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ABSTRACT

The main difficulty in extending seismic processing to anisotropic media is the
recovery of anisotropic velocity fields from surface reflection data. Here, I suggest
carrying out velocity analysis for transversely isotropic (TT) media by inverting the
dependence of P-wave moveout velocities on the ray parameter. The inversion tech-
nique is based on the exact analytic equation for the normal-moveout (NMO) velocity
for dipping reflectors in anisotropic media, derived by Tsvankin (1995).

I show that P-wave NMO velocity in homogeneous TI media with a vertical
symmetry axis (VTI media) depends just on the zero-dip value Vimo(0) and a new
effective parameter 7 that reduces to the difference between Thomsen parameters €
and & in the limit of weak anisotropy. The inversion procedure makes it possible
to obtain 7 and reconstruct the NMO velocity as a function of ray parameter using
moveout velocities for two different dips. Moreover, Vimo(0) and n determine not
only the NMO velocity, but also long-spread (nonhyperbolic) P-wave moveout for
horizontal reflectors and time-migration impulse response. This means that inversion
of dip-moveout information allows one to perform all time-processing steps in TI
media [NMO, dip-moveout correction (DMO), and time migration] using only surface
P-wave data. Isotropic time-processing methods remain entirely valid for elliptical
anisotropy (e = 0).

Accurate time-to-depth conversion, however, requires that the vertical velocity
Vpo be resolved independently. In some cases Vpq is known (e.g., from check shots or
well logs); then the anisotropies € and ¢ can be found by inverting two P-wave NMO
velocities corresponding to a horizontal and a dipping reflector. If no well information
is available, all three parameters (Vpo, €, and §) can be obtained by combining the
dip inversion results with shear-wave information, such as the P-SV or S V-SV wave
NMO velocities for a horizontal reflector.

Generalization of the single-layer NMO equation for layered anisotropic media
with a dipping reflector provides a basis for extending anisotropic velocity analysis to
vertically inhomogeneous media. This NMO equation is based on a root-mean-square
(rms) average of interval NMO velocities that correspond to a single ray parameter,
that of the dipping event. Therefore, interval NMO velocities [including the normal-
moveout velocity for horizontal events, Vimo(0)] can be extracted from the stacking
velocities using a Dix-type differentiation procedure.

DMO impulse responses in typical transversely isotropic (TI) models (such as
those associated with shales) deviate substantially from the familiar elliptical shape
associated with responses in homogeneous isotropic media (to the extent that trip-
lications arise even where the medium is homogeneous). Such deviations can exceed
those caused by vertical inhomogeneity, thus emphasizing the importance of taking
anisotropy into account in DMO processing.
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Time migration, like dip moveout, depends on the same two parameters in vertic-
ally inhomogeneous media, namely V},,,(0) and 7, both of which can vary with depth.
Therefore, Vimo(0) and 7 estimated using the dip dependency of P-wave moveout
velocity can be used for TI time migration.

Application of anisotropic processing to P-wave data from offshore Africa and
offshore Trinidad demonstrates the importance of considering anisotropy, especially
as it pertains to focussing and imaging of dipping events.
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Seismic processing in transversely isotropic media

Chapter 1

INTRODUCTION

Progress in accounting for anisotropy in seismic processing has been slow, mostly
as a result of the difficulty in obtaining anisotropic velocity fields from surface seismic
data. For instance, there exist a number of migration algorithms for transversely
isotropic media (VerWest, 1989; Sena and Toksoz, 1993; Alkhalifah, 1995b), but their
application requires knowledge of the anisotropic velocity model. Clearly, the recovery
of several independent elastic coefficients needed to reconstruct the anisotropic velocity
function is much more complicated than is conventional velocity analysis for isotropic
media, especially due to the limited angle coverage of reflection surveys.

Despite the growing recognition in the geophysical community of the presence
of anisotropy, skepticism still exists regarding its importance. It is tempting to sug-
gest that anisotropy does not exist for surface seismic P-wave data or that it is weak
enough to ignore. The isotropic assumption seems to have worked well through the
years; this is understandable since if one does not look for the existence of anisotropy
in P-wave data, it can often go unnoticed. In addition, the laws that govern the phys-
ics of wave propagation in anisotropic media result in equations of wave propagation
that are much more complicated than those associated with isotropic media, requir-
ing, among other things, multi-parameter representation and extraction. Since simple
isotropic processing seems to work in practice, what then is the issue with ignoring
the presence of anisotropy? Simply, where the subsurface is anisotropic, and evidence
increasingly suggests that anisotropy is rather pervasive, processing that makes the
erroneous assumption of isotropy yields errors in seismic images and, thus, interpret-
ations. One of the anisotropy-related phenomena that was recognized more than a
decade ago is that of mis-ties in time-to-depth conversion caused by the difference
between the stacking and vertical velocity in anisotropic media (Banik, 1984). Also
recently attracting the attention of the exploration community are the difficulties ex-
perienced by conventional processing methods (i.e., those based on the assumption
of isotropy) in imaging of dipping reflectors, such as fault planes, below transversely
isotropic formations (Larner and Cohen, 1993; Alkhalifah and Larner, 1994). There-
fore, the first question that comes to mind pertains to the existence and importance
of considering anisotropy in seismic processing. '

1.1 Does anisotropy exist on the surface seismic exploration scale, and is
it important?

The presence of anisotropy has been, through the years, well documented in
laboratory studies of cores using high-frequency (> 100 kHz; i.e., short wavelength)
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seismic waves (e.g., Thomsen, 1986). Researchers have noticed velocity variations of
more than 30% between vertical and horizontal directions of wave propagation in such
cores. However, the behavior of low-frequency (~ 30 Hz; i.e., long wavelength) seis-
mic waves (associated typically with surface exploration) penetrating the subsurface
differs from that of the high-frequency ones; the high-frequency portion of the seismic
wavefield reacts to subsurface features of various size differently than do low-frequency
portions. Such behavior is referred to as dispersion.

Most of the emphasis during the past decade has been focused on the influence of
anisotropy on the behavior of shear waves (e.g., Crampin, 1985). Splitting of the shear
waves into two components (a fast shear wave and a slow one) has been routinely ob-
served both in vertical seismic profiles (VSP) and in surface seismic exploration data.
Such splitting cannot be explained within the confines of the isotropic theory; aniso-
tropy must be present to cause splitting of the components. Thus, if long-wavelength
shear waves are influenced by anisotropy due to fractures, then theory tells us that
P-waves would also be influenced by the same anisotropy that caused the shear-wave
splitting. The influence for P-waves is manifested in the change of its velocity with
direction.

Some of the anisotropy on the surface-seismic exploration scale, unlike that on
laboratory-size samples, which may be attributed primarily to intrinsic anisotropy
(anisotropy inherent in the crystal structure of the rock), is caused by layering of
thickness that is smaller than the typical seismic wavelength. Rarely do we look at
outcrops without noticing their fine layering. These outcrops are usually of a size of
a single typical surface seismic wavelength (~ 100 m). Therefore, seismic P-waves
traveling parallel to the thin layering is expected to encounter greater stiffness, and
thus travel faster than those traveling perpendicular to the layering, where the sedi-
ments, due to the layering, are looser. Although the fine layering is usually considered
as 1-D heterogeneity, its influence on long-period seismic waves is well approximated
(especially kinematically) by a transversely isotropic medium with a symmetry axis
perpendicular to layering (Postma, 1955; Krey and Helbig, 1956; Berryman, 1979;
Hudson, 1981). Such heterogeneous media are thus considered to be equivalently
anisotropic.

What better way to prove the existence of P-wave anisotropy and its importance
than to observe its influence on actual field data? Figure 1.1 shows constant-velocity
stacks extracted from data from offshore Africa (more details on these data are given
later) after applying normal moveout correction, with each of several constant stack-
ing velocities, followed by isotropic homogeneous dip-moveout (DMO) correction (such
DMO is independent of velocity). A goal of DMO processing is to focus both hori-
zontal and dipping events on the same velocity panel. Here, however, while reflectors
with relatively small dip (~6 degrees) in Figure 1.1 are imaged best with a stacking
velocity of 2200 m/s, the steep reflector (fault) comes into focus at a much higher ve-
locity (2400-2450 m/s). Thus, the conventional DMO processing has failed to remove
the dip-dependence of stacking velocity. As a result, stacking will produce a weak,
poorly-focussed image of the dipping fault plane.
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Fic. 1.1. Constant-velocity stacks for the offshore Africa area (below the gray bar in
Figure 1.4) after the conventional sequence of NMO and constant-velocity, isotropic
DMO. The velocity values at the top correspond to stacking velocities for horizontal
reflectors.
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Conventional DMO fails here because the stacking (moveout) velocity increases
with dip much faster than in the isotropic media assumed in the DMO algorithm. If the
shortcoming of the DMO processing had been caused by a vertical velocity gradient,
then the steep event in Figure 1.1 would have been imaged at a lower stacking velocity
than that of the events with small dips (Hale and Artley, 1993). Given that velocity
increases overall with depth, the implication is that, here, anisotropy introduces an
error in conventional (isotropic, homogeneous) DMO that is contrary to and stronger
than that due to vertical velocity variation.

Anisotropy also often manifests itself through mis-ties in time-to-depth conver-
sion. Probably, there is no clearer or more telling evidence to the presence of aniso-
tropy than the constant and consistent over-estimation of reflector depths using seismic
(imaging) velocities when shales are present (Banik, 1984). Such over-estimation is
unexplainable under the isotropic medium assumption. Although the imaging issues
(i.e., DMO and time migration) are the primary subject of this thesis, a brief look
at errors in time-to-depth conversion shows evidence of large anisotropy and provides
some insight into the geologic formations responsible for the anisotropic phenomena.
Figure 1.2 presents such evidence in the form of a comparison between average ve-
locities derived from check shots and those derived from reflection moveout in the
surface-seismic data from offshore Africa. Note that the separation of the two curves
continues to increase down to about 2 s two-way time, then remains constant for the
remainder of the measurements. The maximum separation amounts to a 12% mis-tie
in the average velocity; similar sizable mis-ties have been observed by Ball (1995) in
an adjacent area and attributed to the influence of anisotropy. Such mis-ties are not
exclusive to the Western African region; mis-ties have been observed in the Gulf of
Mexico (Meadows and Abriel, 1994), the North Sea (Banik, 1984; Whitmore et al.,
1995), Southeast Asia (Desegaulx et al., 1994), and South America (Uzcategui and
Mujica, 1995), as well as many other places. All these authors attribute the mis-ties
to anisotropy most often in shale formations.

Shales, no doubt, are anisotropic and represent the main source of anisotropy
sedimentary basins (Banik, 1984). Specifically, shales which overlay over 70 percent
of hydrocarbon exploration targets, are known to be transversely isotropic due to
microstructure associated with the layering of fine clay platelets (Sayers, 1994). In
most cases, the extent of the presence of shales determines the level of the anisotropy
influence on seismic processing.

1.2 What’s next?

Once the importance of anisotropy is accepted, two further impediments to taking
its presence into account must be overcome: (1) processing algorithms that include
anisotropy are more complex than those that ignore it, and (2) even with such pro-
cessing capability at hand, heretofore it has been difficult to estimate the anisotropy
parameters required by these algorithms. The second problem has seemed to be espe-
cially intimidating. Estimation of the four or more parameters that fully characterize
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FiG. 1.2. Average P-wave vertical velocity from check-shot data (gray curve) and
stacking velocity from surface seismic data converted into the average velocity (black
curve), both as functions of vertical time. The data are taken from same area as in

Figure 1.4.
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P-wave propagation in typical anisotropic media has seemed not only difficult (estim-
ating the one critical parameter for isotropic media — velocity — is difficult enough),
the task also seemed to require additional measurements beyond those obtained in
conventional seismic surveys [e.g., cross-well, vertical seismic profile (VSP), or auxil-
iary S-wave data]. For instance, conventional velocity analysis based on short-spread
moveout (stacking) velocities does not provide enough information to determine the
true vertical velocity in transversely isotropic media with a vertical symmetry axis
(VTI media). (Velocity in VTT media varies with direction of propagation away from
the vertical, but not with azimuth.) In this thesis, I address these two impediments;
the rest of this introduction is basically an outline of the succeeding chapters.

The focus of this work is on P-wave (or quasi-P-wave) anisotropy. This is partly
because most seismic reflection surveys currently available are tuned to recording
P-waves and partly because of the high quality of P-wave data compared to S-wave
data. Throughout the thesis I also consider the most common anisotropic model — VTT
media — but I do not assume that anisotropy is weak or elliptical. Both assumptions
are inappropriate for shales, which represent, as mentioned earlier, the most common
source of transverse isotropy in sedimentary basins.

1.2.1 Anisotropic inversion

Existing work on anisotropic traveltime inversion of reflection data has focussed
on horizontally layered subsurface models (Byun and Corrigan, 1990; Sena, 1991;
Tsvankin and Thomsen, 1995). As shown by Tsvankin and Thomsen (1995), P-
wave moveout from horizontal reflectors is insufficient to recover the parameters of
transversely isotropic media with a vertical symmetry axis (VTI), even if long spreads
(twice the reflector depth) are used. The reason for this ambiguity is the trade-off
between the vertical velocity and anisotropic coefficients, which cannot be overcome
even by using the nonhyperbolic portion of the moveout curve. Tsvankin and Thomsen
(1995) conclude that the only way to carry out stable inversion of surface reflection
data is to combine long-spread P and SV moveouts; however, this method encounters
many practical difficulties. Therefore, to make the anisotropic inversion feasible, P-
wave reflection moveout in laterally homogeneous media should be supplemented by
additional information (e.g., the vertical velocity from check shots or well logs).

The presence of dipping reflectors provides us with the opportunity of extend-
ing the angle coverage of the input data beyond that available from data where the
subsurface is horizontal. Here, I develop an inversion technique for transversely iso-
tropic media based on the analytic equation for normal moveout (NMO) velocity for
dipping reflectors derived by Tsvankin (1995). I recast this equation as a function of
ray parameter and use it in inverting dip-dependent P-wave NMO velocities for the
anisotropic coefficients. Analysis of the stability of the inverse problem by means of
the Jacobian matrix is followed by the actual numerical inversion procedure via the
Newton-Raphson method. I show that this approach makes it possible to obtain a
family of anisotropy solutions that all have the same NMO velocity for all possible
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dips, as well as the same nonhyperbolic moveout for horizontal reflectors, and the
same time-migration impulse response. This family of solutions is fully described by
just two, rather than four, anisotropy parameters: the NMO velocity for a horizontal
reflector and a new anisotropic coefficient that I denote as n. Then, the results are
extended to vertically inhomogeneous anisotropic media by developing a Dix-type pro-
cedure (Dix, 1955) intended to give estimates of the NMO velocity in any individual
layer from surface reflection data.

1.2.2 Anisotropic DMO

After we estimate the parameters, the next step is to apply processing that takes
anisotropy into consideration and makes use of the estimations. Conventional pro-
cessing flow includes NMO and DMO followed by poststack migration. The process
of transforming prestack data to zero offset (TZO) accomplishes moveout correction
for reflections from horizontal and dipping reflectors. Specifically, in an isotropic,
homogeneous medium, TZO includes kinematically both normal moveout correction
(NMO) and dip moveout correction (DMO). T use the term TZO to describe the
one-step ray-tracing process used here to map nonzero-offset traveltimes directly to
zero-offset times. Therefore, DMO correction corresponds to TZO without the move-
out correction for horizontal reflectors. .

To properly correct for horizontal events prior to stacking the data, a nonhyper-
bolic moveout correction instead of conventional hyperbolic NMO is needed. Such
modification will require adjustment in the DMO step to include the nonhyperbolic
correction. Simply stated, NMO plus DMO should result in a perfect kinematic cor-
rection from nonzero-offset to zero-offset. It is preferable, however, to apply NMO
even in anisotropic media and leave the nonhyperbolic correction to the DMO step.

Extensions of DMO algorithms to anisotropic media have been discussed in sev-
eral papers. Uren et al. (1990) showed that the DMO method of Forel-Gardner (1988)
can be modified to handle, in a straightforward way, elliptically anisotropic models.
Elliptical anisotropy, however, is a special case of transverse isotropy that is not typ-
ical of the subsurface (Thomsen, 1986). Anderson and Tsvankin (1995) extended the
dip-moveout method developed by Hale (1984) to treat TI media using the analytic
formulation for NMO velocity as a function of reflector dip given by Tsvankin (1995).
Nevertheless, Hale’s original DMO and its anisotropic counterpart are relatively slow;
moreover, the process is based on the hyperbolic moveout approximation, which, as
we shall see, is invalid for typical TI media. Although Anderson and Tsvankin (1995)
show that nonhyperbolic moveout is small for dipping reflectors, it is significant for
horizontal and mildly dipping reflectors.

The combination of anisotropic ray tracing (Cerveny, 1972) and dip-decomposition
(Jakubowicz, 1990) in transforming prestack data to zero-offset (or in applying DMO)
is particularly well suited to handling the nonhyperbolic moveout in homogeneous or
inhomogeneous TI media. For such media, with accurate traveltime computations such
as by ray tracing, data can be transformed to zero-offset, thus lessening the severity

7
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of muting conventionally done on the far offsets. Artley and Hale (1994) have shown
that such a DMO method, although slower than log-stretch Fourier methods (Notfors
and Godfrey, 1987), is efficient and more accurate. Here, I find that the ray-tracing
approach is as efficient for anisotropic media as for isotropic media.

1.2.3 Anisotropic migration

Although modern migration algorithms now can treat 3-D data from areas of
relatively complex structure and can accommodate turning waves associated with dip
beyond 90 degrees, only recently has anisotropy been taken into account. Anisotropy
may cause considerable departure of traveltime curves from those expected in compar-
able isotropic media. Such departures will influence the accuracy of both migration
and velocity analysis. For some transversely isotropic (TI) media, for example, large
position errors could arise for steep reflectors when anisotropy is ignored in poststack
migration (Larner and Cohen, 1993; Alkhalifah and Larner, 1994).

Migration algorithms for special cases of anisotropy have been developed in the
past few years. VerWest (1989) developed a seismic migration algorithm for elliptic-
ally anisotropic media; however, as mentioned above, this type of anisotropy is usu-
ally a poor approximation for subsurface formations. Uren, Gardner and McDonald
(1990) found a migrator equation for anisotropic homogeneous media that works in
the frequency-wavenumber (f-k) domain. Kitchenside (1991) describes a phase-shift-
based approach to poststack migration for transversely isotropic media with vertical
and mild lateral heterogeneity. Gonzalez, et al. (1991) made an adjustment to prestack
migration approach of Stolt (1978) that takes transverse isotropy into account, and
Uzcategui (1995) uses stable explicit operators for poststack depth migration for TI
media.

Because the main assumption in the new parameterization is that the data re-
main in the time rather than depth domain, the poststack migration considered here
is primarily a time one. (Implications where depth migration is a necessity will be
discussed later.) Two popular algorithms fit the time-domain criterion; Stolt’s (1978)
Fourier domain zero-offset migration and Gazdag’s (1978) phase-shift migration. The
latter kinematically handles vertical inhomogeneity, whereas the Stolt method does
not. Both algorithms can be modified to handle anisotropy (Kitchenside, 1991; Gonza-
lez, et al., 1991). By using stretch techniques (chosen empirically), Stolt migration can
be modified to handle factorized TT media (i.e., the TI model in which all ratios among
the elastic coefficients for TI media are independent of position). The modification to
both algorithms includes using a dispersion relation suited for TI media.

Depth migration is also useful when information regarding the vertical velocity
is available, using, for example, well-log data. Gaussian beam migration (GBM) has
emerged in the past few years as a desirable method for subsurface depth imaging
(Hale and Witte, 1992). Among its features are acceptable computational efficiency,
robustness with respect to ray caustics and shadows, the ability to image reflector
dips greater than 90 degrees with turning waves, and straightforward extensions for
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migration of nonzero-offset sections and 3-D data (Hill, 1990; Hale, 1992).

For a couple of reasons, Gaussian beam migration is particularly suited for aniso-
tropic media. Primarily, the relatively small amount of ray tracing needed to perform
Gaussian beam migration minimizes the incremental cost in modifying the algorithm
for anisotropic media. Second, the method can readily handle caustics including those
associated specifically with anisotropic media, such as, for example, SV-wave caustics
that arise even in homogeneous media. Also, the Gaussian beam method can read-
ily treat data from general inhomogeneous and anisotropic media with any reflector
orientation.

1.3 Field data application

Probably, the greatest testament to the importance of considering anisotropy
in processing is improvements achieved on real data when anisotropy is taken into
consideration over that obtained using isotropic methods.

In addition to many other places in the world, the western Africa region is known
to have massive shale formations. These shales have considerable anisotropy that can
be well approximated using a VTI model. The sedimentary sequences of West Africa
are economically important because the basinal lake shales include exceptional source
rocks for petroleum. Most of the oil reserves of Gabon, Congo, Zaire and Angola are
sourced from this lacustrine section. In addition, the same lacustrine section on the
South American side of the continental rift between Africa and South America has
been proven to contain source rocks for nearly all of Brazil’s petroleum reserves (Brice
et al., 1983).

Cabinda is a small, detached enclave of Angola (Figure 1.3) that contains most of
that country’s oil reserves. To date, approximately 25 percent of the oil in Cabinda has
been found within presalt reservoirs of marginal lacustrine carbonate and sandstone.
As in other areas of the Lower Congo basin, basinal lacustrine shale is the source rock
for this oil. Figure 1.4 is a seismic section from that region that I will study in this
thesis. .

The sedimentary sequence up to 2 s in Figure 1.4 corresponds to a regional
subsidence period (Brice et al., 1983). The structural style of the regional subsid-
ence sequence is typical of a rapidly deposited regressive sequence. It is marked by
high-pressure shale movement and related growth faulting. Sedimentation during the
regional subsidence period resulted in a shaley, clastic sequence. This unit is domin-
ated by prograding wedges (Figure 1.5) with a sigmodial shape, implying that these
prograding wedges are dominated by shales rather than sands. A tectonic rift has
induced regional subsidence that resulted in numerous faults within the Tertiary shale
deposits. Some of these faults serve as important seals for some post-salt reservoirs.
Therefore, to get a better idea of the reservoir location and geometry, we must prop-
erly focus and image these faults. Because of the presence of shales this task requires
use of an anisotropic processing sequence.

To counter any perception that anisotropy is present only in the West African
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F1G. 1.3. Location map, Cabinda, R. P. Angola (Brice et al., 19
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|
|

FiG. 1.4. Time-migrated seismic line (offshore Africa). The gray bar to the left of :
CMP 1000 shows the CMP gathers that are examined in Figures 1.1. :
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F1G. 1.5. Seismic section from the Cabinda region depicting the presence of
prograding wedges.
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region, I also include examples from Trinidad, South America. This recently oil-
enriched region is dominated by clastic deposits that contain a mixture of shales and
sands. Because of the presence of sands, the influence of anisotropy in the region is
less evident than in the western African example. Nevertheless, taking anisotropy
into account yields better images, as well as better understanding of the subsurface
structure.
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Chapter 2

A NEW PARAMETERIZATION FOR TIME-RELATED PROCESSING
IN TI MEDIA

As mentioned earlier, the presence of dipping reflectors provides us with the
opportunity of extending the angle coverage of the input data without using long CMP
spreads. Here, I develop an inversion technique for transversely isotropic media based
on the analytic equation for NMO velocity for dipping reflectors derived by Tsvankin
(1995). I recast this equation as a function of ray parameter and use it in inverting
dip-dependent P-wave NMO velocities for the anisotropic coefficients. Analysis of the
stability of the inverse problem by means of the Jacobian matrix is followed by the
actual numerical inversion procedure via the Newton-Raphson method. I show that
the inversion of NMO velocity makes it possible to obtain a family of solutions that all
have the same NMO velocity for all possible dips, as well as the same nonhyperbolic
moveout for horizontal reflectors, and the same time-migration impulse response. This
family of solutions is fully described just by two parameters: the NMO velocity for a
horizontal reflector and a new anisotropic coefficient that I denote as 7.

2.1 NMO velocity for dipping reflectors in TI media

The analysis here is based on the equation for the normal-moveout (short-spread)
velocity for dipping reflectors in a homogeneous anisotropic medium derived by Ts-

vankin (1995):
/ &2V
Vamo(9) = LD VT via) > (2.1)

tang dV
cosgp 1-— V(q}) S

where V is the phase velocity as a function of the phase angle § (6 is measured from
vertical) and ¢ is the dip of the reflector; the derivatives are evaluated at the dip ¢.

Formula (2.1) is valid in symmetry planes of any anisotropic medium and is
not restricted to any particular wave type; it assumes, however, that the incidence
(sagittal) plane is the dip plane of the reflector. Although equation (2.1) is applicable
to any single-mode propagation (P-wave or S-wave), here I will use it only for P-waves
in VTT media.

The NMO velocity [equation (2.1)] is a function of phase velocity V(6) and its
first two derivatives taken at the dip ¢. Unfortunately, reflection data do not carry
any explicit information about the dip; rather, we can count on recovering the ray
parameter p(¢) corresponding to the zero-offset reflection.
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_1ldt _sing
“2dz,  V(9)’

where o(z¢) is the two-way traveltime on the zero-offset (or stacked) section, and z
is the midpoint position.

p(o) (2.2)

In the numerical analysis of the NMO velocity, the replacement of the angle ¢
by the ray parameter p (horizontal slowness) does not pose any serious problem.
Phase velocity and phase angle can be found from the Christoffel equations in a
straightforward fashion if horizontal slowness is known, as shown in Appendix A. At
the same time, the substitution of p may change the influence of the elastic coefficients
on the NMO velocity since the form of the equation will change.

In conventional notation, P-wave propagation in transversely isotropic models is
described by four stiffness coefficients: ¢;1, ¢33, €13, and c44. The number of independ-
ent parameters, however, can be reduced by using the notation suggested by Thomsen
(1986). Formally, P-wave phase and group velocity depend on four Thomsen paramet-
ers: P- and S-wave vertical velocities, Vpy and Vs, and the dimensionless anisotropy
parameters € and ¢ defined as

C11 — C33
= — 2.3
€ Sem (2.3)
and ) 5
5= (c13 + caa)® — (c33 — Caa) (2.4)

2c33(ca3 — Ca4)
However, the influence of the shear-wave vertical velocity on P-wave velocities and
traveltimes is practically negligible, even for strong anisotropy (Tsvankin and Thom-
sen, 1994; Alkhalifah and Larner, 1994). Therefore, in my inversion procedure I will
attempt to recover only the parameters Vpg, €, and 4.

For a horizontal reflector, equation (2.1) reduces to the well-known formula for
NMO velocity (Thomsen, 1986):

Vamo(0) = VoV + 25. (2.5)

The trade-off between the vertical velocity Vpy and parameter § cannot be re-
solved even if the NMO velocities for all three (P, SV, and SH) waves from a horizontal
reflector are known (Tsvankin and Thomsen, 1995). On the other hand, if Vpg is known
(e.g., from check shots or well logs), the zero-dip moveout velocity [equation (2.5)] can
be used to obtain 4.

Analytic and numerical analysis performed by Tsvankin (1995) shows that the
dip-dependence of P-wave NMO velocities is controlled mostly by the difference between
€ and J. Therefore, if § has been determined from V},,(0), we should be able to find
¢ from a single NMO velocity for a dipping reflector. It is also interesting to examine
the possibility of recovering all three parameters (Vpg, € and 6) from NMO velocities
at three (or more) distinct dips. This analysis is performed in the next sections.
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2.2 NMO velocity for elliptical and weak anisotropy

Before proceeding with the numerical inversion procedure, I will elucidate the
peculiarities of equation (2.1) by considering the special cases of elliptical and weak
anisotropy. Unfortunately, NMO equation (2.1) is too complex to allow for analytic
insight into the contributions of the anisotropic coefficients for general transverse
isotropy.

For elliptical anisotropy (¢ = d), the NMO velocity as a function of ray parameter
is given by (Appendix A)

Vnmo(o)
1—p2V2,.(0)

nmo

Vamo(P) = (2.6)

Equation (2.6) is a good illustration of the difference between the NMO equations
expressed through the dip angle and ray parameter. Tsvankin (1995) shows that
if the dip ¢ is used as the argument, the distortion in the NMO velocity due to
elliptical anisotropy is proportional to the ratio of the phase velocities V' (¢)/V(0) =

/14 26sin? ¢. Therefore, Vymo(¢) contains a separate contribution of the parameter
5. However, Vymo expressed through ray parameter [equation (2.6)] is a function just
of the zero-dip NMO velocity with no separate dependence on the vertical velocity or
on 6. In fact, equation (2.6) coincides with the NMO formula for isotropic media; the
influence of the anisotropy in formula (2.6) is absorbed by the value of V;m,(0), given
by equation (2.5).

In terms of the inversion procedure, this result means that for elliptical mod-
els, the trade-off between Vpy and 4 in equation (2.5) cannot be resolved from the
dip-dependence of P-wave NMO velocity [equation (2.6)]. Moreover, the reflection
moveout for elliptical anisotropy is purely hyperbolic and does not provide any in-
formation other than the zero-dip NMO (short-spread) velocity [equation (2.5)], which
is identical (for a vertical symmetry axis) to the horizontal velocity of the medium.
On the other hand, the NMO velocity as a function of p can be easily reconstructed
from the NMO velocity for a horizontal reflector using the conventional isotropic al-
gorithms; this conclusion has important implications in dip-moveout processing. We
should remember, however, that elliptical anisotropy is just a convenient mathematical
model that does not seem to be typical for subsurface formations (Thomsen, 1986).

To understand the behavior of Vj.(p) for non-elliptical models, I use the weak-
anisotropy approximation (¢ < 1, 6 <« 1). Equation (2.1) as a function of ray
parameter for weak transverse isotropy is derived in Appendix A:

Vimol#) = 22 (14 (¢ = 8) ), .7

where (42— 0 6)
y° -9y + ,
f(y) = Y 1— y y Y= p2‘f\n2m0(0) .
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Note that for elliptical anisotropy the weak-anisotropy approximation [equation (2.7)]
reduces to the exact NMO equation (2.6).

Again, it is interesting to compare equation (2.7) with the corresponding weak-
anisotropy NMO equation as a function of the dip, given by Tsvankin (1995). Al-
though Tsvankin emphasized the difference ¢ — § as the most influential parameter
in his NMO equation, V;y0(¢) does contain a separate contribution of 6. However,
when the dip is replaced by the ray parameter, the NMO velocity explicitly contains
the anisotropy parameters only in the form of the combination ¢ — é. Of course, ¢ is
also hidden in the value of V}n0(0).

This result has important implications in the inversion procedure. Instead of the
three original unknown parameters (Vpg, € and §), in the limit of weak anisotropy
the NMO velocity contains just two combinations of them — V};,,(0) and € — 4.
Therefore, moveout (stacking) velocities from just two distinct dips should provide
enough information to recover the two effective parameters and reconstruct the NMO
velocity as a function of ray parameter. In the most common case, when the zero-
dip NMO velocity has been found by conventional NMO analysis, a single additional
dipping reflector makes it possible to recover the difference ¢ — §. The trade-off
between Vpg, € and §, however, cannot be resolved from P-wave NMO velocities for
weak transverse isotropy, no matter how many reflectors (dips) are used. Normal
moveout velocities from more than two dipping reflectors just provide redundancy in
the estimation of V;,0(0) and € — §.

Although these conclusions have been drawn for weak transverse isotropy, the
numerical analysis in the following sections leads to similar results for VTI media
with arbitrary strength of the anisotropy.

2.3 Conditioning of the problem

To estimate the sensitivity of NMO velocity to the anisotropic parameters, I
evaluate the Jacobian of equation (2.1) expressed as a function of ray parameter. The
Jacobian is obtained by calculating the derivatives of the NMO velocity equation with
respect to the model parameters Vpg, € and §. First, I consider the case of inverting
for two parameters (namely, € and d, with a known Vpp) using two different dips; next,
I examine the inversion for all three parameters.

Although the NMO velocity equation is nonlinear, its dependence on the aniso-
tropy parameters is smooth enough to use the Jacobian approximation. Figure 2.1 is
a 3-D plot of the values of Vo as a function of € and ¢ for a reflector dip of nearly 40
degrees (for a given p, the dip changes somewhat with € and é) and a vertical velocity
Vpo of 3.0 km/s. The smoothness of equation (2.1) over a practical range of € and §
is evident.

The derivatives used to form the Jacobian are as follows:

Voo Vamo()
d =
)= @) Ve
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F1G. 2.1. 3-D plot of the NMO velocity as a function of € and & for the reflector dip
corresponding to p = 0.2 s/km; Vpy = 3.0 km/s.

1 Vamo(p)
" Vamo(p) 05

_ 1 a"/'nmo (p)

I calculate d;, dy, and d3 numerically using equation (2.1). The above normaliz-
ation of the derivatives makes them easier to use. For example, d3 = 1 implies that,
when solving only for €, a 5 percent error in the measured NMO velocity would cause
an error of 0.05 in the calculated value of €.

If two distinct reflector dips are available, it may be possible to solve for two of
the three parameters provided the remaining parameter is known. The sensitivity of
this inversion to errors in the input data (NMO velocities) can be measured from the
Jacobian matrix,

J— (dz(pl) ds(Pl)) .
da(p2)  d3(p2)
This Jacobian corresponds to the inversion for € and § when Vpg is known.
The condition number x for Jacobian matrix J can be computed as follows:
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| Az |
3
| /\min I

K =

where A4, and Ay, are the maximum and minimum eigenvalues, respectively, of the

matrix
A=JJT.

J7 is the transpose of the matrix J. A large condition number implies an ill-conditioned
(i.e., nearly singular) problem, while a low condition number (for example, smaller
than 10) usually implies a well-conditioned problem. The absolute errors in the com-
puted anisotropy parameters and the relative error in the computed Vpg are close to
k times the relative error in the measured NMO velocity. In most cases, this estimate
provides the maximum possible error.

F1G. 2.2. 3-D plot of the condition number as a function of p; and p, (ray parameters
of the two reflectors). The model parameters are Vpy = 3.0 km/s, ¢ = 0.2, and 6 = 0.1.

Figure 2.2 shows the condition number as a function of ray parameter for the
inversion of the NMO velocities measured at two dips, corresponding to p; and p.
The dips range from 0 to 60 degrees. The flat (clipped) parts of the 3-D plot corres-
pond to high condition numbers (> 6.0). When the dips are close to each other, the
problem becomes highly ill-conditioned (i.e., the diagonal line where p, = p,). If the
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difference between the dips is 10-15 degrees or more, the problem becomes reasonably
conditioned, unless both dip angles are large (> 25 degrees). The latter case, however,

is hardly typical. In a typical case of horizontal and dipping reflectors, an acceptable

resolution in resolving € and ¢ is achieved (for the model from Figure 2.2) for a wide
range of ray parameters that excludes only those corresponding to mild dips.

Fic. 2.3. 3-D plot of the condition number as a function of € and 6. Two reflector
dips used in the inversion correspond to ray parameters of p; = 0.0 s/km (horizontal
reflector) and p; = 0.16 s/km. The vertical velocity Vpg is 3.0 km/s.

The inversion for the important case of a horizontal and a dipping reflector needs
to be considered in more detail. Figure 2.3 shows the condition number for the inver-
sion for € and § (Vpg is considered to be known), with reflector dips given by p; = 0.0
(horizontal reflector) and p, = 0.16 (near 30-degree dip). The low values of the con-
dition number mean that overall we obtain a reasonably good resolution over a wide
range of values of € and 4.

Next, I examine the feasibility of inverting for all three parameters (Vpg, € and §)
using NMO velocities for three different dips. The Jacobian matrix for this problem
is

di(p) da(p) da(py)
J=1d (p2) dy (p2) ds (P?) . (2-8)
di(ps) da(ps) ds(p3)

Figure 2.4 shows the condition number for the Jacobian (2.8) calculated for re-
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flector dips p; = 0.0 (horizontal reflector), p, = 0.16 s/km (near 30-degree dip), and
ps = 0.23 s/km (near 50-degree dip). The huge values of the condition number over
the entire range of € indicate that the problem is thoroughly ill-posed. In other words,
we could find models with a wide range of Vpg, €, and ¢ that have almost the same
NMO velocities for the dips considered here. This ill-conditioned nature of the inverse
problem holds for all choices of ray parameters, Vpg, €, and 0 that I have studied.

40000
35000
30000
25000
“ 50000]
15000}
10000
5000

0 0.1 0.2 0.3 0.4

FiG. 2.4. Condition number as a function of € for the inversion using three reflector
dips corresponding to p; = 0.0 s/km, p, = 0.16 s/km, and p3 = 0.23 s/km. The
vertical velocity is Vpg = 3.0 km/s; 6=0.1.

Note that for models close to elliptical (¢ = ¢), the condition number goes to
infinity, and the inversion cannot be carried out at all. Above, I obtained this result
analytically by showing that the NMO equation for elliptical anisotropy (2.6) depends
only on the ray parameter and the zero-dip NMO velocity.

I conclude that, given the uncertainties usually associated with seismic data, we
cannot count on resolving all three parameters using this method, even if we had
more than three different reflector dips. The ambiguity of the inversion procedure
is caused by the trade-off between the anisotropy parameters ¢ and § in the NMO
equation. In the limit of weak anisotropy, this trade-off is demonstrated by the NMO
formula (2.7), which contains only the difference ¢ —é and the zero-dip NMO velocity
rather than either of the coefficients individually. However, as we have seen, if one
of the parameters (Vpy, €, ¢) is known, the other two can be reliably recovered from
NMO velocities for two different dips.
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2.4 Numerical inversion

The above analysis based on the Jacobian matrix is still approximate since the
NMO velocity equation is nonlinear. In this section, I perform the actual nonlinear
inversion by means of the Newton-Raphson method and study the range of solutions
as well as the sensitivity of the results to errors in the input information. I will
concentrate on models with ¢ — & > 0, which are believed to be most typical for
subsurface formations (Thomsen, 1986; Tsvankin and Thomsen, 1994).

2.4.1 Inversion using two reflector dips

The input data for the inversion procedure are the P-wave NMO velocities and
ray parameters for two different reflector dips; one of the reflectors can be (but is
not necessarily) horizontal. For conventional spreadlengths, usually limited to the
distance between the CMP and the reflector, NMO velocity is well-approximated by
the finite-spread stacking velocity routinely used in seismic processing (Tsvankin and
Thomsen, 1994; Tsvankin, 1995). The analysis in the previous section indicates that
the inversion for all three parameters using three reflector dips is unstable; besides, for
this method to be practical we can seldom count on having reliable NMO velocities
from more than two distinctly different dips.

The convergence of the inversion procedure is related to the value of the condition
number examined in the previous section. As illustrated by Figure 2.2, the condition
number is low for a wide range of dips, except for those close to each other. This
implies good convergence properties of the inversion procedure provided that we pick
a plausible initial model. In my implementation, I used the isotropic model (6 = € = 0)
as the initial guess and achieved a fast enough convergence in the numerical examples
described below.

In the first example (Figure 2.5), I consider a horizontal reflector and a reflector
dipping at 50 degrees (p = 0.23 s/km) for the same model as in Figure 2.2 (Vpy = 3.0
km/s, e = 0.2, and 6 = 0.1).

If we know the vertical velocity Vpg, the inversion of two NMO velocities should
make it possible to recover € and 6. Indeed, as shown in Figure 2.5, if the actual
velocity Vpg = 3.0 km/s is used in the Newton-Raphson inversion algorithm, I obtain
the correct values for both anisotropic parameters.

If only surface data are available, however, the exact vertical velocity may not be
known. Therefore, it is interesting to examine the family of solutions corresponding
to a range of vertical velocities around the actual value (from 2.6 km/s to 3.5 km/s
in Figure 2.5). For all these solutions, the difference between € and ¢ is close to the
exact value (¢ — & = 0.1). Therefore, in close agreement with the weak-anisotropy
approximation [equation (2.7)], the inversion of the P-wave NMO velocities provides
us with a good estimate of the difference ¢ — §. The only way to resolve the coef-
ficients individually is to obtain the vertical velocity Vpg using some other source of
information (e.g., check shots or well logs).
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3 3.2
Vpp (km/s)

F1G. 2.5. Parameters ¢ and ¢ obtained from NMO velocities corresponding to a
horizontal reflector and p = 0.23 s/km (50 degrees dip). The values of Vpy used in
the inversion are shown on the horizontal axis. The model parameters are Vpy = 3.0
km/s, e = 0.2, and § = 0.1.
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F1G. 2.6. NMO velocity for a family of solutions in Figure 2.5 and four different
values of the ray parameter.

The most important property of the family of solutions shown in Figure 2.5 is that
all of them have practically the same NMO velocity as a function of ray parameter for
all possible dipping reflectors, not just for the two dips used in the inversion scheme.
This is illustrated by Figure 2.6, which shows that the NMO velocity for any given
reflector dip (i.e., any fixed value of p) is practically the same within the range of
solutions in Figure 2.5, independent of the guess for Vpy. Therefore, if we perform -
the inversion procedure using the NMO velocities for any two dipping reflectors (of
course, the dips should not be close to each other), we end up with the same family
of equivalent models as in Figure 2.5. In the following, I refer to models obtained by
the inversion of P-wave NMO velocity as the “equivalent solutions,” or ES.

Thus, the normal moveout velocities measured at two different dips are suffi-
cient to obtain the NMO velocity for any ray-parameter value. This means that the
dip-dependent P-wave NMO velocity is controlled by just two combinations of the
parameters Vpg, €, and 4, rather than by the three parameters individually.

Another example, for a medium with stronger anisotropy, is shown in Figure 2.7.
Here, I have considered a typical case of horizontal and dipping reflectors (the dip
is 40 degrees); it should be emphasized that any pair of dips sufficiently different
from each other yields the same family of ES. Thus, as for the previous model, all ES
have the same NMO velocity for the full range of dips. However, in contrast with the
previous example, the velocity anisotropy is too pronounced for the weak-anisotropy
equation (2.7) to hold, and the inversion does not provide an accurate value of € — 4,

25




T. Alkhalifah

O OO oo

|
o O

NP OEFEDNWIPWOM

—
2.8 3 3.2 3.4
Vi (km/s)

F1G. 2.7. Inverted values of € and § as functions of Vpy for the model with
Vpo = 3.0 km/s, e = 0.3, and § = —0.1.

unless we have a good estimate of the vertical velocity.

The accuracy of the estimation of € — § is further illustrated by Figure 2.8, which
shows the inversion results for the models with ¢ — § = 0.1,0.2, and 0.3. While the
recovery of € — § is unique for elliptical anisotropy (e = ¢, not shown on the plot), it
becomes less accurate with increasing € — 6. _ .

In essence, I have shown that the exact NMO velocity expressed through ray
parameter depends just on the zero-dip NMO velocity and some combination of the
anisotropy parameters close to the difference ¢ — §. This conclusion is in agreement
not only with the weak-anisotropy equation (2.7), but also with the analysis of the
Jacobian matrix in the previous section (it explains the ambiguity in the inversion for
all three parameters — Vpy, €, and 6).

2.4.2 Description of the equivalent solutions

Clearly, the combination of € and & that describes the family of ES deviates
from the difference ¢ — § with increasing anisotropy. An analytic description of this
combination for arbitrary strength of the anisotropy is given below.

I have shown that all ES obtained by my inversion technique have the same
dip-dependent NMO velocity, including that for a horizontal reflector. Therefore,

Vamo(0) = Vpg V1 + 26 = const (2.9)
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FI1G. 2.8. Inverted value of € — § as a function of Vpg for three models with different
€; Vpo=3.0 km/s, 6=0.1.

within the family of ES. This equation provides a relation between Vpg and ¢ that
accurately describes the curves 6(Vpg) in Figures 2.5 and 2.7.

However, a single equation is not sufficient to characterize the ES analytically.
To obtain another relation between the parameters that would involve €, I examine
the behavior of group-velocity curves for the family of ES. Figure 2.9 shows the group
velocity as a function of the group angle for three solutions corresponding to Vpp=2.8,
3.0 and 3.2 km/s. The computations were performed for the two models shown in
Figures 2.5 and 2.7. For both media, all three ES yield practically the same velocity
at an angle of 90 degrees, which coincides with the actual horizontal velocity. I have
obtained the same result for all other VTI models I have studied.

This implies that for all ES

Vi, = Vpo V1 + 2¢ = const . (2.10)

However, it is more convenient to replace the horizontal velocity by a dimension-
less parameter, common for all ES, that goes to zero for isotropic media. Combining
equations (2.9) and (2.10), I choose to define a new anisotropic parameter (denoted
by n) as follows:

V2 1= e—46 .
V2 1+25

" nmo

27

= 0.5( (2.11)




T. Alkhalifah

4 T T 4 T
) 3.8l | —3.8 b !
E 3.6 | = 3.6 i //
3.4 - e 134 ¥
X 3. B e’ KR — _—-"5’/
o 3 MW | 3 "-:MMM
D 2.8 — 2.8 e
2.6 2.6 j ;
20 40 60 80 20 40 60 80

ay angle (degrees)

FiG. 2.9. Group velocity v, as a function of the group (ray) angle for solutions from
(a) Figure 2.5 (Vpp=3.0 km/s, ¢ = 0.2, § = 0.1), and (b) Figure 2.7 (Vpo=3.0 km/s,
€ = 0.3, 6§ = —0.1). The curves correspond to solutions with Vpy=2.8 km/s and the
corresponding values of § and e (black); Vpp=3.0 km/s (actual values, gray); and
"/p0=3.2 km/s (dashed).

Then

Vi = Vamo(0)1/1 + 21 (2.12)

[compare the form with equations (2.9) and (2.10)]. Therefore, the family of ES can be
described by two effective parameters: V;,0(0) (or V) and 5. Only these parameters
can be resolved by inverting dip-dependent P-wave NMO velocity. In principle, two
distinct dips are sufficient to recover the values of Vj0(0) and 7; additional dipping
reflectors just provide redundancy in the inversion procedure, so that, for example, a
least-square approach can be used to solve the overdetermined problem.

Although this result for strong anisotropy has been obtained numerically, it is
in good agreement with the analytic weak-anisotropy approximation (2.7). Essen-
tially, by performing numerical inversion I have generalized the weak-anisotropy equa-
tion (2.7) to transversely isotropic media with arbitrary strength of anisotropy. While
the weak-anisotropy P-wave NMO equation (expressed through ray parameter) is a
function of V;,0(0) and € — 4, the P-wave NMO velocity for general transverse isotropy
is fully characterized by Vimo(0) and 7. Clearly, in the limit of weak anisotropy 7 re-
duces to the difference ¢ —d. The family of ES from the first example in Figure 2.5 can
be represented by Vime = 3.29 km/s and n = 0.0833. The example from Figure 2.7 is
characterized by Vime = 2.68 km/s and a much larger n = 0.5.

Also, note that 7 is zero not only for isotropy, but also for elliptical anisotropy. In
this sense, it is similar to the parameter o = V3,/VZ, (¢ — §) introduced by Tsvankin
and Thomsen (1994) to describe SV-wave moveout. Its magnitude is a measure of the
departure of a medium from being elliptically anisotropic.

The dominant role of the parameter 7 is illustrated by Figure 2.10a, which shows
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Fic. 2.10. P-wave moveout velocity calculated from formula (2.1) and normalized
by the expression for isotropic media (2.6). The dip angles range between 0 and 70
degrees. (a) Different models with the same n = 0.2: ¢ = 0.1, 6 = —0.071 (solid);
e =0.2, 5 =0. (gray); e = 0.3, 6 = 0.071 (dashed) — the curves practically coincide
with each other. (b) Models with different 7: n = 0.1 (solid); n = 0.2 (gray); n = 0.3
(dashed).

that the P-wave dip-moveout signature does not depend on the individual values of
the anisotropy parameters ¢ and ¢, if 7 is fixed. Figure 2.10b, on the other hand,
shows large sensitivity of Vno to variations in 7.

While 7 is determined by the values of the zero-dip moveout velocity and the ho-
rizontal velocity, the choice of form for 7 is not unique. I could have combined V;;,,(0)
and V}, in a different fashion to obtain, for instance, 1 + 2¢ instead of 1+ 20 in the de-
nominator of . In whatever form, however, any such anisotropic parameter describing
the dip-dependence of NMO velocity would represent a measure of “nonellipticity,”
i.e., deviation from the elliptically anisotropic model.

Equation (2.11) leads us to another observation. If it is possible to obtain an
accurate value for the horizontal velocity V}, (e.g., from head waves traveling along a
horizontal reflector or from cross-hole tomography), then the zero-dip velocity Vimo(0)
is sufficient to find 77 and to build the P-wave NMO velocity as a function of ray
parameter. Dipping reflectors in this case are not needed at all.

As demonstrated in later sections, the importance of the family of ES goes well
beyond the dip-dependence of P-wave NMO velocities.

2.4.3 Accuracy of the inversion

Next, I study the sensitivity of the inversion procedure to errors in the measured
moveout velocities. In the typical case of a horizontal and a dipping reflector, we
measure two velocities: Vimo(p) and Vimo(0). Since Vimo(0) is obtained directly, n
remains the only unknown to be solved for. As illustrated in Figure 2.10b, the NMO-
velocity corresponding to different n values are well resolved within a wide range of
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dips; this indicates that the inversion procedure should be reasonably stable.
To quantify errors in 7, let us use the following sensitivity equation:

_ a‘Irnmo (p) a“'ilmo (p )
Vamo(0) on

Normalizing the velocities, we can represent equation (2.13) as

AVimo(p) AVimo(0) + An. (2.13)

A"/nmo (p) _ Vnmo(o) aVnmo (29) A‘;lmo(o) 1 a“",nmo (p) AU
Vamo (p ) Vamo (p) OVamo (0) Vamo (0) Vamo (p) 377

(2.14)

Using equation (2.14), the error in 7 can be expressed through the errors in the
NMO velocities.

= V;]mo(p) A"nmo(p) _ "’nmo(o) A""nmo(o)
An_[ f2 l Vamo(P) [fl fa ] Vimo(0) (2.15)
where
_ Dmolr)
L OVamo(0)
and o
fo= nén;(p)

If the NMO velocity for a horizontal reflector is measured exactly or contains only
a small error, the error in 7 would be controlled just by the first term in formula (2.15).
However, assuming that the errors in Vj0(p) and Vjn0(0) have comparable magnitude,
I can characterize the sensitivity of 17 by the quantity E defined as

E = \/Vn?mo(P) +f[f 1 Vnmo(O)]2'

Figure 2.11 shows FE as a function of the ray parameter for the models from
Figures 2.5 and 2.7. In both examples, as expected, errors decrease with dip, and
are large when the dipping reflector has a dip close to zero, but reach a minimum at
some dip [about 46 degrees (a), and 51 degrees (b)]. The minimum in F is caused by
relatively higher sensitivity to errors in Vj;0(0) at steep dips; if the error in Vjn,(0)
is negligibly small, the minimum does not exist, and the inversion for 7 is most stable
at dips up to 90 degrees.

However, in the discussion above I have not considered two factors that make
steep reflectors (beyond 50-60 degrees) less desirable for the inversion algorithm. First,
at large dip the inversion for 7 becomes more sensitive to errors in the ray parameter.
Second, the recovery of the NMO velocity itself from reflection moveouts becomes less
stable because the magnitude of the quadratic moveout term (and of moveout as a
whole) decreases with dip (due to higher NMO velocity).

(2.16)
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It may also be instructive to examine numerically the sensitivity of the effective
parameter 77 and the horizontal velocity Vj (2.12) to errors in the measured values
of Vamo(p). In Figure 2.12, I have introduced errors into the input values of NMO
velocities for reflector dips of 0 and 40 degrees. The percentage error in Vj, and the
absolute error in 7 are quite small, which indicates that this inversion is reasonably
stable. In fact, a 5-percent error in Vomo(p) causes less than a 2.5-percent error in Vj,.
The percentage error in 7 is larger, but this can be expected in the inversion for so
small an anisotropic coeflicient. '

2.5 Properties of the family of solutions

2.5.1 Nonhyperbolic reflection moveout

The inversion of the dip-dependence of P-wave normal moveout velocities enables
one to obtain a family of equivalent solutions (ES) described by the zero-dip NMO
velocity Vimo(0) and the effective anisotropic parameter 7. In this section, I show a
remarkable property of ES: any model with the same V;mo(0) and 7 yields the same
long-spread (nonhyperbolic) P-wave moveout from a horizontal reflector.

P-wave long-spread moveout in horizontally-layered transversely isotropic media
can be well-approximated by the equation (Tsvankin and Thomsen, 1994)

Ay X4

2(X) =13+ A X2+ ———
(X) po T A2 +1—|—AX2’

(2.17)

where tpg is the two-way, zero-offset time.
For a single layer, the coefficients in formula (2.17) are
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F1G. 2.12. Dependence of the inverted values of 1 (a) and V}, (b) on the error in the
measured NMO velocities. The model parameters are Vpy = 3.0 km/s, ¢ = 0.2, and
0 = 0.1; reflector dips of 0 and 40 degrees were used. Black lines correspond to errors
in the NMO velocity for only the dipping reflector. Gray lines correspond to identical
errors in both V., values.
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where V, is the horizontal velocity.

Equation (2.17) remains numerically accurate for long spreads (2 to 3 times,
and more, the reflector depth) and pronounced anisotropy. The hyperbolic moveout
term, which makes the main contribution to short-spread moveout, depends on just
the NMO velocity Vimo(0). The last term in equation (2.17) describes nonhyperbolic
moveout on long spreads.

Substituting the parameters Vymo(0) and 7 into formula (2.17) and ignoring the
contribution of Vg, to the quartic term A4 (Vso has a negligible influence on P-wave
moveout in TI media), I obtain

X? 2nX14
V2io(0)  ViZuo0) [30V200(0) + (1 + 20) X7
32
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Thus, P-wave long-spread moveout can be adequately described by the vertical travel-
time and just the two effective parameters — Vamo(0) and 7, with no separate depend-
ence on Vpy, €, or 8. For given Vomo(0) and tpg, n describes the amount of deviation
from hyperbolic moveout; if 7 = 0, the medium is elliptical and the moveout is purely
hyperbolic.

Although equation (2.17) is approximate, and I have made one more small approx-
imation by assuming that Vg = 0, the results in the next section show that P-wave
long-spread moveout is indeed controlled by /amo(0) and 7. Since the inversion al-
gorithm makes it possible to recover Vimo(0) and 7, it provides enough information to
build P-wave long-spread moveout curves. Stated differently, although the inversion
is unable to resolve Vpg, €, and §, the two parameters it does give are sufficient to
describe P-wave long-spread moveout.

2.5.2 Migration impulse response

Although equation (2.18) describes moveout for a horizontal reflector, it also can
be regarded as the diffraction curve, accurate to a certain dip, on the zero-offset section
(poststack domain). Since time migration is based on collapsing such diffraction
curves to their apexes, the values of Vymo(0) and 7 should be sufficient to generate
a time-migration impulse response that is accurate up to that certain dip. With
accurate values of Vymo(0) and 7, all lateral position errors that arise in migration for
homogeneous models when anisotropy is ignored (Larner and Cohen, 1993; Alkhalifah
and Larner, 1994), will be eliminated. Poststack depth migration, however, may
produce depth errors if the value Vpg is inaccurate, but this is a different issue.

Figure 2.13 shows the exact zero-offset time-migration impulse responses (right
half only) for different ES from (a) Figure 2.5 and (b) Figure 2.7. The curves for
all three ES practically coincide with each other, implying that there is no difference
between the impulse responses of the three input models. This confirms that Vmo(0)
and 7 are sufficient to generate an accurate time-migration impulse response for all

dips and, therefore, P-wave long-spread moveout is indeed controlled by Vimo(0) and

7.

This point is illustrated further by Figure 2.15, which shows anisotropic post-
stack time migrations (Gazdag’s phase-shift migration modified for anisotropic media;
discussed later) of the synthetic data generated for the model in Figure 2.14. The re-
flectors are embedded in a homogeneous transversely isotropic medium with Vpy=3.0
km/s, ¢=0.2, and 6=0.1 (the same model as in Figure 2.5). The migrations were
performed (a) using the actual model parameters, and (b) using an equivalent solu-
tion from Figure 2.5 with Vpo=2.5 km/s, €=0.43, and §=0.3. Although model (b) is
substantially different from the actual one, it has the correct values of Vimo(0) and 7
and, consequently, produces an accurate image.

As opposed to this situation for time migration, however, depth migration. will
produce depth errors if the wrong value of Vpy were used. Such depth errors AD can
be described by
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F1G. 2.13. Anisotropic time-migration impulse response for solutions from (a) Fig-
ure 2.5, and (b) Figure 2.7. The three curves on each plot correspond to the solutions
with Vpo = 2.8 km/s (solid black line), 3 km/s (solid gray line), and 3.2 km /s (dashed
black line).

AD = (VP _1yp.
‘/actual
where V,cuuai is the true vertical velocity, and D is the true depth.

Therefore, all ES have the same poststack depth migration impulse response with
a simple depth scaling depending on the value of the vertical velocity.

Since all ES, characterized by Vamo(0) and 7, have the same NMO velocity Vimo(p)
in the prestack domain and the same time-migration impulse response in the poststack
domain, they should also have the same time-migration impulse in the prestack domain.
Thus, media with the same V,0(0) and 7 yield the same prestack and poststack
diffraction curves for surface seismic data.

I conclude that the inversion of P-wave NMO velocities provides enough inform-
ation to perform all major time-processing steps including dip moveout (DMO), and
prestack and poststack time migration. However, time-to-depth conversion requires an
accurate value of the vertical velocity, which cannot be obtained from NMO velocities
alone.

2.6 Refining inversion results using poststack migration

In many cases one can assess the accuracy of the migration algorithm or of the
velocity field used in the migration by observing the quality of the migrated image.
For example, upward parabolic shapes, resulting from diffracting edges, imply over-
migration, whereas downward hyperbolic shapes indicate undermigration.
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This approach can be used to refine the results of our inversion procedure. Errors
in the measured NMO velocity may lead to an inaccurate value of 7, which, in turn,
may distort the migrated image. Figure 2.16 shows anisotropic poststack time migra-
tion of a synthetic data set generated for the model in Figure 2.14 using inaccurate
values of 7 (the correct value, Vimo,=3.29 km/s, is used in both cases). The errors,
apparent in both cases, show the sensitivity of the migration results to the value of 7.
Predictably, the distortions are more pronounced for the model with a larger error in
n: not only do the reflectors cross, but also the reflector edges are not imaged well.

Usually we can expect to obtain the zero-dip NMO velocity with a higher accuracy
than that for the parameter 1. The inverted value of 1, however, can be refined by
inspecting migrated images. In isotropic media, undermigration is usually corrected by
increasing the migration velocity. According to equation (2.12), an increase in 7 leads
to a higher_horizontal velocity. Therefore, a corresponding correction in transversely
isotropic media can be achieved by increasing 7 (the case in Figure 2.16). If, however,
we have more confidence in the measured value of the NMO velocity for the dipping
reflector than that for the horizontal one, a proper choice would be to change both
Vamo(0) and 7. In fact, then, given that error likely exists in both, the data processor
now has two parameters that can be adjusted to improve the quality of the image.
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Chapter 3

VELOCITY ANALYSIS IN V(Z) MEDIA

While it is convenient to consider the earth’s subsurface to be homogeneous, it
is at a minimum vertically inhomogeneous. Through the combined action of gravity
and sedimentation, velocity variation with depth represents the most important first-
order inhomogeneity in the earth. This is one reason why time migration (based
on lateral homogeneity) works well in so many places. Dip moveout (DMO) and
migration algorithms that can handle isotropic v(z) media are well established, and
velocity estimation in such media is even considered trivial. Nevertheless, problems
remain in focussing images, estimating depths, and preserving dipping events in v(z)
media. It may be that the problem at this point is the restrictive assumption that
the medium is isotropic. Because basic processes that developed the earth’s crust
(i.e., sedimentation, stress and gravity) have a preferred direction (vertical in most
cases), seismic wave speed can vary with propagation direction in the vertical plane.
Otherwise, it is difficult to explain the success of isotropic homogeneous DMO in areas
with a clear velocity increase with depth (Gonzalez et al., 1992), knowing that such
an increase in velocity would cause the dipping events to stack at a lower velocity
than would horizontal ones (Artley and Hale, 1994) where the subsurface is isotropic.

The bulk of this chapter concentrates on the v(z) inversion process for the para-
meters Vymo(0) and 7. Here, I extend the inversion technique discussed in Chapter 2
to treat layered VTI media based on the fact that NMO velocity for dipping reflect-

ors under laterally homogeneous overburden is a root-mean-square (rms) average of -

its interval values. Thus, a methodology for inversion is developed to estimate these
parameters using this rms relation, which depends only on V,mo(0) and 7. Next, I
study the dependence of both DMO and time migration on V;,,(0) and 7 in vertically
inhomogeneous media.

3.1 Velocity analysis in v(z) media

The inversion technique discussed in Chapter 2 is designed for a homogeneous me-
dium above the reflector. Inversion in layered VTI media can be implemented through
a layer-stripping algorithm where the parameters of a certain layer (or interval) are
estimated by removing the influence of the overlying layers. The layer-stripping por-
tion of the inversion is similar to what Dix (1955) used to estimate interval velocities
from stacking velocities based on a small-offset approximation.
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3.1.1 NMO velocity equation for dipping reflectors in v(z) media

For horizontal layers, whether the medium is isotropic or V'TI, the NMO velocity
at a certain zero-offset time, ¢y, (equivalent to the migrated time, for horizontal layers)
is given by an rms relation (Hake et al., 1984; Tsvankin and Thomsen, 1994)

V2 (to) =~ [0 1
'nmo(to) - ta Jo Unmo(T)dT’ (3 )

0

where vymo(7) are “interval NMO velocities” given by

Unmo(T) = v(7)y/1 + 24(),

and v(7) is the interval vertical velocity. For isotropic media, §(7) = 0, and therefore,
Unmo(7) = v(7). For the sake of simplicity and without loss of generality, I will use
the integral operator to represent summation.

For a dipping reflector beneath a horizontally layered medium, when expressed
in terms of ray parameter p, NMO velocity is also given by a similar rms relation (as
shown in Appendix B for discrete layers).

1

nmo[pa tO( )] m/ot()(p) vgmo[p) tm(T)]dT7 (32)

where vnmolp, tm] is the interval NMO velocity as a function of vertical time (migrated
time) t,,, and o(p) is the zero-offset time for the ray parameter p. This ray parameter
is the half slope, in a zero-offset section, of the reflection from the dipping reflector at
time to(p) used to measure Vinolp, to(p)], and £,(0) = t,, is the two-way traveltime to
a horizontal reflector.

The integral in equation (3.2) can be expressed in terms of migrated time, ¢,,, as

follows
dto(p)

Vil t0(p)] = 1 [ timalpr) 55 P (33)

This equation reduces to equation (3.1) for horizontal reflectors (p = 0), where
d—t“;{ﬂ:l. Further, vymo(p, 7) depends only on the interval values vnmo(0,7) and 7(7)
in each layer or, equivalently, at each time sample.

To apply equation (3.3), it is also necessary to express the traveltime ¢o(p) through
the zero-offset time #5(0) and NMO velocity for a horizontal reflector. In Appendix
B, I derive an equation for ¢y(p) valid for isotropy or elliptical anisotropy:

= 15(0) /1 + p2 V2, (p) (3.4)

Therefore, if the overburden layers are isotropic or elliptically anisotropic, the
two-way traveltime along the ray with any ray-parameter value p can be found from
just the vertical traveltime #5(0) and the NMO velocity Vimo(p) already determined
in Appendix A as a function of V;,,(0) and 7.
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F1aG. 3.1. Curves of the value of f = % in equation (3.5), for a range of equivalent
solutions and four different values of the ray parameter p. Here, V;n,=3.29 km/s and

n = 0.0833.

If the horizontal layers are vertically transversely isotropic (but not elliptically
anisotropic), we have seen that it is necessary to know the value of 7 in addition to the
zero-dip NMO velocity to find Vino(p). As illustrated by Figure 3.1, the parameters
Vamo(0) and 7 are also sufficient to calculate ¢o(p) given the zero-dip time #,(0).

to(P) = tO(O) f[ﬂ, Vnmo(o)’p] ’ (35)

where f is independent of the vertical velocity and the individual values of the aniso-
tropies € and 6. Therefore, the NMO velocity, in layered VTI media, is a function of
the interval values of Vo and n only. Recognizing that t4(0) is the migrated time,
we can replace ty(0) by t,, to get '

to (p) = tmf[na Unm0(0)>p]' (36)
Thus,
Yo2) — 110, vame(0). 3.7)

where f is the operator that relates the vertical time to the zero-offset time, which
can be obtained through ray tracing in TI media. As a result, Vmo[p, to(p)] based on
equation (3.3) depends on 1 and vyme(0) in each layer. For isotropic media, n = 0,
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and
1

1 — p22,,(0)

Equation (3.2), for a model consisting of homogeneous layers (see Appendix B),
is given by

f['Uan(O)a p] =

V& (o)) = zAt"’ [, ()2, (3.8)

where At(()i) (p) is the two-way zero-offset traveltime through layer i for ray parameter
.

To obtain the NMO interval velocity in any layer ¢ (including the one immediately
above the reflector), I apply the formula of Dix (1955) to the NMO velocities at the
top [V.i~D] and bottom [V, ] of the layer:

1§ (0) Vi@ — 16" () [Viies () 20
t6)(p) — t5 " (») | o9

where t(p) and t$(p) are the two-way traveltimes to the top and bottom of the
layer, respectively, calculated along the ray given by the ray parameter p for normal-
incidence reflection from the dipping reflector All NMO velocities here correspond to
a single ray-parameter value p. Suppose, we wish to use equation (3.9) to obtain
the normal moveout velocity [v(%), (p)] in the medium immediately above the reflector
for use as an input value in the inversion algorithm discussed above. Clearly, from
equation (3.8), the recovery of v(™) (p) requires obtaining the moveout velocities in
the overlying medium for the same value of the ray parameter. We can obtain such
velocities only if the parameters n and v,0(0) are resolved above this layer. As we
will see later, such a problem can be simplified by using an interpolation procedure.

However, for the special case of isotropic or elliptically anisotropic horizontal
layers, the normal moveout velocity at any ray-parameter value can be obtained from
the zero-dip NMO velocity in a straightforward fashion (see Appendix A).

[ o(p)]® =

3.1.2 Inversion in v(z) media

) (p), are obtained for at least two distinct
dips, the problem within each layer (or time sample, if the inversion was based on
the integral form) reduces to the inversion for a homogeneous medium, which can be
performed in the way described in Chapter 2. Therefore, interval values v{%)_ (p) for
two distinct dips in each layer (or each time sample) are used to estimate n(7) and
Vnmo(0, 7). Since estimating v{%)_ (p) using equation (3.9) depends on obtaining v{) . (p)
for previous layers at the same ray parameter, estimation of 7(7) and vymo(0, 7) must
be done simultaneously with the layer-stripping process for vl(lﬂlo(p).

First, I use the values ‘;(,L)O(pl) and V) (p,), which correspond to the first in-
terval, to estimate ") and v

When interval NMO velocity values, v! (n)

(1) (0) using the inversion procedure described earlier for
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a homogeneous medium. Here p; and p, are ray parameters of the dipping reflectors
in this first interval (one of these reflectors could be horizontal). Each subsequent
interval is considered homogeneous. Then, I use the estimated 7! and v{! (0) to

obtain V{1 (ps) and V(! (p,), as well as %(%3)2 and %, in the first interval, where

ray parameters p;3 and p, correspond to the dipping reflectors (one of which, again,
can be horizontal) in the second interval. Using the Dix-type equation, equation (3.9),
from V.2 (ps) and V@) (p,) T then obtain the interval values v{2 (ps) and v{%,(ps),
pertinent to the second interval, and in turn use them to obtain 7® and v{%(0), and
SO on.

Although the method requires NMO velocities measured at two different dips in
each interval, one can define interval thicknesses that insure the presence of at least
two different dips in each interval. Specifically, each interval can be chosen to in-
clude two dips and assumed to be homogeneous, no matter how large that interval
gets. Here, however, I use a more practical approach based on curve fitting and inter-
polation. Specifically, for each of the ray parameters of the dipping reflections used
to measure the stacking velocities, I fit interval-velocity models, based on piecewise-
linear, continuous-interval n values, to equation (3.3). These velocity models satisfy
the measured stacking velocities and zero-offset times through equation (3.3); also, the
interval 7 values that are used to compute the interval NMO velocities are taken to
be continuous at the times of the measured stacking velocities and linear in between.
A detailed description of the inversion procedure is given in Appendix C. This inter-
polation approach is more practical than the discrete layer approach.

As with isotropic media, intermediate interval values (i.e., values between meas-
ured ones) can be estimated using any preferred interpolation technique. The sole
requirement is that interval values yield the measured stacking velocities and zero-
offset times based on equation (3.3). For example, we could consider the measured
values to be constant between its measured times. Here, however, the application
is based on a linear interpolation that keeps the inverted interval values continuous.
This continuity is important for various ray tracing applications.

3.2 Error Analysis

The primary objective of the anisotropic inversion (layer stripping), described
here, is to obtain an improved image of the subsurface over that obtained using iso-
tropic inversion. Therefore, focusing the image is the main goal of this inversion
process, with estimation of the parameters a secondary goal. Based on this order
of importance, the accuracy of the inverted parameters in terms of their lithological
interpretation is of minor importance. What is important is the result of using these
parameters in imaging and focussing the section. Therefore, as in practice for isotropic
media, error bounds on these interval parameters for the purpose stated above is not
necessary.

If, however, the interval parameters are used for lithology discrimination, error
bounds on these parameters should be calculated. To do so, we must investigate the
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sensitivity of the inverted parameters to the measured ones. This is not trivial in
nonlinear problems, where only local analysis can be performed by evaluating deriv-
atives. Nevertheless, if the problem is well behaved and the NMO velocity function is
smoothly varying, which is the case here, the linearized analysis is acceptable.

Errors in the inverted interval values of 7 can arise both from the linear in-
terpolation of 7 used in the layer-stripping process, and from the inversion in each
homogeneous interval used to obtain 7. The interpolation errors are similar to those
encountered in layer-stripping applications for isotropic media. Errors associated with
the homogeneous inversion, described in detail in Chapter 2, depend mainly on the
accuracy of the measured quantities, primarily the stacking velocities.

Here, I concentrate on the significance of the layer-stripping errors. The interval
NMO velocity in a homogeneous layer can be determined uniquely from the rms NMO
velocities above and below that layer; therefore, as we saw earlier,

t5 () V@) =t " ) V& (o))
ty) (0) — 15 (p) ’ (310

[Unmo (p)]2

Using the chain rule

(#) (i-1)
t p 7 (] 4] t p 71 (2
(4) (('i)—l) “(mO( )a‘ n("2°( ) (2) ° Ez )1) v n(mol)( )8‘ n(mol)( )
to’(p) —t (p) ty'(p) —ty ()

Uiiho ()00 (P) =

Considering the worse-case scenario, where errors due to both measured parameters
act in the same direction and therefore add up,

; 1
. t ®) T®) Ay )14 . t ’Eml) v,gr;; (p)
to)(p) — 6" (p) viiho(p) to’(p) —to ’(P) vamo(p)

Clearly, as in isotropic media, the error in the interval NMO velocity is a function of
the ratio of the layer thickness (in time) to the zero-offset traveltime to the bottom of
that layer. The errors actually increase linearly with zero-offset time. Simply stated,
the velocity in a thin shallow layer is better resolved and less sensitive to errors than
that at depth. In addition, because reflection moveout at a fixed offset decreases with
depth even if velocity remains the same, the accuracy of measuring the NMO velocity
(using for example semblance analysis) also decreases with depth. Therefore, error
bars for the inverted parameters will increase with depth.

Av((p) = 1AV ()],

3.2.1 Stacking-velocity measurements

The stacking velocity for steep reflectors (equal to %%2 in isotropic homogen-
eous media, where ¢ is the reflector dip) is large; therefore, the moveout is small
and insensitive to velocity. Specifically, the curvature of reflection moveout, dt?/dX?
[x 1/V2,,], where X is the source-receiver offset, decreases with increase in velocity.

As a result, the resolution of velocity analyses is poor, causing problems in picking
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the appropriate stacking velocities corresponding to dipping reflectors.

One way to mitigate this problem is to pick the stacking velocity after applying
DMO to the data. At this stage in the process, it is sufficient that the DMO be based
on the assumption of a homogeneous isotropic medium. The DMO operation reduces
the stacking velocity of dipping reflectors (approximately equivalent to multiplying
by cos ¢), therefore increasing the sensitivity of moveout to velocity. As a result, I
modify the NMO velocity equation in TI media to account for the DMO operation.
This is accomplished by subtracting the traveltime shifts that correspond to the DMO
operation (= —p?X?) in the NMO equation for dipping reflectors.

1 X?
2p,X) =)+ (—— +P) X2 =t3(p) + 5,

where t is the two-way traveltime as a function of offset, X. Therefore, the NMO
velocity for a dipping reflector after isotropic constant-velocity DMO is given by

Vi (p) = ——melP) (3.11)

1+ p?Vino(p)

Equation (3.11) can, therefore, be used to replace the Vymo(p) function in inverting
for 7 and Vymo(0). For isotropic homogeneous media,

Vnmo 0
Vnmo(p) = ( ) )
1 - V32.,(0)p?

7

therefore, Vi (p) reduces to Viymo(0), and the stacking velocity becomes independent
of p as a result of applying the isotropic DMO.

There is an additional advantage to applying the DMO operation prior to velocity
analysis when inverting for 7. Specifically, we can verify the presence of anisotropy
by comparing the NMO velocity of the sloping event (after DMO) to that of a hori-
zontal event (or any other distinct lesser slope). If the velocity of the sloping event is
higher, then, in most cases, anisotropy is present, and 7 is positive. If the medium
is also vertically inhomogeneous, then the anisotropy must be even more significant
then for homogeneous media, because inhomogeneity tends to reduce the influence
of anisotropy on the DMO operation (Lynn et. al., 1991; Alkhalifah, 1996a). If the
velocity of the sloping event is lower than that of the horizontal event after applying
homogeneous isotropic DMO, then there are two possibilities: the first is that the
medium is vertically inhomogeneous (Artley and Hale, 1994) and at most only mildly
anisotropic, and the second is that the medium is anisotropic with a negative 7, which
is unlikely (Tsvankin and Thomsen, 1994).

If the NMO velocities of the sloping and horizontal reflections are equal after
applying homogeneous isotropic DMO (which is the main goal of applying the DMO)
then the medium may be isotropic and homogeneous, in concurrence with the type
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of operation used. If, however, velocity analysis of horizontal events implies vertical
inhomogeneity (which is typically the case), then anisotropy is present and has the
same size (with an opposite sign) influence as does the vertical inhomogeneity on
the DMO operation for these two dips (Gonzalez et al., 1992; Alkhalifah, 1996a).
Nevertheless, although the homogeneous isotropic DMO focussed these two reflections
(the sloping and horizontal) at the same stacking velocity, it still might not focus
reflections with other slopes as well because the isotropic v(z) DMO impulse response
is not identical to the anisotropic one for all slopes (Alkhalifah, 1996a). Here, I have
tried to outline the main possibilities. The presence of strong lateral inhomogeneity
would introduce further complications.

3.3 Time-related processing

The main argument used to show the dependence of time-related processing (e.g.,
DMO and time migration) on only Vno(0) and 7 in homogeneous VTI media is that
such time-related processing become independent of the vertical velocity Vpy when
expressed in terms of V;,,0(0) and 7. That is, it does not matter what values of
Vpo, €, and 0 are used; only Vimo(0) and n need to be specified. To support such
an assertion, I next compare changes in impulse responses (e.g., migration impulse
responses) for a range of tests in which Vpy, € and é are varied from one test to
another while keeping V,mo(0) and 7 fixed. In Chapter 2, I used such an argument
for homogeneous media. Here I apply it to vertically inhomogeneous media.

Figure 3.2 shows parameter variations as a function of vertical time that I use
below to generate impulse responses. The vertical velocity (Vpg) given by the solid
black curve is the same as the v,,,(0) curve; therefore, ¢ for this model equals zero.
When combined with v;,m0(0), the other two Vpq curves correspond to & values that do
not equal zero [see equation (2.5)]. The dashed curve (vertical velocity is a constant,
1500 m/s), when combined with vpme(0), results in & reaching values as large as the
unrealistically high value of 2. Therefore, in terms of Thomsen’s parameters, for any
of the n curves the difference between the model given by the solid black Vpq curve and
the model given the dashed curve is large, but the parameters have been chosen such
that ¥nmo(0) and 7n are nevertheless the same for all three models with the different

/-
PO-

3.3.1 Dip-moveout correction

As demonstrated in Chapter 2, the NMO velocity for dipping reflectors depends
on only two medium parameters in homogeneous VTI media, namely V;n0(0) and 7.
It should follow, then, that the DMO operation itself, as well as its impulse response,
depends solely on these two parameters.

Figure 3.3 shows four DMO impulse responses generated using the anisotropic
DMO algorithm described later. The first of these responses (Figure 3.3a) corresponds
to the parameters given by the solid black curves in Figure 3.2 for Vpg, vnmo(0) and
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F1G. 3.2. Parameter variation as a function of vertical time. The parameters here cor-
respond to the interval vertical velocity Vpg, the interval NMO velocity for horizontal
reflectors v,mo(0), and the anisotropy parameter 7. Different combinations of these
parameters result in different models.
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n. Note how different this DMO impulse response for a VTI medium is from the
elliptical shape we have grown accustomed to for isotropic media. The responses in
Figure 3.3b and 3.3c correspond to using the gray and the dashed curves of Vpq in
Figure 3.2, respectively, while keeping the values of vymo(0) and 7 the same as those
used in Figure 3.3a (the solid black curves). The three DMO impulse responses look
exactly the same; that is, they are independent of the value of Vpy, in support of the
result that was partially suggested by equation (3.2), a small-offset approximation of
the moveout. (Recall that for the response in Figure 3.3c, d reaches such uncommenly
high values as 2!) On the other hand, if we change 7, using the gray curve for 7 in
Figure 3.2 (which is closer to an isotropic model, where n=0) instead of the black one,
the response changes dramatically, implying that it is highly dependent on 7. In fact,
the impulse response for the gray curve, as expected, has a shape that is much closer
to the elliptical shape we observe for isotropic media.

3.3.2 Time migration

In Chapter 2, we saw that the nonhyperbolic moveout based on a Taylor’s series
expansion for vertically inhomogeneous VTI media is likewise dependent on only
Vamo(0, 7) and n(7). Since this moveout equation represents a small-dip approximation
of a zero-offset diffraction curve, we should expect that time migration also depends
on just these two parameters.

Figure 3.4 shows four poststack, time-migration impulse responses generated us-
ing an anisotropic phase-shift time migration (Kitchenside, 1991). The first of these
responses (Figure 3.4a) corresponds to the parameters given by the solid black curves
in Figure 3.2 for Vpg, ¥nmo(0) and 7. In contrast, the responses in Figure 3.4b and 3.4¢
correspond to using the gray and the dashed curves of vertical velocity (Vpo) from
Figure 3.2, respectively, while keeping vnmo(0) and 71 the same as those used in Fig-
ure 3.4a. The three time migration impulse responses look identical. Given the large
difference between the Thomsen’s parameters used to generate Figure 3.4a from those
used to generate Figure 3.4c, the similarity of the responses that are based on the ex-
act traveltime calculation (within the framework of ray theory) is striking. Therefore,
time migration in VTI media is also seen to be independent of vertical velocity when
expressed in terms of v,m,(0) and 7. However, if the gray 7 curve in Figure 3.2 is used,
differences appear. Specifically, note that, because of the overall lower 7, the response
in this case (Figure 3.4d) is slightly squeezed (see arrows). For a near-vertical re-
flector the lateral position difference is about 5 percent. Although the time migration
responses appear to have less variation with change in n than do the DMO responses,
note that the scales at which the responses in the case of DMO and time migration
are plotted differ substantially. The conclusion in any event is that for modest dip,
migration will be less sensitive to ignoring anisotropy than is DMO. This is consistent
with the results of Alkhalifah and Larner (1994).
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FiG. 3.4. Zero-offset time-migration impulse responses for an impulse at time 2.1 s,
using (a) the parameters in Figure 3.2 represented by the solid black curves, (b)
the vertical velocity given by the gray curve in Figure 3.2 while keeping the other
parameters the same as for (a), (c) the vertical velocity given by the dashed curve in
Figure 3.2 while keeping the other parameters the same as for (a), and (d) the n values
represented by the gray curve in Figure 3.2 while keeping Vpg and vpmo(0) the same
as for (a).
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Chapter 4

DIP-MOVEQOUT CORRECTION IN VTI MEDIA

The process of transforming prestack data to zero offset (TZO) accomplishes
moveout correction for reflections from horizontal and dipping reflectors. Specifically,
in an isotropic, homogeneous medium, TZO includes both normal moveout correction
(NMO) and dip moveout correction (DMO). I use the term TZO to describe the
one-step ray-tracing process used here to map nonzero-offset traveltimes directly to
zero-offset times. Therefore, DMO correction corresponds to TZO with the moveout
correction for horizontal reflectors applied.

The combination of anisotropic ray tracing (Cerveny, 1972) and dip-decomposition
(Jakubowicz, 1990) in transforming prestack data to zero-offset (or in applying DMO)
is particularly well suited to handling the nonhyperbolic moveout in homogeneous or
inhomogeneous TT media. For such media, with accurate traveltime computations such
as by ray tracing, data can be transformed to zero-offset, thus lessening the severity of
muting necessary for the far offsets. After outlining the DMO method, I generate and
study DMO impulse responses in VTI media, and compare them with the familiar
elliptical DMO response for isotropic, homogeneous media. Finally, I apply this DMO
approach to synthetic data, demonstrating the need to take anisotropy into account
in order to achieve the goals of DMO.

4.1 Transformation to zero offset

The DMO approach of Artley and Hale (1994), appropriate for isotropic v(z) me-
dia, is based on a combination of Jakubowicz’s (1990) dip-decomposition method and
ray tracing in isotropic v(z) media. Their DMO algorithm results from subtracting an
NMO correction after transformation to zero offset. The advantage of using DMO, as
opposed to full TZO, is that the separately-applied NMO correction can accommodate
smooth lateral velocity variations in the media, while the full TZO treats only v(z)
media.

4.1.1 Solving for the zero-offset time and position

The method of Artley and Hale requires solution of a system of nonlinear equa-
tions to find a trio of rays needed to calculate the zero-offset time, ¢y, and position, z
(see Figure 4.1). This ray trio includes the rays from the source, receiver, and zero-
offset locations to each (potential) specular reflection point in the subsurface. These
rays are characterized by their ray parameter ps, py, and pg, respectively. Solution of
a system of four equations and four unknowns is necessary in order to obtain the ray
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trio. In particular, one of these equations is based on Snell’s law, which requires that
the incident and reflection angles be equal. That is,

0+ 6,

00 92 3

(4.1)
where 6 is the angle between the normal to the reflector and the vertical axis (the
reflector dip), ; is the angle between the incident ray originating from the source and
the vertical, and 6, is the angle between the reflected ray and the vertical. A detailed
description of the algorithm is given by Artley and Hale (1994).

Using ray tracing for anisotropic media, as described in Appendix A, and repla-
cing equation (4.1) with
sin(f; — 6p)  sin(6p — 6,)
Ve,  V(e,)

where V/(0) is the phase velocity, modifies the TZO of Artley and Hale to accommodate
v(z) anisotropic media. Here 6 corresponds to the phase angle, which generally differs
from the ray angle in TI media. Because the components of the ray position (the
vertical time 7 and surface position ), as a function ray parameter, are applicable to
all midpoints for a v(z) medium, they need to be tabulated only once. As a result, the
cost of the modification of the ray-tracing algorithm to treat TI media is negligible
compared with the overall cost of the DMO, especially for large data volumes.

The system of four nonlinear equations,

= z(pg, 2tg) — z[ps, 2(tsg — tg)] + 2R
= T(pg, 2tg) — 7[ps, 2(tsg — tg)] (4.2)
= T(pg, 2tg) — T(Po, to), '
sin(0; — 6p)  sin(fp — 0,)
Ve.) V()

o O O O

is used to solve for four unknowns p,, p,, t,, and t,. The first equation in system (4.2)
is the requirement that the lateral distances, x, from each of the source and receiver
to the specular reflection point (SRP) add up to equal the source-receiver offset, 2h,
while the second and third equations imply that the vertical times, 7 (or depths) from
each of the source, receiver, and zero-offset surface positions to SRP are the same.
This system is solved for a given half-offset h, total traveltime ¢4, and py. Once { is
obtained, we can calculate zy using

To = x(pg, 2ty) — z(po, to) + .

A detailed description of these parameters is shown in Figure 4.1, and given in Artley
and Hale (1994) and Artley (1992). This system of equations can be solved using, for
example, multi-dimensional Newton-Raphson iteration (see, e.g., Press et al., 1986,
pp. 269-273).
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pS’tS

FiG. 4.1. Diagram showing a DMO raypath trio. All three rays must terminate at
the reflection point and the zero-offset ray bisects the angle formed by the source ray
and the geophone ray. The zero-offset ray is normal to the reflecting surface at the
reflection point.
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To apply the algorithm as a DMO operation, it is sufficient to subtract from the
full TZO traveltime calculations the traveltime portion that corresponds to either NMO
correction (Artley and Hale, 1994) or nonhyperbolic moveout correction (Tsvankin
and Thomsen, 1994; Alkhalifah, 1996b) for horizontal reflectors. The approach of
removing a nonhyperbolic moveout correction is used below to generate DMO impulse
responses in VTI media. Ultimately, however, I implement DMO by subtracting from
the full TZO traveltime calculations the traveltime portion that corresponds to NMO

correction only,
2 =1+ A (4.3)
U Vi(ta)
where Vims(t) denotes the root mean square average of the interval time-dependent
NMO velocity function vyme(t),

1 rt 1/2
"/rms(t) = [Z/O ds v?lmo(s)] .

The resulting recording time is then used as a parameter of the system. Therefore,
the input to the DMO is the NMO-corrected section with the time axis given by ¢,.

To get the slope-dependent moveout required for DMO by the dip-decomposition
approach, the zero-offset time ty corresponding to a particular slope py must be pro-
jected back to the midpoint along the line tangent to the DMO operator at (o, ).
This is equivalent to applying a 7-p transform to the impulse response. By definition,
the slope of this tangent is 0t/0z¢ = py, so the projection is

7:[0 = t() + PoZg-

It is actually this #, that is referred to as simply ¢, in the DMO mapping ¢, (%, po)
required for applying DMO by dip-decomposition. At this point, however, ¢, is an
independent variable and o = #y(t,, po). Inverse interpolation is used to make #, the
independent variable. For a fixed value of py, assume that fy(t,) is a monotonically
increasing function of ¢,,. This ensures that no two NMO times t, correspond to the
same zero-offset time ¢y, which is a practical assumption for a single ray parameter.
Then linear interpolation can be used to find t,(f)) for that slope, and %,(¢¢,pg) in
general.

Because this method is based on ray tracing, the traveltime calculations are
exact (within the framework of ray theory), and therefore can appropriately map
nonhyperbolic moveout. This is an advantage over DMO methods based on hyperbolic
moveout equations (i.e., Anderson and Tsvankin, 1995), which often ignore the large
nonhyperbolic moveout in VTI media. This advantage will be exemplified in the
discussion of the field data example.
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4.1.2 DMO by Dip Decomposition

After obtaining the DMO mapping t, (%o, po), I then use it in the DMO by dip
decomposition. For a flat reflector dipping at an angle # in a medium of constant
velocity v, the relationship between zero-offset time ¢, and NMO time ¢, at a common
midpoint is
4h?sin® 0

02
(Hale, 1984). By noting that py = 2sin8/v = k/wo, where py = 8ty/0z is the reflection
slope measured on a zero-offset section, Jakubowicz (1990) wrote this relationship as

=1+

2 =2 — poh?. (4.4)

Note that for a single reflection slope, DMO reduces to a simple slope-dependent
moveout operation.

As a result, Hale’s original DMO formula (1984) can be written for a single slope
po = k/wp as

Qo(wo, k) =/0 diy €7, [t (To, Po), K, (4.5)
where ¢,, is the NMO corrected data. By defining
Q'o(fo, k) == Qn[tn(EO)pO)a k]’ (46)

equation (4.5) becomes
Qo(wo, k) =/0 dio €% Gy (fo, k), (4.7)

which is simply the Fourier transform of the interpolated data Go(to, k).

Jakubowicz’s method proceeds by decomposing the zero-offset section Qg(wy, k)
into its component slopes, py = k/wg. The contribution of each slope component is
computed separately via equations (4.6) and (4.7). For this reason, the method is
sometimes referred to as DMO by dip-decomposition (Hale, 1988), or, perhaps more
precisely, reflection slope-decomposition.

Jakubowicz (1990) showed that the dip-decomposition technique is equivalent to
Hale’s (1984) DMO by Fourier transform formulation provided that the sampling of
reflection slope is sufficiently fine. Hale (1988) derived a sampling criterion that avoids
spatial aliasing of the zero-offset data.

The scheme for computing the v(z) DMO mapping t,(to, po) is outlined in the
algorithm of Figure 4.2 (Artley, 1992).

4.2 DMO impulse responses in VTI media

Following Artley and Hale (1994), I use ray tracing (but now in VTI media) to
generate exact trajectories for DMO impulse responses in VT1 v(z) media. Using this
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Computation of the DMO mapping:

Compute ray tables x(p,t), 7(p,t), 6(p,t) (now using VTI raytracing)
For all half-offsets h {
For all NMO times t,, = 0, At,, 2At,, ... {
Compute recording time via t2, = t2 4 4h* /v3 ()
Compute trial solution to system for py = 0,
assuming v = const = vy(t,)
For all p = 0, ApZ, 2Ap2, ... {
Refine trial solution to system using
Newton-Raphson iteration
Project ty back to the midpoint with
to(tn, po) = to(tn, Po) + PoZo(tn, Po)
Save the inverse DMO mapping to(t,, o)
Use final solution for this py as
trial solution for next py
}
}
For all p2 = 0, Ap3,2Ap2,. .. {
Compute the DMO mapping t,(to,po) from
to(tn, po) via inverse interpolation
}
Apply DMO via dip-decomposition to common-
offset section (as described in the
section on DMO by Dip Decomposition)

F1G. 4.2. Algorithm for computing and applying v(z) DMO correction.
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DMO impulse-response generator, I study the dependence of the response shape on
the various parameters that control DMO in VTI media. These parameters are: 7,
Vamo(0), offset, and NMO-corrected time, t,. Let us begin by examining the depend-
ence of the DMO impulse response on the anisotropy, specifically on the parameter 7
in homogeneous VTI media.

4.2.1 Dependence on 7

The impulse responses in Figure 4.3 pertain to Vime(0)=2.0 km/s, offset=1.5 km,
and NMO time, t, =1.5 s. Superimposed on these black curves is the corresponding
DMO trajectory for a homogeneous isotropic or elliptically isotropic medium (gray
curves), both of which are characterized by 7 = 0 and the same Vamo(0) as that of
the VTT model. Typical  values in the subsurface range from -0.1 to 0.3 (Thomsen,
1986; Alkhalifah and Tsvankin, 1995). Departures from the familiar elliptical shape
for DMO responses in isotropic media (n = 0) in this range are evident. It is also
interesting to observe the impulse-response behavior for models that are possible, in
principle, but not typical. For instance, at 7 = —0.3, the DMO impulse response
looks somewhat like an inverse DMO operator. At the opposite extreme (1 = 0.6), the
impulse response is highly flattened, with sizeable triplications at the sides (note again
that all models in Figure 4.3 are homogeneous). However, unlike the triplications
encountered in isotropic v(z) media (Artley and Hale, 1994), the triplications here
always correspond to reflector dips less than 90 degrees.

The most striking feature of the impulse responses is the triplications that develop
as 7 increases. For positive  (i.e., 7 = 0.3), the impulse response in VT1 media has
three branches. The central one corresponds to the concave-upward region, which
includes dips between 0 and 2446 degrees [the upper limit of this range depends
on 7 and Viyme(0)]. This branch flattens with increase in 7, and can be somewhat
approximated by a stretched ellipse. Another branch is seen at the limbs of the
previous branch as a concave-downward section of the triplication (this branch reduces
to a point for 7 = 0.1). This portion corresponds to dips between 24+6 and 485
degrees; clearly, no flattened ellipse can approximate it. A third branch is represented
by a somewhat straight line at the sides of the responses. These line shifts downward
with an increase in 7, and this region includes dips between 48+5 and 85 degrees.
This line would project to the source and receiver locations at the surface, where the
associated dip is 90 degrees.

For np < —0.1, a different kind of triplication develops. This one is centered on the
symmetry axis, which implies that it acts on reflections from reflectors with small dips.
Moreover, negative-sign reflector dips now appear to the right of the impulse-response
symmetry point, instead of the left, as is the case for isotropic media.

As a consequence of the unusual shapes of the DMO operators in VTI media,
the energy distributions along the response differ from those in isotropic media. The
nonuniform distribution is necessary to insure that the summation of amplitudes along
impulse responses in the DMO process yields proper amplitudes of reflections. Fig-
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F1G. 4.3. Shapes of DMO impulse responses in homogeneous VTI media for various
n values (black curves). Here, offset=1.5 km, ¢,=1.5 s, and Vy;mo(0)=2.0 km/s. These
curves are superimposed on the corresponding isotropic (n = 0) constant-velocity
DMO trajectories (gray curves). Lateral distance here, and throughout, is measured
from the symmetry point of each responsgg
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FIG. 4.4. DMO impulse responses in VTI media for various n values. Here
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ure 4.4 exemplifies such varying energy distributions and includes a comparison with
the isotropic impulse response, given by n = 0. These impulse responses were gen-
erated by applying anisotropic DMO, described above, to an input file that contains
a single impulse. Clearly, the parts of the response with less curvature have smaller
amplitude than do those with more curvature. For example, when 1 = 0.1, for which
the response is flattened (see Figure 4.3), the reflection from a horizontal reflector in
the common-offset domain receives contributions from many adjacent responses, and
the amplitude of each contribution must be small enough to insure that the superpos-
ition of the contributions for this dip is the same as for all other dips.

Such large differences between the isotropic, homogeneous response and the re-
sponses in V'IT media imply that the special effort to take anisotropy into account in
DMO will be rewarded where data are from VTI media with n # 0.
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F1G. 4.5. DMO impulse responses in VTI media with Vpm(0)=2.0 km/s (solid black
curve), Vimo(0)=2.5 km/s (dashed black curve), and Vyme(0)=3.0 km/s (dashed gray
curve). Here, offset=1.5 km, ¢,=1.5 s, and 7 = 0.1. As before, the impulse responses
are superimposed on the corresponding isotropic constant-velocity operators (gray
curve).

4.2.2 Dependence on V},,,(0)

It is well known that the DMO operator for isotropic homogeneous media is
independent of velocity. This is not true for VTI media with n # 0. However, as
seen in Figure 4.5, Vino(0) has only small influence on the DMO impulse response,
and practically no influence on the region of the impulse response corresponding to
moderate and mild dips (dips up to 30 degrees). Specifically, the concave-upward
branch does not change with a change in Vamo(0). It varies in width only; that is,
with increase in Vj;,,(0), the concave-downward and straight-line branches are shifted
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somewhat inward. This shift arises because, for a given reflector dip, slopes on the
DMO impulse responses decrease with increase in velocity, and the transition between
branches occurs at about the same dip, independent of velocity. In isotropic media, all
shifts caused by velocity variation take place along the elliptical operator, and therefore
do not alter the shape at all. The range of Vymo(0) displayed in Figure 4.5 (2.0 to 3.0
km/s) is far greater than the range of errors usually associated with measuring Vomo(0)
(i.e., from velocity analysis). This implies that, especially for dips corresponding to the
first branch, the DMO process in VTI media is practically independent of the NMO
velocity, thus approximating the velocity-independence for isotropic media. This is
consistent with the weak-anisotropy approximation of Anderson and Tsvankin (1995).

Thus, of the two key parameters, Vamo(0) and 7, only 7 has a strong influence on
the shape of the DMO impulse response. Therefore, after applying NMO correction
to the data, a process of estimating the 7 value that best corrects the moveout to zero-
offset can be used. For example, a semblance analysis technique can be developed
using successive applications of DMO, each based on a different constant value of 7.

Although 7 forms essentially a one-parameter control on the shape of the im-
pulse response in VTI media, clearly the responses in Figure 4.3 are not squeezed or
stretched versions of the isotropic ones, as in isotropic v(z) media. They exhibit a
much more complicated departure from the typical elliptical shape.

4.2.3 Dependence on offset and NMO time

As is known, the importance of DMO correction increases with offset; i.e., the
elliptical impulse responses of the DMO process broaden with increasing offset in ho-
mogeneous, isotropic media. Likewise, the impulse responses for VTT media broaden,
but, as we have seen, the shapes are not elliptical. The influence of offset on the im-
pulse responses in a homogeneous VTI medium with 7 = 0.1 is shown in Figure 4.6.
Note that the general shape of the response remains the same with increasing offset;
however, the departure of the VTI impulse response (black curve) from the isotropic
homogeneous operator (gray curve) increases with increasing offset.

The DMO impulse responses in Figure 4.7, generated for various NMO-corrected
times, pertain to an offset of 1.5 km. As with isotropic media, the width of the impulse
response decreases with increasing t,. However, the departure of the shapes of the
impulse responses for VTI media (black curves) from the ones corresponding to ho-
mogeneous, isotropic media (gray curves) remains practically the same. In contrast,
Artley and Hale (1994) showed that the differences between the impulse responses
for isotropic homogeneous and v(z) media decrease with increasing time, to a point
where the two responses practically coincide. This implies that, for example, if in-
homogeneity was large enough to offset the action of anisotropy in the shallow part
of a section, the relative importance of inhomogeneity would reduce with depth.
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F1G. 4.6. DMO impulse responses in a VTI medium for three offsets given by X=1.0
km (the narrowest of the responses), X=2.0 km, and X=3.0 km (the widest of the
responses). Here, t,=1.5s, 7 = 0.1, and Vymo(0)=2.0 km/s. The responses of the VTI
medium (black) are superimposed on the corresponding isotropic constant-velocity
operators (gray).
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Distance (km)
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P =
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FIGc. 4.7. DMO impulse responses in a VTI medium for scatterers at six different
depths (i.e., six different values of ¢,). Here, X=1.5 km/s, 7 = 0.1, and Vimo(0)=2.0
km/s. Again, the responses for the VTI medium (black) are superimposed on the
corresponding isotropic constant:velocity operators (gray).
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F1G. 4.8. DMO impulse responses in vertically inhomogeneous VTI media for various
vertical velocity gradients. Here, offset=1.5 km, ¢,=1.5 s, and Vamo(0) at the surface
is 1.5 km/s. 7 for the left column of plots equals 0.1 and for the right column equals
0.3 (black curves). The corresponding isotropic constant-velocity operators are shown

in gray. 64



Seismic processing in transversely isotropic media

4.2.4 Dependence on vertical inhomogeneity

It has been observed that when the subsurface is both anisotropic and vertic-
ally inhomogeneous, DMO is often best done with an isotropic homogeneous operator
(Gonzalez et al., 1992; Larner, 1993; Tsvankin, 1995). The validity of this choice
depends on the nature and strength of both anisotropy and inhomogeneity. For ex-
ample, this approach might be acceptable if anisotropy is weak enough; however, in
media with typical values of n [i.e., the anisotropy levels usually associated with shales
(n > 0.1), as we will see later in the field example], the anisotropy influence on the
DMO operator exceeds that of the inhomogeneity.

All the examples so far pertain to homogeneous media. Now -consider media
in which velocities increase with depth. Figure 4.8 shows impulse responses in VTI
media for n = 0.1 and 7 = 0.3, with the vertical velocity gradient a ranging between
0 and 1.0 s~!. First note that the inhomogeneity introduces an additional branch
corresponding to dips mostly beyond 90 degrees. This additional branch is similar to
that observed by Artley and Hale (1994) in v(2) isotropic media. For mild to moderate
dips (dips up to 30 degrees), differences in responses for inhomogeneous media from
those for the homogeneous case (a = 0), shown at the top of Figure 4.8, are generally
small, if not negligible. Other than the additional branch, the shapes of the responses
are generally similar to the homogeneous ones.

04 02 0 02 04 -04 02 O 0.2 04
1.3
1.4 1.4+

1.5 1.5

1.6 1.6

Fic. 4.9. DMO impulse responses in inhomogeneous isotropic (n = 0.0) and VTI
media (7 = 0.1). Here, offset=1.5 km, ¢,=1.5s, and Vymo(0)=1.5 +0.6 z km/s.

Figure 4.9 shows actual impulse responses in v(z) VTI media, with the energy
distribution clearly displayed. As with the homogeneous case (Figure 4.4), such ir-
regular energy distribution (e.g., the strong amplitudes where the curvature of the
impulse response is largest) depends mainly on the shape of the impulse response.

The similarities between impulse responses in homogeneous and v(z) VTI me-
dia, especially for mild and moderate dips, imply that typical anisotropy has a larger

65




T. Alkhalifah

influence on DMO than does inhomogeneity. Therefore, a homogeneous VTI DMO
algorithm will likely give acceptable results in typical v(z) media for mild and mod-
erate dips. Where isotropic v(z) DMO impulse responses can be well approximated
by squeezed ellipses, similar approximations will not work effectively in VTI media,
especially for dips exceeding 30 degrees.

4.3 Prestack migration impulse responses

Applying a zero-offset time migration to a DMO impulse response simulates a
prestack time-migration impulse response for the same offset as that used in generating
the DMO impulse response. This holds for VTI media, as well as for isotropic media.

Distance (km)
-1 0 1

oo

Migration time (s)
.o -—b

-
N

1.6

FIG. 4.10. Prestack migration impulse responses generated from the DMO impulse
responses in Figure 4.3 for several 7 values. Here again, offset=1.5 km, t,=1.5 s, and
Vamo(0)=2.0 km/s.

Figure 4.10 shows such prestack migration impulse responses for an offset of
1.5 km (the same offset used in generating the responses in Figure 4.4). The time
migration used here is the Gazdag (1978) phase-shift method modified for VTI media.
Despite the complicated form of the DMO impulse responses in VTI media (e.g., the
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triplication for larger 7), the time-migration impulse responses are smooth. This
can be expected because migration impulse responses represent wavefronts, and for
P-waves in VTI media the wavefronts are known to be smooth (i.e., they cannot
include triplications). Further, the width of the migration responses depends on 7:
from equation (2.1), negative n implies a smaller horizontal velocity than Vimo(0),
resulting in a laterally squeezed migration response, whereas positive 1 implies a
larger horizontal velocity, resulting in a stretched version. For n equal zero (isotropic
or elliptically anisotropic media), the response shape is simply the familiar ellipse.

4.4 Application to a reflector model

Although the DMO algorithm, described above, handles v(z) VTI media, the
first example pertains to homogeneous media. The reason for this simplification is to
show the significance of anisotropy and its influence on the data without any influence
of inhomogeneity. Next, I will show results from a v(z) medium to illustrate points
regarding the v(z) influence. The reflector model given by Figure 4.11a contains a
wide range of reflector dips, so that we acheive a composite idea of the dependence of
NMO velocity on dip.

4.4.1 Homogeneous medium

Figure 4.11b shows the zero-offset synthetic section for the homogeneous model
in Figure 4.11a. The section has 401 traces, corresponding to 401 CMP locations,
at a spacing of 0.025 km. The medium above the reflectors is VTI with Vpe=2.5
km/s, €=0.3, and § = 0.1. For NMO and DMO purposes, such media can also be
expressed by n = 0.167 and Vymo(0) = 2.78 km/s. Figure 4.12a shows a 31-fold
CMP gather prior to TZO for the CMP location marked by the dashed vertical line
in Figure 4.11b. Reflections from dipping interfaces can be identified by their higher
velocity (i.e., smaller moveout).

First, let us examine application of the conventional processing sequence designed
for isotropic media. Figure 4.12b shows the same CMP gather of Figure 4.12a after an
isotropic TZO (NMO and DMO) using Vamo(0), which approximates the stacking ve-
locity obtained from velocity analysis for offset-to-depth ratio X/D <1. Although the
reflections from horizontal interfaces are flattened at the near offsets, the nonhyper-
bolic moveout behavior caused by anisotropy leads to deviations at the far offsets.
Such errors cannot be corrected using a hyperbolic moveout correction, and therefore
a mute procedure would typically be applied to the far offsets to properly stack the
data (Anderson et al., 1995). Reflections from dipping reflectors have even larger er-
rors, which are caused primarily by ignoring anisotropy in DMO for the VTI medium.
Such errors are described in detail by Larner (1993) and Tsvankin (1995).

Using anisotropic ray-tracing, DMO with the correct medium parameters flattens
the moveout of all events properly at all offsets, as demonstrated in Figure 4.12¢. Both
the nonhyperbolic moveout and the dip moveout have been properly corrected for.
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Fig. 4.12. (a) Uncorrected CMP gather for the model shown in Figure 4.11a. (b)
Gather after isotropic TZO using Vimo(0). (c) Gather after anisotropic TZO with
the actual anisotropy parameters. (d) Gather after anisotropic TZO with the correct
values of 7 and Vymo(0), but with incorrect values of Vpo (Vpo=Vamo(0) = 2.65 km/s),
§ (6=0), and ¢ (¢=0.167). The three dipping reflectors shown here are at zero-offset
times of 0.96 s (30-degree dip), at 1.26 s (45-degree dip), and at 1.44 s (60-degree
dip).
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Furthermore, Figure 4.12d shows the same perfect TZO correction using the correct
values of Vimo(0) and n, but with erroneous Vmg = Vpmo(0) [from equation (2.5)],
corresponding to erroneous values § = 0 and € = 0.167. This confirms the result
obtained by Alkhalifah and Tsvankin (1995) stated in Chapter 2, above, that NMO
and DMO (or TZO), as well as time migration, depend only on n and Vime(0).

4.4.2 v(z) medium

Midpoint (km)
0 2 4 6 8

F1G. 4.13. Zero-offset seismogram generated from the model in Figure 4.11a, with
the v(z) VTI medium characterized by Vpy(z)=1.5+0.8z km/s, € = 0.3, and § = 0.1
(n = 0.167). The dashed line shows the location of the CMP gather in Figures 4.14
and 4.15.

Using the same model shown in Figure 4.11a, with velocity now varying with
depth, v(2) = 1.5+0.82 km/s, and with ¢ and € the same as in the homogeneous model
(equal 0.1 and 0.3, respectively), I get the zero-offset section shown in Figure 4.13.
The medium considered here is referred to as a factorized TI medium (Shearer and
Chapman, 1988), wherein although velocity is varying with depth, § and € remain
constant. Such a limitation is dictated by the synthetic data generator that I use here
(Alkhalifah, 1995a), which is based on this concept. The DMO algorithm, though,
can accommodate vertical variations in all parameters. The vertical dashed line shown
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in Figure 4.13 shows the location of the CMP gather given in Figures 4.14 and 4.15.
Note that this CMP gather includes reflections from all reflector dips, which should
give us a good idea of the performance of isotropic and VTI DMO algorithms.

Offset (km) Offset (km)
1 2 3 1 2 3

1.0 J
309,

—~1.57 %::a 1.5 )

[0} -

1.0

603 )
2.0

7o i i TW

Fic. 4.14. (a) Uncorrected CMP gather for the v(z) VTI model shown in Figure 4.11a.
(b) Gather after NMO correction using the actual model NMO velocities. The arrows
identify the reflector dips responsible for the reflections. The arrowless reflections are
from horizontal reflectors.

Figure 4.14a shows a 31-fold CMP gather prior to TZO for the CMP location
marked by the dashed vertical line in Figure 4.13. Figure 4.14b shows the same CMP
gather after NMO correction. The disparity in the moveout should help discriminate
between dipping and horizontal reflectors. Typically, moveout decreases with increase
in moveout velocity and, therefore, with increase in reflector dip (Levin, 1971). Again,
horizontal reflections suffer from the presence of nonhyperbolic moveout now due to
both anisotropy and vertical inhomogeneity. As shown by Alkhalifah (1996b), the
majority of the nonhyperbolic moveout is due to the anisotropy.

Figure 4.15 shows the result of applying various DMO corrections to the data
shown in Figure 4.13. As expected, the VIT v(z) DMO using the actual medium
parameters, given by v(z) = 1.5+0.82 km/s, § = 0.1, and € = 0.3, accurately corrects
the moveout for all dips and offsets (Figure 4.15a). The homogeneous VTI DMO,
using the rms velocity corresponding to time 1.4 s, also gives reasonable results (Fig-
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ure 4.15b), especially near the 1.4 s. In fact, using the homogeneous VTI DMO, with
some adjustment of velocity depending on time, for v(z) media is an attractive option
to reducing the cost of DMO. Note also that the nonhyperbolic moveout is reduced
considerably using this DMO which suggests that the majority of the nonhyperbolic
is due to the presence of anisotropy. The isotropic DMO operation clearly failed to
correct the moveout. In fact, the isotropic v(z) DMO, which purports to better honor
v(z) behavior than does the homogeneous DMO, gives the worst results. The iso-
tropic homogeneous DMO, in this case, benefited from trade-off between the vertical
inhomogeneity and anisotropy, mentioned earlier.

We can conclude from the above that typical anisotropy (e.g., that associated with
shales) has a greater influence on DMO than does moderate vertical inhomogeneity.
Therefore, when correcting the moveout for the influence of dip in anisotropic media,
we must first and foremost treat anisotropy and then worry about the inhomogeneity.
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Chapter 5

MIGRATION IN VTI MEDIA

Most migration algorithms used today are based on the assumption that the earth
is isotropic, an approximation that is often not valid and thus can lead to position
errors on migrated images. Larner and Cohen (1993) and Alkhalifah and Larner (1994)
have studied the mispositioning of imaged reflectors that results when, as is typically
done in practice, conventional P-wave data from transversely isotropic (TT) media are
migrated with an algorithm that ignores anisotropy. Their conclusion points to the
importance of using an anisotropic migration when the medium is anisotropic. Here, I
outline the methodology used to implement Stolt and Gazdag migrations in TI media.
I will also discuss depth migration, specifically Gaussian beam migration (GBM), and
its place in processing data from TI media.

5.1 Time migration

Fourier-domain implementations of migration require that the medium be lat-
erally homogeneous (excluding some approximations used to handle smooth lateral
velocity variation). This inherent limitation of time-migration results, however, in
implementations of migration that are efficient in the Fourier domain. In addition,
the assumption of lateral homogeneity allows for the two-parameter representation
of P-waves in VTI media. Likely, through the combined action of gravity and sed-
imentation, velocity variation with depth represents the most important first-order
inhomogeneity in the earth. This is one reason why time migration works well in so
many places.

5.1.1 Stolt migration

To migrate a zero-offset section in VTI media with the Stolt (1978) F-K migra-
tion algorithm, the conventional isotropic algorithm must be modified using a time-
migration dispersion relation for TI media. The only substantial change required in
the Stolt method is the replacement of the isotropic velocity by the dip-dependent
phase-velocity function for transversely isotropic media (Kitchenside, 1991). A refer-
ence velocity equal to Vpg is needed to scale the vertical axis as follows (Anderson et
al., 1995):

Vpok
2Wim

=tan¢, (5.1)
and
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V(o) V3, k2 wm V(o)
— w2 11 - . 5.2
Wo =W /po dw?, cos¢ Vpg (52)

Here, wy is the zero-offset angular frequency for unmigrated data, w,, is the angular
frequency after migration, and ¢ is the dip associated with the reflector of interest.
Note that equation (5.2) reduces to the isotropic cosine-of-dip Stolt relationship if
V(¢) equals Vpy. For equation (5.2) to approximately handle v(z) media, Stolt (1978)
introduced a stretch technique, where the dispersion relation [equation (5.2)] is given
by

o T, (53)
cos ¢ Vpg

a=1/sand b=1—a. As a result, equation (5.1) is now given by

wo = Wi (

Vs Veok _ tan ¢,
2w

where s is the stretch factor, equal to unity for homogeneous media and, for smooth
v(z) media, s is typically set to equal 0.6. To prepare the data for this new dispersion
relation [equation (5.4)], the time axis is stretched according to the following formula

2 [t
T(to)z\/—2 0 t‘/r?ns(t)dt’

Vo

where vq is the velocity at the surface.

For factorized TI media, where the NMO velocity is given by the same rms
relation used in isotropic media, the time coordinate transformation remains the same
as in isotropic media. However, through empirical testing, I have found that an s
value given by ] . ' '

180

S=15 81’ (5.4)
where s;, is the stretch factor usually chosen for isotropic media, best migrates data
in v(z) anisotropic media. This (1+8n) factor in the denominator of equation (5.4) is a
factor usually encountered in layer-stripping formulas for the nonhyperbolic moveout
term for horizontal reflectors in VTT media (Alkhalifah, 1996b). This is not surprising
considering that reflection moveout from horizontal events has the same traveltime
behavior as that of the zero-offset migration diffraction curve.

Figure 5.1 shows a VTI Stolt migration of zero-offset data generated from the
model in Figure 4.11, with V;,,=2.0 km/s and n=0.1. Clearly, the migrated re-
flectors are imaged in their correct positions. The attenuation of the reflector with
90-degree dip and part of the one with 75-degree dip is due to the limited aperture
used in the migration of this medium; energy from the 90-degree dip reflector in ho-
mogeneous media cannot be recorded at the surface. Figure 5.2 shows a VTI Stolt
migration of zero-offset data generated from the same model used in Figure 5.1, with
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Fic. 5.1. Stolt VTI-migrated section of zero-offset data generated for the model in
Figure 4.11. The medium is homogeneous VTI with Vj,,=2.0 km/s, ¢ = 0.1, and

6 =10.0 (n=0.1).
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Vpo(z)=1.54+0.6z km/s and 7=0.1. As expected, errors in imaging increase with in-
crease in reflector dip. No aperture problems here; almost all the energy reflected
from the 90-degree reflector, as well as from other reflectors, has been recorded at the
surface because of the v(z) nature of the medium. Nevertheless, reflections from steep
events suffer from the shortcomings of the stretch approximation. The Stolt migration,
however, has produced an overall reasonable image, especially for mild and moderate
dips.

5.1.2 Phase-shift migration
Gazdag (1978) phase-shift method for depth extrapolation of a seismic wavefield

in the frequency-wavenumber (w, k;) domain is given by

cos@(kz /w,C)
v(¢) ,

W (w, ks 2) = W (W, ks, 2 = 0) Alka/w, 2) € *Jo % (5.5)

where W is the wavefield, and 8(p,, z) is the angle defined, for isotropic media, by

sin (pg, 2) = v(2)Px,

and A(p,, z) is an amplitude factor that corrects for the v(z) influence and is often
omitted, in part because it goes to infinity as z approaches the turning point, that
depth where 0(p,,2) = +90degrees. This erroneous infinite amplitude is similar
to that encountered when performing Kirchhoff migration with WKBJ amplitudes
determined by cartesian-coordinate ray tracing (non-dynamic).

Equation (5.5) is the WKBJ solution (e.g., Aki and Richards, 1980, 416) to the

differential equation,
a*w w?
— k2 =
[ v o

which is the wave equation, expressed in the frequency-wavenumber domain (Helm-
holtz equation).

The angle 8(p;, z) defined above is the propagation angle at depth z of a plane
wave that emerges at the earth’s surface with angle 6, and velocity vo satisfying sin 8y =
VoPxz-

For migration of zero-offset seismic data f(t,z), we identify W(w, ks, z = 0) as
the Fourier transformed data F(w, k,) recorded at the earth’s surface (z = 0). Inverse
Fourier transformation of equation (5.5) from wavenumber &, to distance x gives

W(w,z,2) = % /dkz A(ky/w, 2) i Jy dC =TS dikea F(w, kz), (5.6)

and then evaluation of the inverse Fourier transformation from frequency w to time ¢
at t = 0 yields the subsurface image

g(z,2) = 2—17r~/dw e W (w, z,2) |i=o
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= % [ dw [ by A/, 2) e ds €L ik o, ) (5.7)

Equation (5.7) concisely summarizes the phase-shift migration method.

Output data after time migration, however, are usually presented as a function
of two-way vertical time, 7, rather than depth. Substituting 7 = 2 Iy %4 and dr = 2%
into equations (5.6) and (5.7) yields

W(w,z,7) = % / dky Alkg fw,7) €7 Jo 4 cosblbafwQ)tikez o) k) (5.8)

and

1 - w T i 3
g(z,7) = ywe / dw / dky A(ky/w,T) e "% IS cosblka/w )t ke oy ky), (5.9)

where 6(7) = 6[0.5 fy v(¢)d¢] and A(r) = A[0.5 f7 v(¢)dC]-
In VTI media, velocity varies with phase angle, é, and therefore
sin é(pz,r) =V (0, 7)pe,
where V' is the phase velocity, and

z dC
0 Vpo(C)'

where Vpg is the vertical P-wave velocity. As a result, equation (5.8) becomes

T =2

1 - w [T g cos8(kz/w,{)Vpo(L) i
W(w,a,7) = o / dky Akyfw,7) e 3l € FTVGG S TR i b (5.10)

and equation (5.7) becomes

1 ‘ x i [T g o8k [0.OVPOW) |
g9(z,7) = m/dw/dkz A(ky/w,T)e #lg % V(@) TR Pw, ke), (5.11)

which concisely summarizes the phase-shift migration method in VTT media.

Gazdag (1978) migration is generally slower than the Stolt (1978) method, but
Gazdag’s method can exactly (within the limit of ray theory) handle the kinematics
of v(z) media. In fact, no factorized assumption is needed for Gazdag migration;
vertical variations in all parameters are allowed.

Figure 5.3 shows a Gazdag migration of the model in Figure 4.11, with Vpo(2)=1.5+0.62

km/s and 7=0.1 (same values used in Figure 5.2). Unlike the Stolt migration, reflect-
ors from all dips have been imaged accurately. However, the cost of the Gazdag
migration is about 5 to 6 times that of the Stolt migration. Both migration algorithms
for VTI media are as efficient as there isotropic counterparts.
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5.2 Poststack time-migration velocity analysis

Faults are common in the earth’s subsurface, and reflections from fault planes are
usually recorded in surface seismic data. Typically the location of a fault on a seismic
section is estimated from breaks in the continuity of reflections from horizontal (or
subhorizontal) events. Therefore, fault locations can be considered as prior informa-
tion that can be and is used typically to measure the performance of migration and
migration velocities (Desegaulx et al., 1994). As shown in Chapter 2, time migration
is sensitive to 7; errors in 7 results in errors in positioning of dipping reflections, such
as those from faults. Such errors, especially in the case of faults, are observable in
migrated sections.

The NMO velocity is usually obtained from semblance velocity analysis applied to
CMP gathers containing reflections from horizontal interfaces. This leaves 7 as giving
the only degree of freedom in a v(z) VTI medium that can be used to image the fault
at its anticipated position. The accuracy of estimating 7 relies on the sensitivity of
the fault positioning to changes in 7. This sensitivity is expected to increase with
increasing reflector dip, as we saw in Chapter 2.

A scan over migrated images obtained using different 1 values can be used to
estimate the optimum 7 for migration. Stolt migration, because of its speed, is well
suited for such an application. Figure 5.4a is a zero-offset section generated from a
model that contains two dipping faults (30-degree and 50-degree dips) cutting through
three horizontal reflectors. Figure 5.4b shows a Gazdag VTI migration of the zero-
offset data using the actual model parameters given by v(2) = 1.5 + 0.6z km/s and
n = 0.15. Because Gazdag VTI migration gives accurate image positioning in VTI
v(2) media, we can use Figure 5.4b as a reference to judge the performance of Stolt
migration. Figure 5.5 shows Stolt migrated sections for different values of 7. As
expected, the best overall image is obtained for the true value of 7 = 0.15. The bottom
portion of the 50-degree dip fault, however, seems to be better imaged at n = 0.1.
This inaccurate value is due to shortcomings of the stretch approximation used in this
v(z) medium. Such errors seem to increase with vertical time. Gazdag VTI migration,
on the other hand, should not have such errors and therefore produces better results
in v(2) media. However, the cost of Gazdag migration might be unacceptable when it
is necessary to scan over a large number of 7 values. Note that the included portion of
the 30-degree dip fault in Figure 5.5 does not change with a variation of 7, suggesting
that for such a dip migration is very much insensitive to 7. This observation is in total
agreement with conclusions given by Alkhalifah and Larner (1994), stating that the
influence of anisotropy on migration is not serious for dip less than about 50 degrees.

If  is also varying with depth, than the 7 values estimated using the above
approach must be considered as effective ones (7g; a constant value that includes an
average of the overburden influence). To derive interval i values from 7eg, we can
use the inherent similarity between the reflection moveout from horizontal reflectors
and the time-migration diffraction curve; therefore, layer-stripping relations derived
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Midpoint (km)
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FIc. 5.4. (a) Zero-offset section generated for a model that contains two dipping j
faults penetrating through three horizontal reflectors. (b) VTI Gazdag migration of :
the zero-offset section using the actual medium parameters given by Vpo(2)=1.54+0.62
km/s, and 1 = 0.15.
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Midpoint (km Midpoint (km)
1.5 20 25 3015 20 25 3.0

FI1G. 5.5. Stolt TT migration of the zero-offset section in Figure 5.4a using different
values of 7. The medium is v(z) VTI with Vpy(2)=1.5+0.6z km/s, and 5 = 0.15.
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for the nonhyperbolic moveout term of the reflection moveout (Alkhalifah, 1996b) can
be used here to derive interval values from 7.g. Because the layer-stripping equations
are based on Taylor’s series expansion around zero offset (zero ray-incident angle),
the accuracy of these equations reduces with increasing offset (ray-incident angle).
As a result, the accuracy of these equations for migration will reduce with increasing
reflector dip.

5.3 Depth migration

Although depth migration does not lend itself to the two-parameter representation
of P-waves in VTI media (the vertical P-wave velocity is needed for depth migration),
it is still useful in areas of complex structure, where the lateral-homogeneity assump-
tion breaks down. In this case, however, the vertical velocity, needed to implement the
migration, must be estimated from observations other than surface seismic P-wave
data, for example well-log data.

Gaussian beam migration (GBM) has emerged in the past few years as a desir-
able method for subsurface imaging (Hale and Witte, 1992). Among its features are
acceptable computational efficiency, robustness with respect to ray caustics and shad-
ows, the ability to image reflector dips greater than 90 degrees with turning waves,
and straightforward extensions for migration of nonzero-offset sections and 3-D data
(Hill, 1990; Hale, 1992).

For a couple of reasons, Gaussian beam migration is particularly suited for aniso-
tropic media. Primarily, the relatively small amount of ray tracing needed to perform
Gaussian beam migration minimizes the incremental cost in modifying the algorithm
for anisotropic media. Second, the method can readily handle caustics that are as-
sociated specifically with anisotropic media, such as, for example, SV-wave caustics
that arise even in homogeneous media. Also, the Gaussian beam method can read-
ily treat data from general inhomogeneous and anisotropic media with any reflector
orientation.

Here, I modify the isotropic Gaussian beam migration to handle general aniso-
tropic media in two dimensions. The modification is based on anisotropic kinematic
and dynamic ray-tracing. I show impulse responses for homogeneous and layered
media, as well as successful migrations of synthetic data from inhomogeneous media.

5.3.1 Gaussian beam migration equations

First, let us review Gaussian beam migration, concentrating on the aspects that
pertain most to the extension to anisotropic media. Detailed description of Gaus-
sian beam ray tracing and migration can be found in Cerveny and Psencik (1984),
Hanyga (1986), Hill (1991), and Hale (1992). Here, ray propagation and polarization
will be constrained to the 2-D plane. Extension to three dimensions is straightfor-
ward since the general ray-tracing equations of Cerveny (1972) and Hanyga (1986)
were actually developed for general anisotropy in three dimensions.
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In Gaussian beam migration, one first subdivides a common-midpoint (CMP)
stack section into overlapping subsets of stacked traces. The stacked traces within
each subset are then multiplied by a centered Gaussian taper function over midpoint.
These windowed data are then slant stacked to form beams in a range of directions
characterized by different ray parameters (Hale, 1992).

The subsurface image h;(z, z) for a single beam denoted by the subscript j, at a
position described by lateral position x and depth z, is calculated in GBM using the
following equation (Hale, 1992):

hy(@,2) = [ dp. [ARb(ra, 1) — Arba (e, )] (5.12)

where b is a local slant stack of the Gaussian-windowed surface seismic data, and
by is its Hilbert transform. Ag and A; are the real and imaginary parts of the
complex-valued amplitude (Appendix D), and 7x(z, 2, p,) and 7; (z,2,p,) are the real
and imaginary parts of the complex-valued time, both calculated by Gaussian beam
ray tracing. p, is the ray parameter, and b is calculated using

- 1 4
b(Tgr, ) = Py /dw e Rl B.(w, p,), (5.13)
s
where Bj(w,p;) is the local slant stack of the surface seismic data in the frequency
(w) domain, given by

w
Bj(w,pz) = J2_7_‘_I-Fj7(wa kz = sz)a
and Fj(w, k,) is obtained by applying a lateral shift and a frequency-dependent Gaus-

sian taper to F'(w, ky):

il 122

“? P(w,x + ), (5.14)

1
2

Fi(w,z)=e

where z; is the center of the Gaussian window, and [ is the width (standard deviation)
of the Gaussian when frequency w = w;. Finally, F(w, k;) is the 2-D Fourier transform
of f;i(z,t), the seismic data recorded at the surface z = 0.

In the algorithm of Hale (1992), the critical loop needed to perform GBM is as
follows:
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Gaussian beam migration:

for all points (z,z) {
h(z,z) =0
}

for all z; = jA (all beam center locations) {
compute f;(t,z) by shifting and tapering data f(t,x)
for all p, (all reflection slopes) {
compute filtered slant stack b;(1,ps) of f;(t, z)
for all points (z,z) within beam {
compute complez-valued 7;(pz, T, 2) and Aj(pz, T, 2)
accumulate contribution to h(z,z) from b;(T,pz)

Here, 7;(ps, T, 2) and A;j(p, T, 2) are the complex-valued time and amplitude, given
by

T = TR+ isgn(w)s
A = AR+isgn(w)A1,

and A is the spacing between the beam center locations z;. Extension to anisotropic
media requires calculating the complex-valued time and amplitude using anisotropic
ray tracing, as discussed in Appendix D.

5.3.2 Initial beam width

In equation (E.3) (in Appendix D), we are representing the wavefront by a se-
quence of parabolic expansions. Let us examine the accuracy of these expansions,
especially for strong anisotropy. Figure 5.6 depicts a point source in a homogen-
eous half-space, and a single ray emanating from this source. Again, s is the length
along the ray, and n is the distance to the receiver in the direction of the normal to
the phase-velocity direction. Although Gaussian beams are generally a combination
of point and plane-wave solutions, for this homogeneous case the only error in the
traveltime expansion at the receiver comes from the point-source contribution. For
both isotropic and anisotropic media, plane-wave traveltime expansions are exact in a
homogeneous medium. Clearly, as illustrated in Figure 5.6, in either type of medium,
for plane waves the traveltime calculated at the receiver position is identical to that
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along the ray at the point of the expansion [because Real (Qj,ﬂn;l)zo for plane waves].
However, this is not the case for point sources, where the wavefront is curved and
approximated by equation (E.3), even in homogeneous media. In this test, I compare
the traveltimes calculated using the parabolic expansion with the exact traveltimes.

source receiver

F1G. 5.6. Schematic vertical section illustrating the lengths s and n for a certain ray
in a homogeneous medium.

Figure 5.7 shows the percent difference in those traveltimes, as a function of the
ratio n/s. This ratio varies for the different rays that contribute to a given receiver
position. Curves are shown for three different transversely isotropic media character- -
ized by the § and € parameters of Thomsen (1986). Clearly, for low values of n/s, the
errors are largest for strong anisotropy (i.e., large 6 and €). Overall, the errors (~ 0.5
percent) are small, but they indicate the limitations that the parabolic expansion has
in approximating the wavefront in the presence of strong anisotropy.

Figure 5.8 shows the amplitude of the different beams contributing to the same
receiver for a homogeneous isotropic medium and for a strongly anisotropic one. The
location of our receiver is in a slightly more complicated (i.e., more highly curved)
part of the wavefront for the strongly anisotropic medium. Interestingly, Figure 5.8
shows that the amplitude decay away from the central ray is greater for the anisotropic
medium than it is for the isotropic medium. We can get a sense of what is happening by
observing the example in Figure 5.9a. Figure 5.9a shows migration impulse responses
for P-waves in a strongly anisotropic, homogeneous medium. The anisotropy accounts
for the departure in shape of the impulse response from the familiar circular shape
in isotropic media. For this case the beam width is smallest near vertical and near
horizontal, where the wavefront has the highest curvature. In addition, the largest
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FIG. 5.7. Percentage time error as a function of n/s for the model shown in
Figure 5.6.

89




T. Alkhalifah

concentration of rays occurs in the portions of the wavefront with highest curvature.
In contrast, for the smoother parts, near 45-degree ray propagation, the beam width
is much broader, and the wavefront is characterized by relatively few rays. It thus
happens that, although in GBM the number of rays generated to calculate the wavefield
may be the same for both isotropic and anisotropic media, the angular distribution of
the rays differs.

media
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cxeer §=0.6, £=1.0
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o

0.15

Gaussian amplitude

F1G. 5.8. Gaussian weighting away from the ray, as a function of n/s.

With a proper choice of initial beam width, the beam width, [, along the ray will
not expand to large values of n/s. Here, I compute the initial beam width using the
same equation used by Hill (1990)

Vav
l _ 9

- ’
f mn

where fy;, is the minimum frequency and Vavg 15 the average of the horizontal and
vertical velocities over the entire grid.
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5.4 Migration Cost

P-wave ray-tracing in a general anisotropic inhomogeneous medium is a much
slower process than that in an isotropic medium. One reason is that ray tracing
within symmetry planes in general anisotropic 2-D media requires six velocity fields,
corresponding to the six position-variant elastic coefficients [a1111(%, 2), assss(®, 2),
anss(z, 2), a1z, 2), amns(z, 2), and ass13(x, z)], whereas ray tracing in isotropic
media requires only one velocity field. A second and more important reason is that
" ray tracing in anisotropic media involves much more complicated and more compu-
tationally extensive equations than does that in isotropic media. However, isotropic
ray tracing constitutes only about 2 percent of the cost of GBM for generally in-
homogeneous models. Therefore, the substantially increased cost of ray tracing in
anisotropic media raises the computation cost of the full GBM process by only a
modest amount— generally by no more than 40 percent. This speed characteristic
is not shared by Kirchhoff migration. For that method, ray tracing constitutes the
major portion of the processing, so Kirchhoff migration must bear the full additional
cost of ray tracing in general, anisotropic media.

In addition to its speed advantage for anisotropic migration, GBM can handle
caustics and migrate accurately more than just the first P-wave arrivals. In contrast,
Kirchhoff migration has serious problems in handling caustics, a common occurrence
when migrating S-waves in anisotropic media.

The 40-percent difference in computation cost between isotropic and anisotropic
GBM holds in symmetry planes of general anisotropic, inhomogeneous 2-D media.
When considering only TI media or factorized TI media the cost difference reduces
substantially, to about 10 percent.

The computer memory requirement is similar to that of isotropic GBM. The
main difference is the additional number of input velocity files required to specify a
particular form of anisotropic media.

5.5 Synthetic Examples

The changes from isotropic algorithms mentioned above do not limit GBM in any
way. Specifically, it is still extendable to three dimensions, with its relative efficiency
largely unchanged; relative to the cost of the migration, the cost of computing 7 and
A for anisotropic media is small.

5.5.1 Smooth media

Figure 5.9 shows the response of GBM to impulses at times 0.8, 1.6, and 2.3 s,
with a constant vertical P-wave velocity of 2000 m/s and constant vertical S-wave
velocity of 1000 m/s for (a) P-waves, and (b) S-waves, in the weathered-gypsum
TI medium of Thomsen (1986). This medium has Thomsen anisotropy parameters
§ = —0.14 and the uncommonly large e = 1.1. As mentioned above, the wavefronts
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F1G. 5.9. GBM impulse responses for (a) P-wave, and (b) SV-wave in homogeneous
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weathered gypsum (6 = —0.14, € = 1.1) with vertical axis of symmetry.
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(and amplitudes along wavefronts) here are very different from the circular ones of an
isotropic medium, especially for the SV-wave with its obvious triplication (caustics),
which is handled without difficulty by the Gaussian beam migration.

0-
g N
7 45°
e 5 60°
£ |
) 90°
0 3-
4 | | | ]
0 1 2 3 4

Midpoint (km)

F1G. 5.10. Model of reflectors with dips of 0, 30, 45, 60, 75, 90 degrees. Note that
the vertical reflector is at 1.2-km midpoint position.

Now, consider the depth model shown in Figure 5.10. It consists of five reflect-
ors, each of which has a horizontal segment and a dipping one. Figure 5.11 shows
synthetic zero-offset sections for this model in (a) an isotropic medium, and (b) a
finely interbedded shale-limestone TI medium, with anisotropy parameters 6 = 0.0,
¢ = 0.134, both with vertical velocity v(z) = 3000 + 0.5z m/s. Figure 5.11a was
generated using a Kirchhoff modeling program for an isotropic medium with a linear
velocity increase with depth. Figure 5.11b was generated using a modified version
of that modeling program that treats factorized transversely isotropic (FTI) media
(Alkhalifah, 1995a), i.e., media for which 4 and € are independent of position. The
dot shown in Figures 5.11a and 5.11b is for reference in comparing the positions of
the reflections from the vertical reflector for the isotropic and TI media. Despite the
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fact that the vertical velocity is the same for both the isotropic and TI cases, steep
events are in different positions on the two sections. Therefore, we can expect that
isotropic migration will leave features mispositioned on the TI data.

Figure 5.12 shows migrations of the anisotropic data in Figure 5.11b using (a) stand-
ard, isotropic GBM and (b) GBM modified for anisotropic media. The velocity used
to derive medium velocities for the standard GBM is the best-fit stacking velocity for
horizontal reflectors, whereas the correct medium parameters are used in the aniso-
tropic GBM. Clearly the image in Figure 5.12b is superior to that in Figure 5.12a.
The image from the isotropic migration, Figure 5.12a, not only is undermigrated,
it is placed at too great a depth because stacking velocity exceeds the vertical root-
mean-square (rms) velocity. This depth error is of the sort described by Banik (1984),
Winterstein (1986), and VerWest (1989). In contrast, the reflector locations have been
correctly imaged by the modified GBM, Figure 5.12b. Here, because I use a simple
version of the anisotropic GBM that considers only FTI media, the computation cost
difference between the isotropic and anisotropic GBM is less than 10 percent.

Midpoint (km) : Midpoint (km).
0123456780012345678

(@ (b)

F1G. 5.11. Synthetic zero-offset seismograms for the structural model in Figure 5.10,
for (a) an isotropic medium, and (b) a shale-limestone, transversely-isotropic medium.
Both media have vertical velocity v(z) = 3000 + 0.5 2 m/s, and reflector dips ranging
from 0 to 90 degrees.
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Figure 5.13 shows isotropic GBM and anisotropic GBM for the FTI Cotton Valley
shale medium of Thomsen (1986), with anisotropy parameters 6 = 0.205, e = 0.135,
and vertical velocity v(z) = 3000 + 0.5z m/s, for the same structural model as in
Figure 5.10 (unmigrated data not shown here). Although, it is unlikely that e =6 <0
(Thomsen, 1986), the Cotton Valley shale medium is a good model to demonstrate
the flexibility of this migration. Following Larner and Cohen (1993), I used the best-
fit stacking velocity (for horizontal reflectors) to minimize the lateral position errors
in the isotropic migration. The isotropic GBM not only yields a considerably over-
" migrated image, it again results in large vertical shifts in the reflector position. As in
Figure 5.12a, the depth error is caused by using the wrong migration velocity, namely
the stacking velocity in the TI medium, and hence the wrong velocity for the vertical
traveltime-to-depth conversion.

Midpoint (km) Midpoint (km)

Depth (km)
n

(a) (b)

F1G. 5.12. Migration of the data in Figure 5.11b using (a) the isotropic GBM
algorithm, and (b) anisotropic GBM, for the shale-limestone TI medium.

For both anisotropic media — shale-limestone and Cotton Valley shale — the
anisotropic GBM (with the correct anisotropy parameters) gave a substantially better
image of the reflector position than did the GBM that ignores anisotropy.
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F1G. 5.13. Migration of data from the structural model shown in Figure 5.10 for
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5.5.2 Layered media

As in other high-frequency approximations, accuracy in the ray tracing for GBM
requires some degree of smoothing of the input velocity field. For general anisotropic
media, smoothing must be applied to all six needed velocity fields. If any of the ve-
locity fields contains sharp velocity discontinuities, the quality of the migrated image
will be degraded (because the ray-tracing computations require evaluation of derivat-
ives of the velocity fields), with the degree of this degradation depending on the sizes
and locations of the discontinuities.

Figure 5.14a shows a model of four homogeneous, transversely isotropic layers,
with different anisotropy parameters in each layer. The vertical velocity is indicated
by the shading level; the vertical velocity in the first layer is 1 km/s, and in the bottom
layer, 3 km/s. For both these layers, the axis of symmetry is vertical. The arrow in the
second layer shows the symmetry-axis direction, tilted by 30 degrees from the vertical.
Figure 5.14b shows a smoothed version of the model. Although the smoothing is shown
here for the vertical velocity, all needed velocity fields (corresponding to the elastic
coefficients) are smoothed to the same degree. For the smoothing, the velocity field
was convolved with a 2-D Gaussian-shaped, point-spread function. Here, the width
of the Gaussian function (the half-amplitude point) was 0.1 km in all directions.

Figure 5.15a shows the impulse response for the model in Figure 5.14a for in-
put pulses at three different times, all located at common-midpoint position 2.5 km.
Figure 5.15b shows the corresponding impulse responses for the smoothed model in
Figure 5.14b.

The importance of the velocity smoothing is evident from the comparison of these
two sections. In particular, where the discontinuities are large, the impulse responses
are obliterated for the unsmoothed model, a striking shortcoming of the high-frequency
approximation. Clearly, the impulse responses associated with the smoothed model
are much more coherent. Note that for impulses in and beneath the second layer, where
the symmetry axis is tilted, the impulse responses in Figure 5.15b are also tilted. The
extreme degradation shown in Figure 5.15a for impulse responses generated without
smoothing exceeds the degradation usually associated with similar isotropic layered
media. This poorer result probably arises because ray tracing in anisotropic media
encounters discontinues in six velocity fields rather than the one in isotropic media.

This problem could be avoided be applying the necessary boundary adjustment
using Snell’s law or any perturbation technique (Jech and Psencik, 1989). Such
boundary modifications, however, would reduce the efﬁc1ency of the migration pro-
cess. Therefore, the alternative smoothing approach may be more attractive, partic-
ularly considering the uncertainty present in characterizations of velocity models for
the earth’s subsurface.

Using finite differences to generate a zero-offset synthetic section for the model
in Figure 5.14a, but with a vertical symmetry axis in the second layer, results in the
section shown in Figure 5.16a. Figure 5.16b shows an anisotropic GBM of the synthetic
data using the same amount of smoothing of the velocity fields as in Figure 5.14b.
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F1G. 5.14. (a) Model containing layers with different anisotropy parameters in each
layer. All layers have vertical symmetry axis with the exception of the second layer
where the symmetry axis is in the direction of the arrow. From top layer to bottom,
the vertical velocity is 1.0 km/s, 1.5 km/s, 2.5 km/s, and 3.0 km/s. (b) Smoothed
version of the above model. 98
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Midpoint (km

T e

FiG. 5.15. (a) GBM impulse responses for the model in Figure 5.14a. (b) GBM
impulse responses for the smoothed model in Figure 5.14b.
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With this degree of smoothing the TI migration has produced an image that closely
matches the correct depth model.

5.6 Use of depth migration in VTI media

Depth migration is commonly used in areas of complex structure where velocity
varies in all directions. However, in such media, the two-parameter representation
of P-waves in VTI media no longer holds; thus, at least three parameters, including
the vertical velocity, are needed to implement the migration. The velocity analysis,
derived in this thesis, strictly handles only laterally homogeneous media, with some
tolerance to mild lateral velocity variation. It fails, however, in areas of complex
structure. In this case, velocity should be estimated using information beyond the
surface P-wave seismic data, for example well-log data.

Suppose that the shallow parts of the subsurface consists of sediments with mild
laterally velocity variations. These sediments (predominantly shales) are typically
the major source of anisotropy influence in our seismic data. In this shallow portion,
the velocity-analysis methods described above for estimating anisotropy should work
fine. On the other hand, the structure below the sediments is often complex (many salt
formations and carbonates) with minor anisotropy influence. Therefore, anisotropy es-
timation in this portion is probably not needed. Based on this proposed model we can
depth migrate the data using the anisotropy parameters derived for the top (smoothly
varying) portion of the subsurface, along with the isotropic velocities derived for the
bottom (complex) portions of the subsurface using isotropic methods. This model is
similar to the first three layers of the model shown in Figure 5.14a, where the third
layer is isotropic under a laterally inhomogeneous overburden, whereas the first two
subsurface layers can be well approximated using the lateral homogeneity assumption.
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Fic. 5.16. (a) Synthetic seismogram generated using the model in Figure 5.14a, but
with vertical symmetry axis in the second layer. (b) Anisotropic GBM migration of
(a) using smoothed velocity fields similar to that of Figure 5.14b. ;
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Chapter 6

FIELD DATA APPLICATION

Here, I apply the anisotropic processing sequence discussed above to data from
offshore Angola as well as data from offshore Trinidad — two different regions which,
although both are dominated by sediments, have substantially different subsurface
content. For the Angola data, I first focus on a single fault in a structurally simple re-
gion. An example with many faults in a region of more complex structure is considered
next. Then, I apply the anisotropic processing to the Trinidad data to demonstrate
the method’s versatility.

6.1 A single fault example

Figure 6.1 shows a seismic line from offshore Africa provided by Chevron Over-
seas Petroleum, Inc. The line was processed using a sequence of conventional NMO,
DMO, and time-migration algorithms without taking anisotropy into account. While
horizontal and mildly dipping reflectors are imaged well, steep fault-plane reflections
(such as the one at a time of 1.5-2 s to the left of CMP 1000) show weak amplitude. Ve-
locity analysis at CMP locations below the gray bar in Figure 6.1 shows a pronounced
vertical velocity gradient of about 0.7 s™'.

As we saw in Figure 1.1, these data are influenced by the presence of anisotropy
in the region. The influence of anisotropy on the DMO operation is so large that it
clearly shows (in Figure 1.1) even in the presence of vertical inhomogeneity, which
usually has an opposite action on DMO (Gonzalez et al., 1992; Larner, 1993). Based
on an inversion procedure for homogeneous VTI media, Alkhalifah and Tsvankin
(1995) obtain an estimate of 7 = 0.07 for the area under the gray bar of Figure 6.1.
Since an increase in vertical velocity with depth tends to reduce the estimated value
of 1, I expect that this estimate is lower than the value that could be attributed solely
to the anisotropy of the medium. Therefore, let’s call the value computed using the
homogeneous model the “effective 7.” Application of anisotropic DMO based on the
effective n = 0.07 allowed Alkhalifah and Tsvankin (1995) to improve the results of
the conventional isotropic DMO. As they explained, however, their effective n, while
useful for DMO, may be inappropriate for migration.

To take full advantage of the DMO approach developed here, I performed a
v(z) inversion, based on the method described in Appendix C, in order to obtain
interval values vin (7) and 7 (7), where 7 is vertical time. Such interval values of the
anisotropy parameter can then be used in both DMO and time migration.

Figure 6.2 shows vy (1) and 7 (1), obtained from the v(z) VTI inversion. This
inversion is accomplished by estimating the NMO velocity as a function of ray para-
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Fi1G. 6.1. Time-migrated seismic line (offshore Angola). The gray bar to the left of
CMP 1000 shows the CMP locations that contain the unmigrated data from the fault
of interest.
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Fic. 6.2. Interval values vi, and 7 as a function of vertical time.
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meter for the dipping fault at five different points along the fault, corresponding to
five different vertical times. I assume no lateral velocity variation in the region of
the fault; however, mild lateral velocity variation should not be a problem for the
inversion: most DMO algorithms, while based on the assumption of lateral homogen-
eity, still produce acceptable results where lateral velocity variation is smooth. The
continuous curves shown in Figure 6.2 are generated by linear temporal interpolation
and smoothing of the velocities for both the mildly dipping reflectors (for simplicity I
refer to them as horizontal reflectors) and the fault. In the water layer, vy is equal
to 1.5 km/s and 7, is equal to zero. The accuracy of these estimated curves of vy,
and 7, depends on the accuracy of the stacking-velocity estimates for both dipping
and horizontal reflectors. The idea underlying the inversion is that the Vint(7) and
Mint(T) functions obtained are those that best focus the dipping fault and the hori-
zontal reflectors at the same stacking (or NMO) velocity, for each vertical time at
which velocity measurements are made.

In Figure 6.2, where 7,y = 0, the medium is either isotropic or elliptically an-
isotropic. Because elliptical anisotropy for P-waves is not typical in the subsurface
(Thomsen, 1986), one might infer that, where 7, = 0, the medium is more likely to
be isotropic. The region above 2 s, which exhibits positive values of 7y, corresponds
to a shale formation, which can be expected to be transversely 1sotr0p1c and may thus
be the major source of anisotropy in the data.

Figure 6.3 shows the result of VTT DMO applied to the data, based on the derived
functions vy (7) and 7ip, (7). We can clearly see the presence of a fault, which is dipping
at an average angle of about 45 degrees. This angle exceeds the dips included in the
first branch of the DMO impulse response. Recall that this first branch is the only
branch that can be approximated by a stretched ellipse. Therefore, we cannot expect
that for this medium isotropic constant-velocity or v(z) DMO or a stretched version
of the DMO ellipse would perform as well as has the v(z) anisotropic DMO, here.

This expectation is supported by Figures 6.4a and 6.4b. Figure 6.4a shows the
zero-offset section obtained by applying isotropic homogeneous DMO, and Figure 6.4b
shows that obtained by applying isotropic v(z) DMO. The isotropic homogeneous
DMO used here is the frequency-wavenumber method of Hale (1984), and the v(z)
isotropic DMO is Artley and Hale’s (1994) isotropic version of the DMO method de-
scribed above. Clearly, the fault is poorly imaged by both isotropic algorithms, while
VTI DMO yields a much better result (Figure 6.3). Figure 6.5 shows a representative
VTI DMO operator used for these data. The shape is far from the isotropic ellipse or
a squeezed version of it.

Not only did the v(z) VTI DMO do a better job of imaging the dipping fault, it
also improved the continuity of horizontal reflectors (e.g., the regions pointed to by the
arrows in Figures 6.3 and 6.4) by correcting for nonhyperbolic moveout. Figure 6.6
shows CMP gathers at CMP location 700 after (a) v(z) VTI DMO, (b) homogeneous
isotropic DMO, and (c) v(2) isotropic DMO. The same NMO correction was used for
all three DMO examples. It is based on the stacking velocities obtained from a typical
velocity analysis. All reflections shown in this figure are from horizontal reflectors.

106



Seismic processing in transversely isotropic media

CMP
750 800 850 900 950

Fic. 6.3. Zero-offset section after a v(z) anisotropic DMO using the parameters
in Figure 6.2. The NMO correction is based on the velocities obtained from the (
conventional velocity analysis. The arrows point to regions of improved reflection
continuity relative to that in Figure 6.4. ;
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| CMP
750 800 850 900 950

Time (s)

Time (s)

F1G. 6.4. Zero-offset section after (a) homogeneous isotropic DMO, and (b) v(z)
isotropic DMO. The NMO correction is the same as in Figure 6.3.
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FiG. 6.5. VTI DMO impulse response for the parameters in Figure 6.2. The offset is

1.5 km.
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Of the three approaches, only the v(z) VTI DMO aligns the reflection just above 2 s
for all offsets.

Offset (km) Offset (km) Offset (km)
1 2 3 4 1 2 3 4 1 2 3 4

F1G. 6.6. CMP gathers for CMP location 700 after (a) v(z) anisotropic DMO, (b)
homogeneous isotropic DMO, and (c¢) v(z) isotropic DMO. The NMO correction,
based on the velocities obtained from velocity analysis, is the same for all three.

CMP location 700, in Figure 6.6, is to the left of the region of the imaged fault
(see Figure 6.3). Figure 6.7 shows CMP location 845, which contains the imaged
fault-plane reflection after (a) v(z) VII DMO, (b) homogeneous isotropic DMO, and
(c) v(2) isotropic DMO. The arrows point to the time of the fault reflection. Whereas
the v(z) VTI DMO aligns the weak fault clearly, the dipping event after isotropic
DMO is misaligned.

Figure 6.8a shows a close-up of the fault imaged with phase-shift anisotropic time
migration (using the inverted parameters of Figure 6.2) applied to the stack obtained
from the v(z) VTI DMO algorithm. For comparison, Figure 6.8b shows the result
of conventional processing: phase-shift isotropic time migration applied to the zero-
offset section obtained from the isotropic homogeneous DMO. Figure 6.8 gives a clear
confirmation of the benefit of taking anisotropy into account in DMO prior to doing
migration (the influence of anisotropy on the migration step is not large, here).
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Offset (km) Offset (km) Offset (km)
1 2 3 4 1 2 3 4 1 2 3 4

Time (s)

(a) (b) ()

FIG. 6.7. CMP gathers for CMP location 845 after (a) v(z) anisotropic DMO, (b) ho-
mogeneous isotropic DMO, and (c) v(z) isotropic DMO. The NMO correction, based
on the velocities obtained from velocity analysis, is the same for all three sections.
The arrow points to the time of the dipping fault reflection.
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Fi1G. 6.8. Time migrated section using (a) anisotropic phase-shift migration of the
data shown in Figure 6.3 using the parameters shown in Figure 6.2, and (b) isotropic
phase-shift migration of the data shown in Figure 6.4a.
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6.2 A more complex-structured region

Figure 6.9 shows a migrated section again from offshore Africa, provided by
Chevron Overseas Petroleum, Inc., that contains reflections from a large number of
dipping faults. This section is parallel to the one in Figure 6.1, but at deeper waters,
and as a result the Tertiary shales (the source of the anisotropy) are thicker. The
section was processed using a conventional 3-D processing sequence primarily without
taking anisotropy into account. The one attempt to address the influence of anisotropy
on the data was use of a stretched DMO (a DMO that is applied to data in which the
offset is stretched with an empirically chosen stretching factor). A stretched DMO,
however, gives only an approximation of the actual DMO signature in VTT media.
Here, the upper layers are dominated by high-pressure shales that are believed to
be the main source of anisotropy in the area. Chevron Overseas Petroleum, Inc.,
provided us with the data in hopes that we might improve on this section using an
anisotropic processing sequence.

FiG. 6.9. Time-migrated section based on conventional 3-D processing.

Figure 6.10 shows a stacked seismic section of the same data. This section was
processed using a sequence of conventional NMO and 2-D DMO without taking an-

113




=

T. Alkhalifah

isotropy into account, and no stretched DMO was used here. While some of the
horizontal and mildly sloping reflections are imaged well, as we will see below, steep
fault-plane reflections have been weakened because anisotropy was ignored. We should
note that the predominant velocity variation in the section is vertical. In fact, in the
area between CMP locations 400 and 800 and up to vertical time 3 s, the lateral
variation in velocity is small (< 5%).

CMP
200 400 600 800 1000 1200

F1G. 6.10. Stacked section from offshore Africa, after applying NMO and isotropic
homogeneous DMO. The arrows point to the sloping reflections used in the inversion

for n(7).

The arrows in Figure 6.10 point to the sloping reflections used to measure the
stacking velocities for the inversion of 7j(7). Likewise, Vmo(0) measurements are based
on the moveout of sub-horizontal events. Although the sloping reflections used in the
inversion seem to span the whole 5 s of data, the actual parameter information stops
at about 3.5 s — the vertical (migrated) time corresponding to the deepest sloping
reflection used in the measurement of stacking velocity. This difference follows from
the relation between vertical time ¢,, and zero-offset time to(p). A constant extrapol-
ation of 77 was used for later migrated times. In addition to the picked reflections, n
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at the surface is constrained to equal zero since these are marine data and the water
layer is isotropic.

Vomo(0) (MV/S) N
A

20|OO 4OIOO 09 0 0;2 0.3

4 Z

Fic. 6.11. Estimated interval values vyme and 1 as a function of vertical time.

Carrying out the inversion process described in Appendix C, using the measured
values of stacking velocities and corresponding ray parameters, 1 obtain the functions
Unmo(7) and 1(7) shown in Figure 6.11. As before, the inversion assumes no lateral
velocity variation in the region of the picks. The smooth, continuous representation
shown in Figure 6.11 is a direct result of fitting and smoothing a velocity model based
on a piecewise linear 1 curve, as mentioned in Appendix C, for both the mildly dipping
reflectors (for simplicity I refer to them as horizontal reflectors) and the faults. In the
water layer, vnmo is 1.5 km/s and 7, as mentioned earlier, is zero. The accuracy of
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the estimated curves of vnm, and 7 depends on the accuracy of the stacking-velocity
estimates for both dipping and horizontal reflectors. Based on the locations of the
measured stacking velocities (Figure 6.10), as well as the extent of the lateral homo-
geneity, these inverted values can be considered representative of the area between
CMP locations 450 and 950.

CMP
200 400 600 800 1000 1200

F1G. 6.12. Stacked section after v(z) anisotropic DMO using the parameters in Fig-
ure 6.11. The NMO correction is based on the velocities obtained from the conven-
tional velocity analysis. Compare with Figure 6.10.

The interval values of 7 in Figure 6.11 show an increase in the anisotropy with
vertical time up to about 3 s. A smoothing operator was used to remove the sharp
edges that arise at the measured stacking-velocity points. The 7 values after a time
of 3.5 s were evaluated based on constant extrapolation because no 7 information was
available at these times. The region above 3 s, which exhibits positive values of 7,
corresponds to a shale formation. Shale is often transversely isotropic (Banik, 1984)
and appears to be the major source of anisotropy in the data.

Next, I apply a DMO algorithm that uses the derived functions v,mo(7) and 7(7)
in Figure 6.11. Figure 6.12 shows the result of TI DMO applied to the data, based on
the ray-tracing DMO algorithm described in Appendix C. One of the features of this
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ray-tracing DMO is that it can correct for nonhyperbolic moveout associated with
reflections from both horizontal or dipping events. Relative to the result of isotropic
DMO given in Figure 6.10, this section is improved. Note, in particular, the reflections
from the faults. The improvements extend throughout the whole section, including
reflections not used in the inversion. This implies that the lateral variation in 7,
especially prior to 2 s, is relatively small.

Figure 6.13 shows representative VIT DMO operators used for these data. The
shapes are far from the isotropic ellipse or even a stretched version of it. Therefore,
we should expect the result of the anisotropic DMO to differ from that of the isotropic
DMO or stretched DMO, and so it does.

Distance (km) Distance (km)
-0.2 0 0.2 -0.2 0 0.2
0
()
E17
©
(2]
51.8
O
Q

FIG. 6.13. VTI DMO impulse responses for the parameters in Figure 6.11. The
offset is 1.5 km, and the apex is at (a) 1.8 s, and (b) 2.5 s.

Although most of the reflections here correspond to features within or near the
vertical 2-D plane that contains the sources and receivers, some events may represent
out-of-plane reflections that require 3-D processing. These out-of-plane reflections
might be expected to stack better at a lower velocity (closer to the isotropic NMO
velocity), and therefore focus better in the isotropic image. An example is the reflection
at CMP location 825 between 3.5 and 4.0 s in Figure 6.10. Based on examination of
parallel lines in the same area, this feature is found to be from out of the plane, but
most reflections are confined to the dip plane of the section.

Figure 6.14 shows CMP gathers at CMP location 700 after (a) homogeneous
isotropic DMO, and (b) v(z) VTI DMO using the parameters in Figure 6.11. The
same NMO correction, based on the stacking velocities obtained from conventional
semblance velocity analysis, was used in both DMO examples. The arrows point to
reflections from some of the dipping faults present in this highly faulted portion of
the data. Note that the maximum offset is large (up to X/D = 2 for some of the
times). Clearly, for the isotropic DMO result, the reflections from the dipping faults
are not aligned. They have deviations caused by an NMO velocity that is smaller
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Offset (km) Offset (km)
1 2 3 4 1 2 3 4

F1G. 6.14. CMP gathers for CMP location 700 after (a) homogeneous isotropic DMO,
and (b) v(z) anisotropic DMO. The NMO correction, based on the velocities obtained
from velocity analysis, is the same for both examples. The arrows point to some of
the reflections from the dipping interfaces present in this gather.
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than what is needed for this anisotropic medium. Such deviations in the square of
reflection traveltimes are proportional to X2. Even the reflections from the horizontal
events are not fully aligned. The misalignment for the horizontal reflections, however,
is caused by the nonhyperbolic moveout associated with VTI media. The deviations
for these horizontal events start at larger offsets, X/D > 1 (Tsvankin and Thomsen,
1994; Alkhalifah, 1996b), and are proportional to the quartic term X4. This implies
that the horizontal reflectors, as well as the dipping events, are less well focussed
in Figure 6.10 than in Figure 6.12. Close comparison of these two figures reveals
improvement in even the horizontal features as a result of anisotropic processing.

Figure 6.15a shows the result of conventional processing: phase-shift, isotropic
time migration was applied to the zero-offset section obtained by the isotropic homo-
geneous DMO. For comparison, Figure 6.15b shows the data imaged with phase-shift
anisotropic time migration (using the inverted parameters of Figure 6.11) applied to
the stack obtained from the v(z) VTI DMO algorithm. This comparison gives a clear
picture of the benefit of taking anisotropy into account in DMO and migration. The
improvements here are numerous and significant. One example is the fault located
at CMP location 870, between 2.5 and 3 s. An interpreter using the isotropic pro-
cessing result can easily extend the reflections across this fault ignoring it or suggest a
minor subsidence to the left of the fault. However, the imaged result of the anisotropic
processing (as well as the inverted values of n) suggests the extension of the shales
down to 3 s under CMP location 800, and probably a larger subsidence has occurred.
Another example is the region of the nearly horizontal events near CMP location 500,
at 2.5 s. The improved continuity of the gently dipping events likely is a result of non-
hyperbolic moveout correction in the anisotropic processing. Furthermore, anisotropic
time migration placed the steep reflections close to their true time migrated position,
while the isotropic migration generally mispositioned the sloping features relative to
the horizontal ones.

Again, some events may represent out-of-plane reflections, requiring 3-D pro-
cessing. Note their absence on the image obtained by anisotropic processing. An ex-
ample is seen at CMP 600 and 2.5 s on Figure 6.15. Ignoring the three-dimensionality
can cause mispositioning in some areas, especially where the fault reflections cross
what seem to be continuous horizontal reflections. Most reflections here, however, are
in or close to the dip plane of the section.

The 3-D section provided by Chevron Overseas Petroleum, Inc. (Figure 6.9,
which was commercially processed) is only slightly better than the 2-D isotropic res-
ult shown in Figure 6.15b, even though a stretched DMO and 3-D processing were
used. The time migration used to produce Figure 6.9 includes a small correction for
lateral inhomogeneity but little consideration of anisotropy. Nevertheless, despite the
presence of anisotropy, the fault reflections above 2 s in Figure 6.9 are accurately
positioned. Perhaps, higher velocities than those derived from stacking velocity es-
timates were used in the time migration so as to help correct for anisotropy (Lynn et
al., 1991). Larner and Cohen (1993) and Alkhalifah and Larner (1994) have shown
that unless anisotropy is honored in the migration step, errors will arise in the final
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F1G. 6.15. Time migrated section using (a) isotropic phase-shift migration of the data
shown in Figure 6.10, and (b) anisotropic phase-shift migration of the data shown in
Figure 6.12 using the parameters shown in Figure 6.11.
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image. Using higher velocities might work acceptably in a situation where we know
the positions of the dipping reflectors in advance (i.e, most faults, as delineated by
breaks in sedimentary bedding); however, in many cases positions of the reflectors are
unknown. The possible use of higher velocities here, however, may explain what seems
to be the overmigration of the bottom interface. Specifically, beneath CMP location
900, the imaged picture of this bottom reflection in Figure 6.9 seems overmigrated.

In contrast, the anisotropic processing result (Figure 6.15b) shows a significant
overall improvement in the image compared with the section in Figure 6.9. Such
improvements are similar to those observed earlier between the isotropic and aniso-
tropic results shown in Figure 6.15, despite the use of stretched DMO in Figure 6.9.
Again, the difference in the shape of the bottom interface between Figure 6.15b and
Figure 6.9 can be attributed to the possible use of the too high velocity in Figure 6.9
in an attempt to compensate for the presence of anisotropy.

6.3 Field data from Trinidad

The subsurface at offshore Trinidad includes more sand and less shale than that
of offshore Angola; therefore, the anisotropy influence is expected to be less dramatic
than that observed in the Angola data. However, as we will see, the benefits of
anisotropy processing, even in this less anisotropic region, remain significant.

Figure 6.16 shows a zero-offset section from offshore Trinidad that contains re-
flections from a large number of dipping faults. The data as well as stacking velocity
information, were provided by Amoco (the Trinidad unit). I processed this section
using a conventional 2-D isotropic processing sequence. The processing sequence
included a conventional NMO, using the stacking velocities that Amoco provided, fol-
lowed by a log-stretch (Notfors and Godfrey, 1987) version of Hale’s (1984) DMO.
Here, we have a mixture of sand-dominated and shale-dominated layers, so anisotropy
is expected to vary with depth. As before, the shales are believed to be the main -
source of anisotropy in this region.

Carrying out the inversion process described in Appendix C, using the measured
values of stacking velocities and corresponding ray parameters, I obtain the functions
Unmo(7) and 7(7) shown in Figure 6.17. The inversion assumes no lateral velocity
variation in the region of the picks; the lateral velocity variation in this region, espe-
cially the first 2 s, is exceptionally small. In the water layer, vnmo is 1.5 km/s and 7
is zero. Again, the accuracy of these estimated curves of vpmo and 7 depends on the
accuracy of the stacking-velocity estimates for both dipping and horizontal reflectors,
as discussed in Chapter 3.

The smoothed interval values of 1 in Figure 6.17 show increases and decreases
that might depend on the shale-sand alterations. The litholigical interpretation of
the 1 curve is outside of the scope of this thesis. Nevertheless, this 7 curve best fits
the measured stacking velocities, and thus is expected to improve the image. The 7
values after a time of 4.5 s were evaluated based on constant extrapolation because
no 7 information was available at these times.
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CMP
700 800 900 1000 1100 1200 1300 1400 1500

Fia. 6.16. Stacked section from offshore Trinidad, after applying NMO and iso-
tropic homogeneous DMO. The NMO correction is based on the velocities provided
by Amoco.
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Fic. 6.17. Estimated interval values v,mo and 7 as a function of vertical time.
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CMP
(')700 800 900 1000 1100 1200 1300 1400 1500

F1G. 6.18. Stacked section after v(z) anisotropic DMO using the parameters in Fig-
ure 6.17. The NMO correction is based on the velocities obtained from the conven-
tional velocity analysis using exceptionally short spreads.
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Next, I apply a DMO algorithm that uses the derived functions vnmo (1) and n(7)
in Figure 6.17. Figure 6.18 shows the result of TI DMO applied to the data, based
on the ray-tracing DMO algorithm described in Chapter 4. Relative to the result of
isotropic DMO given in Figure 6.16, this section should be improved. A close-up look
at Figures 6.16 and 6.18 (shown in Figures 6.19 and 6.20) shows such improvements.
In Figure 6.19 note the vast improvement in focussing both the dipping fault and the
subhorizontal reflections in the anisotropic DMO result (Figure 6.19a), as opposed to
the isotropic one (Figure 6.19b). Such improvements in focussing are also observed
at deeper times (i.e., Figure 6.20).

Figure 6.21 shows CMP gathers from CMP location 936, which contains the
imaged fault-plane reflection shown in Figure 6.19a after (a) homogeneous isotropic
DMO, and (b) v(z) VTI DMO. The arrows point to the time of the fault reflection at
this CMP location. Whereas the v(z) VTI DMO aligns the fault reflection well, the
dipping event after isotropic DMO is misaligned. Improvements are also achieved for
subhorizontal events where DMO managed to correct for the nonhyperbolic moveout
that is often largest for small dips.

125




T. Alkhalifah
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F1G. 6.19. (a) Detail of Figure 6.16, and (b) detail of Figure 6.18 in the same region.
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Time (s)

Time (s)

Fic. 6.20. (a) Detail of Figure 6.16, and (b) detail of Figure 6.18 in the same region.
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F1G. 6.21. CMP gathers for CMP location 936 after (a) homogeneous isotropic DMO,
and (b) v(2) anisotropic DMO using the parameters estimated in Figure 6.17. The
NMO correction for the isotropic DMO result is based on velocities provided to us by
Amoco, while the NMO correction for the anisotropic DMO is based on the velocities
obtained from velocity analysis using short spreads. The arrow points to the time of
the dipping fault reflection.
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Chapter 7

CONCLUSION

I have suggested and tested on synthetic and field data a method of velocity
analysis for transversely isotropic media based on the inversion of the dip-dependence
of P-wave normal moveout velocities. The algorithm, operating with surface P-wave
data only, requires that NMO velocities and ray parameters be measured for two
different dips; more than two dips provide redundancy that can be used to increase
the accuracy of the inversion.

Although this inversion cannot resolve the vertical velocity and anisotropic coeffi-
cients individually, it makes it possible to obtain a family of models that have the same
moveout velocity for a horizontal reflector V;0(0) and the same effective anisotropic
parameter 7 = (¢ — &)/(1+24). I have shown that these two parameters are sufficient
to obtain NMO velocity as a function of ray parameter, describe long-spread (non-
hyperbolic) reflection moveout for a horizontal reflector, and calculate poststack and
prestack time-migration impulse responses. This means that the inversion of P-wave
NMO velocities provides enough information to perform all major time-processing
steps including dip moveout, prestack and poststack time migration.

To extend the inversion method to vertically inhomogeneous media, the inversion
must be applied using an NMO equation for layered anisotropic media above a dipping
reflector. The influence of a stratified isotropic or anisotropic overburden on moveout
velocity can be stripped through a Dix-type differentiation procedure.

Using sloping reflections to extract velocity information in v(z) media requires,
among other things, positioning the reflections at their true (migrated) locations.
This is accomplished by relating the zero-offset time to the vertical (migrated) time,
and therefore positioning the extracted interval velocities at their true times (relative
depths). Although this concept is beneficial for isotropic media, it is particularly im-
portant in anisotropic media, where such velocities are compared with those extracted
from horizontal events and then used to invert for anisotropy information, specific-
ally n. This inversion process is based on the rms (i.e., small-offset) assumption of
stacking velocities for a given ray parameter. Such a relation, for horizontal reflectors,
reduces to the familiar Dix (1955) expression. The idea underlying the inversion is
that the vnmo(7) and 7(7) functions obtained from the inversion are those that best
focus reflections from the dipping interface and sub-horizontal reflectors at the same
stacking (or NMO) velocity, for each vertical time at which a velocity measurement
is made.

Analysis of dip moveout and time-migration impulse responses shows that, in
vertically inhomogeneous VTI media, these processes depend solely on two parameters
Unmo(0) and 7. Therefore, the results of the inversion [values of vumo(0) and 7] can
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be used to apply NMO, DMO, and time migration. To an extent, time migration can
be used to evaluate the performance of the inversion in data that include reflectors
with known positions (i.e., fault traces as delineated by terminations of sedimentary
bedding). Specifically, the plausibility of results of the inversion for 7 can be checked
by inspecting the quality of images generated by poststack migration using the same
inverted parameters. If the image indicates undermigration, for example, the true g
overall is higher than the estimated function.

Time-to-depth conversion, as well as depth migration, however, requires an accur-
ate value of the vertical velocity, which cannot be found from P-wave NMO velocities
alone. Clearly, the vertical velocity can be estimated directly if check shots or well
logs are available.

Accurate transformation of prestack data to zero-offset, where the subsurface is
transversely isotropic, must fully honor the anisotropy. Specifically, TZO based on
anisotropic ray tracing can accurately treat data from TI media, with no dip or offset
limitations. While the usual NMO and DMO sequence based on hyperbolic move-
out correction ignores the sizable nonhyperbolic moveout associated with horizontal
events in VTI media, the scheme presented here provides a method for computing
traveltimes and using that information to apply accurate TZO for arbitrary depth-
variable anisotropy parameters.

Similar to isotropic DMO operators, the impulse response in VTI media is prac-
tically velocity-independent; the shape of the response depends mainly on . Forn =0
(isotropic or elliptically anisotropic media), the impulse response is an ellipse, but as
7 varies, the response takes on shapes that can differ substantially from that for ellipt-
ical media. For example, impulse responses in homogeneous VTI media with typical
values of anisotropy (7 > 0) can include triplications that arise for reflector dip of
30 degrees. The presence of the triplications exemplifies the large differences between
DMO impulse responses for VTI media and those for isotropic media. Moreover, the
complex shape of the impulse response in VTI media leads to an amplitude distribu-
tion along the DMO operator that differs significantly from that in isotropic media.
With such large differences, we can expect isotropic DMO to be inadequate for typical
VTI media. For example, stretching of the isotropic DMO impulse response clearly
will fail to emulate the VTT DMO response for dips beyond about 30 degrees, where
the triplications begin.

The impulse responses in VTI media typically deviate more from the isotropic
operator than do those attributable solely to vertical inhomogeneity. For example,
v(z) isotropic DMO impulse responses can be well approximated by squeezed ellipses
up to and beyond 90 degrees reflector dips (Hale and Artley, 1994). Thus, the in-
fluence of typical anisotropy (i.e., n ~ 0.1) on DMO exceeds that of typical vertical
inhomogeneity (i.e., average velocity gradient a=0.6).

In the field examples, isotropic DMO did not properly focus dipping reflectors.
On the other hand, v(z) VTI DMO based on the inverted values of vnmo(7) and (7)
(which indicated that the medium is anisotropic) did focus such reflectors, and, because
the method also takes nonhyperbolic moveout into account, it improved the focussing
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of horizontal reflections as well. In addition, the 2-D anisotropic time migration based
on the same two inverted parameters placed the steep in-plane reflections at their
true time migrated position. In contrast, the isotropic migration, which used only the
values of vnmo(7), mispositioned the sloping features relative to the horizontal ones.

The cost of anisotropic processing is close to that of its isotropic counterpart. In
fact, the processing algorithms needed for both types of media run in about the same
time. For example, although slower than the typical log-stretched DMO techniques,
the DMO algorithm used here is as efficient as the isotropic v(z) DMO of Artley and
Hale’s (1994). Moreover, the difference in computation effort for the isotropic and
anisotropic algorithms in phase-shift time migration is negligible. The true additional
cost of the anisotropic processing arises from the time needed to measure stacking ve-
locities, as well as ray parameters, for the sloping reflections. Once the measurements
are obtained, inverting for the parameters is not computationally intensive.

Applying an anisotropic parameter-estimation procedure, therefore, is appropri-
ate for all data, whether the subsurface is anisotropic or not. If the medium is isotropic,
then the lack of anisotropy will be reflected in small estimated values for the inverted
parameter 7. However, if 7 departs from zero by a relatively substantial amount (i.e.,
n > 0.05), then it is best to take anisotropy into account. Typical performance of
isotropic DMO in practice suggests the presence of anisotropy in data. In particu-
lar, the fact that isotropic homogeneous DMO often works better than does isotropic
v(z) DMO in a vertically inhomogeneous medium suggests the presence of anisotropy
because anisotropy typically reduces or overrides the influence of an increase in ve-
locity with depth. Nevertheless, the fact that isotropic constant-velocity DMO often
works better than does v(z) DMO does not imply that the result is optimum. The
DMO process can further benefit from the added degree of freedom embodied in the
parameter 7, which can be calculated from surface P-wave measurements and has a
physical rather than ad hoc basis, specifically anisotropy. Because it has this physical
basis, this same parameter provides the added degree of freedom needed for migration
and correction for nonhyperbolic moveout as well, as well for DMO.

Extensions of algorithms described in this thesis to 3-dimensional data is an
ongoing project in the Center for Wave Phenomena. T heoretically, 3-D processing
applications require a simple addition of another axis to the formulation of most of
the equations described here. Practically, it requires tackling problems dealing with
irregular acquisition geometries, lower-order anisotropic symmetries, as well as com-
putational issues. Some of these issues have been studied extensively for isotropic
media and results of these studies should be applicable to anisotropic media. Future
research should also include anisotropic prestack migration implementation and in-
version so we can better handle complex structures in anisotropic media. Prestack
depth migration, however, will require the full complement of Thomsen parameters,
which will result in a more challenging inversion procedure. My intuition is that a lot
of a-priori information will be required before such a problem can be solved.
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Appendix A

DEPENDENCE OF NMO VELOCITY ON THE RAY PARAMETER

For the purposes of the inversion procedure, we need to recast the NMO velocity
as a function of the ray parameter p(¢) (horizontal slowness) corresponding to the
sero-offset reflection. The vertical (m) and horizontal (p) slownesses for P-waves in
transversely isotropic media with a vertical symmetry axis (VTI) satisfy the following
equation (e.g., Larner, 1993)

1= 0.5{(a11+a44)p2+(a33+a44)m2+{[(a11—a44)p2—(a33—a44)m2]2+4(a13+a44)2p2m2}%} s

where the a;; are density-normalized elastic constants.

This equation can be solved for m, given a known value of the ray parameter p.
If both slowness components are obtained, the phase velocity is simply

1
V(p) = ——,
p*> + m?(p)

and the phase (dip) angle ¢ is given by

¢ =sin"'[V(p)p].

After the angle ¢ has been found, we can compute the derivatives of phase velocity
needed in equation (2.1) and then obtain the P-wave NMO velocity as a function of ray
parameter. The dependence Vamo(p) can also be built parametrically by calculating
Vimo and p as functions of the dip ¢.

Since phase velocity is a complicated function of the phase angle (or ray para-
meter) and anisotropic coefficients, it is hardly feasible to find a simple form for
Vamo(p) in general VTI media. Therefore, we consider the special cases of elliptical
and weak anisotropy.

The normal-moveout velocity in elliptically anisotropic media (e = J) can be
represented as (Tsvankin, 1995a)

Vim (0) ’P(‘f’) Van(O)
Vam = ° = t ) Al
n o(¢) cos ¢ Vro Voo an ¢ ( )
Now we have to obtain the angle ¢ as a function of the ray parameter. The
P-wave phase velocity for elliptical anisotropy, expressed through € = 9, is given by

(Tsvankin, 1995b)

139




T. Alkhalifah

Ve () = Vpoy/1 + 26sin%4 (A.2)

where 6 is the phase angle measured from the symmetry axis. Then

sin
p(9) = O (A3)
Vpoy/1 + 26 sin” ¢
Solving equation (A.3) for the dip ¢ yields

sin ¢ = .
V1—25p2VE,

Calculating tan ¢ from equation (A.4) and taking into account that Vj,,(0) =
/po V' 1+ 26, we get from equation (A1)

- _ Vaimo(0)
Vamolp) = = (A.5)

nmo

Therefore, for elliptical anisotropy (which includes isotropy as a special case), P-
wave NMO velocity is a function of the ray parameter and zero-dip moveout velocity,
with no separate dependence on the coefficient .

Now we carry out a similar derivation for general transverse isotropy (€ # &) using
the weak-anisotropy approximation (€e<1,6 < 1). The weak-anisotropy expression
for NMO velocity as a function of the dip ¢ was derived by Tsvankin (1995a).

Vamo (@) = ‘C/I;—:Z)) [1 46+ 2(e — 6) sin® ¢(1 + 2 cos® ¢)] . (A.6)

To find the dependence of normal moveout velocity on p, we have to obtain the
angle ¢ as a function of the ray parameter. The P-wave phase velocity, linearized in
the parameters € and 4, is given by Thomsen (1986).

Vp(0) = Vo (1 + &sin® 0 cos® 0 + esin’ 6) . (A7)
The ray parameter [equation (2.2)] then becomes
sin
p ’ (A.8)

~ Vo (L+0sin’ pcos? o+ esin’g) -

After some algebra, formula (A.8) can be transformed into a quadratic equation
for sin? ¢ with the solution (in the weak-anisotropy approximation)

PV
]. ol 26p2‘/120

Substitution of the angle ¢ from equation (A.9) into (A.6) and further linearization
in € and ¢ leads to the following expression for the NMO velocity:

sin? ¢ = [1+2(e — 8) p*Vi,]. (A.9)
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V2

Vi) = el 1-42(c = 8) S(0Vama(O)] (A.10)

y(4y?—9y +6
W20,y = 1 Vnel0),

f

In the derivation of equation (A.10), we have replaced the vertical velocity Vpo in
the anisotropic terms with Vimo(0) since the difference between Vpg and Vimo(0) will
change only the terms quadratic in the anisotropy parameters.
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Appendix B

NMO EQUATION FOR A LAYERED MEDIUM WITH A DIPPING
REFLECTOR

Here we generalize the NMO equation given by Tsvankin (1995a) for layered
anisotropic media with a dipping reflector. We consider a layered anisotropic model
consisting of a stack of horizontal homogeneous layers above a dipping reflector (Fig-
ure B.1). It is assumed that the CMP line is perpendicular to the strike of the reflector,
and the incidence (sagittal) plane coincides with a plane of symmetry in all layers.

Under these assumptions, the kinematics of wave propagation is two-dimensional,
i.e., phase and group velocity vectors do not deviate from the incidence plane. The
same assumption was made by Tsvankin (1995a) in the derivation of the one-layer
NMO equation.

Since the medium above the reflector is laterally homogeneous, the ray parameter
p (horizontal slowness) of any given ray remains constant between the reflector and
the surface. In this case, it is convenient to express the short-spread moveout velocity
Vimo in CMP geometry as follows (Hale et al., 1992; Tsvankin, 1995a):

2 . dz*) 2. dh

‘/nmo(pO) = il_I)T(l) ?(tT)' - Z; hl_I)I[l) ;1;,
where h = /2 is half the source-receiver offset (h > 0 in the down-dip direction),
po is the ray parameter of the zero-offset ray (z = 0), and ¢, is the two-way zero-
offset traveltime. Note that the zero-offset ray is not necessarily perpendicular to the
reflector in the presence of anisotropy; it is the phase-velocity vector corresponding
to the zero-offset ray that should be normal to the reflector.

Neglecting the displacement of the reflection point on short spreads, in equa-

tion (B.1) (Tsvankin, 1995a) we can represent h as

h = (Z.’E(z) — .’Eo) s

=1

(B.1)

where z( is the lateral displacement of the ray in layer 1, and 1z is the total lateral
displacement of the zero-offset ray, between the CMP (CRP) location and the reflection
point (Figure B.1). Equation (B.1) now becomes

1 " d(2z%)
/2 = — | :
Vamo(Po) = ¢ Jim, Z_; b (B.2)
Each component of the sum in equation (B.2) represents the squared NMO ve-
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locity in an individual layer multiplied by the corresponding zero-offset time (see
equation (B.1); z® = h®). That is,

d(22%)
im ———( ° )=t§,)

/(%) 2 .
p—Po dp [‘ nmo(pO)] ) (B.3)

where tgi) is the two-way traveltime along the zero-offset ray in layer .

Tsvankin (1995a) expressed V(®)  analytically through the phase angle o =
sin~[py V@ (po)] corresponding to the zero-offset ray, where V(9 is the phase velocity
in layer i. In Appendix A and the main text we show how this NMO equation can be
rewritten as a function of the ray parameter po.

Substituting formula (B.3) into the equation for the NMO velocity (B.2) yields

1 &) rerts
Vima(po) = 3 2t (Vo po)]”. (B.4)
=1

Equation (B.4) includes the traveltime to along the ray with the ray-parameter
value po. Below, we derive an equation for to(p) valid for isotropy or elliptical aniso-
tropy. For both models, the moveout is purely hyperbolic, and

.’IJ2

2 2 :
tO(p) tO(O) + ‘/n2mo(0) : (B5)
The offset z in equation (B.5) can be represented as z = toVptany (Vo is the
vertical velocity, ¥ is the group angle corresponding to the ray-parameter value D).
Next, we express 1 through the phase angle @ using general relations for transverse

isotropy (Thomsen, 1986) and equations (A.2) and (2.5):

vz (0
tan1) = tanf "’{‘/“’)2( ) i
Equation (B.5) then becomes
V2.0
t2(p) = t2(0) (1 + tan20—""“/°—2(—)> : (B.6)
0

Using the relation between the phase angle and ray parameter for elliptical an-
isotropy [equation (A.4)] and equation (A.5), we find

to(p) = t0(0) /1 + P2 V2no(P) (B.7)
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Appendix C

VELOCITY ANALYSIS IN LAYERED MEDIA

The first step of the inversion process involves estimating stacking velocities as
a function of zero-offset traveltime from P-wave reflection data. These velocities are
commonly considered a good approximation to the NMO velocity. Measuring stacking
velocities is common practice in isotropic processing, but here we must estimate such
stacking velocities for sloping, as well as horizontal, reflections. In addition, we must
measure the ray parameters (reflection slopes in the zero-offset domain) corresponding
to these reflections.

The inversion method can be applied using any number of dips through a least-
squares approach. For simplicity, I constrain the description here to the model given
in Figure C.1, where we have features with only two distinct dips (horizontal reflectors
and a dipping fault). The medium is considered to be laterally homogeneous above the
fault. Note that, because it is dipping, this single fault provides velocity information
at several zero-offset times that can be used to extract vertical parameter variations
with depth.

After obtaining stacking-velocity information as a function of ray parameter and
zero-offset time, we need to construct an interval-velocity model that satisfies the
measured stacking velocities based on equation (3.2). For horizontal reflectors (p =
0), construction of such a velocity model is straightforward, following the familiar
method of Dix (1955). However, for the dipping fault, such an interval-velocity model
depends on 7, as well as the ray parameter, and what complicates things is that the ray
parameter along the fault reflection varies with recording time due to the variation of
velocity with depth. Therefore, the measured stacking velocities for the dipping fault
at different vertical times correspond to different ray parameters.

Suppose we want to fit an interval-velocity model vymo(Pit1, 7) between the meas-
ured stacking velocities Vamo[pi, ti(p:)] and VamolPis1, tir1(pix1)], where p; and ¢; are
the ray parameter and zero-offset time, respectively, of the fault reflection used in
measuring the stacking velocities. This interval-velocity model, as mentioned in the
text, is based on a linear variation in 77 between the times associated with the measured
stacking velocities. Such an 7 is also taken to be continuous at the measured stacking
velocities times. The linearity and continuity conditions will assure us a unique eta
curve satisfying the measured stacking velocities. Here, t;(0) is the two-way vertical
traveltime for the reflection recorded at time ¢;(p;), as shown in Figure C.1. Therefore,
the initial 7 for the linear model between VamolPi, ti(pi)] and VamolPit 1, ti1(Pit1)] 18
n[ti(0)] calculated at vertical time t;(0). The interval n values in between the two
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measured stacking velocities are then given by

(1) = 1[t:(0)] + aisa[r — £:(0)], (C.1)

where a;,, is the constant gradient in 7 between vertical time t:(0) and ¢;1,(0), and
7 is the vertical time that ranges between varies between t;(0) and t;,1(0). What we
really know, however, is ¢(p;,1), the zero-offset time corresponding to the measured
stacking velocity Vimo[pis1, ti+1(pis1)]. Therefore, using the relation

t(pi+1, T) = /OT f[n('rl)’ 'Unmo(’rl)’pi+l]d7_1, (C2)

where f, as mentioned in the text, is the operator that relates zero-offset time to
vertical time, we increase 7 until ¢(p;;,,7) reaches t(pi+1), which takes place when
T = ti+1(0).

For i = 0 (corresponding to the earth’s surface), to(p) = 0, and the interval
n values are estimated either by considering the medium to be homogeneous up to
time ¢,(0) (a, = 0), or by using a value for 7 at the surface that satisfies a certain
condition (i.e., for marine data, n at the surface is usually set to 0). Therefore, the
only unknowns in equation (C.1) as we progress from the top to the bottom of the
seismic section are the 7 gradients a;.

Using the expressions for stacking velocities and traveltimes given above, equa-
tion (3.2) can be written as follows

ti(pit1) tit1(pit1)

VirnolPir1, tiv1 (Pis) iz (pig1) = /0 Vnmo (Pit1, T)dT + i) Vnmo (Pi+1, T)dT.

(C.3)
The first term on the right hand side can be calculated from the estimated values of n
and vymo(0) prior to ¢;(0) [corresponding to ¢; (Pi+1)]. Let us assume that it equals fi.
If we are trying to determine a, corresponding to the region between the surface and
the first measurement, then f, equals zero because to(pi+1)=0. Therefore, the only
unknown in this first layer is a;, and as we progress from top to bottom of the section
the only unknowns we need to obtain are the a;. In equation (C.3), Unmo(pis1,7) is a
function of the intantenous Vamo(0) and 7 values at vertical time 7. This expression
for a single 7 is the same as the one for homogeneous media, given by Alkhalifah and
Tsvankin (1995).

Substituting equation (C.1) into the second term of equation (C.3) results in a
nonlinear equation in a;,;. To solve equation (C.3) for a;41, I use the secant method
with an initial a;;; = 0. Fortunately, for such an initial value the problem is stable
and the convergence is fast.

Each time a new 7 gradient is obtained, for example a;y, it is directly used to
compute the interval 7 using equation (C.1) in the region between t:(0) and ¢;,,(0).
Then, these interval 7, along with the horizontal interval NMO velocities, are used to
obtain interval NMO velocities in the same region corresponding to the ray parameter
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b 1(Pig1)

1(0)

Vnmo(pi+1 51:)

. ti+1(0)

Fic. C.1. Depth model consisting of a fault and a number of horizontal layers.
The rays drawn correspond to the measured stacking velocities (VamolPi, ti(p:)] and
Vamol|Pi+1, ti+1(Pi+1)]) described in this Appendix. Such rays illustrate the relationship
between the zero-offset time and the vertical time for reflections from the dipping fault.

of the next stacking velocity. These interval values are used in equation (C.3) to
compute the first term, and again a2 becomes the only unknown in equation (C.3),
which requires the same nonlinear inversion.
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Appendix D

ANISOTROPIC RAY TRACING FOR TZO

Cerveny (1972) has derived an efficient ray-tracing system for general inhomo-
geneous, anisotropic media. This system is based on solving for the partial derivatives
of the eigenvalues of the Christoffel 3 x 3 matrix, I, rather than solving for the eigen-
values themselves. The components of this matrix are given by

Tik(zs, pi) = @ijua(Ts)P5015

with
or

Qijkl = Cijkz/P,

where p; are the three components of the slowness vector, T is the traveltime along
the ray, p is bulk density, x, are the cartesian coordinates for position along the ray,
s=1,2,3, and ¢;ji; are elastic coeflicients, in general, functions of z;. In the above
expression for I';;, the summation convention for repeated indices is used.

From Cerveny (1972), the ray-tracing system for general inhomogeneous aniso-
tropic media is given by
_c% = QKDL 9k

ap: _ —laa"jklp D959
dt 2 6(1), nfil33 ks

where g; are the components of the eigenvector g (the direction of particle motion).

In 2-D, all out-the-plane components vanish, namely all components with sub-
script 2. The eigenvectors are then calculated as follows.

o F33 - G
ang = Tyq + a3 — 20"
F11 - G

9398 = T\1 4 Ty — 2G°

and
—I'i3

where G is the eikonal (described below) and G = 1 along the ray.

For TZO purposes the vertical axis, z3, is conveniently replaced with vertical
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time, 7. This can be accomplished by substituting the following equation

dr 1 1

dr3  Vpo  \/asss

into the ray-tracing system. Further, since we are considering a v(z) medium, the ray
parameter, p; = p, is constant and the ray tracing system in 2-D reduces to

diEl
d_t = Q15kiP1959k,

ar _ S, o
dt — Vo

and p; is obtained using (Larner, 1993)
1= 0.5{(a1111 + a1313)P° + (as333 + a1313)p2 + {[(@1111 — 01313)p”

1
—(assss — a1313)p§]2 + 4(a1133 + (11313)21721)?,}2 1,

which involves solving a quadratic.
Also, both the phase velocity and phase angle need to calculated. They are given
by

and
6 = sin~!(pV),

respectively. Both values are tabulated and used in solving the system of five equations
for the ray trio mentioned prior to equation (4.1).
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Appendix E

CALCULATION OF COMPLEX-VALUED TIME AND AMPLITUDE

E.0.1 Anisotropic kinematic ray-tracing

Cerveny (1972) has derived an efficient ray-tracing system in general inhomogen-
eous, anisotropic media. This system is based on solving for the partial derivatives
of the eigenvalues for the Christoffel 3 x 3 matrix, T', rather than solving for the
eigenvalues themselves. The components of this matrix are given by

Lic(zs, pi) = aijna(T5)P5s
with
_or
pl - ami’
Aijkl = cijlcl/ P

where p; are the components of the phase vector (py, = pa, etc.), 7 is the traveltime
along the ray, p is the bulk density, z; are the cartesian coordinates for position along
the ray, s=1,2,3, and c;; are elastic coefficients, in general, functions of x;.

From Cerveny (1972), the ray-tracing system for general inhomogeneous aniso-
tropic media is given by

dz;

-(# = Q45kiP195 9k,
dpi _ _10ngkt ) oo
dr 2 3$, " IR

where g; are the components of the eigenvector g (the direction of particle motion).

In two dimensions along a symmetry plane, all out-the-plane components are
eliminated, namely all components with subscript 2. The eigenvectors are then calcu-
lated as follows:

_ F33 -G
an = Tyi+ a3 — ek

9398 = T ¥ Ty — 2G°

and
—T'i3

where G is the eikonal, described below, and G = 1 along the ray.
Because the square-roots associated with calculation of the phase and group ve-
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locities directly from the eikonal, G, have been eliminated, this is a relatively efficient
method of ray tracing, especially in general anisotropic media.

E.0.2 Anisotropic dynamic ray-tracing

The parameters p and ¢, which relate a calculated central ray to a nearby pro-
jected paraxial ray, are given by Cerveny (1981) for isotropic media
.
Cdr dr v
where n is the normal to the ray direction (which is the same as phase direction for
isotropic media), and v and v ,,, are, respectively, the velocity and its second derivative
with respect to n.

A paraxial ray is a ray (not actually traced) in the vicinity of the central ray. Its
normal distance from the central ray is described by the value of ¢, and the difference
in the two propagation angles is characterized by p.

For anisotropic media, the dynamic ray tracing is more complicated. The ray-
centered coordinates are no longer orthogonal as they are for isotropic media, so
we must compute an extra quantity, V, along the ray to compensate for the non-
orthogonality. The dynamic ray-tracing equations given by Hanyga (1986) for aniso-
tropic media are

dq

k. 4 E.

i Mp+ Vy, (E.1)
and J

@ _ v

77 Vp— Hyg, (E.2)

where M,V ,H are derivatives of the eikonal with respect to n and Dn, the ray parameter
in the direction of n, normal to the phase direction. These derivatives are given by

0*Gnm, 0G
H=0.5 G5z —025(— " o )2
%G oG
M =0. = 0. )2
1=0.5 ot 0.25( apn)
%G, 0G, 0G
V= 0'5apnan -0.25—2 op. B

Here, Gr,, m=1,2,3 are the eigenvalues of the Christoffel equation
Det( -G 5]19) = 0.

G are the three eigenvalues representing the eikonal equation for the three wave
types: quasi P-wave when m=1; quasi SV-wave when m=2; and quasi SH-wave when
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m=3. G,, for anisotropic media is given by

Gm = GijkiPiPL9i9k-

E.0.3 Paraxial expansion and amplitude

Consider ray-centered coordinates (s, n), where s is the distance along the ray and
n is the distance normal to the phase-velocity direction. The expansion of traveltime
along n using Taylor’s series gives the parabolic equation (Cerveny, 1981)

o*T
T(s,n) 2 T(s) + 0.5 an<;> n?. (E.3)
T(s) is the traveltime along the central ray obtained from kinematic ray tracing,

. 27(s) - . . . .
described above, and 8 anij) is a complex variable for Gaussian beam ray-tracing given

by (Cerveny and Psencik, 1984)

*T(s) P _prtip

on? Q q+ig’

where ¢1, p1 and g, po are solutions of the dynamic ray-tracing for a plane source
and a point source, respectively. The real part of this complex-valued term describes
ray curvature, and the imaginary part is a factor associated with the Gaussian-shaped
decay away from the ray.

This is the same equation used for the isotropic case; however, here n is in the
direction normal to the phase direction, not to the ray direction. Furthermore, q,
p1, g2 and po are computed using anisotropic dynamic ray-tracing [equations (E.1)
and (E.2)], where their initial values are taken to be ¢, = 1, p1 = 0, ¢ = 0 and
p2 =1

The complex valued amplitude, whose components Ap and A; appeared in equa-
tion (5.12), is calculated using dynamic ray-tracing. It is the same equation used in
isotropic media, given by (Hill, 1990; Hanyga, 1986)

A(t) = A u(t)

where Q = ¢, + iz and v is the group velocity at time . The initial amplitude Ag
can be taken as constant or angular dependent depending on the type of source or
receiver considered. For a scalar point source or receiver, a constant Ag is sufficient.
However, if the source or receiver has directivity, a more complicated radiation pattern
is needed. For a vertical source or receiver, A is given by the vertical component of
the normalized polarization vector, g3, multiplied by an initial amplitude.

As in isotropic media, two conditions must hold to keep the numerical calculation

stable, even for rays traveling through caustics. The two conditions are Im(g) >0
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and | Q |# 0.

E.0.4 Ray-parameter spacing
For isotropic media, Hale (1992) uses as the ray-parameter increment

27
(Apz)iso - =,
3l lwlwh |

where w; is the lowest frequency of interest, wy, is the highest; and [ is the related
initial beam width. This choice ensures adequate ray coverage to avoid aliasing and,
therefore, to properly construct the wavefield. For anisotropic media, the values of
Pmin and P, are different from those for isotropic media, given the same minimum
and maximum angles of interest and the same vertical velocity. As a result, the
following modified expression yields the the same amount of ray coverage as that used
in the isotropic case.

2Um;
A = (A 1507, . '

(E.4)

where vm, is the minimum vertical velocity found along the surface (z = 0), and
Vinin (Pmaz) and Vi (Pmin) are the phase velocities corresponding to the maximum
and minimum ray parameters, respectively, at the point on the surface where vertical
velocity is Upmiy. Recall that ray angles differ from phase angles in anisotropic media,
a fact that must be taken into consideration when determining the minimum and
maximum ray parameter of interest. If the maximum and minimum ray angles are 90
and -90 degrees, respectively, in a transversely isotropic media with vertical symmetry
axis, then equation (E.4) reduces to

V(0)
V(90)’

Ap, = (Ap:c)iso

where V' is the phase velocity as a function of angle.
In anisotropic media, for each initial ray parameter p,, I solve for the vertical ray
parameter p, using
1

2
Ve(p,) T
where V' is the phase velocity. For a 2-D symmetry plane, this turns out to be a

quartic equation, which I solve by the secant method. For transversely isotropic
media, however, the equation reduces to a quadratic.

Pz =
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