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ABSTRACT

All inverse problems require the specification of a priori information on the
space of models. Typically, it is assumed that the a priori uncertainties can be
described using Gaussian probabilities, whether explicitly through the use of
some a priori covariances, or implicitly, with “regularized least squares”. Our
goal is to try to get beyond these assumptions and let realistic prior information
speak for itself. To that end we show here a simple case study in the use of
geologic information for seismic inversion. We estimate nonparametrically the
Bayesian a priori distribution for layered earth models directly from a P-wave
sonic log and give a numerical procedure for randomly sampling earth models
following this distribution. This procedure is then modified in order to obtain
earth models that sample the a posteriori distribution, which we regard as a
complete solution of the inverse problem. Although the scope of this calculation

is limited, the methods employed have a broad utility.
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1 INTRODUCTION

All inverse calculations must balance the extent to which models fit data with the extent
to which they conform to our prejudices as to what makes a model good or bad. In some
cases it is possible to find completely unrealistic models which nevertheless fit the data. The
a priori information we use to judge the reasonableness of models comes in many forms,

from the subjective wisdom of experts to quantitative data. By incorporating this prior
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information into Bayesian probability distributions, we can tackle, in principle, completely
general kinds of inverse problems without relying on the particular form of the distribution—
as, for example, least squares makes Gaussian assumptions. In this paper we give a concrete
example of the nonparametric estimation of a Bayesian prior for earth models derived from
a P-wave sonic log. The ultimate goal is to do the seismic inverse problem for surface seismic
data and, using the information derived from the sonic log, to constrain, in a Bayesian sense,
the inferences we draw from the seismic data. We end up with an algorithm for sampling
the a priori distribution associated with the well log. To solve the full inverse problem,
i.e., to sample the Bayesian a posteriori distribution we must, in effect, select the models
sampled from the prior distribution by how well they fit the data. We use the Metropolis-
like procedure proposed by Mosegaard & Tarantola (1994). This procedure is guaranteed to

converge to the posterior distribution.

1.1 Probabilistic Formulation of the Inverse Problem

Assume we are analyzing some physical system (in geophysics this is usually the Earth)
that is described by some parameters. Any particular value of the parameters describing the
system defines a model of the system. A generic model is represented by the symbol m. The
collection of all possible models defines the model space.

Probabilistic formulations of inverse theory consider probability densities in the model
space. Two probability distributions are fundamental ingredients to the theory.

One probability distribution describes the a priori information we may have on the
parameters describing our model. Here, a priori means information that is independent
of the data set to be used to refine this information. This a priori probability density is
denoted p(m). The purpose of this paper is to give an example of its definition.

If an experiment produces some data, then a “likelihood function” has to be introduced
(Tarantola, 1987) that measures the “degree of fit” between the data predicted by the
model (using some physical theory) and the actually observed data. This likelihood function

is denoted L(m) and the most popular example is

L(m) x exp (_% ; |g:(m) — d?bsl”) , (1)

7]
a;

where, if d?*® represents the observed value for the i-th datum, gi(m) represents the cal-
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culated value corresponding to the model m, and o; is an estimation of the uncertainty
attached to the i-th observation. For p = 2 we have a Gaussian probability density (for inde-
pendent uncertainties), while for p = 1 we have a Laplacian (double exponential) probability
density. Equation (1) is only given as an example, and much more realistic expressions may
be used that describe better experimental uncertainties, but this is outside the scope of this
paper.

Once the probability density p(m) and the likelihood function L(m) have been defined,
describing respectively the a prior: information we have on model parameters and the like-
lihood of a model, the resulting a posterior: probability density is given by the expression

(see Appendix A for a derivation)
o(m) = kp(m) L(m), (2)

where k is a normalization constant. The probability density o(m) combines the a priori
information with the information coming from observations. The more the a posteriori un-
certainties on model parameters [as described by o(m)] have been reduced compared to the
a priori uncertainties [as described by p(m)] the more successful the “inversion” of the data
has been.

We can use the function o(m) to find out the probability that the true model is inside
a particular region of the model space by integrating o(m) over the particular region. Ne-
glecting the presence of p(m) in Equation (2) and judging models only on how well they fit
the data is called maximum likelihood estimation. On the other hand, neglecting L(m) and
sampling models only according to some prior distribution is akin to geostatistical simula-
tion. The complete solution of the inverse problem combines these two features: sampling
models according to a prior distribution and selecting them according to how well they fit
the data.

With that brief introduction to the theory, we turn now to a simple example of the
probabilistic approach to using prior information. For more details on the theoretical aspects
of the problem see Tarantola (1987) and Mosegaard and Tarantola (1994). We will consider
the problem of inverting reflection seismic data for subsurface elastic properties in an area
where we have a single P-wave sonic log. We regard the sonic log as containing important
information about the geology of earth models in the area even though it consists of in-situ

measurements made on a much finer scale than the seismic wavelength. The question is, how
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Figure 1. P-wave sonic log. The numbers on the abscissa refer to the samples, which were recorded every 30 cm. The wave

speeds are in m/s.

to use this information? We will proceed by extracting the statistical properties from the log
and then generating pseudo-random logs with these same statistical properties. By definition
then, all of these pseudo-random models are a priori realistic in a geologic sense: this is how
we sample the prior probability. Once this problem is solved, it is simple (although perhaps

expensive) to use the likelihood function to sample the posterior probability.

2 CASE STUDY: EXTRACTING THE PRIOR FROM A SONIC LOG

Figure 1 shows an example of a P-wave sonic log. The wave speeds are in m/s and the samples
were recorded every 30 cm. Our point of view is that the log represents a combination of
gradual, deterministic processes and essentially random fluctuations. Thus if we subtract
the smooth trend of the log (shown in Figure 2) from the original data, we will be left with
an essentially random process, as shown in Figure 3. We will regard the trend of the log as
being known exactly a priori. It could be asserted on geologic grounds or determined by
some other geophysical technique such as travel time inversion. In any case, we will focus
our attention on the fluctuating part of the log, which we regard as being a realization of
a stationary stochastic process whose properties are to be determined. The assumption of
stationarity can be relaxed, for example, by dividing the log into pieces associated with time

or geologic horizons.
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Figure 2. Trend of the log obtained with a sliding 150 sample alpha-trimmed mean filter.
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Figure 3. Fluctuating part of the log obtained by subtracting the trend from the original data.
2.1 Random Processes

Some basic principles of random functions are set forth in Appendix B; here we plan to keep
the discussion as simple as possible. Consider a field £(r) defined at every point r of the
space. If what we have is, in fact, a random field, this means that at every point r of the

space we have a random variable =(r). The notation
falé,€ay oo EmiTe, Ty Ty)
represents the n—dimensional (joint) probability density for the random variables
=(r1),=(r2), ..., 2(rm).

To describe in all generality a random function requires, for any m, and for any points

ry,r2,..., Iy, to give the m—dimensional joint probability density

fm(§17£2a T ,ém;rlar% cee ,l‘m).
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If the space has been discretized using, say n points, then we have only n random variables,
and the most general case needs, at most an n—dimensional probability density.
Practically, we must rely on the fact that the n—dimensional distribution can be ex-
pressed in terms of the marginal distributions of the process. For example, the three dimen-
sional distribution f(z,y, z) can be written as f(z|y, z) f(y, ), which can in turn be written
as f(z|yz)f(y|z)f(z) and so on by induction for the general n-dimensional distribution. For
example, if a process is Markovian, this characterization in terms of marginals is especially

simple since

, _ fal&, &1, 1) - - f2(bnm1, €nyTna, Th)
Sl bar s buimny Ty mn) = S ) - i€t Tt 3)

where f; and f; are, respectively the one- and two-dimensional marginal distributions asso-

ciated with f,. This brings out clearly the fact that for Markov fields the probability of a

point depends only on the previous point.

2.2 Estimating the Marginal Distributions

For more general processes than Markovian ones, we need more of the marginal distribu-
tions, not just the one- and two-dimensional ones. But, in any case, the marginals can be
estimated by making histograms of the data. The process of making these histograms begins
by quantizing the log into some number of equal-length velocity intervals. Figure 4 shows
how this is done.

Once the log is quantized, we just start counting. For example, to compute the two-
dimensional marginals of length one (i.e., the probability density for the velocity values at two
consecutive points) we count all the transitions from an interval ¢ to an interval j which occur
at adjacent sites along the log (note that we are using here the stationarity assumption).
To compute all the two-dimensional distributions we must compute all transitions from an
interval  to an interval j over non-adjacent sites as well. Figures 5 and 6 show second order
histograms for the P-wave sonic log, the first for transitions of length 1, the second for
transitions of length 5.

Clearly it would be impractical to attempt to compute all the marginal distributions
for a process of several thousands of points. But at the same time we are not yet willing
to restrict ourselves to parametric assumptions, such as Gaussian statistics, that would

allow us to reduce the computational burden. Our compromise is to calculate enough of
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Figure 4. The data are quantized into a number of equal-length velocity intervals so that histograms can be made. Here we
show the first 100 samples of the de-meaned sonic log and a toy quantization into 5 intervals. In practice we use a much larger
number of intervals, from 100 to 500.

the marginals so as to convince ourselves that we have indeed captured the essence of the
process. To quantify this, we use the Kolmogorov-Smirnov two-sample test and compare the
original data with pseudo-random simulations calculated with a given number of marginals.
The K-S test (described in Appendix C) involves comparing the cumulative distribution
function of two different realizations (in this case the data and the simulation), the so-called
null hypothesis being that the two were drawn from the same distribution. A high value
of the K-S statistic says that the two realizations were very likely drawn from the same
underlying distribution; this gives us confidence that the pseudo-random realizations have

captured the essence of the data.
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Figure 5. Histograms of two-point transitions of length 1 (i.e., pairwise transitions for adjacent sites along the log) for the
P-wave sonic log. If for a given value of = and y axes, say (i, j), the count is n, that means that there are n sites along the log

where the site itself and its neighbor have the quantized values i and j respectively.

100

Figure 6. Histograms of two-point transitions of length 5 for the P-wave sonic log. These correspond to transitions from a site

k to a site k + 5 on the log.

2.3 Sampling the Prior

Once we have computed a sufficient number of the marginals we must be able to sample the
prior distribution. To sample a probability density means to produce a pseudo random “sam-
ple” (or realization) of the random variable. By definition, the probability for the produced
“point” to belong to any volume of the space must equal the probability of the volume. The

algorithms used to sample a probability produce, very often, consecutive samples that are
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not independent (think of Brownian motion of a particle: if, in the long term, the particle
may be at any point of the space with uniform probability, at close times the particle will
be at close points). In such a situation, to obtain independent samples we simply have to
“wait” until the algorithm loses the memory of the previous point.

Typically, a sampling algorithm produces a test point using some “background proba-
bility” (usually the uniform one) and then, uses some random criterion for “accepting” the
test point or for “dropping” it. Obviously, if the background probability is very close to
the probability we wish to sample, the test points will be often accepted. In this case, one
says that the algorithm uses an “importance sampling method”. Any nontrivial sampling
algorithm, in fact, uses importance sampling, and this will be the case for the examples
below.

To do our sampling we use the histograms directly. Suppose, for example, that we needed
only the two-point histograms of length 1 (as would be the case if the underlying process
were Markovian, since then the probability of a given point depends only on the probability
of the previous point). Figure 7 shows a cartoon of this case. The values of the observed log
are {§(r,)}f\;l Let us refer to the values of a pseudo-random simulation as {¢ (r;)}il. We
begin the construction of the simulation by assigning some value to ¢(ry), for example, this
could be a likely value for the log based on the one-dimensional marginal. Now all we have
to do is select £'(r;) according to the histogram of length 1 transitions. Suppose &'(r;) = 4,
as shown in Figure 7. Then the slice through the histogram associated with ¢ = 4 is the
conditional probability distribution of making the length 1 transition 4 — j for any j. To
assign the value €'(r;) in accordance with this conditional probability, we make, in effect, a
weighted roulette wheel with a sector for each interval number. The size of each interval’s
sector is in proportion to its probability from the histogram. Then by spinning the roulette
wheel we will select ¢'(rz) with the appropriate probability. For Markov processes we would
proceed in this way right down the log, filling in one value &'(r;) after another.

But suppose our data are not Markovian? Suppose, for example, that the results of the
K-S test say that we must include all two-point transitions out to some length ¢. In this
case we begin as before, filling out the first and second sites along the log. But now, to fill
out the third site, we choose the roulette wheel associated with transitions of length two

conditioned on the first point €'(r;). Then we choose the roulette wheel associated with
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Figure 7. A weighted roulette wheel is used to sample the histograms. If the current site on the pseudo-random log has a
value i and we need a length £ transition to fill in the next slot, we first select the length ¢ histogram. Then we extract the
one-dimensional marginal associated with the value i. (In the example shown in the figure i = 4.) This gives us the observed
probability of making a transition from a value i to all other values over a distance of £ sites.

length three transitions conditioned on €’(r;), and so on until we have filled in the first £+ 1
sites on the log. Then we start over again at the site £+ 2. This procedure can be generalized
to higher order histograms.

Figure 8 shows 15 such logs pseudo-randomly sampled from the second order histograms
of the data in Figure 1. In this case we used all the histograms out to a length of 5 samples,
which is estimated to be the average correlation length in the medium. Using histograms
of this length we are able to routinely generate pseudo-random logs with a K-S statistic
of better than 95%. In other words, the distributions associated with the two realizations,
pseudo-random and data, are so close that K-S cannot tell whether they are the same or
not. But it is important to emphasize, that the K-S test is used only as a “preprocessing”
step. Once we have decided on the number of marginals to use, we sample them as described
in the text. That means that in the course of the sampling, we may generate simulations

with low a priori probability but these will be relatively rare occurrences.
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Figure 8. Pseudorandom logs obtained by sampling the a priori model distribution. Here we used all the second order
histograms up to the average correlationlength of the medium. Each of these pseudo-randomlogs is a priori feasible geologically.
We have only to rank the models according to how well they fit the seismic data. We can imagine that these 15 models are 15

frames from a movie tour of the prior.

3 SOLVING THE INVERSE PROBLEM

Now that we have a procedure for sampling the prior, we can use these models to sample
the posterior according to the algorithm of Mosegaard and Tarantola (1994). This involves
accepting or rejecting models according to how well they fit the data, and represents a
generalization of the usual Metropolis method for sampling the Gibbs-Boltzman distribution.

More precisely, let us assume that we are able to obtain samples my, mo, ..., of the prior
probability distribution p(m). Then, if we wish to obtain samples of the posterior probability

distribution o(m) = k p(m) L(m) all that we need to do is to iterate the following procedure.

e Let m; be the “current model.”
o Use the rules that allow one to sample the prior probability distribution p(m) to obtain

a new model, say m..
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o If L(m}) > L(m;), take m! as new current model, i.e., make m;;; = m’.
e If L(m}]) < L(m;), then decide randomly to take the model m! as new current model,

or to destroy it, with a probability of taking it as new current model equal to the ratio

L(m})/L(my).

Mosegaard and Tarantola (1994) show that this procedure converges to the true a posterior:
distribution.

The precise specification of L requires knowledge of the data and modeling uncertainties,
as shown in Appendix A. We cannot say what it means to fit the data if we do not know the
data uncertainites. This is obviously a crucial issue when inverting real data. But it is beyond
the scope of this paper. So although we did not have to make a parametric assumption about
the a priori distribution, we must make some choice for the data distribution. For this we
make the simplest choice, gaussian, so that we can use a least squares criterion to measure
data misfit. In other words, for purposes of this demonstration, we will generate synthetic
data from the actual log and add a small amount of uncorrelated gaussian noise. Figure 9
shows the synthetic “data”, a single zero-offset reflection seismogram, associated with the
true model (top) and the same trace contaminated with a small amount (5%) uncorrelated
gaussian noise. The seismograms are computed by convolving a 50 hz Ricker wavelet with the
acoustic impulse response for the model. The algorithm for computing this impulse response
is from Robinson (1967) and includes all multiples, but is limited to zero-offset, acoustic,
marine data. Once we have the data trace, the likelihood function is the difference between

this trace and the response of the sampled model, normalized by the known data variance

L(m) o exp (_% 2; lgi(m) — d?bs|2) (4)

o2

where g;(m) are the synthetic data associated with a sampled model m, d¢** are the “ob-

served” data, and o is the standard deviation of the errors.

3.1 Sampling the Posterior

Figure 10 shows a selection of models sampled according to the generalized Metropolis
procedure of Mosegaard and Tarantola (1994). We can think of these models as 15 frames
from a movie tour of the posterior. But how do these samples of the posterior actually

“solve” an/the inverse problem? It is up to us to pose questions and use the posterior to
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Figure 9. The top figure shows the “data” (i.e., model response) for the true log. The seismogram is obtained by convolving a
50 hz Ricker wavelet with the acoustic impulse response for the model. The algorithm for computing this impulse response is
from Robinson’s book (1967) and includes all multiples in a fixed time window, but is limited to zero-offset, acoustic, marine
data. Below the noise free seismogram is the seismogram with 5% uncorrelated gaussian noise added. We take this to be the
observed data for the inverse problem.

answer them probabilistically. A simple illustration of this is to investigate the extent to
which a certain feature of our earth models is resolved by the seismic data. Figure 11 shows
the distribution of P-wave reflectivity at two points along the log, one near the top of the
log (2 = 10, i.e., the tenth sample along the log) and one near the bottom (z = 1800).
In both cases the posterior variance is visibly reduced relative to the prior variance. This
is a quantitative measure of the extent to which the seismic data are able to resolve these

parameters.

4 CAVEATS

There are a great many limitations to this work. Here we list some of the more obvious ones

with evidence both for the prosecution (con) and the defense (pro).

con: The sample size is too small and therefore the a posteriori statistics unreliable.
pro: True. The calculations were done on a slow workstation. By moving to a faster
workstation and optimizing the code, a factor of 10 speedup is easily obtainable. To move

to 2-D, however, will require significantly greater computing resources.

con: The noise model is unrealistic.
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Figure 10. 1D earth models obtained by sampling the a posteriori distribution according to the Metropolis-like algorithm of
Mosegaard and Tarantola (1994).

pro: True. Until we can estimate the noise directly from the data this will be a problem.
In defense of our small a priori data error bars, we believe that the “noise” in exploration
seismic data which can usefully be classified as gaussian (or some similar distribution) is

very small. Far larger are the uncertainties due to modeling errors and, perhaps, coherent

environmental noise, for which we have no realistic model.

con: None of the models in the posterior sample would generate seismograms that fit
within the (tiny) error bars assigned to the data.

pro: True. This is a function of the small sample size. Should we allow the algorithm to
run long enough, it will end by sampling a point inside this region and would remain there a
long time, but this might take a prodigious number of iterations. On the other hand, the fact
that the Monte Carlo scheme converges to the a posteriori distribution means that we can
nevertheless compare the relative probability of different models. If the posterior variance

of a parameter is smaller than the prior variance, then new information has been obtained,
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Figure 11. Prior versus posterior distribution of P-wave reflection coefficient at two points in the model. The z values shown
refer to the sample number along the log. So these points are at extreme ends of the log. Near the upper surface, the posterior
variance is noticeably smaller, indicating an increase in resolution. At the bottom of the log, however, the prior and posterior
variances are virtually the same. So the seismic data have not resolved the deeper reflection coefficient at all.

even if the response of the posterior samples do not fit within the a priori error bars of the

data.
A good simulation should answer positively to the following three questions:

(i) Have we chosen correctly the type of perturbations (of the current model)?

(i1) Is the size of the perturbations adapted to the size of the significant region of the
model space?

(ili) Have we started at a point close enough to the region of significant probability so

that we will enter it in a reasonable time?

At present, there remains a lot of work to be done in order to answer these questions

rigorously.
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5 CONCLUSIONS AND FUTURE WORK

We have shown a case study of the use of complex e priori information in a Bayesian inverse
calculation. The problem we have examined is the inversion of reflection seismograms for 1D
earth structure given a well log as a priori geologic information. We have developed a non-
parametric technique for extracting the Bayesian a priori distribution from logs (or other
similar data), as well as a method for sampling this a priori distribution. This algorithm
allows us to generate as many pseudo-random earth models as we like, in accordance with
the underlying @ priori distribution. This sampling of the prior is then coupled with a
Metropolis-like procedure to produce a sampling of the a posteriori distribution. Once we
have this a posteriori distribution, which we regard as the ultimate solution of the inverse
problem, it is up to us to pose proper questions and use the a posteriori distribution to

answer them.
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APPENDIX A: THE BAYESIAN POSTERIOR PROBABILITY

As we have argued, the posterior probability density on the space of models must be the
product of two terms: a term which involves the a priori probability on the space of models

and a term which measures the extent of data fit
o(d) = kp(m) L(m). (A1)

L is called the likelihood function and depends implicitly on the data.

We now show how Equation (A1) follows logically from Bayes’ theorem provided we
generalize our notion of “data” to allow for the possibility that the data might be specified
by probability distributions (Tarantola, 1987). To do so we make use of an idea due to
Jeffreys (1983) (as described in (Duijndam, 1987)). We begin by using the notation common
amongst Bayesians, then we show how this relates to the more standard inverse-theoretic
notation in Tarantola (1987).

In this approach we assume that we have some prior joint distribution po(m,d). Further,
we suppose that as the result of some observation, the marginal pdf of d changes to p;(d).
We regard p;(d) as being the “data” in the sense that we often know the data only as a
distribution, not exact numbers. In the special case where the data are exactly known, p;(d)
reduces to a delta function &(d — d,s).

How do we use this new information in the solution of the inverse problem? The answer
is based upon the following assumption: whereas the information on d has changed as a
result of the experiment, there is no reason to think that the conditional degree of belief of

m on d has. Le.,
pi(m|d) = po(m|d). (A2)

From this one can derive the posterior marginal p;(m):
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pm) = [ pi(m,d)dd (43)

= [ pa(mld)pi(d) ad (A1)

= [ po(mld)pi(d) dd (45)

- D”"(dmg’;(m)pl(d) dd (A6)
Po(d|m)

= p(m) [ 2757 (d) dd, (A7)

where D denotes the data space.

Switching now to the inverse-theoretic notation, let us regard po(d) as being the non-
informative prior distribution on data pp(d): this is what we know about the data before
we’ve actually done this particular experiment. Further, we identify p;(m) as the posterior
distribution on the space of models, p,(d) as the data errors, po(m) as the prior distribution

on the space of models, and po(d|m) as the modeling errors:
pi(m) = o(m)
pi(d) = pp(d)
po(m) = py(m)
po(d|m) = ©(d|m),
then we arrive at precisely Equation (1.65) of Tarantola (1987)
o(m) = pa(m) ) 22L)CIR)

An important special case occurs when the modeling errors are negligible, i.e., we have

dd (A8)

a perfect theory. Then the conditional distribution ©(d|m) reduces to a delta function

d(d — g(m)) where g is the forward operator. In this case, the posterior is simply

o(m) = puan) | 224D

ng(m). (A9)
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APPENDIX B: ELEMENTS OF RANDOM FIELDS

Here we set forth the basic notations having to do with random functions. This section is
an adaptation of Pugachev (1965). We will consider random fields in (3-D) physical space.
Adaptation to other sorts of fields is straightforward.

=(r) will denote a random field. A realization of the random field will be denoted by
£(r) . We may think of ¢ as a physical parameter defined at every point of the space (like

the velocity of seismic waves, the temperature, etc.). We will work inside a volume V .

B1 n-dimensional joint probability densities

Let (ry,rs,...,r,) be aset of n points inside V . An expression like

fn(§1,£27 RS gn; ry,ra,... ’rn)
will denote the n-dimensional (joint) probability density for the values ¢(ry),¢(rz2),...,t(rs).

The notation f,(é1,&,...,&;r1,0r2,...,T,) may seem complicated, but it just indicates
that for every different set of points (ry,rs,...,r,) we have a possibly different probability
density.

The random field T(r) is completely characterized if, for any set of n points inside
V , the joint probability density f.(é1,&2,...,&n;T1,r2, .., y) is defined, and this for any

value of n.

B2 Marginal and conditional probability

The definitions for marginal and conditional volumetric probabilities do not pose any special
difficulty. As notations rapidly become intricate, let us only give the corresponding definitions
for some particular cases, the generalization being straightforward.

If fs(&,é&,E3;r1,re,r3) is the 3-D joint volumetric probability for the values of the
random field at points r;,ro and r; respectively, the marginal volumetric probability for

the two points r; and r; is defined by

1o, €23 1,72) =[ dL(Es) fol€r, a5 1,2, s) (A10)

where dL(¢3) is the (1-D) volume element (it may be df; or something different).
Let us now turn now to the illustration of the definition of conditional probability. If

f3(&1,€2,&35r1, 12, 13) is the 3-D joint volumetric probability for the values of the random
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field at points rj,r, and r; respectively, the conditional volumetric probability for the

two points r; and r;, given that the random field takes the value &3 at point rs , is
defined by

. . _ fs(flafz,fs;l'l,rz, 1‘3)
fS(fl, 62, o r2|£3, r3) _f dL(€3) f3(£la€2’ 63; ry, s, 1‘3) ’ (All)

i.e., using equation A10,

f3(&1, &a5 1,12 €35 13) = fs(iéﬁ:g::’i’)ra) . (A12)

Of particular interest will be the one- and the two-dimensional probability densities,

denoted respectively fi(¢;r) and fo(&1, 82511, 12) .

B3 Random fields defined by low order probability densities

First example: Independently distributed variables.

If
fn(él,f% o ,f’n;rlar% e arn) =
9(&1,r1) h(&a,r2). .. i(€n,sTn) (A13)

we say that the random field has independently distributed variables.
Second example: Markov random field.

For a Markov process,
fn(€1)§21 v )é‘n; ry,Ira,... ,rﬂ) =
falnsvalén-15Tn-1) f2(€n-1;Tn-1]én-25Tn—2) (Al4)

- Ja(&asraléas ) fi(asra) s

where the vertical bar denotes conditional probability. This means that the value at a given

point depends only on the value at the previous point. As

f2(€io1, &y rica, 1)

fa(&isrilicayricy) = FilEritin) (A15)
we obtain
fn({lafZa'"agn;rlarZ)---,rn): (A16)

f2(§1, £a;r1,T2) ... fz(fn-l, a3 Tno1,Tn)
fl(fz;l‘z) f1(§3;r3)---fl(fn—l;!‘n-1) ’

This equation characterizes a Markov random field in all generality. It means that the random
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field is completely characterized by 1-D and 2-D probability densities (defined at adjacent
points).

Third example: Gaussian random field.

For a Gaussian random field, if we know the 2-D distributions, we know all the means and
all the covariances, so we also know the n-dimensional distribution. It can be shown that a

Gaussian process with exponential covariance is Markovian.

B4 Uniform random fields

A random field is uniform (i.e., stationary) in the strong sense if for any rg ,
f‘n(EI’f?’ v ,gn; Iy, TIy,... ,r‘n) =

falé, €y o &niro+ 01, T 19, o+ 1)
Taking
ro = —r;
gives then

f'n(é'laé'?,' .. afn;rl’r% s )rn) =

falbr, €2y 603 0,ra — 1y, ... 0 — 1)
A distribution is said to be uniform in the weak sense if this expression holds only for n =1
and n = 2.

As the random field is defined over the physical space, we prefer the term uniform to
characterize what, in random fields defined over a time variable, is called stationary. This
is entirely a question of nomenclature; we regard the terms as being interchangeable.
Ezample:

For the two-dimensional distribution,
fa(€r, Ea5r1,12) = Wa (£, €25 Ar)
with
Ar=ry—r; .

Fzample:
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For the three-dimensional distribution,

fs(1, 62, €311, 72, 13) = W3(£1, 42, €35 Ary, Ar)
with
Ary=r;—r
and
Ar, =r3—r; .

Essentially a uniform random process is one whose properties do not change with space

(or time if that is the independent variable).

APPENDIX C: THE KOLMOGOROV-SMIRNOV TEST

This brief discussion is taken directly from Numerical Recipes (1986). The two-sample
Kolmogorov-Smirnov statistic tests the null hypothesis that two data sets are drawn from
the same distribution. It is based on a comparison of the cumulative distribution functions
(CDF) of the two data sets. One can imagine any number of comparisons between the two
CDFs. K-S represents an especially simple one: it is defined as the maximum value of the

absolute difference between the two CDFs. In symbols, the K-S statistic D is given by
D= max |Sn(z)— Sn,(2)|

—00<r <00

where Sy, (z) and Sn,(z) are the approximate CDFs for the two data sets. The key point,
however, is that the distribution function for the K-S statistic itself (for the null-hypothesis
that the data sets are drawn from the same distribution) can be calulated approximately.

The significance function @) for this test is given by the following approximation:

-2 A2

Qr-s(A) = 2%(—1)j_16_2’
1=1

A plot of this significance function is given in Figure Al.
For the two-sample test, the significance level for an observed value of D (as a disproof

of the null-hypothesis) is given approximately by

Probability(D > observed) = Qk-s (”%D)

where N, and N, are the numbers of samples in the two data sets.
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Figure A1. Kolmogorov-Smirnov significance function.
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ABSTRACT

All inverse problems require the specification of a priori information on the
space of models. Typically, it is assumed that the a prior: uncertainties can be
described using Gaussian probabilities, whether explicitly through the use of
some @ priori covariances, or implicitly, with “regularized least squares”. Our
goal is to try to get beyond these assumptions and let realistic prior information
speak for itself. To that end we show here a simple case study in the use of
geologic information for seismic inversion. We estimate nonparametrically the
Bayesian a priori distribution for layered earth models directly from a P-wave
sonic log and give a numerical procedure for randomly sampling earth models
following this distribution. This procedure is then modified in order to obtain
earth models that sample the a posteriori distribution, which we regard as a
complete solution of the inverse problem. Although the scope of this calculation

is limited, the methods employed have a broad utility.

Key words: a priori information, inverse problems, Bayesian inference

1 INTRODUCTION

All inverse calculations must balance the extent to which models fit data with the extent
to which they conform to our prejudices as to what makes a model good or bad. In some
cases it is possible to find completely unrealistic models which nevertheless fit the data. The
a priori information we use to judge the reasonableness of models comes in many forms,

from the subjective wisdom of experts to quantitative data. By incorporating this prior
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information into Bayesian probability distributions, we can tackle, in principle, completely
general kinds of inverse problems without relying on the particular form of the distribution—
as, for example, least squares makes Gaussian assumptions. In this paper we give a concrete
example of the nonparametric estimation of a Bayesian prior for earth models derived from
a P-wave sonic log. The ultimate goal is to do the seismic inverse problem for surface seismic
data and, using the information derived from the sonic log, to constrain, in a Bayesian sense,
the inferences we draw from the seismic data. We end up with an algorithm for sampling
the a prior: distribution associated with the well log. To solve the full inverse problem,
i.e., to sample the Bayesian a posteriori distribution we must, in effect, select the models
sampled from the prior distribution by how well they fit the data. We use the Metropolis-
like procedure proposed by Mosegaard & Tarantola (1994). This procedure is guaranteed to

converge to the posterior distribution.

1.1 Probabilistic Formulation of the Inverse Problem

Assume we are analyzing some physical system (in geophysics this is usually the Earth)
that is described by some parameters. Any particular value of the parameters describing the
system defines a model of the system. A generic model is represented by the symbol m. The
collection of all possible models defines the model space.

Probabilistic formulations of inverse theory consider probability densities in the model
space. Two probability distributions are fundamental ingredients to the theory.

One probability distribution describes the a prior: information we may have on the
parameters describing our model. Here, a priori means information that is independent
of the data set to be used to refine this information. This a prior:i probability density is
denoted p(m). The purpose of this paper is to give an example of its definition.

If an experiment produces some data, then a “likelihood function” has to be introduced
(Tarantola, 1987) that measures the “degree of fit” between the data predicted by the
model (using some physical theory) and the actually observed data. This likelihood function

is denoted L(m) and the most popular example is

(m) — dobe|P
L(m) « exp (—%E |gi(m) — d2**| ) , (1)

of

where, if d?® represents the observed value for the i-th datum, g;(m) represents the cal-
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culated value corresponding to the model m, and o; is an estimation of the uncertainty
attached to the i-th observation. For p = 2 we have a Gaussian probability density (for inde-
pendent uncertainties), while for p = 1 we have a Laplacian (double exponential) probability
density. Equation (1) is only given as an example, and much more realistic expressions may
be used that describe better experimental uncertainties, but this is outside the scope of this
paper.

Once the probability density p(m) and the likelihood function L(m) have been defined,
describing respectively the a priori information we have on model parameters and the like-
lihood of a model, the resulting a posterior: probability density is given by the expression

(see Appendix A for a derivation)
o(m) =k p(m) L(m), (2)

where k is a normalization constant. The probability density o(m) combines the a priori
information with the information coming from observations. The more the a posteriori un-
certainties on model parameters [as described by o(m)] have been reduced compared to the
a priori uncertainties [as described by p(m)] the more successful the “inversion” of the data
has been.

We can use the function o(m) to find out the probability that the true model is inside
a particular region of the model space by integrating o(m) over the particular region. Ne-
glecting the presence of p(m) in Equation (2) and judging models only on how well they fit
the data is called maximum likelihood estimation. On the other hand, neglecting L(m) and
sampling models only according to some prior distribution is akin to geostatistical simula-
tion. The complete solution of the inverse problem combines these two features: sampling
models according to a prior distribution and selecting them according to how well they fit
the data.

With that brief introduction to the theory, we turn now to a simple example of the
probabilistic approach to using prior information. For more details on the theoretical aspects
of the problem see Tarantola (1987) and Mosegaard and Tarantola (1994). We will consider
the problem of inverting reflection seismic data for subsurface elastic properties in an area
where we have a single P-wave sonic log. We regard the sonic log as containing important
information about the geology of earth models in the area even though it consists of in-situ

measurements made on a much finer scale than the seismic wavelength. The question is, how
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Figure 1. P-wave sonic log. The numbers on the abscissa refer to the samples, which were recorded every 30 cm. The wave
speeds are in m/s.

to use this information? We will proceed by extracting the statistical properties from the log
and then generating pseudo-random logs with these same statistical properties. By definition
then, all of these pseudo-random models are a priori realistic in a geologic sense: this is how
we sample the prior probability. Once this problem is solved, it is simple (although perhaps

expensive) to use the likelihood function to sample the posterior probability.

2 CASE STUDY: EXTRACTING THE PRIOR FROM A SONIC LOG

Figure 1 shows an example of a P-wave sonic log. The wave speeds are in m/s and the samples
were recorded every 30 cm. Our point of view is that the log represents a combination of
gradual, deterministic processes and essentially random fluctuations. Thus if we subtract
the smooth trend of the log (shown in Figure 2) from the original data, we will be left with
an essentially random process, as shown in Figure 3. We will regard the trend of the log as
being known exactly a priori. It could be asserted on geologic grounds or determined by
some other geophysical technique such as travel time inversion. In any case, we will focus
our attention on the fluctuating part of the log, which we regard as being a realization of
a stationary stochastic process whose properties are to be determined. The assumption of
stationarity can be relaxed, for example, by dividing the log into pieces associated with time

or geologic horizons.
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Figure 2. Trend of the log obtained with a sliding 150 sample alpha-trimmed mean filter.
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Figure 3. Fluctuating part of the log obtained by subtracting the trend from the original data.
2.1 Random Processes

Some basic principles of random functions are set forth in Appendix B; here we plan to keep
the discussion as simple as possible. Consider a field £(r) defined at every point r of the
space. If what we have is, in fact, a random field, this means that at every point r of the

space we have a random variable =(r). The notation

fn(fl,fz,---,fm;l‘l,l'z,---,l‘m)
represents the n—dimensional (joint) probability density for the random variables
=2(r1),Z2(r2), .. o, Z(rm)-
To describe in all generality a random function requires, for any m, and for any points

ry,ra,...,Iy, to give the m—dimensional joint probability density

fm(€1,§2a e aé‘m;rlar% s arm)°
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If the space has been discretized using, say n points, then we have only n random variables,
and the most general case needs, at most an n—dimensional probability density.
Practically, we must rely on the fact that the n—dimensional distribution can be ex-
pressed in terms of the marginal distributions of the process. For example, the three dimen-
sional distribution f(z,y, z) can be written as f(z|y, z) f(y, z), which can in turn be written
as f(z|yz)f(y|z)f(z) and so on by induction for the general n-dimensional distribution. For
example, if a process is Markovian, this characterization in terms of marginals is especially

simple since

. _ f2(€17§2;r1a r2)---f2(€n—l,€n;rn—larn)
Sl oo bmiminr o m) = i a) . i (Ent; To) 3)

where f; and f; are, respectively the one- and two-dimensional marginal distributions asso-
ciated with f,. This brings out clearly the fact that for Markov fields the probability of a

point depends only on the previous point.

2.2 Estimating the Marginal Distributions

For more general processes than Markovian ones, we need more of the marginal distribu-
tions, not just the one- and two-dimensional ones. But, in any case, the marginals can be
estimated by making histograms of the data. The process of making these histograms begins
by quantizing the log into some number of equal-length velocity intervals. Figure 4 shows
how this is done.

Once the log is quantized, we just start counting. For example, to compute the two-
dimensional marginals of length one (i.e., the probability density for the velocity values at two
consecutive points) we count all the transitions from an interval 7 to an interval § which occur
at adjacent sites along the log (note that we are using here the stationarity assumption).
To compute all the two-dimensional distributions we must compute all transitions from an
interval : to an interval j over non-adjacent sites as well. Figures 5 and 6 show second order
histograms for the P-wave sonic log, the first for transitions of length 1, the second for
transitions of length 5.

Clearly it would be impractical to attempt to compute all the marginal distributions
for a process of several thousands of points. But at the same time we are not yet willing
to restrict ourselves to parametric assumptions, such as Gaussian statistics, that would

allow us to reduce the computational burden. Our compromise is to calculate enough of
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Figure 4. The data are quantized into a number of equal-length velocity intervals so that histograms can be made. Here we
show the first 100 samples of the de-meaned sonic log and a toy quantization into 5 intervals. In practice we use a much larger
number of intervals, from 100 to 500.

the marginals so as to convince ourselves that we have indeed captured the essence of the
process. To quantify this, we use the Kolmogorov-Smirnov two-sample test and compare the
original data with pseudo-random simulations calculated with a given number of marginals.
The K-S test (described in Appendix C) involves comparing the cumulative distribution
function of two different realizations (in this case the data and the simulation), the so-called
null hypothesis being that the two were drawn from the same distribution. A high value
of the K-S statistic says that the two realizations were very likely drawn from the same
underlying distribution; this gives us confidence that the pseudo-random realizations have

captured the essence of the data.
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100

Figure 5. Histograms of two-point transitions of length 1 (i.e., pairwise transitions for adjacent sites along the log) for the
P-wave sonic log. If for a given value of z and y axes, say (i, j), the count is n, that means that there are n sites along the log

where the site itself and its neighbor have the quantized values i and j respectively.

Figure 6. Histograms of two-point transitions of length 5 for the P-wave sonic log. These correspond to transitions from a site

k to a site k 4+ 5 on the log.

2.3 Sampling the Prior

Once we have computed a sufficient number of the marginals we must be able to sample the
prior distribution. To sample a probability density means to produce a pseudo random “sam-
ple” (or realization) of the random variable. By definition, the probability for the produced
“point” to belong to any volume of the space must equal the probability of the volume. The

algorithms used to sample a probability produce, very often, consecutive samples that are
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not independent (think of Brownian motion of a particle: if, in the long term, the particle
may be at any point of the space with uniform probability, at close times the particle will
be at close points). In such a situation, to obtain independent samples we simply have to
“wait” until the algorithm loses the memory of the previous point.

Typically, a sampling algorithm produces a test point using some “background proba-
bility” (usually the uniform one) and then, uses some random criterion for “accepting” the
test point or for “dropping” it. Obviously, if the background probability is very close to
the probability we wish to sample, the test points will be often accepted. In this case, one
says that the algorithm uses an “importance sampling method”. Any nontrivial sampling
algorithm, in fact, uses importance sampling, and this will be the case for the examples
below.

To do our sampling we use the histograms directly. Suppose, for example, that we needed
only the two-point histograms of length 1 (as would be the case if the underlying process
were Markovian, since then the probability of a given point depends only on the probability
of the previous point). Figure 7 shows a cartoon of this case. The values of the observed log
are {£(r;)}ir,. Let us refer to the values of a pseudo-random simulation as (&)}, We
begin the construction of the simulation by assigning some value to £'(r;), for example, this
could be a likely value for the log based on the one-dimensional marginal. Now all we have
to do is select £'(rz) according to the histogram of length 1 transitions. Suppose £'(r;) = 4,
as shown in Figure 7. Then the slice through the histogram associated with i = 4 is the
conditional probability distribution of making the length 1 transition 4 — j for any j. To
assign the value ¢’(r;) in accordance with this conditional probability, we make, in effect, a
weighted roulette wheel with a sector for each interval number. The size of each interval’s
sector is in proportion to its probability from the histogram. Then by spinning the roulette
wheel we will select ¢'(r;) with the appropriate probability. For Markov processes we would
proceed in this way right down the log, filling in one value £(r;) after another.

But suppose our data are not Markovian? Suppose, for example, that the results of the
K-S test say that we must include all two-point transitions out to some length £. In this
case we begin as before, filling out the first and second sites along the log. But now, to fill
out the third site, we choose the roulette wheel associated with transitions of length two

conditioned on the first point £'(r;). Then we choose the roulette wheel associated with
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Figure 7. A weighted roulette wheel is used to sample the histograms. If the current site on the pseudo-random log has a
value i and we need a length £ transition to fill in the next slot, we first select the length ¢ histogram. Then we extract the
one-dimensional marginal associated with the value i. (In the example shown in the figure i = 4.) This gives us the observed
probability of making a transition from a value i to all other values over a distance of ¢ sites.

length three transitions conditioned on £'(r;), and so on until we have filled in the first £+1
sites on the log. Then we start over again at the site £+ 2. This procedure can be generalized
to higher order histograms.

Figure 8 shows 15 such logs pseudo-randomly sampled from the second order histograms
of the data in Figure 1. In this case we used all the histograms out to a length of 5 samples,
which is estimated to be the average correlation length in the medium. Using histograms
of this length we are able to routinely generate pseudo-random logs with a K-S statistic
of better than 95%. In other words, the distributions associated with the two realizations,
pseudo-random and data, are so close that K-S cannot tell whether they are the same or
not. But it is important to emphasize, that the K-S test is used only as a “preprocessing”
step. Once we have decided on the number of marginals to use, we sample them as described
in the text. That means that in the course of the sampling, we may generate simulations

with low a priori probability but these will be relatively rare occurrences.
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Figure 8. Pseudorandom logs obtained by sampling the a priori model distribution. Here we used all the second order
histograms up to the average correlationlength of the medium. Each of these pseudo-randomlogs is a priori feasible geologically.
We have only to rank the models according to how well they fit the seismic data. We can imagine that these 15 models are 15

frames from a movie tour of the prior.

3 SOLVING THE INVERSE PROBLEM

Now that we have a procedure for sampling the prior, we can use these models to sample
the posterior according to the algorithm of Mosegaard and Tarantola (1994). This involves
accepting or rejecting models according to how well they fit the data, and represents a
generalization of the usual Metropolis method for sampling the Gibbs-Boltzman distribution.

More precisely, let us assume that we are able to obtain samples m;, m,, ..., of the prior
probability distribution p(m). Then, if we wish to obtain samples of the posterior probability

distribution o(m) = k p(m) L(m) all that we need to do is to iterate the following procedure.

e Let m; be the “current model.”
e Use the rules that allow one to sample the prior probability distribution p(m) to obtain

a new model, say m..
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o If L(m!) > L(m;), take m} as new current model, i.e., make m;;; = m.

o If L(m!) < L(m;), then decide randomly to take the model m} as new current model,
or to destroy it, with a probability of taking it as new current model equal to the ratio

L(m{)/L(m,).

Mosegaard and Tarantola (1994) show that this procedure converges to the true a posteriori
distribution.

The precise specification of L requires knowledge of the data and modeling uncertainties,
as shown in Appendix A. We cannot say what it means to fit the data if we do not know the
data uncertainites. This is obviously a crucial issue when inverting real data. But it is beyond
the scope of this paper. So although we did not have to make a parametric assumption about
the a prior: distribution, we must make some choice for the data distribution. For this we
make the simplest choice, gaussian, so that we can use a least squares criterion to measure
data misfit. In other words, for purposes of this demonstration, we will generate synthetic
data from the actual log and add a small amount of uncorrelated gaussian noise. Figure 9
shows the synthetic “data”, a single zero-offset reflection seismogram, associated with the
true model (top) and the same trace contaminated with a small amount (5%) uncorrelated
gaussian noise. The seismograms are computed by convolving a 50 hz Ricker wavelet with the
acoustic impulse response for the model. The algorithm for computing this impulse response
is from Robinson (1967) and includes all multiples, but is limited to zero-offset, acoustic,
marine data. Once we have the data trace, the likelihood function is the difference between

this trace and the response of the sampled model, normalized by the known data variance

. . Jobs|2
L(m) o exp (—%Z lgi(m) — d7| ) (4)

o2
where g;(m) are the synthetic data associated with a sampled model m, d¢® are the “ob-

served” data, and o is the standard deviation of the errors.

3.1 Sampling the Posterior

Figure 10 shows a selection of models sampled according to the generalized Metropolis
procedure of Mosegaard and Tarantola (1994). We can think of these models as 15 frames
from a movie tour of the posterior. But how do these samples of the posterior actually

“solve” an/the inverse problem? It is up to us to pose questions and use the posterior to
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Figure 9. The top figure shows the “data” (i.e., model response) for the true log. The seismogram is obtained by convolving a
50 hz Ricker wavelet with the acoustic impulse response for the model. The algorithm for computing this impulse response is
from Robinson's book (1967) and includes all multiples in a fixed time window, but is limited to zero-offset, acoustic, marine
data. Below the noise free seismogram is the seismogram with 5% uncorrelated gaussian noise added. We take this to be the
observed data for the inverse problem.

answer them probabilistically. A simple illustration of this is to investigate the extent to
which a certain feature of our earth models is resolved by the seismic data. Figure 11 shows
the distribution of P-wave reflectivity at two points along the log, one near the top of the
log (z = 10, i.e., the tenth sample along the log) and one near the bottom (z = 1800).
In both cases the posterior variance is visibly reduced relative to the prior variance. This

is a quantitative measure of the extent to which the seismic data are able to resolve these

parameters.

4 CAVEATS

There are a great many limitations to this work. Here we list some of the more obvious ones

with evidence both for the prosecution (con) and the defense (pro).

con: The sample size is too small and therefore the a posteriori statistics unreliable.
pro: True. The calculations were done on a slow workstation. By moving to a faster
workstation and optimizing the code, a factor of 10 speedup is easily obtainable. To move

to 2-D, however, will require significantly greater computing resources.

con: The noise model is unrealistic.
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Figure 10. 1D earth models obtained by sampling the a posteriori distribution according to the Metropolis-like algorithm of
Mosegaard and Tarantola (1994).

pro: True. Until we can estimate the noise directly from the data this will be a problem.
In defense of our small a priori data error bars, we believe that the “noise” in exploration
seismic data which can usefully be classified as gaussian (or some similar distribution) is
very small. Far larger are the uncertainties due to modeling errors and, perhaps, coherent

environmental noise, for which we have no realistic model.

con: None of the models in the posterior sample would generate seismograms that fit
within the (tiny) error bars assigned to the data.

pro: True. This is a function of the small sample size. Should we allow the algorithm to
run long enough, it will end by sampling a point inside this region and would remain there a
long time, but this might take a prodigious number of iterations. On the other hand, the fact
that the Monte Carlo scheme converges to the a posterior: distribution means that we can
nevertheless compare the relative probability of different models. If the posterior variance

of a parameter is smaller than the prior variance, then new information has been obtained,
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Figure 11. Prior versus posterior distribution of P-wave reflection coefficient at two points in the model. The z values shown
refer to the sample number along the log. So these points are at extreme ends of the log. Near the upper surface, the posterior
variance is noticeably smaller, indicating an increase in resolution. At the bottom of the log, however, the prior and posterior
variances are virtually the same. So the seismic data have not resolved the deeper reflection coefficient at all.

even if the response of the posterior samples do not fit within the a priori error bars of the

data.
A good simulation should answer positively to the following three questions:

(i) Have we chosen correctly the type of perturbations (of the current model)?

(i1) Is the size of the perturbations adapted to the size of the significant region of the
model space?

(iii) Have we started at a point close enough to the region of significant probability so

that we will enter it in a reasonable time?

At present, there remains a lot of work to be done in order to answer these questions

rigorously.
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5 CONCLUSIONS AND FUTURE WORK

We have shown a case study of the use of complex a priori information in a Bayesian inverse
calculation. The problem we have examined is the inversion of reflection seismograms for 1D
earth structure given a well log as a prior: geologic information. We have developed a non-
parametric technique for extracting the Bayesian a priori distribution from logs (or other
similar data), as well as a method for sampling this e priori distribution. This algorithm
allows us to generate as many pseudo-random earth models as we like, in accordance with
the underlying a priori distribution. This sampling of the prior is then coupled with a
Metropolis-like procedure to produce a sampling of the a posteriori distribution. Once we
have this @ posterior: distribution, which we regard as the ultimate solution of the inverse
problem, it is up to us to pose proper questions and use the a posteriori distribution to

answer them.
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APPENDIX A: THE BAYESIAN POSTERIOR PROBABILITY

As we have argued, the posterior probability density on the space of models must be the
product of two terms: a term which involves the a priori probability on the space of models

and a term which measures the extent of data fit
o(d) = kp(m) L(m). (Al)

L is called the likelihood function and depends implicitly on the data.

We now show how Equation (A1) follows logically from Bayes’ theorem provided we
generalize our notion of “data” to allow for the possibility that the data might be specified
by probability distributions (Tarantola, 1987). To do so we make use of an idea due to
Jeffreys (1983) (as described in (Duijndam, 1987)). We begin by using the notation common
amongst Bayesians, then we show how this relates to the more standard inverse-theoretic
notation in Tarantola (1987).

In this approach we assume that we have some prior joint distribution po(m, d). Further,
we suppose that as the result of some observation, the marginal pdf of d changes to p;(d).
We regard p;(d) as being the “data” in the sense that we often know the data only as a
distribution, not exact numbers. In the special case where the data are exactly known, p; (d)
reduces to a delta function é(d — dgss).

How do we use this new information in the solution of the inverse problem? The answer
is based upon the following assumption: whereas the information on d has changed as a
result of the experiment, there is no reason to think that the conditional degree of belief of

m on d has. lLe.,
pi(m|d) = po(m|d). (A2)

From this one can derive the posterior marginal p, (m):
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pm) = [ p(m,d)add (A3)
= [ m(mld)pi(d) dd (A1)
= [ po(mld)p:(d) dd (A5)
/D o(dLr:%o(m)pl(d) ad (A6)
po(dlm)

= po(m) [[ B2 75 mi(d) dd, (A7)

where D denotes the data space.

Switching now to the inverse-theoretic notation, let us regard po(d) as being the non-
informative prior distribution on data up(d): this is what we know about the data before
we’ve actually done this particular experiment. Further, we identify p;(m) as the posterior
distribution on the space of models, p;(d) as the data errors, po(m) as the prior distribution

on the space of models, and po(d|/m) as the modeling errors:
pi(m) = o(m)
pi(d) = pp(d)
Po(m) = ppr(m)
po(d|m) = ©(d|m),
then we arrive at precisely Equation (1.65) of Tarantola (1987)

o(m) = par(m) / M dd (A8)

An important special case occurs when the modeling errors are negligible, i.e., we have
a perfect theory. Then the conditional distribution ©(d|m) reduces to a delta function

d(d — g(m)) where g is the forward operator. In this case, the posterior is simply

e pp(d)
o(m) = pm(m) [#D(d)ld=g(m) .

(A9)
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APPENDIX B: ELEMENTS OF RANDOM FIELDS

Here we set forth the basic notations having to do with random functions. This section is
an adaptation of Pugachev (1965). We will consider random fields in (3-D) physical space.
Adaptation to other sorts of fields is straightforward.

Z(r) will denote a random field. A realization of the random field will be denoted by
é(r) . We may think of £ as a physical parameter defined at every point of the space (like

the velocity of seismic waves, the temperature, etc.). We will work inside a volume V .

Bl n-dimensional joint probability densities

Let (ry,ra,...,r,) be aset of n points inside ¥ . An expression like

fn(€1’£2a' .. ’En;rlar%- . arn)

will denote the n-dimensional (joint) probability density for the values t(r;),t(rs),...,t(ry) .
The notation f,(&1,&2,...,6;11,02,...,1,) may seem complicated, but it just indicates
that for every different set of points (ry,rs,...,r,) we have a possibly different probability
density.

The random field T'(r) is completely characterized if, for any set of n points inside
V , the joint probability density fn(é1,&2,...,&n;11,T2,...,r,) is defined, and this for any

value of n.

B2 Marginal and conditional probability

The definitions for marginal and conditional volumetric probabilities do not pose any special
difficulty. As notations rapidly become intricate, let us only give the corresponding definitions
for some particular cases, the generalization being straightforward.

If fa(&,€2,&;r1,r2,13) is the 3-D joint volumetric probability for the values of the
random field at points ri,r; and rs respectively, the marginal volumetric probability for

the two points r; and r, is defined by

fo(&, &5 11, 12) =/ dL(&s) fs(&r, &2, &35 11, T2, 13) (A10)

where dL(£3) is the (1-D) volume element (it may be df; or something different).
Let us now turn now to the illustration of the definition of conditional probability. If

fa(&, €2, &5511, 12, 13) is the 3-D joint volumetric probability for the values of the random
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field at points ry,r; and r3 respectively, the conditional volumetric probability for the

two points r; and r;, given that the random field takes the value {3 at point r3,is

defined by

. . _ fa(fl,fz,fa;l‘l,l‘z,l‘s)
fa(&1, 2511, T2|E35 1) = (AL(6s) fo\br, b2, b3 T1, T2, T3) | (A11)

i.e., using equation Al0,

. . _ f3(£l’£2)£3;r1,r2)r3)
f3(&, €251, 12|&aiw3) = (6 baiters) (A12)

Of particular interest will be the one- and the two-dimensional probability densities,

denoted respectively fi(¢;r) and f2(&,&2;r1,1r2) .

B3 Random fields defined by low order probability densities

First example: Independently distributed variables.

If
fn(§1a§2a°' ',En;rlar%' . -,rn) =
9(€1,11) h(&2,12) ... i(&nsTn) (A13)

we say that the random field has independently distributed variables.
Second ezample: Markov random field.

For a Markov process,
fn(fl,€2,- . 'afn;rl’r% R 1rﬂ) =
f2(€'n; rnlé.n—l; rn—l) f2(§n—l; Fpn—1 lf‘n—2; r'n~-2) (A14)

---f2(§2;1'2|§1;r1) filg;m)

where the vertical bar denotes conditional probability. This means that the value at a given

point depends only on the value at the previous point. As

uGimilgiirin) = L EToLD), (A15)

we obtain

fn(él,é'?,""en;rlar%'-"rn)‘_‘ (A16)

fo(&,€a5r1,12) oo f2(€n-1,€ni Tne1,Tn)
fi(éasr2) fi(bsirs)... filn-1iTno1)

This equation characterizes a Markov random field in all generality. It means that the random
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field is completely characterized by 1-D and 2-D probability densities (defined at adjacent
points).

Third ezample: Gaussian random field.

For a Gaussian random field, if we know the 2-D distributions, we know all the means and
all the covariances, so we also know the n-dimensional distribution. It can be shown that a

Gaussian process with exponential covariance is Markovian.

B4 Uniform random fields

A random field is uniform (i.e., stationary) in the strong sense if for any ro ,
fn(fl,é.?a s aén; ri,ra,... ’r'n) =

fal€i, €2y EniTo+ 1,0+ Ty, ..o, To + 1)
Taking
ro=—r,
gives then

fn(&l,EZ’-°-,§'n;r1’r21'°°’rn) =

falbr,€2,...,&p;0, 02 —1y,... T, —1y) .
A distribution is said to be uniform in the weak sense if this expression holds only for n = 1
and n = 2.

As the random field is defined over the physical space, we prefer the term uniform to
characterize what, in random fields defined over a time variable, is called stationary. This
is entirely a question of nomenclature; we regard the terms as being interchangeable.
Ezample:

For the two-dimensional distribution,
fo(&1, E2i 1, 12) = Wa(61, &2 Ar)
with
Ar=r; —r; .

Ezample:
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For the three-dimensional distribution,
fa(&1, &2, €35 11,12, 13) = W3(61, &2, €33 ATy, Ar)
with
Ar;=r;—r1g
and
Ar =r3—r; .

Essentially a uniform random process is one whose properties do not change with space

(or time if that is the independent variable).

APPENDIX C: THE KOLMOGOROV-SMIRNOV TEST

This brief discussion is taken directly from Numerical Recipes (1986). The two-sample
Kolmogorov-Smirnov statistic tests the null hypothesis that two data sets are drawn from
the same distribution. It is based on a comparison of the cumulative distribution functions
(CDF) of the two data sets. One can imagine any number of comparisons between the two
CDFs. K-S represents an especially simple one: it is defined as the maximum value of the

absolute difference between the two CDFs. In symbols, the K-S statistic D is given by
D=_max_ISm(x) - Sm(z)

—o0o<r<

where Sy, (z) and Sn,(z) are the approximate CDFs for the two data sets. The key point,
however, is that the distribution function for the K-S statistic itself (for the null-hypothesis
that the data sets are drawn from the same distribution) can be calulated approximately.

The significance function @ for this test is given by the following approximation:

7232

QK—S(/\) =2 i(—l)j_le-z’

A plot of this significance function is given in Figure Al.
For the two-sample test, the significance level for an observed value of D (as a disproof

of the null-hypothesis) is given approximately by

Probability(D > observed) = Qk-—s (” IT’;]Y;_N;’V—;D)

where N, and N, are the numbers of samples in the two data sets.
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1

Figure Al. Kolmogorov-Smirnov significance function.
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ABSTRACT

All inverse problems require the specification of a priori information on the
space of models. Typically, it is assumed that the a priori uncertainties can be
described using Gaussian probabilities, whether explicitly through the use of
some a priort covariances, or implicitly, with “regularized least squares”. Our
goal is to try to get beyond these assumptions and let realistic prior information
speak for itself. To that end we show here a simple case study in the use of
geologic information for seismic inversion. We estimate nonparametrically the
Bayesian a priori distribution for layered earth models directly from a P-wave
sonic log and give a numerical procedure for randomly sampling earth models
following this distribution. This procedure is then modified in order to obtain
earth models that sample the a posteriori distribution, which we regard as a
complete solution of the inverse problem. Although the scope of this calculation

is limited, the methods employed have a broad utility.

Key words: a priori information, inverse problems, Bayesian inference

1 INTRODUCTION

All inverse calculations must balance the extent to which models fit data with the extent
to which they conform to our prejudices as to what makes a model good or bad. In some
cases it is possible to find completely unrealistic models which nevertheless fit the data. The
a priori information we use to judge the reasonableness of models comes in many forms,

from the subjective wisdom of experts to quantitative data. By incorporating this prior
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Figure 4. The data are quantized into a number of equal-length velocity intervals so that histograms can be made. Here we
show the first 100 samples of the de-meaned sonic log and a toy quantization into 5 intervals. In practice we use a much larger
number of intervals, from 100 to 500.

the marginals so as to convince ourselves that we have indeed captured the essence of the
process. To quantify this, we use the Kolmogorov-Smirnov two-sample test and compare the
original data with pseudo-random simulations calculated with a given number of marginals.
The K-S test (described in Appendix C) involves comparing the cumulative distribution
function of two different realizations (in this case the data and the simulation), the so-called
null hypothesis being that the two were drawn from the same distribution. A high value
of the K-S statistic says that the two realizations were very likely drawn from the same
underlying distribution; this gives us confidence that the pseudo-random realizations have

captured the essence of the data.
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100

Figure 5. Histograms of two-point transitions of length 1 (i.e., pairwise transitions for adjacent sites along the log) for the
P-wave sonic log. If for a given value of = and y axes, say (i,7), the count is n, that means that there are n sites along the log

where the site itself and its neighbor have the quantized values i and j respectively.

100

Figure 6. Histograms of two-point transitions of length 5 for the P-wave sonic log. These correspond to transitions from a site

k to a site k + 5 on the log.

2.3 Sampling the Prior

Once we have computed a sufficient number of the marginals we must be able to sample the
prior distribution. To sample a probability density means to produce a pseudo random “sam-
ple” (or realization) of the random variable. By definition, the probability for the produced
“point” to belong to any volume of the space must equal the probability of the volume. The

algorithms used to sample a probability produce, very often, consecutive samples that are
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not independent (think of Brownian motion of a particle: if, in the long term, the particle
may be at any point of the space with uniform probability, at close times the particle will
be at close points). In such a situation, to obtain independent samples we simply have to
“wait” until the algorithm loses the memory of the previous point.

Typically, a sampling algorithm produces a test point using some “background proba-
bility” (usually the uniform one) and then, uses some random criterion for “accepting” the
test point or for “dropping” it. Obviously, if the background probability is very close to
the probability we wish to sample, the test points will be often accepted. In this case, one
says that the algorithm uses an “importance sampling method”. Any nontrivial sampling
algorithm, in fact, uses importance sampling, and this will be the case for the examples
below.

To do our sampling we use the histograms directly. Suppose, for example, that we needed
only the two-point histograms of length 1 (as would be the case if the underlying process
were Markovian, since then the probability of a given point depends only on the probability
of the previous point). Figure 7 shows a cartoon of this case. The values of the observed log
are {f(r,)}f:l Let us refer to the values of a pseudo-random simulation as {¢’ (r;)}ﬁl. We
begin the construction of the simulation by assigning some value to ¢'(r,), for example, this
could be a likely value for the log based on the one-dimensional marginal. Now all we have
to do is select {'(r;) according to the histogram of length 1 transitions. Suppose £'(r;) = 4,
as shown in Figure 7. Then the slice through the histogram associated with 7 = 4 is the
conditional probability distribution of making the length 1 transition 4 — j for any j. To
assign the value £€'(r;) in accordance with this conditional probability, we make, in effect, a
weighted roulette wheel with a sector for each interval number. The size of each interval’s
sector is in proportion to its probability from the histogram. Then by spinning the roulette
wheel we will select ¢(ry) with the appropriate probability. For Markov processes we would
proceed in this way right down the log, filling in one value £'(r;) after another.

But suppose our data are not Markovian? Suppose, for example, that the results of the
K-S test say that we must include all two-point transitions out to some length £. In this
case we begin as before, filling out the first and second sites along the log. But now, to fill
out the third site, we choose the roulette wheel associated with transitions of length two

conditioned on the first point £(r;). Then we choose the roulette wheel associated with
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Histogram(i, j ; length)
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Figure 7. A weighted roulette wheel is used to sample the histograms. If the current site on the pseudo-random log has a
value i and we need a length £ transition to fill in the next slot, we first select the length ¢ histogram. Then we extract the
one-dimensional marginal associated with the value i. (In the example shown in the figure i = 4.) This gives us the observed
probability of making a transition from a value i to all other values over a distance of £ sites.

length three transitions conditioned on £'(r,), and so on until we have filled in the first £+ 1
sites on the log. Then we start over again at the site £+ 2. This procedure can be generalized
to higher order histograms.

Figure 8 shows 15 such logs pseudo-randomly sampled from the second order histograms
of the data in Figure 1. In this case we used all the histograms out to a length of 5 samples,
which is estimated to be the average correlation length in the medium. Using histograms
of this length we are able to routinely generate pseudo-random logs with a K-S statistic
of better than 95%. In other words, the distributions associated with the two realizations,
pseudo-random and data, are so close that K-S cannot tell whether they are the same or
not. But it is important to emphasize, that the K-S test is used only as a “preprocessing”
step. Once we have decided on the number of marginals to use, we sample them as described
in the text. That means that in the course of the sampling, we may generate simulations

with low a priori probability but these will be relatively rare occurrences.
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Figure 8. Pseudorandom logs obtained by sampling the a priori model distribution. Here we used all the second order
histogramsup to the average correlationlength of the medium. Each of these pseudo-random logs is a priori feasible geologically.
We have only to rank the models according to how well they fit the seismic data. We can imagine that these 15 models are 15

frames from a movie tour of the prior.

3 SOLVING THE INVERSE PROBLEM

Now that we have a procedure for sampling the prior, we can use these models to sample
the posterior according to the algorithm of Mosegaard and Tarantola (1994). This involves
accepting or rejecting models according to how well they fit the data, and represents a
generalization of the usual Metropolis method for sampling the Gibbs-Boltzman distribution.

More precisely, let us assume that we are able to obtain samples m;, m,, ..., of the prior
probability distribution p(m). Then, if we wish to obtain samples of the posterior probability

distribution 0(m) = k p(m) L(m) all that we need to do is to iterate the following procedure.

e Let m; be the “current model.”
o Use the rules that allow one to sample the prior probability distribution p(m) to obtain

a new model, say m..
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o If L(m!) > L(m;), take m} as new current model, i.e., make m;;; = mj.

o If L(m!) < L(m;), then decide randomly to take the model m; as new current model,
or to destroy it, with a probability of taking it as new current model equal to the ratio
L(m3)/L(m;).

Mosegaard and Tarantola (1994) show that this procedure converges to the true a posterior:
distribution.

The precise specification of L requires knowledge of the data and modeling uncertainties,
as shown in Appendix A. We cannot say what it means to fit the data if we do not know the
data uncertainites. This is obviously a crucial issue when inverting real data. But it is beyond
the scope of this paper. So although we did not have to make a parametric assumption about
the a priori distribution, we must make some choice for the data distribution. For this we
make the simplest choice, gaussian, so that we can use a least squares criterion to measure
data misfit. In other words, for purposes of this demonstration, we will generate synthetic
data from the actual log and add a small amount of uncorrelated gaussian noise. Figure 9
shows the synthetic “data”, a single zero-offset reflection seismogram, associated with the
true model (top) and the same trace contaminated with a small amount (5%) uncorrelated
gaussian noise. The seismograms are computed by convolving a 50 hz Ricker wavelet with the
acoustic impulse response for the model. The algorithm for computing this impulse response
is from Robinson (1967) and includes all multiples, but is limited to zero-offset, acoustic,
marine data. Once we have the data trace, the likelihood function is the difference between

this trace and the response of the sampled model, normalized by the known data variance
obs |2
L(m) ocexp( Z loi( m) ¢ ) (4)

where g;(m) are the synthetic data associated with a sampled model m, d?® are the “ob-

served” data, and o is the standard deviation of the errors.

3.1 Sampling the Posterior

Figure 10 shows a selection of models sampled according to the generalized Metropolis
procedure of Mosegaard and Tarantola (1994). We can think of these models as 15 frames
from a movie tour of the posterior. But how do these samples of the posterior actually

“solve” an/the inverse problem? It is up to us to pose questions and use the posterior to
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Figure 9. The top figure shows the “data” (i.e., model response) for the true log. The seismogram is obtained by convolving a
50 hz Ricker wavelet with the acoustic impulse response for the model. The algorithm for computing this impulse response is
from Robinson’s book (1967) and includes all multiples in a fixed time window, but is limited to zero-offset, acoustic, marine
data. Below the noise free seismogram is the seismogram with 5% uncorrelated gaussian noise added. We take this to be the
observed data for the inverse problem.

answer them probabilistically. A simple illustration of this is to investigate the extent to
which a certain feature of our earth models is resolved by the seismic data. Figure 11 shows
the distribution of P-wave reflectivity at two points along the log, one near the top of the
log (z = 10, i.e., the tenth sample along the log) and one near the bottom (z = 1800).
In both cases the posterior variance is visibly reduced relative to the prior variance. This

is a quantitative measure of the extent to which the seismic data are able to resolve these

parameters.

4 CAVEATS

There are a great many limitations to this work. Here we list some of the more obvious ones

with evidence both for the prosecution (con) and the defense (pro).

con: The sample size is too small and therefore the a posteriori statistics unreliable.
pro: True. The calculations were done on a slow workstation. By moving to a faster
workstation and optimizing the code, a factor of 10 speedup is easily obtainable. To move

to 2-D, however, will require significantly greater computing resources.

con: The noise model is unrealistic.
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Figure 10. 1D earth models obtained by sampling the a posteriori distribution according to the Metropolis-like algorithm of
Mosegaard and Tarantola (1994).

pro: True. Until we can estimate the noise directly from the data this will be a problem.
In defense of our small a priori data error bars, we believe that the “noise” in exploration
seismic data which can usefully be classified as gaussian (or some similar distribution) is

very small. Far larger are the uncertainties due to modeling errors and, perhaps, coherent

environmental noise, for which we have no realistic model.

con: None of the models in the posterior sample would generate seismograms that fit
within the (tiny) error bars assigned to the data.

pro: True. This is a function of the small sample size. Should we allow the algorithm to
run long enough, it will end by sampling a point inside this region and would remain there a
long time, but this might take a prodigious number of iterations. On the other hand, the fact
that the Monte Carlo scheme converges to the a posteriori distribution means that we can
nevertheless compare the relative probability of different models. If the posterior variance

of a parameter is smaller than the prior variance, then new information has been obtained,
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Figure 11. Prior versus posterior distribution of P-wave reflection coefficient at two points in the model. The z values shown
refer to the sample number along the log. So these points are at extreme ends of the log. Near the upper surface, the posterior
variance is noticeably smaller, indicating an increase in resolution. At the bottom of the log, however, the prior and posterior
variances are virtually the same. So the seismic data have not resolved the deeper reflection coefficient at all.

even if the response of the posterior samples do not fit within the a priori error bars of the

data.
A good simulation should answer positively to the following three questions:

(1) Have we chosen correctly the type of perturbations (of the current model)?

(ii) Is the size of the perturbations adapted to the size of the significant region of the
model space?

(ili) Have we started at a point close enough to the region of significant probability so

that we will enter it in a reasonable time?

At present, there remains a lot of work to be done in order to answer these questions

rigorously.
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5 CONCLUSIONS AND FUTURE WORK

We have shown a case study of the use of complex a priori information in a Bayesian inverse
calculation. The problem we have examined is the inversion of reflection seismograms for 1D
earth structure given a well log as a priori geologic information. We have developed a non-
parametric technique for extracting the Bayesian a priori distribution from logs (or other
similar data), as well as a method for sampling this a priori distribution. This algorithm
allows us to generate as many pseudo-random earth models as we like, in accordance with
the underlying a priori distribution. This sampling of the prior is then coupled with a
Metropolis-like procedure to produce a sampling of the a posteriori distribution. Once we
have this a posteriori distribution, which we regard as the ultimate solution of the inverse
problem, it is up to us to pose proper questions and use the a posteriori distribution to

answer them.
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APPENDIX A: THE BAYESIAN POSTERIOR PROBABILITY

As we have argued, the posterior probability density on the space of models must be the
product of two terms: a term which involves the a priori probability on the space of models

and a term which measures the extent of data fit
o(d) = kp(m) L(m). (A1)

L is called the likelihood function and depends implicitly on the data.

We now show how Equation (A1) follows logically from Bayes’ theorem provided we
generalize our notion of “data” to allow for the possibility that the data might be specified
by probability distributions (Tarantola, 1987). To do so we make use of an idea due to
Jeffreys (1983) (as described in (Duijndam, 1987)). We begin by using the notation common
amongst Bayesians, then we show how this relates to the more standard inverse-theoretic
notation in Tarantola (1987).

In this approach we assume that we have some prior joint distribution po(m,d). Further,
we suppose that as the result of some observation, the marginal pdf of d changes to p;(d).
We regard p;(d) as being the “data” in the sense that we often know the data only as a
distribution, not exact numbers. In the special case where the data are exactly known, p,(d)
reduces to a delta function é(d — dops).

How do we use this new information in the solution of the inverse problem? The answer
is based upon the following assumption: whereas the information on d has changed as a
result of the experiment, there is no reason to think that the conditional degree of belief of

m on d has. lLe.,
pi(m|d) = po(m|d). (A2)

From this one can derive the posterior marginal p;(m):
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pu(m) = /D pi(m, d) dd (A3)
= [ p(mid)p:(d) dd (A4)
= [ po(mld)pi(d) dd (A5)
- /”°(d|m)”° pi(d) dd (A6)
_ po(djm)
= po(m) [[ B2 5opi(d) dd, (A7)

where D denotes the data space.

Switching now to the inverse-theoretic notation, let us regard po(d) as being the non-
informative prior distribution on data pup(d): this is what we know about the data before
we’ve actually done this particular experiment. Further, we identify p;(m) as the posterior
distribution on the space of models, p;(d) as the data errors, po(m) as the prior distribution

on the space of models, and po(d|m) as the modeling errors:
pi(m) = o(m)
pi(d) = pp(d)
po(m) = ppr(m)
po(d|m) = O(d|m),

then we arrive at precisely Equation (1.65) of Tarantola (1987)
pp(d)6(d|m)

D pp(d)

An important special case occurs when the modeling errors are negligible, i.e., we have

o(m) = py(m) dd (A8)

a perfect theory. Then the conditional distribution ©(d|m) reduces to a delta function
d(d — g(m)) where g is the forward operator. In this case, the posterior is simply

pp(d)
o(m) = pp(m) [pz(d)]d=g(m) .

(A9)
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APPENDIX B: ELEMENTS OF RANDOM FIELDS

Here we set forth the basic notations having to do with random functions. This section is
an adaptation of Pugachev (1965). We will consider random fields in (3-D) physical space.
Adaptation to other sorts of fields is straightforward.

=(r) will denote a random field. A realization of the random field will be denoted by
£(r) . We may think of ¢ as a physical parameter defined at every point of the space (like

the velocity of seismic waves, the temperature, etc.). We will work inside a volume V .

B1 n-dimensional joint probability densities

Let (ry,rs,...,r;) be aset of n points inside V . An expression like

fﬂ(£1’£2, e °3£‘n;r1’r23' . )rn)

will denote the n-dimensional (joint) probability density for the values #(r;),t(rz),...,t(r,) .
The notation f,(&1,&2,...,&n;T1,T2,...,T,) may seem complicated, but it just indicates
that for every different set of points (rq,rs,...,r,) we have a possibly different probability
density.

The random field T'(r) is completely characterized if, for any set of n points inside
V , the joint probability density fn(£1,&2,--.,€n;T1,2,...,Ty) is defined, and this for any

value of n.

B2 Marginal and conditional probability

The definitions for marginal and conditional volumetric probabilities do not pose any special
difficulty. As notations rapidly become intricate, let us only give the corresponding definitions
for some particular cases, the generalization being straightforward.

If fs(&1,6&2,&;r1,r2,r3) is the 3-D joint volumetric probability for the values of the
random field at points r;,r; and rs; respectively, the marginal volumetric probability for

the two points r; and r, is defined by

fa(&, €251, 12) =/ dL(&3) fa(&r, &2, 3511, 12, 13) (A10)

where dL(£3) is the (1-D) volume element (it may be df; or something different).
Let us now turn now to the illustration of the definition of conditional probability. If

fa(&, €2, &5511, 12, 13) is the 3-D joint volumetric probability for the values of the random
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field at points ry,r; and rs respectively, the conditional volumetric probability for the
two points r; and r; , given that the random field takes the value £3 at point r3 ,is

defined by

. . _ fs(fl,fz,fa;rl,l‘z,l‘a)
fa(fl,fz,rl,l‘2|~fs, r3) _de(fs) fa(fl,fz,fs;l‘hl‘z,ra) ’ (All)

i.e., using equation A1l0,

fa(€1, €251, 12|&3513) = fs(i,(z,g;.:,:,)ra) : (A12)

Of particular interest will be the one- and the two-dimensional probability densities,

denoted respectively fi(t;r) and fa(&,&25r1,T2) .

B3 Random fields defined by low order probability densities

First example: Independently distributed variables.
If

fn(&ly&% .o )én;rlar%' .. ,rn) =
g({l,rl) h(§2’r2)"'i(£n,rn) ) (A13)

we say that the random field has independently distributed variables.
Second ezample: Markov random field.

For a Markov process,
fn(61,€21'- -’fn;rl,r%---,rn) =

f2(6n; rnlén—l; rn—l) f2(§n—l; | | |£n—2; rn—2) (A14)

. f2(§2, r2|§1;l'1) fl(sl) 1'1) )

where the vertical bar denotes conditional probability. This means that the value at a given

point depends only on the value at the previous point. As

e ooy Sal&-1, & i, 1)
f2(£ia rtIEt—la !‘,_1) - fl (Ei—l; ri—l) ’ (A15)
we obtain
fn(flaeh'"afn;rl’r%'“)rn) = (A16)

fa(1,€a5r1,02) . .. fo(€n1, € Tn1,Tn)
filkaira) fi(€sirs)... filnoaiTao1)

This equation characterizes a Markov random field in all generality. It means that the random
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field is completely characterized by 1-D and 2-D probability densities (defined at adjacent
points).

Third example: Gaussian random field.

For a Gaussian random field, if we know the 2-D distributions, we know all the means and
all the covariances, so we also know the n-dimensional distribution. It can be shown that a

Gaussian process with exponential covariance is Markovian.

B4 Uniform random fields

A random field is uniform (i.e., stationary) in the strong sense if for any ro ,
fn(&l,fZ,- . -agn;rl,r%- .- ’rn) =

falbry &2y &nsTo+ 1,0+ Tgy ... To+Ty)
Taking
ro=—r;
gives then

fn({laé%- . ,{,.;rl,rz,. . "rﬂ) =

falbr, €2y, 6n;0, P2 — 1y, .. T — 1)
A distribution is said to be uniform in the weak sense if this expression holds only for n =1
and n = 2.

As the random field is defined over the physical space, we prefer the term uniform to
characterize what, in random fields defined over a time variable, is called stationary. This
is entirely a question of nomenclature; we regard the terms as being interchangeable.
Ezample:

For the two-dimensional distribution,
fa(1, &25r1,12) = Ua(&1, 625 Ar)
with
Ar=r;,—r; .

Ezample:
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For the three-dimensional distribution,
fa(&1, €2, €351, 12, 13) = W3(&1, &2, €35 Ay, Ara)
with
Ari=r,—n
and
Ara=r3—r; .

Essentially a uniform random process is one whose properties do not change with space

(or time if that is the independent variable).

APPENDIX C: THE KOLMOGOROV-SMIRNOV TEST

This brief discussion is taken directly from Numerical Recipes (1986). The two-sample
Kolmogorov-Smirnov statistic tests the null hypothesis that two data sets are drawn from
the same distribution. It is based on a comparison of the cumulative distribution functions
(CDF) of the two data sets. One can imagine any number of comparisons between the two
CDFs. K-S represents an especially simple one: it is defined as the maximum value of the

absolute difference between the two CDF's. In symbols, the K-S statistic D is given by
D=_max_ISw (@)~ Sm(a)]

—00<T<

where Sy, (z) and Sn,(z) are the approximate CDFs for the two data sets. The key point,
however, is that the distribution function for the K-S statistic itself (for the null-hypothesis
that the data sets are drawn from the same distribution) can be calulated approximately.

The significance function @ for this test is given by the following approximation:
Qk-s(A) =2 Z(—l)j'le'm'\’_
=1
A plot of this significance function is given in Figure Al.

For the two-sample test, the significance level for an observed value of D (as a disproof

of the null-hypothesis) is given approximately by

Probability(D > observed) = Qk-s (M %D)

where N, and N, are the numbers of samples in the two data sets.
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Figure A1l. Kolmogorov-Smirnov significance function.
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ABSTRACT

All inverse problems require the specification of a priori information on the
space of models. Typically, it is assumed that the a priori uncertainties can be
described using Gaussian probabilities, whether explicitly through the use of
some a priort covariances, or implicitly, with “regularized least squares”. Our
goal is to try to get beyond these assumptions and let realistic prior information
speak for itself. To that end we show here a simple case study in the use of
geologic information for seismic inversion. We estimate nonparametrically the
Bayesian a priori distribution for layered earth models directly from a P-wave
sonic log and give a numerical procedure for randomly sampling earth models
following this distribution. This procedure is then modified in order to obtain
earth models that sample the a posteriori distribution, which we regard as a
complete solution of the inverse problem. Although the scope of this calculation

is limited, the methods employed have a broad utility.

Key words: a priori information, inverse problems, Bayesian inference

1 INTRODUCTION

All inverse calculations must balance the extent to which models fit data with the extent
to which they conform to our prejudices as to what makes a model good or bad. In some
cases it is possible to find completely unrealistic models which nevertheless fit the data. The
a priori information we use to judge the reasonableness of models comes in many forms,

from the subjective wisdom of experts to quantitative data. By incorporating this prior
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information into Bayesian probability distributions, we can tackle, in principle, completely
general kinds of inverse problems without relying on the particular form of the distribution—
as, for example, least squares makes Gaussian assumptions. In this paper we give a concrete
example of the nonparametric estimation of a Bayesian prior for earth models derived from
a P-wave sonic log. The ultimate goal is to do the seismic inverse problem for surface seismic
data and, using the information derived from the sonic log, to constrain, in a Bayesian sense,
the inferences we draw from the seismic data. We end up with an algorithm for sampling
the a priori distribution associated with the well log. To solve the full inverse problem,
i.e., to sample the Bayesian a posteriori distribution we must, in effect, select the models
sampled from the prior distribution by how well they fit the data. We use the Metropolis-
like procedure proposed by Mosegaard & Tarantola (1994). This procedure is guaranteed to

converge to the posterior distribution.

1.1 Probabilistic Formulation of the Inverse Problem

Assume we are analyzing some physical system (in geophysics this is usually the Earth)
that is described by some parameters. Any particular value of the parameters describing the
system defines a model of the system. A generic model is represented by the symbol m. The
collection of all possible models defines the model space.

Probabilistic formulations of inverse theory consider probability densities in the model
space. Two probability distributions are fundamental ingredients to the theory.

One probability distribution describes the a priori information we may have on the
parameters describing our model. Here, ¢ priori means information that is independent
of the data set to be used to refine this information. This a priori probability density is
denoted p(m). The purpose of this paper is to give an example of its definition.

If an experiment produces some data, then a “likelihood function” has to be introduced
(Tarantola, 1987) that measures the “degree of fit” between the data predicted by the
model (using some physical theory) and the actually observed data. This likelihood function

is denoted L(m) and the most popular example is
; dobs p
L(m) o<exp( Zlg(m | ) ) (1)

where, if d?™ represents the observed value for the i-th datum, g;(m) represents the cal-
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culated value corresponding to the model m, and o; is an estimation of the uncertainty
attached to the i-th observation. For p = 2 we have a Gaussian probability density (for inde-
pendent uncertainties), while for p = 1 we have a Laplacian (double exponential) probability
density. Equation (1) is only given as an example, and much more realistic expressions may
be used that describe better experimental uncertainties, but this is outside the scope of this
paper.

Once the probability density p(m) and the likelihood function L(m) have been defined,
describing respectively the a prior: information we have on model parameters and the like-
lihood of a model, the resulting a posteriori probability density is given by the expression

(see Appendix A for a derivation)
o(m) = k p(m) L(m), (2)

where k is a normalization constant. The probability density o(m) combines the a priori
information with the information coming from observations. The more the a posteriori un-
certainties on model parameters [as described by o(m)] have been reduced compared to the
a priori uncertainties [as described by p(m)] the more successful the “inversion” of the data
has been.

We can use the function o(m) to find out the probability that the true model is inside
a particular region of the model space by integrating o(m) over the particular region. Ne-
glecting the presence of p(m) in Equation (2) and judging models only on how well they fit
the data is called maximum likelihood estimation. On the other hand, neglecting L(m) and
sampling models only according to some prior distribution is akin to geostatistical simula-
tion. The complete solution of the inverse problem combines these two features: sampling
models according to a prior distribution and selecting them according to how well they fit
the data.

With that brief introduction to the theory, we turn now to a simple example of the
probabilistic approach to using prior information. For more details on the theoretical aspects
of the problem see Tarantola (1987) and Mosegaard and Tarantola (1994). We will consider
the problem of inverting reflection seismic data for subsurface elastic properties in an area
where we have a single P-wave sonic log. We regard the sonic log as containing important
information about the geology of earth models in the area even though it consists of in-situ

measurements made on a much finer scale than the seismic wavelength. The question is, how
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Figure 1. P-wave sonic log. The numbers on the abscissa refer to the samples, which were recorded every 30 cm. The wave

speeds are in m/s.

to use this information? We will proceed by extracting the statistical properties from the log
and then generating pseudo-random logs with these same statistical properties. By definition
then, all of these pseudo-random models are a priori realistic in a geologic sense: this is how
we sample the prior probability. Once this problem is solved, it is simple (although perhaps

expensive) to use the likelihood function to sample the posterior probability.

2 CASE STUDY: EXTRACTING THE PRIOR FROM A SONIC LOG

Figure 1 shows an example of a P-wave sonic log. The wave speeds are in m/s and the samples
were recorded every 30 cm. Our point of view is that the log represents a combination of
gradual, deterministic processes and essentially random fluctuations. Thus if we subtract
the smooth trend of the log (shown in Figure 2) from the original data, we will be left with
an essentially random process, as shown in Figure 3. We will regard the trend of the log as
being known exactly a priori. It could be asserted on geologic grounds or determined by
some other geophysical technique such as travel time inversion. In any case, we will focus
our attention on the fluctuating part of the log, which we regard as being a realization of
a stationary stochastic process whose properties are to be determined. The assumption of
stationarity can be relaxed, for example, by dividing the log into pieces associated with time

or geologic horizons.



An Ezample of Geologic Prior Information in a Bayesian Seismic Inverse Calculation 5

2800
2600
2400
2000 250 560 750 10001250 15001750

Figure 2. Trend of the log obtained with a sliding 150 sample alpha-trimmed mean filter.
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Figure 3. Fluctuating part of the log obtained by subtracting the trend from the original data.
2.1 Random Processes

Some basic principles of random functions are set forth in Appendix B; here we plan to keep
the discussion as simple as possible. Consider a field £(r) defined at every point r of the
space. If what we have is, in fact, a random field, this means that at every point r of the

space we have a random variable =(r). The notation

falé, €2,y €mi 1, T2y, )
represents the n—dimensional (joint) probability density for the random variables
=2(r1), =(r2)y .., =(rm)-
To describe in all generality a random function requires, for any m, and for any points

ry;,Tra, ..., Iy, to give the m—dimensional joint probability density

fm(£1,§2,-- . ,£m;l'1,r2,...,rm).
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If the space has been discretized using, say n points, then we have only n random variables,
and the most general case needs, at most an n—dimensional probability density.
Practically, we must rely on the fact that the n—dimensional distribution can be ex-
pressed in terms of the marginal distributions of the process. For example, the three dimen-
sional distribution f(z,y, z) can be written as f(z|y, z) f(y, z), which can in turn be written
as f(z|yz)f(y|z)f(z) and so on by induction for the general n-dimensional distribution. For
example, if a process is Markovian, this characterization in terms of marginals is especially

simple since

. _ fa(€1,625r1,12) . .. fa(€n1,€ns o1, Tn)
faléa, €2, &nsTr T2, .., T,) = AN N AT ) (3)

where f; and f; are, respectively the one- and two-dimensional marginal distributions asso-
ciated with f,. This brings out clearly the fact that for Markov fields the probability of a

point depends only on the previous point.

2.2 Estimating the Marginal Distributions

For more general processes than Markovian ones, we need more of the marginal distribu-
tions, not just the one- and two-dimensional ones. But, in any case, the marginals can be
estimated by making histograms of the data. The process of making these histograms begins
by quantizing the log into some number of equal-length velocity intervals. Figure 4 shows
how this is done.

Once the log is quantized, we just start counting. For example, to compute the two-
dimensional marginals of length one (i.e., the probability density for the velocity values at two
consecutive points) we count all the transitions from an interval ¢ to an interval § which occur
at adjacent sites along the log (note that we are using here the stationarity assumption).
To compute all the two-dimensional distributions we must compute all transitions from an
interval : to an interval j over non-adjacent sites as well. Figures 5 and 6 show second order
histograms for the P-wave sonic log, the first for transitions of length 1, the second for
transitions of length 5.

Clearly it would be impractical to attempt to compute all the marginal distributions
for a process of several thousands of points. But at the same time we are not yet willing
to restrict ourselves to parametric assumptions, such as Gaussian statistics, that would

allow us to reduce the computational burden. Our compromise is to calculate enough of
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Figure 4. The data are quantized into a number of equal-length velocity intervals so that histograms can be made. Here we
show the first 100 samples of the de-meaned sonic log and a toy quantization into 5 intervals. In practice we use a much larger
number of intervals, from 100 to 500.

the marginals so as to convince ourselves that we have indeed captured the essence of the
process. To quantify this, we use the Kolmogorov-Smirnov two-sample test and compare the
original data with pseudo-random simulations calculated with a given number of marginals.
The K-S test (described in Appendix C) involves comparing the cumulative distribution
function of two different realizations (in this case the data and the simulation), the so-called
null hypothesis being that the two were drawn from the same distribution. A high value
of the K-S statistic says that the two realizations were very likely drawn from the same
underlying distribution; this gives us confidence that the pseudo-random realizations have

captured the essence of the data.
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100

Figure 5. Histograms of two-point transitions of length 1 (i.e., pairwise transitions for adjacent sites along the log) for the
P-wave sonic log. If for a given value of = and y axes, say (1, ), the count is n, that means that there are n sites along the log

where the site itself and its neighbor have the quantized values i and j respectively.

100

Figure 6. Histograms of two-point transitions of length 5 for the P-wave sonic log. These correspond to transitions from a site

k to a site k + 5 on the log.

2.3 Sampling the Prior

Once we have computed a sufficient number of the marginals we must be able to sample the
prior distribution. To sample a probability density means to produce a pseudo random “sam-
ple” (or realization) of the random variable. By definition, the probability for the produced
“point” to belong to any volume of the space must equal the probability of the volume. The

algorithms used to sample a probability produce, very often, consecutive samples that are
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not independent (think of Brownian motion of a particle: if, in the long term, the particle
may be at any point of the space with uniform probability, at close times the particle will
be at close points). In such a situation, to obtain independent samples we simply have to
“wait” until the algorithm loses the memory of the previous point.

Typically, a sampling algorithm produces a test point using some “background proba-
bility” (usually the uniform one) and then, uses some random criterion for “accepting” the
test point or for “dropping” it. Obviously, if the background probability is very close to
the probability we wish to sample, the test points will be often accepted. In this case, one

“importance sampling method”. Any nontrivial sampling

says that the algorithm uses an
algorithm, in fact, uses importance sampling, and this will be the case for the examples
below.

To do our sampling we use the histograms directly. Suppose, for example, that we needed
only the two-point histograms of length 1 (as would be the case if the underlying process
were Markovian, since then the probability of a given point depends only on the probability
of the previous point). Figure 7 shows a cartoon of this case. The values of the observed log
are {f(r,-)},-]il. Let us refer to the values of a pseudo-random simulation as {¢’ (r,-)}?_i_l. We
begin the construction of the simulation by assigning some value to ¢(r;), for example, this
could be a likely value for the log based on the one-dimensional marginal. Now all we have
to do is select £’(rz) according to the histogram of length 1 transitions. Suppose £'(r;) = 4,
as shown in Figure 7. Then the slice through the histogram associated with i = 4 is the
conditional probability distribution of making the length 1 transition 4 — j for any j. To
assign the value ¢(r;) in accordance with this conditional probability, we make, in effect, a
weighted roulette wheel with a sector for each interval number. The size of each interval’s
sector is in proportion to its probability from the histogram. Then by spinning the roulette
wheel we will select ¢'(r;) with the appropriate probability. For Markov processes we would
proceed in this way right down the log, filling in one value £'(r;) after another.

But suppose our data are not Markovian? Suppose, for example, that the results of the
K-S test say that we must include all two-point transitions out to some length £. In this
case we begin as before, filling out the first and second sites along the log. But now, to fill
out the third site, we choose the roulette wheel associated with transitions of length two

conditioned on the first point ¢'(r;). Then we choose the roulette wheel associated with
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Figure 7. A weighted roulette wheel is used to sample the histograms. If the current site on the pseudo-random log has a
value i and we need a length £ transition to fill in the next slot, we first select the length ¢ histogram. Then we extract the
one-dimensional marginal associated with the value i. (In the example shown in the figure i = 4.) This gives us the observed
probability of making a transition from a value i to all other values over a distance of ¢ sites.
length three transitions conditioned on ¢'(r;), and so on until we have filled in the first £+1
sites on the log. Then we start over again at the site £+ 2. This procedure can be generalized
to higher order histograms.

Figure 8 shows 15 such logs pseudo-randomly sampled from the second order histograms
of the data in Figure 1. In this case we used all the histograms out to a length of 5 samples,
which is estimated to be the average correlation length in the medium. Using histograms
of this length we are able to routinely generate pseudo-random logs with a K-S statistic
of better than 95%. In other words, the distributions associated with the two realizations,
pseudo-random and data, are so close that K-S cannot tell whether they are the same or
not. But it is important to emphasize, that the K-S test is used only as a “preprocessing”
step. Once we have decided on the number of marginals to use, we sample them as described
in the text. That means that in the course of the sampling, we may generate simulations

with low a priori probability but these will be relatively rare occurrences.
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Figure 8. Pseudorandom logs obtained by sampling the a priori model distribution. Here we used all the second order
histograms up to the average correlation length of the medium. Each of these pseudo-random logs is a priori feasible geologically.
We have only to rank the models according to how well they fit the seismic data. We can imagine that these 15 models are 15

frames from a movie tour of the prior.

3 SOLVING THE INVERSE PROBLEM

Now that we have a procedure for sampling the prior, we can use these models to sample
the posterior according to the algorithm of Mosegaard and Tarantola (1994). This involves
accepting or rejecting models according to how well they fit the data, and represents a
generalization of the usual Metropolis method for sampling the Gibbs-Boltzman distribution.

More precisely, let us assume that we are able to obtain samples m;, m, ..., of the prior
probability distribution p(m). Then, if we wish to obtain samples of the posterior probability

distribution o(m) = k p(m) L(m) all that we need to do is to iterate the following procedure.

e Let m; be the “current model.”
e Use the rules that allow one to sample the prior probability distribution p(m) to obtain

a new model, say m/.
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o If L(m!) > L(m;), take m! as new current model, i.e., make m;;; = m..
o If L(m!) < L(m;), then decide randomly to take the model m; as new current model,
or to destroy it, with a probability of taking it as new current model equal to the ratio

L(m})/L(m;).

Mosegaard and Tarantola (1994) show that this procedure converges to the true a posterior:
distribution.

The precise specification of L requires knowledge of the data and modeling uncertainties,
as shown in Appendix A. We cannot say what it means to fit the data if we do not know the
data uncertainites. This is obviously a crucial issue when inverting real data. But it is beyond
the scope of this paper. So although we did not have to make a parametric assumption about
the a priori distribution, we must make some choice for the data distribution. For this we
make the simplest choice, gaussian, so that we can use a least squares criterion to measure
data misfit. In other words, for purposes of this demonstration, we will generate synthetic
data from the actual log and add a small amount of uncorrelated gaussian noise. Figure 9
shows the synthetic “data”, a single zero-offset reflection seismogram, associated with the
true model (top) and the same trace contaminated with a small amount (5%) uncorrelated
gaussian noise. The seismograms are computed by convolving a 50 hz Ricker wavelet with the
acoustic impulse response for the model. The algorithm for computing this impulse response
is from Robinson (1967) and includes all multiples, but is limited to zero-offset, acoustic,
marine data. Once we have the data trace, the likelihood function is the difference between

this trace and the response of the sampled model, normalized by the known data variance

L(m) o< exp (_% E |gi(m) — d?"‘lz) (4)

o2

where g;(m) are the synthetic data associated with a sampled model m, d®® are the “ob-

served” data, and o is the standard deviation of the errors.

3.1 Sampling the Posterior

Figure 10 shows a selection of models sampled according to the generalized Metropolis
procedure of Mosegaard and Tarantola (1994). We can think of these models as 15 frames
from a movie tour of the posterior. But how do these samples of the posterior actually

“solve” an/the inverse problem? It is up to us to pose questions and use the posterior to
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Figure 9. The top figure shows the “data” (i.e., model response) for the true log. The seismogram is obtained by convolving a
50 hz Ricker wavelet with the acoustic impulse response for the model. The algorithm for computing this impulse response is
from Robinson’s book (1967) and includes all multiples in a fixed time window, but is limited to zero-offset, acoustic, marine
data. Below the noise free seismogram is the seismogram with 5% uncorrelated gaussian noise added. We take this to be the
observed data for the inverse problem.

answer them probabilistically. A simple illustration of this is to investigate the extent to
which a certain feature of our earth models is resolved by the seismic data. Figure 11 shows
the distribution of P-wave reflectivity at two points along the log, one near the top of the
log (z = 10, i.e., the tenth sample along the log) and one near the bottom (z = 1800).
In both cases the posterior variance is visibly reduced relative to the prior variance. This

is a quantitative measure of the extent to which the seismic data are able to resolve these

parameters.

4 CAVEATS

There are a great many limitations to this work. Here we list some of the more obvious ones

with evidence both for the prosecution (con) and the defense (pro).

con: The sample size is too small and therefore the a posteriori statistics unreliable.
pro: True. The calculations were done on a slow workstation. By moving to a faster
workstation and optimizing the code, a factor of 10 speedup is easily obtainable. To move

to 2-D, however, will require significantly greater computing resources.

con: The noise model is unrealistic.
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Figure 10. 1D earth models obtained by sampling the a posteriori distribution according to the Metropolis-like algorithm of
Mosegaard and Tarantola (1994).

pro: True. Until we can estimate the noise directly from the data this will be a problem.
In defense of our small a priori data error bars, we believe that the “noise” in exploration
seismic data which can usefully be classified as gaussian (or some similar distribution) is
very small. Far larger are the uncertainties due to modeling errors and, perhaps, coherent

environmental noise, for which we have no realistic model.

con: None of the models in the posterior sample would generate seismograms that fit
within the (tiny) error bars assigned to the data.

pro: True. This is a function of the small sample size. Should we allow the algorithm to
run long enough, it will end by sampling a point inside this region and would remain there a
long time, but this might take a prodigious number of iterations. On the other hand, the fact
that the Monte Carlo scheme converges to the a posterior: distribution means that we can
nevertheless compare the relative probability of different models. If the posterior variance

of a parameter is smaller than the prior variance, then new information has been obtained,
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Figure 11. Prior versus posterior distribution of P-wave reflection coefficient at two points in the model. The z values shown
refer to the sample number along the log. So these points are at extreme ends of the log. Near the upper surface, the posterior
variance is noticeably smaller, indicating an increase in resolution. At the bottom of the log, however, the prior and posterior
variances are virtually the same. So the seismic data have not resolved the deeper reflection coefficient at all.

even if the response of the posterior samples do not fit within the a priori error bars of the

data.
A good simulation should answer positively to the following three questions:

(i) Have we chosen correctly the type of perturbations (of the current model)?

(ii) Is the size of the perturbations adapted to the size of the significant region of the
mode] space?

(iii) Have we started at a point close enough to the region of significant probability so

that we will enter it in a reasonable time?

At present, there remains a lot of work to be done in order to answer these questions

rigorously.
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5 CONCLUSIONS AND FUTURE WORK

We have shown a case study of the use of complex a priori information in a Bayesian inverse
calculation. The problem we have examined is the inversion of reflection seismograms for 1D
earth structure given a well log as a priori geologic information. We have developed a non-
parametric technique for extracting the Bayesian a priori distribution from logs (or other
similar data), as well as a method for sampling this a priori distribution. This algorithm
allows us to generate as many pseudo-random earth models as we like, in accordance with
the underlying a priori distribution. This sampling of the prior is then coupled with a
Metropolis-like procedure to produce a sampling of the a posterior: distribution. Once we
have this a posteriori distribution, which we regard as the ultimate solution of the inverse
problem, it is up to us to pose proper questions and use the a posteriori distribution to

answer them.
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APPENDIX A: THE BAYESIAN POSTERIOR PROBABILITY

As we have argued, the posterior probability density on the space of models must be the
product of two terms: a term which involves the a priori probability on the space of models

and a term which measures the extent of data fit
o(d) = kp(m) L(m). (A1)

L is called the likelihood function and depends implicitly on the data.

We now show how Equation (Al) follows logically from Bayes’ theorem provided we
generalize our notion of “data” to allow for the possibility that the data might be specified
by probability distributions (Tarantola, 1987). To do so we make use of an idea due to
Jeffreys (1983) (as described in (Duijndam, 1987)). We begin by using the notation common
amongst Bayesians, then we show how this relates to the more standard inverse-theoretic
notation in Tarantola (1987).

In this approach we assume that we have some prior joint distribution po(m, d). Further,
we suppose that as the result of some observation, the marginal pdf of d changes to p;(d).
We regard p;(d) as being the “data” in the sense that we often know the data only as a
distribution, not exact numbers. In the special case where the data are exactly known, p,(d)
reduces to a delta function d(d — dgs).

How do we use this new information in the solution of the inverse problem? The answer
is based upon the following assumption: whereas the information on d has changed as a
result of the experiment, there is no reason to think that the conditional degree of belief of

m on d has. lLe.,
pi(m|d) = po(m|d). (A2)

From this one can derive the posterior marginal p;(m):
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pm) = [ pi(m,d)dd (A3)
= [ m(mid)pi(d) dd (A4)

= [ p(mld)pi(d (A5)

o dL’:‘ ”)°(m)p1(d) dd (A6)
/ Po dlm ) dd, (A7)

where D denotes the da,ta space.

Switching now to the inverse-theoretic notation, let us regard py(d) as being the non-
informative prior distribution on data gp(d): this is what we know about the data before
we’ve actually done this particular experiment. Further, we identify p;(m) as the posterior
distribution on the space of models, p;(d) as the data errors, po(m) as the prior distribution

on the space of models, and po(d|m) as the modeling errors:
pi(m) = o(m)
p1(d) = pp(d)
po(m) = pp(m)
po(d|m) = ©(d|m),
then we arrive at precisely Equation (1.65) of Tarantola (1987)

o(m) = pas(m) [ ””—&j""l)dd (A8)

An important special case occurs when the modeling errors are negligible, i.e., we have
a perfect theory. Then the conditional distribution ©(d|m) reduces to a delta function

4(d — g(m)) where g is the forward operator. In this case, the posterior is simply

_ pp(d)
o(m) = pp(m) [ui(d)Lg(m) '

(A9)
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APPENDIX B: ELEMENTS OF RANDOM FIELDS

Here we set forth the basic notations having to do with random functions. This section is
an adaptation of Pugachev (1965). We will consider random fields in (3-D) physical space.
Adaptation to other sorts of fields is straightforward.

Z(r) will denote a random field. A realization of the random field will be denoted by
£(r) . We may think of ¢ as a physical parameter defined at every point of the space (like

the velocity of seismic waves, the temperature, etc.). We will work inside a volume V .

B1 n-dimensional joint probability densities

Let (rj,rz,...,r;) be aset of n points inside V . An expression like

fﬂ(£1’€27 R ,€ﬂ; ry,ra,... 7r'n)
will denote the n-dimensional (joint) probability density for the values #(r;),#(rs),...,#(rs).

The notation f,(&1,&s,...,6n;11,T2,...,1,) may seem complicated, but it just indicates
that for every different set of points (ri,rs,...,r,) we have a possibly different probability
density.

The random field T(r) is completely characterized if, for any set of n points inside
V , the joint probability density fn(¢1,&2,...,&n; 1,T2,...,r,) is defined, and this for any

value of n.

B2 Marginal and conditional probability

The definitions for marginal and conditional volumetric probabilities do not pose any special
difficulty. As notations rapidly become intricate, let us only give the corresponding definitions
for some particular cases, the generalization being straightforward.

If fa(&,&,E&s5r1,r2,13) is the 3-D joint volumetric probability for the values of the
random field at points ry,r, and r3 respectively, the marginal volumetric probability for

the two points r; and r; is defined by

f2(&1, €511, 12) =/ dL(&3) fa(é1, €2, &350, 12, 13), (A10)

where dL(£3) is the (1-D) volume element (it may be dé; or something different).
Let us now turn now to the illustration of the definition of conditional probability. If

fa(&1, &2, €351, 2, 13) is the 3-D joint volumetric probability for the values of the random
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field at points rj,r; and r3 respectively, the conditional volumetric probability for the

two points r; and r;, given that the random field takes the value £3 at point rj , is

defined by

. . _ f3(£1’£2’ 63;1'1, ra, l‘3)
fa(€1, €25 11, T2|&35 13) = dL(Es) fo\br. b, Exi T1r T2, Ta) | (A11)

i.e., using equation A10,

f3(&1, €211, T2|ési13) = fs(ﬁf;’(g’g’:’:’)ra) . (A12)

Of particular interest will be the one- and the two-dimensional probability densities,

denoted respectively fi(t;r) and f2(&1,&25r1,12) .

B3 Random fields defined by low order probability densities

First example: Independently distributed variables.

If
fn({l,é%- . 'agn;rl,rz,. ..,l‘n) =
g((la rl) h(§2, 1‘2) e i(fn, rn) s (A13)

we say that the random field has independently distributed variables.
Second example: Markov random field.

For a Markov process,
fn(£1a€2’ s aén; ry,ra,... ,rﬂ) =
f2(€nsraléa-1;Tnm1) f2(n-1;Tn-1lén—25Tn—2) (Al4)

...fg(fz;rzlfl;l‘l) fl(fl;rl) )

where the vertical bar denotes conditional probability. This means that the value at a given

point depends only on the value at the previous point. As

ey Salbiory G riea, )
JalGismilti-iria) = fr(i-1irica) ’ (A13)
we obtain
fn(é‘l’f%'”)En;rl,r%-",rn)'_" (A16)

fa(€1,&a5m1,12) . .. fa(€n1y€n3 Tr1, Tn)
fi(&; 1'2) fr(&s; 1‘3) N T (I l‘n—l) .

This equation characterizes a Markov random field in all generality. It means that the random




An Fzample of Geologic Prior Information in a Bayesian Seismic Inverse Calculation 21

field is completely characterized by 1-D and 2-D probability densities (defined at adjacent
points).

Third example: Gaussian random field.

For a Gaussian random field, if we know the 2-D distributions, we know all the means and
all the covariances, so we also know the n-dimensional distribution. It can be shown that a

Gaussian process with exponential covariance is Markovian.

B4 Uniform random fields
A random field is uniform (i.e., stationary) in the strong sense if for any rq ,
fn(§1,§21° .o ’fn;rlar%' . ',rn) =

fal1,€2,- - nsTo+ 1, X0 + T2y To + 1)
Taking
ro = —r;
gives then

fn(£1a§2,° . °’£n;r1’r2" . "rﬂ) =

fal&1, &2y, €0;0,r2 — 1y, ..., Ty — 1) .
A distribution is said to be uniform in the weak sense if this expression holds only for n =1
and n = 2.

As the random field is defined over the physical space, we prefer the term uniform to
characterize what, in random fields defined over a time variable, is called stationary. This
is entirely a question of nomenclature; we regard the terms as being interchangeable.
Ezample:

For the two-dimensional distribution,
Ja&1, 25m1,12) = Wa (61,625 Ar)
with
Ar=ry—r; .

Ezample:
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For the three-dimensional distribution,
fa(1, 62, €3511, 12, 13) = W3(&1, &2, &35 Ar, Ara)
with
Ary=r;—n
and
Arg=r3—r;.

Essentially a uniform random process is one whose properties do not change with space

(or time if that is the independent variable).

APPENDIX C: THE KOLMOGOROV-SMIRNOV TEST

This brief discussion is taken directly from Numerical Recipes (1986). The two-sample
Kolmogorov-Smirnov statistic tests the null hypothesis that two data sets are drawn from
the same distribution. It is based on a comparison of the cumulative distribution functions
(CDF) of the two data sets. One can imagine any number of comparisons between the two
CDFs. K-S represents an especially simple one: it is defined as the maximum value of the

absolute difference between the two CDFs. In symbols, the K-S statistic D is given by
D= max ISNI (x) - SN2($)|

—o00Lr< 00

where Sy, (z) and Sn,(z) are the approximate CDFs for the two data sets. The key point,
however, is that the distribution function for the K-S statistic itself (for the null-hypothesis
that the data sets are drawn from the same distribution) can be calulated approximately.

The significance function @ for this test is given by the following approximation:

Qr-s(A) =2 i(—l)j-le-w'\z-

=1
A plot of this significance function is given in Figure Al.

For the two-sample test, the significance level for an observed value of D (as a disproof

of the null-hypothesis) is given approximately by

Probability(D > observed) = Qk-s (\[WM_:V—&D)

where N, and N, are the numbers of samples in the two data sets.
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Figure A1l. Kolmogorov-Smirnov significance function.






