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ABSTRACT

Optimization problems arise in every scientific and engineering field. It is of-
ten the case in practice that the function to be optimized (objective function) cannot
be specified in closed form in terms of elementary functions. but must be evaluated
pointwise via a computer program. For such black-box objective functions. an im-
portant issue is how to select appropriate optimization tools. Careful comparison of
optimization techniques requires a meaningful way of characterizing the complexity
of generic optimization problems.

An objective function can be thought of as a high-dimensional surface with “hills”
and “basins” (local extrema) of different sizes scattered in the domain. Based on a
catalog of diverse test functions. we consider three topographical factors to be import-
ant in influencing the performance of optimization algorithms. These factors are the
number of local extrema in the domain. the widths of the corresponding basins (hills)
and their relative depths (heights). In this thesis, I show how this topographic inform-
ation can be used to characterize the complexity of generic optimization problems,
independent of any particular search or optimization algorithm.

When the optimization problem is high-dimensional and the objective function
can only be sampled point-wise, the topographical information is not accessible analvt-
icallv. Estimations of the function topography, in such situations, can be obtained by
statistical analvsis of the results of many independent random local-descent searches.

This statistical estimation has two main sources of error: the sampling error and
the error due to the numerical implementation. After defining complezity, I show
that the distribution of the estimated complexity is approximately Gaussian. The
mean value of this distribution is the exact complexity, and the variance goes to zero
when the number of samples goes to infinity. A confidence-interval analyvsis is used
to bound the error due to the finite sampling. Furthermore, I show that the numerical
error of this complexity analvsis depends on the accuracy of the local-descent search
algorithms. the characteristics of the objective function, as well as the number of
samples used. This type of error is bounded under different numerical situations, and
the detailed implementation issues are discussed.

Numerical results will be presented for a variety of analvtical test functions.
Using the Griewank function, for example, we see that merely plotting hyvper-planes
of high-dimensional functions can be misleading. Furthermore. some functions become
easier to optimize in high dimensions. but such conclusions can be supported only by
a global analysis. On the other hand. the Rosenbrock function exhibits increasing
numerical complexity because of ill-conditioning and the resulting numerical error.

Finally. as an example of a realistic optimization problem, I devote a complete
chapter to the residual-statics estimation problem of explorational geophyvsics — a high-
dimensional. highly multimodal optimization problem. After observing the specific
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properties of this problem. I suggest two approaches for simplifving the objective
function: multi-resolution analysis (MRA) and use of envelope information. The
complexity analysis developed in this thesis is used for evaluating the performance of
these strategies. In particular, I show that the results of the complexity analysis can
be used to determine an optimal degree in simplifving objective functions.
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Complexity of optimization problems

Chapter 1

INTRODUCTION

1.1 A Mathematical Model for Optimization Problems

Many problems in science and engineering can be formulated in terms of the
maximization or minimization of a real-valued function of some number of parameters,
possibly subject to constraints. We refer to the function being optimized as the
objective function. The domain of a objective function is generally referred to as
model space M, in which each point m is a model'.

If the model space is continuous, the optimization problem is said to be continu-
ous. On the other hand if the model space consists of a finite number of points, the
optimization problem is said to be combinatorial.

For both continuous and combinatorial optimization problems, a metric p can be
defined to measure the distance between any two models in the model space. Such a
metric can be either the Euclidean distance between two vectors in a continuous model
space. or the number of models along the shortest path of connecting the two models
for discrete model spaces. Therefore, a model space is a metric space (Goldburg,
1976). Next, several useful concepts are defined.

Definition 1 (Neighborhood Set) Let M be the model space. A neighborhood set
of @ model, N{(m*, r) C M., is a set about the model m* so that

Nm* r)={me M| pm, m") <r}. (1.1)

Definition 2 (Local and Global Extrema) Let the objective function F be a map-
ping M C R into Y C R. A model m* € M is a local minimum of F with respect
to the neighborhood N(m*, r) if

F(m™) < F(m), Vmé& N(m". r). (1.2)

If equation (1.2) is satisfied for a neighborhood set N(m*, r) = M. then the model
m* is a global minimum of the function F.

Similarly. a local maximum and global maximum of an objective function F are
the local minimum and global minima of the function —F with respect to the corres-
ponding neighborhood set. An extremum can be either ¢ minimum or a mazimum.

' A bold lower-case Roman letter m is used to denote a model in the model space.
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In this thesis, I loosely refer to the model m* as an extremum if it is a local
extremum with respect to a neighborhood set N{(m*. r) for some r > 0. When the
objective function has a unique extremum, the function is unimodal. Functions with
more than one extremum are said to be multimodal. Depending on the problem. the
models sought in an optimization calculation may be either local or global extrema.
All extrema are either critical points, where the gradient of the function vanishes
(F'(m*) = 0), or boundary points. Therefore. many optimization algorithms are
procedures that look for critical points.

Without loss of generality, I assume in this thesis that all optimization prob-
lems are minimization problems unless stated otherwise. Furthermore to simplify
the analysis, I assume that the objective functions have finite numbers of isolated ez-
trema in the model space. By that, I mean if m € N(m*, r) and m # m", then
F(m") < F(m) in Definition 2.

1.1.1 A Generic Search Algorithm

Virtually all optimization algorithms are iterative searching procedures. I denote
the iteration index by time step ¢ = 0,1.2..... An initial population is chosen by some
means, Iflo“‘) = {m()k}k= R ¢

where K > 1 is the size of this initial population. Then, the set of models m,._.;
evolves from the set 1@, under the action of a transition operator T'(t).

I assume this procedure converges to a final set of models m,
m* = gllf?c T(t) m,. (1.4)

In practice certain stopping criteria, such as a maximum computing time Or an error
threshold. need to be imposed, in which case m* depends implicitly on these criteria.

In order to be able to treat a broad variety of situations, we now define an abstract
statement of a search algorithm, which has the following necessary elements: objective
function F, initial population my, transition operator T, and the stopping criterion

S.

Algorithm 1 General Search (GS) m" = GS(F. 1o, T, S)
Let F: M c RY =Y C R, Wy be an initial population with size K > 1, T(t) be a
transition operator. and S be a stopping criterion.

1. Iteratively apply the transition operator to generate a new population of models,
so that Iflt.;.*i = T(t) Iflt,'

2An over-vector 1 is used to denote a set of models in the model space.
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2. Repeat (1) until S is satisfied. The final set of models T* is the output of the
search.

Different optimization algorithms differ by their strategies of choosing the initial
population m, and the rules of transition T. The stopping criterion S in numerical
implementations is also an important factor for any optimization.

1.1.2 Basins of Attraction

There has been a rich mathematical theory on optimization algorithms for ob-
jective functions that are unimodal. These optimization algorithms developed under
this theory correspond to realizations of Algorithm 1 when the initial population size
K =1 and the transition operator is deterministic and independent of the time step
t. These transition operators. denoted by Tiy. involve taking the initial models
“downhill” as far as possible. and are referred to as local-descent searches (Fletcher,
1987: Dennis & Schnabel, 1987). These local-descent search methods can be used to
characterize local regions of objective functions.

Next, I introduce two of the most frequently used concepts in this thesis, the
basins of attraction of an objective function and their widths. The definitions are
given for the combinatorial case. but they can be naturally extended to the continuous
case.

Definition 3 (Basin of Attraction) Let the model space M have M models in
total, where M is finite. Let {1ty }i=1...n be the set of models associated with isol-
ated local minima. where 1 < n < M. Define subsets of models B, C M, [ € 1,n,
s0 that

B = {mzi tllglc Tfoca[mi =1m;, m,E¢E M} (13)

Then. B, is the lth basin of attraction of the objective function F in M. These basins
of attraction are mutually disjoint. That is,

BNB;=0 1] (1.6)

According to Definition 3, a basin of attraction is formed by all models that are
on the paths of local-descent searches leading to the same local minimum. Since the
local minima are assumed to be distinct for the problem studied in this thesis, the
model space is divided into several disjoint sets {B;},=:...». and these sets form the
complete model space, i.c.,

UBi=M. (1.7)
I=1

where n is the number of local minima. Then, the width of a basin of attraction can
be defined as follows.
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F1G. 1.1. Illustration of the directed-tree model used to represent the concept of
basins of attraction.

Definition 4 (Width of a Basin of Attraction) Let {B,};=1.... be the basins of
attraction as in Definition 3. Let the number of models in the set B, be |B;|. The
width of the lth basin of attraction is defined as

p=-r lellal (1.8)

Notice that {p}=:.... forms a probability distribution since /_; p; = 1.

Basins of attraction can be represented by directed-trees (Hu et al., 1994). Fig-
ure 1.1 illustrates such a model with one basin of attraction. The tree has a unique
root corresponding to the local minimum ;. The vertices on the tree are models that
belong to the basin of attraction. Each of these vertices has a unique path leading
to the root my. The leaf vertices are the models with highest function values within
the basin of attraction. It is easy to see that the number of vertices on the Ith tree is
proportional to the width of the corresponding basin of attraction. It is interesting to
note that the tree may have different paths connecting the vertices. if different local-
descent transition operators (T oca:) are used. However. the root. leaves. and all other
vertices of the basin of attraction B, are independent of local-descent algorithm used.
Therefore, in this thesis I neglect the differences caused by local-descent algorithms
and use the model of basins of attraction to represent objective functions. The numer-
ical results of local-descent searches are produced by a non-linear conjugate-gradient
algorithm (Deng et al., 1996a; Deng et al.. 1996b). It is also important to notice that
the graph-based representation is applicable to functions of any number of variables.

Suppose a local-descent search is performed with infinite precision and infinitely
long computing time, then this search converges to an exact local minimum: such a
search is referred as an ideal local search. According to Definition 3, the /th basin
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of attraction is the subset of models from which the ideal local searches converge to
the /th local minima. Imagine the objective function being a hyper-surface in an V-
dimensional model space and an infinitesimal ball is randomly placed on this surface.
Suppose there is no friction between the surface and the ball so that the ball rolls
downwards on this surface. After a long enough time, the ball will stop at the local
minimum my,, if it was originally placed at any point m; € B;. Figure 1.2 illustrates
such a “ball-rolling™ procedure using 12 balls on a one-dimensional function with three
basins of attraction. The balls are rolling downhill on the function surface at time #1.
Finally by ¢2. all balls have stopped at the corresponding local minima; the number
of these balls stopping at each of the local minima would be 3, 2, and 7, respectively.
corresponding to the widths of the basins of attraction. This figure illustrates that
if one ball is positioned randomly with uniform probability in this model space, the
probability of the ball stopping at the /th local minimum is the width of the Ith basin
of attraction. p;. In other words, rolling a randomly chosen ball downhill corresponds
to tossing a weighted n-sided die. where n corresponds to the number of local minima.
and the weight given to each side of the die corresponds to the width of that basin of
attraction.

Let A}. ! € [1,n] be the random variables representing the number of balls rolling
down to the [th local minimum when A balls are started at random positions in model
space. Then the probability that K; = k, for each [ € [1,n] is

K!

=P (1.9)

where Y~ k; = K. For each [ € [1.7n], the mean value of the random variable K| is
Ek]=Kp.

1.1.3 A Markov Model for Global Searches

Local-descent searches can be used to explore local features of objective functions.
For global searches. however. some kind of stochastic process is useful so that the
search can jump across the trees of basins of attraction. Broadly speaking, almost
all global methods are some kind of Monte Carlo search. For most of these Monte
Carlo processes, the current set of models, m,. depends only on that of the previous
generation, m,_;. Such Monte Carlo processes can be described by Markov chains.
When the transition operator T(#) is independent of the time step ¢, the searching
process forms a stationary Markov chain: otherwise the procedure would be a non-
stationary Markov chain.

For a combinatorial problem, let {m;, my, ..., my} =M and M = M)|. Then

if the search algorithm is associated with a Markov chain, the transition operator T(¢)

-
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F1G. 1.2. Illustration of the “ball-rolling” experiment for a one-dimensional function
with three basins of attraction. At the initial time step t0, 12 balls are positioned
uniformly across the model space. The balls are rolling downhill on the function
surface at time t1. Finally by #2. all balls have stopped at the three local minima.
The number of balls stopped at each local minimum is proportional to the width of
its associated basin of attraction.
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of Algorithm 1 becomes a stochastic matriz®. This M x M matrix has elements of
T;(t) = Pr(mjm;), (1.10)

which is the probability of making a transition from the ith to the jth model at time
step £. Each row sum of the transition matrix T is unity, that is Z]‘i T;;(t) = 1,and
all the non-zero elements of the ith row N (i) form the neighborhood of the ith model.
Most of the widely used search methods defined via Algorithm 1 can be described by
this Markov model.

A simple kind of Markov search would be to choose a model at each time step
with uniform probability on M, independent of the current model. This forms a
Markov chain in which the the neighborhood of each point is all of M. I refer to
this kind of search as Uniform Monte Carlo (UMC). All elements of the transition
matrix T have equal values, i.e., Tj; = % Vi, j € [1, M]. Therefore, the decision of
choosing the next set of models is independent of the previous generation. If there are
N parameters and each of them can take n possible values, the probability of finding
a particular model is proportional to n=" for each function evaluation.

While UMC does not learn anything from its history, the local-descent meth-
ods are slaves of their historv. Many global search strategies have been developed to
vield a compromise between the two extremes (two comprehensive surveys of global
optimization are Torn & Zilinskas (1989) and Scheoen (1991)). Almost all of these
global strategies incorporate some stochastic elements. especially in the construction
of transition operators. It is important for the success of a global search to make
the best use of information provided by the previous samples while avoiding being
trapped in basins of attraction. Among all these strategies, the most widely used
are Simulated Annealing (SA) (Kirkpatrick et al.. 1983). Genetic Algorithms (GA)
(Holland, 1975), and random hill-climbing (RHC). SA and GA searching strategies
use stochastic transition operators T that are biased to a certain degree towards good
samples from the previous generations. On the other hand, RHC-searches use determ-
inistic transition operators while the initial models are chosen randomly according to
a certain probability.

Basically, SA is a non-stationary Markov chain with a probability matrix as the
transition operator (Aarts & Korst, 1989: van Laarhoven & Aarts, 1987). The element
in the zth row and jth column represents the probability of transition from the ith to
the jth model (Morey, 1996; Moreyv et al., 1996):

0. if ¢ N(i):
Ty(t) = e if j € N(@) & F(m;) < F(my); (1.11)
N exp(£ (m")c('tf M), otherwise,

where ¢(t) is a temperature-like parameter that decreases with time ¢. and N(4) is

*A stochastic matrix are such that the summation of all elements in ecach row is unity.
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the neighborhood of the ith model. These two parameters are the control factors for
the convergence of SA. If the temperature ¢(t) — 0, then the process becomes a local
search. On the other hand. a UMC process corresponds to another extreme wherein
c(t) = ocand N(Z)] = M. The convergence theory of SA is based on the analysis
of this Markov process (Hajek. 1988).

A GA is an evolution process where the objective functions for a population of
models are evaluated simultaneously and new models are generated by applying some
random operations to the current population of models (Holland, 1973; Goldberg,
1989; Whitley, 1993). GAs can also be considered under the framework of the Markov
chain representation. but the transition matrix is relatively complicated. Davis and
Principe developed the Markov model for simple GAs, from which they have developed
the convergence theory (Davis, 1991; Davis & Principe, 1991).

RHC-searches, on the other hand, apply deterministic transition operations Tycq
to a randomly chosen population of initial models mg, where X' > 1. This method
is, in fact, a set of independent local-descent searches from randomly chosen initial
models. These searches are the simplest instances of the random multistart methods
(Scheoen, 1991; Hu et al.. 1993). In the framework of the generalized Markov chain,
the deterministic transition operator Tj,c. is a probability matrix of size M x M,
where each row has one non-zero element. Therefore,

T - {1, if j € N(i) & F(m;) > F(m,); (1.12)

0. otherwise,

which is a special case of equation (1.11).

Suppose we label the local minima in order of function values: F(xh;) < F(m.) <
... < F(m,) in the direct-tree graph representation. The first set B, corresponds to a
global minimum. As an example, Figure 1.3 shows this graph-based representation of
a function with two basins of attraction: one global minimum 1h, and one local min-
imum m,. For the situation depicted in Figure 1.3, the width of the basin of attraction
associated with the global minimum is smaller than that of the local minimum.

The transition matrix of the local-descent search of the objective function shown
in Figure 1.3 would be a 12 x 12 block matrix,

P, Z
Tlocal = ( Z;’ P, > B (113)

8
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Fi1G. 1.3. The directed-tree model for an objective function of 12 models with two
basins of attraction. The width of the basin of attraction associated with the global
minimum has a smaller width than that of the local minimum.

where

/1000000
10000 1000000
10000 1000000

P=|10000 Pb=[1000000 (1.14)

01000 0100000
00100 0010000

0010000

and Z is a matrix of zero elements with the size of 5 x 7. The columns with all zero
elements in equation (1.14) correspond to the leaf vertices on the directed-trees, and
the first columns correspond to the roots of each tree.

The initial population in an RHC is usually chosen uniformly at random, by
which I mean that each parameter is randomly chosen under a uniform probability
distribution within its range. The stopping criterion is that either the magnitude of
the gradients are reduced to small enough value € or that the maximum number of
1terations cmaz is reached. Such an RHC algorithm can be described in the context
of Algorithm 1 as follows.

Algorithm 2 Random Hill Climbing (m* = RHC(F, K. €. cmaz))

Let K be the size of the initial population. and let the stopping criterion S be that
either gradients of all samples are reduced to € or the number of iterations reaches
cmazx. Let Tipenr be the local-descent transition operator.

1. Choose K initial models o randomly with a uniform probaebility distribution:

9
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2. Apply Algorithm 1. mv* = GS(F, myo. Tiocar- S).

The final population contains K converged models. m*.

1.2 What Makes an Optimization Problem Hard

1.2.1 A Catalog of Two-Dimensional Objective Functions

Figure 1.4 illustrates some of the variety of objective functions that could be en-
countered in practical applications. For the visualization purpose. these two-dimensional
functions are maximization problems.

o Function A shows an objective function that can be easily optimized by using
some well-established local-descent search methods, such as Conjugate Gradi-
ent. Quasi-Newton, Downhill Simplex. etc. (Fletcher. 1987; Dennis & Schnabel,
1987). The convergence model is independent of the starting model of the op- q
timization.

¢ B suggests that the function has many local extrema, but they may not repres-
ent important features of the problem. The results of the same local-descent
algorithms could be any of the local extrema, depending on the starting models.
In explorational geophysics. such situations are mostly caused by noise or other -
non-essential factors. Instead of using full-scale Monte-Carlo global searches, if
we could somehow smooth the objective function, then the problem would be
similar to that for function A. !

e Function C represents types of problem that contain a small number of signific-
ant local extrema. It may be necessary to find all local/global extrema. Simply g
smoothing function C may cause the loss of important information. When the
number of local maxima is not large. a set of local-descent searches may be used
to explore some sub-divided regions of the function. f

¢ Function D represents a problem with fundamental ambiguities. The null space
of the problem is expressed as a flat region on the function surface. None of the
search algorithms can help us determine the optimal model. It may be important
that more information is needed for reducing the ambiguity of the problem.

e Function E suggests a problem containing a large number of significant local
extrema, almost all of which represent some essential information about the
problem. Some sophisticated Monte-Carlo searches. such as Simulated Anneal-
ing (SA) and Genetic Algorithm (GA). might be useful for such problems.

e Function F has an essentially flat landscape except for an isolated sharp max-
imum. For such cases. the global structure provides no information for searches:
none of the “smart” searching strategies can be expected to work better than a
pure random search or an exhaustive evaluation.

10 L
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F1G. 1.4. The objective functions of two-dimensional maximization problems
representing the diverse nature of such problems.

Clearly, it is important to understand the characterizations of various kinds of prob-
lems, so that appropriate strategies for optimization can be developed.

1.2.2 Why Develop a Measure of Complexity?

For treating a wide varieties of objective functions as shown in Figure 1.4. many
global optimization algorithms have been developed. A great deal of research has
been done on the comparison of various global optimization methods. Unfortunately,
these comparisons are mostly either empirical or conclusions are drawn from the study
of a small class of special problems. While some proofs of asymptotic convergence
of global optimization strategies are available (Hajek, 1988; Davis, 1991), it is not
clear how these results can be applicable to a wide variety of problems within a finite
computing time.

Wolpert and Meagready (1993) have shown that all global optimization algorithms
have exactly the same performance when averaged over all possible objective functions.
Known as the No Free Lunch (NFL) theorem, this result implies that there does not
exist a universal optimization strategy independent of the nature of the problem. In
their recent work, Culberson (1996) and Radcliffe-Surry (1996) also show that per-
formance of any global optimization strategy depends greatly on the specialty of the
problem. Therefore, the blind faith of developing a “once-for-all superior” global
algorithm cannot be justified.

For treating a wide variety of optimization problems of different nature, it is
necessary to have a large collection of optimization algorithms. The software library

11
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COOOL was developed for such purpose (Deng et al., 1996a: Deng et al.. 1996b).
Appendix A gives a description of the library. as well as its design within an object-
oriented programming paradigm.

Meagready and Wolpert (1995-1996) found that while no optimization problem is
intrinsically harder than others when averaged over all possible search algorithms. for
any given optimization problem there exist optimal search strategies for solving the
particular problem. Unfortunately, there is no generally agreed strategy for choosing
appropriate algorithms. In order to be able to usefully compare different optimization
techniques, it is necessary that we have a meaningful way of characterizing the
problems. Such a characterization is referred to a measure of complezity of objective
function or hardness of optimization problem.

1.3 Overview of the Thesis

As a first step in studying the hardness of generic optimization problems. most
of this thesis is devoted to developing a practical tool for characterizing objective
functions, especially when the dimensionality is high.

From the experience with a catalog of test problems, I find that the performance
of any optimization procedure is influenced mostly by the topographical surface of the
objective function. Therefore, the nature of an optimization problem can be repres-
ented by the complexity of the topography of the objective function. In the following
chapter, I propose an entropy-based criterion for characterizing the topographv of
high-dimensional functions. The proposed measure takes into account important in-
formation on topographical features. such as the number of local minima, the widths
of basins of attraction, and the depths of these basins of attraction. Such a measure
aims to represent the important global feature of objective functions. independent of
any search algorithm. As a practical matter, I then discuss the statistical estimation
of this entropy measure by repeatedly applying random local-descent searches in the
model space. Finally, I show some numerical examples for analytic test functions.

In Chapter 3, I discuss the error caused by numerical and sampling limitations.
Both finite sampling and numerical implementation contribute to the error of final
result of this complexity analysis. First, statistical issues are investigated. Confidence-
interval analysis is used to bound the error caused by finite sampling. Second. the
estimated complexity values could be dependent on the local-descent algorithm and
the computation time allowed. For the purpose of the complexity analysis. however, it
is not necessary that local-descent searches converge all models to exact local minima.
The error caused by numerical inaccuracy will be important only when the error of
imperfect searches exceeds the size of the smallest basins of attraction. In addition,
while numerical inaccuracy can cause discrepancies between the estimated and exact
complexity, I show that this search-dependent error can sometimes help us to evaluate
the ill-posedness of the problem.

As an example of a hard optimization problem in explorational geophyvsics, Chapter
4 is devoted to the study of the seismic residual-statics-estimation problem. By formu-
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lating the high-dimensional, stacking-power function as an objective function. the task
becomes a global optimization problem. This problem is difficult because the number
of parameters is large, and the oscillatory nature of seismic signals causes the objective
function to be highly multimodal. After studying special properties of this problem, I
propose two approaches for this optimization problem. First. I apply a shift-invariant
multi-resolution analysis (MRA) to simplify the objective function. I use the com-
plexity analysis to determine the optimal level of simplification. The second approach
is to use an envelope of the multimodal objective function. Both approaches greatly
reduce the number of local extrema. The complexity analyvsis developed in Chapter 2
is used to support this claim.

Finally in Chapter 5, I summarize the thesis and give some suggestions for possible
further research following this work.

Appendix A is a document on the CWP Object-Oriented Optimization Library
(COOOL). the software primarily used for this thesis work. I describe the object-
oriented design strategyv of the library and optimization algorithms included in the
librarv so far. In Appendix B, I give some background knowledge of the MRA that I
have used in Chapter 4.

In Appendix C. I discuss some practical issues of residual-statics estimation in
explorational geophysics. In particular, the objective function is formulated under the
widely used surface-consistent assumption. In addition, I give extensive discussions
on two conventional residual-statics approaches, and investigated their advantage and
disadvantages in accordance with the physical insights provided in Chapter 4. Fi-
nally, I present the residual-statics correction of two field data based on the envelope
approach. as described in Chapter 4.

13
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Chapter 2

ENTROPY-BASED COMPLEXITY ANALYSIS

2.1 Measures of Performance for Optimization Problems

For local optimization, the performance is generally measured by the rate of
convergence' (Fletcher, 1987). Global optimization, however, does not have a generally
agreed on performance measure. Here, I list several recent-developed criteria for
comparing global optimization. Wolpert and Magready (1995) suggested analyzing the
distribution of function values at the converged models, the algorithms that converge
to models with low function-values are considered good. With this criterion, the
authors proved the No Free Lunch (NFL) theorem (see page 11). In the framework of
Markov chains. Shonkwiler and Van Vleck (1994) propose using the expected hitting
time (EHT)? for measuring the performance of a global algorithm. The EHT is used
to study the speedup of the convergence rate for independent identical processors (IIP)
(Shonkwiler & Van Vleck. 1994: Hu et al., 1993), and to develop a methodology for
dvnamical adjustment of searching parameters for SA searches (Morey, 1996). For
studying the performance of GAs. Jones (1994) uses a directed-graph to represent
what he calls “landscape” of GA procedures.

None of the above measures, however, is generic enough to be useful in designing
optimal search strategies. To usefullv compare different global-search methods, a
meaningful way of characterizing objective functions needs to be developed. In this
chapter. I go bevond the efforts of measuring performance of algorithms. Instead, I
develop a criterion for representing the complexity of the problem itself, independent of
searching algorithms. From the discussions in Section 1.2 and inspection of Figure 1.4,
we sense that the complexity of an optimization problem can be represented by some
topographic features of the objective function. Similar issues are also studied by Torn
and Zilinska (1989) and Kaufmann (1993). Kaufmann summarized the situation for
SA and GA by the following (Kaufmann, 1993):

Annealing works well only in landscapes in which deep energy wells also
drain wide basins. It does not work well on either a random landscape
or a “golf course” potential. which is flat everywhere except for a unique
“hole”. In the latter case. the landscape offers no clue to guide the search.

Recombination (in GAs) is useless on uncorrelated landscapes but useful
under two conditions (1) when the high peaks are near one another and

I'The rate of convergence measures how rapidly the trial models converge to the local optima.
2EHT is defined as the expected number of steps of reaching a particular goal-state (extremum).
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hence carry mutual information about their joint locations in genotvpe
space and (2) when parts of the evolving svstem are quasi-independent of
one another and hence can be interchanged with modest chances that the
recombined system had the advantage of both parents.

On the other hand, since RHC uses local descent transition operators Tipey. the
performance is even more strongly influenced by the topography of the objective
function. I consider the most influential topographic features for optimization to be the
following three: the number of local extrema, the widths of the corresponding basins of
attraction, and the depths of these basins. These topographic features of an objective
function are generally referred to as the landscape of this function. Characterizing
this landscape is an important step toward understanding the complexity issues in
optimization.

For many practical applications, objective functions cannot be expressed in closed
forms in terms of elementary functions, but can only be evaluated point-wise by
computer programs. Little is known about such objective functions because of the
lack of the global knowledge. Furthermore, while it is still possible to examine all
possible models in the model space when the dimension is low (N < 2). this situation
is especially serious for high-dimensional problems.

One natural characterization of the landscape is the spatial correlation (Wein-
berger, 1990: Stadler, 1992). Some prototyped combinatorial optimization problems
have been investigated through study of the correlation in landscapes: the Traveling
Salesman Problem (TSP) (Stadler & Schnabl, 1992), the graph-bipartitioning prob-
lem (Stadler & Happel, 1992). and the N A model problems, a spin-glass-like problem
in biology (Kauffman & Weinberger, 1989). Using the spatial correlation of an object-
ive function as a criterion, these authors study the effectiveness of particular global
algorithms as a function of the correlation length.

On the other hand. local minima and their associated basins of attraction can
be used to directly characterize surface topography. Berry and Breitengraser-Kunz
(1995) studied topography and dynamics of multidimensional inter-atomic potential
surfaces by analyzing a population of local minima. each of which has two saddle points
connected to it. By connecting these samples in a certain order, the high-dimensional
function surface is represented by a series of lines. In this way, the important features
of the landscape are represented by the distribution of the primary, secondary or
tertiary basins of attraction (Berry & Breitengraser-Kunz, 1995).

Alternatively, complexity of high-dimensional Hamiltonians has also been studied
by means of entropy (Falcioni et al., 1995). For an N-dimensional Hamiltonian, some
local extrema are found by some means®. The width of each basin of attraction P; is

3In (Falcioni et al., 1995), the authors did not indicate the method used of finding the local
extrema.

16



F ™

f

Complexity of optimization problems

then estimated by the product,
I :\' N
pix AY(N) = ] 6. (2.1)
k=1

Here, &} is the largest distance along the kth coordinate for the models belonging to
the ith basin of attraction. Falcioni et al. (1995) characterize the complexity of the
N-dimensional surface by the following entropy expression,

S(N) =~ Zp,; In p;. (2.

[AV]
nNo
~—

Using S(V) to characterize a high-dimensional surface is attractive in the sense
that it incorporates the concept of information (entropy) in the characterization.
However, it lacks an important factor that influences the hardness of optimization
- the depths of the basins of attraction. Recall that Figure 1.4 in Chapter 1, the
function B and E seem to have the same number of local extrema and similar widths.
These two objective functions, however, have veryv different topographical features,
and different strategies are required for maximizing these two functions. In addition,
the estimation of the width of basins of attraction p; by equation (2.1) assumes that
the geometric shape of all basins of attraction are .N-dimensional hyper-cubes, which
is not true in general.

2.2 Entropy-Based Measure of Complexity

As mentioned above, the hardness of an optimization problem is closely related to
the topographical complexity of the objective function. Such topographic features are
characterized primarily in terms of the three basic factors mentioned in the previous
section. Independent of the work reported in (Falcioni et al., 1993). I have developed
a similar entropv-based complexity measure. [ estimate the widths of basins of attrac-
tion p; by a statistical analysis of the results of RHC-searches instead of calculating
the volumes of hyper-cubes as in equation (2.1). Furthermore, the contribution of each
basin of attraction to the complexity is represented by a related probability g; that
takes into account both the widths and depths of basins of attraction. rather than the
widths p; solely.

Definition 5 (Entropy-Based Complexity) Let F : M C RY — Y C R be
bounded and have n isolated local minima, where 1 < n < oc. Let {;}iz1..n
be these distinct local minima, {y; = F(1;)}i=1..n be their corresponding function
values, and p; be the width of the ith basin of attraction. as in Definition 3.

Define {¢;}i=1...n to be a probability distribution

g; X {p | _mi—um "o 0 (23)

PURLA-SLLLLN

p;ie” = . otherwise,
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where i € (1.1, Ym = MiNe . y; 15 the value at the global minimum. and

1 n
o= " Z(f‘/j = Ym)-

=i

The entropy-based complezity is defined to be.

Ce = —Zqilnq.; (24)

- (=(2))

where the angle brackets denote the expected value with respect to the probability dis-
tribution {g;}i=1...n-

As an entropy quantity, C, measures the “disorder” of the function surface. and
it is always true that

0 < C., £ Inn,

where n is the number of local minima. The probability ¢; represents the significance
of the ith local minimum. A high C, value indicates a relatively large number of
significant local minima. If all minima of a function are equivalent. i.e. n basins
of attraction have the same widths and depths (¢; = ;l‘—, Vi € [1,n]), then C, is
Inn, and C, increases with the number of minima n. On the other hand, a low C.
implies that the function does not have many local minima or the local minima are not
significant. For the latter case, all ¢; corresponding to non-global minima are small
(gi < 1). Therefore, a significant local minimum corresponds to either a wide (i.e.,
large p;) or a deep (i.e. small (y; — ym)/0) basin of attraction whose corresponding g;
is comparable to max(g;). A unimodal function has the complexity value C, = 0.

An alternative complexity could also be defined as a normalized quantity in
Definition 5 so that 0 < C. < 1. However since both {p;} and {¢;} are normal-
ized probability distributions. for simplicity. I use the classic definition of entropy by
Shannon (1948). In addition, complexity C, encapsulates topographica) information
about the objective function into one value. Although C. represents the function to-
pography in a meaningful way, it is important to keep in mind that the topography
about each of the basins of attraction can be analyvzed individually with the available
information of p; and §;, Vi € [1,n. This detailed information may provide addition
understanding about the objective function.

It is important to notice that the complexity measure C, in Definition 5 does not
explicitly depend on the dimensionality .N. Rather. it depends on the number of local
minima (n), the widths of the basins of attraction (p;), as well as the relative values of
these local minima (exp(%=¥=)). In addition, the complexity measure in Definition 5
has the following scale- and shift-invariant properties.
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Theorem 1 Let C.(F) and C.(G) be the complezity measures of objective functions
F and G in the model spaces Mp and Mg, respectively. Let a.b € R be arbitrary
constants. then we have the following,

(¢) If F(m) = a + bG(m) and their model spaces are the same, Mp = Mg.
then

Ce(F) = Ce(G); (2.3)

(b) If F(m) = G(a + bm). and the model spaces are related in the same way.
Mp=a + bMg, then
C.(F)=C.(G). (2.6)

Theorem 1 shows that a linear transformation of either the model space or the
objective function would not alter the complexity of the problem. These results can
be easily verified from Definition 5. For the directed-tree representation (see page 4),
functions that differ by a linear transformation of either domain or range have identical
representations. Clearly, the invariant properties of Theorem 1 are desirable for the
complexity criterion.

Figure 2.1 shows two one-dimensional functions,

filz) = 05— cos(3x)

folz) = 05— cos(3z)] e 07, (2.7)

where the model space M = [—5,5]. Both functions have the same number of local
minima and the same widths of the basins of attraction. Function f;(x) has identical
basins of attraction, while fy(z) has a dominant global minimum at 2 = 0 and de-
creasingly significant local minima away from the center. Suppose f;(z) and fo(z)
are two misfit functions and = = 0 is the goal value for both problems, it is easy to see
that achieving this goal for f;(z) is more difficult than that for fo(z). The complexity
measure of Definition 3 gives a higher C. value to fi(z) (C. = 2.2) than to fo(z)

(C. = 1.3).

2.3 Statistical Complexity Analysis

In most practical problems, the objective function can be evaluated only point-
wise. Even for many analyvtical functions, the location of all stationary points cannot
be computed easily when the dimensionality is high. Under such circumstances, some
degree of global sampling is essential to estimate the information we need for the
complexity analysis. As discussed earlier. RHC-searches described in Algorithm 2
can explore various regions of the model space and take initial samples downhill to
the bottoms of basins of attraction. Therefore, a statistical analvsis of results of
RHC-searches may be used to estimate the topographic quantities.
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FiG. 2.1. Two one-dimensional functions with the same number and widths of basins
of attraction. The function on the left has complexity of C. = 2.2, while the function
on the right a complexity of C. = 1.5.

If the local-descent search used in the RHC is ideal (see page 4), the number of
models converging to each local minimum %; from K randomly chosen initial models
has a multinomial probability distribution (see page 3). If these A initial models are
chosen uniformly, the multinomial distribution of equation (1.9) is the joint probability
of these random variables. For such multinomial distributions, the mean value for each
random variable is proportiondl to the width of the corresponding basin of attraction,
i.e. Ek; = Kp;. Vi € 1.n. Therefore. the clustering of the converged models
that result from an RHC can be used to estimate the topographical features needed
in Definition 5: the number of distinct converged models estimates the number of
local minima (n), and the portion of models converging to the ith local minimum
(k;/R") estimates the width of the ith basin of attraction (p;). Using the “ball-rolling”
experiment shown in Figure 1.2, we randomly place K friction-free, infinitesimal balls
with uniform probability onto the function surface. Then. we analyze the distribution
of the balls after all of them have completely stopped (in principle. after infinitely long
time). Therefore, the algorithm for estimating the entropy-based complexity measure
1s described as follows.

Algorithm 3 Estimating Entropy-Based Complexity

Let F: M C RY =5 Y C R be bounded and have a finite number of isolated local
minima. The entropy-based complezity of this objective function C.(F) is estimated
by the following steps:

(a) Uniform random hill-climbing (RHC):
Choose K initial models randomly with uniform probability in the model

space, perform an RHC algorithm as in Algorithm 2. m* = RHC(F, K. ¢, cmazx)*

(bj Clustering and evaluating:
Suppose among the resulting models my of 1.:e RHC, there are . distinct

% F is the objective function, A is the number of models in the initial population. ¢ is the tolerance
on gradients. and e¢rnaxr is the maximum number of iterations allowed in each local-descent search.
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ones {M}i—1 . each of which occurs with frequency of k;. i € [1,7), so
that K = Y[, k;. Fuvaluate values of the objective function at these distinct
models, {y; = F(11;)}iz1 -

(¢) Estimating the complezity:
Let g; be a probability distribution defined as

’.. .
R =, if 0=0;
g X { l{.\' _Mimum . (28)
%€ otherwise,
in which y, = min{y;} and o = % §‘=1 [Yj — Ym,. Then. the estimated
complezity C. is
Ce = =) ¢:n(g)

- (n(2) -

The quantity C. obtained from Algorithm 3 is a sample estimate of C, of Defin-
ition 5. Since C, characterizes topographical features of the objective function, it is
independent of numerical computation and any searching techniques. C.,. however,
may be influenced by many practical issues. The discrepancy between C, and C, has
two causes: shortcomings in both the statistical sampling and the numerical imple-
mentation.

First, accuracy of the statistical estimation is limited by the finite samples A’
used in the RHC. Some detailed confidence-interval analysis will be given in the next
chapter. On the other hand, ideal local searches are not possible in reality due to nu-
merical factors. If, for example. the curvature of the function is nearly zero, which is
equivalent to an ill-conditioned Hessian matrix, gradient-based local descent searches
may not be able to converge to the exact local minima within a reasonable amount of
time. The estimated value of complexity C, in such a situation may be higher than
the true complexity C,. Hence. a high estimated complexity value C, maybe caused
by either a large number of local minima or the flatness of the function surface. In
practice, however, it is often difficult to distinguish the results of such ill-conditioning
from multi-modality. Therefore, taking such numerical issues into account can rep-
resent an important aspect in characterizing the difficulty of optimization. Detailed
discussions on these numerical issues will be given in the following chapter.

2.4 Numerical Examples of Complexity Analysis

In this section. I show examples of applying the complexity analvsis to some
analytical functions. First. some two-dimensional functions are examined. For 2-
D functions we can confirm the statistical analvsis graphicallv. On the other hand,
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when the number of dimension is high. this is not possible. The statistical complexity
analysis is essential for understanding the behavior of such functions. As an illustration
of these ideas. I also study the behavior of the Griewank function (Griewank, 1981)
as the dimensionality increases.

2.4.1 Complexity of a Family of Two-Dimensional Functions

Let us consider a family of two-dimensional functions,
F(mg.my) = a(mi +m3) — cos(f 7 mg) — cos(f 7 m;), (2.10)

where a. f € R. This function is multimodal with quadratic long-wavelength com-
ponents. The oscillation causes local minima whose number varies with the frequency
parameter f. The quadratic trend, on the other hand. is determined by the curvature
factor a. The oscillatory trend competes with the quadratic trend when the constants
a and f varv. By appropriate choice of f and a, we can generate functions of widely
varving complexity.

For the RHC algorithm used in this analysis, I choose the initial population
to be K = 300. The stopping criterion is that either the magnitude of gradient
is reduced to € = 1073 or the number of non-linear Conjugate Gradient iterations
reaches ¢mazx = 200.

Figures 2.2(a) and (b) show the function surface when a = 0.1 and f =1, 10
respectively: both functions have the same quadratic term, but have different number
of local minima in the same domain. Figures 2.2(c) and (d) show the converged models
using the RHC-search when either of the stopping criteria are met. The converged
models are more clustered at bottoms of basins on the low-frequency function surface
than on the high-frequency one. and the corresponding complexities C, are 2.14 and
3.93. respectively. Figure 2.3 shows the estimated complexity C. as a function of
spatial frequency f when the curvature a = 0.1 is fixed. We see that C. increases with
increasing oscillations in the domain.

Fixing the spatial frequency f. the spatial curvature a controls the significance of
these same number of local minima. Figure 2.4(a) and (b) show the function surfaces
of equation (2.10) when f = 10 and a = 1, 10 respectively: both functions have the
same number of local minima as does in Figure 2.2(b). However. since the quadratic
trend dominates the global feature in Figure 2.2(b), the oscillatory feature becomes less
important, the local minima are not as significant as when a is smaller. This feature
is reflected in the result of the RHC as shown in Figures 2.4(c) and (d). Compared
with Figure 2.2(d). the converged models are more clustered with the increase of
spatial curvature despite the fact that all three functions have the same number of
local minima in the model space. The estimated complexity C. of these two functions
is 3.17 and 1.02, respectively. Figure 2.5 shows the estimated complexity values of
the function in equation (2.10) for an increasing spatial curvature a when the spatial
frequency is fixed at f = 10.
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F16. 2.2. Random hill-climbing with population of X = 500. (a) and (b) show the

function surface defined in equation (2.10) when a = 0.1 and f =1, 10 respectively.
(¢) and (d) show the convergence of 500 samples in the 2-D model space for functions
(a) and (b). In the first case C, = 2.14 and second case C, = 3.93.
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FI1G. 2.3. Plot of C, as a function of the spatial frequency f for the function defined

in equation (2.10) when a = 0.1.
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FIG. 2.4. Random hill-climbing with population of A = 500. (a) and (b) show the
function surface defined in equation (2.10) when f = 10 and ¢ = 1, 10 respectively.
Both functions have the same number of local minima, though those in (b) are too
small to be noticed. (c) and (d) show the convergence of 500 initial models in the
2-D model space for functions (a) and (b). In the first case. C, = 3.17. in the second
C, =1.02.
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F1G. 2.5. Plot of C, as function of the spatial curvature a for the function in
equation (2.10) when f = 10.
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F1G. 2.6. Diagonal slices of N-dimensional Griewank functions.

2.4.2 N-Dimensional Griewank Functions

The Griewank function is a commonly used test function in optimization (Griewank.
1981):

N g
m cos | — 1| . 211
9 Z 2000 I__I < z) ' (2.11)

where the model space is an N-dimensional hypercube with —a < m; < a. Vie 1, N
The cosine term in equation (2.11) produces many local minima; both the number
and significance of these local minima vary with V' and a. However. there is a unique
global minimum at the origin of any dimension. It was noted by Térn and Zilinskas
(1989) that there are some 500 local minima within the range of —100 < m; < 100
when the dimension 'V = 2, while the number of local minima increases to up to some
thousand if N = 10 and a = 600.

On the other hand. when studying the significance of these local minima, Whitley
et al. (1995¢; 1995a) pointed out

. the summation term (of g(m)) induces a parabolic shape while the
cosine function in the product term creates “waves” over the parabolic sur-
face. Thus, as the dimensionality of the search space (of g(m)) is increased
the contribution of the product term involving the cosine becomes smaller
and the local optima become smaller. The function becomes simpler and
smoother in numeric space. and thus easier to solve, as the dimensionality
of the search space is increased ...

Both intuitive speculations are reasonable at first sight. Furthermore, Figure 2.6
shows a one-dimensional slice of the Griewank function along the diagonal of the
hypercube for dimensions 1. 3. 5 and 9. where values of all components of the models
are equal. It seems that this partial information in the high-dimensional model space
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FI1G. 2.7. Slices of N-dimensional Griewank functions. All variables but one are
fixed at 0.

o

Fic. 2.8. Slices of N-dimensional Griewank functions. All variables but one are
fixed at random between {—2.2].

confirms the previous conclusion that Griewank function becomes simpler when the
dimensionality increases.

However. such pictures may be misleading since they tell us only about low-
dimensional projections of the function. Figure 2.7 shows slices of the same functions
when all but one variables are fixed to be 0. The increasing dimensionality does not
change the oscillation around the global minimum. In addition. Figure 2.8 shows slices
of this function when all but one variables are fixed and randomly chosen between
—2.2]. These different slices seemingly give us different pictures about the global
behavior of the Griewank function when the dimension increases. Therefore. studying
the overall behavior of high-dimensional functions could be tricky. As far as I know,
there has not been a systematic study on the number of minima in Griewank as a
function of the dimensionality and their significance for optimization.
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F1G. 2.9. Complexity C, as a function of dimension N for the Griewank function
with populations of 500 and 1000.

The complexity analysis developed in this thesis provides a means for study of
the behavior of the Griewank function with increasing dimensionality. Figure 2.9
shows the estimated complexity values C, as a function of the dimensionality. In the
numerical computation, the initial populations are chosen to be K = 500 and 1000 in
two independent experiments, and the model spaces are a :V-dimensional hyper-cube
where —10 < z; <10 for ¢ = 1...., N. Both curves in Figure 2.9 give us consistent
results that the complexity of Griewank function increases with number of dimensions
till around nine dimensions, then it decreases as the number of dimension continuous
to increase.

Given such consistency in results. I gain confidence in use of the entropyv-based
complexity as a criterion for understanding the dimensional-dependence of complexity
of certain functions. This measure appears to be more useful than is study of hyper-
planes. In the next chapter, I present a mathematical analysis of implementation issues
with this complexity measure, as well as of errors caused by both the finite sampling
and the finite arithmetic.
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Chapter 3

IMPLEMENTATION ISSUES IN THE COMPLEXITY ANALYSIS

Implementation of the complexity analysis proposed in Algorithm 3 involves many
practical issues. First. the statistical elements in Algorithm 3 are likely to introduce
errors due to finite sampling. I calculate the confidence intervals for both the widths
of the basins of attraction (p;) and the estimated complexity (C.). These confidence
intervals are functions of the number of samples (A’). but do not explicitly depend on
the number of dimensions (V).

In addition. the local-descent searches have finite precision., and only a finite
number of iterations are allowed in reality. Therefore. the results also depend more
or less on implementation issues. especially on the accuracy of local-descent searches
in the RHC. In the final part of this chapter, I present an analysis of implementation
issues and the errors. In particular, I show that errors associated with the flatness of
the landscape may cause the estimated value of C, to differ significantly from its exact
value. I believe that this difference represents an important aspect of what makes an

optimization problem hard.

3.1 How Many Samples Are Necessary?

The following analyses are based on the assumption that the RHC used in the
complexity estimation is ideal. As defined in Chapter 1, an ideal RHC is a special
case of Algorithm 2 where an infinitely large emaz is allowed and e is infinitely small
(see page 4). For such an ideal RHC. all A" models converge exactly to one of the
local minima at the end of the procedure. The number of converged models at each
local minimum (k;) has a multinomial probability. as in equation (1.9). The marginal
distribution for each k; has a binomial distribution,

K!

b(ki: K.p;) = mpzk (1—p)" 5, (3.1)

Vi € [1,n). From equation (3.1). the following results can be easily verified.

Lemma 1 Let the objective function have n isolated local minima, wherel < n < oc.
Let {p;}iz1...n be the widths of the basins of attraction. Perform an ideal RHC with K
randomly sampled models with uniform probability. Let k; be the random variable rep-
resenting the number of models converging to the ith local minimum. The probability
of the ith local minimum being found (k; > 1) is the following,

Prik;>1)=1-(1-p)". (3.2)
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(a) Equation (3.2) is a monotonically increasing function of p; and K, where
0<p £1.

(b) If pm = min{p;}, then for a fized K
Prikm>1) < Pr(k >1).

Vie 1,n].

Lemma 1 implies that the basin of attraction with the smallest width is the most
difficult to find. To reliably estimate the complexity, it is important to use a large
enough number of samples K so that the minimum basin attraction can be found
with a reasonably large probability. Any random variable with binomial distribution.
b(z: K.8). can be approximated by a normal distribution when the number of trials
K is large. The general rule of thumb for such an approximation is (Freund. 1992),

K> max(-;-, - > 2)- (3.3)

If K satisfies the equality of equation (3.3). the probability of having at least one
model converging to the basin of attraction of width @ is

_f1-1-8)5e, if 0<6<0.3

P6) = {1 —(1-8/0-0 if 05<6<1. (3-4)

Figure 3.1 shows such a probability P(f) as a function of §. The “kink” at § = 0.5
represents a discontinuity of the first derivative of P(#). Nonetheless, equation (3.4) is
a monotonically increasing function with asymptote of probability 1. Therefore if the
inequality in equation (3.3) is satisfied, the probability of finding the basin of attraction
of width 6 is larger than 99% for any # > 0. The following lemma summarizes the
above arguments.

Lemma 2 Let an objective function have n isolated local minima, and {p;}i=1.. . be
the widths of the basins of attraction. Let p, = min{p;}. In order to find all the
basins of attraction with probability of higher than 99%. the number of initial samples
K needs to satisfy ;
D
K> —. 3.5
o (3:3)

To get some ideas of the magnitudes of the population size, here is an example.
Example 1 Suppose an objective function has p,, = 0.01, then the initial population
size A needs to be at least as K > 500. In general, for an objective function with

Pm = 107", then A" > 5 x 10™.
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Probability
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F1G. 3.1. The probability of having at least one model converge to a local minimum
as a function of its width, when K satisfies the condition for approximating a binomial
distribution by a normal distribution as in equation (3.3).

3.1.1 Curse of Dimensionality?

It is important to note that none of the arguments so far have directly involved
the dimensionality of the objective function N. Rather. the number of samples needed
1s inversely proportional to the minimum width of the basins of attraction py,.

The minimum width of the basins of attraction may or mayv not related to the
dimensionality of the problem. For many problems, the number of local minima in-
creases substantially when the dimension increases. In such cases, p,, decreases as the
dimension increases. For some other problems. however, the number of local minima
does not change with the dimensionality. Then. p,, is independent of N. Or better
vet, the number of significant basins of attraction decreases with increasing dimen-
sionality, as it does in the Griewank function equation (2.11) studied in Chapter 2.
Therefore. it is not necessarily true that the number of samples needed to explore the
model space increases exponentially with the number of dimensions, as it may often
be thought. Although the dimensionality could be important for some problems, it is
not the direct reason that an optimization problem is hard. Térn and Zilinska (1989)
give a similar analvsis on this issue from a different perspective.

This result is important for studying the complexity of optimization problems,
since it makes it possible to study global features of some high-dimensional objective
functions with a finite-sampling of the model space. From this perspective. rather
than speaking of the curse of dimensionality, it may be more appropriate to speak of
the curse of small basins of attraction.

3.2 Statistical Analysis on Complexity Estimation

Next I derive confidence intervals for the estimation of the basins of attraction
and the complexity.
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3.3 Clustering in Model Space

In reality, however, there are no friction-free infinitesimal balls which can roll
down to the exact bottoms of the function surface. Similarly. we do not have ideal
RHCs and so the local-descent searches may converge to models that are not exactly
local minima. Therefore. a process of clustering is needed to classify the converged
models to the basins of attraction in the implementation of Algorithm 3(b). The
strategy of such a process is related to the objective function itself, as well as the
numerical accuracy in the RHC. In this section, I discuss the clustering strategy and
the errors in the complexity estimation due to the clustering.

3.3.1 Criteria for Clustering

For the purpose of the complexity analysis developed in the previous chapter,
the critical quantities needed are (1) the number of samples converging to each basin
of attraction. and (2) the function values at the local minima. Hence. the estimated
complexity C, in Algorithm 3 is not only influenced by the limited sampling K, but
also by the numerical accuracy of the RHC used in the process.

Assume that there are no large jumps in function values for models close to
each other. For continuous optimization problems, this assumption is equivalent to
assuming a continuous objective function. Then, C, would not be heavily influenced
by the error of f(rm) as long the model  is not far from a local minimum. For
the following discussion, in addition to the assumption of no statistical error in the
complexity analvsis. I ignore the influence of the inaccurate function values f(rh) at
local minima. For the complexity analysis of Algorithm 3. it is important that the
models belonging to the same basin of attraction are identified correctly.

Clustering analysis techniques are used in many fields for dividing a finite set of
objects or points into subsets so that the objects in a subset are more similar to one
another according to some measure than to those objects outside the subset (Zupan.
1982). When these objects are models in optimization problems. the clustering ideas
can be used for benefiting global searches. Many such algorithms have been developed
in attempts to solve global optimization problems: Térn and Zilinska (1989) devoted
a complete chapter for summarizing such algorithms. Although differing in detail. the
same basic idea applies to almost all of those algorithms in that repeated local-descent
searches are used to explore the model space globally, then these models are grouped
together around the local minima according to some dissimilarity measure.

In this thesis, I use a straight forward strategy for the step of clustering, wherein
the model space is divided into a certain number of hyper cubes. each of which is
referred to as a bin. If each axis of the model space is divided into b sections, the
N-dimensional model space becomes an N-dimensional mesh with 4% hyper-cubic
bins. Then. the final models from RHC-searches can be clustered to different basins
of attraction according to the bins into which they fall. The strategv for choosing the
bin-size depends on our knowledge of the objective function, the number of samples,
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bins too large: a”N > pm

F1G. 3.2. Dlustration of the discretization in a one-dimensional model space, when
the local searches are relatively accurate and the number of samples is sufficiently
large. Choosing a bin-size of larger than the minimum width of basins of attraction
introduces error in estimating basins of attraction.

and our confidence in the accuracy of the RHC performed in Algorithms 3(a).

The combined actions of local-descent search operator (Tjoee ). finite number of
iterations (¢mazx), and non-zero error tolerance (¢) in the RHC prevent the models
from converging to the exact local minima. Resulting errors may well cause errors
in the complexity estimation. Since local-descent searches are well understood and
the results are easyv to control and observe, it is reasonable to assume an estimate of
the magnitude of the numerical error (<), which represents the maximum distance of

the final models from their nearest local minima. For instance, « could be defined as

follows.
a = max | min ———— 1.

JELK \i€in D

where p is the metric for measuring the distance between two models in the model
space. and D is the maximum possible distance between any two models. Also,
{m}};=1...x are the final models from the RHC and {m,};=,...n» are the exact locations

(3.26)

of the local minima. The other possible influential factors include the minimum width
of the basins of attraction (p,,) and the number of samples (K).

The Minimum Basins of Attraction When the inequality

Pm > max(o’, 71—) (3.27)
Y

is satisfied. this corresponds to the situation when the RHC is relatively accurate and
the number of samples sufficiently large. In this case, the dominating factor for the
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number of sampling too small: K< 1/pm

F1G. 3.3. Ilustration of the discretization in a one-dimensional model space, when
the local-descent searches are relatively accurate and the number of samples is not
sufficiently large. It is not necessary to choose bin-size larger than p,, = 1/K.

bin-size should be the minimum width of all the basins of attraction. p,,. Figure 3.2
shows such a situation when equation (3.27) is satisfied. If the bin-size is chosen larger
than the minimum width of basins of attraction, the small basins of attraction would
not be identified, as illustrated in Figure 3.2. On the other hand. choosing a bin-size
of too small (i.e., @ < ), error will also be introduced by splitting the models
belonging to the same basin of attraction to different bins. Therefore, a good choice
for the clustering would be to choose the number of bins along each axes in the model
space b as
1

In this case, each model is correctly clustered to the bin corresponding to the basin
of attraction it belongs to. The imperfect convergence of the RHC does not introduce
error in the complexity estimation. An accurate complexity analysis can be achieved
even if the models stopped on the “slopes™ of basins of attraction at the end of the
RHC.

(3.28)

Number of Samples Figure 3.3 shows the situation in which the number of
samples K is not sufficient for estimating the smallest basins of attraction. Since
the smallest convergence is k; = 1, then the smallest basin of attraction that can be
estimated is p,, = % Therefore, a necessary requirement for the number of samples
is

K> —, (3.29)
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numerical error too large:0 > pm
bin size too small: a <

Fi1G. 3.4. Illustration of the discretization in a one-dimensional model space. when
the errors caused bv the RHC-searches are large compared with p,, and p,,. The
discretization shown here has bin-size that is too small, which causes the splitting of
some basins of attraction.

where p,, is the smallest width of the basins of attraction. If equation (3.29) is violated,
then any basin of attraction of width p; < pn = 1/K cannot be correctly identified.
This situation is similar to that of aliasing in sampled signals, I will refer to it as
aliasing hereafter. Figure 3.3 shows such aliased sampling when equation (3.29) is
violated.
Suppose sampling of the model space is aliased and the local-descent searches
are still relatively accurate, the following relation is satisfied,
. ., 1 1
K < min(—, —). (3.30)
av Dm
In this case. it is not necessarv to choose the bin-size smaller than what can be
identified; i.e.. p,, = % Figure 3.3 illustrates such a situation when equation (3.30) is
satisfied. With K fixed. the erroneous identification of the smallest basin of attraction
in Figure 3.3 cannot be compensated by choosing smaller bins, or more accurate RHC-
searches. The number of bins along each axis of the model space can be estimated
by
b~ VK. (3.31)

Numerical Error Caused by the RHC As previously discussed. the purpose
of the RHC in Algorithm 3(a} is to cluster the sampled models to local minima.
Therefore, it is not mandatory that the RHC converge all models to local minima
exactly. However, when the RHC-searches have a slow convergence rate, whether

41



Hongling Lydia Deng

caused by the poor choice of algorithm or the small curvature of the function surface.
it is likely that the result of the complexity analysis will be influenced by the numerical
error. Figure 3.4 illustrates such a situation when the following equation is satisfied,

-
a > max( Y/Pm. \\//—11:) (3.32)

The discretization of the one-dimensional model space shown in Figure 3.4 causes the
splitting of some basins of attraction by choosing the bin-size to be too small. To
avoid this splitting, the number of bins along each direction of the model space can
be chosen as

b~ —. (3.33)

Combining the above discussion on three major factors on the discretization of
the model space. the following algorithm is designed for the implementation of Al-
gorithm 3.

Algorithm 4 (Identifying the Basins of Attraction) Let F: M C R - Y C
R be bounded and have isolated and finite number of local minima. Step 1 of Al-
gorithm & has been performed. M* = RHC(F, K. ¢, cmazx). We assume that p,, is the
smallest width of the basins of attraction on F in M. and the estirnated numerical
error of the RHC is «, as defined by equation (3.26).

1. Discretize the model space to an N -dimensional mesh where each azis is evenly
divided into b bins, where b can be roughly determined by

1
'\\'/ D

b= min(-g;—, VK, ). (3.34)

2. Cluster the models * in accommodance with the bins on the mesh to which
each of them belongs.

The output of this algorithm consists of: 7, the number of bins which contain at least
one model. and k;, the number of models that are clustered Vi € [1.7).

Alternative clustering techniques may also be used in the numerical implement-
ation of Algorithm 3(b). One such technique starts from a seed point (possibly, the
final model m with the smallest function value), then dvnamically classifies the rest
of the models according to the density of models in the space (T6rn, 1977). If the new
model does not belong to any existing cluster, a new cluster is created for the future
use. That approach. however. is relatively complicated to implement. and the results
may be difficult to evaluate.

Next I show the error estimates when Algorithm 4 is used for the complexity
analvsis described by Algorithm 3.
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Theorem 4 (Errors Caused by the Clustering) For a realization of Algorithm 4.
suppose the initial number of samples is K, and {p;}i=
the n basins of attraction in the model space. Supposc these K initial samples are
distributed uniformly in the model space. which means the error estimated in The-
orem 2 is zero. Also assume that the function values of the calculated local minima

» are the exact widths of

are ezxact, i.e., F(i;) = F(1n;). Then. if the discretization of the model space is as

P ] P ] e = oy . et ——y

in equation (3.34). the error of C, caused by this clustering can be estimated by the
following.

1. If the number of samples is sufficiently large to avoid aliasing, and the error of

the RHC is smaller than the smallest size of the basins of attraction. i.e..

NIt
Pm > max(a”, =), (3.33)
K
then estimates of the basins of attraction are ezact. t.e..

and the complezity estimation is also ezact due to the assumption of ezact func-
tion values,

~

Ce = Ce.

When the number of samples K is not sufficiently large to find the smallest
basins of attraction, yet the error caused of the RHC is small compared with the
size of the smallest basins of attraction, i.e..

.11 )
K< mxn(—a?, —). (3.37)

m

then. the complexity would be under-estimated, i.e., C, < C.. and the difference

would be bounded by
n—mn

%
When the error of the RHC is inaccurate to the extent that

IC. - C.| < InK. (3.38)

¢ > max( {/Pm. ——\\/l—f) (3.39)

results of the complezity estimation would be heavily influenced by this error. If
the discretization of the model space is chosen as b = ﬁ, the complexity would
be under-estimated: that s

C, < C..

The error of the estimated complexity C, from the true complezity C, would be
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F16G. 3.5. The function f(z) = —z Inz for (0, 0.3) has a maximum at r ~ 3.68.
bounded by ) _ '
C.—C. <(A—-n)a” Ina’. (3.40)
Proof:
Without loss of generality. suppose the basins of attraction are labeled in des-
cending order, such that p; > p» > ... > p,. Before proving the above results,

let us consider a function that is frequently used in the following proof,
f(z) = -z Inzx. (3.41)

Figure 3.5 shows a plot of this one-dimensional function f(z) for 0 < z < 0.5. It is easy
to verifv that f(z) > 0 and it increases monotonically when 0 < z < % =~ 0.368.

1. For the case of equation (3.35), the minimum width of the basins of attraction p,
is the dominating factor. Equation (3.34) for the discretization of the model space
becomes b & _‘\/_17‘ Furthermore, since all K samples are uniformly distributed
within the model space and K > ;%;, then at least one model converges to each
of the basins of attraction (see page 30). The clustered distribution after the
discretization would be

k= Kp)>1 Vie(l,n. (3.42)

Then. the estimation of the widths of basins of attraction would be exact.

If the assumption of exact values of local minima is used, the estimated com-
plexity C, would be exact as well. Therefore. it is possible to get an accurate
estimation of the complexity even if the RHC is not ideal.
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For the case of equation (3.37). aliasing is the dominating factor. Equation (3.34)
for the discretization of the model space becomes b ~ /K. Furthermore. since
all K samples are uniformly distributed within the model space, and K < -p‘—
there will be no models converging to the basins of attraction whose width

D < K The clustered distribution after the discretization would be

po_ K, ifp >
k= {0= otherwise. (3.43)

So. we have n > n. In addition. since the function values at the local minima
are exact. we can have

1

where ¢ = 7_; g; < 1. Then

T 7]
C—Ce = — Z(Iihl(li + Z(ji Ing;
=1 i=1
it n
i qi
= > (—glng+ %ln(f)) - > ¢lng
i=1 ‘ - i=!=n
= ]1 -+ 12.

For the situation considered here K < #, it is almost always true that n > 2
and p; < 0.5 for all i € 1,n]. Since ¢; < p; and ¢ < 1, we see that f(g;) <
f(g:/¢). Then,

7

I =Y [f(g) = fla:/e) < 0.

=1

Other the other hand, if the model space is not severely under-sampled, which
should be the case, we have ¢ = 0. So. I; ~ 0. Furthermore, since

I = Zn: flg:) > 0.

t=1-+1n
so C, > C,, and
C(_éej S I‘Z
T
= | Y glhng
=147
n
< | > pilnp
=1+
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S !(n - 7A7')ﬁm In jjmi
71— n

= IR Ink.

3. For the case of equation (3.39). the numerical error caused by the RHC is the

dominating factor Equation (3.34) for the discretization of the model space
becomes b =~ 3 Then, the smallest estimated basin of attraction is p,, = o
Since all A samples are uniformly distributed within the model space. the basms
of attractions having width p; > p can be correctly identified.

Suppose there are m basins of attraction whose widths are larger than p,,: then
we have,

C.—C. = Zf ) Z f(&)
=1 i=1
2 fla) - Z f(g

= IE_I2t

where I; > 0 and I, > 0. Since n > 7, then I. > I,. Therefore. C, > C'e, and
again the complexity is under-estimated.

Since p; < Py, for all © > m, we have

I1=qu7

i=m-1

< ( - )f(pm)

In addition. since p; > P, Vi € [1, 7], then for Vi € m + 1, 71, it is the case
that p; = pm- So. we have

L = > f@)
i=m=1
= n— m) f(pm):
and
|Ce — é( = III -1

< ‘(77, - Tn)f(ﬁm) - (ﬁ - Tn)f(ﬁm)!

= (n—-n)a" lna®
O

Theorem 4 gives a reasonable analvsis on error in practical implementations.
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numerical error too large:0. > pm
bin size too large a >0

Fi1G. 3.6. Illustration of the discretization in a one-dimensional model space, when
the error caused by the RHC-searches are large compared with p,, and p,,. The
discretization of the model space shown here has the bin-size too large. Some basins
of attractions could not be identified.

However, some ad hoc assumptions have to be made, such as the knowledge of p,, and
. We need to be careful at interpreting the result of such an estimation: a single
value of C, calculated from one realization of the implementation may be meaningless
if a careful comparison is not made with other similar situations. It can be a useful
tool, on the other hand, for comparing similar objective functions with the same local
search parameters. (Tiocar. cmaz, €). In Chapter 2. I have shown examples of two types
of comparison: a family of two-dimensional multi-modal function whose complexity
changes tremendously with the change of some parameters, and the Griewank function
whose complexity changes in an unusual way with increasing dimensionality.

3.3.2 Another Aspect of Complexity — Numerical Difficulty

Generally speaking, the situation of equation (3.39) should be avoided because
of the possible severe distortion to the global picture of the objective function. If
large numerical error « is caused by the algorithm. a faster convergence algorithm
or more iterations should be used in the RHC. However. when the curvature of the
objective function is nearly zero, which is equivalent to an ill-conditioned Hessian
matrix, local-descent searches by any algorithm may give very poor convergence of
the models within a finite amount of computing time. If we follow the implementation
of Algorithm 4. the discretization of the model space would be too coarse to give us
any useful information. Figure 3.6 shows the same situation as that in Figure 3.4. but
with a coarser discretization, in which case the smaller basins of attraction could not
be identified.
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For representing such a numerical difficulty in optimizing objective functions
with very small curvature. we need to choose smaller bin sizes. Instead of following
the guideline of equation (3.34), we can discretize the model space sufficiently fine
that b < -0— Figure 3.4 shows such a discretization of model space. The result of
complexity analysis would take into account the spreading of the final models from the
RHC. Thus, the estimated value of complexity C, is higher than the true complexity
C.. which is an indication of the ill-posedness of the optimization problem. Taking
such numerical issues into account in the complexity analysis therefore can represent
an important aspect in the numerical difficulties of optimization. It can be shown that
the following results are true.

Theorem 5 For the same problem as in Theorem 4, if the numerical error dominates
the final result of RHC. i.e..

) (3.45)

then the numerical difficulties of global searches are taken into account in the com-
plezity analysis of Algorithm 3.
If the discretization parameter b is chosen that

b>l,
(63

then complezity of the function would be over-estimated. The estimated complexity
value is bounded as X
C. < C. < min(ln K. Nlnb). (3.46)

Next, I show some examples of complexity analysis that are heavily influenced
by their numerical errors, vet correctly indicates the numerical difficulties caused by
the flatness of the landscape of the objective function.

Two-Dimensional Quadratic Functions For the two-dimensional function
given by equation (2.10). if the oscillation frequency is zero (f = 0), the function
F(mg, m,) becomes quadratic with a unique global minimum. Figures 3.7(a) and (b)
show the function surfaces when f =0 and a = 1, 0.001 respectively. Both functions
are quadratic. Noticing the scale of the two plots, however, Figure 3.7(b) is much
flatter than (a). This difference in the curvature of surfaces significantly influences
the difficulty of optimization. Figures 3.7(c) and (d) show the converged models for
the RHC-search when the stopping criterion are met. In Figure 3.7(c), we see that
all 500 models converge to the global minimum when the curvature of the quadratic
function is large enough. As a result, C. = 0. However, when the function surface
is almost constant. as in Figure 3.7(b), the convergence is so slow and insignificant
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F1G. 3.7. Random hill-climbing with population of K = 500. (a) and (b) show the
function surface defined in equation (2.10) when f = 0 and a = 1, 0.001 respectively.
(¢) and (d) show the convergence of 500 initial models in the 2-D model space on
functions (a) and (b). In the first case C, = 0: in the second C, = 4.11.

that the final models are scattered about the domain when the maximum number of
iterations is exceeded. For such a numerical experiment, the estimated complexity
C‘e = 4.1. This demonstrates that even for unimodal objective functions, the hardness
of searches could depend on the curvature of the landscape.

N-Dimensional Rosenbrock Function An N-dimensional Rosenbrock func-
tion (Fletcher, 1987) can be written as

N=i e B B B
R(x) =y 100(z; — z7,)* + (1 - z:1)"] . (3.47)
i=1
where x = (z;, .... zy). It can be proved that this function is unimodal for any
dimension N, with unique minimum is at {1,1,...,1}. From Definition 5. the com-

plexity measure for this function C, would have been zero. However, the “long” and
“narrow” basin around the minimum point still poses a challenge for any search-
ing algorithms. This dimensionality-dependent ill-posedness can be reflected in the
estimated complexity.

Figure 3.8 shows the function surface and its contour when N = 2. When N > 2,
the function is still unimodal, but it is not easy to see how the increase of dimension-
ality alters the difficulty of optimization. Using the complexity-estimation approach in
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F1G. 3.8. Two-dimensional Rosenbrock function. The figure on the left is a 3-D plot
of the function surface, while the one on the right shows the contour plot of the same
function.

Algorithm 3. the value of C, obtained from a finite-precision, finite-iteration RHC is
largely influenced by the spatial curvature of the function surface; the estimated com-
plexity would be larger than the exact complexity (C. = 0) to an extent that varies
with spatial curvature. Therefore, we can use the estimated complexity to estimate
the “flatness™ of a function surface.

One way of studying the spatial curvature of functions is by looking at the ratio
of largest and smallest eigenvalues (condition number) of the Hessian at a point. The
Hessian for equation (3.47) is a tri-diagonal matrix,

a ¢ O e 0
b; a: ¢ 0 .
0 b a ¢ 0 (3.48)
0 0 --- bno1 an—y
where
2 +1200z2 — 400 z,. if i=0;
a; = < 202+ 1200x? , —400z;, ifO0<i< N —1:
200. ifi=N-1,
b = —400x;—;. O0<z < N - 1,
¢ = —400.’1','7;_;1, 0 S 1< N —1.
At the global minimum (1. 1, - - -, 1). the tri-diagonal matrix equation (3.48) becomes

Toeplitz except for ag and ay_;. The condition number of the Hessian at the global
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F1G. 3.9. Condition number of the Hessian matrix for the N-dimensional Rosenbrock

function at the global minimum.

minimum reaches an asymptote with increasing dimension, as shown in Figure 3.9.

Figure 3.10 shows the estimated complexity C. as a function of the number of
dimensions: it shows the same asvmptotic trend as does the condition number. Thus
the increasing complexity for low dimensions is the result of increasing ill-conditioning
of the Hessian and has nothing to do with local minima.
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Chapter 4

A HARD OPTIMIZATION PROBLEM IN GEOPHYSICS

In previous chapters, a method for studying the complexity of generic optimization
problems was developed. and the implementation issues and error bounds were also
discussed. To demonstrate applications of this approach. in this chapter I study a
hard optimization problem encountered in explorational geophysics — residual-statics
estimation.

The basic theme of the thesis is that we cannot usefullv compare optimization
techniques unless we understand the problem well. Therefore, the first step in dealing
with an optimization problem is to study the physical nature of the problem, and
take the best advantage of special characteristics of the problem. In this chapter. I
first introduce the residual-statics estimation problem. and show that this problem
is naturally formulated as an optimization problem. With insights gained from an
analysis of the details of the problem, I propose two strategies for simplifving the
objective function of this optimization problem: simplification of the data via multi-
resolution analysis (MRA) and via use of envelope information. I show that the
complexity analysis developed in the previous chapters can be used to evaluate these
strategies.

4.1 Estimating Near-Surface Heterogeneities

For studying the earth’s subsurface structure, explorational geophysicists usually
send signals generated by seismic sources into the ground. and record the reflected
echos from discontinuities of the earth material properties (reflectors) by receivers.
These recorded data are usually referred to as seismograms, and the recordings from
each receiver is a seismic trace.

The left portion of Figure 4.1 illustrates such a recording situation, and the right
plot shows the assumed recording seismogram. In a seismogram, the high-amplitude
wiggles, as shown on the right of Figure 4.1, usually represent reflections from strong
discontinuities of the earth material properties such as velocity. The amplitudes and
their positions on the time-axis (traveltimes) of reflections carry important information
for recovering subsurface material properties and structure. As shown on the left of
Figure 4.1. when the waves propagate vertically through the earth and are reflected
from a horizontal reflector. the traveltime of the reflections should be the same for
all traces in the same seismogram. However, the reflections in the seismogram of
Figure 4.1 do not have the same traveltime. This is a common phenomenon for
seismic data recorded on land. The heterogeneous material properties in the earth’s
near surface can cause time-shifts of reflections on seismic traces. These time-shifts
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F1G. 4.1. The recording of reflection seismic data is illustrated on the left, and on the
right are depicted three synthetic seismic traces time-shifted by (presumably) random
statics.

are referred to as statics. since they cause time distortions that often can be usually
approximated as time-shifts of the entire trace under the assumption that the energy
is mostly propagating vertically through the near-surface.

If the seismic waves did not propagate vertically through the earth media or were
not reflected from horizontal reflectors, the reflection events would show regular time
distortions among nearby traces. These propagating factors are usually estimated and
corrected (normal moveout correction) so that the reflections on seismogram appear
as if travel paths were vertical. When these processing steps are done correctly, the
misalignments among the nearby traces can be attributed to the near-surface variations
and are often assumed to be static shifts.

After the propagating factors are corrected, the seismic data need to go to the
stacking step, where the traces representing waves traveling through the same me-
dia are averaged in order to compress the data and enhance the data quality. To
achieve good quality in stacked sections, the reflections on the traces representing
the same changes in earth properties need to be aligned. This not only requires a
good correction of propagating factors. but also requires a correction of the statics
contamination in the data. The contamination of the alignment by statics are usually
corrected by residual-statics estimation. The goal of residual-statics estimation is to
look for the time-shift of each trace that maximizes the alignment of the traces to
be stacked together. Since statics corrections are applied to virtually all seismic data
recorded on land, the estimation of these corrections is key to the quality of the images
seismologists extract from such data.

Generally speaking. the ultimate goal for statics corrections is to improve the
images after stacking. Hence. a measure of stacking quality can be used as an objective
function in such a problem. One measure of stacking quality is the sum of squares
of the stacked traces — stacking power (Neidell & Taner. 1971; Ronen & Claerbout,
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1985: Rothman, 1985). The stacking power of N seismic traces mayv be written as

N-1 2
5 [}: it + ri)] | (4.1)

2 i=0

where d;(¢) is a one-dimensiona,l function of time ¢ representing the ith trace and each
component of vector 7 is the time-shift for each seismic trace. It can be easily shown
that maximizing the function in equation (4.1) is equivalent to minimizing a negative
summation of cross-correlation functions.

Nl N1

- 2 (@l = 7). (4.2)

i=0 j=i-1

where ®;;(7) is the cross-correlation of the ith and jth traces evaluated at 7 = 7; — 7.
Equation (4.2). rather than (4.1), is mostly used in implementations because cross-
correlations ®;;(7) may be pre-computed and stored.

Because of the oscillatory nature of seismic traces, cross-correlations ®;;(7) are
also oscillatory. Positive and negative peaks of the correlation functions ®;;(7) are the
indications of time-shifts when the traces. d;(t) and d;(t), are aligned in-phase (aligned
with the same polarity) or out-phase (aligned with the opposite polarity). Hence.
objective functions F(7) in equation (4.2) are generally highly multimodal. Consider
a simple example where we need to align three otherwise identical traces. similar to
those shown in Figure 4.1. Fixing the first trace, we look for time-shifts of the second
and third traces. t;,t5, so that the sum of squares of the stacked traces (stacking-
power) is maximized. Figure 4.2 shows an example of such a two-dimensional objective
function — F(¢;.t), where the basins of attraction are shown as “hills” scattered on
the landscape. When the objective function is high-dimensional (such as when the
number of seismic traces being analyzed is large, and often N > 10", one could
imagine that the landscape would be even more complex. Smith et al. (1992) showed
that an arbitrary two-dimensional projection of one such function presents a highly
irregular shape.

Furthermore for seismic traces in explorational geophysics, it is usually the case
that each trace cannot be shifted independently. This corresponds to the case of
equation (4.2) where each components of 7 cannot be arbitrarily chosen. In this case.
a set of independent parameters needs to be chosen as unknowns for the problem.
For example, the source-statics and receiver-statics are the independent unknowns
under the surface-consistent assumption, as discussed in Appendix C. In general, the
time-shift of each trace 7; is a linear combination of the unknown parameters. Then.
a general residual statics problem becomes a mathematical optimization problem in
which we look for parameter vectors m so that

mlnF =35 &;(7;(m)). (4.3)

i jFE
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F1G. 4.2. Landscape of a 2-D residual-statics objective function.

where 7;;(m) is the linear function of m. The function F(m) in equation (4.3) is a
generic formulation of a stacking-power function.

4.1.1 Behavior of Stacking-Power Functions

As complex as it might be, the stacking-power function in equation (4.3) is far
from arbitrary. Treating this function with some understanding may indeed help us in
choosing strategies for dealing with the statics-estimation problem. To gain insights in
these stacking-power functions, let us take a close look at the function of equation (4.3):

Observation 1 (Stacking-Power Function) The stacking-power function F(m)
of equation (4.3) has the following generic properties:

1. F s a summation of a set of one-dimensional functions, ®;;. Each ®;; can be
computed prior to the optimization procedure.

2. For models where all correlation functions ®;; are simultaneously mazimized,
the function F is guaranteed to have a minimum (see Lemma 3).

3. Not all minima of F correspond to the mazima of all ®;;. The local minima of
F that do not correspond to local mazima of ®;; are not related to the alignment
of traces.

4. There ezists a linear transformation such that the function F can be reduced to
a set of one-dimensional optimization problems.
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To verifv the above observations, let us take a close look at the stacking-power
function. For a generic stacking-power function F(m) in equation (4.3). each com-
g &P q
ponent of the gradient vector can be written as

?f____ = — ZZ@ (7:(m —'-i, for Vk. (4.4)
.

i jrl

With equation (4.4), the following statements can be easily verified.

Lemma 3 If there exists m* such that
V‘I’z‘j(m) im:m"—‘ 0: V7 .7 (45)

then,
VF(m) im=m-=0. (4.6)

Lemma 3 states that if a point in the domain is the maximum of all correlation
functions simultaneously, then it must be a maximum of the stacking-power function.
This lemma is equivalent to the first statement of Observation 1. which can be proved
as follows.

Proof: Since 7®;;(m) m=m-=0. for Vi, j. we can also write that for each ®;;.

0%;;(m) . , Orij _ . _
Tom,  mem T ®;;(m )8mk = 0, for VE. (4.7)

From equation (4.4), we have that VF(m) |m=m-= 0. Therefore, m" is a minimum
for the stacking-power function equation (4.3).

0
-

However, as stated in Observation 1, the converse of Lemma 3 is not necessarily
true. It is easy to see that local minima of F could be caused by the compensa-
tion of positive- and negative- slopes between correlation functions ®;;. That is, if
equation (4.6) is true, equation (4.5) is not necessarily true.

Significantly. a change of variables can be applied to equation (4.3) so that the
function of the new set of variables. F(m). becomes separable, where no non-linear
interactions exist in the function (Whitley et al., 1995b). Then, the minimization of
the transformed function F(rh) can be solved as a set of one-dimensional optimization
problems. Detailed discussion and application of this point are given in Appendix C.

To demonstrate these observations, we start with a simple, schematic statics
problem: consider three identical seismic traces that can be shifted independently of
each other. and look for the independent time-shifts (7;. ¢ = 0.1, 2) that best align
the traces. Without loss of generality, we use the first trace as a reference (7p = 0)
and look for time-shifts of other two traces (7; and 7). The stacking power is a
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F1G. 4.3. The correlation function is shown on the left. The right figure shows the
contour of the stacking-power function formed from the correlation on the left as a
function of 7; and 7.

two-dimensional function,

F(71.70) = =[@01(71) + Poa(72) + Pra(r2 — 7)) (4.8)

If the three traces are identical. all correlation functions are auto-correlations. The left
of Figure 4.3 shows one example of such correlations. The two-dimensional stacking-
power function, shown on the right of Figure 4.3, demonstrates that the function is
multimodal even for such a simple case. The converged models of local-search al-
gorithms will strongly depend on the initial models, and the estimated statics may
easily be at a local minimum if a local search is used. Notice also that the observable
minima in Figure 4.3 are scattered regularly on the function surface. The global min-
imum is located at the point where maximum positive peaks of all three correlation
functions coincide (the correct time-shift), and the observable local minima are reg-
ularly distributed at locations where positive peaks of all three correlation functions
coincide. Among these local minima, those that coincide with the maximum positive
peak of one correlation function have significant values. In Figure 4.3. the dominant
stripes (vertical, horizontal, and diagonal) are located in areas where any of the three
correlation functions is at its highest function value.

Observations from Figure 4.3 suggest that contributions to significant minima
of stacking-power function are mostly due to positive peaks of the correlations from
which the stacking-power function is made. Small and negative correlation values are
of little interest to us.
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4.2 Using a Multi-Resolution Analysis (MRA) to Simplify Stacking-Power
Functions

As with the stacking-power functions. many objective functions in seismic inverse
problems are highly multimodal. This situation is caused primarily by the oscillatory
nature of seismic signal. Therefore, it can be expected that the number of local minima
of such objective functions would be largely influenced by the band-width of seismic
signals in the traces. That is, high-frequency signals in seismic traces produce more
local extrema in the objective functions. and low-frequency signals result in smoother
ones. Hence. one way of making such optimization problems easier would be to reduce
the frequency content in the seismic data.

Multi-scale analysis is a strategy for simplifving such objective functions. A
sequence of low-pass filters can be applied to the seismic data so the data are de-
composed into several sets, each of which contains progressively higher frequencies
(Saleck et al.. 1993; Chen, 1994). Then, optimization procedures are applied to these
data sets iteratively in order to increase the chance of finding global minima. In this
thesis, a similar approach is used for simplifving stacking-power functions in equa-
tion (4.3). Instead of using low-pass filters, I use a shift-invariant multi-resolution
analysis (MRA) technique.

4.2.1 Multi-Resolution Analysis

The basic concept in the MRA is a set of nested. closed subspaces {Vj: j € Z}
of L?(R), such that (Daubechies, 1992: Jawerth & Sweldens, 1994)

LV VTl (4.9)

The basis for the subspace V; is a set of orthonormal. translated functions, and each
of these function sets is a fixed dilation of a scaling function, {o0;x; k € Z}. These
subspaces have the property (Daubechies, 1992; Jawerth & Sweldens, 1994)

flz) € Vo= f(277z) e Vi VYj€Z (4.10)
Define W to be the orthogonal complement of 1; in V;_;. then
Vie: =V, e W, (4.11)

A set of wavelets {v;z:k € Z} forms an orthonormal basis of the subspace W.
Therefore. for j < ng. we can have

V=15 © Wao © Wioor. © Wis. (4.12)

Figure 4.4 illustrates the nesting of subspaces V; and their orthogonal complements
W;. In Figure 4.4, 1{ contains the original data which has the finest resolution: the
projection of the data on {V}: j = 1.2, 3} has increasingly coarse resolution. The data
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F1G. 4.4. Tllustration of the sequence of multi-resolution analysis subspaces V;. W is
the orthogonal complement of V; in ¥j_;. Space V4 represents the space that contains
the finest resolution data. and 15 = V; & W38 Wy, & W
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projected onto the subspace Vj is referred as the decomposition of data at resolution
level j.

We define the projection of a function f € Vp on Vj to be fi(z). Then the jth
resolution level of the function has the form

Nx) = Z Sjk Oju(T)- (4.13)
k
where s, is the component of the function f(z) with respect to the basis @;; that is.

Sjk = /f(.l?) C)jk(iL‘) dz.
Next, define the projection of f(z) on the subspace W to be

de z dJ k LJ L (4.14)
where d;; is the compoment of function f (z) with respect to the basis v

JL——/f _/L(x

Then, equation (4.12) implies that the original function f(z) € Vj can be represented
by

fla) = Z df’ (x

j=n0
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Trace Index
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F1G. 4.5. The observed data in the first example. Two traces contain identical wave-
forms. a Ricker wavelet with a 30 Hz peak frequency. The relative time-shift is the
unknown we are seeking.

1
= Z Sng.k Qno.k(x) -+ Z Z dj,k 'U"J,k(x) (415)
k

j=ngo k

Therefore using MRA, signals can be decomposed into various resolution levels.
The data with coarse resolution contain less detailed information and lower frequen-
cies, while keeping major features of the original signal. These less-informative data
can serve as a relaxation to optimizations in the sense that. by using data at coarser
resolution levels, complexity of objective functions may be reduced. One special kind
of MRA. a shift-invariant basis developed by Saito and Beylkin (1993) is used in this
work for decomposing seismic data to several sets with various level of resolution. A
detailed description of MRA can be found in Appendix B.

4.2.2 Applying an MRA in Optimization

Let us first consider a trace-alignment problem, which involves a simple one-
dimensional aspect of the residual-statics problem. Consider a trace containing one
Ricker wavelet: and duplicate the trace with an unknown shift. Figure 4.5 shows two
such traces. Now, we look for the time-shift between the two by applying an optimiza-
tion. that is, searching for the time-shift that maximally aligns the two traces. This is
a simplistic residual-statics estimation problem with one unknown. The corresponding
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F1G. 4.6. The error-fitting function with respect to the relative time-shift between
two traces. The goal is to find the optimal point where the mean-squared error is
minimum.

stacking-power function is
F(r) = —&(r),

where 7 is unknown time-shift. Minimizing such a stacking-power function is equival-
ent to solving a least-squared problem with objective function

E(r) = Y [Poli = 7) = Pi(i). (4.16)

=0

where Py(t) and P (t) are the two data traces, N is the number of samples per trace,
and 7 is the unknown time-shift. The goal is to find the time-shift 7 that minimizes the
error function E(7). Such a minimization problem would be equivalent to minimizing
a corresponding stacking-power function,

Figure 4.6 shows the error function of equation (4.16) for the fitting of these two
traces. In addition to possible problems caused by the local minima. the basin of
attraction leading to the global-minimum is steep and narrow, while the two areas
to the sides are flat. The global structure of this objective function suggests that the
global minimum point may be hard to find by directly applying local-descent methods.
Assuming that we know a priori that the time-shift between the traces lies in the range
of [—0.2,0.2] s, the searching range is restricted to this interval. Figure 4.7 shows the
histogram of the converged models after an RHC with K = 30. As expected, the
chance of finding the correct global minimum is small. For this test, 8 out of 50
experiments found the correct time-shift (p = 0.16).

Let us decompose the observed data into various resolution levels by represent-
ing them with the wavelet bases described in Appendix B. For the above example,
the traces {P;(z); ¢ = 0,1} of lengths N = 27 can be represented in the form of
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F1G. 4.7. Histogram of the obtained time-shifts of 50 conjugate-gradient optimiza-
tion experiments starting from uniformly distributed random initial models between
'~0.2,0.2] s. The horizontal axis is the number of shift-samples. where the sample
mter\al is 0.01 s. and the grid size of the histogram is four samples. The number of
times that found the true global minimum (shift of eight samples) is 8 out of 50.

equation (4.15).
I N1

P(z) = PM(z)+ Y, > djk viklT), (4.17)
Jj=no k=0
where 1 < ng < .J and P (z) is the projection of the original data onto the subspace
V- Therefore, equation (4.16) can be rewritten as,

E™(r 'Z no(; — ) — PRo(i)]? + R™(r), (4.18)

where R™(7) is the residual error term which is related to the detailed information
being projected onto subspaces {W;: j = 1,..., N}

Ignoring certain levels of fine-resolution information. i.e.. ignoring the residual
term in equation (4.18), the resolution level ny representation of the seismic traces can
be used for optimization. Figure 4.8 shows the objective function E™(7) at various
resolution levels, ng = 1.2.3.4. It shows that the global complexity of the objective
function is reduced with t.he increasingly coarse level of resolution, and that the basins
of attraction leading to the global minimum become wider as well. Figure 4.8(d).
however, shows that the global structure of the objective function is severely distorted
when too much detail is ignored.

The distortion of Figure 4.8(d) is caused by the shift-variant nature of compactly
supported. orthonormal wavelet bases. In order to keep the global shape of the ob-
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F1G. 4.8. The mean-squared error functions for two seismic traces at various resol-
ution levels. The traces are decomposed in the Daubechies basis with two vanishing

moments.
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F1G. 4.9. The mean-squared error functions for two seismic traces at various resolution
levels. The traces are decomposed in the auto-correlation shell of the Daubechies basis
with two vanishing moments.

Jective function in this problem. it is necessary that a shift-invariant basis is used to
decompose the signal. From Appendix B, two families of bases are shift-invariant.
Because the auto-correlation shell of orthonormal bases (see page 103) is svmmet-
ric, this bases is used for this study. From this point on. the paper uses only the
auto-correlation shell of orthonormal bases to decompose the signal, unless otherwise
indicated.

Figure 4.9 shows the objective function at resolution levels ny = 2,3.4.5 in an
auto-correlation shell of the Daubechies wavelet basis with two vanishing moments
(Daubechies, 1992). The global structure of the objective function also shows the
desired simplification seen in Figure 4.8. such as a wider basin of attraction leading
to the global minimum, fewer oscillations and smaller “flat” area in the searching
range. Moreover, the global minimum is not shifted at any decomposed resolution
level. Figure 4.9(d) shows that the whole searching range has been transformed to one
wide basin of attraction, which would lead all initial models to the global minimum.

Figure 4.10 shows histograms such as that shown in Figure 4.7, except the data
used for optimizations are decomposed at various resolution levels. These results
confirm our prediction that there are increasing chances for local-search optimizations
to find the global minimum when coarse-resolution data are used. For Figure 4.10(d).
all searches converge to the global minimum when data are decomposed to resolution
level 5.

For the simple problem. five levels of decomposition are needed to reduce the
objective function to a convex function in the searching range. In addition, the global
minimum of this simplified objective function coincides with that of the original ob-
Jective function. Therefore. the correct solution is reached when only coarse resolution
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F1G. 4.10. Histograms of the obtained time-shifts of 50 conjugate-gradient optim-
ization experiments for data at various resolution levels. Initial models are chosen
randomly between [—0.2,0.2) s. The horizontal axis is the number of shift-samples,
where the sample interval is 0.01 s, and the grid size of the histograms is four samples.
All 50 experiments found the true solution when the data were decomposed to resol-

ution level 3.
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FI1G. 4.11. A field seismic trace and its duplicate with an unknown shift.

data are used in this example. In the next example, an optimization applied to the
coarse-resolution data will not suffice.

For more complex optimization problems, further reduction of resolution may be
needed to make objective functions convex. In the next section, I show that an optimal
level of decomposition can be determined using the complexity analysis developed in
previous chapters.

Figure 4.11 shows a trace taken from a field seismic record. and its duplicate with
some time-shift. Figure 4.12 shows the objective function for this problem. Due to the
oscillatory nature of the seismic field data, the objective function shows complicated
local and global structure. The basin of attraction leading to the global minimum
point is extremely narrow and steep, which would make it difficult for any searching
method to find the correct solution.

Again. the auto-correlation shell of the Daubechies basis is used to decompose the
traces to coarse resolution levels. Figure 4.13 shows objective functions for various
leve] of decomposition applied to traces in Figure 4.11. As expected, the complexity
of the objective function is greatly reduced after the data have been decomposed to
coarse levels.

It is worth noticing. however, that the global minimum point is slightly shifted
in Figure 4.13(d), though the objective function shows a nice. convex shape. This
problem may be caused by the loss of information when too much resolution was
discarded from the data. In this case. an iterative process similar to a multi-grid
iteration can be used to enhance the resolution progressively: i.c., the solution of a
coarse-level optimization is used as the initial model to a following optimization at a
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F1G. 4.12. The mean-squared error function for the two field seismic traces shown in
Figure 4.11.
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F1G. 4.13. Mean-squared error functions for the two field seismic traces shown in
Figure 12 at various resolution levels. The traces are decomposed with the auto-
correlation shell of the Daubechies basis with two vanishing moments.
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finer level. Such an algorithm can be described as follows:

Algorithm 5 MRHC (m = MRHC(F. L. ¢, cmax))
Let {S;}i=r..0 be a sequence of decreasingly smooth operators to be defined below.
with S an identity operator.

1. Let fr, = Sy F; choose an initial population {mQ},—, ... x with size K at random;
apply Algorithm 2, so {my}r=1,..p, = RHC(fL. N, €.cmaz), and i =L - 1.

2. Let fy = S;F. (L > i > 0) and m® = {mp}p=y..ms,_,; run Algorithm 2.
{my}e=1...a7, = RHC(fi. K. €. cmaxzx).

3. Decrease the level index i by 1, repeat 2 until 1 = 0. The final set of models m
15 the solution.

The smoothing operators {S;}i=1..0 could be a sequence of low-pass filters with in-
creasingly wider pass-band (Bunks ef al. 1993), or a sequence of increasingly fine
wavelet operators (Deng. 1995) for decomposing the input seismic data. The se-
quence of smoothing operators should be such that the resulting functions, {f;}i=1.....0
have the same global shape as does the objective function F for all levels and have a
decreasing number of local optima when the level increases, and fo = F. I showed with
the above one-dimensional examples that this could be achieved using a shift-invariant
wavelet basis.

4.2.3 Using Complexity Analysis to Evaluate the Behavior of the
MRA

The simple one-dimensional examples above show that MRA may be used for
simplifving objective functions. However. it is not clear that an MRA can help with
any kind of difficult optimization problem. According to the No-Free-Lunch (NFL)
Theorem (see page 11), the MRA approach cannot be a superior strategy for solving all
optimization problems. For the stacking-power function, in particular, it is necessaryv
to study more realistic examples in order to draw a reasonable conclusion on whether
or not this is a useful strategy. Unfortunately, when the dimensionality is high, we
do not have a way of visualizing behavior of stacking-power functions as we did with
one-dimensional functions.

Using the tool of the complexity analysis developed in this thesis, the behavior
of the objective function when applied MRA can be closely studied. Next. I study
the residual statics problem for a synthetic data set when surface-consistency (see
page 105) is assumed. Figure 4.14 shows the recording geometry of a data set which
has 20 sources. 35 distinct receivers and 320 traces. All traces are identical except
for random source and receiver statics. These traces are generated by repeatedly
shifting a single trace of field data. Thus, equation (C.1) of Appendix C is used as the
objective function, which is of dimension 55. When there are no static-shifts in the
data, the global minimum of the function is at the origin (s; = 0. r; = 0). Figure 4.15
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F1G. 4.14. Recording geometry of a syvnthetic data set. The horizontal axis is the
source position and vertical axis the receiver position.

shows a 2-D projection of this 53-dimensional stacking-power function in which all
parameters are fixed except for two components. The left plot is the slice when the
53 other components are fixed at their correct values. For this situation. the apparent
minima are regularly distributed on the function surface. and the global minimum is
located at the origin of this hyper-plane. In contrast, for the right plot, which is the
projection when the fixed components are chosen at random, the structure is more
irregular, likely with probably more local minima.

For such highly multi-modal functions, local-descent searches usually fail to find
global optima. Some form of Monte Carlo global search has been almost always
necessary for solving large-scale statics problems (Rothman, 1985; Rothman, 1986).
However, most of these global search algorithms, such as SA or GA, are computational
intensive, and there is no guarantee that these searches will find the global minima
within a reasonable time.

I apply the complexity analysis to evaluate the behavior of the MRA on this 53-
dimensional problem. Figure 4.16 shows C, as a function of the wavelet decomposition
level using a population size of A = 1000: the mean and one-standard deviation error
bars are obtained from 32 independent calculations. Results are shown for six levels of
decomposition, using a wavelet operator {S;};=o.... 5 where 7 = 0 is an identity operator,
corresponding to use of the original data. These results indicate that for this particular
problem a complexity minimum is achieved for a wavelet decomposition of level 4.
Higher levels of decomposition actually increase the estimated complexity: presumably
this results from the objective function being too flat for local optimization. Thus,
the complexity measure gives us a way of choosing a wavelet decomposition level to

70



) —1 T

Complexity of optimization problems

o
n

.

Time Shift (s)
S o6 o
T2 =
Time Shift (s)
o
o

02 -01 -00 01 02 02 -01 -0.0 01 02
Time Shift (s) Time Shift (s)

F1G. 4.15. Contour plots of 2-D projects of a 53-dimensional stacking-power function
with all statics values held fixed. with the exception of two components. All other
components are fixed to their correct values for the left figure, and those components
are chosen at random for the right one.
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F1G. 4.16. The estimated complexity C, as a function of the level of wavelet
decomposition.
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achieve optimal simplification of an objective function.

4.3 An Envelope Approach to Simplify Stacking-Power Functions

An alternative approach of suppressing high-frequency information in seismic
waveforms is to extract the envelope of the signal. As discussed in Appendix C, the
conventional linear residual-statics approach (see page 108) uses too little informa-
tion from the data. When the seismic data are severely contaminated by noise, the
time-picking (one-dimensional optimization) could be very difficult. On the other
hand, when the global optimization approach (Rothman. 1985; Rothman, 1986) uses
the full data set, an additional complication is introduced by optimizing a object-
ive function with unnecessary local extrema. As a compromise between using “too
little” (linear approach) and “too much” (global optimization) information from cor-
relations, “partial” information given by the correlation functions can be used for such
a high-dimensional optimization problem. Since the complexity of stacking powers is
due mostly to complexity of correlation functions, suppressing high-frequency com-
ponents of the oscillatory correlations will result in a stacking-power function with
reduced complexity.

Formally. the envelope of an analyvtical function is the square-root of the sum
of the function and its Hilbert transform. The envelope extracts the low-frequency
amplitude information while removing the “carrving-frequency™ of the signal. which
represents the phase information. For a narrow-band correlation function

9

z° .
T00- cos(z), (4.19)

®(7) = exp[—

for example, its envelope function obtained by the Hilbert transform is

%,

®(7) = exp| 100-

Figure 4.17 shows the function in equation (4.19) and its envelope. Such an envelope
clearly has fewer oscillations than does the original function, as it carries information
on the positions of energy concentration, independent of the locations of individual
peaks and troughs of the correlations.

It has been proposed that extracting envelope information from seismic data
can facilitate the solution of waveform-inversion problems (Shaw & Orcutt, 1985).
Unfortunately, Shaw and Orcutt found that the envelope of seismic data was sensitive
to noise. For the residual-statics problem, however, the original objective function is a
summation of a set of pre-computed one-dimensional correlation functions. By finding
envelopes of the cross-correlation functions rather than of the seismic traces. we work
with information that is less sensitive to noise. Figure 4.18 shows an auto-correlation
function of a seismic trace from field recorded data and its envelope function. The
envelope function clearly has lower frequency content than that of the original signal,
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F1G. 4.17. The correlation function. exp[—(x/10)?] cos(z) and its envelope.

but this in itself does not necessarily make the envelope function a good appropriate
representation of the original signal. For cross-correlation functions, however. the
negative peaks represent out-of-phase alignments among traces. Contributions to
significant minima of stacking-power function are primarily due to positive peaks of the
correlations of which the stacking-power function is composed of. Therefore. small and
negative correlation values are of little interest to us. I propose an alternative definition
of envelope function in the residual-statics estimation. This new definition of envelope
is obtained by an interpolation of all positive peaks of correlation functions. The
cubic-convolution interpolation scheme (Keys, 1981; Kevs & Pann, 1993) is used in
implementations presented later in this section. This slow-varving function represents
global feature of large positive correlation values; henceforth, I refer to this smooth
approximation of a one-dimensional signal as the envelope. Figure 4.19 shows such an
envelope function of the same correlation seismic signal as that shown in Figure 4.18
when cubic-convolution interpolation (Keys, 1981; Keyvs & Pann, 1993) is used as the
interpolation scheme. It can be seen that the envelope obtained by the interpolation
of positive peaks can closely resemble general features of the correlation function.
Using the envelope function, we define a new measure of stacking power.

F(r) = ZO 3 [#ulr 7). (4:20)
1=0 j=z=1

where function <i>ij('r) is the envelope of the correlation ®;;(7). The function in equa-
tion (4.20) uses “partial” information from each correlation functions; that is this
function ignores all information given by correlations except for the location and
amplitude of all positive peaks. Envelope functions contain fewer peaks than do the
correlation functions themselves: therefore. one expects that the summation of these
envelope functions, equation (4.20). will contain fewer local minima than does the ori-
ginal stacking-power function. i.e., the objective function has its complexity reduced.
I shall call F (7) the reduced stacking-power function.
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F1G. 4.18. This figure shows a correlation function of a seismic data (solid) and its
envelope from Hilbert transform (dashed).
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F1G. 4.19. This figure shows the same correlation function as that in Figure 4.18
(solid) and its envelope formed by interpolating the positive peaks (dashed).
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Amplitude

FiG. 4.20. A correlation function between two identical seismic traces and its
envelope function.

In order for equation (4.20) to be a useful objective function, it needs to be a
qualified measure for the stacking quality. Following Lemma 3 (see page 57), we
see that the reduced stacking-power function is. in effect, an interpolated function of
many local minima of the original stacking-power function. Following this, we have
the following observation about the reduced stacking-power function, which can be
easily verified.

Observation 2 (Reduced Stacking-Power Function) The reduced stacking-power
function F has three properties:

1. F contains fewer local minima than does the corresponding original stacking-
power function, F.

2. F maintains the global minimum of the original stacking-power function F', as
well as the values of the original stacking-power function at locations of all local
minima caused by the mazima of all correlation function simultaneously.

3. F is an interpolated function of some local minimna on its corresponding F . so
it maintains significant topographical features of F.

To demonstrate the above observation, let us again consider the alignment of
three identical traces, where the correlation functions are the narrow-band function
as shown in equation (4.19). For simplicity. the envelope function is obtained by
linearly interpolating local peaks of the correlation function. Both the function and
the envelope are shown on the left of Figure 4.21, and the stacking power function
F(7y.72) is shown on the right of Figure 4.21. The left of Figure 4.22 is obtained from
a linear interpolation of all local minima of the stacking-power function F (7, 7). The
contour plot on the right in Figure 4.22 is the corresponding reduced stacking-power
function. It can be seen that these two plots have the same global feature.
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F1G. 4.21. The correlation function, exp/~(z/10)?] cos(x) and its envelope are shown
on the left. The two-dimensional stacking-power function F(7r;,7;) formed by this
correlation is shown on the right.
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F1G. 4.22. Contour plot of the interpolated function from positive peaks of the original
stacking-power function F (7. 7») is shown on the left. The contour plot of the reduced
stacking-power function is shown on the right.
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F1G. 4.23. Contour plots of stack powers as a function of static time-shift at the 10th
and 11th source points, with all other statics held to be correct. The left figure shows
that of the original stacking-power function. while the right figure shows that of the
reduced stacking-power function (using envelopes).

4.3.1 Application to a Synthetic Data-Set

Section C.3 of Appendix C describes a practical residual-statics algorithm using
the envelope algorithm. The surface-consistency condition is assumed (see page 105).
and equation (C.5) is the reduced stacking-power function under the surface-consistent
assumption. In this section, this approach is demonstrated by applying Algorithm 7 to
a svnthetic data set. and the complexity analysis is used to confirm the simplification
of the problem.

Once again. the 53-parameter synthetic data set, with recording geometry shown
in Figure 4.14 is used. Since all traces are generated by copying and shifting of
a field trace, correlations of these traces are therefore shifted versions of the auto-
correlation of the field trace. This auto-correlation function and its envelope are
shown in Figure 4.20. For this problem, the stacking-power function and its reduced
form both have dimensions of 35. When no static-shifts are added to the data, the
global minimum of the objective function is at the origin of the model space.

Not being able to visualize the 53-dimensional objective function in this problem,
we can observe two-dimensional hyper-planes. Figure 4.23 and 4.24 show behavior
of the original stacking power function and its reduced form from slices through the
53-dimensional space. Similar to Figure 4.22. the original stacking-power function
appears to have many local maxima, which are scattered regularly on the 2-D slices.
On the other hand. the reduced stacking-power function is far more simple.

Using the complexity analysis, we find that C, = 4.46 for the reduced stacking-
power function when exactly the same initial sampling and local-descent searches are
used as those used to obtain the results of Figure 4.16. Compared with the estimated
complexity of the original stacking-power function (level 0, C, = 6.44) shown in
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F1G. 4.24. Contour plots of stack power as a function of static time-shift at the 10th
source and the 20th receiver points, with all other statics values held to be correct.
The left figure shows that of the original stacking-power function, while the right figure
shows that of the reduced stacking-power function (using the envelope).

Figure 4.16, this confirms our expectation that the complexity of the reduced stacking-
power function is much reduced.

When the above data are contaminated by severe noise and large source and
receiver statics, the traces are no longer identical. The left of Figure 4.25 shows the
stacked section of this data set contaminated by surface-consistent statics and 50%
additive random noise (the ratio of the RMS amplitude of signal to that of noise
is two). The noise is band-limited Gaussian noise with the same bandwidth as the
original signal. The added statics are generated by a uniformly-distributed random-
number generator between —100, 100] ms. The added and estimated statics are shown
in Figure 4.26. The estimated statics in general agree well with the added statics; the
observed large error at the beginning and end of the receiver statics are caused by
the lack of information when the number of folds of the common-midpoint (CMP)
section is low (see page 103). The stacked section after estimated residual-statics are
corrected is shown on the right of Figure 4.25. Note the continuity of the horizontal
events except at the ends of the section.

In Appendix C, I show the application of this envelope approach to two field
data-set. With the analysis given above and these examples, I conclude that the
envelope approach in the residual-statics estimation is a practical algorithm, especially
for dealing with large static-shifts.
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F1G. 4.25. The stacked section in the presence of surface-consistent static-shifts and
noise is shown on the left. The stacked section after the source and receiver statics
are estimated and corrected is shown on the right. The two figures are plotted with
the same amplitude scale.
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F1G. 4.26. Comparison of the added statics and estimated statics. Horizontal axis is
the index of unknowns: 0 — 19 are sources and 20 — 54 are receivers. The solid-thin
1 line shows the added statics. while the thick-dashed line shows the estimated statics.
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Chapter 5

CONCLUSIONS

5.1 Summary of Major Contributions

Optimization is a widely used tool for solving scientific and engineering problems.
The diversity of such problems makes it difficult to have a single criterion for choosing
the appropriate optimization algorithms. Especially when the dimensionality is high
and our knowledge about the objective function is limited, there is no general rule as to
how to design optimization techniques. The No Free Lunch (NFL) theorem (Wolpert
& Magready. 1995) states that the performance of any optimization algorithm is the
same when averaged over all possible objective functions. The central theme of this
thesis is that we cannot usefully compare optimization techniques unless we have
a meaningful way of characterizing an optimization problem. Specifically, the main
effort of this thesis is to develop a methodology for such a characterization.

In this thesis, I find that the hardness of an optimization problem is directly
related to some topographical features of the corresponding objective function. I
propose that a generic optimization problem can be characterized by an entropy-
based complexity (see Algorithm 3). regardless of the dimensionality of the problem
or whether or not the function is available only point-wise. This complexity measure
encapsulates three important pieces of topographical information about the function:
the number of local minima (n), the width (p;) and relative depth (f(xh;)) of these
minima. More importantly, I show that for any objective function these topographical
features can be estimated by applying some independent local-descent searches (RHC).
followed by a statistical analysis on the results of the RHC.

In actual implementations. results of the complexity estimation are influenced by
both the number of samples used in the RHC (K') and the numerical implementation of
the complexity estimation. The reliability of such results is evaluated using confidence-
intervals and numerical error-analvsis in Chapter 4. For the purpose of the complexity
estimation. it is not necessary that the RHC-searches converge all models to the exact
local extrema. The two essential steps in the RHC are: (1) estimation of the width of
each of the basins of attraction correctly: (2) evaluation of the function values at the
local minima.

Tl-conditioned optimization problems are usually associated with flatness of the
objective function. In this case, pre-mature convergence may mimic the presence of
local minima. This numerical effect can be reflected in the results of the complexity
estimation. Since it is influenced by numerical difficulties in optimization. the estim-
ated complexity represents vet another important aspect of what makes optimization
problems hard.
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The complexity analysis developed in this thesis can be used for studying any
real-valued function whether it is analytical or only available point-wise, especially
when the dimensionality is high. Results of this analysis can represent the hardness
both caused by the multi-modality and by the ill-posedness of the problem. A prom-
ising application of this complexity analysis would be to evaluate the effectiveness of
certain strategies in solving hard optimization problems. In this thesis, this applica-
tion is demonstrated by using complexity analysis to determine the optimal level of
decomposition in using MRA on an optimization problem.

Another important result of this research is its insight into the influence of di-
mensionality on the hardness of generic optimization problems. From the analyses
and examples in the thesis, one can see that dimensionality is not directly related
to the hardness of problems. The most essential factor is the minimum width of the
basins of attraction p,. Therefore. I suggest replacing the notion of “the curse of
dimensionality” with that of “the curse of small basins of attraction”. Similarly. the
number of samples K needed in the complexity analysis is also directly related to the
minimum width of the basins of attraction rather than the dimensionality.

An important application of this complexity analysis is in geophysical inver-
sion problems where high-dimensional. highly multimodal optimization problems are
encountered frequently. As an example, I have investigated the problem of residual-
statics estimation problem in Chapter 4. I first demonstrate the importance of carefully
identifving and taking into account specifics of the problem (see page 56). With the
insights gained from these observations, two strategies are proposed for simplifying
the objective function: applying a multi-resolution analysis (MRA) to the seismic
data, and using the envelope information of the correlation functions. I show that
the complexity analysis can serve as an important tool for evaluating the behavior of
these strategies. In particular, the optimal level of decomposition for the MRA can
be chosen so as to minimize the complexity of the transformed problem.

Finally, development of the CWP Object-Oriented Optimization Library (COOOL)
is also part of the contribution of this research. The library provides a wide variety
of optimization algorithms. sharing a uniform interface to generic objective functions,
making it easy to mix and match optimization algorithms with objective functions.
COOOL does not require much knowledge of C++ or objective-oriented program-
ming. and the user-defined objective function can be written in any programming
language. In addition to this flexibility, further extension of COOOL is easy due to
its object-oriented design.

5.2 Further Studies and Limitations

Many local-descent searches are required for doing this complexity analysis. On
the other hand. since sampling of the model space is independent for each search, this
process is easy to parallelize. It will also be practical to explore subsets of the model
space simultaneously. Therefore. this complexity analysis is a potentially practical
tool for studying hard optimization problems.
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Furthermore. the convergence rate of global-search methods, such as GA and SA.
may be studied under the criterion of this complexity. For example. the complexity
may be used in the same way as the expected hitting time (Shonkwiler & Van Vleck.
1994; Morey. 1996): to determine the optimal parameters in SA. such as the neighbor-
hood structure and the temperature (see page 8).

It is necessary for such an analysis, however, that we have a pre-estimated min-
imum width of the basins of attractions, p,. This quantity has essential importance
for the number of samples required for adequate complexity analysis and implement-
ation strategies discussed in section 3.3. Even with the error estimates obtained from
chapter 3. some uncontrollable factors still can compromise results of the complexity
estimation. It is extremely important to treat the estimated complexity C. carefully.
The reliability of the analysis can be increased by repeated experiments and a Monte
Carlo analysis as illustrated in Figure 4.16.

In addition to the value C, obtained by Algorithm 3, the availability of topo-
graphical information about the basins of attraction is important for further analysis
of the problem. Taking advantage of data obtained during the complexity estimation,
the widths and significance of the basins of attraction. {p;} and {¢;} (see pages 17 and
18), can be used to analyze the cause of the complexity and each basins of attraction
can be studied individually.

When the basin of attraction that leads to the global minimum has small width.
it is essentially impossible for any strategy or analvsis to work. I do not treat such
an extremely pathological case in this study.
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Appendix A

CWP OBJECT-ORIENTED OPTIMIZATION LIBRARY (COOOL)

The CWP object-oriented optimization library (COOOL) is a tool for studying
optimization problems and for aiding in the development of new optimization software.
COOOL consists of a collection of C++ classes (encapsulation of abstract ideas), a
variety of optimization algorithms implemented using these classes, and a collection
of test functions, which can be used to evaluate new algorithms. To use one of
the optimization algorithms, a user codes an objective function (and its derivatives if
available) according to a simple input/output model — in any language. Moreover, the
classes themselves can facilitate the development of new optimization and numerical
linear-algebra software since the routine aspects of such coding will benefit from the
reusability of code inherent in the object-oriented philosophy.

COOOL is the basic tool kit for the research in this thesis. All numerical results,
especially those of RHC, are produced by the local-descent search algorithms in the
COOOL library. I give a brief description of this library in this appendix.

A.1 Design of COOOL
The three criteria behind the development of COOOL are:

1. It provides a consistent application programming interface (API) for solving
optimization problems.

[AV]

. It allows incremental development of the library.
3. It allows application packages to be easily built from the existing librarv.

By consistent, I mean that the formats of the optimization algorithms and ob-
Jective function should be relatively transparent to application users. Figure A.l
schematically illustrates the design of COOOL. Such design of the library provides
flexibility for users to choose optimization methods easily and concentrate on their
specific problems rather than struggling to fit the requirements of the various formats
of optimization algorithms.

By using the object-oriented paradigm in the design and programming, COOOL
is able to achieve the goal stated above. Figure A.2 shows the layered structure used in
the design of the COOOL library. The base level contains the simplest class templates
in COOOL. such as Vector, Matrix, List, Astring, etc. These classes are the basic
elements of COOOL for handling algebraic computations. Special classes, such as
SpaMatrix and DiagMatrix. handle sparse and diagonal matrices efficiently. The
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T ST

F1G. A.1. The design goal of COOOL is to be able to easily include a large vari-
ety of practical optimization problems as well as a large collection of optimization
algorithms. The interface. however, between these two large varieties should be small
and consistent.

-
. Application Level Statics

(ConjugateGradie@

(Quadratichn)
Algorithm Level X

Vector @ @

SpaMatrix

Base Level

FiGc. A.2. Structure of COOQOL. The base level contains generic, simple algebraic
data structures. The main level of COOOL is the algorithm level. which contains
prototyvpes for the necessary components in any optimization problems (see text).
Both levels are extensible with minimal influence on existing classes. Application
packages at the top can be easily built with lower-level objects.
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F1G6. A.3. There are three necessarv elements in any optimization procedure: the
mode] space, the objective function, and the optimization algorithm. They each in-
teract with different aspects of the problem. and the interaction among themselves is
taken care of by COOOL.

optimizer
i par

algorithm level is the main part of COOOL, containing classes for three necessary
components in any optimization problems: unknown parameters (Model), objective
functions (ObjFcn), and optimization algorithms (Optima). The application level is
the most special purpose and sophisticated level where problem-specific packages can
be built with existing classes from lower levels. For example. we should be able to
build a package for a certain residual-statics problem with the flexibility of choosing
any of the mathematical optimization methods. The structure of COOQOL shown in
Figure A.2 is easily extensible, where all classes at each levels can be easily accessed
(by either adding or modifving) with minimum influence on others.

A key point in COOOL is that communication between optimization algorithms
and objective functions is transparent to users. To use COOOL, a user needs ounly to
construct several objects by choosing from the library: namely. a Model. an ObjFcn.
and an Optima. The interior computation and communication among these objects
are handled by COOOL. Figure A.3 shows that, from this level of COOOL. there are
only three interfaces where users need to choose the correct objects from the derived
classes of each abstract class.

A.2 Optimization Methods in COOOL

Figure A.4 shows a classification of the optimization methods included in the
current release of the library. The two main tvpes of optimization algorithm are:
linear solvers and local optimization methods. Global optimization methods will be
part of a future release.
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F1G. A.4. An overview of the optimization algorithms contained in COOOL. Included
are linear solvers for rectangular linear systems using both least squares and general ¢,
norms, and local methods based on direct search and quasi-Newton methods. Monte
Carlo global optimization methods will be part of a future release of COOOL.
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A.2.1 Linear Solvers

All of the linear solvers in COOOL are iterative. Descriptions of most algorithms
can be found in Scales and Smith (1994). Presently COOOL implements two flavors
of row action method: ART (Algebraic Reconstruction Technique) and SIRT (Simul-
taneous Iterative Reconstruction Technique). These methods are especially attractive
when problems are too big to fit into memory. When the non-zero matrix elements
fit into memory, CGLS (Conjugate Gradient Least Squares) is verv attractive. Fi-
nally, a version of the IRLS (Iteratively Re-weighted Least-Squares) algorithm is also
included to efficiently solve linear systems in the £, norm. This algorithm takes ad-
vantage of certain approximations to achieve nearly the speed of conventional least
squares methods while being able to robustly handle long-tailed noise distributions.

A.2.2 Local Optimization Methods

The algorithms presented here can be applied to quadratic and non-quadratic
objective functions alike. The term “local” refers both to the fact that only inform-
ation about a function from the neighborhood of the current approximation is used
in updating the approximation, and that these methods usually converge to extrema
near the starting models. As a result. the global structure of an objective function is
unknown to a local method. Some of these techniques, such as Downhill Simplex and
Powell's method do not require explicit derivatives of the objective function. Others.
such as the quasi-Newton methods. require at least the gradient. In the latter case. if
analytic expressions are not available for the derivatives. a module for finite-difference
calculation of the gradient is provided. COOOL also includes non-quadratic gener-
alizations of the conjugate gradient method incorporating two different kind of line
search procedures.

A.3 Objective Functions

Objective functions are those functions to be minimized (or maximized). Several
analytical test functions are implemented in the library. They include a generalized N-
dimensional quadratic function, N-dimensional Rosenbrock function, N-dimensional
Griewank function and a two-dimensional multimodal analytical function.

For realistic problems, the formulation of objective functions may vary tremend-
ously. A user can write the objective function as a stand-alone Unix executable which
reads models from its standard input and writes numbers to its standard output.
COOOL initiates this executable (using ideas developed by Don Libes in his Ezpect
package) in such a way as to take over the objective function’s input and output.
(This communication between COOOL and the objective function is called a pseudo-
tty in Unix and is somewhat like a pipe.) The net result is that the objective function
can be written in any language and may take advantage of hardware-specific features.
This communication model is illustrated in Fig. A.5. COOOL sends out a flag to
the user-defined objective-function file, indicating whether the function value or its
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Fi1c. A3, A model of communication between an objective function and an op-
timization class. The user-defined stand-alone objective function is responsible for
evaluating the value or gradient for a set of parameters according to the message sent
by the optimization algorithm.

derivatives are needed, followed by a set of model parameters. The objective function
reads the flag and the model from standard input, and writes the result to standard
output; COOOL will then capture this information and supply it to an optimization
algorithm for an updated model. If no analytical gradient information is available,
COOOL will approximate the gradient vector using a finite-difference technique. This
simple communication model allows us to consider algorithms as diverse as downhill
simplex, Newton’s method. and simulated annealing (SA) within a unified framework.

A.4 Model Spaces

The third necessary component in any optimization problem is the domain of
the objective function - model space. For representing specific problems. an object
belonging to the class Model needs to be constructed by the user. The attributes
of the model space are encapsulated in the Model class constructed by the user,
and these features are handled internally, independent of the ObjFens and Optima.
With such an encapsulation, the ObjFcns and Optima classes do not have to deal
with whether the model space is an N-dimensional real space R (continuous without
boundary). a hyper-cube (continuous with boundary). an N-dimensional integer space
IV (discrete without boundary), or a hyper-lattice (discrete with boundary).

A recent addition to COOOL is that inequality constraints on the model space
can be handled by the Model class as well. The user needs to code a function that
returns an integer indicating whether or not the current mode] satisfies the constraints.

A pseudo-code for solving a descretized optimization problem using COOOL is
shown in Figure A.6. Although COOOL is written in C+++, little knowledge of C+—+is
needed for using it. Figure A.7 is the pseudo-code for evaluating the objective function
and the gradients. This code can be written in FORTRAN or any other language and
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main(arge, **argv)
{

b

// Construct a constrained Model with n unknowns
Model m(n, upper, lower, Am);

// Construct an ObjFecn: user-defined function, statics
ObjFen *f = new ObjFcen( “statics”, ...):

// Construct an Optima: choose an optimization method |
Optima “opt = new ConjugateGradient!f.imaz.tol, ...): |

// Initialize the model to mg
m=my;

// COOOL returns an optimal model optm
Model optm = opt — optimizer(m}:

3

i

F1G. A.6. Pseudo-code for using COOOL to solve an optimization problem. Con-
straints of model parameters are separated from optimization algorithms. The model
space is bounded by the interval [lower. upper]. If the model is descretized, the
grid-size Am is specified when constructing the Model object.

compiled independently without linking to COOOQOL. Evaluations of objective functions
may be the most computationally intensive step for manyv optimization problems:
COOOL allows users to code them in the most efficient language available.
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while (cin > iflag) {

cin 3> m;

if (iflag == 0) {
evaluate the objective function at m:
cout € F(m);

}

else {
evaluate the gradient at m;
cout K g(m);

FiG. A.7. Pseudo-code for constructing an objective-function-evaluation problem.
This code could be written in either C, C++, or FORTRAN.
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Appendix B

MULTI-RESOLUTION ANALYSIS (MRA)

Multiresolution analysis (MRA) was formulated based on the study of orthonor-
mal. compactly supported wavelet bases. Wavelet theory and its applications are
rapidly developing fields in applied mathematics and signal analysis. Wavelet basis
representation of certain signals show advantages over the traditional Fourier basis
representation both theoretically and practically. The MRA concept, initiated by
Meyer (1992) and Mallat (1989). provides a natural framework for the understanding
of wavelet bases. Here, I give a brief description of orthonormal, compactly supported
wavelet bases; detailed information can be found, for example. in Daubechies (1992)
and Jawerth and Sweldens (1994).

An orthonormal, compactly-supported wavelet basis of L?(R) is formed by the
dilation and translation of a single function «:(z), called the wavelet function:

vik(z) = 270272 — k), jkeZ. (B.1)

where Z is the set of integers. In equation (B.1), the function «> has M vanishing mo-
ments up to order M — 1, and it satisfies the following “two-scale” difference equation.

L-1
w(z) =V2Y g2z — k). (B.2)
k=0

The wavelet function v(x) has a companion, the scaling function ¢(z), which also
forms a set of orthonormal bases of LZ(R.),

ojx(z) =262z ~ k); jkeZ (B.3)

The scaling function ¢(z) satisfies,

and the “two-scale difference” equation.
L-i
o(z) = V2 > ho(2z — k). (B.5)
k=0

In equations (B.2) and (B.3), two coefficient sets {gx} and {hi} have the same

4

finite length L for a certain basis, where L is related to the number of vanishing mo-
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F1Gc. B.1. Decomposition of a Ricker wavelet at increasingly more coarse resolution
levels. The bases of the decompositions are Daubechies wavelets with two and three
vanishing moments for the left and right figure, respectively. The first traces shows
the signal at the finest level. that is the original signal.

ments M in ¥(z). For example, L = 2M in the Daubechies wavelets. In the wavelet
representation of signals, {ht}r=o...—1 behaves as a low-pass filter and {gx}r=o...L-1
behaves as a high-pass filter to signals. These two filters are related by

gr = (_l)khL—k; k= 07 "':L - 1: (86)

and are called quadrature mirror filters (QMF). An extensive study of the QMF can
be found in (Monzon, 1994).

Figure B.1 shows the decomposition of a simple svnthetic seismic trace at various
resolution levels for two different wavelet functions. The original trace is a Ricker
wavelet. i.e.. a normalized second-order derivative of a Gaussian function, with a
peak frequency of 30 Hz. The left figure shows the decomposition by a Daubechies
orthonormal basis with two vanishing moments. while the right figure shows the same
decomposition with three vanishing moments. The Ricker wavelet (f) is the leftmost
trace in each box, while the remaining traces correspond to f’ of equation (4.13),
where j = 1. 2,3, respectively. From Figure B.1, it can be seen that the decomposed
traces contains progressively lower frequencies with the increase of decomposition
levels. Comparing the two plots in Figure B.1. we also observe that the increasing the
number of vanishing moments increases the smoothness of the decomposed signal.

100



éf'i' g

Complexiti of optimization problems

# Traces # Traces
001234567891'0 09‘]2,31}5678?1'0
| | | |
! i
0.2- 024 | | l
0.4+

i ;
0.8- i )
1.0- 1.0-
|
1.24 L 1.2 | |

Level-0 Shifted Traces Level-3 Shifted Traces

F1G. B.2. Ten traces of randomly shifted Ricker-wavelet traces (left) and their de-
composition at resolution level 3 in the Daubechies wavelet bases with two vanishing
moments (right).

A Symmetric and Shift-Invariant Wavelet Basis In many applications.
it is required that the processes applied to the obtained signals be shift-invariant. For
example, in examining the multi-scale property in residual-statics correction problems.
1t i1s important that the error-fitting function at each scale have a common — or at
least close to common — global minimum. Therefore, we expect that the relative
time-shifts among traces at each scale to be almost the same as it was in the original
data. and that the waveforms are not deformed from one trace to another. However,
the orthonormal wavelet basis representations are generally not shift-invariant. This
shift-variance of the orthonormal, compactly-supported wavelet an be seen directly
from the construction of their bases, equations (B.2) and (B.5), because of the change
of step sizes among different scales in these definitions. Therefore. the Daubechies
wavelet bases are not suitable for our purpose. Figure B.2 shows ten copies of ran-
domly shifted Ricker-wavelet traces, and their projections onto the subspace V3 in
the Daubechies bases with two vanishing moments. The decomposed waveforms on
the right of Figure B.2 are deformed to different shapes among traces with different
time-shifts, and they do not have the same relative time shifts as those shown on the
left of Figure B.2.

Saito and Beylkin (1993) suggested using the shell of an orthonormal basis when
shift-invariance is required. Without loss of generality, let us assume that the signal
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F1G. B.3. The decomposition of ten copies of randomly shifted Ricker-wavelet traces.
in the shell of the Daubechies basis with two vanishing moments. at resolution levels
3 and 4. The original traces are shown on the left of Figure 3.
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F1G. B.4. The decomposition of ten copies of randomly shifted Ricker-wavelet traces,
in the auto-correlation shell of Daubechies basis with two vanishing moments. at
resolution levels 3 and 4. The original traces are shown on the left of Figure 3.
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we consider has finite length N = 2/. Consider a family of functions
{vj.k(x)}igjs.l,OSkS;\'—l and {Oj.k(x)}ESng.05k_<_.-'\"—1:

where : . '
vik(z) =27 u(277 (z — k), (B.7)

S54(x) = 2796(273 (z — k), (B.8)

where the functions ¥(z) and o(x) are a wavelet and scaling function. respectively.
The new family of functions defined by equations (B.7) and (B.8) can also serve as
bases for subspaces 1; and 1 in MRA. They are complete, but they are redundant
and not orthonormal (Saito, 1994). Therefore, the decomposition of a function in these
bases is not unique. However, by forcing an additional constraint on the projection. a
function f € ¥, may still be decomposed in the shell of an orthonormal basis in much
the same way as it was in an orthonormal wavelet basis itself. In this case, the basis
functions in equations (4.13) and (4.14) are replaced by v;(z) and E)]k(r)

The representation of signals using this family of bases are shift-invariant among
different scales. Figure B.3 shows the same numerical experiment as that in Figure B.2,
except using the shell of orthonormal bases expansion at resolution levels 3 and 4. The
relative time-shifts among traces are preserved while the waveforms are deformed
to the same extent. However. the original svmmetric waveforms are deformed to
asvmmetric waveforms. This deformation of the waveforms is not desirable, and may
cause problems for some applications.

To overcome this problem. a family of svmmetric, shift-invariant bases are intro-
duced by Saito and Bevlkin (1993). Let ®(z) and ¥(z) be auto-correlation functions
of the scaling function and wavelet function, respectively:

o(z) = [6(y) oly - 2) dy. (B.9)
¥(z) = [vly) vly - =) dy, (B.10)

where v+ and o satisfy equations (B.2) and (B.3) respectively. Construct a family of
bases

where . .
8,4(x) = 279120(27 (z - k), (B.11)
Ux(z) = 2792827 (x - k)). (B.12)
Now., we have an auto-correlation shell of an orthonormal basis that is both symmetric
and shift-invariant. Figure B.4 shows the expansion of shifted Ricker-wavelet traces in

the auto-correlation shell of Daubechies basis. It can be seen that both the svmmetry
of the waveforms and the relative time-shifts are preserved at resolution levels 3 and
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There exists a fast algorithm for expanding a function f € 1} using the auto-
correlation shell of orthonormal basis (Saito & Beylkin, 1993). I give only the formulas
for the discrete expansion: detailed derivation can be found in (Saito & Beylkin, 1993).

Suppose that Sj and Dy are the projected signal onto the subspaces 1; and W
at the sampled positions. respectively: that is

Si = f/(kA). D} =Dfi(kA),

where A is the sampling interval. Then, two symmetric filters, P = {pi}-r-1<k<r1
and Q = {¢i}-r-1<k<r—1. are applied recursively to the signal we wish to decompose,

L-1

Si= X om Sl{;‘i)iﬂz
l=—L=1
. L—; 3 1
Dy = Z a 51];21‘—112 (B.13)
I=—1-=1

where 0 < k < N, 1< j<.J, and L is the filter length in the “two-scale difference”
equations of wavelet and scaling functions as in equations (B.2) and (B.3). In equa-
tion (B.13), N = 2/ is the number of samples of the signal. and the filter coefficients
Dr and gy are,

2—1/2: for £k = 0.
T {2-3/ ay:, otherwise; (B.14)
and
2-12 fork=0 ]
T 7 ’ B.1
& { —pr, Otherwise. (B.15)

In equations (B.14) and (B.13), coefficients {ax}r=1,..,-1 are the correlation of the
low-pass filter {h;},=0....1—1 in equation (B.3),

(B.16)

_J2sE R by hey. for Kk oodd,
ar =
0. for k even.
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Appendix C

SURFACE-CONSISTENT RESIDUAL-STATICS ESTIMATION

C.1 The Surface-Consistency Assumption

Statics are the time-shift approximations to the time-distortions in seismic-reflection
data caused by heterogeneous material properties in the Earth’s near surface. The goal
of residual-statics estimation is to look for the time-shift of each trace by maximizing
the alignment of the traces to be stacked together. For realistic residual-statics estim-
ation problems, it is usually the case that the traces cannot be shifted independently.

It is mostly the case in reality that the near-surface heterogeneity is comprised of
lower-velocity material than those in the deeper layers. Hence for most residual-statics
problems, it is often assumed that waves are reflected from deep interfaces and are
traveling through the near-surface with approximately vertical ray paths. Although
not always true, it has been a good enough working assumption for many practical
problems. Therefore. residual-statics are surface consistent; that is. statics of each
trace are the additive time distortion of near-source and near-receiver heterogeneities
(source-statics s and receiver-statics r). regardless of the ray paths connected with it.
Figure C.1 illustrates the similarity of travel paths near each source and each receiver.

The recorded reflection seismic signals are usually sorted into the common-
midpoint (CMP) domain, where the two major axes are the midpoint y (of the source
and receiver locations) and half-offset h (half distance between the source and re-
ceivers). The number of different offsets in a CMP section is usually referred to as
the number of folds of this CMP section. Assuming that the time-shifts between the
input traces for statics correction are caused only by the near-surface heterogeneity,
the unknown parameters to be estimated would be s and r. For this particular case,
the stack-power function becomes

F(S:r) = - Z Z (I)Z;.h-_’(”—(sf r)): (Cl)

Y highe

where y denotes the midpoint index. ¢ is the time index over a specified window,
and h is the offset index, and where ®} , (7) is the cross-correlation between the
normal-moveout-corrected traces (see page 54) of offsets h; and h, at midpoint y.
When ignoring the non-corrected (residual) normal-moveout and time-shift caused by
subsurface structure, function 7(s. r) is determined by the recording geometry,

T = Si(yhy) T Tilyh:) T Sitydn) T Tilyahe):
and #(y. h) and j(y, h) are the source and receiver indices for midpoint y and offset h.
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F1c. C.1. A hypothetical model of the Earth’s upper crust showing rays associated
with seismic waves propagating down from sources on the surface, reflecting off geo-
logic boundaries and traveling upwards to receivers on the surface. Static-shifts of
the seismic traces are caused by the combined time-distortions of near-source and
near-receiver heterogeneities in the weathering layer.

respectively. Therefore, solving a residual-statics problem is a nonlinear optimization
wherein we look for s.r that
min F(s,r).
S.r

This is a non-linear approach developed by Rothman (19835; 1986).

In some cases, some factors other than statics can cause the misalignment of
nearby traces. For example. we can include a residual normal-movemout term, when
the correction for the propagation (normal moveout) is not perfect, and a structural
factor, which is the zero-offset travel-time difference caused by the subsurface struc-
ture. When these are considered. 7; should be a linear function of all these contributing
factors (Taner et al.. 1974: Wiggins et al., 1976).

C.2 Conventional Residual-Statics Approaches Revisited

From Observation 1 in Chapter 4. a stacking-power function could be separable
after a linear transformation. Therefore. this high-dimensional optimization problem
can be reduced to a set of one-dimensional optimization problems, followed by the
solution of a set of linear system. Such a two-step approach can be described by the
following algorithm.

Algorithm 6 (Linear Approach for Residual-Statics Estimation) The goal of
this algorithm is to find a set of parameters m*. such that the function F(m) of
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equation (4.3) at this point is the global minimum in the model space. i.c..
F(m”) < F(m),
where m is an arbitrary model in the model space.
1. Define a new set of variables.
Tk j) = 7aj(m).
After this linear transformation. equation (4.3) becomes,

F(T) == 33 ®(Tus), (C.2)

i g
where k is an indez for each of correlations functions.

2. Independently. find global mazima T}, .\ for each of the one-dimensional cor-
relation functions ®(T;) i.e.,

O(T;) > ®(Ti) Vk.

Then, the global minimum of function F (T) would be at T*, whose components
are T;;. That is,

F(T*) < F(T).

3. Solve a linear system of equations in unknown parameters m.
7(m) =T. (C.3)

By solving the linear system equation (C.3), we find the global minimum of the
stacking-power function equation (4.3).

The output of this algorithm is a set of parameters m”. such that,

F(m") < F(m) Vme M.

In Algorithm 6, we solve a high-dimensional optimization problem by a two-step
approach: a series of one-dimensional optimization followed by solving a linear sys-
tem. With the assumption of surface-consistency and taking into account the residual
normal-moveout and the subsurface structure. the linear system in equation (C.3) is
comprised of linear equations,

Tppigy = 8 +75+ Ge = 7nkx?j- (C.4)
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where s; is the static time-shift associated with the ith source:

7; 18 the static time-shift associated with the jth receiver;

g is the normal-incident travel-time from the datum plane to a surface reflector at
the kth CMP gather, where k = (i + j)/2:

my. 1s the time-averaged residual-moveout coefficient at the kth CMP:

z;j is the known offset between the jth receiver and the ith source.

Equation (C.4) is a familiar equation used in conventional residual-statics estimation
(Taner et al., 1974; Wiggins et al., 1976). Therefore, one special case of Algorithm 6 is,
in fact. the conventional linear approach in statics, wherein the maximum correlation
time is picked from each of the correlations. The time-picking procedure is. in effect.
the procedure of one-dimensional optimization, at step 2 of Algorithm 6.

From the above analyses the decomposition of high-dimensional optimization to
a set of one-dimensional problems is exactly. As long as the time-picking on correl-
ation functions is correct, the statics results obtained from solving the linear system
equation (C.3). is no worse than that of the non-linear approach of directly optimizing
the corresponding high-dimensional stacking-power function.

Due to its computational efficiency, the conventional linear approach is the one
most commonly used in industry for residual-statics estimation. However, this is
overly optimistic about the seismic data in the sense that the only information used
from the seismic data are the time-lags corresponding to the correlation peaks. Results
of the statics estimation rely entirely on the time-picking Tyi5y- When the seismic data
are contaminated by severe noise and large statics, time-picking becomes difficult and
ambiguous. If incorrect peaks are picked from the correlation function, (i. e., cycle
skips) resulting statics estimation would be incorrect and seismic events would be
misaligned.

For problems with severe noise and large statics, Ronen and Claerbout (1983)
proposed using equation (4.3) directly as the objective function for the optimization.
Global searches. such as simulated annealing (SA) and genetic algorithms (GAs), are
generally needed for searching the global optimization of stacking-power functions
(Rothman, 1985: Rothman. 1986; Smith et al., 1992). These global searches require
intensive computation.

While oscillations in seismic data cause local extrema of stacking-power functions,
they are not the only contributing factor, according the statement 3 of Observation 1.
There exist local extrema on stacking-power functions that are not caused by the
alignments of seismic traces. We are not interested in these spurious minima in
residual-statics estimation. Therefore. as also pointed out by (Siegel. 1991), although
direct optimization of the stacking-power functions uses full information in the seismic
data, it suffers from the unnecessary complications of spurious local minima, and the
computation cost is high due to the high complexity of the objective function.
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C.3 An Algorithm of for Envelope Approach

C.3.1 The Algorithm

Ignoring residual normal-moveout and sub-surface structure, the mis-alignments
of seismic traces within a CMP section are caused by only the source- and receiver-
statics. Under such conditions, the objective function is the stacking-power in equa-
tion (C.1). As discussed in section C.3, this high-dimensional. highly multimodal
objective function can be simplified by using the envelope data. The corresponding
reduced stacking-power function becomes

Fisr)=> Y & , (r(s,1)). (C.3)

Y hi#he

where é)%;_h?(T) is the envelope of correlation functions of &} , (7). To keep the
smoothness. the cubic-convolution interpolation scheme is used throughout the project
(Kevs, 1981: Keys & Pann, 1993).

Now, we can design an algorithm for estimating residual statics for NMO-corrected.
CMP data contaminated by surface-consistent statics as follows,

Algorithm 7 Residual-Statics Estimation using Reduced Stacking-Power

la) (Pre-compute and store:) For all cross-correlation ®(7). find positive-peaks
on all cross-correlation between traces for all CMP. Use the cubic convo-
lution technique (Keys & Pann, 1993) to form envelope of the sequences
(7).

/b) (Gross estimation of large-magnitude statics:) Local searches on the re-
duced stacking-power function F(5.7) for the initial model 5,.7; correct
data for the estimated statics.

(¢) (Refinement:) After large-magnitude statics are corrected in step (i), res-
ults can be refined by optirnizing the stacking-power function using local op-
timazation with 0 initial guess. or a conventional linearized statics-estimation
procedure. Depending upon results from step (b). this step may not be ne-
cessary.

Where the reduced stacking-power function causes a loss of resolution, the last step
of refinement is important for further improvement of the stacking quality.

The optimization method used Algorithm 7 is the same as that used in a conven-
tional non-linear residual-statics approach. The only difference in Algorithm 7 is that
the input data consist of the envelope functions. instead of the correlation functions
themselves. Therefore, the implementation of Algorithm 7 can use existence software,
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F1a. C.2. Alberta Foothills data: conventional statics-corrected stacked section.
Cycle skipping has disrupted continuity in the circled area.

with only the addition of software for extracting envelope information from correlation
data.

In Section 4.3.1, I showed an application of Algorithm 7 to a synthetic data set.
The analysis show that this approach can indeed simplifv the objective function. and
only local-descent searches are needed in the implementation. The svnthetic data-set
also show that this approach works well for large static-shifts (about 100 ms) and is
robust in the presence of random noise. Now, I show the application to two field
data-set contaminated by large statics. Use of conventional methods has introduced
cvele-skips for both data sets.

C.3.2 Application to Alberta Foothill Data

The Alberta Foothill data is contaminated by large statics which disrupt continu-
ity of strong reflection events in stacked sections. Figure C.2 shows a stacked section,
corrected with residual statics using the ProMax software. The result of cycle skipping
can be observed at about CMP 420.
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Fi1G. C.3. Left figure shows 30 stacked CMP gathers from the Alberta Foothills data
set before residual statics are corrected. The right figure shows the same stacked
* section after residual statics are corrected using the envelope approach.

r— ™ 5

111

p—— e



Hongling Lvdia Deng

P X it o2 S YD ITPITYS

F1G. C.4. Paradox basin data: conventional statics-corrected stacked section. Cycle
skipping has disrupted continuity in the circled area.

This data set has an average of 60 fold. I choose 50 CMP gathers from this
dataset, which was obtained with 88 sources and 88 receivers. Therefore, this statics-
estimation problem is an optimization of 176 dimensions. The stacked section for
CMP 401-450 is shown on the left of Figure C.3. Discontinuity of events is severe
in this section (see, for example, the reflections between 1.5 and 2.0s). The statics-
corrected stacked section using the proposed residual-statics correction algorithm is
shown on the right of Figure C.3, which shows no discontinuity of reflection events.

The reflection events between 1.5 and 2.0s shows different shapes across the
section between Figures C.2 and C.3. This is caused by an additional elevation cor-
rection done internally by ProMax in Figure C.2. To solve this 176-dimensional global
optimization problem, run time was around 48 minutes on an SGI Indy.

C.3.3 Application to Paradox Basin Data

I test Algorithm 7 on another data set. Figure C.4 shows a stacked section
corrected with residual statics estimated by a conventional method in ProMax. This
output shows a strong discontinuity at around CMP 2110. especially for the event of
0.8s.

This data set has an average fold of 15, I processed 100 CMPs, with 35 sources
and 146 receivers. This residual-statics estimation is a 181-dimensional global optim-
ization problem. A stacked section containing 100 CMPs before the residual statics
are corrected is shown on the left of Figure C.5. The right figure in C.5 shows the
stacked section after residual statics are estimated and corrected using Algorithm 7.
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Fi1G. C.5. Stacked section of Paradox data before residual statics are corrected is shown
on the left, and the stacked Paradox data after statics are estimated and corrected
using the envelope approach is shown on the right.

The strong event at around 0.8 s is almost continuous across the section, and some
stratigraphic details can be seen.

The continuity of the event at 0.8s. however, is still not satisfactory around
CMP 2110. This results from the loss of resolution in the reduced stacking-power
function. A second iteration of optimizing the stacking-power function is needed for
refinement. Figure C.6 shows the result of this second iteration using a non-linear
conjugate-gradient search with O initial guess. The lateral continuity of the strong
event at around 0.8s has notably improved. Each iteration of the statics estimation
for this data set is about 25 minutes on an SGI Indy.
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Second iteration

F1G. C.6. Stacked section of Paradox data after the second iteration of residual-statics
correction. The statics are estimated by optimizing the stacking-power function formed
from the right of Figure C.5 by a non-linear conjugate-gradient search with 0 initial
guess. The continuity of events around 0.8 s has notably improved.
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