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ABSTRACT

Reflection and transmission of plane waves at a plane boundary between two
homogeneous halfspaces is one of the most fundamental problems in wave propagation.
One application of reflection-coefficient studies of practical importance is analysis of
amplitude variations with offset (AVO), which can be used for direct detection of
hydrocarbons.

While numerical evaluation of the reflection coefficient is relatively straightfor-
ward, the algebraic complexity of the solution greatly impedes any analytic insight
into the influence of medium parameters on the AVO signature. Conventional AVO
analysis in isotropic media is based primarily on approximate analytic solutions of the
reflection/transmission problem. In this thesis, a similar approach is used to elucidate
the influence of anisotropy on the reflection response in anisotropic media.

Transverse isotropy with a vertical axis of symmetry (VTI media) is the simplest
anisotropic model typically used to describe thinly layered media and shale sequences.
The approximate expression for reflection coefficients in VTI media derived here has
the same AVO-gradient term describing the low-order angular variation of the reflec-
tion coefficient as do the equations published by Banik (1987) and Thomsen (1993),
but is more accurate for large incidence angles. The refined approximation is then
extended to transverse isotropy with a horizontal axis of symmetry (HTI) - the sym-
metry system typically caused by a system of parallel vertical cracks. Expressions
for the reflection and transmission coefficients in the vertical symmetry planes of HTI
media are obtained by taking advantage of a limited analogy with VTI models. This
analogy is of far-reaching importance: it is the key step in deriving all kinematic sig-
natures and polarizations in HTI media and leads to a new parameterization of HTI
models that proves to be very convenient in surface seismic applications.

The newly-derived approximate symmetry-plane P-wave reflection coefficient is
further generalized to observations at arbitrary azimuth. The AVO-gradient term in
the approximate P-wave reflection coefficient in HTI media varies with azimuth as
a function of the squared cosine of the azimuthal angle. Azimuthal variation in the
gradient term can be inverted for the symmetry-plane directions and a combination of
the shear-wave splitting parameter (Thomsen’s parameter -y) and the newly introduced
anisotropy coeficient §(V) describing P-wave anisotropy for near-vertical propagation.
Since 6() can be found from the P-wave NMO velocity, these results make it possible
to combine P-wave AVO response with moveout data in the evaluation of the shear-
wave splitting parameter, which is close to the crack density. P-wave AVO data alone
are sufficient to estimate the crack density in the special case of thin saturated cracks
and negligible equant porosity, typical for fractured coals.

To provide a physical foundation for multi-component AVO studies in azimuthally
anisotropic media, I have also obtained approximate symmetry-plane reflection coeffi-
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cients for shear and converted waves in HTI media, as well as for waves propagating in
orthorhombic models. Also discussed in the thesis are practical aspects and difficulties
of applying the azimuthal AVO analysis in the case of an anisotropic overburden.
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Reflectivity and AVO in anisotropic media

Chapter 1

INTRODUCTION

Reflection and transmission of plane waves at a plane boundary between two
isotropic media is one of the most fundamental problems in wave propagation. Zoep-
pritz (1919) was among the first to publish the solution to this problem invoking
continuity of stress and displacement at the reflecting horizon.

One important application of reflection-coefficient studies is analysis of amplitude
variations with offset (AVO). The variation of P-wave amplitudes with incidence angle
provides one of the few direct hydrocarbon indicators (Ostrander, 1982) and has drawn
substantial attention within the geophysical community.

Due to the algebraic complexity of the Zoeppritz equations, conventional AVO
analysis is mostly based on approximate analytic expressions for P-wave reflection
coefficients in isotropic media. Several approximations for isotropic models have been
described in the literature (Richards & Frasier, 1976; Aki & Richards, 1980; Shuey,
1983; Thomsen, 1990); they differ in their assumptions, as well as in the choice of
medium parameters. Chapter 2 provides an overview of the reflection and transmission
problem in isotropic media. It also introduces the notation that is used throughout the
thesis and contains a review of the basic physical principles that lead to the boundary
conditions at interfaces in welded contact.

Conventional AVO analysis is based on approximate isotropic reflection coeffi-
cients and needs to be modified if anisotropy is present on either side of the reflect-
ing boundary. Reflection and transmission of plane waves at an interface between
two anisotropic media have been discussed, for example, by Musgrave (1970), Hen-
neke (1972), Keith and Crampin (1977) and Daley and Hron (1977). Even more so
than in the isotropic case, the exact solution for reflection coefficients at interfaces of
anisotropic media is very complicated. The general solution cannot be presented in
closed form and requires a numerical inversion of 6x6 matrices. The matrix compon-
ents include polarizations and tractions of three different wave modes in both media
that have to be obtained by the eigenvalue/eigenvector analysis of the Christoffel equa-
tion (Musgrave, 1970). The complexity of the problem obscures any physical insight
into the AVO signature. Empirical and analytic studies, however, show that the pres-
ence of anisotropy can significantly distort the conventional AVO analysis (Wright,
1986; Banik, 1987; Kim et al., 1993).

In the first part of Chapter 3, I discuss wave propagation and medium para-
meterization for transversely isotropic media with a vertical axis of symmetry (VTI
media). The VTI model provides an adequate description of wave propagation in
thinly layered media with horizontal interfaces and horizontally stratified shale form-
ations. I follow Graebner’s (1992) derivation of the exact reflection coefficients and
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explain how the solution can be extended to plane dipping interfaces. As in the iso-
tropic case, the reflection coefficients are evaluated for the displacement vector, and the
positive polarization direction is chosen according to the sign convention in Aki and
Richards (1980). Following Thomsen (1993), I then derive a refined approximation
for the reflection and transmission coefficients for pure and converted modes assum-
ing weak anisotropy and a boundary with small discontinuities in elastic properties.
The derived approximation for the quasi P-wave ® reflection coefficient has the same
gradient term as does the solution presented by Banik (1987) and Thomsen (1993),
but is more accurate at larger angles.

The remaining part of this thesis is devoted to media with azimuthally varying
properties. While approximate reflection coefficients are available for isotropic and
VTI media, corresponding expressions are unknown for media that are azimuthally
anisotropic. One plausible explanation for the azimuthal anisotropy observed in seis-
mic field data (Lynn et al., 1995; Johnson, 1995) is natural fracturing of rocks, with
fractures aligned in accordance with the dominant stress direction (Crampin, 1984a;
Crampin, 1985). Anisotropic compressional stresses required to fracture rocks are rel-
atively small and even flat-lying strata are commonly fractured, with the most famous
example probably being the Austin Chalk in Texas (Mueller, 1991). This observation
can be of crucial importance to hydrocarbon exploration since fracture networks of-
ten determine the direction and amount of fluid flow through reservoir rocks. Other
physical reasons for azimuthally isotropic media include dipping shale sequences and
intrinsic anisotropy.

The first-order azimuthally anisotropic model is the transversely isotropic me-
dium with a horizontal axis of rotational symmetry (HTI media) that is frequently
used to describe vertically-aligned penny-shaped cracks in an isotropic matrix (Thom-
sen, 1995). Because of its importance for reservoir characterization, much attention
has been devoted to this model, mainly through analysis of shear-wave birefrin-
gence (Crampin, 1984a; Martin & Davis, 1987; Mueller, 1991; Shuck et al., 1996).
Azimuthal anisotropy has a first-order influence on vertically incident shear waves
causing them to split into two components traveling with different velocities. In ad-
dition to the crack orientation, the parameter of crack systems of great interest in
exploration is the crack density, which is close to the fractional difference between the
velocities of split shear waves at vertical incidence [Thomsen’s (1986) coefficient ).

Chapter 4 reviews the significance of the HTI model and describes a limited
analogy between wave propagation in HTI and VTI media. This analogy is the key
step not only in deriving the approximate reflection coefficients, but also in obtaining
kinematic properties and polarizations in HTI media. As shown in Chapter 4, this
analogy implies that the known exact solutions for VTI reflection coefficients can be

1The qualifier in “quasi P-wave” refers to the fact that, for anisotropic media, the fastest (P-)
wave is not polarized in either the slowness or ray directions; similarly, the SV-wave in anisotropic
media is not polarized normal to the slowness or ray directions. In the following, I will omit the
qualifier “quasi” in “P-wave” and “SV-wave”.
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used to evaluate the reflection coefficient for waves incident in the vertical plane con-
taining the symmetry axis of HTI models. The observed analogy also leads to the
introduction of a new set of dimensionless anisotropy parameters similar to Thom-
sen’s (1986) coefficients that conveniently describe seismic reflection signatures in HTI
media.

While seismic signatures of compressional waves in transversely isotropic media
with a vertical axis of symmetry (VTI) have been an active study area in the last
decade, research on HTI media has been predominantly focused on the propagation of
shear waves, and the dependence of compressional wave data on azimuthal anisotropy
is much less understood. Specifically, P-wave data are rarely used to directly detect
and characterize fractured zones or “weak spots” of high crack density. Certainly, a
method for direct detection of fracturing using P-wave data would be highly beneficial.
The exploration community has become very sophisticated in the acquisition and
processing of P-wave data; additionally, compressional data generally have better
quality and are cheaper as compared to shear-wave data.

Just recently, it has been shown that P-wave AVO signatures are sensitive to
fractures or cracks. Based on synthetic modeling studies, Mallick and Frazer (1991)
suggested determining fracture orientation from P-wave AVO. More recently, Le-
feuvre (1994) discussed the possibility of using P-wave reflections to infer fracture
parameters statistically; however, he did not provide analytic insight into the relation
between P-wave signatures and anisotropy parameters.

The approximate solutions for P-P reflection and transmission coefficients at a
horizontal interface between two HTI media are first derived for waves incident in the
two vertical symmetry planes of HTI media. In Chapter 5, this analysis is extended
to waves incident in arbitrary azimuthal directions. The gained insight is helpful in
characterizing the magnitude and the functional form of the azimuthal variation caused
by different anisotropy parameters. The original goal of isotropic AVO analysis was
to extract shear-wave information from the variations of the reflection coefficient with
incidence angle. The results obtained in this chapter make it possible to devise a
fracture-detection algorithm based on the inversion of azimuthal differences of the
P-wave AVO gradient. '

Estimates of anisotropy using the time delay between the fast and slow shear
waves yield robust, alternative measurements of -y averaged over the propagation path
of the shear waves. Thus, analysis of shear-wave kinematic signatures via the classical
rotation analysis (Alford, 1986) helps to estimate the crack density (for HTI media),
albeit with a low vertical resolution. For situations where a detailed measure of local
anisotropy (highly resolved in depth/time) is desired, or where the rotation analysis
fails due to insignificant time delays, Thomsen (1988), Lynn and Thomsen (1990) and
Yardley et. al. (1991) suggest using the differences in the normal-incidence shear-
wave reflection coefficients, as well as the amplitude-variation-with-offset signature
to characterize the fracturing below the reflector. Yardley et. al. (1991) used the
reflectivity method to compute the reflection coefficients as a function of incidence
angle for various azimuthally anisotropic two-layer models. They modeled layers of
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HTI symmetry that contain parallel vertical cracks normal and oblique to the survey
line and discussed changes in the shear-wave reflection response for layers with water-
and gas-filled cracks. Their results show a clear dependence of the S-wave AVO
response on both the crack density and crack content. Yardley et. al. (1991) also
emphasized severe difficulties in measuring shear-wave amplitudes if the acquisition
(survey) line is not parallel or perpendicular to the crack orientation.

The resuits obtained by Yardley et. al. (1991) motivate a more detailed analysis
of wave propagation and AVO for shear waves in HTI media (Chapter 6). As in the
P-wave study, the approximate analytic equations for shear-wave reflection coeficients
derived in this chapter are valid for interfaces between two HTI media (the principal
axes of symmetry should coincide in both layers) and for interfaces between HTI and
VTI layers. A typical geologic model for the VTI/HTI boundary is a massive shale
layer overlying a fractured reservoir. Also derived in this chapter are reflection and
transmission coefficients for the converted (PS) waves in the two vertical symmetry
planes of HTI media.

Finally, an extension of the developed formalism to vertical symmetry planes of
orthorhombic media is described in Chapter 7. Media of orthorhombic symmetry,
believed to represent more realistic azimuthally anisotropic models, can, for example,
be caused by a combination of horizontal layering and parallel vertical cracks. Like-
wise, a system of two orthogonal, but not necessary identical, crack systems or two
identical crack systems at an oblique angle to each other lead to orthorhombic sym-
metry (Winterstein, 1990). As demonstrated in Chapter 7, the reflection coefficients
in orthorhombic and HTI media are similar and the azimuthal variation in the P-wave
reflection response is a function of the shear-wave splitting parameter - and two an-
isotropy parameters describing P-wave anisotropy for near-vertical propagation in the
symmetry planes.

Application of the developed AVO-inversion methods to synthetically modeled
surface reflection data is given in Chapter 8. The data have been generated using both
the reflectivity method (Mallick & Frazer, 1990) and dynamic ray tracing (Gajewski &
Psencik, 1990). Especially important is a discussion of the influence of the overburden
on the seismic reflection amplitudes and the AVO inversion. The chapter contains
suggestions on processing and interpretation of field data to be used in azimuthal
AVO analysis. Also discussed are potential extensions and applications of this work.
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Chapter 2

REVEEW OF REFLECTION AND TRANSMISSION IN ISOTROPIC
MEDIA

Reflection and transmission of seismic waves in isotropic media is a fundamental
geophysical problem that has been intensively studied in the literature. The first
papers related to this topic were published in the 19th century (Green, 1839; Knott,
1899). Zoeppritz (1919) was the first to produce a set of equations to compute particle-
displacement amplitudes of reflected and transmitted waves in isotropic media. The
anisotropic case is a much more difficult one. Incident and reflected waves have
directionally-dependent wave speeds and can no longer be thought of as purely longit-
udinally or transversely polarized. In addition, the direction of the wave normal, the
particle movement and the energy flux do not coincide with each other. However, des-
pite these complications, the principles of computing reflection coefficients in isotropic
and anisotropic media are similar. Also, reviewing analytic studies developed for iso-
tropic waves leads to very useful approaches for analyzing reflection and transmission
in anisotropic media. This — together with the fact that analysis and application of
isotropic reflection coefficients is still an active research topic — motivates the following
introductory chapter on scattering in isotropic media.

2.1 Wavefields in isotropic media — notation

Two different types of body waves propagate in isotropic media. If the medium
is homogeneous, both waves from a localized source spread out as spherical wave-
fronts, but heterogeneities can distort them in various ways. The first wave type is
the P-wave; P simply means “primary”, because P-waves arrive earlier than the (“sec- -
ondary”) S-waves. P-waves are compressional and cause the medium to alternatively
undergo compression and rarefaction. S-waves are shear waves generating a transverse
particle motion; i.e., the particle motion is perpendicular to the propagation direction.
Two different shear waves can be distinguished upon incidence at a boundary. The $-
wave polarized in the plane formed by the normal to the interface and the propagation
direction is called the SV-wave; the wave polarized within the interface is referred to
as the SH-wave. The propagation speeds of P-waves and S-waves are

Ve = J(A+2p)/p
Vs = \/;/_p’ (21)

where A and u are known as Lamé constants and p is the density of the medium.
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If the radius of a spherical wave front is large compared to the wavelength of the
body wave, the wavefront can be locally approximated by a plane surface. In this
thesis, plane-wave reflection and transmission coefficients are derived. This however
does not mean that analysis of spherical waves is out of the scope of this thesis:
spherical waves can be decomposed into plane waves, and the derived theoretical
results can be applied to each plane wave individually.

To describe the wavefields scattered at a plane horizontal interface, I adopt the
sign convention introduced by Aki and Richard (1980): the positive polarization direc-
tion is such that the horizontal component points in the direction of horizontal slowness
(Figure 2.1). As conventionally assumed in the seismological signature, the z3-axis
is pointing downwards and the z,-axis is normal to the incidence plane. The wave-

F1G. 2.1. Sign convention: the positive particle polarization directions for P-waves and
SV-waves are indicated by thick black arrows. The dashed lines show the propagation
directions of waves in the upper and lower medium. The interface is defined as z3 = 0.

field generated by an incident P-wave of unit amplitude upon the horizontal reflector
z3 = 0 is shown in Figure 2.2. For a given frequency w and horizontal slowness p,
the particle displacement u; of the (unit amplitude) plane wave incident in the [z;, 23]
plane can be written as

e S . cos i
m;, COS 23

The displacement vector of an incident SV-wave can be represented as

. cos 4 ; L gosiy Lo
ul = Mjy €OST1 ) gt (pz”_"ﬂlm t) . (2.3)
—l;, sin

6
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This notation is quite general and will also be used in transversely isotropic media.
For isotropic media, ;, =1; =m;, =m;, =1 (k = 1,2); i.e., the waves are polarized
parallel and perpendicular to the phase direction. Velocities v;,, vj,, vi, and v;, are the
P-wave and SV-wave velocities of the upper and lower medium, respectively. Angles
ir and jx (k =1,2) are shown in Figure 2.2. The generated wave modes are

. . l; sin? iw (pzx———-—l"”f. za—t)
up = P- i 1. e ¥i

—In;, COs 2y
. 2 m;, COS j iw (pzx-——l“’," zs—t)
g = S- 1" 0571 ¢ Vi1

1 S0 J1
. i . . . . cosiz —t)

ﬁP = P. 1,,2 smz% e‘lw (Pzrr iy z3

m;, COS iz
N > m;, COS J: iw (pz1+—-2°°’." xs—t)
s = $- ( i sin._77'2 ) e 2 . (2.4)

2 2

Here, P, P, S and S denote the amplitudes of the scattered wave modes. The situation
with an incident SH-wave is more simple. Unlike the P-wave and SV-wave modes,
this wave is polarized perpendicular to both the normal to the interface and the dir-
ection of wave propagation. Hence, the incident SH-wave can generate only reflected
and transmitted SH-waves. This decoupling of P-SV and SH propagation exists in
isotropic media and symmetry planes of anisotropic models. In general azimuthally
anisotropic media, the three wave modes are coupled, which leads to a more difficult
treatment of energy partitioning at plane horizontal interfaces.

2.2 Boundary conditions and exact scattering formulas

Computation of plane-wave reflection and transmission coefficients (also called
scattering coefficients) is based on two physical principles. First, the displacement
amplitudes have to be continuous at boundaries between media which are in welded
contact. In other words, the media on both sides of the boundary cannot be ripped
apart and no slippage is allowed along the interface. These conditions are often
referred to as “kinematic” boundary conditions. Secondly, the components of the stress
tensor corresponding to the traction across the interface have to be continuous. The
continuity of stress across the interface is called the “dynamic” boundary condition.

The kinematic boundary conditions require that the particle displacement caused
by P- or SV-waves incident in the [z, 23] plane satisfies

[ur] = [us] = 0 (2.5)
at the boundary, where the square brackets denote the difference in displacement above

7
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F1G. 2.2. Two upgoing wave modes (1p, is) and two downgoing waves (Up, iis) are
generated by an incident P-wave (ul3¢).

and below the boundary. For an incident P-wave, equations (2.2), (2.4) and (2.3) yield

-l sine; = I-"l,-1 sin¢; — 1’51,-2 siniy + s mj, CoSj; — 3 mj, COS jo
—m;, cosi; = —Pmy cosi; — Pm;,cosiz + Sl sing, + Sl,sing,. (2.6)
Equation (2.5) has to be satisfied at any time and point along the interface. Con-
sequently, the phase terms in equations (2.3) and (2.4) need to be identical at the

boundary. This is a statement of Snell’s law that requires the horizontal slowness to
be continuous across the interface, i.e.,

sinz'l/'u,-l = sinig/viz =sinj1/'u,-1 = sinjg/vj2 .

To honor the dynamic boundary conditions, the traction acting across the plane normal
to the zs-axis has to be continuous. From the definition of the stress tensor (Aki &
Richards, 1980), the k-th component of the traction T acting across the horizontal
interface can be written as

T3k = Tk(iS) ’ (k = 17 27 3) ’

with %3 denoting the unit vector in direction of the z3-axis, i.e., normal to the hori-
zontal interface. If the medium is elastic (as is assumed throughout this thesis), the

8

Ed



. — ey e — r—— m———— ————n — — ey

e W e Y

=

Reflectivity and AVO in anisotropic media

stress tensor can be related to displacement using the constitutive relation

Tij = 1/2 Cijkl (ukz U k) (27)

Here, the Einstein summation over repeated indices is used and the comma in ug,
indicates a partial derivative with respect to the I-th component. c¢;jx is a tensor of
rank four with at most 21 independent constants. In the special case of isotropic media,
the number of independent components reduces to just two [see Musgrave (1970) for
more details]. For P-SV propagation in the [z;,z3]-plane, the dynamic boundary
conditions are

[‘1'13] = {733] =0. : (28)

The component 723 of the traction T(%;) is nonzero only in case of an incident SH-
wave. Equation (2.8), together with the constitutive relation (2.7) and the wavefield
representations (2.2) and (2.4) yield two more equations for the unknown amplitude
factors P, S, P and S:

1) COS 21 .
—cs5 | 1;; sing — + pm;; COSiy | =
21

. cost
chls) < - 1);, sind; — pmy, coszl> -+

(3

COoSs 1

mj cosj; + plj, sinj; | +
Ui

. co
P cg? < vs ‘2 1, sini; — pm;, cos 22) +

22

2 cos
S cg? J2 mj, cos j» + plj, sin _72> , (2.9)
J2
and
. c
- C%.)P I siné; — (1) s m;, COS?; =

(1) COS? %

p I;, siné; + ¢33 m;, COs 21> +

Vi,

( P m;, €OSJ1 cgs)cb“hl smyl)

7
(2) COS 22

c13 D1, sini, — ¢33 m;, CoS 22) +

2

S (—C§3)pm32 Cosjz + € (2) . 52 1;, sin jg) . (210
2

Again, these equations are quite general and will be used below to derive the reflection
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coefficients in VTI media and the vertical symmetry-planes in azimuthally anisotropic
media. In isotropic media, I;, =1; =m; =m;, =1 (k= 1,2). The three stiffness
components Cs3, ¢33 and ¢;3 are shown in the two-index notation (Voigt recipe), and the

superscripts () and (? refer to the upper and lower medium, respectively. In isotropic
media

) = b = pV02;

o = s = PP ;

& = s = V02

@ = s = P02;

o = o =¥ —24Y;

R = = — 2. (211)

The incident P-wave has a unit amplitude and the unknowns P, S, P and S represent
the (displacement) reflection and transmission coefficients. They can be evaluated
by solving the linear system of four equations (2.6), (2.9) and (2.10). A similar set
of equations can be derived for an incident SV-wave. The reflection/transmission

problem is much simpler for the SH-wave. In this case, only two equations have to be
solved.

Although this derivation is straightforward, the analytic expressions for the scat-
tering coefficients are rather complex and readily prone to error. The solution for

the P-wave reflection coefficient in isotropic media, for example, is given in Aki and
Richards (1980) as

B [(bcoszl 3 ccoszz> P (a L goosh COSJz) sz] /D, (2.12)

Uiy Vi Y, Y5

with

D = EF + GHp?
CoSi; | COSip
+c

E = b
v,-l 'Uiz
€os j COS %
F = b .71 +ec .72
Y, V52
COS 1%, COS 2
G = a-d J
Viy L7
COS%y COS 71
H=oa-d J (2.13)
Vi U

The remaining parameters are given by
a = p®(1-242p%) - oM (1-222 p?
10
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b = pP(1-20%p%) + 2pM 7 p?

¢ = pV(1-20%p%) +2p% % p?
2(p@ 02 — pMe2) . (2.14)

Equations similar to expression (2.12) have been derived by Aki and Richards (1980)
for all reflection and transmission coefficients in isotropic media. Energy partition-
ing problems for elastic and acoustic waves at solid/solid, solid/fluid and fluid/fluid
boundaries and free surfaces are also discussed in many other publications (Musgrave,
1970; Cerveny & Ravindra, 1971; Brekhovskikh, 1980; Tsvankin, 1995b).

2.3 Approximations and their assumptions

To find the reflection and transmission coefficients, we need to solve a system
of kinematic and dynamic boundary conditions, with the dimension of the system de-
pending on the symmetry of the media and the number of the wave modes above and
below a reflecting interface. The inverse problem of estimating medium parameters
from the angular changes of the reflection response represents a much more difficult
problem. Koefoed (1955) went through the laborious exercise of numerically invest-
igating reflection coefficients for many different sets of elastic parameters of isotropic
models. He established “rules” to describe the behavior of his many computed curves,
without stimulating any major advance in amplitude studies at his time. Obviously,
extending his approach to azimuthally anisotropic media (exploring an even higher-
dimensional parameter space) is not feasible. Instead, as shown below, it is more
helpful to derive approximate scattering coefficients and learn about the influence of
the anisotropy parameters on the reflection response.

After his laborious hand-calculations of reflection coefficients for many different
combinations of medium parameters, Koefoed (1955) was the first to suggest that
there is an invertible relationship between the reflection coefficient as a function of
incidence angle and the medium parameters. Specifically, he wrote that

... in a more remote future it may be possible to draw conclusions con-
cerning the lithologic nature of rock strata from the shape of the reflection
coefficient curves ... Koefoed

Of particular importance was his observation that the changes of the reflection coeffi-
cient with incidence angle depend strongly on variations in Poisson’s ratio. Koefoed’s
prediction came true in 1982, when Ostrander pioneered a new era in amplitude-
versus-offset analysis at the 52nd International Meeting of Exploration Geophysicists.

Embedding a low velocity gas sand into sediments having ‘normal’
Poisson’s ratios should result in an increase in reflected P-wave energy
with angle of incidence ... Ostrander

The relationship between reflection coefficients and velocities and densities is not
readily obvious in equations (2.12), (2.13) and (2.14). These equations, for example,

11
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do not allow one to predict the influence of a particular parameter on the reflection
response. Therefore, to reveal the information content contained in the reflected amp-
litudes, it is useful to study analytical approximations. Several such approximations,
differing in accuracy, medium and wavefield parameterizations, have been derived.
While these approximations are based on different philosophies of interpretation and
physical understanding, they share the same basic assumptions that have proved very
useful in AVO studies:

e The media on both sides of the reflecting boundary have similar elastic proper-
ties, and the relative changes in P- and S-wave velocities and density are small
across the interface.

o The incidence angles are sufficiently smailer than the critical angle. At the
critical angle, the amplitudes change abruptly and phase changes make any
parameter extraction very difficult.

The first approximation of this type was provided by Bortfeld (1961), who par-
tially linearized the reflection coefficient with respect to changes in medium paramet-
ers. Subsequently, analytic approximations were given in Richards and Frasier (1976)
and Aki and Richards (1980). Bortfeld’s (still very cumbersome) approximation was
later modified by Hilterman (1983), who showed that Bortfeld’s approximation can
be approximately represented as a sum of a2 “fluid” term and a “shear-wave” term.
Other simplifications based on the assumption of Vz/Vs = 2 (Wiggins et al., 1983) or
constant density (Hilterman, 1983) further reduced the complexity, albeit with the risk
of severely misinterpreting the results if the restrictive assumptions are not justified.

A particularly attractive representation of the reflection coefficient was derived by
Shuey (1985). Shuey rewrote the approximate P-wave reflection coefficient presented
in Aki and Richards (1980) in the form

RE°(4) = A + B sin®i + C sin®itan®i . (2.15)

As discussed in more detail in Castagna & Backus (1993), the main advantage of
this representation is that each term is responsible for a different angular range. The
coefficient A is the normal-incidence reflection coefficient, while B describes the initial
slope of the reflection-coefficient curve. B is the so-called “AVO gradient” that is
nowadays routinely extracted from seismic data. The larger-angle term C becomes
important for incidence angles larger than 20 degrees and is often referred to as
the “curvature term”. Recovery of this term is difficult, but it can provide useful
additional information. For instance, it can be used to distinguish between high and
low gas saturations in particular plays (Castagna & Backus, 1993).

The individual terms in Shuey’s approximation [equation (2.15)] have the follow-
ing form:

A= 1/2 (—4& + éﬁ) = 1/2¥
Ve p

12
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_ 5 11-36 AVp . Ao
B = —2(1 1—6>A 21-6 Ve  (1-05)2
c = 12572 (2.16)
Ve

where o denotes Poisson’s ratio and Vp is the P-wave velocity. In equation (2.16), the
elastic properties are conveniently expressed as functions of the average values and
relative differences in the model parameters. The P-wave impedance Z = pVp in the
upper and lower layers, for example, can be written as functions of its average value
Z =1/2(Z% + Z@) and the difference AZ = Z®) — Z(:

. 1AZ

W = za-182
z Z1-55),

. 102

@ = za+222
z Z(1+5—).

The assumptions of small discontinuities in elastic parameters hence translate into
JAVA
I—E_l <<1. (2.17)

Analogous expressions are defined for the relative changes in compressional velocity
and density. Shuey (1983) suggested two different choices for angle i. First, ¢ can be
chosen as the average of the incidence and transmission angles, i.e. ¢ = 1/2(%; + %2);
or, alternatively, ¢ can be identified with the incidence angle ;. He states that the
difference in accuracy between both choices is small for angles smaller than 30 degrees.

A more instructive and often used version of Shuey’s approximation is given by
Hilterman (1983) .
Rp°(i) = Acos?i + 2.25 Aosin®i, (2.18)

with A given in equation (2.16). While this relation is certainly easy to interpret, it has
to be treated with caution: the additional assumption used in deriving equation (2.18)
is that & = 1/3, or, equivalently, Vp/Vs = 2. This relation is rather typical, but
certainly not true, for all exploration targets.

The goal of conventional AVO analysis is the extraction of information about
physical properties (and in particular on shear-wave velocities) from amplitude changes
with offset of the reflected compressional wavefield. The gradient term in equa-
tion (2.13) is not easily interpretable in terms of shear-wave velocities or (equivalently)
Poisson’s ratio of the upper and lower media. The approximation that is probably best
suited for analyzing the contrast in elastic parameters was suggested by Wright (1986)
and first published in this form by Thomsen (1990). Fully linearized in the small con-
trasts in the elastic properties and without any additional assumption [such as the
Vp/Vs-ratio in equation (2.18)], the approximate reflection coefficient can be written

13



Andreas Riiger

in the form
o, YAVA AVp 2 V—g 2 AG .. 2.
iso — —_ | = -
Rp°(z) = 1/2 1/2{ A (VP> e }sm i

AVP in?itan?s. (2.19)
Ve

+1/2

Because of the transparent and concise form and the clear definition of the as-
sumptions behind them, I will use “Thomsen-style” approximations for different an-
isotropic media throughout this thesis. In addition to being much more compact and
comprehensive, this equation also has the advantage of explicitly using the difference
in shear modulus G = p V¢ in its parameterization. From the Biot-Gassmann theory
on the effects of pore fluids on rock velocities, it follows that gas charging a rock does
not change its shear modulus, and AGG vanishes for fluid-contact interfaces within a
rock unit (Wright, 1986; Thomsen, 1990).

A test of equation (2.19) for three models representing different exploration tar-
gets is shown in Figure 2.3. Gas-sand AVO anomalies have been divided into three
distinguished types by Rutherford and Williams (1989):

Class 1 The normal-incidence P-wave reflection coefficient is strongly positive, and
the reflection amplitude decreases with offset.

Class 2 Small P-wave reflection coefficients, with a large relative amplitude change
with offset.

Class 3 Large negative reflection coefficients that become even more largely negative
with offset.

The model parameters used in this study are shown in Table 2.1, taken from
Kim et. al. (1993). The first model is a Class 1 reflection from the Pennsylvanian
Hartshorn formation in the Arkoma Basin. Model 2 corresponds to sediments offshore
Louisiana and represents a Class 2 reflection. Model 3 shows parameters computed for
Upper Pliocene Delta Front sediments. To challenge the accuracy of equation (2.19),
the model parameters have significant relative changes in elastic properties across the
boundary. Specifically, the differences in shear velocities and shear modulus are very
large in the first two models, which, strictly speaking, violates the assumptions behind
approximation (2.19). Nonetheless, as shown in Figure 2.3, the approximations [using
the incidence angle as input to equation (2.19), i.e., ¢ = 7;] provide a close match to
the exact solutions.

Shuey’s and Thomsen’s approach to linearizing the reflection coefficients can also
be extended to shear-waves. The linearized reflection coefficient for the SH-wave
mode (polarized perpendicular to the vertical propagation plane) yields

o = =1/2 (_A_p____éV_g) 1/2§Z~Ssm]
p Vs Vs

14
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F1G. 2.3. P-wave reflection coefficients computed for reflections from three different
shale/gas-sand interfaces. The solid lines denote the exact solutions and the dashed
lines show the approximations. The model parameters are given in Table 2.1.
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| Model 1 Model 2 Model 3 |
shale | sand | shale | sand | shale | sand

Vp 3.30 | 420 | 2.96 | 349 [ 2.73 | 2.02
Vs 1.70 | 2.70 | 1.38 [ 2.29 | 1.24 | 1.23
p 2.35 | 249 | 243 [ 2.14 | 2.35 | 2.13
o 0.319 | 0.148 | 0.361 | 0.122 [ 0.370 | 0.205
£z 0.297 0.038 -0.394
&= 0.240 0.164 -0.298
i 0.058 . -0.127 -0.098
= 0.454 0.496 -0.008
ae 0.911 0.832 -0.114
(2u5/vp)*° 1.376 1.295 1.081
Ao -0.172 -0.239 -0.164

Table 2.1. Model parameters for Class 1, Class 2 and Class 3 AVO anomalies.

1/2 LV sin® j tan® 7, (2.20)
Vs
or, equivalently,
=-1/2 (-A" + &% ) + 1255 (2:21)
p Vs Vs

with j denoting the incidence shear-wave angle. The disadvantage of equation (2.21)
is that the approximation is not exact for normal incidence. The difference between
the vertical-incidence reflection coefficients of different modes will later be attributed
to the contribution of (small) anisotropic parameters, and any inaccuracy due to
the isotropic approximation can hamper the analysis and inversion for anisotropy
coefficients. Therefore, I suggest introducing the shear-wave impedance Z° = p 8 and
using the exact normal-incidence reflection coefficient in equation (2.21):

S
S =—1/2 50+ 1/257 tan?j. (2.22)
S

From the physical point of view, it is clear that the normal-incidence reflection coeffi-
cient in isotropic media is the same for any shear mode because the polarization vector
is always parallel to the reflecting interface. For oblique incidence angles, SV-waves
generate reflected and transmitted P-waves in addition to shear (SV)-waves, and it is
not surprising that the angular variation of the SV-wave reflection coefficient differs
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from that in equation (2.22) (Thomsen, 1988; Thomsen, 1993):

: AZS  [(TAVs  _Dp\ . .
150 —_— — — — 2 2 —
SV 1/2 55 + (2—Vs - 2 ) sin® j
1/2 LVs sin®j tan®j. (2.23)
Vs

It is well known that the coupling between transverse and longitudinal waves for
oblique incidence angles manifests itself in the dependence of the P-wave AVO gradient
on the shear-wave velocity (Shuey, 1985). Surprisingly, the opposite is not the case,
and the SV-wave AVO gradient is independent of the compressional wave velocities
under the assumption of small relative changes in the elastic parameters across the
reflecting boundary®.

Equation (2.23), as well as most reflection-coefficient approximations in this pa-
per, shows a simple decomposition of the form (2.15). Here, it is appropriate to make
some observations for the particular case of shear-wave amplitude studies. Even more
so than for conventional P-wave AVO studies, shear-wave AVO analysis is limited
to the extraction of the AVO gradient term. Small incidence angles are particularly
important for shear-wave studies because the first critical angle is often small. Even
moderate incidence angles of about 20° can generate evanescent energy that causes
complicated phase and amplitude distortions. Thus, for shear waves, it is often im-
possible to obtain reliable estimates of the C-term (C = 1/2 §=) in equation (2.15).

As in the P-wave case, the simplicity of the linearized equations helps to quickly
identify the contributions of different physical parameters to the reflection response.
For instance, we are reminded that only relative differences in elastic parameters
influence the reflected seismic signature. For the particular case of the SH-wave
reflection coefficient, equation (2.21) shows that the relative differences in density
and shear-wave velocity have the same influence on the normal-incidence reflection
coefficient. Additionally, we recognize that %‘-’5 is the only term responsible for small-
and large-angle variations of the SH-wave reﬁection response. Thus, if amplitudes of
S H-waves incident at moderate and large angles (> 20°) can be reliably recovered,
it is advantageous to plot them as a function of the squared tangent of the incidence
angle [see equation (2.21)].

Figures 2.4 and 2.5 show approximate and exact reflection coefficients for SV-
and SH-waves computed for the models shown in Table 2.1. The approximations in
Figure 2.4 are computed using equation (2.23), while Figure 2.5 was generated using
equation (2.22). The accuracy is satisfactory for all models, especially if one takes
into account the significant difference in the shear-wave velocity across the reflecting
boundary (Model 1 and Model 2).

1The approximate P-P-transmission coefficient is also independent of the shear-wave velocities.
Apparently, P-wave AVOQ is based on a rare physical gratitude.
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Model 3

SV-wave reflection coefficient

0 10 20
Incidence angle (degrees)

F1G. 2.4. SV-wave reflection coefficients computed for reflections from three different
models of gas sands. The solid lines denote the exact solution. The dashed lines
show the approximations computed using equation (2.23). The models (parameters
are given in Table 2.1) have a significant difference in the shear-wave velocity across
the boundary.
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SH-wave reflection coefficient

Model 1

0 10 20
Incidence angle (degrees)

F1G. 2.5. SH-wave reflection coefficients computed for reflections from three different
shale/gas sand interfaces. The solid lines denote the exact solution. The dashed lines
show the approximations computed using equation (2.22). The model parameters are
given in Table 2.1. As predicted in equation (2.22), the first two models with positive
—Av‘sii yield positive AVO gradients. Model 3 shows a reflection response independent

of the incident angle due to the small value of —A‘-,‘sii.

19



M OC O @G o @G @& &5 o0 M e | B s B a2 & O &,

20

Andreas Riiger



= e P e e ety

Reflectivity and AVO in anisotropic media

Chapter 3

REFLECTION AND TRANSMISSION FOR VERTICAL
TRANSVERSE ISOTROPY

If the seismic velocities in a medium are angle-dependent, the behavior of elastic
waves becomes much more complicated than in the isotropic case. In this chapter, I
review and visualize important kinematic and dynamic features of wavefields in the
simplest anisotropic model: a transversely isotropic homogeneous medium with a
vertical axis of symmetry. In addition, I also refine the published approximation to
the P-wave reflection coefficient in VTI media (Thomsen, 1993).

3.1 Wave propagation and notation for VTI media

A rigorous mathematical description of wave propagation in VTI media can be
found in Musgrave (1970). The key step in his treatment is the substitution of the
displacement field u of a harmonic plane wave

U, '
w=| U | é®m-on (3.1)
Us

into the equation of motion
Puig = fi + Tij;. (3.2)
Equation (3.2) is derived and discussed, for example, in Aki and Richards (1980); the
subscript (,:) denotes the second temporal derivative and (,;) indicates the partial
derivative with respect to the j-th coordinate. The wave vector (ki, k2, k3)7 can be
rewritten in terms of the wavefront normal (n;,n,,73)7 and the frequency w:
w
kj = ; nj .

The Christoffel system

Giun;mUs — p?U; =0, (3.3)

which will be discussed in more detail in subsequent chapters can be obtained from
equations (3.1) and (3.2), along with the Hook’s law relationship between stress and
strain. Equation (3.3) is a familiar eigenvector/eigenvalue problem that can be solved
by well-known classical methods. For example, the roots of the characteristic equation
(Christoffel equation)

det I Cijkt 7y — p'u2 5:'1: I =0 y (34)
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where d;; denotes the Kronecker-delta symbol:

5. =] 1 ifi=k
*=10 ifitk

yield the velocities of the three wave modes as a function of the direction of the
wavefront normal.

In VTI media, equation (3.4) simplifies significantly. The three eigenvalues (ve-
locities) are given in White (1983) as a function of the angle 8 with the vertical and
the five independent stiffness components ¢;;, ¢33, ¢ss, Ces and ¢;3:

pVE = cessin®@ + cs5c0528; (3.3)
2pV3, = (c11+ css)sin®@ + (cs3 + cs5) c0s?6 — K ; (3.6)
2pVE = (c11 +css)sin? 0 + (cas + cs5)cos? 0 + K, (3.7)

with

K= \/ ((cn — cs5) sin? @ — (¢33 — C35) cos? 0)2 -+ 4(c13 + ¢55)2 sin® G cos? 6 .

The symmetry of equation (3.3) ensures that for any given phase angle, the polariz-
ation vectors U; of SH-, (quasi) SV- and (quasi) P-waves are mutually orthogonal.
However, only the polarization of the SH-wave is strictly orthogonal to the propaga-
tion direction while the polarization vectors of the remaining waves are not strictly
longitudinal and transverse (Musgrave, 1970; White, 1983).

Expressions stated as a function of stiffness coefficients such as equations (3.5), (3.6)
and (3.7) are well suited for numerical computations. On the other hand, they are
not very convenient for analyzing the behavior of seismic signatures in different an-
gular ranges. For example, it would be beneficial for surface seismic applications to
bave a parameter responsible for the shape of the phase velocity curves near vertical.
Moreover, expressions in c;; notation are not very helpful in quickly evaluating the
magnitude of anisotropy and in separating the influence of anisotropy on the seismic
response.

These difficulties motivated Thomsen (1986) to introduce a new set of anisotropy
coeficients for VTI media. He suggested replacing the five independent stiffness com-
ponents by two vertical velocities and three dimensionless anisotropy parameters:

Veo = yJess/p (3.8)
Vso = yfess/p (3.9)
Ce6 — Cs5
— Cui1—¢Cs3
€ = Som (3.11)
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5§ = (c13 + ¢55)° — (c33 — Cs5)°
2¢33(c33 — Cs5)

(3.12)

Vpo and Vg are the vertical velocities of P-waves and shear waves, respectively. Note
that both shear waves have the same vertical velocity, as can be seen by setting
6 = 0 in equations (3.3) and (3.6). SH-wave propagation is completely described
by parameters V5o and 7y while P-wave and SV-wave propagation depends on four
parameters: Vpg, Vso,€ and §. Anisotropy parameters ¢, 0 and -y are dimensionless
and go to zero in isotropic media.

The phase-velocity equations (3.5), (3.6) and (3.7) as well as expressions for
other seismic signatures can be rewritten in terms of Thomsen’s parameters. Ts-
vankin (1996b) shows that these parameters are also perfectly suitable to describe
wave propagation in VTI media of any strength of anisotropy. Obtaining the cor-
responding expressions for isotropic media (with velocities Vpo and Vo) can then be
achieved by simply setting the anisotropy coefficients €, § and 7 to zero. Elliptical
anisotropy (i.e., a medium with elliptical slowness surfaces and elliptical wavefronts)
is introduced by setting € = §. Moreover, one of the advantages of Thomsen’s notation
is the simplification achieved by considering the limit of weak anisotropy, for which
the dimensionless anisotropy parameters are small in magnitude (|e], |d], |v] << 1).
This assumption is justified by the observation that most rocks exhibit small values of
the anisotropy coefficients (< 0.2), if probed by waves in the frequency band typically
used in seismic exploration [see Table 1 in Thomsen (1986)].

Using the assumption of weak anisotropy, the phase velocities of waves propagat-
ing in VTI media can be linearized in the anisotropy coefficients ¢, § and v (Thomsen,
1986):

Vp(6) = Vo [1 + & sin®0fcos? + € sin®6)] ; (3.13)
3 2

Vsv(6) = Vso |1+ % (€ — &) sin® @ cos® 9] ; (3.14)

Vsr(8) = Veo [1 + vsin®6] . (3.13)

Equations (3.13)-(3.15) explain the influence of anisotropy on seismic wavefields
in a concise analytical way. Here, I want to additionally visualize some of the dif-
ferences between isotropic and anisotropic wavefields. Because rays correspond to
the trajectory of high-frequency energy, the behavior of the wavefield can be conveni-
ently characterized and described by displaying the raypaths and points along the
raypaths at equal traveltimes (i.e., wavefronts). Figure 3.1 shows rays traced from 2
point source embedded in a homogeneous medium with the vertical P-wave velocity
Vpo = 2.6 km/s and vertical shear velocity Vso = 2.0km/s. The anisotropy simulated
in this model is described by the parameters ¢ = 0.15 and § = —0.1. The surface
formed at propagation time ¢ = 0.75s by arrivals of the P-wave is indicated by a
white continuous line. The black lines emitted from the source at 2.53-km horizontal
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Fi1G. 3.1. Vertical section showing P-wave propagation in a homogeneous VTI medium.
Shown are rays traced from a point source at 2.5 km lateral position. The white
continuous contour denotes a wavefront at ¢ = 0.75s propagation time. Note that, in
general, the normal 7 to the wavefront does not coincide with the ray direction.

position denote seismic rays. Several features of Figure 3.1 differ significantly from
the familiar behavior of rays and wavefronts in isotropic homogeneous media. For ex-
ample, the wavefront is not circular. In particular, the P-wavefront is more advanced
in the horizontal direction than in the vertical direction. From the definition of €, one

can show that
Vp(8 = 90°) — Vpy
€~
Vo
hence, one can estimate € by simply comparing the horizontal and vertical advance
of the P-wave wavefronts. Let us now discuss P-wave propagation close to vertical in
more detail. From equation (3.13), it is obvious that § is responsible for the P-wave
propagation near vertical. A decrease in velocity, as indicated by the reduced advance
of the wavefront in Figure 3.1 is caused by a negative value of §. A concentration of
rays is seen in the horizontal and vertical directions for the P-wave. Figure 3.1 not only
describes the geometrical position of the wavefront at a specific time, it also indicates
the dynamic properties of the wavefield. More specifically, the ray density makes
visual the phenomena of energy focusing and defocusing (Tsvankin & Chesnokov,
1990; Tsvankin, 19952). Energy increases in regions with high concentration of rays
(or, equivalently, a high concentration of group velocity vectors). Conversely, a low
concentration of rays indicates energy defocusing.
The degree of anisotropy is commonly characterized by the absolute value of
Thomsen’s parameters € and 4. Figure 3.2a shows rays and wavefronts for Green
River Shale, a medium that can be considered to be moderately to strongly anisotropic

; (3.16)
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F1G. 3.2. Vertical sections showing rays and wavefronts for P-wave propagation in
homogeneous anisotropic models. (a) Vpo = 3.33km/s; (b) Vpo = 3.79km/s; (c)
Vpo = 3.37 km/s; (d) Vpo = 3.38 M/S
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(€ = 0.195,6 = —0.22). The spatial dimension of the model is 1km x 1km. Nine
wavefronts, uniformly sampled in time, are displayed. P-waves for a medium with
similar absolute values of € and § (¢ = 0.189,8 = 0.204) are shown in Figure 3.2b.
Figures 3.2c and 3.2d illustrate wave propagation in media with moderate anisotropy
(le] < 0-2,]6] < 0.2). For AVO analysis where the overburden has VTI anisotropy, it
is important to understand the influence of anisotropy on the radiation pattern. The
angular energy distribution is not correlated with the absolute values of € and 4. In
fact, the shape of the energy radiation pattern is much more controlled by the difference
between € and § than by the individual values of the anisotropic coefficients (Tsvankin,
1995a). This explains why the ray-density distribution is significantly more uniform
for the Mesa Clay Shale than for Green River Shale (see Figures 3.2a and 3.2b).
Note that the more weakly anisotropic Taylor Sandstone exhibits more pronounced
angular changes in ray-density than does the ”stronger” anisotropic material Mesa,
Clay Shale. In other words, the common notion of weak anisotropy is meaningless
when talking about the shape of the radiation pattern. As a general rule, for (e-4) <
0, one can expect increasing P-wave amplitude away from vertical. The maximum
energy concentration is obtained approximately at 45 degrees from vertical; then the
energy decreases sharply towards horizontal. Conversely, for (¢ — §) > 0 (the most
common case), transverse isotropy causes P-wave amplitudes to decrease away from
the symmetry axis, with a minimum of energy density near 45 degrees, followed by a
sharp increase when approaching the horizontal. An analytic and quantitative analysis
of P-wave amplitude patterns can be found in (Tsvankin, 1995a).

F1G. 3.3. SV-wave propagation in a homogeneous VTI medium. Shown are rays
traced from a point source at 2.5 km lateral position. The white continuous contour
denotes a wavefront at ¢ = 1.0's propagation time. The wavefront has the same vertical
and horizontal distance from the source, i.e., Vsy(0°) = Vs (90°).
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FI1G. 3.4. Vertical sections showing rays and wavefronts for SV-wave propagation
in homogeneous anisotropic models. (a) Vpo = 3.33km/s, V5o = 1.77km/s; (b)
Veo = 3.79km/s, V5o = 2.07km/s; (c) Vpo = 3.37km/s, Vso = 1.83km/s; (d)
Vpo = 3.38 km/s, Vso =244 km/s.
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Figure 3.3 shows SV-rays and the SV-wavefront at ¢ = 1s traveltime for the
same model as in Figure 3.1. The influence of anisotropy on SV-wave propagation is
even more pronounced than that on the P-wave propagation in Figure 3.1. First, the
wavefronts are clearly non-circular and have rhombic appearance. A sharp increase
of ray density is visible at about 45°. The same focusing of rays can be observed for
Taylor Shale (Figure 3.4c), while the wavefront of the Green River shale (Figure 3.4a)
is clearly triplicated. Again, as obvious by comparison with the wavefront snapshots
of Mesa Clay Shale and Mesa Shale (Figures 3.4b and 3.4d), is not the absolute value
of € or § that determines the shape and energy distribution of the wavefield. Tsvankin
and Thomsen (1994) and Tsvankin (19952) found that the most important factor
describing the phase velocity and energy radiation of SV-waves is a combination of
anisotropic parameters and the ratio of the vertical velocities, denoted by o.

2
o= 220 () (3.17) -
VSO

A more detailed qualitative analysis of the relation between cusp sizes and ¢ is given
in Riiger (1996)

SH wave propagation is simulated in Figure 3.5. The wavefront is elliptical, with
semi-axes determined by Vsg(@ = 0°) and Vsy(6 = 90°). From the definition of 7y
[equation (3.10)], it follows that

oy ng(e = 900) - Vso

; 3.18
Ver (3-18)

For positive values of « (the most common case), the SH-wavefront is more
advanced horizontally than vertically. Additionally, only very minor distortions in
ray density are visible (Tsvankin, 1995a).

3.2 Reflection and transmission at horizontal interfaces — exact expres-
sions

The angular dependence of velocity will obviously influence the reflection coef-
ficient. For reflections off the top of a VTI layer, it is easy to recognize that the
reflection coefficients and the AVO response are azimuthally invariant; i.e., for 2 given
angle of incidence, the reflection response does not vary with azimuth (measured with
respect to the z;-axis). This is true for both isotropic and VTI layers above and
below the reflector. Furthermore, one has to consider only the coupling of P- and
SV-waves at the interface. The third mode, the SH-wave, is polarized perpendicular
to the incidence plane and is fully decoupled from P- and SV-waves. Thus, the con-
tinuity requirements at a plane horizontal interface lead to four boundary conditions
that determine the transmission and reflection coefficients for the P- and SV-waves.

Reflection and transmission in anisotropic media was first discussed in Hen-
neke (1972) and Keith and Crampin (1977). An exact algebraic solution to the VTI
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F1G. 3.5. Vertical section showing SH-wave propagation in a homogeneous VTI me-
dium. The wavefront is shown for ¢ = 1.0s propagation time. SH-anisotropy is
elliptical and the wavefront forms an ellipse.

reflection/transmission problem has been developed by Daley and Hron (1977). Unfor-
tunately, I find their derivations very cumbersome to reproduce. A different analytic
expression, although not expressed in a concise form, has been derived by Graeb-
ner (1992). Graebner’s approach is particularly attractive because the reflection and
transmission coefficients are parameterized as a function of the horizontal slowness (the
ray parameter p), which is preserved during the reflection and transmission process as
a consequence of Spell’s law. Using p as the argument is very convenient for numer-
ical computations. First, many reflectivity programs are parameterized in horizontal
slowness; similarly, ray-tracing algorithms in stratified media use the preservation of
horizontal slowness for each individual ray for efficient computation. Secondly, tri-
gonometric functions that are time-consuming to evaluate numerically are completely
avoided. This is not the case if the scattering coefficients are evaluated as functions of
phase or group angles. Finally, as will become obvious in the next chapter, Graebner’s
solution can be easily extended to transversly isotropic media with a horizontal axis
of symmetry.

The following is a modified representation of Graebner’s solution to the VTI
reflection coefficient (see Graebner, 1992) in ¢;;-notation. Because of the azimuthal
invariance of the reflection coefficient, it is sufficient to limit the derivation to the
[z1,z3]-plane. The Christoffel equation (3.4) can be written as a function of the
horizontal slowness p and vertical slowness g (with p? + ¢®> = 1/v?) as

enp® +essg® —p (e +css)pg
det =0. 3.19
© (c13 + css)pg c33q% + Cssp> — p ( )
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This equation can be solved for the vertical slownesses of the individual wave modes:

1 o
Qo = % \/Kl - K% - 4K2K3
QB = ‘% \/K1 - \/Klz —4K,K3 ,with

Cs3 + ¢53)°

K, = L-:——&— (ﬂ.}..i""._gf&_”__)p?

€33 Css Cs5 €33 - C33Cs3

c
K, = B2 2 and

C33 €33 .
K = pr-L | (3.20)

Css

(Note that there is a misprint in the equation for K; in Graebner, 1992.) Here, q, is
the vertical slowness of a plane P-wave with amplitude U,

la
up=U, | 0 | evPa+wz-1t) (3.21)
Mg

and gg denotes the vertical slowness of the corresponding SV-wave:

s\
usy =Ug | 0 | efwlmtoma—t) (3.22)
mg

Substituting the vertical slownesses into equation (3.19) yields the following expression
for the direction cosines of the polarization vectors:

I = 3392 -+ assp® — 1
@ \ anp2 -+ assqz -1+ a33q§ - a55p2 -1

aup® +assqz — 1
anp® + assq2 — 1 + assq? + assp? — 1

ma—\

! anp? + assqf — 1
g \ aup? + ass@§ — 1 + assq} + assp? — 1

a33q3 + assp? — 1
a11p? + as5g3 — 1+ azsqf +assp? — 1 °

mg = \ (3.23)

with a;; = ¢;;/p. Polarization vectors and vertical slownesses have to be found on
both sides of the interface.

To evaluate the vector of reflection and transmission coefficients corresponding
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to an incident P-wave
R = (Rpp, Rps, Tpp, Tps)” ,

the following matrix system has to be solved:
MR=b (3.24)

Elements m;; of matrix M are related to the parameters stated above as follows:

my = l&‘); M2 m,(s) 3 Tz = “lg) 3 Mg = —m,(e) 3
mag =m{); mgp = -lﬁ ; mags =m{; mg= —lg ;

o = pl‘(zl)a%) +q¢(})m§)a§§); Mgy = pm(l)a(l) (l)l(l) (1)
Migs = — (plff)a%) + q‘(!z)m&z)a%)) : — —(Pm((ez) (2) (2) l(2) )
My = a(l) (q(l) A+ pma)) My = a(l)(q 51) pl(l))

My = aos (q(z) 1@ L pm(z)) Mg = a(2) (q(2) (2) (2))

The superscripts () ()@ refer to the upper and lower layer, respectively. Vector b
can be expressed in terms of m;; as

b= (—mn, —m21,M31, m41)T

Using Cramer’s rule, the solution can be stated in analytic form:

My My My Mg\
_ 1 My, My Mz Mo,
T detM | Mz My Msz May

My Mgy Msz My

‘b (3.25)

Elements M;; denote the cofactors of m;;. The first element of vector R represents the
P-P reflection coefficient. The numerical evaluation of equation (3.25) can be simpli-
fied by identifying some internal block symmetries in matrix M (Graebner, 1992). The
exact reflection coefficients shown in this thesis are evaluated using equation (3.25).
On the other hand, this solution cannot be represented in a concise form that re-
veals the influence of the individual model parameters on the scattering coefficients,
and motivates analysis of simplified approximations similar to the ones developed for
isotropic media.

3.3 Reflection and transmission at dipping interfaces

Reflection, refraction and mode conversion at dipping interfaces are surprisingly
more complex phenomena in anisotropic models. Applying Snell’s law, a straightfor-
ward procedure in isotropic media, becomes a real challenge both analytically and nu-
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merically, especially if arbitrary structural dips and general anisotropy are considered.
Here, I want to sketch a straightforward approach for computing the scattering coef-
ficients for waves incident in the dip-plane of reflectors.

Conceptually, this reflection problem can be best described by considering the
slowness surfaces (i.e., the loci of endpoints of slowness vectors) on both sides of the
interface. The phases of the incident and scattered waves have to be identical at every
point along the interface, yielding two conditions (Henneke, 1972).

v

e The slowness vectors of reflected and refracted waves must lie in the plane that
contains the slowness vector of the incidence wave and normal to the interface.
This is true even in general anisotropic three-dimensional media.

e The projection of the slowness vector onto the boundary is identical for each
wavetype (Snell’s law).

The tangential slowness component p; can be evaluated by the following rotation of
the original slowness vector.

P =p1cos¢ +p3sing, (3.26)

where ¢ is the dip of the interface. Then, we use p; to solve for the four slowness vectors
of the reflected and transmitted P- and SV-waves, represented by their components
in the z;- and z3-coordinates. In isotropic media, such a procedure is straightfor-
ward and can be performed analytically. However in anisotropic media, resolving the
slownesses requires solving a quartic or sextic equation by numerical methods. Then,
the roots have to be associated with the individual wave modes. Upgoing and down-
going waves need to be identified by computing the group-velocity directions. Note
that a negative value of a vertical slowness component (with respect to the interface)
does not necessarily imply that the energy is propagating in the (negative) downward
direction (Musgrave, 1970).

Unlike the procedure designed to continue the wavefield kinematically, the eval-
uation of the reflection and transmission coefficients involves searching for all polar-
izations and slownesses of waves generated by the incident wave. These (in general
complex) quantities, together with the stiffness tensors on both sides of the interfaces,
need to be rotated into a new coordinate system with unit vectors parallel and nor-
mal to the interface. Once the vertical slownesses and the polarizations have been
computed in the rotated coordinate system, the kinematic and dynamic boundary
conditions [equations (2.5) and (2.8)] yield a (generally complex) linear system of
equations of the form (3.24), which can be inverted numerically.

3.4 Approximate reflection and transmission coefficients

The exact solution of the reflection/transmission problem [equation (3.23)] is
too complex to comprehend the influence of anisotropy on the reflection coefficient.
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Numerical studies by Wright (1987) showed that the influence of anisotropy on the
reflection coefficient is not negligible. Analytic work by Banik (1987) confirmed that
anisotropy has a first-order influence on P-wave AVO gradients. Thomsen (1993)
provided a more general solution for the whole range of pre-critical incidence angles,
valid for small contrasts in elastic parameters across the boundary and weak aniso-
tropy. In this section, Thomsen’s approximation will be reproduced in a modified and
corrected form.

The first step in Thomsen’s analysis is to set up the kinematic and dynamic
boundary conditions [equations (2.5) and (2.8), respectively], for both incident P- and
SV-waves. I use the parameterization introduced in Chapter 2 to form the set of linear
equations

Rp Rsp
Tp Tsp
Rps Rs
Tps Ts

=b. (3.27)

Due to the considerable size and complexity of the matrices and vectors considered in
this derivation, I show the individual elements of the 4 x4 matrix M and the 4x2 matrix
b in Appendix A. The boundary conditions in equation (3.27) that correspond to an
incident P-wave are given by equations (2.6), (2.9) and (2.10). Note that Rsp and Tsp
are the amplitudes of the reflected and transmitted P-waves generated by an incident
SV-wave of unit amplitude. Numerically, the inversion of matrix M is the main
step in recovering the scattering coefficients. To derive concise analytic expressions,
Thomsen (1993) proposed an alternative approach. He considers a boundary between
two weakly anisotropic VTI media with a small percentage difference in the elastic
properties across the boundary. Specifically, let us introduce seven small quantities d;
(ldil <<1 ((=1,2,..7)):

AVpo AVSO
di = — = —
' Vro % Vso
dy = ﬂ

p
dy = & ds =€
ds = 52 d7_€2 (328)

and the operator
- ’ad,- ’

where the partial derivative is evaluated for d; = 0(j = 1,2,..7). As in Chapter 2, the
average value and the difference in vertical P-wave velocity, for example, are defined
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Veo = 1/2(Vpo, + Veo,)
AVpg = Veo, — Vpo, » (3.29)

and correspondingly for Vs, AVsy, etc. Instead of solving equation (3.27) for a wave
incident at phase angle 4, let us first consider a plane wave incident at the same
incidence angle upon the “average” (or “unperturbed”) model, i.e., the model that
can be obtained by setting all small quantities d; to zero. In this case, equation (3.27)
can be rewritten in the unperturbed form

M®R*® = b", ' (3.30)

where the superscript « stands for “unperturbed”. Obviously, M¥, R*® and b" are
simpler than M, R and b. For example, each column of R® has only one nonzero com-
ponent because no reflected and converted energy is generated at the “transparent”
boundary between the two identical layers. This suggests rewriting equation (3.27) in
the following linearized form:

(M® + AM) (R® + AR) = (b* + Ab) (3.31)

The quantity of interest is AR which, to a first approximation, can be written
as

AR = (M®)~! (Ab— AMRY). (3.32)

Using Cramer’s rule, one can find the inverse of M®. I solved equation (3.32) and ob-
tained the following solution for the most important element of AR, the P-P reflection
coefficient:

1AZ 1 [Av 2Vs0\? AG
VTI _ 184 1 VPO [2Vso a in28 -
RV (0) = 55 T3 { Voo (Vpo) e +A5} sin® @
1 {A_Vm + Ae} sin® ftan?6, (3.33)

where @ denotes the incident phase angle !, Z = pVpy is the vertical P-wave imped-
ance, and G = p V3%, is the vertical shear modulus. The differences in the anisotropy
coefficients across the boundary are written as AS = (82 — 6;), A¢ = (e — ¢;). Equa-
tion (3.33) differs from Thomsen’s result in that here, the difference in anisotropy
parameter AJ does not appear in the sin®§tan?6-term 2. The presence of Ad in
Thomsen’s result may cause inaccuracies at large angles; specifically, for nonzero val-

'In this linear approximation, it is however valid to interchange the incidence angle with the
average of the incidence and the refracted angles.

2The extra Ad term in Thomsen’s equation turned out to be caused by an error at the final step
of his derivation
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ues of Ad, Thomsen’s approximation does not work well for angles larger than 20°
and breaks down for angles greater than 45° where the sin® tan®-term dominates over
the AVO-gradient term. Equation (3.33) was discussed in detail in Blangy (1994), but
with the wrong sin® @ tan? §-term. The newly derived P-wave reflection-coefficient ap-
proximation is consistent with observations by Kim et. al. (1993) that Ae dominates
the behavior of their numerically computed AVO curves for large angles of incidence.

If Z5 denotes the vertical shear impedance (Z° = o' &), the corresponding ex-
pression for the SV-mode reflection coefficient is given by

NZS 7 AV A \% :
VI _ -5 12Vs0  ,2P PO _ 2
Rgy = -1/2 {2 Vo 25 —+ (Vo> (Ae A&)}sm J
1/2 % sin?j tan®;. (3.34)
Vso

Recall that in the limit of weak amsotropy, the angular variation of the SV-wave

phase velocity is governed by ¢ = ( ) (e — 8) [see equation (3.14)]; the same
combination of parameters determines the influence of anisotropy on the small-angle
term in equation (3.34). For a typical ratio of ‘?2 ~ 2, the difference in (e — §) is of
comparable importance to the AVO gradient as the relative difference in density and
vertical shear velocity.

The SH-wave reflection problem can be treated in a way similar to that in the
study of P/SV scattering. The solution for the SH-wave reflection coefficient shows
the following dependence on the contrast in anisotropy parameter 7y across the bound-
= AZ S AV,

o = 1/2 +1/2 ( Vs$° +A'y) tan?j, (3.33)

More details of this derivation, including the inversion of matrix M", the linear-
ized polarization vectors and reflected and refracted angles can be found in Appendix
A. Appendix A also shows the remaining reflection and transmission coefficients of
pure and converted modes.

3.5 Influence of VTI anisotropy on P-wave AVO

Approximation (3.33) is remarkably simple while still being accurate even for
large incidence angles because no small-angle approximation was used in its derivation.
Moreover, it allows us to decompose the reflection coefficient as

Rp™(0) = RE°(9) + RE(6), (3.36)
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where RE°(6) is the reflection coefficient in the absence of anisotropy (¢ = 0, 6 = 0),
and R is the anisotropic term given by '

REI(6) = 5(6 ~ 8) sin0 + 3 (e — &) sin? D tan?. (3.37)

Equations (3.36) and (3.37) make it possible to draw the following conclusions (see
also Thomsen, 1993):

e In Thomsen’s (1986) notation, anisotropy does not have any influence on the
reflection coefficient for vertically incident waves (i.e, the normal-incidence re-
flection coefficient is identical to that of 2 wave incident on the interface between
the corresponding isotropic layers with velocities Vpy and Vso)-

e The parameter § controls the sin @ term, which determines the small-angle re-
flection coefficient, while € is responsible for the sin®6tan?6, which becomes
influential at larger incidence angles. This is a manifestation of the well-known
fact that & controls the influence of anisotropy on near-vertically traveling P-
waves, while ¢ dominates near-horizontal wave propagation.

e There is no influence of the shear-wave vertical velocity Vs on R¥ although
Vso does make a contribution to R°.

e If there exists no contrast in § and € across the interface, the approximate re-
flection coefficient coincides with the one for purely isotropic media.

e Anisotropy has a pronounced influence on the reflection coefficients if the relative
changes in (isotropic) elastic parameters are smaller or of comparable in size.

To illustrate the accuracy of equation (3.33), I show the P-wave reflection coef-
ficients for the same shale/sandstone models as in Chapter 2 (see Table 2.1), but
the shale-overburden is assumed to have VTI symmetry; the magnitude of anisotropy
(6 = 0.120 and € = 0.133) is chosen according to Kim et. al. (1993). Figure 3.6
illustrates the accuracy of equation (3.33) as compared with the exact solution and
the corresponding (exact) isotropic reflection coefficient (§ = 0 and ¢ = 0). Here
and in all subsequent plots, “incidence angle” denotes the phase angle of the incident
wave. The examples in Figure 3.6 show that the presence of anisotropy can substan-
tially change the slope of the AVO gradient. Note that the approximation and the
exact reflection curves are close to each other for the first two models. Most import-
antly, the approximation precisely describes the departure of the reflection coefficient
curves away from the isotropic ones and, therefore, correctly predicts the influence
of anisotropy. As expected from the fair performance of the corresponding isotropic
approximation (2.19) at large angles of incidence (see Figure 2.3), the accuracy of
equation (3.33) is lower in the third model. However, the approximation still predicts
the correct trend; for example, it predicts that the AVO gradient does not change
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much compared to that for the isotropic curve and that the anisotropy has a more sig-
nificant impact on the reflection-coefficients for higher angles of incidence. Thus; even
in this case, the approximation is helpful in understanding the influence of anisotropy
on the AVO response.

The examples are repeated for a higher value of anisotropy parameter ¢ = 0.233
in Figure 3.7. As expected from the influence of ¢ in equation (3.33), the differences
between the curves in Figures 3.6 and 3.7 are restricted to large angles of incidence
while the accuracy of the approximations remains essentially unchanged.
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F1G. 3.6. P-wave reflection coefficient curves for the three models shown in Table 2.1.
The black line denotes the exact isotropic reflection coefficient and the thinner gray
line shows the exact reflection coefficient after introducing vertical transverse isotropy
into the shale overburden (6 = 0.12,¢ = 0.133). The approximation [equation (3.33)]
is shown by the dashed line.
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F1G. 3.7. The same P-wave reflection coefficient curves as the ones shown in Figure 3.6,
but for a larger magnitude of anisotropy in the shale layer (§ = 0.12, ¢ = 0.233).
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Chapter 4

HORIZONTAL TRANSVERSE ISOTROPY ~ THE SYMMETRY
PLANES

Most upper-crustal media and certain reservoir rocks of interest to hydrocarbon
exploration show azimuthal anisotropy of various types and strength (Crampin, 1985),
implying that the angular dependence of reflection coefficients may change with azi-
muth. The “first-order” model for azimuthal anisotropy is transverse isotropy with a
horizontal axis of symmetry (HTI). Physical reasons for a medium of HTI symmetry
include systems of parallel vertical cracks embedded in an isotropic matrix, similar to
the medium shown in Figure 4.1 and/or vertically dipping shale sequences.

FiG. 4.1. Sketch of an HTI model. P-wave reflections in the two vertical symmetry
planes, here called the symmetry-azis plane and the isofropy plane, are discussed in the
text. Shear waves polarized parallel and normal to the isotropy plane have different
vertical velocities.
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Let us assume that the symmetry axis of the HTI model is parallel to the z;-
direction. The [z;,z3]-plane, which contains the symmetry axis, is hereafter referred
to as the “symmetry-axis plane.” Waves confined to the plane normal to the symmetry
axis do not exhibit any velocity variations with propagation angle; hence, this plane
is the so-called “isotropy plane” or “fracture plane.” Shear waves propagating in the
isotropy plane can travel with two different velocities, depending on whether their
polarization vector is confined to the isotropy plane.

Analytic expressions for reflection coefficients, either exact or approximate, are .

mostly restricted to VTI models (Daley & Hron, 1977; Banik, 1987; Graebner, 1992;
Thomsen, 1993; Blangy, 1994). Studies of P-wave AVO signatures in HTI media have
been of a purely empirical nature without any analytic study of the AVO response
(e.g., Lefeuvre, 1994). The analysis presented in this thesis fills in this gap by com-
plementing exact numerical results with concise analytic expressions. I begin with a
numerical study of the exact reflection coefficients for various azimuths. Then I dis-
cuss the angular dependence of pure-mode reflection coefficients in the isotropy plane
and, subsequently, exploit analogies between VTI and HTI media to extend the AVO
analysis for VTI media to HTI symmetry-axis planes.

4.1 Significance of the HTI model

A plane P-wave incident on an HTI medium outside the symmetry-axis and
isotropy planes generates three plane waves with mutually orthogonal polarization
directions in the lower medium:

e A (quasi-longitudinal) P-wave polarized approximately along its propagation
direction. Its polarization vector is confined to the plane containing the slowness
vector and the symmetry axis.

o A shear wave polarized within the isotropy plane, referred to as Sl-wave (the
fast mode in the vertical direction).

e A shear wave polarized in the plane formed by the slowness vector and the
symmetry axis, here called the S=-wave (the slow mode in the vertical direction).

Boundary conditions have to be applied to solve for the reflection and transmission
coefficients. As for the isotropic and VTI energy-partitioning problems discussed
above, these conditions are the continuity of particle displacement, shear and normal
traction. After evaluating vertical slownesses, polarizations and phase velocities for all
generated wave types and substituting them into the boundary conditions, we obtain
a system of six linear equations for the reflection/transmission coefficients.

Based on this approach, I implemented an algorithm to compute the exact reflec-
tion and transmission coefficients for interfaces between two HTI media with the same
direction of the symmetry axis. In Figure 4.2, reflection-coefficient curves are shown
for azimuths of 0, 30,60 and 90° measured with respect to the symmetry direction. In
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azimuth=0
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F1G. 4.2. Reflection coefficient as a function of the incidence and azimuthal angles for
a boundary between an isotropic overburden and an HTI medium. The azimuth is
measured with respect to the symmetry axis. Vpg, = 2.26, Vso, = 1.428, p; = 2.6,
&=0,8 =0,v =0, Vpo, = 2.37, Vso, = 1.36, po = 2.7, €2 = 0.05, §; = 0.02 and
v, = 0.1. Vpo and Vg, are symmetry-direction velocities, and 2, €; and 7, are the
generic Thomsen parameters defined with respect to the horizontal symmetry axis of
the second medium.
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this experiment, the upper medium is purely isotropic. The azimuthal change in the
absolute value, as well as in the slope of the reflection coefficient, are rather significant.
Only for normal incidence do the curves coincide.

Clearly, evaluating reflection coefficients for HTI media is more complicated than
for VT media. However, as indicated by the above example (Figure 4.2), ignoring the
presence of anisotropy in HTI media has the potential of severely distorting conven-
tional AVO analysis. On the other hand, a careful study of the reflection response in
HTI media can provide additional information for the estimation of physical properties
of the medium.

In general, exact evaluation of the HTI reflection coefficient at arbitrary azimuth
requires a numerical calculation. The next sections describe how to obtain an analytic
solution and useful approximations to the reflection coefficients for incident P-waves
confined to the isotropy and symmetry-axis planes. Comparison of these symmetry-
plane coefficients can then help in estimating the magnitude of the azimuthal change
and relate it to the anisotropy of the subsurface.

4.2 P-wave reflections in HTI isotropy-planes

Two different shear waves can propagate in HTI media. An incident P-wave con-
fined to the isotropy (fracture) plane excites the Sll-mode polarized within this plane.
This shear wave travels with a different speed than that of the S*-wave generated by
an incident P-wave confined to the symmetry-axis plane.

It is straightforward to compute the exact P-P reflection coefficients in the iso-
tropy plane using existing solutions for isotropic media. For example, one can use
the exact analytic representation of the P-P reflection coefficient given by Aki and
Richards (1980) [equation (2.12)], by simply inserting the proper (fracture-plane) ve-
locities.

It is important to note that due to the difference in the velocities of S! and
S+ waves, several different parameterizations can be used to represent approximate
solutions to the reflection problem in HTI media. To avoid any confusion, I explicitly
state the meaning of the parameters used in the remainder of this paper by relating
them to the stiffness elements (in Voigt notation; see, for example, Musgrave, 1970),
defined for the coordinate frame shown in Figure 4.1, ie., for the symmetry axis

pointing in the z;-direction:
Csq
B = \/7;

o = 1/3‘9’—;
p

G = pB
Z = pa. (4.1)
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Here, 3 and « are the isotropy-plane velocities of the Sl-wave and the compres-
sional wave, respectively. G denotes shear modulus corresponding to the vertically
propagating S'-wave, and Z denotes the vertical P-wave impedance. Note that 3 in
equation (4.1) refers to the fast vertical shear-wave velocity and, in general, is different
from Vs, the velocity of shear waves propagating in the symmetry-axis direction.

Now we can state the approximate solution for the P-P reflection coefficient in the
isotropy plane. Using the parameterization from equation (4.1), we find the reflection
coefficient for P-waves incident in the isotropy plane:

=N\ 2
Rsptrike(g) —_ 147 + l {éﬁ — (2—_'_3-) A—._C;} sin29 -+

2 Z "2)a & G
1 [ Ac -2 2
5 { 3 }sm ftan*8. (4.2)

In essence, equation (4.2) is just the classical approximate reflection coefficient for
interfaces between isotropic media [see equation (2.19)] with the faster S-wave vertical
velocity playing the role of Vs. Below, I show the corresponding shear-wave reflection
coefficients obtained in the same way.

4.3 Limited VTI/HTI analogy

Consider the VTI and HTI models shown in Figure 4.3. As before, the symmetry
axis of the VTI model points in the z3-direction, whereas the symmetry axis of the
HTI model coincides with the z;-axis. In both cases, the stiffness tensor has five
independent components; if the physical cause of the anisotropy is known, some of the
components may be related to each other. In the coordinate-system frame shown in
Figure 4.3 (the z;-axis is pointing downwards), we can represent the elastic stiffnesses
as symmetric 6 X 6 matrices Cyry and Cyyy (Musgrave, 1970):

C11 (cll - 2666) €13
(e11 — 2c66) cn c13
_ €13 C13 C33
Cvi = Css (4.3)
Css
Ce6
‘i €13 C13
€13 C33 (c33 — 2¢44)
c C33 — 2¢ C
Com=| ® (6 = 2644) % Can (4.4)
Cs5
Cs5
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VTI

F1G. 4.3. The analogy between VTI and HTI models helps to extend solutions for
VTI reflection coefficients to the symmetry-axis plane of HTI media.
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Although both models are of the same symmetry type, the Cyr; and Cyry stiffness
matrices differ due to the different direction of the symmetry axis (the symmetry
axes of the VTI and HTI models are pointing in the z3- and z;-direction, respect-
ively). For example, ¢s5 is identical to ¢y in VTI models while ¢s5 equals css in HTI
models. Propagation of body waves in elastic media is governed by the Christoffel
equation (3.4):

leimpim—pox) Ur =0, (4.5)
where p; are the slowness components and Uj is the polarization vector. Using the
two-index notation and inserting Cyr; and Cgrr into equation (4.5) generally yields
two different solutions for waves propagating in VTI and HTI media. However, the key
observation that will allow us to find kinematic seismic signatures and the reflection
coefficients in a straightforward way is that equation (4.5), applied to wave propagation
in the [z;, z3)-plane, is identical for both VTI and HTI models. Using the Voigt recipe
to switch to the two-index notation (Musgrave, 1970), we rewrite equation (4.5) for
in-plane polarized waves in media of either VTI symmetry [see equation (3.19)] or
HTI symmetry as

cups + cssp3 — p (€13 + Css)p1 D3 Uy —0. (4.6)
(c13 +Cs3)p1ps Ca3p3 +Cssp2 — p Us

Equation (4.6) provides the solution for the slowness and the polarization vec-
tors of P- and S*-wave propagation in the [z;,z3]-plane of VTI and HTI media.
Thus, all equations describing velocities, traveltime, polarization and stresses for
waves propagating in the [z, z;3]-plane are identical for media with the symmetry axis
pointing in either the z; (HTI) or the z3 (VTI) direction. Moreover, in transversely
isotropic media, seismic signatures are a function of the angle with the symmetry
axis and we can use the solutions in the symmetry-axis plane for any phase vector
that makes the same angle with the symmetry axis. Hence the equivalence between
VTI and HTI symmetries can be used not only for seismic signatures within the
symmetry-axis plane, but also for any arbitrary azimuthal direction.

4.4 New anisotropy parameters for HTI media

As suggested by the discussion above, for any HTI model there exists an “equi-
valent” VTI model that has the same kinematic properties and polarizations of P-
and S+-waves in the [z, z3]-plane. Thus, P- and S+-wave propagation in the [z1, z3]-
plane (i.e., the symmetry-axis plane) of HTI media can be described by the known
VTI equations using the elastic stiffness components ¢;; or, alternatively, using Thom-
sen’s parameters €Y) and §V) defined with respect to vertical in the same way as in
VTI media:

V) = €11 —C33 |
2633
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sv = lest ¢ss)” — (caz — ¢s5)°
B 2c33(c33 — €55

(4.7)

The coefficients V) and (") of the equivalent VTI model are different from the generic
coefficients € and 6 defined with respect to the horizontal symmetry axis. The VTI
and HTI anisotropy parameters can be related in the following way:

v — __¢ .
¢ 142’
— £
s - 5=+ , . (48)
(1+2¢) 1-—3,9)

where
f =1- (Vso/Vpo)2 .

Both Vs and Vpy are measured along the horizontal symmetry axis. Figures 4.4a-c
illustrate why the new set of anisotropy parameters (besides allowing allowing the
description of seismic signatures with already known VTI equations) is convenient for
describing seismic reflection signatures in HTI media. Similar to Figure 3.1, the black
lines in Figure 4.4a denote P-wave rays propagating in a VTI medium. Shown in white
are two wavefronts; the continuous line corresponds to points at 0.75 s traveltime along
the VTI rays while the dashed circle indicates a classical wavefront in isotropic media
with angularly invariant velocity Vpo. Also indicated in Figure 4.4a is the significance
of Thomsen’s parameters. The difference between the dashed and continuous white
wavefronts for horizontal propagation is governed by the value of Thomsen’s parameter
€, while a negative value of J, for example, means that the “anisotropic” (continuous)
wavefront is less advanced for near-vertical propagation than the dashed “isotropic”
wavefront.

Wave propagation in HTI media (see Figure 4.4b) can be simply illustrated by
a 90° rotation of Figure 4.4a. Note that ¢ again indicates the difference between
vertical and horizontal P-wave velocities, and the vertical velocity can be expressed
as a function of Vpy and €. On the other hand, § describes the departure from the
isotropic wavefront close to horizontal, an angular region that is not of importance in
surface seismic applications. It is hence desirable to introduce a new set of parameters
that describes

1. the vertical P-wave velocity
2. the departure from isotropy for near vertical propagation

3. the difference between vertical and horizontal wave velocities.

As shown in Figure 4.4c, this is accomplished by the set of parameters &, 67 and
(V). The reference isotropic wavefront is now computed with the vertical velocity o
and is shown as a dashed white circle in Figure 4.4c. For the particular model shown
in this figure, both anisotropy parameters 6) and &) are negative.

48



Y

Reflectivity and AVO in anisotropic media

i

N,
il
il

)

i

'“
%‘N\é

(V)

\\\\\\\
TR

F1G. 4.4. P-wave propagation in VTI (a) and HTI (b,c) media and corresponding
medium parameterization.
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¢jj — notation generic Thomsen notation (exact) | (weak anisotropy)

(87 c33/p Vro \/1 + 2¢ Veo (1+€)
B Csa/pP Vso v1+2y Vso (1+7)
B+ cs3/p Vso Vso

(V) || (ciz+css)”—(csz—~css)” _0-2¢(1+¢/f) B
6 2¢33(c3z—css) (1+2¢)(1+2¢/ f) 0—2e
V) C11—C33 -t —e

W) 2?3 1+2¢
Y 2C44 T 1+2y -7
Y e % v

Table 4.1. Anisotropy parameters used to study HTI media and their relation to the
generic Thomsen parameters. The c¢;; representation corresponds to the symmetry
axis pointing in the z;-direction. Parameter f in the equation for 6) is given by
f=1- Vszo/ Vzgo-

For completeness, it should be mentioned that the discussion above can be natur-
ally extended to Sl-wave propagation in the [z,, z;3)-plane of HTI media. Thomsen’s
parameter ¥) of the equivalent VTI model (with the corresponding vertical velocity
of the fast shear wave S!) is defined as

(V) . G866 ~ Cas

Y

and is related to the generic parameter v defined with respect to the horizontal sym-
metry axis as y
V) — . 4.1
0 1327 (4.10)
Table 4.1 summarizes the coefficients used in this thesis and relates them to the gen-
eric Thomsen parameters. Both the exact and approximate (weak-anisotropy) rela-
tionships are given.

4.5 P-wave reflections in the symmetry-axis plane

The boundary conditions that have to be inverted to obtain the reflection and
transmission coefficients are functions of the stiffness-, slowness- and polarization com-
ponents that are identical for both the HTI and its equivalent VTI model. Therefore,
all information required to determine SV- and P-P reflection coefficients is available
without any derivation. The exact solution of the VTI reflection problem is valid
for reflections in HTI media, as long as the incident wave (of any type) propagates
within the symmetry-axis plane. Furthermore, this solution is also valid for inter-
faces between VTI and HTI media, no matter whether the HTI medium is above or
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below the boundary. Exact numerical algorithms designed to evaluate reflection and
transmission coefficients in VTI media can thus be used without any modification to
compute the reflection response of waves propagating in the symmetry-axis plane of
HTI models. For example, algorithms based on Graebner's (1992) exact VTI solu-
tion for the reflection/transmission coefficients [equation (3.25)] can be applied to the
symmetry-axis plane reflections by simply inserting the correct stiffness coefficients
for the HTT model.

Ore note of caution. The analogy between VTI and HTI media as stated in
this work does not imply that the value of the reflection coefficients, phase velocities
or polarization is identical for VII and HTI-symmetry-axis plane propagation if the
HTI medium is obtained by a 90° rotation of the VTI model. The “equivalent” VTI
model] introduced above does not result from a rotation of the HTI medium but simply
denotes the VTI medium that has the same propagation properties for waves traveling
in the [z, z;3]-plane as does the actual HTI model.

The principle of relating properties in the symmetry-axis plane of HTI media
with those of VTI media can be applied to equation (3.33), the approximate solution
for the P-wave VTI reflection coefficient. Then, the approximate P-wave reflection
coefficient for waves incident within the symmetry-axis plane is given by:

1 AZ
RP™06) = 55+ .
1 Na 25“' 2 AG'L V) =2
5 "('_1_— —(T) '—G-L—+A5 sin® @ +
% {%‘ﬁ + Ae(V)} sin’6tan?9 . (4.11)

Anisotropy coefficients §) and &) are introduced in equation (4.7) and the su-
perscripts in 8+ and G* indicate that these quantities correspond to the S+-wave
polarized in the symmetry-axis plane (the SV-wave in the equivalent VTI model); i.e.,
Bt = \/ess/pand G+ = pB+”. The accuracy of approximation (4.11) is identical to the
approximation of the VTI P-wave reflection coefficient shown in equation (3.33). Also
recall that unlike the published VTI approximations, approximations (3.33) and (4.11)
are not restricted to small angles of incidence.

Approximation (4.11) provides the first analytic approximation for reflection coef-
ficients in azimuthally anisotropic media. It is simple and concise and allows a pro-
found insight into the physics of the reflection process. The purpose of this analytic
study, however, is to understand the azimuthal change in the reflection problem. There-
fore, it is important to relate the shear modulus G+ and the shear velocity B~ of the
equivalent VTI model to the properties in the isotropy plane [equation (4.1)]. In the
symmetry-axis plane, the P-wave is coupled with the S+-wave which has a different
velocity than that of the shear-wave confined to the isotropy plane. The difference
between Sll- and S+-wave vertical speeds can be expressed through parameter (V)
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or, equivalently, through the shear-wave splitting parameter . Here, I choose the
latter because of its direct relationship to the crack density (this is discussed in ‘more
detail below). Using the definition of v, we find

B = B(l-7)
Gt = G(1-2y). (4.12)

With this set of parameters, equation (4.11) becomes:

1AZ
R?’m(e) = 57"}‘
1A (2B\’(OG A 2y
513 —(&) (G‘ 2A7)+A6 sin®f -+
% {%g +Ae(v)}sin20tan20 , (4.13)

where @ again denotes the incident phase angle.

Both equations (4.13) and (4.11) are valid for HTI media caused by any physical
reason. Specifically, their derivation did not assume that the anisotropy is due to
vertically aligned cracks. [Schoenberg and Sayers (1995) and Thomsen (1995) have
shown that the anisotropy coefficients (", (V) and + are not independent in the case
of anisotropy introduced by vertically aligned, thin cracks of circular shape.]

The most important message of equation (4.13) is that the contrasts in the aniso-
tropy parameters 6) and « have a non-negligible, first-order influence on the angular
dependence of the reflection coefficient. In fact, if we approximate 5/& by 1/2, the
contrast in <y is twice as important as the P-wave contrast -A&—"‘ in the gradient (sin? 6)-
term. This raises hopes that a proper inversion procedure may be able to extract these
parameters from the AVO-response in the symmetry-axis plane or from the azimuthal
variation in the reflection coefficient.

Equation (4.13) is valid for pre-critical incidence on an interface between two
weakly anisotropic HTI media with the same symmetry-axis direction and small jumps
in the elastic properties across the boundary. Before estimating the accuracy of equa-
tion (4.13), a question to be answered is what values of ¢), ) and -y can be regarded
as physically reasonable. Values of v obtained in field and laboratory experiments
have been positive and generally much smaller than unity (1 >> v >=0) (Crampin,
1984b). In rocks with negligible equant porosity and very thin, fluid-filled cracks
(") = 0 (Thomsen, 1995); otherwise, (") is small in magnitude and negative (—1 <<
(V) < 0) (Tsvankin, 1996c). On the other hand, 6) can be positive or negative.

A special case investigated in more detail in Chapter 8 is that of HTI symmetry
caused by vertically aligned, penny-shaped cracks. In this case, the three anisotropy
parameters are not independent, and a constraint that couples these parameters is
derived in Schoenberg and Sayers (1995) and Thomsen (1993). Using this relation
between the anisotropy parameters, Tsvankin (1996¢) has shown that §*) is negative
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Ba [ BZ | BC [0 [ )

. & | Z | G
Modell | 0.1 [ 01 (01 |-01] O
Model2 | 0.1 | 0.1 | 0.1 | 0.1 0
Model3 | 0.1 {01 101! 0 |-0.1
Model4 { 0.1 | 01 ]0.1] O 0 |01
Model5 | 0.1 101 | 0.1 0.1 |-0.1]0.1
Model6 | 0.1 | 0.1 | 0.1 | -0.1]-0.1|0.1
Model7 | -0.1|-0.1]-01|-0.1| O 0
Model8 |-0.1{-0.1|-01, 01| O 0
Model9 |-0.1}-0.1{-01] 0 ;-01] O
Modell0 | -0.1 {-0.1 {-0.1} O 0 |01
Modelll1 {-0.1 | -0.1 [|-0.1 {-0.1 | -0.1 | 0.1
Model12 {-0.1 | -0.1 {-0.1 | 0.1 {-0.1 0.1

ol o] off-2

Table 4.2. Models used to test the accuracy of the approximate reflection coefficients
equations (4.13) and (4.2). The upper medium is isotropic, the lower medium has
the following parameters: ap = 2.5,3, = 1.5 and po = 2.7. «, is the compressional
vertical velocity, (- is the faster shear-wave vertical velocity and p, is the density.

for a ratio of the vertical velocities 3+/a < .707.

Equation (4.13) is linearized in nine small quantities %, %2_7 etc. A total of 45
unknown quadratic terms are dropped in the derivation, and it is not clear how the
accuracy of the approximation depends on the medium parameters. In particular, we
need to study the accuracy of equation (4.13) for different values of anisotropy para-
meters €*), 6) and v. Figures 4.5 and 4.6 show the reflection coefficients evaluated
at boundaries between isotropic and HTI media for incidence angles up to 40°. Ap-
proximations are shown for P-wave reflections in both the symmetry-axis plane and
the isotropy plane, along with the exact solutions. The model parameters are listed in
Table 4.2. The same vertical velocities ap = 2.5 km/s, B> = 1.5 km/s [equation (4.1)]
and a density of 2.7 g/cm® in the lower media are used in all these examples. In
Figure 4.5, the small contrasts in elastic parameters %3, % and %Q are positive; in
Figure 4.6, all of them are negative. To perform a representative test of equation (4.13)
and to study the sensitivity of the approximation with respect to the individual para-
meters, some models have only one nonzero anisotropic parameter. The tests are
done for general HTI media; in the particular case of HTI anisotropy caused by ver-
tically aligned, penny-shaped cracks, the anisotropy coefficients (7, 5) and v are
not independent. Several such models will be considered in Chapter 8.

Recall that the isotropy-plane approximation is identical to the conventionally-
used approximation for P-wave reflection coefficients in isotropic media. The accuracy
of the symmetry-axis-plane approximation (4.13) is generally lower than that for the
isotropy plane. This is caused by the additional linearizations in anisotropy coefficients
and the design of the approximation: instead of using the exact S+-wave velocity, 1
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Reflection coefficient Reflection coefficient

Reflection coefficient

FI1G. 4.5. Reflection coefficient for an isotropic layer overlying an HTI medium. Shown
are the exact solutions (black) and the approximations based on equations (4.2) and
(4.13) (gray) for both symmetry-axis-plane (sym) and isotropy-plane (iso) reflections.
Table 4.2 lists the model parameters.
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Table 4.2 lists the model parameters.
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have used a weak-anisotropy approximation in terms of 8 and 7. If one wants to
increase the accuracy, it is better to use equation (4.11) or (preferably) compute
the exact reflection coefficient as discussed above. However, despite the additional
linearization in v, the approximations shown in Figures 4.5 and 4.6 provide a good
match with the exact solutions: for small angles of incidence, the accuracy is very high
while the approximation still provides the correct trend of incidence angles approaching
the critical angle. Most importantly, the approximations predict the correct sign and
magnitude of the split in the AVO slopes.

The main contribution of the approximations given here is to establish a physical
foundation for (exact) numerical inversion algorithms and highlight simple depend-
encies that interpreters can use to quickly evaluate the magnitude of anisotropy in a
particular play. The approximations are not designed to replace the exact calculation,
but rather to provide reasonable first guesses for more exact inversion procedures
and to predict changes in the reflection-coefficient curves caused by variations in the
anisotropy parameters.
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Chapter 5

AZIMUTHALLY VARYING P-WAVE REFLECTIVITY

This chapter is a continuation of the symmetry-plane investigations in Chapter
4. Here, the analytic insight gained by deriving approximate P-wave symmetry-plane
reflection coefficients is extended to observations at arbitrary azimuth.

5.1 Approximate description of P-wave azimuthal reflectivity variations

Acquisition lines of seismic surveys are not necessarily aligned with the symmetry
planes and the symmetry-axis direction may not be known in advance. While the lin-
earized symmetry-plane reflection coefficients conveniently describe the magnitude of
azimuthal change in reflectivity between the symmetry planes of HTI media, they do
not elucidate the behavior of the reflection coefficients in arbitrary azimuthal direc-
tions. Also, as shown in Figure 4.2, the reflection-coefficient curves do not change
uniformly even though they are computed at a constant increment in azimuthal angle.
Hence, it is important to understand better the functional behavior of the azimuthal
variations. Another point of interest is to *uvestigate if anisotropy parameters §(V),
and €") can be extracted individually based on their different dependencies on the
azimuthal angle.

The derivation of reflection coefficients in azimuthally anisotropic media involves
the study of six wave modes generated by the incident wave. Probably the first results
on this topic were obtained (but not published) by Corrigan (1990), who investigated
the small-angle response at boundaries between isotropic and orthorhombic media.
Using a Born-scattering approach, he derived the dependence of the initial slope of
the reflection coefficient (the AVO gradient B) on the source-receiver azimuth in the
form

B= B9 + BM ¢cos2¢, (5.1)

which is consistent with observations on synthetic data by Mallick (1991).

To obtain approximate reflection coefficients for small and large angles of incid-
ence at interfaces between two HTI media, I use a perturbation technique similar to
the one applied in Chapter 3 for VTI media. This approach is based upon a per-
turbation from an isotropic background medium and requires analytic expressions
for P-wave polarization vectors, phase velocities and vertical slownesses as functions
of the incidence phase angle 7 and azimuthal phase angle ¢ (Figure 5.1) for weakly
anisotropic HTI media.

A derivation of the polarization vectors that does not require investigating the ei-
genvector problem for the HTI Christoffel matrix is given in Appendix C. The analogy
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F1G. 5.1. The angle between the slowness vector of the incident wave and vertical is
denoted as i. The azimuthal angle ¢ is defined with respect to the symmetry axis
pointing in the z;-direction.

of HTT and VTI media and use of some basic geometry are sufficient to show that the
P-wave polarization vector d in HTI media can be expressed through the incidence
phase angle and azimuthal phase angle as

X 1(2,¢) sini cos ¢
d(i,¢) = | m(:, @) sinising |, (5.2)
m(%, ) cosi

where m and 1 are given as

m(i,¢) = 1 — fsin®icos®$[6) + 2(e") — 6M))sin? i cos? @)
1(i, ¢) 1+ f(1-sin’icos®) [6) +2(eV) — 6M)sin®icos? 4], (5.3)

with f = o?/(a? — 7).

Phase velocities in HTI media as functions of the angle with the symmetry axis
and ") and 6) can be derived in a straightforward fashion using the results of
Chapter 4, and are given in Tsvankin (1996¢). Expressed through the incidence and
azimuthal angle, the P-wave phase velocity for weak anisotropy takes the following
form:

Vo (i, 6) = [l + 6 sin?icos? ¢ + () — 6))sin%icos? ¢]. (5.4)

Knowledge of the polarizations and phase velocities allows us to set up the
perturbation equations for the reflection and transmission coefficients of the waves
scattered at HTI/HTI interfaces with the same orientation of the symmetry axis above
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and below the interface. This can be done using the same methodology as in Chapter 3,
except that M and b in equation (3.27) are now 6 X 6 and 3 x 6 matrices, respectively.

Denoting the unperturbed quantities with the superscript u, the matrix of the
linearized reflection coefficients can again be written as

AR = (M*)™ (Ab— AMR") . (5.5)

Here, the operator A is defined as A = dja% with the vector d; of small deviations

from the two identical homogeneous, isotropic media given by

DAa A A s
d; = (_— —ﬁ- _p 5§.V)’69,)769,)769,)771:72)7" (06)

2 & b [B ’ ﬁ ’
The 6 x 6 matrix M" needs to be inverted analytically. This can be achieved using a
method developed by Ursin and Haugen (1996) to compute an analytic inverse of the
matrix of eigenvectors of the transformed wave equation (Fryer & Frazer, 1987). To
find the elements Ab and AM, it is necessary to use the weak-anisotropy approxima-
tions for the polarization vectors and phase velocities [equations (5.3) and (5.4)], while
the approximate refracted angles can be derived using Snell’s law. The compressional
plane-wave reflection coefficient can finally be shown to have the following dependence
on the incidence (polar) and azimuthal phase angles:

. 1AZ 1{ba  (2B\’A0G
Beli.0) = 5—2“*5{‘5’ _(a) g "
28\?
[A&‘V)+2 -a—) A'y] cosng} sin®i +

-]é- {é-;- + A cos® ¢ + ASYV) sin? ¢ cos? ¢} sin®itan®s , (5.7)
The simplicity of approximation (3.7) is striking, especially because the equation is
linearized only in the small parameters d; [equation (5.6)] and not in the incidence
angle or its trigonometric functions (i.e, no angular terms have been neglected). Spe-
cifically, simple trigonometrical relations describe the anisotropic contribution as a
function of azimuth. For azimuth ¢ = 90°, equation (5.7) reduces to equation (4.2),
the approximate reflection coefficient for the isotropy plane in HTI media. For the
second vertical symmetry plane (the symmetry-axis plane at azimuth ¢ = 0), the lin-
earized reflection coefficient is identical to equation (4.13), which was derived by using
the known VTI approximate reflection coefficient and exploiting the analogy between
VTI and HTI media.

Before studying equation (5.7) in more detail, it is instructive to first compare
some numerically computed exact reflection coefficients with their linearized approx-
imations. Hereby, the main goal is not to achieve a high numerical accuracy (in that
case, more complicated approximations such as those given in Ursin and Haugen (1996)
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FIG. 5.2. Reflection coefficients for an isotropic layer overlying an HTI medium.
Shown are the exact solution (solid lines) and the weak elastic, weak anisotropic
approximation (dashed) [equation (5.7)] for azimuths of 0°, 30°, 60° and 90°. Table 5.1
lists the model parameters.
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La[LZ B8 | 5070 | V)
! 4§__=_Z G :
Modela 0.1 { 0.1 0.2 0 0 0.1

Model b 1011011021 -0.1 0 0
Model ¢ 1 0.1 0.1 0.2 0 -0.1 0
Modeld | 0.1 /0.1 0.2 |-005!-0.05}0.15

Table 5.1. Models used to test the accuracy of the approximate reflection coeffi-
cient (5.7). The upper medium is isotropic, the lower medium has the following iso-
tropic parameters: compressional vertical velocity ay = 2.5, faster shear-wave vertical
velocity B, = 1.5 and density p, = 2.7.

should be used), but to see if the simple analytic approximation (5.7) of an otherwise
incomprehensibly complex reflection coefficient helps to quickly analyze the influence
of anisotropy on the reflection signature. In particular, it is instructive to study the
accuracy of equation (5.7) for different values of the anisotropy parameters eV, §(V)
and 7. Figure 5.2 shows the reflection coefficients evaluated at boundaries between
isotropic and HTI media for azimuths of 0°,30°,60° and 90° and incidence angles up
to 40°. The parameters of the models used in this test are listed in Table 5.1.

The first test shown in Figure 5.2a corresponds to a reflecting HTI medium with
a 10% shear-wave splitting parameter (y = 0.1). The exact solutions (solid lines,
with thickness decreasing with increasing azimuthal angle) and the approximations
(dashed) are in very good agreement for all azimuths. The approximations practically
coincide with the exact solutions for the 0° and 30° azimuths, while a small deviation
is visible only for azimuths 60° and 90° and large incidence angles. The second model
has a nonzero coefficient 6(*) in the reflecting medium. Equation (5.7) correctly pre-
dicts the spreading of the reflection coefficient curves with azimuth. The slope of the
exact curves for 0° and 30° azimuths is somewhat understated by the approximation
and leads to deviations for large angles of incidence. Model ¢ has a nonzero value of
parameter ). According to equation (5.7), there should be no significant change in
the AVO gradient with azimuth and indeed, the exact solution does not show any split
in the reflection coefficient curves for low angles of incidence up to 20°. Note that the
errors of equation (5.7) for the 0° and 30° azimuths are smaller than those for 90° azi-
muth. The 90°-azimuth approximation coincides with the classical isotropic linearized
expression of the reflection coefficient used sucessfully in conventional AVO analysis.
Model d has three nonzero anisotropy parameters, including a shear-wave splitting
coefficient of 15%. The approximation has acceptable accuracy for small incidence
angles and predicts the correct trend for higher incidence angles. Deviations for large
angles of incidence near the symmetry-axis plane are largely caused by the approxim-
ate representation of the shear-wave velocity 8+ in terms of 3 and +. To increase the
accuracy in the vicinity of the symmetry-axis plane, the approximation (3.7) should
be rewritten in terms of /.
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F1G. 5.3. Reflection coefficients for an isotropic layer overlying an HTI medium as
a function of the azimuthal phase angle. Shown are the exact solution (solid lines)
and the weak elastic, weak anisotropic approximation (dashed) [equation (3.7)] for
incidence angles 10°, 20°, 30° and 40°. Note that the reflection coefficient curves
computed for Model ¢ and 10° incident angle is invariant with azimuth. Table 3.1
lists the model parameters.
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5.2 Functional type of the azimuthal variation

In addition to allowing study of the reflection coefficient as a function of the
incidence angle for several azimuths, equation (5.7) enables us to fix the incidence
angle and analyze the reflection coefficient as a function of azimuth (Figure 5.3). As
seen, the approximations are highly accurate for all azimuths and incidence angles
of 10° and 20°. For higher angles, the approximations increasingly deviate from the
exact result, but correctly predict the behavior of the azimuthal change. Clearly, the
symmetry-plane directions at 0° and 90° azimuth coincide with the extrema of the
reflection-coefficient curves plotted as a function of azimuth for fixed incidence angle.

Study of the azimuthal variation in the reflection coefficients can help in finding
the orientation of the natural coordinate system of the subsurface without any prior
knowledge of the medium parameters. Moreover, because the locations of the extrema
are the same for all incidence angles, analysis of stacked data for several azimuths can
reveal the symmetry-plane directions, provided that the stacking is performed with the
proper (azimuthally varying) normal-moveout velocity. Amplitude analysis on stacked
data, however, is not sufficient to distinguish between the symmetry-axis plane and
the isotropy plane. For example, the maximum of the reflection curves occurs at the
0° azimuth in Model a, while it is located at the 90° azimuth in Model b.

The curves generated for Model ¢ show several features that are not observed
for the other models. First, no azimuthal variation in the reflection coefficient is
visible for the 10° incidence angle, and the variation is small for the 20° incidence
angle. Additionally, the dependence of the reflection coefficient on azimuth for large
angles of incidence is different from the variations observed for the other models. As
predicted by the cos*¢ term in equation (5.7), a stronger azimuthal change of the
reflection coefficient away from the symmetry-axis plane is visible as compared with
the azimuthal change close to the isotropy-plane (Figure 5.4).

This discussion of the amplitude variations with offset and azimuth is still primar-
ily qualitative. To relate the observed changes more closely to the medium parameters,
let us now consider the implications of equation (3.7) for AVO-with-azimuth analysis.

5.3 Analysis of AVO gradient variations

Equation (5.7) shows that azimuthal anisotropy in HTI media causes a difference
between the azimuthal dependence of the AVO gradient and that of the higher-angle
term.

The behavior of Rp(i, ¢) at small incidence angles is described by the AVO gradi-
ent B composed of the azimuthally invariant part B*° and the anisotropic contribution
B2 multiplied with the squared cosine of the azimuthal angle ¢ with the symmetry
axis. If the symmetry-axis orientation is unknown, ¢ should be formally expressed by
the difference between the azimuthal direction ¢ of the k-th observed azimuth and the
direction of the symmetry-axis plane ¢¢ym,. The AVO gradient measured at azimuth
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F1G. 5.4. The influence of the anisotropy parameters on the reflection response de-
pends on the azimuthal angle with the symmetry axis. The AVO gradient changes as
a function of the squared cosine of azimuth. The higher-angle (sin®i tan? %) term con-
tains two parameters with different azimuthal dependences of cos* ¢ and sin? ¢ cos? ¢.

¢r thus can be written as

B(¢x) = B™ + B> cos?(¢y — deym) (5.8)
with
o Do (2B\*AGT 3
B = 1/2 [—&— - ('&—) —a—] 3 (09)
>\ 2
B® = 1/ [A5<V>+2(3£-) A'y]. (5.10)

Equation (5.8) is nonlinear, with three unknowns (Bis°, B2 and @sym)- If the dir-
ection of the symmetry axis is known (for example, from S-wave data), the equation
becomes linear and two independent measurements suffice to solve for Bi*° and B2,
In multi-azimuth surveys, many more azimuths should be sampled and a least-squares
approach can be used to find the optimum values of the unknowns in equation (5.8).
Due to the nonlinearity of equation (5.8), the solution will not be unique and will yield
two possible directions of the symmetry axis orthogonal to each other. However, a
simple rough estimate of the sign of B*® or an a-priori knowledge of the approximate
symmetry-axis direction is enough to identify the symmetry-axis direction unambigu-
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FiG. 5.5. P-wave AVO gradient for an isotropic layer overlying an HTI medium as a
function of the azimuthal phase angle. The AVO gradients extracted from the exact
reflection coefficients are shown as solid lines and dashed lines represent the weak
elastic, weak anisotropic approximation based on equation (5.8). Table 5.1 lists the
model parameters.
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:bns:erved Baan ’rox
Model a 0.131 0.144
Model b | -0.057 -0.05
Model ¢ | 5.4-10~° 0
Model d 0.152 0.188

Table 5.2. Magnitude of the AVO-gradient variation obtained from the exact reflection
coefficient and the value predicted by equation (5.7) for the models given in Table 5.1.

ously.

The dashed lines in Figure 5.5 shows the approximate AVO gradient from equa-
tion (5.8). The “exact” gradient (solid line) is computed by simply averaging the slope
of the exact reflection coefficient over 0 to 20° incidence angles. The curves shown in
Figure 5.5 are evaluated for the models shown in Table 5.1. The extrema denoting the
symmetry-plane directions can be easily picked, even though a-priori information is
needed to distinguish between the symmetry-axis and the isotropy planes. Table 5.2
compares the magnitude of the observed AVO-gradient change with the value of B2
that would be obtained using equation (5.7).

If B (¢x) is known for several ¢;’s and the AVO gradient does not change sign,
an alternative graphical interpretation is possible, and fitting an elliptical curve to
the azimuthal variations in AVO gradients can help to determine the symmetry-plane
directions and the magnitude of the azimuthal change. The modulus of B (¢;) can be
assigned to the length of a radius vector at different azimuths ¢;. The tip of this vector
then delineates a curve that closely resembles an ellipse with the semi-axes aligned
with the symmetry-plane directions (see Figure 5.6). The semi-axes have the lengths
(B'*°) and (B'*® + B*i) and point towards the symmetry-directions of the medium.

An analogous elliptical dependence can be observed for azimuthal changes in
NMO velocity. The azimuthal variation of NMO velocity always (except for certain
complex areas such as those where common-midpoint reflection time decreases with
offset) represents an ellipse in the horizontal plane, with the orientation of the axes
determined both by the properties of the medium and the direction of the reflector
normal (Grechka & Tsvankin, 1996).

There are several alternative ways to represent Rp(i,¢). For example, equa-
tion (5.7) is consistent with Corrigan’s (1990) approximation [equation (5.1)], with

BO = 2% _ (gﬁ) (——A )+1/2A5<V>

a & G
A\ 2
B® = (%’f’-) Dy +1/2 060 . (3.11)

In practice, it may happen that 8+, the slow vertical shear velocity, is known
instead of B. In this case, to achieve a higher accuracy, the AVO gradient in HTI
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F1G. 5.6. The azimuthal change in AVO gradient can often be described by an close-
to-elliptically shaped curve. The curve shown here is delineated by a vector of length
B that has been computed for Model b in Table 3.1.
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media [equation (5.7)] should be rewritten in terms of 8+ rather than 3:

B($) = 1/2 (%9‘- —(2[3‘) = g

(07

DY) cos? ¢ — 2( ﬁ-) Ay sin? ¢> i (5.12)

5.4 AVO-gradient inversion in HTI media

To eliminate the “isotropic” quantities in equation (5.9) in the special case of
inverting AVO measurements in the isotropy and symmetry-axis planes, it is best to
use the difference between the AVO gradients measured in the symmetry and isotropy
planes rather than inverting the gradients individually. Keeping just the two lowest-
order terms and assuming that the incidence layer is isotropic, we find

3\ 2
B (fuym) — B (buym +7/2) & {(%) 72+§6§V>} . (513

Equation (5.13) shows that the difference in the gradient depends on just two aniso-
tropic parameters — the shear wave splitting parameter and the coefficient 5§ ). For
B/& = 1/2, the difference between the gradient terms becomes simply 72+; 6( ). This
means that the welghtmg factor for the shear-wave splitting parameter is twice as large
as that for 52 As shown by Tsvankin (1996c), the parameter 52 V) can be obtained
from P-wave normal-moveout (NMO) velocities. If 52 V) has been determined, the dif-
ference in the gradients can be inverted for the shear-wave splitting parameter, which
(for penny—shaped cracks) is close to the crack density, given an approximate value
of the ratio 22 & Also, the crack density can be obtained directly from the difference
[B (¢sym) — B (¢sym + 7/2)] in the important special case of the vanishing parameter
e (e = €V) = 0), typical for fractured, fluid-filled coal layers. If ¢ = 0, then &) ~
~y (Tsvankin, 1996¢), and the crack density remains the only anisotropic parameter
in equation (5.13).

While it is clear that Ay and AS") are responsible for the magnitude of the
azimuthal variation, equation (5.7) shows that both coefficients cause the same func-
tional behavior of azimuthal change and cannot be inverted separately. Hence, one
of the important lessons learned from the studies of the approximate AVO gradient
is that the difference in the shear-wave splitting parameter Ay and A6 cannot be
determined separately because both parameters influence the azimuthally dependent
AVO-gradient in the same way. Equation (5.7) additionally predicts that picking the
extrema of the azimuthal AVO-gradient variation yields two possible directions of
the symmetry axis. Only if some prior information on the symmetry-axis direction
(for example from geologic data) or on the anisotropy parameters is available can the
symmetry-axis direction be delineated unambiguously.
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5.5 Azimuthal variation of the higher-angle term

For incidence angles ¢ > 20°, both the AVO gradient term and the higher-angle
term will influence the reflection coefficient. For azimuthal directions close to the
symmetry axis and large incidence angles, the coefficient (V) will have a significant
impact on the azimuthally variable reflection coefficient.

Here, I discuss the interesting special case of reflection coefficients w1th small
or even nonexistent AVO gradient variations (i.e., the term [AJY) + 2 (23 ) A7) is
negligibly small). In this case, equation (3.7) still predicts an azimuthal change in
the reflection coefficient at large angles of incidence for nonzero values of AelY) and
ASY). Note that these parameters have different influences on the azimuthal change of
the reflection coefficient. The influence of A6V on the large-angle reflection response
reaches its maximum at an azimuth of 45° while AetY) is primarily responsible for the
azimuthal variation of the large-angle term for azimuths close to the symmetry-axis
plane.

The appearance of A§Y) in the sin®tan?-term is somewhat surprising because
this term does not enter the isotropy-plane coefficient (4.2) or the symmetry-axis plane
coefficient (4.11). However, the impact of A§(") is significant only for azimuthal angles
close to 45°, where the influence of AS(") and Ae(") are comparable (see Figure 5.4).
Consequently, Ae(") is the parameter that mostly controls the azimuthal variation.

5.6 Azimuthal changes of the transmission coefficient

AVO analysis of surface data, as well as borehole studies in vertically stratified
media also can include the investigation of transmission phenomena. The deriva-
tions above yield the following linearized P-wave transmission coefficient at interfaces
between two weakly anisotropic HTI media with the same direction of the symmetry
axis:

. 147
TP (Z, ¢) =1 2 Z

{Aa A6V cos ¢} sin?i +

L]
-

2

{Aaa + A cos? ¢+

2
A6V sin? ¢ cos® ¢} sin®itan?i +
{(Ae(v) — A&V cos? ¢} sin®s. (5.14)
Unlike the linearized reflection coefficient, Tp(i,¢) contains no dependence on
the shear-wave splitting parameter or the shear-wave vertical velocity. The difference

in §(V) is the only term responsible for the azimuthal variation in the AVO-gradient
term. For higher angles of incidence, two terms (sini and sin®itan?®4) with more
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complicated azimuthal dependence of the anisotropic parameters become increasingly
important. ’
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Chapter 6

SHEAR WAVES IN HTI SYMMETRY PLANES

So far, the discussion has been focused on P-wave reflection coefficients. In
current exploration practice, however, shear-wave surveys are also acquired and in-
terpreted for the presence of azimuthal anisotropy (Lynn et al., 1995; Kendall, 1995).
The main objective of such studies is to relate the anisotropy (determined from con-
ventional shear-wave splitting analysis) to the fracture parameters of the medium.
Azimuthal anisotropy has a first-order influence on vertically incident shear waves
causing them to split into two orthogonally polarized components traveling with dif-
ferent velocities. The parameter of crack systems of great interest in exploration is
the crack density, which is close to the fractional difference between the velocities of
split shear waves at vertical incidence and can be approximated by Thomsen’s (1986)
coefficient <. Estimates of anisotropy using the time delay between the fast and slow
shear waves yield robust measurements of v averaged over the propagation path of
the shear waves within the medium. Thus, analysis of shear-wave traveltimes via the
classical rotation analysis of Alford (1986) helps to estimate the crack density (for
HTI media), albeit with a low vertical resolution. This chapter discusses the feasib-
ility of using shear-wave reflection amplitudes at oblique incidence angles to estimate
the anisotropy parameters.

6.1 Shear-wave surveys perpendicular and parallel to fracture strike

The survey geometry in Figure 6.1 is similar to that of shear-wave experiments
by Lynn and Thomsen (1990) and Lynn et al. (1995). As described in the previous
chapter, the S'-wave polarization is confined to the fracture plane (or isotropy plane) ‘
whereas the S+t-wave is polarized in the plane formed by the slowness vector and the
symmetry axis. Let us first consider an AVO experiment carried out along the fracture
strike (in the isotropy plane) on the surface of a two-layer model. It is hereby assumed
that both layers are fractured in the same direction, but with different fracture density.
If the source is oriented in the strike direction, it generates an Sli-wave polarized within
the fracture plane. Since in this plane, the shear-wave velocity is independent of the
propagation angle, the approximate reflection coefficient is identical to the isotropic
SV -wave reflection coefficient [equation (2.23)]:

RYP = RY, 6:1)

with Vs in R replaced by 8 = y/cu/p, i-e., the velocity of the S-wave polarized
within the fracture plane. For a survey aligned with the fracture strike, the S*~-wave is
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polarized perpendicular to the vertical propagation plane. Therefore, its approximate
reflection coefficient has the form of equation (2.22) for the isotropic SH-wave:

R5T =Rg%, (6.2)

where Vs in R¥ needs to be replaced by the correct (slow) shear velocity g+ =
css/p-

X1 |plan o

F1G. 6.1. Sketch of a shear-wave experiment in the presence of aligned near-vertical
cracks (plan view). Arrows show the polarization directions of Sl and St waves.
Amplitude analysis will be carried in the isotropy plane parallel to the fracture strike
(z2-direction) and in the symmetry-axis direction (z;-direction).

Let us now consider a survey line acquired along the axis of symmetry (the z;-
axis in Figure 6.1). Fortunately, the derivations necessary for this study are rather
straightforward if one applies the analogy between wave propagation in the [z, z3]-
plane of HTI and VTI models discussed in Chapter 4. This limited analogy allows
one to obtain the approximate reflection coefficient RZ" from equation (3.34):

-\ 2
RY™ =RE +1/2 (é"z) (AeY) — AGV)) sin? 5, (6.3)

with Vs in R§} [equation (2.23)] being replaced by S+, the vertical velocity of the
shear wave polarized in the symmetry-axis plane. & in equation (6.3) denotes the
average vertical P-wave velocity. Arguments similar to those in the derivation of RI™
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make it possible to obtain the reflection coefficient for the Si-wave:
RY® =REy + 1/2289Y) tan?5. (6.4)

Here, the Vs-term in RS, [equation (2.22)] corresponds to the vertical Si-wave velo-
city. Angles j in equations (6.3) and (6.4) denote phase angles of the incident shear
waves.

6.2 Insight into shear-wave AVO

Application of the developed analytic results requires finding a set of parameters
suitable for comparison of the individual shear-wave reflection coefficients. Obviously,
for anisotropic media, (= Bl) # 8. As mentioned above, the parameter of most
interest in reservoir characterization is the crack density, which is proportional to the
product of the number of cracks per unit volume and their mean cubed diameter.
Since the crack density for penny-shaped cracks is close to the shear-wave splitting
parameter vy (Tsvankin, 1996¢), I will retain - in the expressions for both shear waves.
From the definition of anisotropy parameter 7, it follows that

B

B \/ﬁ“ﬁ(l—’)’),
L
Aﬁ-f ~ 5 mom, (6.5)

accurate to first order in 7. 42 will denote the relative change in fast shear-wave

velocity for the remainder of this thesis.

To understand better the accuracy of this approximation, I compute %‘?; as a
function of 7y (the upper medium is isotropic) for two values of %Q (Figure 6.2). Shown
are the exact solutions (solid lines) and the approximations based on equation (6.3).
For increasing 7, the contrast in B+ decreases because the velocity for shear waves
polarized perpendicular to the fractures becomes smaller. The approximations show
modest deviation from the exact result. However, even this small deviation can have
an observable influence on the reflection coefficient. Since the reflection response is
formed by small differences in the elastic constants across the boundary, inaccuracies
of the size observed in Figure 6.2 can be significant.

Using the relation between the vertical shear velocities shown in equation (6.3),
the R reflection coefficient can be expressed through the fast vertical shear wave
velocity. Both reflection coefficients for shear waves traveling in the fracture plane
[equations (6.1) and (6.2)] can then be conveniently expressed as follows:

- AVAS
Retrike  — —-1/2 ,_Zzg_ + (g%ﬁ +2%€) sin?j — 1/2A—B'B- sin® j tan?j
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FI1G. 6.2. Relative change in 8+ as a function of y (the upper medium is isotropic) for
two values of %‘3. Shown are the exact results (solid lines) and approximations from
equation (6.5) (dashed).

S
Rk = _—1/2 (AZZS —A'y) +1/2 (%@- —Afy) tan?j, (6.6)
where (Z5 = pf) denotes the shear-wave impedance for the vertically-incident fast
S-wave. For weak anisotropy, i.e., small moduli of the anisotropy parameters, the
difference between R and R at normal incidence is equal to half the difference
in anisotropy parameter 7 across the reflecting interface (Thomsen, 1988). This in-
formation can be combined with an estimate of the AVO gradient extracted from the
S+ data set to yield %é. The last parameter of interest, %3, can be calculated from
the S'-wave AVO gradient.

Shear-wave AVO analysis along the fracture-strike direction has the potential of
uniquely determining the difference in the elastic parameters across a reflecting bound-
ary. In 2 noisy environment, it may be desirable to further constrain the inversion by
including additional information. A similar analysis, for example, is possible for the
higher-angle (sin® j tan? j) term, but it is unlikely that this coefficient can be reliably
extracted from field data; polarization and amplitude distortions for post-critically-
incident shear waves can prohibit application of AVO analysis.

Another option is AVO analysis of shear waves propagating normal to the frac-
tures. Clearly, for vertical incidence, there is no distinction between wave propagation
in the symmetry-axis plane or the fracture plane. However, the AVO gradients in the
symmetry-axis plane are different from those in the fracture plane and these variations
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can be helpful in the inversion for medium parameters. Taking into account that for
weak anisotropy ¥() &~ —v [equation (4.8)], we find

1AZ8 AB
sym  __ = =
RY® = 575 3 ( 3 A'y) tan? j
NZS QAN Dp
sym — —— —_— - == — —
RY® = (ZS A’y).{2(5 '7)+2p+
1 (& AB Py |
— (= V) _ AV N el 2 2
5 (,B) (De YA )} sin? j 5 ( 3 A'y) sin®j tan®j. (6.7)

If the difference Ay = (92 — 71) is extracted from the shear-wave normal-incidence
reflection coefficients, the AVO gradient of the S"-wave can then be used to find AB

Unlike the S!-wave, which solely depends on B 5 and v, the S+ wave is addmonally

influenced by the difference of (6(") — ). (6) — ")), as demonstrated by Ts-
vankin (1996c¢), is close to the anisotropy coefficient 7 (Alkhalifah & Tsvankin, 1995)
needed for time processing in the symmetry-axis plane of HTI media. Moreover, the
parameter combination (6(*) — ")) will change significantly for different contents
of the cracks, hence shear-wave AVO has the potential of not only estimating the
shear-wave splitting parameter, but also to infer the nature of the crack filling.
Certainly, the additional linearizations used to derive equations (6.6) and (6.7)
may reduce the accuracy of the approximation. The quality of the approximation and
the variations of the reflection coefficients from one symmetry plane to the other are
studied for four different combinations of isotropic/HTI interfaces in Figure 6.3 (model
parameters given in Table 6.1). The first model has only one nonzero anisotropy
parameter 6§V). Equations (6. 6) and (6.7) correctly predict an identical, moderately
negative AVO gradient for R$T* and Ry;" and a more negative gradient for R%™ than
for R}yin The accuracy of the approx:matlons is sufficiently high for all four examples.

Model b has a zero value of 62 , typical for tight formations with saturated cracks.
Although the S'-wave reflection curves are vertically shifted with respect to the S+
curves due to the different normal-incidence reflection coefficients, RF™ and Ry
have similar gradients (in the weak anisotropy limit, both R¥#*® and Rsy,m have the
same AVO gradient). The RYI" gradient, on the other hand is negative and larger
in absolute value than is the Rsmke gradient. The same observation can be made for
Model ¢, with nonzero amsotropy parameters e(V) 5) and v in the lower medium.
Finally, a model of elliptical anisotropy (52 V) = 62 )) and 5 % shear wave splitting
parameter (y = 0.03) is used in Model d. Here, the normal incidence reflection
coefficients are negative and the reflection coefficients are decreasing in absolute value
with increasing angle of incidence. The approximate solution provides a good estimate
of the exact reflection coefficient curves.

Note that equations (6.6) and (6.7) include the exact Sil-wave vertical velocity
while the St-wave vertical velocity is approximated. The difference in accuracy
between the S and S+ coefficients is therefore just a matter of the design of the
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| Model a | Model b | Model ¢ | Model d
221 .01 0.1 -0.1 0.1
2| 015 | -013 0.1 0.1
22| -015 | 015 | -0.1 0.1
e’ 0 0 -0.11 | -0.11
6871 015 | -0067 | -0.18 | -0.11
v 0 0.15 0.15 0.05

Table 6.1. Model parameters used in the numerical tests shown in Figure 6.3. The
vertical P and Sl-wave velocities of the lower medium are 2.69 km/s and 1.4 km/s;
its density is 2.07 g/cm?®. The upper medium is purely isotropic.

approximations. It is straightforward to rewrite equations (6.6) and (6.7) as functions
of éﬁ%f, if this parameter can be estimated more accurately than -A—Bé.

The examples shown in Figure 6.3 demonstrate that the derived approxima-
tions are sufficiently accurate for both positive and negative jumps in the relative
difference in the isotropic parameters across the reflecting boundary and small val-
ues of anisotropy parameters. Moreover, in addition to independent study of the
AVO gradients for each wavetype, the form of equations (6.6) and (6.7) suggests
using the differences in the AVO gradients for S-waves propagating in the vertical
symmetry planes of HTI media. Keeping just the lowest-order term and denoting
AoV) = (%)2 (AeM) — ASM)), we find the following differences in the reflection
coefficients:

RI —R¥E® = -1/24y

Rk Ry — _1/2Ay+ <3 %—ﬁ + 2%3 +1/2 Av) sin? j
R RSP = 1207+ (7/207+1/280%) s
ROm _Rge — _ ( %ﬁ + 295‘_’ + 1/2A7) sin?

%’2 +1/2 Aa(v)) sin? j

R - RIE = -1/2Ay— (3 (%@ - Ay)+2 ép-p- +1/2 Aa<">) sin® j (6.8)

RYT — RgTe

(3(%é—A'y)+2

Four combinations of the reflection coefficients involving two different modes allow
us to obtain the shear-wave splitting parameter from the difference in the normal-
incidence reflection coefficient. Additionally, five equations for the differences in the
AVO gradients can be solved for the four unknowns %‘5, éﬁﬁ, Ay and Act).
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A second, qualitative way to use the results derived in this chapter is to study
lateral variations in the S-wave AVO gradients for the survey area. Assuming that the
fracture-plane velocity 3 changes slowly (or is known), the AVO gradients of RE*e,
R and R will reflect changes in 7. The RY)" AVO gradient will additionally
sense changes in (") — §(")) and provide insight in the change of the filling of the
cracks. Spatial mapping of the individual AVO gradients may therefore be a fast
tool to identify “weak” spots of high fracture density. A more detailed discussion on
the feasibility of shear-wave AVO can be found in Riiger (1996). For completeness, in
Appendix D, I include a collection of all pure and converted-wave reflection coefficients
in HTT symmetry planes.
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F1G. 6.3. S- and S*-wave reflection coefficients for the two vertical symmetry planes
at isotropic/HTI interfaces. Shown are the exact solutions (solid lines) and approxim-
ations based on equations (6.6) and (6.7)(dashed). The model parameters are given
in Table 6.1.
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F1G. 7.1. Sketch of an orthorhombic model created by combining horizontal layering
with a system of parallel vertical cracks. Two vertical symmetry planes are determined
by the crack orientation.
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Chapter 7

REFLECTION COEFFICIENTS IN THE SYMMETRY PLANES OF
ORTHORHOMBIC MEDIA

Horizontal transverse isotropy is a useful model for studying the first-order in-
fluence of azimuthal anisotropy. More realistic models can be described by the or-
thorhombic symmetry system. Wave propagation in orthorhombic media is rather
complex; analysis of wavefronts and slowness surfaces in orthorhombic media can,
for example, be found in Musgrave (1970), Helbig (1994) and Schoenberg & Hel-
big (1995). Although the following investigation is valid for orthorhombic media of
any origin, it is instructive to examine an orthorhombic model due to a combination of
a VTI background medium with a system of aligned vertical cracks (Figure 7.1). This
orthorhombic model (as in any other orthorhombic model with 2 horizontal symmetry
plane) has two vertical symmetry planes (symmetry plane [z, z3] and symmetry plane
[z2,z3]). In this chapter, I obtain approximations for reflection coefficients of P-waves
incident in the two vertical symmetry planes of orthorhombic media to gain a better
understanding of the magnitude of azimuthal change of the AVO gradients and relate
it to the anisotropy in the subsurface.

7.1 Effective parameters for orthorhombic media

A rigorous mathematical analysis of the symmetry-plane reflection responses is
possible by studying the corresponding Christoffel equations for orthorhombic me-
dia in the same way as was done n the HTI study in Chapter 4. Study of the
symmetry-plane Christoffel equations in Appendix C helps to relate wave propaga-
tion in the [z;,73] and [z4, 23] planes of orthorhombic models to wave propagation
in VTI media. This analysis, given in more detail in Tsvankin (1996a), proves that
symmetry-plane propagation in orthorhombic media can be completely described by
known VTI equations. In other words, all conclusions about the limited equivalence
of VIT and HTI media (Chapter 4) remain valid for symmetry-plane propagation in
orthorhombic models. This leads to the introduction of new dimensionless anisotropy
parameters defined similarly to the well-known Thomsen‘s (1986) coefficients ¢, § and
v (Tsvankin, 1996a):

o ¢ — the VTI parameter ¢ in the symmetry plane [z;, z3] normal to the z,-axis
(close to the fractional difference between the P-wave velocities in the z;- and
zs-directions):

PN

7.
2633 ( 1)
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e 5 — the VTI parameter § in the [x;,z3]-plane (responsible for near-vertical
P-wave velocity variations; also influences SV -wave velocity anisotropy):’

@ _ (13 +¢s5)® — (cas — ¢55)°
= 2¢33 (€33 — €55) ' (7.2)

o ¥® —the VTI parameter + in the [z1, z3]-plane (close to the fractional difference
between the SH-wave velocities in the z;- and z3-directions):

_Cs—C
P = ——62644 Lol - (7.3)

o ¢ — the VTI parameter ¢ in the [z, z3]-plane:

_ C22 —C33
6(1) = W . (7.4)

e §() — the VTI parameter § in the [z2, z3]-plane:

s = (€23 + ca)® — (co3 — caa)® (15
2c33 (a3 — c44)
e () — the VTI parameter v in the [z, z3]-plane:
(1) = %6 — S5 7
’y - 2655 ° ( '6)

o 5 —the VTI parameter ¢ in the [z;, z,)-plane (z; plays the role of the symmetry
axis):
5® = (12 + ce6)® — (€11 — Ce6)®
- 2¢11 (e11 — co6) '

(7.7)
These seven dimensionless parameters, together with the vertical velocities:

e o - the vertical velocity of the P-wave:

C33
a=,/—. 7.8
P (7.8)

e 3 — the vertical velocity of the S-wave polarized in the z,-direction:

—_— .C-ﬁ
p= \/7 ) (7.9)
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Orthorhombic VTI HTI
2) __ (c13+css)°—(caz—css)® v
5( = ( = 2623(633—363;5) = 4 5( :
(1) — (cos+caa)®—(caz—caa)®
M = ( * 263:)(633(—:44) 4) 6 0
3) __ (c12+ce6)”—(c11—cs6)” v v
5( ) = 0z 22:(611—16166)666 0 5% — 2¢W)
@ — cu—ca € V)
2¢az
el) — ez—ca € 0
L 2cs3
7 = Ss—eu ¥ —y
y = S 2 0

Table 7.1. Seven anisotropy parameters (plus two vertical velocities) completely de-
scribe orthorhombic anisotropy. Their relationship to the generic (VTI) Thomsen
coefficients and to HTI parameters 6() and ") are shown in the second and third
column. The expressions for 6©) and 7 are approximate, the other relations are
valid for any strength of anisotropy.

can replace the nine independent stiffness components of the orthorhombic model.
As summarized in Table 7.1, both vertical and horizontal transverse isotropy can be
considered as degenerated special cases of orthorhombic media. An orthorhombic
medium reduces to the VTI model if the properties in all vertical planes are identical,
and the velocity of each mode in the [z;, z,]-plane is constant (although the velocities of
the two S-waves generally differ from one another). Another special case is transverse
isotropy with a horizontal axis of symmetry. If the symmetry axis is oriented along
the z;-direction, the parameters €®, §( and +? coincide with the coefficients V),
™) and V) introduced in Chapter 4.

7.2 P-wave reflections in the symmetry planes

Seismic signatures in the [z;, z;3]-plane of media with orthorhombic symmetry can
be evaluated by means of already known VTI equations. Published VTI phase-velocity
equations in ¢;;-notation, for example, exactly express phase velocity in symmetry
planes of orthorhombic media (with appropriate substitutions in the [z,,z3]-plane;
see details below). Additionally, reflection coefficients in the symmetry planes of
orthorhombic media are the same as in VTI media if the upper and lower media have
the same orientations of the symmetry planes. To compute exact symmetry-plane
reflection coefficients in order to understand better their azimuthal variations, it is
hence sufficient to use Graebner’s (1992) algorithm introduced in Chapter 3. Also, the
approximate VTI reflection coefficients can be used in the symmetry-planes: following
the simple recipe of replacing § and ¢ with 6 and €® yields the approximate P-wave

82



Reflectivity and AVO in anisotropic media

reflection coefficient in the [z;, z3]-symmetry-plane of orthorhombic media:

e 1AZ
B0 =57t
2[a (&)G + A5? | sin?i +
-;- (%ﬁ + Aem) sin®itan®s , (7.10)

with 8+ = ,/css/p. At the expense of reduced numerical accuracy, equation (7.10) can

also be written as a function of the second vertical shear-wave velocity 8 = \/ca/p
and the shear-wave splitting parameter y = €4=<ss.

2¢ss
{21,23] 1 AZ
1 |l 28 : @ «in2s
2[0 (a) (G 2&7)‘A5 sin®z +
% (% + Ae(z)) sin®itan?7 . (7.11)

Basically the same observations can be made by comparing the Christoffel equa-
tions in the [z, z3]-plane of orthorhombic media with those for VTI media. Graeb-
ner’s (1992) algorithm for VTI systems can also be used in this case, but one has to
make the substitutions

C11 —*>Co2, €35 —*C44, C13 —>C23.

Thus, the {25, z3]-plane of orthorhombic media can be replaced by a second equivalent
VTI medium with ¢ = € and § = ) [equations (7.4) and (7.4)]. Substituting 6
and (V) into equation (3.33) yields the approximate reflection coefficient for the [z, z3]
symmetry plane:

[z2,23] lAZ
RP (Z) 2 Z
1 (Ao B\ AG
1 fd (1) "y
2(& (a) el + A6 )smz+
1
5 (% + Ae(l)) sin®itan?i . (7.12)

The same approach can be used to derive the shear-wave reflection coefficients in
the vertical symmetry planes of orthorhombic media; for completeness, the results
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are presented in Appendix E. The results shown in this chapter are applicable to

interfaces between isotropic, VTI, HTI and orthorhombic media, provided that their
vertical symmetry planes are aligned.

7.3 Azimuthal variation of orthorhombic reflection coefficients

The discussion above shows that the approximate reflection coefficients in the
two vertical symmetry planes of orthorhombic media are essentially identical to the
reflection coefficients in the HTI symmetry-axis plane. This result makes it possible
to use the difference in the P-wave reflection coefficients in the two vertical symmetry
planes of orthorhombic media to invert for the shear-wave splitting parameter. To
eliminate the “isotropic quantities” in equations (7.11) and (7.12), I follow the ap-
proach suggested for HTI media (Chapter 5) and find the difference between the two
symmetry-plane coefficients:

3\ 2
B ppe = {(Z) o+
% (A5 — Aé(l))} sini +
% {Ae® — AéD} sin?itan?s. (7.13)

For an isotropic overburden (7, = 6{9 =6 = 0), the difference in the AVO gradient
depends on just three anisotropic parameters - the shear-wave splitting parameter 7,
and two new parameters 5&1) and 6&2) describing the anisotropy for near-vertical P-
wave propagation in the symmetry planes. Tsvankin (1996a) shows that it is possible
to obtain the parameters 6 and §® from short-spread P-wave moveout velocity in
the vertical symmetry planes, provided an estimate of the vertical velocity is available
(for examples from vertical velocities measured in a VSP experiment). Thus, we can
get v by combining NMO and AVO analysis. Note that for orthorhombic models with
a single crack system, <y gives an estimate of the crack density.
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Chapter 8

P-WAVE AVO FOR FRACTURED RESERVOIRS

In this chapter, I address some important practical aspects of P-wave AVO ana-
lysis for fractured formations of HTI symmetry. First, I review the assumptions of
Hudson’s theory (Hudson, 1981) used to compute the parameters of the effective aniso-
tropic continuum that replaces the cracked material'. Then, I show the AVO responses
for unfractured and fractured layers with different content of cracks and finally ad-
dress some (of the many) complications that arise in the extraction and interpretation
of the reflection coefficients from seismic data. These problems are especially chal-
lenging if the overburden is anisotropic and the reflecting target-layer is thin. The
chapter ends with some remarks concerning the acquisition and processing of seismic
data in the presence of azimuthal anisotropy.

8.1 Effective parameters of fractured solids

Clearly, fractured layers of complicated fracture geometry and crack distribution
cannot be mathematically described in every detail. However, under certain assump-
tions it is possible to derive average elastodynamic properties of a cracked solid. For
example, it can be shown that if a medium contains aligned cracks which are small
compared to the seismic wavelength, the waves propagate through it as if the material
were homogeneous and anisotropic (Crampin, 1984b).

Hudson (1981), (1986) derived formulas to compute effective elastic properties
of rocks containing systems of cracks. For mathematical convenience and because his
equations describe effective properties of the cracked medium, Hudson assumes the
following conditions:

e the cracks are (on average) oblate spheroids of small aspect ratio;

e the distribution of positions of cracks is random on the scale of a seismic
wavelength;

e the cracks are sparsely distributed and disconnected, and their total volume is
a small fraction of the volume of the rock;

1This however does not imply that the approximations developed in this thesis are limited to
Hudson’s fracture model; the coefficients §(V),e(V) and v can be evaluated for any arbitrary HTI
medium.
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o the crack radius and the spacing between the cracks are much smaller than the
seismic wavelength (ka << 1 where % is the wavenumber and a is the crack
radius);

e the crack contents are softer than the matrix and

o the diffraction field due to any crack is approximately uniform over the face of
any other crack.

For more details on the intrinsic assumptions of Hudson’s theory, see Peacock and
Hudson (1990). '

To first order in the crack density, Hudson’s formulas agree with other existing
theories [for example, Nishizawa (1982)] and, despite their limiting assumptions, have
been successfully applied by several authors to interpret seismic anisotropy (Crampin
et al., 1986; Sayers, 1988). The effective parameters used in this chapter are computed
using Hudson’s second-order equations, which are accurate to second order in crack
density and allow for crack-crack interactions. Different conditions within the cracks
can be taken into account: in this chapter, I compute the elastic constants due to dry
(gas-filled) and fluid (water-filled) cracks.

8.2 Influence of fracturing on the AVO response

Figure 8.1 shows three models with a different target layer (the layer in the
middle). The elastic parameters of the first target layer are given in the first column
of Table 8.1; the parameters of the other two target layers are computed for the same
host rock, but this time containing cracks with aspect ratio 0.001 and seven-percent
crack density. The parameters of the second and third columns are computed for water-
filled and dry cracks, respectively. The cracks are vertically aligned causing fractured
layers of HTT symmetry. The same crack models have been used by Gajewski (1993)
who also used Hudson’s theory of fractured materials (Hudson, 1981) to compute the
effective parameters.

Initially, I consider reflections from the top of the target with the overburden
assumed to be isotropic. Subsequently, I will study the influence of an anisotropic
overburden on the reflection amplitudes. Below, I analyze the influence of the layer-
thickness on the amplitude of the reflected wavefield.

Before evaluating the reflection response for the three models, let us briefly invest-
igate the difference between the model parameters and use equation (5.7) to predict the
behavior of the three AVO responses. Both fractured and unfractured models have the
same density and the same fast vertical shear-wave velocity. This is physically reas-
onable because, as confirmed by Hudson’s equations, the shear wave polarized within
the fracture plane should not be influenced by the fracturing. Also, the fractures are
too thin to influence the bulk density of the host rock; the vertical P-wave velocities
o are very similar for the medium with fluid-filled cracks and for the unfractured
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Model2

Model3

ISO ISO ISO
iSO wet dry
iso iso iSO

F1G. 8.1. Three models used to study the differences in the AVO response caused by
dry and fluid-filled cracks. Table 8.1 lists the model parameters.

isotropic | wet cracks | dry cracks
«a 4.500 4.498 4.388
B 2.530 2.530 2.530
P 2.800 2.800 2.800
y 0.000 0.085 0.085
V) | 0.000 -0.003 -0.150
5V) | 0.000 -0.088 -0.135

Table 8.1. Parameters of the reflecting layers used to investigate the azimuthally
varying AVO reponse. Model 1 (isotropic), Model 2 (wet cracks) and Model 4 (dry
cracks) have the same host rock, but differ in the density and filling of the cracks.
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1 isotropic | wet cracks | dry cracks |
£e | 0.203 0.203 0.180
221 0.350 0.350 0.328
221 0.601 0.601 0.601

Table 8.2. Percentage changes in elastic parameters for reflections from the top of
the target layer. The parameters of the isotropic overburden are Vp = 3.67 km/s,
Vs = 2.0 km/s, p = 2.41g/cm®.

rock and is slightly less (about 2.5 %) for the medium with dry cracks. The aniso-
tropy parameters, however, are substantially influenced by the presence and content
of the cracks. For wet cracks, the parameter V) is negligibly small, and the shear-
wave-splitting parameter -y and coefficient (") have almost the same magnitude but
opposite sign. In contrast, if the cracks are dry, the absolute values of both ') and
5() are approximately twice as large as the shear-wave splitting parameter +.

The differences in the anisotropy parameters cause different azimuthal changes
in the reflection response for each of the models. Overall, considering the percentage
changes in the elastic parameters (see Table 8.2) for a P-wave incident in an isotropic
overburden, equation (5.7) predicts that the initial slope of the reflection coefficient
for Model 1 is identical to the isotropy-plane coefficient of Model 2, while it is slightly
less negative as compared to Model 3. Additionally, for wet cracks, |y| and |6(")] are
similar, and equation (5.7) suggests that there exists a substantial azimuthal difference
in the AVO gradients, with a more negative isotropy-plane gradient [recall that the
difference in the gradients is approximated by (6V) + 2v)]. In contrast, the parameters
of the layer containing dry cracks suggest that the AVO gradient will not change
significantly for different azimuths. In this case, the reflection coefficients computed
at different azimuths start to diverge at large angles of incidence.

Figures 8.2-8.4 show the exact and approximate reflection coefficients for the
three models from Table 8.1. The parameters of the isotropic overburden are identical
and are given in the caption of Table 8.2. Likewise, for comparison, the vertical
scale for the three plots is unchanged. Approximation (5.7) is sufficiently close to the
exact reflection coefficients for all three models; specifically, it predicts the different
azimuthal changes in the small- and large-angle reflection response for the dry and
water-filled cracks.

In addition to confirming the physical insight provided by equation (5.7), this
modeling study shows that the P-wave AVO response from a fractured reservoir varies
significantly as a function of the content of the crack. Therefore, P-wave AVO has
the potential of discriminating between gas- and fluid-filled crack systems. A second
important message is that the azimuthal difference in AVO gradients cannot be related
directly to the crack density and that knowledge of the anisotropy parameter 6(*) is
crucial to any azimuthal AVO analysis. Also, if the AVO response at different azimuths
is diverging substantially at large angles of incidence, it is a strong indication that V)
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has a significant value. In this case, the less negative AVO gradient corresponds to the
isotropy-plane reflection because Ae(Y) is negative for a reflection from the boundary
between an isotropic layer and a fractured reservoir of HTI symmetry.

Finally, if v is available from S-wave data, this study suggests combining the
shear-wave-splitting and azimuthal-AVO analysis to obtain () for study of the con-
tents of the cracks. Alternatively, as mentioned above, P-wave NMO and AVO analysis
have to be combined for a meaningful interpretation of the crack parameters.

8.3 Propagation phenomena in the anisotropic overburden

The discussion above is related to the interpretation and inversion of the reflec-
tion coefficients. In practice, we record the amplitude-versus-offset signature at the
surface rather than the reflection coefficients at the target horizon. Corrections for the
angular amplitude variation caused by the wave phenomena above the reflector is an
essential part of the AVO analysis. To obtain the reflection coefficient at the target ho-
rizon, it is necessary to correct for the angular amplitude variation associated with the
wave propagation between the reflector and the surface. The presence of anisotropy
above the reflector leads to the so-called wavefront focusing phenomenon, or distor-
tions of the amplitude distribution along the wavefronts of the incident and reflected
waves (Tsvankin, 1995a). This situation may be quite typical for fractured reservoirs
because the cracks are seldom confined to the reservoir layer (Mueller, 1991). Let
us consider the wavefield from a point force in the symmetry-axis plane (containing
the symmetry axis) of a two-layer HTI model with the same axis orientation in both
layers. The angular amplitude dependence of the incident P-wave can be found in
the weak-anisotropy approximation by adapting the result of Tsvankin (1995a):

Fy
4mpO[Vai PR

Up(R,8) = (1 =8, — 2(e; — 6,) sin® 20 — &, sin®6), (8.1)

where U is the magnitude of the displacement, p™ and V5 are the density and the
P-wave symmetry-axis direction velocity (respectively) in the incidence medium, and
R is the source-receiver distance. The source term F, is the projection of the force
on the displacement (polarization) vector. Note that, due to the 3-D nature of the
wavefront focusing phenomena, the radiation pattern in the symmetry-axis plane of
HTI media cannot be described by using the analogy with vertical transverse isotropy.

The comparison of the leading angular terms in equations (8.1) and (3.7) shows
that the wavefront focusing and the anisotropic term in the reflection coefficient have
a comparable influence on the angular amplitude variation. Since the difference €; —d;
is usually positive for HTI media due to parallel cracks (Thomsen, 1995), propagation
phenomena above the reflector causes the P-wave amplitude in the symmetry-axis
plane to decrease away from vertical (this can be observed, for example, in Fig-
ures 4.4b and 4.4c in the concentration of rays near vertical).

The influence of propagation phenomena cannot be ignored even if the medium
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0.05 i
0 20 40
Incidence angle

F1G. 8.2. The exact reflection coefficient (solid line) and the approximation (dashed)
for an isotropic layer overlying the unfractured target layer. Model parameters are
given in Tables 8.1 and 8.2 (the left column)

90



Reflectivity and AVOQ in anisotropic media

: .~
. .
wwb o s o s 00000050 e mrsnnsrasssen e T eceevancncssornocsnno e ey o
O-1O : *~ “

Reflection coefficient

0.05 i
0 20 40

Incidence angle

F1G. 8.3. Same as Figure 8.2, but the reflecting layer contains fluid-filled cracks
(the central columns in Tables 8.1 and 8.2). The reflection coefficients are shown for
azimuths of 0°,30°,60° and 90° measured from the symmetry-axis, with decreasing
line thickness.
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FI1G. 8.4. Same as Figure 8.2 and 8.3, but the reflecting layer has dry cracks (the
central columns in Tables 8.1 and 8.2).
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above the reflector has a vertical axis of symmetry (we assume an HTI reflecting
medium). Although the angular amplitude distortion will be exactly the same in the
symmetry and isotropy plane, it will add a multiplier to equation (5.13) and cause
errors in the estimation of the crack density. Therefore, correction for the influence
of the anisotropy in the overburden should become an essential element of anisotropic
AVO processing.

8.4 Amplitude versus offset or versus phase angle?

Serious challenges in the AVO interpretation exist even if the parameters of the
azimuthally anisotropic overburden are known. For example, in the case of an azi-
muthally anisotropic overburden, the relation between offset and phase angle is non-
trivial, and displaying the extracted reflection coefficient as a function of the source-
receiver offset rather than as a function of the incident phase angle can lead to a
misleading interpretation of the azimuthal AVO changes. To illustrate this point, let
us assume that the target layer is located at a depth of 1 km and that the cracks are
gas-filled (the parameters of the layer are shown in the third column of Table 8.1).
The upper medium is composed of the same host rock as in the above examples, but is
now fractured with a crack density of 5 percent. To simplify the discussion further, we
assume that the fracture orientation is identical in both layers and only the reflection
coefficients in the two vertical symmetry planes are considered.

Figures 8.52 and 8.5b show the reflection coefficients as a function of the incidence
phase angle for dry and water-filled cracks in the overburden, respectively, together
with the isotropy-plane approximation [equation (4.2)] and the symmetry-axis-plane
approximation [equation (4.11)]. For the overburden with dry cracks, the isotropy-
plane AVO gradient is more negative than is the symmetry-plane AVO gradient, but
at larger angles of incidence, this trend changes and the isotropy-plane coefficient is
increasingly larger than the symmetry-axis-plane coefficient (a clear indication that
eé"’ - e&v) < 0). On the other hand, no AVO-gradient change is visible in Figure 8.5b,
and the divergent trend of the reflection-coefficient curves is observable only for large
angles of incidence. As in the above study, this example demonstrates that it is
impossible to directly relate the difference in azimuthal AVO variation to the crack
density of the model: here, the identical reflecting layer and overburden with the
same crack density produce different AVO responses for dry and wet cracks above the
reflector.

Figure 8.6a and 8.6b show the same reflection coefficients as a function of off-
set rather than the incidence angle [these results have been generated by a dynamic
ray-tracing program written by Grechka (1989)]. The difference from the results
in Figure 8.5 is striking: in the case of the dry-fractured overburden, the relation
between the AVO gradients is reversed (the isotropy-plane AVO slope is less negative
than the symmetry-axis-plane slope), while the AVO gradients for the fluid-filled frac-
tured overburden are obviously split, i.e, artificial reflection-coefficient changes are
introduced.
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F1G. 8.5. Exact reflection coefficients (solid) and approximations (dashed) computed
for the symmetry-axis plane (thick) and the isotropy plane (thin). The target (reflect-
ing) layer contains dry cracks with a crack density of 7 = 0.07; the upper layer is
fractured with 7 = 0.03, and the cracks are dry (a) and water-filled (b).
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F1G. 8.6. Same as Figure 8.5, but the exact reflection coefficients are shown as a
function of the source-receiver offset.
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The explanation for the difference between the reflection coefficient curves is given
in Figure 8.7a and 8.7b, which show the relations between the offsets and the incidence
phase angles for the models from Figures 8.5 and 8.6. In azimuthally anisotropic
media, the relation between group- and phase angles varies with azimuth. While both
angles coincide for waves propagating in the isotropy plane, they can differ significantly
for waves traveling in the symmetry-axis plane due to the presence of polar anisotropy.
In other words, while rays connecting sources and receivers at any fixed offset form the
same angle with vertical at the reflector, the associated phase angles are azimuthally
varying. To correctly interpret the AVO signatures in anisotropic media, it is essential
to represent them as a function of phase angle.

8.5 Thickness of the target layer

As shown above, complications caused by wave propagation in the anisotropic
overburden can severely hamper both the extraction of the reflection coefficient and
the AVO interpretation. Serious problems of a different nature also arise if the frac-
tured layer is thin, i.e., if its thickness is comparable to or smaller than the seismic
wavelength.

Consider waves reflected from a fractured layer 0.1 km thick at a depth of 1 km.
The fractured layer has the parameters shown in the third column of Table 8.1, i.e.,
it has dry cracks with a crack density of seven percent. Both the upper and lower
medium are isotropic (see Figure 8.1). As in isotropic media, thin layering causes
interference between the top and bottom reflections. This can be seen in the seismic
section (Figure 8.8) showing symmetry-axis-plane vertical component seismograms
generated by a reflectivity algorithm (Corrigan, 1990). As observed at large offsets
and 0.7-0.8 s traveltime, the much stronger bottom reflection starts to interfere with
the diminishing-amplitude reflection from the top of the target layer.

. Interference tends to increase with offset because the lower reflecting layer often
has a higher velocity. While the interference problem also arises in isotropic media,
it can be especially harmful for azimuthal AVO studies because azimuthal differences
in the AVO signature are often observed at large angles of incidence.

One of the important conclusions of this modeling study is that azimuthal AVO
and NMO analysis need to be combined for the interpretation of anisotropy paramet-
ers. The extraction of azimuthal variations of reflection traveltimes can, however, be
very difficult in the case of a thin target layer. The reflection traveltimes from the
top and bottom of the fractured layer are shown in Figure 8.9, for waves traveling
in 0°, 30°, 60° and 90° azimuthal direction. Because the overburden is isotropic, no
azimuthal change can be observed for the reflection traveltimes from the top of the
layer. The azimuthal anisotropy in the fractured layer influences the bottom reflec-
tion, but the azimuthal time difference is not significant due to the small thickness of
the layer. The difference in the moveouts for the lower reflections as seen in Figure 8.9
hardly allows any reliable extraction of anisotropy parameter 6V, which is necessary
to infer information on crack density from the AVO measurements. The azimuthal
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F1G. 8.7. Relation between the phase angles at the reflector and the source-receiver
offset for the same models as from Figure 8.5.
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reflection-time difference is even smaller for the fluid-filled cracks in the target layer,
making any anisotropy-parameter extraction from surface-seismic traveltime data im-
possible. Additionally, without detailed knowledge of the anisotropy parameters in
the layer, it is impossible to interpret the reflection response from the bottom of the
target without risking the introduction of artificial AVO gradient changes similar to
the case discussed in the previous chapter.

8.6 Data acquisition and processing

If it is known that the subsurface has HTI symmetry and the direction of the sym-
metry axis has been determined (for example, from S-wave data), two independent
measurements of the reflection coefficients are sufficient to determine the magnitude
of the azimuthal AVO variations. If the symmetry-axis direction is unknown, 2 min-
imum of three azimuths needs to be sampled. In practice, there exists a tradeoff
between the number of sampled azimuths and the fold within each azimuthal bin
(representing traces with similar source-receiver azimuths). A second concern is the
offset distribution within each azimuthal bin. The classical acquisition design both
for land and marine surveys leads to a uniform, dense distribution of offsets for azi-
muths aligned with the receiver lines, while the perpendicular direction is sampled
much more coarsely. This severely hampers a reliable comparison of AVO results
obtained in the two orthogonally oriented azimuthal bins. One way to overcome this
problem in the marine environment would be the repeated overshooting of the survey
area in different azimuthal directions. Although more expensive, it would significantly
improve the data analysis and help to reveal azimuthally changing seismic signatures
in a reliable fashion. Alternatives are newly developed survey designs such as the
vertical cable and the ocean-bottom cables. On land, the geophones should be planted
in areal patterns (instead of the conventionally used swath geometry) to ensure that
the offset distribution is uniform in different azimuthal directions.

Another important prerequisite for any useful AVO-with-azimuth investigation is
a proper processing sequence that preserves azimuthally varying seismic amplitudes.
This requires a careful examination of each processing step (and algorithm) applied to.
the data to assess implications for the ability to preserve and properly treat azimuthal
anisotropy. Conventional processing algorithms such as deconvolution, gaining, trace
balancing etc. need to be modified to treat every azimuthal direction independently
to not destroy the azimuthal signature. The situation is even more complex for ima-
ging algorithms. For a 1-D Earth, an azimuthal bin with traces of source-receiver
azimuth perpendicular to the symmetry-axis of the medium can be processed using
isotropic algorithms. These algorithms, however, will introduce amplitude distortions
if they are applied in structurally complex areas. Conventional algorithms such as
(isotropic) DMO and migration designed to correct for the presence of dip in the
overburden are not reliable for azimuths away from the isotropy-plane direction. Sim-
ilarly, azimuthal bins aligned with the symmetry-axis can be processed with existing
VTI algorithms. On the other hand, none of the VTI algorithms developed so far is
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method and contain the full wavefield, including groundroll, direct and converted
waves. The reflections from the top and bottom of the fractured layer correspond to
the troughs indicated by the arrows.
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FIG. 8.9. Reflection traveltimes from the top and bottom of the fractured layer for
waves traveling in 0°, 30°, 60° and 90° azimuthal direction. The fractured layer
causes azimuthal changes in the traveltimes of the bottom reflection, but they are
hardly visible because of the small layer thickness.
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amplitude-preserving. For other azimuthal directions, no proper processing tools are
available. '

In conclusion, azimuthal AVO analysis requires carefully-designed acquisition
geometries and a careful selection of the applied processing algorithms. Considering
these difficulties, any azimuthal AVO analysis, especially in areas of complex geology
has to be carried out with extreme care and needs to be combined with a detailed
modeling study. Quantitative analysis is feasible only if the medium properties above
the reflector are known in sufficient detail, especially if the overburden is anisotropic.
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Chapter 9

CONCLUSIONS AND FUTURE WORK

The results of this research improve our understanding of the behavior of reflec-
tion coefficients in the presence of anisotropy. The linearized approximations derived
here are helpful in obtaining simple representations of otherwise incomprehensibly
complex reflection coefficients in anisotropic media. The main assumptions in this
reflection-coefficient study — small jumps in the elastic parameters across the re-
flecting interface, pre-critical incidence and weak anisotropy — are geologically and
geophysically reasonable and have proved useful in many exploration contexts.

The derived “Shuey-type” approximate reflection coefficients in VTI media provide
a concise description of the AVO-gradient terms and the higher-angle terms as a func-
tion of Thomsen’s (1986) parameters. For small incidence angles, the approximate
P-wave reflection coefficient presented here is identical to previously published equa-
tions, but it is more accurate for larger incidence angles (> 20 — 25°).

The refined approximation for reflection coefficients in VTI media can be used to
find approximate reflection coefficients in transversely isotropic models with a hori-
zontal axis of symmetry (HTI). The derivation is based on a limited analogy between
VTI and HTI media that can also be used to determine kinematic properties and
polarizations in HTI media. The equivalence between wave propagation in VTI me-
dia and the vertical plane containing the symmetry axis (the so-called symmetry-axis
plane) of HTI media allows one to use known VTI equations (exact or approximate)
in the symmetry-axis plane of HTI media. For example, existing numerical algorithms
for reflection coefficients in VTI media, such as the one proposed by Graebner (1982),
can also be used to efficiently compute the exact reflection coefficient in the symmetry-
axis plane of HTI models. One of the most important applications of the VTI/HTI
analogy is the introduction of new “Thomsen-style” anisotropy parameters for HTI
media. Tsvankin (1995), for example, shows that the parameter §('), entering the
AVO gradient term of the P-wave reflection coefficient in the HTI symmetry-axis
plane, also describes the azimuthal variation of P-wave normal-moveout velocity in
HTI media.

The approximate reflection coefficients derived in this paper relate the AVO re-
sponse to the anisotropy parameters and provide physical insight into the reflection
amplitudes of pure and converted waves at boundaries between HTI media with the
same orientation of the vertical symmetry planes. The azimuthal change in the P-wave
AVO gradient is described by the squared cosine of azimuth. This azimuthal variation
can be inverted for the symmetry-plane directions and a combination of the shear-wave
splitting parameter v and the anisotropy coefficient (V). Coefficients v and §() cause
the same functional form of the azimuthal variation in the AVO gradient and cannot be

103



Andreas Riger

extracted individually. It is possible, however, to use P-wave moveout data to recover
the parameter 6V); in other special cases such as thin fluid-filled cracks, coefficients
v and 6V are directly related to each other.

The two symmetry-plane directions can even be extracted in situations where the
azimuthal change in the AVO-gradient does not exist or is too small to be observed. In
this case (which I found typical for fractured models with dry cracks), the azimuthal
variation may become substantial at large incidence angles, where it is primarily
dependent on the anisotropy coefficient (V) (e() &~ —e, where ¢ is the generic Thomsen
parameter). The azimuthal change in the large-angle reflection coefficient provides
enough information to detect the natural coordinate system of the subsurface (i.e., the
crack orientation).

Certainly, realistic models of fractured reservoirs may deviate from relatively
simple HTI media, and it is important to study whether the reflection response in
media of lower symmetry (e.g., orthorhombic) differs significantly from that in the HTI
case. Although wave propagation in orthorhombic media is significantly more complex,
the approximate reflection coefficients in the symmetry planes have essentially the
same form as in HTI models. The difference between the P-wave AVO gradients in
the vertical symmetry planes is a function of the shear-wave splitting parameter - and
two new parameters similar to 6(), describing near-vertical P-wave velocity variations.
Analogous observations have been obtained for all pure and converted-mode reflection
coefficients and are useful for investigating the potential of multi-component AVO
analysis for realistic azimuthally anisotropic formations.

The approximations derived in this thesis create simple dependencies that inter-
preters can use to quickly evaluate the magnitude of anisotropy in a particular play.
‘They describe the dependence of the AVO response on the individual anisotropy para-
meters and show how independent data (such as those obtained by shear-wave-splitting
or moveout analysis) can be integrated in the inversion procedure. However, although
the approximate reflection coefficients help to detect pronounced anomalies, they are
not suitable for quantitative analysis at interfaces with a large contrast in the elastic
parameters and strong anisotropy. The HTI approximations presented here will also
be inaccurate if the natural coordinate systems of the incidence and reflecting layer
differ in orientation, i.e., if the axis of symmetry changes across the boundary.

Numerical examples show that the derived approximate reflection coefficients are
close to the exact reflection response for situations where the underlying assumptions
on the reflecting boundary are satisfied. However, rather than achieving 2 high numer-
ical accuracy with the new approximations, it is more important to establish a physical
foundation for (exact) numerical inversion algorithms. Evidently, there is little hope
to carry out “blind” inversion of the AVO response for subsurface parameters. The
linearized reflection coefficients given here indicate which parameters or parameter
combinations can be inverted for at small or large angles of incidence. These approx-
imations can also serve as a guide for a more efficient and more accurate inversion,
e.g., in the iterative adjustment of the unknown parameters in the forward modeling
process.
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The practical implementation of the newly-proposed AVO inversion faces chal-
lenges similar to or even greater than those in conventional AVO analysis. Prerequisite
for any useful AVO-with-azimuth investigation is a processing sequence that preserves
azimuthally varying amplitude signatures. Moreover, the influence of lateral inhomo-
geneities should be corrected for. Wave propagation in an anisotropic overburden has
a significant impact on the amplitude variation with offset and azimuth and needs to
be included in any AVO processing sequence. Other difficulties include thin layering,
curved reflectors or dipping symmetry-axes. These issues are outside of the scope of
this investigation and should be addressed in future research.

Amplitude signatures of reflected wavefields in anisotropic media are very difficult
to extract from field data. Clearly, much more work on this topic is required. Never-
theless, the formalism developed here has already proved useful in the interpretation
of a data set acquired by the Reservoir Characterization Project in the Joffre field
(Alberta, Canada) (Rolla, 1995), although the acquisition design was not well-suited
for azimuthal analysis of P-wave signatures.

The results presented in this thesis have also influenced several other projects
dealing with multi-component AVO analysis for boundaries between azimuthally an-
isotropic media (Li & Kiihnel, 1996; Haugen, 1996; Teng & Mavko, 1996). Other cur-
rent applications of the derived equations, discussed above, include the implementation
of exact numerical inversion methods for small and large angles of incidence. Another
area of interest for geophysical exploration is a more detailed study of converted-wave
AVO. It can be expected that use of converted-wave data will become more common
in the near future. The complexity of the derived reflection coefficient for converted
waves implies that the classical intercept-gradient approach in the AVO analysis is
not easily applicable to mode conversions.

Finally, based on the experience gained during this thesis research and because
of the small azimuthal variation to be expected in most situations, I strongly suggest
that any AVO analysis of field data should be complemented by a detailed modeling
study to quantify errors introduced by heterogeneity and anisotropy.
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Appendix A

DERIVATION OF LINEARIZED VTI SCATTERING COEFFICIENTS

Kinematic and dynamic boundary conditions yield a system of equations that
needs to be solved for the scattering coefficients. Using the parameterization intro-
duced in Chapter 2 [equations (2.4)], one obtains a linear system [see equation (3.27)]:

Rp Rsp
Tp Tsp
Rps Rs
Tps Ts

=b. (A.1)

The elements m;; of the matrix M are related to the parameters stated above as
follows:

my =l singy mae = —l,sinéy my3 =m, cOSJ1 My = —m, COS J2
mg) = My, COS il m3z2 = 4, COS ig ma3z = —ljl sinj1 M3y = —-lj2 Sinjg
Moy = cgls)—ff- cosiy(l;, +my) Moy = cg?s’—”;z cos ia(l;, +my,)
Moz = cf,s -——(m_,, cos? j, — lJl sinj;) Moy = Cs.-, o =L (m;, cos? j — 1, sin® o)
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The corresponding unperturbed matrix M* in equation (3.30), expressed through
the incidence angles z and j is given by

smz‘ - sinz’ cos j —Cos 7

2p-9- sinicosi 2p--Jl sinicosi  pVso (cos® j—sin?j) pVso (cos? j—sin? 5)

cos z cos? —sinj —sinj

2p 2 sin 25— pVro pro-—2p-—-Q sin?¢ 2pVsgsin j cos j —2pVs sin j cos §
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Because of the internal symmetries in M", the inverse matrix (M®)~! has a
relatively simple structure:

\Z
sin ¢ 73> — ; . -
Vo 2pVpo cOs% 2 <:2os 1 2pVpo
1%
- 1-2-50 sin?§
—sins Z%Q siné 7, L
(Mu)—l — Po 2pVpg cosi 2cost 2pVpo
1=2 S. .
'in i _ Vso Yo sin sini
2 cos 3 2pVso 2pVpy cos j
2—-§-°- sin?§—1 1 Vs o —sini
\ " 2o0s7 2%Vso “Vpo SN s

An important step in solving for the approximate reflection coefficients is to derive
the P-wave and SV-wave phase velocities, linearized in the small parameters d;
[equations (3.28)]. Using equations (3.13), (3.14) and (3.29), we find:

v, = Vpo (1 - %AVZ? &, sin®4; cos?4; + ¢ sin® z'1>

v;, = Vso (1 - %AVZ‘:O + —% (€1 — &y) sin? 5, cos? jl)

v, = Vpo <1 + %AI{::O + 8 sin® 4 cos® iy + €, sin® iz)

v;, = Vso (1 + %—A%/jﬂ + % (€2 — &2) sin? j, cos® jz) (A.3)

A second key element in obtaining the reflection and transmission coefficients in an-
isotropic media is the derivation of polarization vectors. Equations describing the
direction of compressional-wave polarization in VTI media have been published by
Rommel (1994) and Tsvankin (1996b). Denoting the phase and polarization angles
with the symmetry axis as  and «, respectively, one can show that

cosy = (1— fsin®@[6+ 2(e— 8)sin®8]) cosd
siny = (1+ f cos®8[d + 2(e — 6)sin®4]) sin@, (A.4)

with f = V,/(V3, — V&)- Equation (A.4), together with equations (2.4), yields:

i = 1+ fcos?iy[61 +2(e; — &) sin®4, ]
m; = 1-— fsin®?4,[6, +2(e; — 6;)sin®4 ]
i = 1+ fcos®j1[61 +2(ey — & )sin? 5, ]
m;, = 1— fsin®j;[6; +2(e; — 61)sin?j; ] (A.3)
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The corresponding expressions for l;,,m;,,l;, and m;, can be obtained from equa-
tions (A.3) by simply interchanging the subscripts 1 and 2. The phase angles of the
scattered wave modes need to be related to the phase angle of the incident wave. The
most straightforward approach is to relate each phase angle to the horizontal slowness
», which is preserved at the reflecting boundary. The above equations are sufficient
to finish the derivation and evaluate equation (3.32).

Here, I state the eight linearized reflection and transmission coefficients evalu-
ated using the perturbation approach discussed above. Reflection and transmission
coefficients are given in a form that allows one to distinguish between the isotropic
contribution and the additional term caused by the anisotropy. For example, the
P-wave reflection coefficient is stated in the form PP = PPiso 4 ppaois

e P-wave reflection coefficient

s s YAV AVpg 2["50 2 AGY . 2.
150 T —_— = —_—
PP 1/2 +1/2 [ Voo ( P'o) = | sin®4

+1/2 ® sin?4; tan®4

AVpy
_ Vo
PP = 1/2 (52—61) sin2i1+1/2 (62—61) sin2i1 tan2 2

e P-wave transmission coefficient

PP = 1 —1/2A—Z--r-1/2 AVPO cin? i +1/2 SVeo ® sin®3; tan?s;
o Vo Vo
PP = 1/2(5y — &) sin®4; +1/2 (e2 — ;) sin?4; tan?4;

+(51 —0p—€ + 62) sin? 21

o SV-wave reflection coefficient

L Ap AVSO) (7AVso Ap)
SSise — -1/2 e T e sm
/ (p Vso 2 Vso p 2
Vso
—1/2A 50 sin? 41 tan® j;
Vso
<o Voo \ 2
55 = —1/2 (—_-59-> (62— 61 — €2+ €1) sin® j;
Vso

o SV-wave transmission coefficient

sin2 N

550 = 1-1/2 (A” A-V”) 12575
p Vso Viso

+ 1/2 20 sin? j; ten? 7

Vso
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~ N2
Sgxis = _1/2 (VP°> (82 — 6, — €2 + €;) sin® 7y
Vso
V 2
-+ (-Lo) (6 — &) — €2 + €;) sin* 5,
Vso
e SH-wave reflection coefficient
N . Ap AVSO) AV
SS™° = -~1/2 + 1/2 =22 sin?
/ ( p VSO / V .71
V . 2. 2 .
+1/2 sin® j; tan® 5,
Vso

S5 = 1/2(y2 = ) sin’ 1 + 1/2 (v — ) sin® jy tan’ jy

e SH-wave transmission coefficient

& & AP AVso) AVs,
S§° = 1-1/2 1/2 sin?
/ ( P Vso / Vso n
AVso
+1/2 Voo ® sin?j; tan? j;

Sganis 1/2 (72 71) sin® h+1/2 (')’2 - ")'1) sin? 5 tan2_71

e PS-converted wave reflection coefficient

Ap sini,y Vso (Ap AV,
- +2
p cosji  Veo Vso

' (Vso) (2 AV .:.ﬁ) sin® %,
" \Vro Vso = B ) cosh

PS* = -1/2="F

) sin 31 cos 7y

p Gesi V2 VeoVs cosz
PSHE = = PO PO SO 1 o
> [(2 (VE, — V&)cosj, 2(V2 (62 — &1)] sind;
[ Viso Vo cOs 4q . .
| 0g-vz) Brhraa)
_-_ ‘-{Igo (2—5 P —6) s11.132
(VE, — V&) cos 5 1T €~ €& 1
.l Vgo N
T |2(V3, — V&) cos x (6, — 52)] sin®4;
] Va,
Iy 6 — 01 + € — &) sin’i
(VB — Vso) €OS j; (G—bdi+a 2)] 1
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e PS converted wave transmission coefficient

pe = 172 A_P sin 4,
oS 1
Vso (AP AVso) . .
- — sin i, cosi
Veo \ P Vso ! :
(Vso ) 2 ( AVso Ap) sin3 21
i 2—=—+— :
Vo Vso p ) cosg

p gant 1% VpoVso cos i
peis = Po _ . VpoVso cos 1) 5 —s }sinz‘
[(2(V§O—Vs20)cos_11Tz(vzgo_vgo) (61— &2) 1

VoV ;
-+ M(&g — & +e€ —62)] sin® 1,
(Vpo" %)
+ VEy (62 — 61 4 )| sin3s
‘ (VPo"Vso)COSJ 2T aTaT ) sh
123
N 2(VP0 so) cos 71 (62 _61)] sin’ iy
17 } 5.
+ {o= — (01 — 8o + €2 — € )] sin’2
.(Vlgo so)COSJl @ 2T 1) !

e SP-converted wave reflection coefficient

Spio - _1/228 Dp Sln]1 VSO (Ap 2AVV 0) sin 7; cos J;
S0

( 98Vso Ap) sin® j;
+ el ST
VSO P COS 23
VpoViso cos iy V2, cos? 1 -
[(2(‘7?0 V&) 2(Vy — V) cosiy (61 — &2)| sinjy
+ [ VPO COS .71
VSO (VPO -
- Vfgo 0052 J
Vi, (V& — V&) cosiy

S’ Panis =

)(52 0 +é& —62)] sin® n

(52 - 51 +€; — 62)] SI'lIl3 7

e SP-converted wave transmission coefficient

Ap sin gy Vso Ap DVse\ . . .
+2

3 cosiy + = VPO Vso Sin 71 COS 11

. (2A_Vso N _A-_p) sin® ?1

Vso p / cosiy

Sp = —1/2=F
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Appendix C

CHRISTOFFEL EQUATIONS FOR SYMMETRY PLANE
PROPAGATION

The study of Christoffel systems is the key to understanding seismic wave propaga-
tion and analyzing analogies between waves propagating in different symmetry sys-
tems. The following collection of determinants of the Christoffel system proved to be
very valuable for this study. The elements of the Christoffel determinants are given
in terms of the density normalized stiffness tensor and are shown in reduced-index
notation (using the Voigt recipe).

For symmetry-plane propagation, the Christoffel determinants Ciso, Cyr1, Curr
and Cop for isotropic, transversely isotropic media with vertical and horizontal axis
of symmetry and orthorhombic media are given by:

Propagation in [z;,z;]—plane

-1+ anp? + assp3 0 (@11 — as5)P1ps
Ciso = 0 —1 + assp? + assp3 0
| (a1 — ass)p1ps 0 -1+ assp? + aupi
—1 + anp? + assp} 0 (@13 + ass)p1ps
Cvm = 0 —1 + aesp? + assp3 0
(@13 + ass)P1ps 0 —1 + assp? + asspl
—1+anp} + assp} 0 (@13 + ass)p1ps
Cumi = 0 -1+ assp% + a44p§ 0
(@13 + ass)p1ps 0 —1 + assp? + agsps
-1+ anp? + assp? 0 (@13 + ass)p1Ps
Comn = 0 —1 + Ge6P? + GaaD} 0
(@13 + ass)p1ps 0 —1 + ass5p? + azsp3
Propagation in [z, z;]—plane
-1+ a3s5p3 + assp? 0 0
Ciso = 0 —1+anpi+assp? (@11 — ass)peps
0 (@11 — ass)peps  —1 + assp3 + anpl
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Cvti

Cum

Cort

—1 + aesp3 + assp2
0
0

—1 + assp3 + assp3
0
0

-1+ assp§ -+ 5503
0
0

0 0 |
— 2 _.m2 L Qe [
1+anp; +assp; (a3 + ass)p2ps !

(@13 + ass)paps  —1 + assp3 + agsp? |

0 0
=1+ azsp} + aup?  (azs — Ggq)paps
(@33 =~ Gaa)pops  —1+ GaaD3 + a33p3 |

0 0 P

(@23 + @44)pops
—1 + ayps + as;p’

—1 + axp3 + agp3
(@23 + Gas)pops
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Appendix D

APPROXIMATE REFLECTION AND TRANSMISSION
COEFFICIENTS FOR SYMMETRY PLANES IN HTI MEDIA

The same assumption as for the expressions shown in Appendix A hold for the
following HTI coefficients. The medium parameters are defined in the main text (see
Chapters 4,5,6).

e P-wave reflection coefficient (isotropy plane)
ss o DAZ ha (2B’ AG] .
PP = 1/2 Z -:-1/2 {'—:——— (&) G,}sm 21

Do . 5. .
+1/2€' sm221 ta.n2zl

e P-wave transmission coefficient (isotropy plane)

PP = 1- 1/2éZ£+1/2%3 sin? i,

Ao .
+1/2—&— sin2i1 tan221

e Sl-wave reflection coefficient (isotropy plane)

< 2 DAp AP (@AY} Dp\ ..
Sigh = —1/2 (__' + ——-—) + (——=—+2-——-— sin®
P\7 "5 28 "7 h n
—1/2-&2 sin? j; tan® f,

B

e Sl-wave transmission coefficient (isotropy plane)

2 AN Ap Aﬁ) Aﬂ . .
Sigh = 1-1/2 | =—+ == + 1/2 = sin?
/(,3 2 + 1258 s

+1/2%’—3- sin? j; tan® 7,
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o S*-wave reflection coefficient (isotropy plane)
S.LS'-L o= -—1/2 <7 + "'B— +mM— '72)
A . 2.
+1/2 (—Bg +m— ’72) sin® 1

+1/2 (—’3-2 +m - ’Yz) sin? j; tan? j;

e St-wave transmission coefficient (isotropy plane)
Seoay Ap Aﬂ )
S=5- = 1-1/2 +
/ ( F ’3 M=
+1/2 (%é +m - ’Yz) sin® j;

+1/2 (% +m - 72) sin® j; tan® j;

e PSll reflection coefficient (isotropy plane)

pél = —yplpsinh 5 (A” + 29—ﬂ) sin; cosé
p cosjy @& \ p B

. é Aﬁ Lp sin®4;
"\&) U7 75 ) s 1
o PS!l transmission coefficient (isotropy plane)

P = 122# Lpsiniy B <___+ ﬁ) sini; cos i,
p cosjy a\p B

() by
a B p ] cosp

e SIP reflection coefficient (isotropy plane)

A -
Jip = _1pl2RA B (ﬂ’—z—Afi) sin j; cos j;
p cosiy &

p B

, (Aﬂ Ap) sin® j;

Tzt — ) ——
B p ] cosiy
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e SiP transmission coefficient (isotropy plane)

Ap sin fy N g (_Aze*zé__ﬁ_> sin 7; cos 7y

p cost a \ p B
( Aﬁ Ap) sin® j;
+ T
B 7 p ) cosiy

Slp = —172=F

o P-wave reflection coefficient (symmetry-axis plane)

ss  1AZ ba  (B\? (LG
SRS STl ) (F +20:-)

+5V) — 59’)} sin? 4,

1A
+3 {?a +e¥) — egv)} sin?4; tan®4;

e P-wave transmission coefficient (symmetry-axis plane)

5D 1 AZ , Na ) V) 2.
PP =1 5% Tz{a 405 ' =67/ ysin®yy
+% {é&E +e¥) - e§">} sin? %, tan® i,

+ {5§V) — &) + eé"’ - e&"’} sin3,,

o S+—-wave reflection coefficient (symmetry-axis plane)

7 (DB Ap a\’ .
+{§ (—B' +n- ’Yz> + 2—5— -1/2 (-E) (5§V) - (5§V) - égv) +

A . .
-1/2 (Tﬁ +m - 72) sin? j; tan? f;

e S*-wave transmission coefficient (symmetry-axis plane)

S8+ = 1-1/2 (2R 2E Ly -
/</3 3 st ’72)

") } sin® j;

1{A8 a\’
+3 {—- Tn-—r—1/2 (E) (65 ~ &V — )+ e&v))} sin?

B8
127



Andreas Riiger

AB

+ (—B_ +mM - ’Yz) sin? j tan® j;

-\ 2
a . 4.
+ (—B> (ng) - 5§V) - egv) + e&"’) sin® j;

o Sl-wave reflection coefficient (symmetry-axis plane)

Sigh = —1/2 (ép’—’—éﬁ) + = (A—ﬂ—% '72) sin® j;

2

B B
1/A . 2. .
+3 <—5£ +y — ’Yg) sin® j; tan® j;

o Sl-wave transmission coefficient (symmetry-axis plane)

SIgh =1+ G318

e PS* reflection coefficient (symmetry-axis plane)

PSt =

_1/22f Ap siny
p cosj

ﬁ{Ap (Aﬂ )} . )
—_—_— et 2=+ sin 7; cos %
a F; B ML= 72 1 1

N B AB Ap) sin®i;
(B) {2 (Frm-m) - ) s

- &2

2(a%—P)cosjy  2(a2— PP

+ ('i 021 cos z1) (69’) - 6§V) +e( — & ))} sin®

+
|'/—\ Q||

2
_ 5 — 60 1+ ) _ W)
( ,32) COS .71 1 1 2 )

| B V) sV o3
: _2(&2 — Bz) COSj]_ (51 52 ) 330 0 B

i g V) _ V),V W)
- 2 o) — 6 L V)

| (a2 — B?) cos potaT e

e PS+ transmission coefficient (symmetry-axis plane)

pst = 1222

Dp sini,
p €Osjy
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_g {%’-:—2 (%’3+71 —72>} sin¢; cos
B\? AB . Ap) sin’i;
(&) (T ) - F o

&fB cos i, ) <N s
i .<2(052 52) cos 7y *3 (@2 - [32)) (6177 =3 )} sin 4,

N (ﬂég‘fsgzl) (6 =6 1 V) — >)] sin®i,

& — 5V 1 V) — egv))} sin® 4,

(&2 52) cos i1
' g V) _ s w3
+ 4 & s
2(a2 — B?) cos j1 2 1| sinta
P V) _ V) o ) 0] s
= o= -4 —_— o
+ &~ ) cosn N 0y '+ € € ’)| sin®%,

e S P reflection coefficient (symmetry-axis plane)

T
_ g {%—" +2 <—Aﬂ—'3 +mn - 72)} Sin j; cos j1
#f2(Brm-m)+ 22} 22
(o ~ s o787 s

[ a'3cosj1 1% \’4 \4 Vv . .
+ —-———3( ) 52) (5( ) 5§ )—! Gg )—eg ))] Sln3]1

a COS ]1 v V) , (V v . .
= (_ )C o5, (5()—5§)-r€§)—6g ))] Sln3]1

e S+P transmission coefficient (symmetry-axis plane)

P = —1220S0h
p COsSyy

3 (A
B {—p+2(A—ﬁ+71 72)} sin j; cos ji
p B
Aﬁ Ap sin3j1
+ 42| =+ —_—
{ (ﬁ ne 72) p } cos iy
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&t cos? V)

| 32(a2 — B?) cosiy 2
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Appendix E

SHEAR-WAVE REFLECTION IN SYMMETRY PLANES OF
ORTHORHOMBIC MEDIA

The derivations of HTI and orthorhombic media reflection coefficients are very
similar. Analysis of symmetry-plane Christoffel systems yields the scattering coef-
ficients and naturally leads to the introduction of a new effective parameterization
(Tsvankin, 1996a). For completeness, I state the [z;,z3]-symmetry-plane reflection
coefficients for the shear wave polarized (for vertical incidence and symmetry-plane
propagation) in the [;, z3)-plane (S*), and in the [z, z3]-plane (S!):

REVZ = R 4 1/2 9@ tan?j
~\2
RE™ = RE+1/2 (%) (Ae® — A§D) sin® 5 ,. (E.1)

with shear-wave velocities 8 = 4/cy/p in RE:,,"“} and B+ = y/ess/p in R{S’j’“].
Parameters 6 and € are responsible for near-vertical and near-horizontal P-wave
propagation, respectively, exactly as § and ¢ in VTI models. v determines the ve-
locity variation of the Sl wave polarized normal to the [z;,z3}-plane. The reflection
coefficients R, and R¥? are shown in Chapter 2 and need to be evaluated for the
corresponding vertical shear-wave velocities.

For shear waves propagating in the {z,, z;]-plane, the solutions for the reflection
coefficients are as follows:

-\ 2
RGP = REy+ 1/2 (%) (Ae®) — A5Y) sin?; .
RE?™ = R +1/209Y tan®j. (E.2)
As before, the Sl-wave coefficients are shown with velocity 8 whereas the S—-wave
vertical shear-velocity is 3+. A definition of the new effective coefficients and their

relations to the generic Thomsen parameters (VTI) and HTI parameters is given in
Chapter 7.
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