v(z). (5.45)

This is the asymptotic approximation of the reflectivity function derived in Bleistein
(1987).

*This is their equation (24). We identify & with Hps. I want to remark that Tygel et al. left the
term cos 3r out when coming from their equation (19a). I made the appropriate correction here.
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Chapter 6

SEISMIC DATA MAPPING

6.1 Introduction

Here I give a precise mathematical definition of the SDM operator along with a
simplified form obtained from the use of the method of stationary phase.

By defining SDM as a cascade of migration and demigration I am defining a pro-
cess that takes seismic data from any prescribed source/receiver configuration and
model parameters to data that would be collected under a different source/receiver
configuration and/or model parameters. Processes such as offset continuation (and
in particular TZO), re-datuming, transformation of P-SV mode—converted data to
P-P data, AMO, any combination of the previous processes, can be seen as examples
of SDM. SDM is an extension of the technique described by Hubral et al. (1996) as
Configuration Transform (CT).

The space of SDM operators has a well defined algebraic structure. Given that dem-
igration is the (asymptotic) inverse of prestack migration I find that the composition
(cascade) of two SDM operators is another SDM operator, the inverse of an SDM op-
erator is an SDM operator and the identity? function is an SDM operator (resulting
from cascading prestack migration and demigration without changes in the model).

These properties show that space of SDM operators has the algebraic structure of a
group.

The mathematical formula of an SDM operator, based on the cascaded of a migration
with a demigration operator represents a four—fold integral. This formula is collapsed
to a two—fold integral (integral over a surface) operator by the use of the method of
stationary phase. The simplified operator is of the type of Kirchhoff migration oper-
ator, but with smaller aperture. I compare my SDM formula with the CT formula
derived by Tygel et al. (1996). Both formulas agree in their common domain of appli-
cation. I do the analysis in terms of curvatures of the input and output configuration
isochrons, and finally develop a simplified formula in terms of second derivatives of
the stacking path (geometrical locus of the inverse impulse response for the SDM
operator) and the Huygens diffraction surfaces.

1The identity distribution is a delta function with zero lag. Due to band-limiting issues I associate
the identity with a sinc function.
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As a direct application of the SDM operator I develop an analyvtic formulation of TZO
in a depth~dependent linear velocity medium.

6.2 The chained operator

Here I will derive an expression for the SDM operator, as a composition of the demi-
gration and the migration operator.

In order to apply the time-domain stationary phase method, we need to rewrite the
normal derivative of the migration operator (4.14) in terms the time derivative /0.

I start from equations (5.18) and (5.45), so

B(z) = R(z.z,)d(t - 72) V20| . (6.1)

=0

Now from (3.19) one finds

29@) . —R(@.2) 56— 72) 19267 ~ — V0] %3/x>¢ (62
Let us now rewrite the migration operator (4.14):

Bia) ~ —Re g5 [ de 228 Zpie . a0 %mwé) , (63)
so that

5 0@ ~ <Re; o6 —2E8 Dpen.an . (4

it=¢(2.§)

where the partial derivative operator was introduced under the integral sign and only
the leading asymptotic term retained.

The demigration operator (3.40), after introducing equation (6.2) becomes

= A(t). (6.5)

D7) ~ —Re [ a0z, £) "5 i i
t=¢(d,

Note that I introduced the tilde character to indicate output variables since they will
play that role in the SDM chained operator. Here, T, is the output configuration
isochron. I parameterize the output isochron as Ty(0, o2) in the following way:

Zo={2(0) :1=d(z(c).8)}, (6.6)
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where z(0) = (z(01, 02), y(01,02), 2(01,02)). 1 then rewrite equation (6.3) as
< - -,z 08(=z, g - -
DED)~ —Re [drygaled) P22 L, (6.7)
f=é($€)

where /g is the metric correction associated with the parameterization of the surface
2o in terms of the two dimensional vector o.

The chained operator is obtained by substituting equation (6.4) into equation (6.7).
This results in

DED) ~ Rep5 [do\/Gala.d
(6.8)
hB(wtg) 62 . i ; . _
| % g qa DENA0 <80

t=0(@.8) i=g(z.£)

This is a four—fold integral that maps input data D(&,t) into output data D(E,7).
That explains the name Seismic Data Mapping (SDM). I want to simplify this oper-
ator by using the method of stationary phase on the integration over o that is, on
the integral over the output isochron surface T.

6.3 Stationary phase analysis

In this section I find the leading-order asymptotic approximation of the SDM oper-
ator.

The analytic zero-order asymptotic analytic ray data can be represented as
D(&.2) = A(t) ~ Ao(§) & (¢ — 7r(8)) (6.9)

where the amplitude and phase terms Ay and 7g(€) are shown in equation (5.30). By
using these analytical data in the chained operator (6.8) and interchanging the order
of integration one obtains

D(é Z) ~ Re /dé AO(&) /dO’ wCC(m:é:é) A (@(z‘ &) - TR(&)) §t~=5(z’é) s (610)
where the cascaded weight wec is given by
o1 a(x,€) hp(e,

At this point we recognize that the inner integral in equation (6.10) is an isochron
stack over the output isochron. I will apply the stationary phase formula (5.7) to this

61



Herman Jaramillo

inner integral. The stationary phase conditions are given by

. o 85(2(0),€) _ Bolz.E) 8i;(o)
60-1' _@(:c(a'). &) - ’R(&).- - 30_1_ - axj ajo,i

=0, i=12  (6.12)

where the tilde character in z; is just to emphasize that the derivative is taking over
the output isochron. Here, I assume summation over the repeated indices. The point,
o = 0y, such that equation (6.12) is satisfied, is the stationary point. I assume that
there exists one stationary point. It was showed in Chapter 5 that this assumption
is violated in some simple (and important) cases. I also show below examples where
this assumption is violated. Formula (6.12) tells us that, at the stationary point,
the source-scatterer-receiver vector (V,0) ? is perpendicular to the output isochron
tangent plane. This means that the corresponding source-scatterer-receiver ray rep-
resents a specular reflection on the isochron; in other words, it satisfies Snell’s law
along any reflector tangent to the isochron. Figure 6.1 illustrates this. The inter-
pretation of the stationary phase condition is then that the point (o) = zo(€,f)
belongs to the output configuration * isochron and serves as a specular reflection
point determined by the parameter £ in the input configuration. That is, the triplet
(@s(€). zo(€,T), T4(€)) represents a source-reflector-receiver specular ray on the out-
put isochron. I then define the mapping:

zo(£,):8 ¢ R? —R?

where S is the set of all unique parameters £ such that zo(é,f) is a specular re-
flection point in the output isochron defined by the equation t = o(x,€). This
specular reflection is identified with the triplet (z(£), 2o(£, 1), z4(€)). S is then the
domain of integration of the SDM stack operator. I can then justify the representation
o = xo(€, £, t). This physical interpretation of the stationary phase condition (6.12)
gives us an algorithm to compute the SDM stacking surface (support of the SDM
stacking operator). The SDM stacking surface is the locus of all (input) points (,&)
corresponding to specular reflections in the output isochron. In other words, to com-
pute the SDM stacking surface, we need to do a ray tracing to the output configuration
isochron with the input recording configuration. The mathematical definition of the
SDM stacking surface is given by:

ESDM = {(tﬁ) t= Ts(zs‘(s): wO(gé{)) - Tg(x9(€)=30(€= é:f))} s (614)

where 7, and 7, are the traveltimes from the source and receiver positions to the point
x, respectively. Figure 6.3 show the inline portion of the stacking surface for the case
of a TZO experiment in constant velocity. This curve is constructed as the envelope
of Huygens curves corresponding to points in the output configuration isochron.

>This is the sum of the slowness vector from the source and the slowness vector from the receiver.
®Here the output (input) configuration means both output (input) recording configuration and
output (input) model parameters.
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N
V.0
F1G. 6.1. Here I illustrate how the stationary phase condition implies Snell’s law. The
stationary phase condition requires that the slowness vector V,¢ be perpendicular to
the tangent reflector. Now the angles that this slowness vector makes with the source
and receiver slowness vectors are equal to 6. This is because both, the source and

receiver, vectors have the same magnitude of 1/c(z), where ¢(z) is the wavespeed at
the reflecting point.

Kinematically speaking, the SDM could be numerically implemented as a Kirchhoff
prestack migration algorithm where the diffraction surfaces are replaced by the SDM
stacks defined in equation (6.14). To have the dynamics right, we should proceed
further with the stationary phase analysis. I apply the stationary phase formula (53.7)
to the inner integral in equation (6.10) and find

D&, ~Re [ d€ wspu(&.€:9) 4o(€) ' (S5pm(&.E.9) — 7a(6)). (6.15)

where

¢F (1+53n(2)/2)

¢ Videt®(€,€,7)
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Sspm(€.£.7) = 6 (20(€.€,7), €), (6.17)
and
sz 32¢(w(0)=€)>
P(£.€.t) = | ————== . 6.18
€60 = (FHe I (6.15)
Now, equation (6.135) can be written as
DD ~Re [ &€ wsou(€.ED) 2 DE.1) * AH) (6.19)

it=6spy & ,é s Z) '

where the real part of the complex integral evaluation is taken to be consistent with
the physics of the problem. The weight wspys is a compound of many factors that
relate the input data with the output data. These factors include the following: geo-
metrical spreading factors from both input and output configurations (a.a), Beylkin
determinant A and stretching factors (g) that come with the particular chosen param-
eterization. The factors that arise from the stationary phase analysis (® and sgn(®))
account for ray caustics at the reflector interface and the difference in isochron cur-
vatures that are part of the Fresnel geometrical-spreading factor (Tygel et al., 1995).

Discussion

In the same way that I computed the impulse responses for the demigration and mi-
gration operators I could compute the impulse response for the SDM stack operator
here. Once that impulse response is computed we can again apply the superposition
principle to find a different representation of the SDM operator that we can call the
SDM superposition operator. While the SDM stack operator can be constructed by
ray—tracing to the output isochron with the input configuration, the SDM super-
position operator can be constructed by ray-tracing to the input isochron with the
output isochron configuration. Claerbout (1985) shows how Rocca’s DMO operator
is constructed exactly in this way. That is, the DMO superposition operator is found
by doing zero-offset ray tracing (output recording configuration) into a finite—offset
isochron (input isochron). Let me mention that Hubral et al. (1996) use the word,
“inplanat”, for a stack-type operator in their CT problem. My guess is that the
reason for this word is that the operator belongs to the input data space. In a similar
fashion the word, “outplanat”, in the above reference, means a superposition—type
operator in a CT problem. (This operator belongs to the output data space). I
would like to borrow these terms to describe any stack-type * operators and any
superposition-type operators °.

“Generalized Radon transform-like operators. They are integrals over an n — 1 dimensional
surface in the input data space.

Superposition integrals. They are volume integrals in the n—dimensional output data space.
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6.4 Relation between the Hessian matrix &, and the curvature of the
difference between the output and input isochrons

The determinant of the Hessian matrix & as it is defined here is of little utility both
from the analytical and from the numerical point of view. I want to transform this
determinant into a more useful expression, both from the computational and from the
theoretical point of view. The first step is to transform the determinant of the Hessian
matrix ¢ into an expression in terms of the Gaussian curvature (Laugwitz, 1963) of
the difference of the output and the input isochron surfaces. This expression not
only tells us more about the physics of the problem but becomes handy for analytical
computations. In a latter section, this Gaussian curvature is used to compute the
weights that will go into a 3D TZO operator for the case of a medium with linear
velocity distribution with depth. A second step is to transform the Gaussian curvature
of the difference between the output and input isochrons into a second derivative
matrix between the difference of the stacking surface S and the Huygens diffraction
surface tangent to S at the stationary phase point ;.

In Appendix D, I show that
det® = V,0 %K. (6.20)

where K is the Gaussian curvature of the difference between the output and the input
isochrons. I find also that If L;; is the second fundamental tensor for the difference
between the output and input configuration isochron surfaces, then sgn ® = sgn L;;.
The reader is referred to appendix D and Laugwitz (1965) for the description of the
Gaussian curvature and the second fundamental tensor of a given surface.

I now re-write the weight wspys in terms of the Gaussian curvature K of the difference
between the output and input configuration isochron surfaces. This turns out to be

. 1 a(x, €) hp(x,£) £ (1sgn(Li;)/2)
spm(€,€,8) = —— BT
wspm(§.&,t) 5% alz.€) szé(m,ﬁ)?\/ﬁe

Appendix D also shows that this weight is independent of any coordinate system used
in the representation of the isochron surfaces.

(6.21)

Figure 6.2 shows an illustration, for the differences of curvature, in the case of a TZO
experiment in constant velocity. For simplicity only the inline direction is shown.
The output isochron is a circle and the input isochrons at each point of the circle are
ellipses. The square root of the positive difference of curvature between the circles
and the ellipses at each point of the circle is reciprocal to the amplitude. We now are
prepared to derive an alternative representation of the weight wspy,, which simplifies
the numerical computations of the SDM operator. This simplification can be obtained
using a formula derived by Tygel et al. (1993).
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midpoint (km)
-1.0 -0.5 0 0.5 1.0

depth (km)

F1G. 6.2. The inline output isochron for a TZO experiment in a constant velocity
medium is a circle. The inline input isochrons for the same experiment are ellipses.
The stationary phase condition requires that those ellipses be tangent to the input
output isochron (circle). The square root of the absolute value difference of curvatures
between output and input isochrons is reciprocal to the TZO weigth.

Let us begin. I consider the Hessian matrices Hp, and H i defined by
- o2
186:0¢; |

[8%6spa |
H _ . .23)
R | 0; 0¢; J (6.23)

H p represents a matrix of second derivatives of the diffraction time surface. More
specifically, this diffraction surface is the support of the data generated by a scatter
located at the stationary phase point, using the input configuration geometry. Hp
Is a matrix of second derivatives of the time in the SDM stacking surface defined by
equation 6.14.

Tygel et al. (1993) (equations 23a and 25b) showed that the determinant of the
difference between these two matrices is related to the Gaussian curvature X by the
formula

(o) 1* B2
det(Hp — Hg) = — [z—cﬁ} "112 (6.24)

-
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and
sgn(Hp — Hg) = —sgn(®). (6.23)

Here, z, is the stationary phase point and 6 is half the angle between the source and
receiver rays at @o. Using equations (6.24) and (6.25) in (6.21) vields

-~

& 7 1 &(a:&)
27 a(z,€)

\/ det(HD - HR)EQ%'(:‘_S%“(HD—HR)/Z). (626)

This representation of the SDM weight is desirable for numerical computations. The
weight is more simplified than the representation 6.21, also the matrix Hp can be
computed directly from the SDM stacking surface that is computed as a first step
in the evaluation of the SDM output. The matrix Hp should be computed from
raytracing traveltime tables. The representation 6.21 is good for theoretical purposes.
For example, while there is not an analyvtical expression for the SDM stacking surface,
in the case of TZO for a model with linear velocity gradient with depth, there are
analytical expressions for the both the zero—offset and the finite—offset isochrons.

Figure 6.3 shows an illustration, for the differences of second derivative matrices, in
the case of a TZO experiment in constant velocity. For simplicity only the inline
direction is shown. The sets of Huygens diffraction curves are the double root equa-
tions for each of the points on the input isochron. The envelope of these curves is
the the stationary phase path. I integrate along that path. The Square root of the
positive difference of second derivatives between this stacking path and the Huygens
diffraction curves is (asymptotically) proportional to the SDM amplitude. Figure 6.4
shows a construction of the inline stacking path for the same experiment of Figure 6.3
but this time with band-limited signals.

6.5 Some special cases of input data

The SDM weight wspy, in equation( 6.21), admits some simplifications in some
particular input geometries. I give some examples below.

6.5.1 Common-shot (receiver) gather

For a common-shot gather, Bleistein et al. (1996) showed that
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midpoint (km)

time (s)

F1G. 6.3. Huygens diffractions (double square root paths) corresponding to the points
of tangency between the circle and the ellipses in figure 6.2. The envelope corresponds
to the stationary phase path (or surface for a full 3D experiment). The square root of
the positive difference between the second derivatives of these paths and the envelope
is proportional to the weigth of the SDM operator.

hp(z,&) = 2cos? 6 det = 2¢0s% 6 hy(x, &). (6.27)

. ] Q
{%L’%@’U‘P

Here p,(x.&) = V.7,(x,€), and 6 is the half angle between the source and receiver
rays at . Now, given that [V.¢(x, &) = 4cos?8/c*(z), one obtains for (6.21) the
more simplified weight

i &(mé) ('2(&:) hg(-'cg) e%(1+sgn(Lij)/2-

wspm(€, €,7) = T4 oz, £) K|
: i

(6.28)

For the common-receiver configuration, the mathematics is the same, but all sub-
scripts “g” (for receiver) should be replace with subscripts ;" (for source).
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F1G. 6.4. The superposition of many Huygens diffraction curves corresponding to
points along an output isochron, generate the stacking (stationary phase) path. I
sampled the output configuration isochron as a set of coarsely distributed diffractors,
so that the Huygens diffraction curves could be distinguished. A fine spacing of
diffractors on the output configuration isochron would show only the stacking path.
The stationary phase principle guarantees constructive interference along the envelope
of the Huygens diffraction curves.
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6.5.2 Zero—offset data

If input data are in the zero-offset domain, then |V,dé(x,€)? = 4/c*(z) and
[ p
2,
ha(z.€) =8 det | T | =8 ho(, &), (6.29)

8
2

where p = V.,0. One then finds

’wSDM(ﬁ:é:Z) = _% Zgzg A (z) ?O(fcz §) e 5 (isgn(li;}/2) (6.30)

6.5.3 Common—offset (constant velocity c) gather

Bleistein et al. (1996) showed that for a constant velocity medium, common-offset
configuration, with a flat recording surface

- - 2
hs(@,€) =2 cos’ 0 5 (rs T:; (é i )], a(a&):ﬁrg. (6.31)

Here rg = iz (§) — ! , 7y = |2,(€) — x| are the lengths of the source and receiver rays
in the input configuration respectively. The SDM weight is then transformed into

2 - Tz) ir
' -! 9/ | eF(i+(sgn(Li;)/2) (6.32)

I will show that in the particular case of offset continuation, K = 0, and the stationary
phase solution is not appropriate anymore. If, further, the output data correspond
to a constant—velocity experiment. then

e z . ( _-_7.)(2-,,.2-| Ty A
wspm(§,€,1) = —— 757y g j"*\/K' g)[ e’s (rsen(ly)/2), (6.33)
d

Here 7 = (x,(€) — ! , 7y = {@,(€) — x| are the lengths of the source and receiver
rays in the output configuration, respectively.
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6.6 Reduction to the Tygel et al. CT formula

The derivation of the weight in Tvgel et al. (1996) CT formula is based on the
parameterization of the input and output configuration isochrons in the form z =
2(z.y). Tygel et al. use then z as the preferred direction.

Thus, here I select z as the preferred direction to parameterize the input and output
isochrons. This is Z = 2(£.t, p) and z = 2(£,¢, p). Here, p = (z1,22) = (2, 7).

From equations (D.1) and (D.3) it follows that the stationary phase condition is
equivalent to the fact that at the stationaryv point ),

0z 0% 0o/0x

% = 5 = " 59/50 (6.34)
and

0z _0i _ 806/dy -
il __6905/32' (6.35)

Let us, further define the matrices Z and Z as

Z = (M) and Z = <M> (6.36)

0z;x; 0z;x;

From equation (D.9) we see that, for o3 = z and 0 = v,

Videt @) = V0] \/|det(Z - Z)], (6.37)

where I used the index z to denote that we are looking the surface in a horizontal
(zy) plane.

After using equation (D.18), in the coordinates z,y, z(z,y) one can write ¢

(det(Z - 2)| = /g det®.. (6.38)

V20|

®Note that equation (D.18) was derived by assuming that the coordinates ¢; and o» were sitting
on the common-tangent plane to the input and output configuration isochrons at the stationary
phase point. However, thanks to equations (6.34) and (6.35), this equation also applies for those
coordinates sitting in a horizontal plane. What makes the difference between the two different
parameterizations is the factor g, that comes later in that process.
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Then by using equation (D.14), where g; = g we see that

'det & tdet(Z — Z)! 2 = :
VK = _\-/\/g_v;o.—i - \/ € (g )] — !VTI’LZ;? det(Z — 2), (6.39)

where I used the definition of mp = 8¢6/8z given by equation (3.30). Substitution of
equation (6.39) in equation (6.21) yields

1 e-‘g‘—"(l-t-sgn(Z'—Z)/2)

Wspym = —z—AcT = .
2= [idet(Z - 2)]

(6.40)

Here I used sgn(L;;) = sgn(Z — Z), coming from the fact that rotation matrix does
not change the signature of the operator it acts on. Also the weight K¢r is given by

— &((Dé) hB(mvg)
Kor = at) mb(e.b) (641

The weight Kcr coincides with the one derived by Tygel et al. (1996). The latter

is seen to be the same as the result here, except for the specific parameterizations of
the two.

6.7 Offset continuation in a constant—velocity medium: An ill-posed
problem?

While the SDM simplified operator seems to be a general and robust tool, it might
have some deficiencies in some of its simplest uses. These deficiencies are introduced
by the 2D stationary phase analysis as will be seen below. The way to get around
this problem is by starting again with the full four-fold integral (6.8). In this section,
I explain the problem and propose a solution.

By offset continuation, I mean a process that transforms data from one fixed offset
h = (hy, ho) to another fixed offset A = ok, with constant scalar o, thereby preserving
the source-receiver line orientation. The case, o = 0, represents the TZO process.
We do not lose generality by assuming hy = 0. The general case of arbitrary ho
is obtained by working in a new Cartesian coordinate system after rotating the old
Cartesian coordinate system by an angle ¢ such that sing = hy/\/h? + h3. Let us
then parameterize the input configuration data offset vector by the single parameter
h and the output configuration data offset vector by the single parameter h.

For a constant velocity isotropic medium, the source-reflector, receiver-reflector and
the zero—offset rays lie in the same plane defined by the source position z;, the receiver
position &, and the reflection point . To see this, recall that the slowness vector
corresponding to the zero—offset ray has the direction of sum of the slowness vectors
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F1G. 6.5. Here the plane that contains the vectors p, = V,7, and P, = V.7, goes
through the source «;. the receiver z, and the zero—offset location z, on the earth’s
surface.

from the source-reflector and receiver-reflector rays, so the slowness vectors are all
in the same plane. Since the velocity is constant, all rays are straight lines in the
direction of the slowness vectors. This confirms our claim. Now if we move (continue)
to a different offset along the same source-receiver line, corresponding to the same
surface arrival point (the zero-offset point in the surface), and reflector point z, it is
obvious that the rays all stay in the same plane. What I am saying is that the support
(domain of definition) of the offset-continuation operator stays in the source-receiver
line, which is the intersection of all planes, having the source, the receiver and any
point Z in the 3D earth model. Figure 6.5 shows a sketch of the plane that goes
through the source, receiver and zero-offset locations. As shown in the figure this
plane contains the source and receiver slowness vectors p, and P, respectively.

What I have just proved is that the offset continuation operator for a constant velocity
isotropic medium is, in essence, a 2D operator with its domain of definition in the
source—receiver line. This degeneration translates into lots of savings for the kinematic
process, since it is a 2D instead of a 3D process. On the other hand, we have to be
careful in the dynamic (amplitude computations) problem due to degeneration of the
experiment by losing one dimension. Furthermore, we will see that the 2D stationary
phase analysis fails due to the fact that the stationary points are not isolated. They
are found along a continuous circular path. creating focusing along the cross-line
direction. These facts violate the assumptions made in the previous section about the
stationary phase method. This does not mean that the SDM is an unstable process.
It is unstable if we do it through the method of 2D stationary phase. One special
thing about stationary phase analysis, is that it enhances the specular reflections
by constructive interference (a Huygens principle type process). Since the imaging
algorithms that we use are based on specular reflections, we can say that, as in the
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stationary phase analysis approach. we still have a 2D operator for this 3D experiment.
One way to simplify this problem is by acquiring the data along the line of maximum
dip. These are the type of data that Bleistein (1986) call 2.5D data. Here the data
are independent of the cross-line direction, and the integration along this direction
can be performed analytically. Fortunately, the demigration and migration operators
do not present this instability problem (except for the special cases illustrated in
Chapter 5). We can, then, reduce the 3D demigration and migration operators to
2.3D operators by using the method of stationary phase along the cross-line direction
and then cascade the resulting operators to find a simplified SDM operator. This
operator can be further simplified by using the 1D stationary phase method along
the inline direction for the dummy variable ;. This is the topic of next Chapter.
Here, I explain the instability of the 2D stationary—phase analysis method for the 3D
SDM approach in a constant—velocity medium.

To see the problem in a quantitative way, let us define the midpoint of the input

configuration as £ = (£;,&;) and that of the output configuration as € = (£1.&).
Then

= (& =17 &.0), 2y = (& + h,6,0), 8, = (& — h.&.,0), &, = (& + b, &,0),

where the tildes are used for the output configuration variables and, for simplicity,
a horizontal (z = 0) acquisition surface is assumed. I further assume that « is the
stationary phase point for the SDM problem.

Since the velocity is constant, the source and receiver slowness vectors for the input
and output configurations are represented by

Ps = As(z — )

Dy = Ag(T — ) (6.42)
Ds = Xs(w - Z)
Py, = Xg(“’ — ).

where the A’s are positive scalars that depend on the corresponding ray lengths and
the medium velocity ¢. Let us assume that there exist two planes: P having the
points &,  and T, and P, having the points Z,,  and Z4. I will prove that this
cannot happen. For this purpose let us make use of two simple facts. First, since,
at the stationary point z, both the input and the output configuration isochrons are
tangent, they share the same normal direction line; that is

Ps =P, = A(D, + Py), (6.43)
for some scalar A. Second, given that

T, -z, = 2h,0,0)=-’.f(2iz,0,0)=-’3(5: - &,), (6.44)
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then, by using equation (6.42) in equation (6.44) one finds

P _ P _h b, _
R

>

As  Ag R

p T

. .
gd

From equation (6.43) it follows that the vector p, + P, belongs to the planes P; and
P, and from equation (6.43) one can see that the vector p, /A, — D,/ Aq 2lso belongs
to both planes P, and P;. Now given that these two vectors are linearly independent
(since A; > 0 and Ay > 0), the two planes are coincident.

As a first consequence, one finds that &, = §~2 =constant, hence d & = 0. The meaning
of this result, is that a stationary phase argument in the inner part (integral over space
variables) of the integral (6.10) implies degeneracy in the outer integral (integral over
data coordinates).

Another complication that is present in this SDM problem is the fact that there is
a continuum of stationary points along a circle in the cross-line direction. To show
this, I proceed as follows.

As is well known, the finite-offset isochron for an isotropic homogeneous medium
is an ellipsoid of revolution. This can be seen in the following simple manner. By
definition, an isochron is a locus of points that are of equal total traveltimes to
a fixed source and receiver (foci) positions. Since the velocity is constant, equal
total traveltime translates into equal total distance (vt). Let us first construct the
isochron in the vertical plane. This would be an ellipse with semi-axes @ = v ¢ /2 and
b= Vva® — h%. Given that the velocity is constant, this experiment remains exactly
the same under any rotation of the 3D space with respect to the source-receiver line.
That means that the vertical ellipse generates an ellipsoid of revolution which is the
locus of points of equal distance vt to the fixed source, receiver (foci) points. Since
the velocity is constant and the medium homogeneous, there are no multi-pathing
issues, so there are not multi-sheets on this isochron. Therefore, this surface is the
input configuration isochron. The input configuration isochron is then described, in
global Cartesian coordinates, by the equation

(z-&) @-d? 2
2 T tp=L (6.46)

or alternatively,

2. .2 _ 2 (z = &) .
(y—d) +z2°=b 1—-0,—2}, (64()
Here y = d represents the in-line. Figure 6.6 shows the isochron computed with
velocity v = 2 km/s, time ¢ = 1 s and semi-offset A = 0.5 km. Only the part of
geophysical interest (z > 0) for positive midpoints is displayed. Observe that the
cross—section is a circle and for a the center midpoint this circle has radius r = b.

=]
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F1G. 6.6. Input isochron for a constant velocity medium » = 2 km/s, semi-offset
h =1 km and time ¢t = 1 s. The cross-sections of this ellipsoid are circles. The circle
for the midpoint between source and receiver has radius r = b.

On the other hand, the output configuration isochron is described by

(e-&) (y—d? 2 _
TR T i 1, (6.48)
or alternatively,
- —&)27
(y—d? =2 =¥ [1 - (i—af—)j . (6.49)

Here, a2 = v?#2/4 and b® = &* — h?, where { is the output time.

Let us now assume that there is an stationary point o = (zo, yo. 20), for the SDM
(here, offset continuation) process. This would mean that for this point and from
equations (6.47) and (6.49)

¥ [1 - (x—°1-€—)—2] =5 [1 - (—’”3:—51—)2} = o2. (6.50)

a? a2

-

t 1s obvious that any point in the circle
C={(z0.4.2) | (y—dy*+2* =03}, (6.51)
belongs to both the input and the output configuration isochrons. Figure 6.7 illus-
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F16. 6.7. Input (piece of ellipse) and output (piece of sphere) configuration isochrons
for a horizontal reflector in a constant velocity medium with v = 2 km/s. The
parameters semi-offset A = 1.7 km for the input isochron and total traveltime of
t =2 s were used. Observe that both isochrons have a common circle at the cutting
edge zo = 0.

rates this fact for a medium with velocity v = 2 km/s. Here an offset of A = 1.7
km and a total traveltime of t = 2 s is assumed, also the two isochrons refer to a
horizontal reflector. We observe that both isochrons share the same circle at zo = 0
(where we cut the two surfaces).

Let us now parameterize the input isochron as z = z(z, y) and the output isochron as
z = Z(z,y). Taking implicit partial derivatives in equations (6.47) and (6.49), vields
the stationary point z,

0z  y-—d
oy z

(S]]

y—d

and o
z

(6.52)

ol

Given that z = % along circle C, the partial derivatives with respect to the cross-line
direction y agree along the circle. This is a geometrically obvious fact since, given two
coincident circles, they should share the same tangent vectors. On the other hand,
at the stationary point x, one has

32__35_ b? (xo—fl)_ B (10—51)_ =
%k @ s @ o (6:53)

By direct calculation it is clear that at any point of the circle C,
0z/0z = 820z = f(zy).

I have shown that the input and output configuration isochrons share the same partial

-~1
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derivatives along the circle C and so, if the stationary condition is satisfied by one
point (zo) on the circle C, then it is also satisfied by every point on the circle C. The
physical explanation, is that if the point @, represents a specular reflection, so any
rotation of the 3D space with respect to the source-receiver line would not change the
experiment (since the medium is homogeneous and isotropic). The tip of the source
(receiver)-reflector ray at the point z, is rotated, drawing the circle C. Therefore, all
these points are then also specular reflection points. Figure 6.7 illustrates this facts.

In the previous chapter I mentioned that the stationary phase method, as applied
here, would fail if a continuum of points satisfies the stationary phase condition. I
now describe this breakdown of the method.

The weight corresponding to the problem that we are dealing with here is the one
defined by equation (6.33). The only cause of instability can be produced when
K — 0. Let us show that this is the case here. Recall that K is the Gaussian
curvature of the difference between the output and the input isochrons. I claim that,
along the circle C, this difference and all its partial derivatives are zero. This means
that the surface difference is flat along the cross-line (y) direction, or is of a cylindrical
type. The Gaussian curvature of these type of surfaces is zero. Let us see this in a
more mathematical way.

After taking implicit partial derivatives in equation (6.46) one finds that for the input
configuration isochron

Pz (92/0z) (92/8y)

oz dy z (6-54)
and

Oz 1+ (dz/8y)? .
il . . (6.53)

In exactly the same way, from equation (6.48) one finds

0°2 _ _(0%/97) (9%/9y)

550y E ’ (6.56)
and

825 1+ (83/y)? _,
= (2/ 2 (6.57)

Now, using equations (6.34) and (6.35) and the fact that at stationarity z =  vields

Plz-z) (i-2) _ .
dzdy . oyor (6:38)
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—5y = 0. (6.39)

The previous equations imply that det(6?(z — £)/80,80;) = 0. Using equation (6.39),
I show that K = 0. This completes the proof.

I found here that the simplified SDM operator, for constant velocity, have problems if
the method of stationary phase to be used. Those problems are illustrated specifically
for the case of offset continuation. The way to get around this problem is to integrate
along the in-line direction using the stationary phase analysis and along the cross-line
analytically. What we should find is that the integral along the cross-line direction
should be a band-limited delta function. The reason for this is that the demigration
operator smears the energy along a circular trajectory and the migration operator
collapses back this energy into a point. Due to aperture limitations that point is a
band-limited delta function. The amplitude of the input and output samples should
asymptotically equivalent The amplitude of the input and output samples should
asymptotically equivalent.

6.8 Common-shot TZO in a medium with linear velocity gradient in the
vertical direction: An example.

In this section, I study the SDM weight for the case of a TZO operator in a medium
with velocity function

c(z) = v(z) = vy + kz, (6.60)
where v is the velocity at the earth’s surface and k is the vertical velocity gradient.

The input data D(§,t) are assumed to be a P — P shot gather.

Without loss of generality I can assume that the shot position is at the center of the
Cartesian coordinate system (x; = (0,0,0)). For simplicity in the computations I
pick the receiver at an arbitrary location &, = (& ; &2, 0) on a horizontal datum z = 0.
Given a fixed output point (&, %) , one finds z((£,£,t) under the mapping (6.13). For
convenience in notation I define & = &, and £ = t,.

The traveltime from the source &, to any point (z = (z,y,2)) in the media is given
by the equation:

1 o1 [RP(2® +9%) + (vo £ k2)® + o]
s(Ts, &) = p cosh 20 (50 = k7) J
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and the traveltime from z, to the point z is given by

1

P cosh™

(T, T, (61, &) = 1 lrkz(x = &)+ (y— &)2 = (v~ k2)? + 42
fg\¥: g\Gl: =
L

(Slotnick, 1939; Dietrich & Cohen, 1993).

For the purpose of computing the TZO weight in this particular case, I will start by
using the weight given by equation (6.28).

6.8.1 The geometrical-spreading factors.

I write
&(m. é) —_ As(m~§)~’49(m§) 'Cs(m- 6)£g($~ £) (6 63)
a(@,€)  Li(x,&)L,(x.8) AT ) A (x, ) '

Here, As represent transmission losses from source (receiver) to scatter point &, under
the output (input) configuration, according to their corresponding notation. The £
terms are the geometrical-spreading factors from source (receiver) to scatter point ,
under the output (input) configurations. For a smooth background velocity, as I have
chosen here, there are no transmission losses. We then have the formula

8(2.8) _ Lo(x.8)Ly(x.6)
o(2.8)  Li(z,8)Ly(2.8)

After making all the 4s equal to one.

(6.64)

Dietrich and Cohen (1993) found an expression for the right hand side of equa-
tion (6.64). This is given by their equation (33). I use their result and find

a(x, £) _ cosh kt — cosh k(75 — Tg)_ (6.65)
a(x, €) cosh ktg — 1

Ts = 7s(Zs, @) and 7, = 7,(x, 24(£)) are defined in equations (6.61) and (6.62) re-
spectively. If the data are already zero—offset, then ¢t = ¢y, 7, = T, = t/2 and the
geometrical corrections reduce to unity as expected.

The geometrical correction factor for finite offset, (k = 0), can be computed by taking
the limit of equation 6.65.

a(z, &) — lim cosh kt — cosh k(7 — 7,)
a(z,&) =~ k-0 cosh kty — 1

(6.66)
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Here, L'Hopital’s rule has been applied twice. From the previous formula it is easy
to see that for horizontal reflectors (7, = 7,) the geometrical correction is given by
the factor t2/¢3. If we use the fact that t = 7, = 7, 7o and that 7, = r/vy, 7, = r¢/vo,

\/(x —&1)? = (y — &)? + 22, then equation (6.66)

turns out to be

&($,é) . T Te

e = o (6.67)

Here, ro = voto/2.

6.8.2 The Beylkin determinant.

Here one needs only compute h, as defined in equation (6.27). After some algebra we
find that:

4(krZ + 2vpz)
rév(k*r? = dvov)E

he(z, &) =

(6.68)

Again, the reduction to constant velocity is obtained by taking the limit as k — 0.
Taking this limit vields

hy(z. &) = (6.69)

Tf'I’O

6.8.3 The curvature factor

Here I present the main results about the curvature factor in the TZO operator. As
we already know, the curvature factor K represents the Gaussian curvature of the
difference between the output and input isochron at the stationary point xy. Here
are the main facts about the curvatures. The proofs for these statements are shown
in Appendix E.

e The output (zero-offset) isochron is a sphere with radius

T = Zysinh(k ¢y/2) (6.70)
and curvature

. 1 -
N T %sinh(kto/2) (6.71)
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Here 2, = vo/k.
e The input (finite-offset) isochron is given by the formula

2= z(E.t, )___\/—b+\/b'2—4ac_

z= = = 30, (6.72)
where

a=2coshkt—2, (6.73)
b=b(z,y) = 2coshkt (p* + pf + 25%) — 2 (p* = p?) — 452 cosh® k, (6.74)
¢=c(z,y) = 2coshkt (0* + 55)(0f + 23) — (0* + 23)% — (0} = 32)2, (6.75)
p=yrtry?  pe=\/@-&)+(y— &) (6.76)
and p = (z.y).

o The Gaussian curvature of the difference between the output and input config-
uration isochrons is given by

K =K-2HR+Kj, (6.77)
where
K = &
SH = (1= 2,2) 2,00 =22, 2,10 2.2 —(1 + 293z
(1+2,2+2,9%)2
K, = —2,19°

(1 + 2,2 +2,2)2
Here z,; = 0z/0z; and 2,;; = 02/0z;0z;

e If k = 0 then the Hessian matrix & has a singularity and the stationarv phase
technique fails to give the right result. If k 3 0, then we find that the signature
of the Hessian is sgn(®) = -2, for points above a certain depth 27. These are
elliptic points. For points below z™ the sgn(®) = —2, and at z = z* the method
of stationary phase fails.

Discussion The DMO problem for a 3D variable velocity media is a 3D problem.
That is, the impulse response is a surface in the 3D space with finite measure domain
in the IR? space (Dietrich & Cohen, 1993; Jaramillo & Fowler, 1997). We ask now if
the SDM stack operator (TZO stack) is a 3D or a 2D operator. From the 3D DMO
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problem in v(z) velocity media, we know that the up—dip zero-offset reflections fall in-
side the source-receiver line, while the zero—offset out—of-plane reflections fall outside
the source-receiver line. That is, the trio of rays determined by the zero—offset ray
and the rays from source to reflector and from reflector to receiver hit the surface at
points that are not collinear, given that the reflection corresponds to an out-of-plane
reflection. Since, the TZO stack is constructed by doing a finite-offset ray tracing
into a zero-offset isochron, then the support of the TZO operator has a is a 2D set.
There are points along a given source-receiver line (in-plane or up-dip reflections)
and points outside the source-receiver line (out-of-plane reflections). Figure 6.8 il-
lustrates the case of an isochron and DMO impulse response, for a medium with
linear velocity with depth. The dots represent rays that hit the isochron normally.
What I am saying is that the 3D TZO stacking surface for the difference between
the output and input configuration isochrons, in a v(z) media is not degenerate. The
difference on Gaussian curvatures along the cross-line vanishes for a certain depth
(27), dividing the signature of the Hessian matrix ® in two branches. If we consider
more complexities in the media, such as converted waves or anisotropy, then it is
expected that while the analytic work cannot be carried out this far, the numerical
implementations should be stable in the domain where the isochrons are well-defined
convex surfaces.

I found an operator to transform seismic modeled data into other data that would be
modeled under different conditions. This operator has a wide range of applications but
we should be careful about the possible instability problems that it might generate,
when using the method of stationary phase. These problems arise when we want to
take into account the curvatures from the isochrons into the weights of the operator.
Assuming a fixed value of curvature would cure all the stability problems but it would
corrupt the amplitudes. The kinematics of the problem agrees with the kinematics of
the problems being solved in routine seismic data processing, such as DMO or offset
continuation or any other process to transform data.
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F1G. 6.8. Top: a finite offset isochron for a depth—dependent medium with constant
velocity gradient. Here I consider a surface velocity of v = 2 km/s , a gradient of
k = 0.6s™! and a source—receiver offset of 2 km. Bottom the DMO impulse response is
generated by computing the traveltime from each dot in the isochron to the zero—offset
location at the earth’s (flat) surface. The three coordinates of each point represent
the surface location (two coordinates) and the zero-offset traveltime.
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Chapter 7

2.53D

The objective of this Chapter is to derive 2.5D leading-order asymptotic formulas
for the demigration, the migration, and the SDM operators. We will assume, for all
geological models. a background velocity of the form ¢(z) = v(z,z). The meaning
of 2.5D is married to geological models that are invariant in the cross-line direction.
Figure 7.1 shows a sketch of one of those models. The data are assumed to be collected
along the line of maximum dip with no out—of-plane reflections. While the model
and the data are 2D I assume a point-source, so the 3D geometrical spreading of
a point—source is taken into account. The methodology used here is to start with
the 3D demigration and migration operators derived in Chapters 3 and 4 and. by
using the one-dimensional stationary phase method along the cross-line direction,
arrive at 2.5D operators for these processes. Then, by chaining those operators, a
2.5D SDM operator would be constructed. This operator can be further simplified
by one-dimensional stationary phase analysis along the (dummy) depth variable.

Let us start with the demigration operator.

7.1 The demigration operator

In this section I find the leading asymptotic order term of the 2.5D demigration
operator.

We start with formula (5.21), that I rewrite as

D(&?) ~ -Re [dS/R(z,,)a(2.£) V26| &' (¢~ 72) . (7.1)
it=¢(2.&)

Let us parameterize the isochron surface as z = 2;(0;,y). Here, o, is a parameter

along the in-line direction. For example, this could be arc length s or the Cartesian

coordinate r; y is a parameter along the cross-line direction. Here, for simplicity we

take y as the Cartesian coordinate along the cross-line direction. One has then,
dZ; = do; dy./3g. (7.2)

If s denotes arclength along the isochron in the inline direction, then /g = ds/do;
assumes the role of the determinant of the first fundamental tensor (metric tensor)
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F1c. 7.1. A laver model and the acquisition geometry for the 2.5D experiment.
Observe that the collected data along any line parallel to the source/receiver line
would be identical.

for the surface ;. Equation (7.1) becomes

D(&t) ~ —Re [dovdy\gR(x,2.)a(z,6) [Vao! & (¢~ g) (7.3)
it=0(2.,& )

I will perform stationary phase analysis along the cross-line (y) direction. The sta-
tionary phase condition is given by

89 -
By 0. (7.4)
where I use the fact that the reflection data strip 7z = 7(€) does not depend on .
The meaning of the stationary phase condition is that V,¢ is a vector in the vertical
z-z plane. If, in addition, the medium velocity is given by c(x) = v(z, z) then the
ray is a plane ray (has zero torsion); that is, the ray stays in the plane in which it
started (Cerveny, 1995). The only plane havi ing the source-receiver line and satisfving
the stationary phase condition (no source-reflector-receiver slowness component in
the cross-line direction) is the vertical plane through the source-receiver line. This
statement implies that the stationary phase condition is married to reflections directly
under the source-receiver line for a medium with v(z, 2) velocity distribution. That
is, no out—of-plane reflections would be handled in this case. The ideal data for this
type of processing, are these acquired along the maximum dip direction. These are
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data that have no variation in the cross-line direction. The experiment is then a 2D
experiment, but we will acknowledge point sources with 3D geometrical spreading.
Bleistein, (1986) named these type of experiments as 2.5D. We then assume that
the data are acquired along the line of maximum dip. Although this assumption is
restrictive, for many years 2D seismic data have been acquired and processed this
way. Still, today many data sets can be re-processed with improved 2.5D techniques.
Without loss in generality we will assume, from now on, that y = 0. Before I proceed
further into the analysis of the demigration operator, I will present some important
notes in ray-tracing, which are needed for further development of the demigration,
migration and SDM operators.

7.1.1 Ray-tracing for inhomogeneous isotropic media

All processes studied so far require ray-tracing algorithms. We need to compute
travel times as well as geometrical spreading factors among other things, before I
can correctly evaluate any process such as demigration, migration or SDM. Cerveny
(1995), derives the characteristic equations for ray-tracing for an arbitrary number
of parameters along the ray. In particular if the parameter along the ray is the
travel-time 7. The characteristic equations are

dz; _ dp; Olnv

dr P T or;

Here, z; is the i-th coordinate of the ray and p;, the i-th coordinate of the slowness
vector p.

(7.5)

The initial data for the system (7.5) can be written as

z(0) = &,
p(0) = 1/v(€) (cosasin@,sinasin @, cosad),
7(0) = 0. (7.6)

See that p(0) = (p1(0), p2(0), p3(0)) is characterized by its polar spherical coordinates.
Here « is the azimuthal angle and ¢ the polar angle of the initial direction of the ray.
Figure 7.2 shows these angles.

Now let us return to our 2.3D assumptions and apply them to the ray—tracing svs-
tem (7.5). Given that the velocity is independent of the out of plane (z;) direction,
then

dp Olnv
dr 3:1,‘2 -

0 (1.7)
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F1G. 7.2. Azimuthal angle o and polar angle ¢ for the initial direction of the ray.

so that p, is constant and equal to its initial value, that is

1 .
P2 = ——= sinasing. (7.8)

v(€)

Then integrating the first of equations (7.5) and using the first and third initial
conditions in equation (7.6) one obtains

n=p [ Pe@)dg, (79)
where ¢ is the traveltime along the ray, from the source to the point z.

Following Bleistein (1986), let us define

o= /0' v?z(t)|dt, (7.10)
then using the first and third initial condition in equation (7.6) one obtains
sino sin ¢ _
To=pr0 +& =0 ——m— +&. 7.11
() (1)

So, for the inline direction, we have o = 0, 25 = 0 and p, = 0.

I now take again the stationary phase condition (7.4) and write it as

09 Ot 07, _ ! _ -
Ozy Oz Oms 1527 Pe2 =0 (7.12)
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where ] used the relation ¢ = 7, +7,. Here 7, is the travel time from the source to the
scatterer, 7, the travel time from the receiver to the scatterer, p,, is the out-of-plane
ray parameter for the source-scatter ray and pge the out—of-piane ray parameter for
the receiver—scatter ray. All of these, are evaluated at the stationary phase point xq.
Given that the rays are all in the vertical plane that contains the source and receiver,
Ps2 = pg2 = 0. So, the stationary phase condition agrees with the physics of the
problem. We are now interested on finding the second derivative of the phase. This
is given by

%o
® = —
2 82,‘2
Ops2 apg2
8.’5-2 82:2 ( )
at T2 = &. Differentiating (7.11) implicitly with respect to z, and vields
81)2 oo
l=—o—0+p—. 7.14
83720 P2 0z ( - )
At po = 0, one finds
Opy 1 R
a—x2 = ; (/.10)

Applying this equation for the source-scatter ray and the receiver-scatter ray in
equation (7.13) vields
1 1

e e, 7.1
®; s O (7.16)

Thus, after using the stationary phase formula (5.12) in equation (7.1) one finds

( b |
R\mm :cs) a(m0= é)ivt@- d: A (f — 73)‘ (717)

V1/os+1/a, ’ t=6(To0,E).

Given that 8(x) ~ R(x.z;) [V.0|6(¢ — 7r) and using the results of Appendix C, we
can say that

D(£,t) ~ ~Re V27 / doy /3

V20! Rl 2,) 63(6 — 7a) ~ 5,5(z0). (7.18)

I rewrite equation (7.17) as

D(€ t) ~ —Re\/2—7? /d0'1 ﬁM d_ [3‘(.7:0) . (719)

1/os+1/og * t=6(L0.&) |

where now d%[;’(a:o) = V.0 R(z,z;) A:

B

(¢ — 7r). The relationship of 3 to the half
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derivative operator d; is not clear at this point. The filter /=4 suggests that this is
a time derivative, however the function 3 (z) does not show any apparent dependence
on time. The relation of 3(x) to time is seen through the evaluation at the end of
equation( 7.19). To get a better insight into this, let us define

ﬁt(wrt) = R(m ms) V,@l 5(t - T'R). (720)

We then have that 3(x) = 5i(z,¢). Let us now take the forward Fourier transform
from 3y(x.t) into 8. (2, w), then multiply by the half-derivative filter /—iw. After
this, we take the inverse Fourier transform (over w > 0, with the use of the 2 H (w)
factor) and replace ¢ by ¢.

To implement the demigration formula (7.19) in a computer, we can proceed as fol-
lows. The reflectivity function operates on points, = (z,z) (since y = 0). Now we
can process the demigration formula (7.19) on a trace-by-trace basis. Let us fix the
source-receiver position by choosing a fixed vector £. Afterwards we fix the coordi-
nate z (this coordinate should have a known one-to-one relation with 01). For each
depth z, there is a total traveltime ¢ to the source z,(£) and receiver z,(€). If we con-
sider a uniform sampling in 2, in general we would have a non—uniform sampling on
t. The function that relates z to ¢ is a one-to—one, monotonically increasing function.
We can resample by interpolating the times ¢ and then construct the function Bi(z,t),
where the variable ¢ takes the place of the variable z. This function is Fourier Trans-
formed into the w domain, scaled by 2 H(w), half-derivative filtered, and taken back
into the time domain. We will not need to do any further interpolation, since the new
function d: 3(z,t) is already in a form that can be used to process equation (7.19)

Equation (7.19) represents the 2.5D demigration operator. Now, I show the 2.5D
demigration operator for two commonly used parameters. If o; = s then Vg =1and

D(¢,t) ~ —ReV2r / ds 228, 5(:::0) . (7.21)

V1/os+1/o, 2 ;t=¢($o,£)

If instead oy = z then

V9= e = d6joz (r22)

Cos &

SO
V1/0s+1/0, 86/0z (o )

D(¢.t) ~ —ReV2r /dx
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7.2 The migration operator

Here, I derive a formula for the 2.5D migration operator in the time domain.

I start with equation (4.14)

8(a) hB my@&()x - gt D(&.?) *A(t)mw’é). (7.24)
After using the asymptotic representation of the analvtic data as given in equa-
tion (6.9)
D(&.2) = A(t) ~ Ao(&) O (t - 7r(£)). (7.25)
one finds
Bla) e~y [ de (ZBgé)j(ff)g) Nle-me) (7.26)

The hat in 3 defines the complex reflectivity function.

At this point I want to perform the integration along the &, direction by using the
stationary phase formula (5.12). Then

where £ is a solution of the stationary phase condition,

hB (z, Eo Ao(§p)e’ F o e-D) - o
d: A(t—T : ; 2
e ey v L U el

it=¢(w07€)

oo(z.€) _ -
I used the fact that 7z(€) is independent of &. Also
2 !
o= o8 (7.29)
662 ig:&o

Following the same steps done to find an expression for the second derivative of the
phase term. one can enumerate the following results:

e The stationary phase condition (7.28) implies that & =y = 0.

e d=1/0,+1/0,
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° hB(x: é) = _QH(m: §)~ where 5 = 51 and

(7.30)

The last item is derived by Bleistein et al. (1996). I now rewrite equation (7.27) as

be) ~ i [ag BEOWOVE ) e

a(®, &) Veo(zo. &)} 2 4=6(Lo,£)

(7:31)
H@moVE .
a1 | e Ve 06N

it=0{T0.£)

The hat in D defines the analytic data. Here, I applied the homogeneity property of
the fractional differentiation,

Ao(€) dy & (t— 7r(E)) = dy Ao(€) A (t—7r(8)) (7.32)
illustrated in Appendix C.

A different representation of the migration operator can be achieved by writing equa-
tion (7.31) as

. 1 H(z.H)V® -
Be) ~ o [t e 4 DI 8t - 6l ), (7.33)

and using the two-side representation of the delta function given by

5(t—¢) = o [~ du £=9)
( Q)-t)r —so € .

Then
o - (2/~1.>=3- [ e a(m,lgf i):(;s) D(e.t) [ doe
” <2i>% J (ngmvgz@(xé [ awe® [ dtd,Dis. e
2,—5/ & mg?vi)a:/;g / dw €™ /=i D(£, w)e™ (7.34)

<p (—isgn(w) 7 /4) corresponds to the frequency representation

of the half dlﬁ'erennanon, and D(f ,w) is the frequency representation of the analytic
input data. Equation (7.34) corresponds to the 2.5D reflectivity function in Bleistein
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et al. (1996).

7.3 The 2.5 SDM operator

In this section, I present 2.3D SDM as a chain of the migration and demigration
operators. I further simplify the operator by using the method of stationary phase.

I rewrite equation (7.19) as

D(£.1) ~ —ReV2x / do—l\/g—“(-‘fﬁ— d: B(z) . (7.33)

V1/G: =1/ i ;t.=é($,€-)

Here, é is a one-dimensional output parameter that specifies the source-receiver con-
figuration and ¢ is the output time. I assume & = 0, £ = (z.0,2). Now, from
equation (7.31)

i H(z.£)V®
d:53(z) (273 / 5 a(z,€) (Vzo(z E) D(f t) =0(L.6)

(7.36)

t=o(@.8)

where I introduced the half-derivative into the integral sign and used the composi-
tion rule d; d: = 8/0t (see the homogeneity property for fractional derivatives in
Appendix C).

Now, I chain the operators (7.36) and (7.33) by introducing (7.36) into (7.35). Using
the fact that & = 1/0, + 1/0, vields

- 1 a(mag)
DED) ~ ~Res- [dodeys
(7.37)
H(z,€) p(z,£,€) 8 |
8 V.o(z.€) ot D, ) t—é(w,f)ét'=d>(m=f.).
Here,
w8 = | 2000 2%), o

\ 05 04(Fs + Gy)
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V0

F1G. 7.3. Here I illustrate how the stationary phase condition implies Snell’s law. The
stationary phase condition requires that the slowness vector V,6 be perpendicular to
the tangent reflector. Now the angles that this slowness vector makes with the source
and receiver slowness vectors are equal to §. This is because both, the source and
receiver, vectors have the same magnitude of 1/c¢(z), where ¢(z) is the wavespeed at
the reflecting point.

Let us now introduce the analytic data

D(&.t) = Ao(€) A (t = 7r(€))- (7.39)
With this, equation (7.37) becomes

DED ~ —Res- [deaoe)
[ va S LOEEED f oa.0) - )

li=o(@.)

(7.40)

Let us perform stationary phase analysis to the second integral. The stationary phase
condition is given by

8¢ _ , 6$i _ -
52 = Va0 <3a) = 0. (7.41)

I call oo the solution of the stationary phase condition, and zy = (z(0o), 2(00)).
Formula (7.41) tells us that, at the stationary point, the source-scatterer-receiver
slowness vector (V.¢) is perpendicular to the output isochron tangent line. This
means that the corresponding source—scatterer-receiver ray represents a specular re-
flection or; in other words, it satisfies Snell’s law. Figure 7.3 illustrates this fact. The

interpretation of the stationary phase condition is then that the point z(cp) = zo(€, )
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belongs to the output configuration isochron and serves as a specular reflection point
determined by the parameter £ in the input configuration. That is, the triplet

(2(€), 2o (€, 7), x4(&)) represents a source-reflector-receiver specular ray on the out-
put isochron. I then define the mapping

zo(€.1):C € R— R2
€ — z0(E,1)(€), (7.42)

where C is the set of all unique parameters £ such that .'z:o(é,i_) is a specular reflec-
tion point in the output isochron defined by the equation t = ¢(zx,&). This specular
reflection is identified with the triplet (z,(£), %o(£,2). 2,(€)). C is then the domain
of integration of the SDM stack operator. We can then justify the representation
Ty = zo(&, § ,t). This physical interpretation of the stationary phase condition (7.41)
gives us an algorithm to compute the SDM stacking curve (support of the SDM
stacking operator). The SDM stacking curve is the locus of all (input) points (¢,€)
. corresponding to specular reflections in the output isochron. In other words, to com-
pute the SDM stacking curve we need to do a ray—tracing to the output configuration
isochron with the input recording configuration. The mathematical definition of the
SDM stack curve is given by

S5 ={(t.8) 1t = (@a€), olE. £, 1)) + 7y (4(€), wolE, . D)} (7.43)

where 75 and 7, are the travel times from the source and receiver positions to the point
Ty, respectively. Kinematically speaking, the SDM could be numerically implemented
as a Kirchhoff prestack migration algorithm where the diffraction curves are replaced
by the SDM stacks defined in equation (7.43). To have the dynamics right, we should
proceed further with the stationary phase analysis. We apply the stationary phase
formula (5.12) to the inner integral in equation (7.40) and find

AT ATPEEET, ewemr

~

- ~ a(wo, &) H (o, €) p(xo, €, €)
DED ~ —Re—= [de VG 4u(6) 208 /o 1vesme )

% et T(sgn&=-1) A% (®spm (&€, t) = 7a(€))-

,{ Here
- . 3]
@(5- 57 t) 30’?{0 1=00

and Pspy is equal to ¢ in equation (7.43). We can reintroduce the amplitude factor
Ao(€) into the half derivative operator (see Appendix C) and find that

T (0. €) H(o,£) pu(to, £, €)
D(,5) ~ ~Re —= / “V 20 Vot N
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x i)
The summation is taken along S.

Let us now study the isochron curvature. For exposition purposes, I will omit the
arguments of the function ¢. In any case, ¢ is the total traveltime of the source—
scatterer-receiver ray, but in some cases this traveltime is taken with respect to the
input configuration isochron and in other cases with respect to the output config-
uration isochron. To distinguish between these two choices, I use the tilde for the
coordinates of the output configuration isochron. Also, for convenience, again use
Einstein summation convention.

Let us begin by rewriting the stationary phase condition:

do 00 0% -
Oc 1 3.’231 o 1

By using twice the chain rule for derivatives, one has that

Po 0% 8% 0% . 00 8°%F (7.46)
dot 81,8z Oy B0y Oz Do? ’

where | = 1,3 and £ = 1,3. Now let us take the input isochron defined by t =
o(z(0),&). Given that ¢ is constant along the isochron,

ot _ 8@ 6xl _ —
B0y = 92, B0y = (747)
and

32t _ 32@ 6xl axk __8_0‘@
8ot = 0,0z 0oy Doy Oz, Aol

= 0. (7.48)

From equations (7.45) and (7.47), and the fact that the point 2, belongs both to the
input and to the output isochron, we find that both isochrons share the same tangent
line at the point . Also there exists a constant ¢ such that
62,'[ 6571

¢ ——

30, ~ %o, (7.49)

Let us use the same parameter o, for both the input and the output configuration
isochrons. Without loss of generality, we also can say that both isochrons share the
same abscissa, that is z;(01) = Z1(01). So that the first derivatives of those abscissas
respect to the parameter o, are also equal. This implies that ¢ = 1 in equation (7.49).

Now substract equation (7.48) from equation (7.46); then using equation (7.49) with
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¢ =1 one finds

86 0o &z -z
___(I_T‘)_ (7.50)

801 axl 60'1

I now apply the chain rule for 0%;/8¢; by introducing the arclength s, and obtain

*z, 0% (33)2 05 8 (8.5') o7

N dc) 80,05 \boy) s’

57 = a7 (7.51)

Performing the same procedure for 8z;/00;, and then subtracting the result from

equation 7.51 yvields

8% 00 P(@ ~m) (ds )’
60 e 0s? doy )

Here I used the fact that 0%,/0s = 8z,/0s.

The vector kK = §%((Z; — z;)/0s® represents the difference in curvature between the
output and input isochrons and is directed in the normal direction to both isochrons
at the stationary point xo. Therefore, it is either pointing in the same or in opposite
direction as V.0 = (0¢/8z;). So

8% e . ds \? .
¢ = 552 = sen (V26 - K) (Va9 (Ko — k) el B (7.53)

where «, is the curvature of the output configuration isochron and x; is the curvature
of the input configuration isochron.

So, equation (7.44) turns out to be

—_— a(zo,€) H(zo,£) p(xo, €, &)
D(&,t) Re\/:/dé ) \/hz_nllvas/z

(7.34)
X gt F380 (V=oK) (ro=ri)-1 [, (t, &)

Let us now derive an alternative form for the SDM operator along the same lines of
the derivation of the 3D SDM weight. This alternative weight is useful for numerical
purposes, as explained before.

Let us define the second derivative of the diffraction curve, corresponding to the
stationary point, with respect to the parameter £ as

80
0€?”

and the second derivative of the time in the stacking path, with respect to the pa-

Hp =

(7.53)
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rameter £ as

a2¢$D.M -
HR = _3{':2_ ((.06)

Tygel et al. (1995) found the following relation between the difference of input and
output isochron curvatures x; — Ko and the difference Hp — H;:

3
zo) | _H? (7.57)
2cos6| Ki— Ko )

Hp - Hp=- |

Here 6 is half the angle between the source and receiver rays at the stationary phase
point xo. Using equation (7.37) in (7.54) vields

500'5

D(,%) ~ ~Re —— \/97 / & S ey Mo, 6.8) [ Hp ~ Hy)

(7.38)
y ei-'}:sgn(vzé'n)(HR‘HD)_l: b; (tf)

The reader is referred to Figure 6.2 and Figure 6.3 for explanation of the curvature
factors involve in the SDM weights.

In conclusion, I found 2.5D versions of the demigration and migration operators in
the time domain, by applying the stationary phase method to their 3D counterpart. I
chained the 2.5D demigration and migration operators to obtain a 2.5 SDM operator
that was also simplified using the method of stationary phase. The SDM operator is
derived, first, in terms of curvatures of difference of isochrons, and second in terms of
second derivatives of phase functions. These phase functions are a Huygens diffraction
curve and the integration path. The first method gives a formula that is good for
theoretical purposes, while the second gives us a method which is easier to implement
numerically as will be shown in the next chapter.
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Chapter 8

COMMON-OFFSET 2.5 TZO IN VERTICALLY INHOMOGENEOUS
MEDIA

This chapter illustrates a direct application of the SDM problem. I use the SDM
operator to build a TZO operator for 2.5D vertically inhomogeneous media. A nu-
merical implementation of the TZO operator is performed in the space-time domain.

8.1 Theory

TZO can be seen as SDM under the following conditions

e The model parameters are not changed in the transformation.
o The input data configuration is finite—offset.
e The output data configuration is zero—offset.

We rewrite the 2.5D data mapping formula (7.58) by replacing the tilde character by
a “0” subscript.

D(&. 1) ~ —Re-\/——)_—_:/ d€ 22 ) (o, €, &) \/IHp — Hp|

7

(8.1)
x ez-— sgn(Vz9-K)(Hp—Hp)-1 (t f)

wl

Let us recall the meaning of the symbols involved in this expression. &o 1s the zero—
offset position (at the recording line), t, is the zero-offset time, S is the path of inte-
gration (locus of the impulse response for the inverse TZO operator), £ determines the
finite-offset (input) location. ag is product of the WKBJ zero-offset amplitudes, which
are solution of the transport equation (2.7), a is the product of the WKBJ finite—
offset amplitudes, which also are solutions of the transport equation (2.7), Hp is the
second derivative of the diffraction curve, corresponding to the stationary point, with
respect to the parameter £ and defined by equation 7.55; Hp is the second derivative
of the (time) integration path. with respect to the parameter £ and defined by equa-
tion 7.56, u, defined by equation (7.38), is a weight that accounts for out—of-plane
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geometrical spreading, o is the stationary phase point defined in equation (7.42). K
is the difference of curvatures between the zero-offset and finite~offset isochrons and
is directed in the normal direction to both isochrons at the stationary phase point
xo. Finally, D(&,t) represents the output analvtic data and D: . (£, 1) represents the
input analytic data after a half derivative filter is applied. Here £ is two-way trav-
eltime to the source-receiver input configuration, from the stationary phase point
Zo. In this chapter the configuration parameter £ represents the midpoint y and the
configuration parameter &, the zero—offset surface location z,.

Notice that
sgn (V.0 k) (Hp — Hp) =1, (8.2)
for the case of TZO.

By equation 7.57 we see that sgn (Hep— Hp) = sgn(k,—k;). The zero offset isochron is
tangential and totally inside the finite offset isochron, so sgn(V.0- k) = sgn(k, — «;).

This proofs the statement.

Equation 8.1 turns out to be

D(gy, o) ~ ~Re = [ d f"°(”° g) u(®o.€.60)\/ Hp — Hr] D, (2,€). (8:3)

8.2 Numerics

In this section I describe the algorithm to evaluate integral (8.3). I will split the
algorithm in three main parts. Kinematics, Basic Dynamics and True amplitude
Dynamics.

8.2.1 Kinematics

The kinematics of the whole process is based on computation of the traveltimes from
any scatterer to all source-receiver combinations. These times also influence the
dynamics, as well, in several ways. The path of integration is determined entirely
from the computation of the traveltimes, and the weights in the integral (8.3) are
also computed from these traveltimes and their partial derivatives.

The TZO stacking path To evaluate the integral (8.3) for the computation of
the TZO process, we need first to find the integration path S. This path is given by
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equation (7.43)

S= {(t 6) t= Ts(ms(§)7 :Bo(f,fo, tO)) - Tg(wg(f): $0(§7 60: to))} ; (84)

The path is found by performing finite-offset kinematic ray tracing to the output
(zero~offset isochron). One way to represent this path is by a parametric curve

- o l .. ~ "

y = y(p)
t = tp), (8.3)

where p = 2sin ¢/v(z) is the zero—offset ray parameter and ¢ is the reflector dip. Let
us illustrate this TZO path in the case of constant velocity.

Constant velocity. Figure 8.1 shows the geometry of the experiment. The output
isochron corresponding to a given fixed point (z,t) is a circle of radius v ¢,/2. With
no loss in generality, we can assume zo = & = 0. Also note that zero-offset rays
are radii of the circle. The source position is at y — h and the receiver position is at
y - h. By applying the law of sines in the triangle defined by the source position, the
zero—offset location and the reflecting point, one finds:

—m—y '-"'\' AE—m——y

h—y _ v to
sind  2sin(7/2—6-0) (8.6)

In the same way, the application of law of sines to the triangle defined by the receiver
position, the zero-offset location and the reflecting point vields

h+y _ v to )
sinf ~ 2sin(z/2 -0+ 0) (8.7)

The solution of the system given by equation (8.6) and equation (8.7) for the un-
knowns 6 and y is found to be

coto [ 1
§ = arctan 7_1—7 Wt% + 4R — by (8.8)

< P

and
\/t2+4h2p2—t0
y =42 . . (8.9)

Zp

To compute the traveltime I refer back to Figure 8.1. This time I use the large gray
triangle. to obtain the relation

2h cos @
— (8.10)

where L is the length of the hypotenuse. After some algebraic manipulation of the

sinf =

101

r—. — g e, P—— - pm— I —



Herman Jaramillo

F1G. 8.1. Geometry of the TZO stacking path search. A finite—offset modeling over
a zero-offset isochron reflecting surface.

previous formulas on the figure, I derived the following equation:

R (B AR )2 g2p2

16 h? 4

After expanding the square binomial and collecting terms one finds

2
t= 3; 1-:—%(t0+\/t8+4h2p2). (8.12)

This equation corresponds to equation E-6 in Bleistein et al. (1997), after noting
that L here is 2L there. Equations (8.9) and (8.12) parameterize the TZO stacking
path. This representation is appropriate for w —k algorithms given that in the Fourier
domain p = k/w. Figure 8.2 shows the TZO stacking path for the parameters v = 2
km/s, h = 0.5 m and ¢y = 1 s, and for the zero—offset ray parameter —oo < p < oc.
The thick bold line corresponds to zero-offset ray parameters —2/v < p < 2/v;
that is, to reflected energy, while the thin line assumes sing > 1. That implies
evanescent energy. We should then limit the aperture of our TZO stacking path
to avoid evanescent energy. The range of non-evanescent midpoints is given by the

p= 2R (8.11)
S\ ’
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distace (km)
-0.5 -0.3 -0.1 0.1 0.3 0.5

1.12-

travel-time (s)
3

1.22-

F1G. 8.2. TZO stacking path for the parameters v = 2 km/s, h = 0.5 km and ¢, = 1s.
The thick bold part corresponds to reflected energy while the thin part corresponds
to evanescent energy.

inequality.
Ve2td - 16h2 — vt
yl g X2 - (8.13)

4

A different representation of the TZO stacking path for the constant velocity case
can be obtained by eliminating p from equations (8.9) and (8.12). We find

v2t3
== ;1 = —0—2 (8.14)
v\ - y?)
While this expression is compact, it is not sufficient to derive the aperture of the TZO
stacking path.

If, instead of assuming zo = & = 0, I would have started with an arbitrary o, the
previous formula would be transformed into

t =

2h | v2t2 3
T\ T IR (8:13)
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This equation was derived by Tygel et al. (1995a).
Let us now define the Normal MoveOut (NMO) time as

4h?

tn = t2 - 'l,‘_z (816)

By squaring equation (8.15) and using the NMO time ¢,. one finds:

5, (y—zo)?
-+ —— =1 (8.17)
2 h?

Instead of having (zo, %) as input parameters and (y, t) as dependent and independent
variables, we reverse roles, so that (y,t) are now (input) parameters and (z,. o) are
running (output) variables. Then equation (8.17) represents the well known (velocity
independent) DMO ellipse (Hale, 1992). That is. the equation that represents the con-
volutional (forward) path is algebraically equivalent to the equation that represents
the stacking (inverse) path. Going from one to the other is a matter of interchanging
input and output variables. This is true not only for TZO but for any SDM process.

Depth—dependent velocity. For the case of depth-dependent velocity, no analytic
close forms, analogous to the results above, exist and numerical ray tracing must be
used. To better understand this problem, I will include some of the work done by
Artley & Hale, (1994) on the TZO forward problem. My goal, here is to find a
kinematic inverse TZO operator, since that represents the stacking path S.

We need to perform ray tracing from all scatterers in the medium to all source—
receiver points. Given that there are no lateral changes in velocity, we could pick a
reference point (we pick midpoint y = 0 for the forward TZO problem and zero—offset
point zo = 0 for the inverse TZO problem) and compute all our travel times relative
to that point. All travel times relative to different points are obtained by knowing
that the rays are shifted versions of those relatives to the reference point y =0 (or
zo = 0). The traveltimes and amplitude weights are stored in ray tables that will
be used, first, for the computation of the TZO stacking path S and, second, for the
evaluation of the stacking integral (8.3). I will use Slotnick (1959) to find the table
of two—way traveltimes, 7(p,t), lateral traveled distance by the rays z(p, t) and the
propagation angle 6(p.t). Here, p is the ray parameter or vertical slowness. From
the traveltime table, I use a non-linear system of five equations with five unknowns.
The solution of that system provides, among other things, the stacking curve S. The
construction of the tables follows closely the work of Artley and Hale, (1994). They
found a system of non-linear equations, from which the DMO impulse response is
computed. That system is given by

0 = z(pg,2¢5) — 2 [ps,2(tsg — t,), + 2R
0 = z(pg.2t5) — 2(po.to) + h — zo
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F1G. 8.3. Trios of rays over the finite-offset (input) isochron The computation pa-
rameters are: velocity gradient k = 0.6s™*, surface velocity v = 1.5km/s, NXMO time
t, = 1.0 s and semi-offset A = 0.5 km. Here the source is located at —0.5 km and
the receiver at 0.5 km. The midpoint is fixed at 0.

0 = 7(pg:2tg) — 7 [ps, 2 (tsg — ty)]
0 = 7(pg:2%,) — 7(po. to)

0 = 6(ps,2tsg — ty) — 0(pg,2%4) — 26(po, to). (8.18)

Here, t = t;, = t,+1,, with ¢, and ¢,, being the traveltimes from scatter to source and
receiver respectively; ps, pg, po are the vertical slowness components for the source,
receiver, and zero—offset slowness vectors and zo = & is the zero~offset arrival position
at the surface. The reader is referred to Artley, (1994) for an insightful discussion of
the derivation of this system of equations and its numerical implementation.

The non-linear system of equations (8.18) describes the conditions under which 2
trio of rays (source ray, receiver ray and zero—offset ray) is realized. The construction
of the kinematic DMO impulse response is achieved by selecting the zero—offset rays
from all trios which have their tips at the finite-offset isochron. Figure 8.3 shows a set
of those trios for the case of a medium with linear velocity distribution with depth.
The computation parameters are: velocity gradient k& = 0.6s™!, surface velocity vo =
1.5km/s , NMO time ¢, = 1.0 s and semi-offset A = 0.5 km. Note that the tips of
the rays draw the finite-offset isochron. Figure 8.4 shows three kinematic impulse
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distance (km)

-0.2 0 0.2
0.83 ' : :

zero-offset t

1.03+

F1G. 8.4. Kinematic TZO impulse responses for a inhomogeneous media with constant
velocity gradients k = 0s™* (outer most), k = 0.3s™* (central) and k = 0.6s~* (inner
most). Here the surface velocity is v = 1.5 km/s and the semi-offset is h = 0.5 km.
All impulses have the same NXMO time £, = 1.0 s.

responses corresponding to the same parameters: surface velocity vy = 1.5 km/s,
semi-offset ~ = 0.5 km, NMO time ¢, = 1.0 s. The velocity gradients for the three
curves are k = 0s™" (outer most), k£ = 0.3s™* (central) and k = 0.6s! (inner most).
The effect of increasing the gradient is to squeeze the operator. One can see from
formula (8.13) that for the constant velocity case the increase in velocity reduces the
length of midpoint ranges. An increase in gradient implies increase in RMS velocity,
so, in a way, this squeezing for the depth-dependent velocity is consistent with the
earlier result for constant velocity.

Equation (8.3), however, does not represent a superposition—-type operator but a
stacking-type operator. Instead of the kinematic impulse response for the direct
(TZO) problem, we want to compute the kinematic (path) impulse response for the
inverse (TZO) problem. As I explained in Chapter 6, this operator is constructed
by doing a finite-offset ray-tracing to the zero—offset isochron. This means that we
should select the trios that have their tips on a zero-offset isochron, and from those
trios we should pick the finite-offset rays. In this way we find the stacking path S.
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One can see, however, that y is not present in the system (8.18). The reason for this
is that this system is built assuming that the midpoint, v is zero. Since we need the
explicit occurrence of y, we then map z, into y ~ 5. In this way we account for an
arbitrary midpoint y. The new system of equations becomes

0 z(pg: 2tg) — T s, 2(t — ty)] + 2 A
0 = z(pg.2tg) — 2(po, o) + h— y — zg
0 = 7(pg.2tg) =7 ps,2(t — t,)]

0 = 7(pg.2ty) — 7(po, to)

(an]

= 0(ps; 2t —t5) — 0(py, 2t,) — 26(po. to). (8.19)

Now we are ready to define the unknowns and the parameters in this system. We
have the five unknowns y, p, py. ts. ¢t and the parameters g, ¢o, o. h.

The numerical technique used to solve system (8.19) is the multi-dimensional Newton—
Raphson iteration (Press et al., 1986).

The strategy to compute the stacking path S is as follows. The input parameters
(to, zo) and the half-offset h, determine a unique zero-offset (output) isochron. We
do not need to compute that isochron explicitly. We use those Input parameters and
the system (8.19) to find the stacking path S parameterized in terms of the reflector
dip, through the zero-offset vertical slowness p. That is,

S ={(t®).y(p)), ~2/vo < p < 2/vo} . (8.20)

Here. v, is the minimum medium speed. Figure 8.5 shows the trios of rays reflecting
on the zero-offset isochron. Here the model parameters used are velocity gradient
k = 0.6s7!, surface velocity vo = 1.5km/s, semi-offset 2 = 0.5 km and NMO time
tn = 1.0 s. Figure 8.6 shows the stacking paths for the same model parameters and
three different gradients: k = 0s™! (bottom), k = 0.3s5™! (central) and k = 0.6s~*
(top). These figures are the loci of points representing the support of the impulse
response for the inverse TZO problem.

8.2.2 Basic Dynamics

I define basic dynamics as the evaluation of the integral (8.3), where the weight
function is set to unity. The integral should be evaluated in the midpoint (¢ = y)
domain. The path S is computed as a parametric curve where the parameter p =
2sino/v(z) is the zero-offset ray parameter. We perform linear interpolation to
reposition the points so that they are located at actual midpoints. Figure 8.7 shows
the TZO stacking path corresponding to the model parameters k = 0. 6s™i, v = 1.5
km/s, h = 0.5 km and NXMO time ¢, = 1.0 s. The stars represent the midpoint
linearly interpolated values.
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distance (km)
(—)1 .0 -0.5 0 0.

depth (km)
o
ik

F1G. 8.5. Trios of rays reflecting at the zero-offset (output) isochron surface(curve).
The zero-offset location is at zero (center), the source rays are on the left and the
receiver on the right. The model parameters for this experiment are: velocity gradient
k = 0.6s7*, surface velocity vo = 1.5km/s, semi-offset & = 0.5 km and NMO time
I, =1s.

The TZO impulse response In order to design an accurate algorithm, a detailed
study of the unit impulse response will be carried out. Figure 8.8 shows the dynamic
impulse response of the basic dynamics for the integral operator (8.3). In the com-
puter implementation, the unit impulse support is given by a single grid cell with
amplitude 1, while all other grid cells have amplitude 0. A value of 1 is added to the
result (output) each time the TZO stacking path intersects this particular grid. The
next obvious test is to band-limit the input spike. A trapezoidal filter of 10, 20, 60, 70
(percentages of the Nyquist frequency) was applied to a spike with an input (and
also output) temporal sampling interval of 2 ms and spatial sampling interval of 0.02
km. Figure 8.9 shows the band-limited impulse response, before (top) and after (bot-
tom) the time half-derivative is applied to the data. The half-derivative filter has an
overall effect a small phase shift. This effect is more notorious in the border traces
due to the constructive interference of two close wavelets. Also, it is apparent from
this figure that the operator is spatially aliased. The next task is then to design an
antialias filter for the TZO operator.

Operator aliasing In this section, I explain the design of an spatial anti-alias filter
for the TZO operator. We need at least two samples per cvcle (spatial wavelength) to
avoid spatial aliasing. Generally speaking, in a data set we have fixed spatial sampling
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distance (km)

-0.2 0 0.2
1,13—— ' '

total travel-time ( s)

1.314

F1G. 8.6. Stacking paths for a TZO operator in a medium with velocity gradients
k=0s"" (bottom), k£ = 0.3s~! (central) and k = 0.6s™! (top). Here also the surface
velocity is vo = 1.5km/s and the semi-offset is A = 0.5 km. All impulses have the
same NMO time t, = 1.0s.

(Ay) and fixed temporal sampling (At). The operator (stacking path) slope, however,
is changing along the data. If the dip of the operator is large, we could need a smaller
spatial sampling rate (Ay,.,,) or a larger temporal sampling (Atpe,). This implies
two things. We would have to spatially resample the input data by interpolating new
data traces at a higher storage and speed cost, or either low—pass filter the traces at
the cost of resolution loss. Let me be more specific here.

I assume a data set with spatial sampling rate Ay and temporal sampling rate At. I
call fo = 1/At. the maximum temporal frequency that we can handle before spatial
aliasing takes place. If a given data point the operator has a slope p = dt/dy then
the spatial moveout for the period At, is given by

dy
Ay, = Atca (8.21)

1
fcp.
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F1G. 8.7. Interpolated values of the stacking path S, for the parameters &k = 0.6s5~1,
the surface velocity vo = 1.5 km/s, semi-offset is A = 0.5 km and NMO time ¢, = 1.0s.
The solid line is computed from numbers which represent a uniform sampling in ray
parameter p. We perform linear interpolation to re-locate those numbers uniformly
over midpoint positions. The stars show the points sitting in a midpoint position.

We want 2 spatial samples per cycle, that is, Ay, > 2Ay. In other words,

1
2pAy

fes (8.22)

All frequencies f such that f. < f < fa = 1/(2 At) would be spatially aliased.

Let us illustrate this concept with a numerical example. We assume a data set with
time sampling rate At = 2 ms and space sampling rate Ay = 0.02 km. The TZO
stacking curve can get close to the maximum p = 2/v(z) for steep reflectors. Let us
assume p = 2/v(z) and a velocity at depth z of v(z) = 2 km/s. We compute

fe< 25Hz = 0.1 fy. (8.23)

This is certainly a strong high cut filter relative to the Nyquist frequency fy. A
different alternative is to interpolate traces so that the spatial sampling rate is smaller.

110

T



Seismic data mapping

distance (km)

(T, o ey

w

-0.2 -0.1 0 0.1 0.2
0.90 ] I} 1 1 1 1
0.954 — ——

w — —

Q : - - —_—

e ] e -

= 1.00- — ——— —

(b} ]

n ] -— -

S ]

© 1.057 —_ —

() .

N 3 _ _

1.104 _ _

F1c. 88. Dynamic impulse response. All spikes are of equal amplitude 1. The
parameters for this impulse are k = 0.6s™?, the surface velocity vy = 1.5km /s, semi—
offset is h = 0.5 km and NMO time ¢, = 1.0s.

Let us say Ay, =2 m. We would then arrive to the inequality

We then can broad the working spectrum at the expenses of high memory storage
and computational-time requirements.

An alternative to avoid aliasing is to mute the operator for steep dips. This would
be a problem for near vertical structures. Gray (1992) proposed a technique where
several copies of input data should be filtered to use according to the maximum
non alias frequency f.. Hale (1991) proposed a method to anti-alias dip moveout
operators in the time domain. Hale’s method applies a sequence of time shifts to
each input seismogram. For nearest-neighbor interpolation, this method implies a
boxcar averaging of the input trace values along the time direction. Here, I will use a.
technique described by Lumley et al. (1994). This technique uses a triangle filter in
time. Given that we know the maximum unaliased frequency f, at each point along
the TZO stacking path, we need to lowpass filter the seismic data in order to satisfy
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F1G. 8.9. Top: before the half-derivative filter is applied. Bottom: after the half—
derivative filter is applied. Dynamic band-limited impulse response. The parameters
for this impulse are k = 0.6s7!, the surface velocity vo = 1.5km/s, semi-offset is
h = 0.5 km and NMO time ¢, = 1.0s. Temporal sampling interval of 2 ms and
spatial sampling rate of 0.02 km are used. Note the aliasing on the steep events.
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the aliasing criterion (8.22).

The Z-transform representation of an arbitrary N-point triangle filter can be ex-
pressed as

9(2) = = (8.23)

Here the triangle length is given by NV = 2k — 1. The filter scaling coefficient o =
(k + 1) is a normalization factor designed in a way that the area of the wavelet is

preserved. We are interested in the preservation of the peak amplitude under filtering,
for inversion purposes.

The amplitude spectrum of the triangle filter is then

sin®(w At N/2)
(w) = ; 2
Alw) a sin®(w At/2)’ (8.26)

! We want to use the first notch of this filter as the maximum non aliased frequency
fe- Then, the appropriate anti-aliasing triangle operator length N should be

N>4 p%, (8.27)

where I used equation (8.22). Figure 8.10 shows an illustration of a triangular filter
with N=7 (k=3) points, and its frequency domain representation. We see that this
triangular filter is a low pass filter. Its high cut frequency f. is located at the first
notch of the filter. I mentioned above that we are interested in preserving the peak
value of the wavelet instead of its area. We want to have as an output peak value an
amplitude independent of any scaling produced by any filtering not explicitly implied
by equation (8.3). We should then normalize the anti-aliasing operator. This is done
by dividing it by the area of the filter shown in equation (8.26). The area of the filter
would be given by the formula

nw—1

> A Aw) Aw (8.28)

=0

where nw = 2.0%/(nf ft = dt), ntf ft is the total number of frequencies after padding
the frequency trace with zeroes and A is defined by the equation,

_sin®(jAw At N/2)

Aw) = — . 2
A(jAw) a sin®(jAw At/2) (8.29)

!Note that the factor o is missing in Lumley et al.’s paper.
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F1G. 8.10. Illustration of a 7 point triangular filter and its frequency domain
representation. Plot created with the application FFTLAB written by Dave Hale.

One advantage of this method is that, while being better behaved than the box
car filter, it is still inexpensive and can be computed on the fly. The numerical
algorithm to compute this filter is split in two parts. First, the trace is integrated
twice (causal and anticausal integration representing the denominator of the operator
g in equation (8.25)). Then, while the summation over the stacking path is performed,
a second derivative-type 3 point filter is applied (the numerator of operator g in
equation (8.23)). Figure 8.11 shows an impulse response with the same parameters
as the previous impulse responses after the antialias filter was applied.

8.3 True amplitude TZO

This section explains how to numerically compute the different contributions of all
factors involved in equation (8.3) to the total weight of the TZO stack. For exposition
purposes, I will divide this section into subsections corresponding to individual factors
of the TZO integral.
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F1G. 8.11. Impulse response after half derivative and antialias filtering. I used the
same parameters here as in the previous impulse responses.

h

8.3.1 The out—of-plane amplitude compensation

The out-of-plane amplitude compensation is given by equation (7.38). For the specific
problem that we are dealing with, this expression is

i B

i(0ry) = \ %}j—) (8.30)

The diffent o values should be computed by integrating directly equation 7.10, for
the source, receiver and zero offset rays.

8.3.2 The Hp — Hy contribution

f-—-’f"’—!

Here we compute the second derivatives of the stacking path and Huyvgens curve
with respect to the midpoint y at the stationary phase point z,. We already know

the stacking path, and so we can compute the second derivatives by using a finite
difference approximation.

r‘—.l r—.
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To compute the time corresponding to the Huygens diffraction curve we need to
perform two-point ray-tracing from the stationary phase point 2, to the points (yo —
éy — h,0) and (yo — dy + h,0) as well as to the points yo = dy — h and yo = &y + A.
Here y is the midpoint corresponding to the zero-offset ray through the stationary
phase point .

The finite difference operator to be computed is

Op—r(To. Yo — 0Y) + Op_r(To, Yo = 6
Hp—Hp=22 r(Zo. Yo y()éy)2D (%o, Yo y). (8.31)

Here op_r is the difference on time between the Huygens diffraction curve and the
stacking path. Note that the term in the middle of the central difference operator is
missing. This is due to the fact that both curves are tangent at that point, so their
difference is zero there. Hg can be found by taking the finite difference operator over
the stacking path which is already known. To find Hp we should use a travel-time
table from all scatters to a fixed source located at zero. See that the time from any
source to any scatterer is given only by the lateral distance and depth along the ray
due to the lateral invariance of the velocity field.

8.3.3 The WKBJ amplitudes

The WKBJ amplitudes are previously computed by a ray-tracing algorithm and
stored in a table; the same is done for a travel-time table. Figure 8.12 shows the v(z)
dynamic impulse response with the same parameters used in the previous impulse
responses. Although the amplitude distribution seams reasonable (for example, con-
sider the high amplitude in the casps), we unfortunately have no way to quantitatively
test the dynamics. For a2 model of this complexity, there is no closed—form analytical
representation of the amplitudes along this operator. The design of further tests that
teach us about the amplitude behavior of TZO impulse responses in a medium with
varying velocity with depth, is left as future task.

Unlike the v(z) case, for a medium with constant velocity we can find analvtical
representations that can help us to demonstrate the kinematics and dynamics of the
SDM process. In the next chapter I will show a model that illustrates the properties
of a canonical SDM operator.
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F1G. 8.12. Dynamic TZO impulse response. I used the same parameters here as in
the previous impulse responses. The amplitudes at the cusps are clipped for display
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Chapter 9

A NUMERICAL DEMONSTRATION

The main physical properties of SDM are that it produces the kinematics, point—
source and reflector curvature geometrical spreading effects of the output configu-
ration and/or model parameters while it preserves the oblique incidence reflection
coefficient embedded in the input data.

The canonical example of SDM is TZO. I will illustrate the main properties of SDM
based on a model for which we know the asymptotic SDM analytical response. We
compare this analytic solution with a numerical computation using an implementation
of TZO in a constant velocity medium.

9.1 The model

Let us consider a circular reflector in form of a circular cylinder. with center at a
depth of 2 km and a radius of p = 1 km. (see Figure 9.1). Here h = 0.5 km is the
semioffset, s = (y — k.0, 0) is the source location, ¢, = (y = k,0,0) is the receiver
location, Z,, = (y.0,0) is the midpoint location and xy = (o, 0,0) is the zero—offset
location. 7 denotes the length of the source-to-reflector ray, r¢ is the length of the
zero—offset ray, r, is the length of the receiver-to-reflector ray. H = 1 km describes
the depth at the top of the cylinder, p is radius of the cylinder, ¢ is the reflector dip
at the reflection point and 6 is the angle that the source (or receiver) ray makes with
the normal to the reflector.

Below, I will model a common offset section and then apply TZO to this section in
the common offset domain.

9.1.1 The kinematics

Here I present a collection of formulas, that describe the kinematics of this experiment.
They can be derived from the plane geometry in Figure 9.1. The reader is referred
to Bleistein et al. (1997) for more insight into these formulas.

. 0
© = arctan .
H+p

(9.1)
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F1G. 9.1. Model of a cylindrical reflector in a constant velocity medium.

2h2 sino
Yy=To+ —F = — —~, (9.2)
Vio— (H+ p)seco + 42 — Jp— (H + p)sec )
ro =/(H + p)? + 23 — p, (9.3)
_ 7'3—:‘7'9 _ . 2ain2 A B2 D A
L= 5 ——\/(y—xOTTO) sin“ ¢ = h?cos? ¢, (9.4)
and
2 _ h2rac2 A
cosf = vi Z o2 (9.3)

9.1.2 The dynamics

The reader is referred to Bleistein et al. (1997) for the derivation of the following
formulas:
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1. Reflection coefficient. The oblique acoustic reflection coefficient R is given by

2y — 2o

R = 2] -+ 22: (96)
where

cos @ -
2 = T (9.()
2o = \/1/1;3 +cos?f — 1 [o? (9.8)

2. Spreading effect due to curvature:

p cos2 6
V ro = p cos26’ (9.9)

3. Geometrical point-source spreading factor:

1 1
dm(rs+r,) 8L’ (8.10)

4. Phase function:

2w
1 ’

(9.11)

We combine all these elements to build the finite offset section according to

. F(w)R cos? § .
Uly,w,h) = 8(7.;4 Mroip g P {2tw/un\}, (9.12)

as described in Bleistein et al. (1997). After applying inverse Fourier transform I
obtain the finite offset data u(y,t,h). The spreading effect due to curvature in a
zero-offset section is given by

p
Vi (9.13)

and the zero-offset geometrical spreading is given by

1
8= To.

(9.14)

Note that modeling equations (9.1) through (9.11) are given as functions of zero-
offset location zo. Equation 9.12 however is evaluated in midpoint y. Formula 9.2
defines the midpoint y as a function of zero-offset point z,. The inversion of this
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equation for z, in terms of y requires the solution of a high-order polynomial without
a closed-form analytical solution. Also note that due to the svmmetry of the model,
we need only to compute one side of the cylinder. Fortunately on either side, the
function y = y(z,) is a monotonic function and hence can be uniquely inverted . I
sampled the recording surface finely in zo and then did numerical interpolation to
find a function zp = zo(y) uniformly sampled in midpoint. Figure 9.2 shows the
common-—offset data corresponding to midpoints between —2 km and 2 km.

9.2 Transformation to zero—offset

A TZO formula consistent with our definition of “true amplitude” (chapter 1) is
numerically implemented. The TZO output data is studied and the main principles
of SDM are demonstrated.

Bleistein et al. (1997) derived a TZO formula for a constant velocity medium which
satisfies the “true amplitude” requirements of data mapping. The TZO formula in
the frequency (w) domain, for input data in the wave-number (k) domain, is given
by

k dt, 2k2 R .
o = dk dt [1+ :gt};]L‘(k,t,h)expi(kxo—iwotnA) (9.15)

= o

Here the NXMO corrected time %, is given by

2
b= )22 - iﬁ (9.16)

and the factor A is given by

(9.17)

TZO equation (9.15) differs from Hale (1984) by the factor in square braces under
the integral sign.

I now show that SDM as applied to this model in the form of TZO produces zero—offset
data with the point-source and curvature geometrical spreading factors appropriate
for the zero-offset configuration and with the reflection coefficient corresponding to
the input (finite-offset) configuration.

Figure 9.3 shows the output of the TZO equation (9.13) applied to the data in Fig-
ure 9.2. The wavelets are centered at the zero—arrival time. The peak amplitudes are
the product of the geometrical effects (point—source and curvature) of the zero—offset
configuration and the reflection coefficient corresponding the input (common-offset)
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F1G. 9.2. Modeled common-offset for data for the cylindrical reflector experiment
sketched in Figure 9.1.
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configuration. Also we have to take into account the area of the filter function F (w).
To demonstrate this we use the analytical expressions for the geometrical effects listed
above to scale the peak amplitudes and produce reflection coefficients that should be
compared with the theoretical oblique acoustic reflection coefficients given by equa-
tion (9.6). I also compute a TZO section using Hale’s (1984) algorithm. Figure 9.4
shows the differences between the TZO section computed using Bleistein et al. (1997)
and Hale’s (1984) formulas. Here we observe that the differences between the two
sections are relatively small for small and large dips and larger for intermediate dips.

A quantitative analysis of the error is done by using the point source and curvature
geometrical factors listed above. I extracted the reflection coefficient of the TZO data
using both Bleistein et al. (1997) and Hale (1984). Figure 9.5 displays these reflection
coefficients. We see that the relative error between the analytical reflection coefficients
and the computed reflection coefficients using Bleistein et al. (1997) formula are un-
der the one percent. The relative error between the analytical reflection coefficients
and the computed reflection coefficients using Hale (1984) is small for small and large
dips, and larger (still under 10 per cent) for intermediate dips. The accuracy that
I achieve in the computation of the zero—offset times and reflection coefficients from
the peak amplitudes in the TZO data, proofs the validity of the kinematic and dy-
namic statements related to SDM. While Hale’s (1984) DMO formula, also produces
a good approximation of the reflection coefficients, the cost of the evaluation of both
formulas is exactly the same. I want to emphasize, however, that the purpose of this
section is not to compare Bleisteinet al. (1997) method with Hale’s (1984) method,
but to illustrate the kinematic and dynamic properties of SDM through this specific
example. The comparison with Hale’s (1984) work is done as an additional exercise
to provide ties with this general theory with well known algorithms in DMO.
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F1G. 9.3. Zero-offset data computed from the data in Figure 9.2 using
equation (9.13).
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F1G. 9.4. TZO Differences between the TZO sections produced by Bleistein et al.

and Hale’s formulas.
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F1G. 9.5. Reflection coefficients as a function of zero-offset location for the model in
Figure 9.1. Solid black represents the analytical solution, dashed black the numerical
solution using Bleistein et al. formula and dashed gray the reflection coefficient using
Hale’s DMO formula. The erratic behavior fo the numerical computed curves close

to the zero—offset location zo = 4 km, is due to edge effects at the right end of the
model.



Herman Jaramillo

128




Seismic data mapping

Chapter 10

CONCLTUSIONS

Here I derived a number of operators that can be implemented numerically to solve
a variety of geophysical problems. These operators are: demigration, migration and
Seismic Data Mapping (SDM) operators for 2.5D and 3D media. Some of these
operators were derived previously by using different techniques and are used here to
check the validity of the newly derived results. Most of the operators are new and
provide a basis for many new alternative approaches in seismic data processing. The
newly derived results for SDM in 2.5D and 3D data are based on a formulation of
the Configuration Transformation (CT) problem by Hubral et. al (1996) and Tygel
et. al (1996).

The operators presented here are “true-amplitude” in the following sense:

e The amplitude on the demigrated data should account for the proper geometrical
spreading due to a point-source and reflector curvature, and it should preserve
the reflection coefficient corresponding to the configuration for the input data.

e The migration operator locates the events in the correct place with amplitudes
that are proportional to the oblique incidence reflection coefficient.

e In SDM, the correct point-source and curvature geometrical spreading effects
of the input is mapped into the correct point-source and curvature geometrical
spreading effects of output. The oblique-incidence reflection coefficient from
the input data is preserved in the output data.

The SDM results derived in this thesis are very general. They can be used to solve a
variety of interesting seismic data processing problems. Among the specific problems
that can be solved with the derived SDM equations are:

e Offset continuation and Transformation to Zero Offset (TZO). Some of the uses
of ofiset continuation are binning, reconstruction of missing offsets for muitiple
suppression or any other process that requires these missing data.

e Amplitude preserving azimuthal continuation. Given that marine data have
azimuths that are near zero, software developed for marine data could be used
for land “acoustic” data after the azimuths are rotated to near zero azimuth.
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e Transformation of P-S scalar to “P-P” seismic data. The ‘P-P’ data is not true
P-P data in the sense that the main elastic properties (like the polarization and
P-S reflection coefficient) are preserved. However the kinematics is that of a
P-P wavefield under the same modeling conditions.

e Datuming. This technique is convenient for downward or upward continuing
sources and receivers to map an irregular acquisition topography into a planar
topography.

e Combinations of the above.

Actually all the operations mentioned above can be seen individually as SDM opera-
tors. We can make use of SDM also to perform velocity analysis. This could be done
in combination with TZO. After all offsets are mapped to zero-offset, events should
line up.

The derivations of the diffraction and isochron stacks were done in the time domain,
and for the case of data from inhomogeneous isotropic media. These derivations were
based on scattering theory. They continue the work of Bleistein (1987) and builds
a bridge through the more general derivation in de Hoop and Bleistein (1996) for
anisotropic media. One particular difference between the derivations presented here,
and those done previously using scattering theory, is that both the forward and the
inverse operators in this thesis, are derived from the Kirchhoff approximate modeling
formula, while the other derivations published are based on the Born approximate
modeling formula. A simplified derivation of the Kirchhoff approximate modeling
formula is presented in Appendix B. I also carried out a derivation of a criterion for
convergence of the Neumann series for monotype (P-P or S-S) seismic waves. This
derivation is presented in Appendix A.

From the previous demigration and migration operators, I derived two alternative op-
erators based on the superposition principle, to perform migration and demigration.
These are the isochron superposition (to do migration) and the diffraction superpo-
sition (to do demigration). While those concepts are not new {Hubral et al., 1996;
Schneider, 1971), I give here a precise mathematical formulation of the problem that
was lacking in previous publications. The amount of input or output data to process
determines which operator (stacking or superposition) should be more computation-
ally efficient. An extreme (and non-realistic) example is that of migrating a single
scatter. While this could be done by superposition of all isochrons that touch it, the
most efficient way to migrate it is by summing all the energy on the data along the
corresponding diffraction response. On the other hand, if the input data consists of a
single spike (also non-realistic) then it is more efficient to smear all the energy along
its corresponding isochron than summing all the energy on the data along all the
diffractions responses for scatter points on the isochron.

An analytical solution for the common-shot TZO in a 3D medium with linear velocity
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gradient in the vertical velocity problem is provided in Chapter 6.

To demonstrate and verify the kinematic and dynamic properties of the SDM op-
erator, an specific model in a constant velocity medium was chosen. Based on the
3 analytical knowledge of the kinematic and dynamic properties for this specific model,
I was able to show the agreement between the expected SDM features and the nu-
merical results obtained.

F
: Finally, as mathematical by-product of this research, I found a justification for the
half-derivative operator through the Fourier transform. This new insights build more
r solid foundations for the mathematical analysis of 2.5D operators.
# 10.1 Future work
|
I describe some extensions and/or future applications of the research developed here
L -
e Extension of the SDM operators to include anisotropy.
! e Use of the 2.5D and 3D SDM operators to develop “true-amplitude” software
for offset continuation, TZO, datuming, velocity analysis, transformation of
[ converted data etc.
e I believe that more testing should be performed using the TZO technique ex-
E‘ plained in Chapter 8.
]
L
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Appendix A

A.1 Criterion for convergence of the Neumann series

This appendix is inspired in the work by de Hoop (1991). He shows the conditions for
convergence of the Neumann series for electromagnetic waves. Here, I show the equiv-
alent result for monotype scattered (P-P or S-S) seismic waves in a homogeneous
isotropic background.

In Chapter 2, we defined
/ &z Gz, 7, w) Iiz-ao us(z, T, ),

and said that the convergence of the Neumann series is guaranteed by making
el <1, (A.1)

where € is a parameter related to the perturbation o by the formula o = eaq. Here
oy is bounded by one. By definition

(= sup [ Tu
usl =1

where ,T usl} is the norm of Tu, defined by the equation

sup Tug(r). (A.2)
T€R®

We have then,

02

iTul = sw | [dzG(e,rw) ‘“— 00 Us(2, 0,0) |
remv
< e el e
Here, we have used the causal Green function
(i T=T/C
G(:c, 'r,w) = m

and the fact that [us] = 1 and jexp{iwr — z|/c}| < 1. Let us define B as the
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smallest sphere such that D € B and let R be its radius. We have then that

1 1
/d31:, .S/d?’x: .
p “r—z~Jp Tr—z

The right hand side of this equation, up to a scale factor, has the physical interpre-
tation of the gravity (or electrical) potential at 7 due to a sphere B with unit mass
(charge) density. Kaufman, (1992) shows a derivation of the gravity field due to a
constant density sphere. This gravity field depends only on the radial component .
By integrating along r we find the gravity (electric) potential, and after ignoring the
gravitational (dielectric) constant we find

2 /5 2 3
1/d3z, 1 __{R/~ r?/6 ifr <R
B 7

= -z | R/3r fr>R
Then,

1 1 R2
sup — | d’z: <

To satisfy the inequality (A.1) we then must have

2¢

a(z) < T 7R
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Appendix B

B.1 From Born to Kirchhoff

This appendix was "Born” as an effort to find justification for the name reflection
coefficient for the factor Rp defined in equation (3.19). The approach presented here
is a Bleistein’s variation of the approach presented by Jaramillo and Bleistein (1997).

Here, I will show a derivation of the Kirchhoff approximate modeling formula (2.16)
from the Born-approximate modeling formula (2.11). I start with equation (3.10)
which can be rewritten as

§'(t — o)

= [|d& M . LH(Z . Y ———

D(&.1) = [ o e sale V. H(Za(x)) - umy o5

Let us know pick w = uy where uyx is a normal vector to the reflecting surface T
pointing upwards. We have then that

u- V. H(ZEr(z)) = —(z),

where v(x) is the singular function of the reflecting surface. The minus sign comes
from the fact that V. H(Xg(z)) is a unit vector normal to the surface pointing in the
positive z direction. While u was chosen to be oppositely directed.

From the definition of the singular function we have, then, that

't — o)
ug - V:z@

o(x)
*(z)

If we use the fact that

Ds(&,t) = — [ dTr 5 a(.€) (@)

o(z) afz)
A(x)(ug - Vo0)?2  4cos2f D

where, as before, § is half the angle between the source/receiver rays at the reflector,
then we find

Dgl,t) = —/dER Rp us - V,00'(t - ).
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By taking the direct Fourier transform of the previous equation we obtain
Dy(é.w) = it [ Rp a(2.£) us - Vo6 6#%®8) 4.

If we replace Rg by Rk, then we will have that the previous equation is the Kirch-
hoff modeling (approximation) formula (2.16), where us = 7. This, then, explicitly
shows, that the Kirchhoff modeling formula is an extension to the Born approxima-
tion formula, with a less restrictive refiection coefficient, also justifving the name
“Linearized Born reflection coefficient”.
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Appendix C

C.1 The Fractional Calculus

The need for this appendix stems from the fact that there is no formal theory of
fractional calculus in terms of Fourier transforms. In this dissertation, fractional
derivatives arise from the stationary phase analysis in 2.53D. Those derivatives are
written in terms of Fourier filters of the type (—iw)?. In our particular case ¢ = 1/2.
Then this appendix is about how to find and how to justify half-derivatives under
the Causal Fourier Transform theory.

We want to do this in a general context. Here the concept of n-th derivative or n-th
iterated integral is extended from the natural number n to generic complex number
q- This extension unifies both integration and differentiation in a single differintegral
operator. The term differintegral as well as all definitions and some of the properties
that we illustrate below are taken from the book “The Fractional Calculus” (Oldham
& Spanier, 1974). We do not pretend to make an extensive self consistent discussion
of the topic. So we will not define the space of differintegral operators and assume
that the functions that we deal with here are in that space (and they are). For
mathematical details of this, the reader can consult Oldham and Spanier (1974),
where he can find many other references about the topic.

C.2 Definitions

The basic definition of the differintegral operator was first given by Griinwald (1987)
and later extended by Post (1930). Here I present the Oldham and Spanier’s version:

d9 f [%‘;ﬂ}_qh'z—ip(j—q)f< ,}’x—cﬂ)

= lim IS STES) 2=j1—| (C.1)

d(z —a)ls N | T(—g) LN

where the I function is used, and ¢ can be an arbitrary complex number. The number
a represents the lower limit of integration (for ¢ = —n) and it is irrelevant for the
usual differentiation ¢ = n. So for ¢ = n we could just drop a from this formula and
obtain the usual finite-difference forward representation of the n-th derivative. This
formula can be obtained by starting with the forward finite difference representation
of the n-th derivative operator. You can see that the change of n by ¢ will preserve the
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algebraic structure of the formula. Another way to derive this formula is by starting
with the Riemman sum of the n-th iterated integral. The formula will come up when
n is replaced by —n and then this by —g. The derivation of this formula for a natural
number n would require some manipulation of the binomial coefficient

ny _ I'(n+1) .
<f>_r(j+1)r(n—j-:—1)‘ (C.2)

While Oldham and Spanier’s definition is valid for any complex number g, its algebraic
complexity make it difficult to use. There are some simpler definitions that can
be shown to agree with this definition in a smaller domain (subset of the complex
numbers), then by analytic continuation they all should be equivalent (in their domain
of analitycity) to the Oldham and Spanier’s definition. For convenience we will use
here the so called Riemman-Liouville definition

af 1 = fly)dy
dz~-a)ls " T(=q) Ja [z—yoV

g <0. (C.3)

The way to extend this formula to positive ¢’s (¢ 2 0), is by using the composition
law

d? dif B dra §
dz" [d(zx — a)}¢ ~ d(z — a)i»*t

(C.4)

valid for all ¢ and any natural number n. In this way we find any positive fractional
by picking the negative fraction and doing iterated differentiation n times. Here
7 is the next integer grater or equal to —gq. Then we can cover the whole real
line. The Riemman-Liouville definition is shown (Oldham & Spanier, 1974) to be
equivalent to the Oldham and Spanier’s definition, so again that definition is the
analytic continuation to the entire plane of this more restricted, but at the same
time, simpler definition. One way to derive the Riemman-Liouville definition is by
naturally extending the Cauchy’s formula for repeated (iterated) integration after
substituting n by —q.

C.3 Properties

I'list (besides the composition law) the main properties of the differintegral operators

1. Linearity

dhi+vf] _ dfH L df
diz—a) ~ ldz—a)  dz-a)
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2. Term by term differintegration
d(x ~a) Z fi= Zo d(z—a)9’ (C.6)

3. Homogeneity

FCf _ o &
da-a)7 iz

C anyconstant. (C.7)

4. Leibinz’s Rule. This is an important property for asymptotic analysis and we
will make use of it below.

d? 0% 1’/‘ di9¢
— A6 S
d(:r —a) Z ( ] > v d(z — a)le-3" (C.8)
A further generalization of Leibniz’s rule due to Osler (1972) is the integral form
d" &Y I‘(q +1) dI7726 dv Ty
d(z — a)] / Tlg=v= A1) T(v=A+1) dzs=7-2 dgr=2 5 ) (C.9)

Ot

The Chain rule. The chain rule is perhaps the most difficult property to extend
beyond n = 1. If for example the chain rule could be extended to n = —1 then
the process of integration would pose no greater difficulty than does differen-
tiation. Since any general formula for d? g(f(z))/id(z — a)}? must encompass
integration as a special case, little hope can be held out for a useful chain rule
for arbitrary ¢. A known formula for the chain rule for a natural number n is
shown in Abramowitz and Stegun (1965) and named as Faa de Bruno’s formula.
This formula is so complicated that I chose not to include it here.

C.4 Fractional derivatives as seen from the Causal Fourier Transform
point of view

We are interested on the differintegral operators of causal functions, and want to find
an expression for them in terms of the Fourier Transform. We want prove that

AAG = ur c.10

Where ¢ is any real number, F is the forward Fourier transform operator as defined
in equation (2.1) and f is a causal real function (f(¢) = 0.t < 0). That is we can
compute the g-th derivative of f(¢) by taking the forward Fourier transform, filtering
this with (—4w)? and finally taking the inverse Fourier transform of the result. In
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other words

2L = P iy P (C11)

This is a well known result for a natural number n (Bracewell, 1986) *. We want
to extend it to all real numbers, even though, in our particular case, we are only
interested only in ¢ = 1/2. We use the Riemman-Liouville definition

#f_ 1t f(n) ,
dtr ~ T(—q) /o (t— 7)‘1+1dl ’ ¢<0 (C12)
The convolution theorem for causal functions can be written as (Bracewell, 1986)

¢ rt
FA[ arfit-m) fan) ) = F L) F ) (€13)
So

fl 1 —ieg Y
A = s Al P = arE), a<o (C19

For noninteger positive ¢, we use the composition rule (C.4) where n—1 < ¢ < n, s0

(@) HE ) - ol
(=)™ (=) F {f}
(—iw)IF {£}. (€12)

This proves the statement.

C.5 Asymptotic analysis of the fractional derivative operator

Here we find the leading order term of the fractional derivative of the product of a
“smooth” function s(¢) by a “sharp” function (¢ — 7). The Leibniz’s rule (C.8) for
the signal s(t) §(t — 7r(c)) is given by

s 8t - el = 3 < j ) (1)@ <200 = 72(6)) (C.16)

= dta-Ji

We can asymptotically approximate this equation by using its leading order term
(j = 0, which represents the highest power of (—iw) in the frequency domain) as

! Actually, Bracewell does it only for n=1, but higher-order derivatives follow the rule due to the
composition law
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follows:

5 50800 = (@) ~ sy 2= TRE), ©17)

So, asymptotically, the smooth function s(¢) behaves like a constant with respect to
the sharp delta function, under the ¢-th differentiation (g > 0)
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Appendix D

In this Appendix I find a relation between the curvature of the difference between the
input and output configuration isochrons and the Hessian matrix &, corresponding
to the 3D DM chain operator.

For exposition purposes, I will omit the arguments of the phase function ¢. In any
case ¢ is the total travel time of the source-scatterer-receiver ray, but in some cases
this travel time is taken with respect to the input configuration isochron and in other
cases with respect to the output configuration isochron. To distinguish between these
two choices, I use the tilde for the coordinates of the output configuration isochron.
Also for simplification purposes, I use Einstein summation convention. That is, a
sum is assumed over repeated indexes.

Let us begin by rewriting the stationary phase condition (6.12)
06 0o 01

8@ 82'1 60'1' ( )

By using the chain rule for partial differentiation we have that
826 0% 0z, O%r % 8%

80'1'0']' - 82’1627k 80'i aO'j . 3.’171 80’,’80’_7'-

where 7, = 1,2 and [,k = 1..3. Now, let us take the input isochron, defined by
t = o(x(0),£). Given that ¢ is constant along the isochron,

ot _ 60 Bxl _
B0, B, 0oy 3
and

0%t _ 82é _aﬂ Oz, N @. 32181 0 (D 4)
80:80; ~ 8x:0z), 8o; Bo; ' Ox; Boida; ’

From equations (D.1) and (D.3) and the fact that the point , belongs both to the
input and to the output isochron, we find that both isochrons share the same tangent
plane at the point xo. Let us then parameterize the input configuration isochron as

T3 (0'1,02) 23]
z2(01,09) | = bR (D.3)
553(01,02) 363(01,0’2)
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and the output configuration isochron as

zi(01,09) 5!
Zy(01.09) | = o2 (D-6)
Z3(01, 03) Z3(01,02)

where the parameters o; and o, define an orthogonal coordinate svstem along the
common (01,03) tangent plane and the components z3 and Z; are seen as plotted
along the normal direction to this plane.

Now, since 0z3/00r, = 8%3/00;, = 0, under the specific chosen parameterization, then
0x1/8or, = . | =1..3, k = 1,2 Then, at & = z, equations (D.2) and (D.4) reduce
to

8?6 %6 - do %% &% 0o &% —
= 512'5ij—' = T 5. a. o (D{)
30','30']' 327[8$k 822[ 80'.;60'_7' 817,'827]' a.’L'[ 80'1'60'_7’
and
2 2 ¢ a2 2 : 2

ot =.8,o 5zi5kj+?2 Oz, _ 99 _:__d_q_b__@__:{:i_:O' (D.8)
aa'ian 0x16xk 6.731 8ai80j 3xz-8xj 3.’61 80,-8@
We subtract equation (D.8) from equation (D.7) and find that

b5 do) 06 &%z —=x) .,
Bodo; ~ om bode; o™ b (B-9)
where m is a unit vector normal to both isochrons at z, and
by = [0%(% - m) /80:803) .
The inner product is taken for each 7,5 fixed. The tensor L;; defined as
Lz'j =1n- b,;j (DlO)

is known as the second fundamental tensor for the surface (01,0, (23 — z3) (01, 02)),
(Laugwitz, 1963). This surface is the difference of between the output and input
isochrons, as seen in the (o:,02) tangent plane. Laugwitz shows that

L=det(Ly;) =Kg,=KiKag,, (D.11)

where K is the Gaussian curvature and x,, ko, are the main curvatures, or curvatures
along the principal directions *. Here g4 is the determinant of the first fundamental

*maximum and minimum normal curvatures through the surface at the point xq.
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tensor for the surface

g . (D].Z)
(73 — 23)(01.02)
Now the metric tensor g;;. for this surface, is found as follows

. = Oz Dz
# = do; Oo;

= 5,;;; 6jk = (5-,;_7', (Dl?))

so that g4 = 1. Note that here, we renamed Z3 — z3 as the third Cartesian coordinate

(x3)-

We have that the determinant of the Hessian matrix & at the stationary point @
becomes

det® = V.02 Kg,. (D.14)
and since for this parameterization g4 = 1 then

det® = |V, 02 K. (D.13)
Also, sgn(®) = sgn(L;;). Let us now rewrite the DM weight wpy,

We now show that this determinant is independent of any parameterization of the
isochron surfaces.

Since the parameterization was done along a tangent plane at the stationary point, the
determinant of the first fundamental form at this point, for the output configuration
isochron is g = 1. To better understand this, think that g is a stretching factor that
can be thought of as the deviation of a local infinitesimal tangent plane from the
(01,02)-plane. At the stationary point, the two normal vectors to those planes are
colinear. The factor g = sec?a = 1, where o is the angle between those two normal
vectors.

Given that K is independent of the coordinate system (Laugwitz, 1963), this weight
is independent of the particular parameterization chosen and so this derivation is still
valid for any allowable 2 parameterization of the output isochron.

If the parameters (01,02) were running in a plane whose normal makes an angle o
with V¢, then it can be shown (Jaramillo et al., 1997) that the relation between the
Hessian matrix in this new plane and in the old one is given by

=U®,UT. (D.16)

“Here we deal with smooth parameterizations with a large enough number of derivatives to find
the surface curvatures. The term allowable is explain in Kreyszig (1991)
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Here @, = (0%6/0v, 8+) is the Hessian matrix along the new coordinates s Vo
Also 3 :

. cosa 0 -
U= ( 0 1 ) . (D.17)
0!

Videra, =/ ii? = /g det® (D.18)

We find that in any case, the the factor /9 is canceled. This is consistent with the
fact that the result is independent of the chosen coordinate system.

3In fact, U is the product of three matrices. Two of those matrices are rotations with unit
determinant, and the other one is the projection that I call U here.
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Appendix E

E.1 Curvature analysis for input and output isochron configurations for
the Common-shot TZO in a medium with vertically velocity gradient
in the vertical direction

We show below that the output isochron is a sphere. This fact implies that, for
the output isochron, any direction along the tangent plane is a principal direction of
curvature, since the principal curvature is constant and equal to the reciprocal of the
radius. Let us define this principal curvature of the output isochron as & and the
two principal curvatures of the input isochron as k; and k.. In the direction of the
minimum value of curvature, for the input isochron, we have that the curvature of
the difference between the output and the input isochron is given by & — &;, while in
the direction of maximum curvature this difference curvature is given by & — k5. Note
that in the general case of offset continuation we could not say that the curvature
of the difference between the input and output isochron is equal to the difference of
curvatures of the input and output isochrons. For this we would have to prove that
the principal directions of both surfaces are collinear(which is not true, in general),
and then apply the linearity of the partial derivatives operators as we just did here.
We have then that:

K=(ﬁ—n1)(k—ﬁg)=K—2Hl~$+K1, (El)

where K = &2 is the Gaussian curvature of the output isochron (sphere), H =

(k1 =+ K2)/2 is known as the mean curvature and K7 is the Gaussian curvature of the
input isochron.

To find these curvatures, I will compute an explicit solution of both (input and output)
isochrons z = 2/(€, ¢, p) and z = 2;(£, ¢, p). Here we follow closely Dietrich and Cohen
(1993) derivations. They derived the isochrons in the common-offset configuration;
we derive them in the common-shot configuration.

E.1.1 The finite-offset (input) isochron

Let us introduce the dimensionless variables:
2

2 ’ 2 [ ¢ > 2
P e -2 Z
¥s(Zs, ) = cosh™ L =0

222
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and

[(x—&)+(y— &)+ 52+ 22

422

where
E=vlk=z2+v/k=2z+5%. (E.4)
We then have v, — v, = kt, or
cosh(vys = v,) = cosh k t. (E.5)
From the previous equation we derive the identity
2 cosh s cosh v, cosh k t — cosh® v, — cosh® 7, = sinh® k ¢. (E.6)

To check this result, write equation( E.3) as

sinh~; sinh~, = cosh k¢ — cosh~, cosh 7,

and square both sides to find that

2 cosh vy, coshvy, coshkt cos? kt = sinh® ~, sinh? Yo — cosh? v, cosh® Yo = cosh? k 1.

Then use the identity cosh? o — sinh® o = 1, first for & = k¢ on the right hand side,
then for o = 7, and for a = v, on the left hand side, so as to eliminate the sinh
factors. After collecting terms identity (E.6) is obtained.

We use the identities:

223252 — N2y — E)2 32 22
cosh'yscosh';/g=(x Yt 2 .zo>((x E)+(y—&)P°+2 .zo>’ (E.7)

222 22%
and
2,2 52 52\2
I~ - -2 T Z
cosh? v, + cosh?v, = ( v °>
2z 0
(E.8)
2
L (B8l —-&) 257
' 2%%
to find that
az*+b3%-c=0. (E.9)
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Here

a=2coshkt—2, : (E.10)
b=1b(z.y) = 2coshkt (0 + p} + 253) — 2(p* + p?) — 423 cosh® k t, (E.11)
¢=clz,y) =2coshkt (p° + £3) (0} + ) — (0° + 32)* — (02 = £2)2, (E.12)
and

p=+/2%+y? Pe = \/(a: - &)+ (y—&)2 (E.13)

Equation (E.9) is a quartic equation in the variable 5. From the four roots of this
equation we pick the physical (positive) solution

5 \/—-b + VB — dac

5a (E.14)
and from E.4, the input (finite offset) isochron is given by
—b+ Vb% —4dac _
z=2z(€,t,p) = \/ 50 — Z. (E.13)

The domain of validity for this isochron is limited to those (z,y) such that ¢(z,y) < 0
and z > 0, for each fixed (£;,&,) and t.

E.1.2 The zero-offset (output) isochron

Here we define the dimensionless variable £, as

_~2; _~2;22_:_"2
Zs — cosh—l !-(x 61) ; (2/ ..§2) : 60 , (E16)
'_ 2220
and 2% = kty. As in the previous section, we find the identity
2 cosh? %, (cosh kto — 1) = sinh? k £, (E.17)
that is
._-'12; __~2_;_;2_-_“22

2 [(“’ &) - (?{);2052) —F z"} (cosh kto — 1) = sinh? kt;. (E.18)
This equation can be transformed into
(-&)P+@-&2+#+8 ki

535, = €08 (E.19)
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and then into

(x = &)+ (y — &)2 = (£ — % (cosh f”-zt—° — 1)) = £2 sinh? % (E.20)

&

Equation (E.20) represents a sphere with center at the point (f;, Ea. 30 (cosh(k to/2) —
1)) and radius %, sinh(kto/2). So
1
- . 21
%o sinh(k to/2) (E.21)

R=

The minus sign comes from the fact that the isochron is convex up and the coordi-
nate z is positive in the lower half space. Slotnick (1959) showed that the wavefronts
for a medium with linear velocity with depth, in the vertical plane (z, z), are circu-
lar. Equation (E.20), shows this fact, given that the wavefronts are kinematically
equivalent to zero—offset isochrons after the medium velocity has been halved. From
equation (E.20) we find that:

kt kt
Z = %y (cosh —T)-Q -1)+ \/28 sinh? TO - 0z, (E.22)
with pg defined in equation E.13. This is the zero offset (output) isochron. Here
we are choosing the lower hemi-sphere. To process dips larger than 7/2 the upper
hemi-sphere should be picked.

Our next task is to find the curvatures on the finite—offset isochron.

E.1.3 Curvatures on the finite (input) offset isochron

In this section I find the Gaussian and the mean curvatures of the finite (input)
offset isochron. Let me refrase the fact that the Gaussian curvature for the difference
between the output and the input configuration isochrons can be written in terms
of the mean and the Gaussian curvatures of both (input and output) isochrons, as
shown in equation E.1.

The Gaussian curvature of the finite (input) offset isochron Let us first, for

convenience in notation, use the short hand notation:
_ 0. and .

"t B "9 Oz; Oz

(E.23)

where i,j = 1,2, 2, = z and 2, = y. All equations derived in this section are valid
and so applied, at the stationary point @y = (z,y.2). This point is common to both
the input and the output configuration isochrons. The first goal is to find expressions
for z,;;. Since by equation E.4 2 = z = 2, all partial derivatives of % are the same
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as those of z. Moreover, it was shown above that, when both the Input and output
configuration isochrons are parameterized in depth, their first partial derivatives are
equal to each other respectively.

Let us now take partial differentiation twice in equation (E.9):

(12&5‘:’2 - Qb) Zyi Zyj —f'b,ij 2.2 z2b,; 2.5 TCuij
4033 +2b2 )

We can use the fact that the stationary phase condition provides the equality of the
first partial derivatives for the input and output isochron configurations. In this way
we use the first (simpler) derivatives of the output configuration isochron. That is we
take partial differentiation in equation (E.20) and find that

_ (z; — &) o=
2= z - 20 cosh k to/? ' (E._.-Z))

N
“yiy —

(E.24)

We still need to know the expressions for b,;, c,;, b,;; and ¢, for i, =1,2. A direct
differentiation of the coefficients b and ¢ results in -

b; = (coshkt—1)(8z; —4E),
¢; = 4coshkt [xi (P2 +8) + (0° + 32) (2 - fz)
—4 =(P§ = 8) (& — &)+ 3 (0% + 23) ;
b,,;j = 8 (Sij (COSh kt — 1)
¢yij = 4coshkt [5,7 (0F + 25) + 2zi(zj — &) + 2z(2s — &) + 655(0% + %)|

- 4 {2 (xj - §j)(x,~ - fz) - 52-_7-(/)3 - ?:'g) - 5,-,-(/)2 -+ ﬁg) - 2..’1.‘i.’l,‘j] . (E26)

4

The Gaussian curvature can be found then by using Gauss formula (Gauss, 1963).

det 7| 2.1 2.29 —Z.-.22
- E.27
! 9> (1+ 2,12 + 2,92)2 (E.27)

Where g =1+ 2,;2 + 2,2,

The mean curvature of the finite (input) offset isochron The mean curvature
H of a surface is given by the formula

g7k _gilu—2gnln+gnly
2 2g ’

(E.28)

(Laugwitz, 1965). The components of the first fundamenta] tensor for the surface
z=z1(§,t,p) are

gl] =Ty .w7j = (61i7 52i7 2y ) ) (51j: 52j7 z;j ) = 51,] -+ o z7j . (E.29)
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Here z = (z,y.2(z.y) = z;(€.t.p)). To find the components of the second funda-
mental tensor L;; we use equation (D.10). For the specific parameterization that we
are using here the normal vector to the surface is given by

— 'mrl X$,2! — (—Z‘,g : —.Z,-_)_ s 1)2 — (_zal s —Z52, 1) . (E30)
L X2 \/1 - 2712 - 22 \/§
Note that g = det(g;;). We then find that
Lz'j = z,ij /\/_6.[ (B31)
and so
2H = (1 - 2712) 2,22 -2 2, 212 %2 —(1 - 2722) 2,11 (E32)

It is my guess that there should be a simpler way to express these curvature factors
(Kr and H), but, unfortunately, I have not been able to solve this problem. What
I showed was basically an algorithmic sequence of equations that tells us how to
compute them, but the back substitution in terms of the primitive variables (z,y, 2),

(1,&) and vo, k results in a long expression for which a simplification represents a
real challenge.

E.1.4 Signature of the Hessian Matrix

As I explained at the beginning of Chapter 3, the signature of a matrix is the given
by the number of positive eigenvalues minus the number of negative eigenvalues. We
already know that at the stationary point, g, Z,; = z,;. This fact implies that, there,
the components of the first fundamental tensor for the surface [z, y, (2 - 2z)(z,y)] are
9i; = ;5. The principal curvatures of this surface satisfy the equation for A

det(Li; — Agi;) =0, (E.33)

(Laugwitz, 1965). Here iij is the second fundamental tensor for the difference between
the output and the input configuration isochron surfaces. This means * & — &;, and
K — kg are the eigenvalues of (L;;), and so sgn L;; = sgn(k — ;) = sgn(k — Ky).
We already found & (see equation (E.21)). To find x; and k. we use the fact that
K; = K1 ko and H = (k; + K2)/2, so that «; and x, are the solutions of the quadratic
equation

MN_2HA+K; =0 (E.34)

'we mentioned at the beginning of this section that the output isochron is a sphere, so the
principal directions of the finite offset and zero—offset isochron should coincide, given that a sphere
is invariant under any rotation
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in A. We then have that

ki=H-H?>-K, and Ky =H ++/H? - K. (E.33)
With this, sgn (®) is completely defined.

We use continuity arguments to find the signature number. Let us assume a horizontal
reflector. In this case, at the stationary point, z,; = 0. The reflector point is directly
below the source-receiver line, so & = z» = 0. By direct evaluation we find, then, that
¢.12= 0 and that the determinant of the first fundamental tensor for input isochron
is ¢ = 1. From equation (E.31) we find that the tensor for the second fundamental
form for the input isochron is given by

Lij = 25 - | (E36)

Now from equation (E.24) we find that 2,15 = 2,9, = 0, so that the principal directions
for the input isochron at the stationary phase point x, are the in-line and cross-line
directions. Furthermore x; = z,;; and Ky = 2.00.

To find the Hessian signature for a horizontal layer reflection we use the following
continuity argument. Along the in-line direction and in the limit as k — 0, the
stationary phase point (specular reflection point) is the global minimum of an ellipse
(finite offset configuration isochron) and a circle (zero-offset configuration isochron)
with curvatures given by

242 _ 2

vets — - . 1 ~
Z1=Rp = ——W;i and Za1= R = —;, (E3()
respectively. Here z is the reflector depth. We then have that
. 1, _ -]

—ky =2 11— , E.38
rT R z| CEE 2 ( )
and given that 0 < 22¢2 — €2 < v2¢? then & — k; < 0. This means that
sgn (R — k1) = —1. (E.39)

While it can be argued that the 3-D TZO is degenerate —this means that the operator
collapses in one of its directions— when k — 0, we still can claim that this degeneration
is found along the cross-line direction and not along the in-line direction. Then, by a
continuity argument we can say that for a small velocity gradient k, sgn(k—x;) = —1.

Let us now do the analysis along the cross-line direction where z = & /2 and & = 0.
By using these two expressions in equations (E.6) through equation (E.8) we find that
the cross-line curve is a circle with center at the point (&/2,0, 22 cosh kt/2 — 1) and

159



Herman Jaramillo

radius \/ z¢sinh®kt/2 — €2/4. So that
1

= coh2 kt _ &
\/zgsmh T-=

(E.40)

At this point we have to decide whether & > k5 or & < k,. This fact can not be seen
directly from the expressions for & and ;. Let us work with the radii of both circles
representing the input and output isochrons. We define

kt
re = 32 sinh? 90 (E.41)
and

kt 2
12 = 2% sinh® 5 §4= (E.42)

Here 7, is the radius of the output configuration isochron, while r, is the radius of
the cross-line circle, representing the input configuration isochron. To evaluate the
difference between these two radii we need to know the travel times £, and ¢. From

equation (6.62) and recognizing that for the zero—offset case z = & and y = & =
we find

2 vo + kz)%2 =02
to = — cosh™! (v z)' or.
k L 270 (vo + k2) |

(E.43)

This is the time of a vertical ray going from the surface directly to the reflector point
below it. Along the same lines we find that the finite offset time, from the source
zs = (0,0,0) to the reflector point =g = (£;/2,0, 2) and then to the receiver position
zg = (£,0.0) is given by

2 K*E2/4 + (vo + k2)® +
t = —cosh™! 2 2. 44
k cosh [ 2% (vo + k2) l (E.44)
It follows then that
kg (’Uo - k2)2 -+ ’Lg -
h = , .
cos ( 5 ) 250 (0o T %2) (E.45)
and
kt, _ k*€/4+ (v + kz)? + 0
cosh(?) = 200 (0 = Fo2) . (E.46)
We have
kt kt
2 _ 2 KL
sinh® — 5 = cosh 5 1
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_ [Peat ok +0B]”

2 Vo (’bo - ]».o\
l»t . (FE/4) (v + k2)° + 4§) kg
= 2% 0/ 1 o
= sinh 2v¢(vo + k 2)2 D643 (vo + k2)? (E-47)
Now multiplying the previous equation by 22 = v%/k* we find
2 . okt o okty & (vo-k2)?+e? k2 &f
22 2T 2:2 2 0 . 51 0 1 .
% sinh 2 o Stk 2 "8 (vo+kz)? 64 (vo+kz)? (E-48)
and after subtracting the term £2/4 from this result,
kt & 2 . 2 kto
22 sinh? -7 = %2 sinh? =
L Gk KRE
8 (vo+kz)2 " 8(vo+kz)? )
Now, using the definitions for 7¢ and r we find that
2 [l e 0)\2 o 02 2 2
22 (sk2) WM& (E.49)
8 (vo =k 2)? 8 (vo + k2)?

To investigate the sign of this expression it is useful to do it in terms of its zeros.
One zero is found by making k = 0. This is a singular point of the Hessian matrix
®. This is in agreement with what we showed above, about the constant velocity 3D
TZO problem. Another zero is given when the equation

k& = 16 vokz + 8k*22 (E.50)

is satisfied. The depth for this to happen is given by

—-16vy + (16 ’00)2 =32 k’f-? _
\/ 7 . (E.31)

At this depth there is a sign change on equation (E.49). That is the sign of (E.49)
should be negative for z > z™ and positive for z < z*. That is, for z < 2+
1 1

Rorg=-L:lg (E.52)
To r

Z2 =

and for z > 27

1 1

K—Ke=—-—+>=>0 (E.33)
To r

We found then that sgn(k — ky) = —1 for z < 2™ and sgn(k — ky) = 1 for z > 2~

In words, if k¥ = 0 then the Hessian matrix ® has a singularity and the statxonarw
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phase technique fails. If £ # 0. then for depths between 0 and 27 the stationary
phase point corresponding to horizontal reflections is a elliptic point of the isochron
surface (sgn(®) = —2), for points below the depth z™ the stationary phase point
corresponding to horizontal reflections is hyperbolic (sgn(®) = 0), and at the point
z™ there is a singularity that cannot be handled by simple-order stationary phase
analysis. Let us recall ~see discussion below equation E.39-that we are constrained
to small values for k£ along the in-line direction. If it happens that a combination of
parameters k and reflector dip changes the signature of @, then again, by a continuity
argument, this curvature would have to go through zero at some point, and that point
would be a cylindrical (parabolic) point. The simple stationary phase result is invalid
close to this point and we need an alternative method. The study of these possible
singularities is left for future research.



