Research Computing at Mines Workshop
Serial and Parallel Computing

October 2023

Presented by:
Nicholas A. Danes, PhD
Computational Scientist
Cyber Infrastructure & Advanced Research Computing (ITS)
Recap of Day 1

• Overview of the world of Cyberinfrastructure & Research Computing
• HPC options for Mines Researchers
• Overview of skills needed to be a successful researcher on HPC
 • Linux/Bash
 • Slurm/Job Scheduler
 • Parallel Computing
 • Computational Notebook Practices
• Intro to Linux/Bash Lab
• Overview of Job Schedulers, SLURM and Python
• Intro to Slurm & Python Lab
Goals for Day 2

• Overview of Serial vs Parallel Computing
• A case study using a Python serial code (Lab)
• Parallel Programming Overview
 • Shared vs Distributed Memory
 • MPI
 • OpenMP
• Lab on using parallelized software: GROMACS
HPC Resource Usage

• How do I use them?
 • Most programs spawn 1 process (“task” in Slurm) and use one thread (“cpu” in Slurm)
 • On a desktop, some programs can see how many CPU cores you have and request that many threads for the process and use them
 • Examples: Some MATLAB functions, Games using DX12, Chrome/Firefox
 • Slurm does not know how your program will use the resources you give it
 • If you give it 12 cores (“cpus”) but program only works with 1 core, those 11 cores will idle and do nothing
 • To think about how to utilize HPC resources, we need to learn how parallel programming/processing is implemented.
Serial vs Parallel Computing

• When a program uses a single process ("task") with 1 core ("cpu"), we say it is a **serial computing** program.
• When a program uses multiple cores, we say it is a **parallel computing** program.
• Before thinking about parallel computing, we need to focus on how well the program performs with serial computing.
Note: Optimization before Parallelization!

• “Premature optimization is the root of all evil” – Donald Knuth

• Often, writing your code to run as fast as possible (within reason) with a single core is necessary before thinking about parallelization.

• We will explore optimization with a simple Python code for a single core next!
How to profile Python code

• cProfile
 • Gives you a breakdown of all functions’ runtime in a code
 • Multiple ways to use it:
 • Call it in the command line:
 $ python -m cProfile myscript.py
 • Call it in another script:
      ```python
      import cProfile
      cProfile.run("mycode.main()")
      ```

• Other options: lineprofiler, timeit, pstats

References: https://towardsdatascience.com/how-to-profile-your-code-in-python-e70c834fad89
https://github.com/pyutils/line_profiler
A starting point for optimization: Writing an ODE solver

Consider the initial value problem of the form:

\[y'(t) = f(t, y) \]
\[y(t_0) = y_0 \]

which can numerically solved using Heun’s Method:

\[\hat{y}[i+1] = y[i] + h f(t[i], y[i]) \]
\[y[i+1] = y[i] + \frac{h}{2} \left(f(t[i], y[i]) + f(t[i+1], \hat{y}[i+1]) \right) \]

Where \(h \) is the time step size, \(i \) is the time step index, and \(\hat{y} \) denotes the intermediate solution. Let’s use this problem to see how to optimize writing scientific code for Python!
Lab #1: Serial Python Optimization

Copy the workshop materials using the following command:

```
cp /sw/BUILD/src/workshop/Workshop_Fall2023_day2.tar.gz ~/scratch
```

And untar it and go to the directory:

```
cd ~scratch && tar -xf Workshop_Fall2023_day2.tar.gz
cd Workshop_Fall2023/rk2_python && ls
```

Using Open OnDemand Interface

Go To: https://wendian-ondemand.mines.edu
Lab #1 Summary: Profiling multiple versions of our ODE code

• Pure Python
 • **Surprisingly Performant!**

• NumPy only
 • Performs poorly due to lack of vectorization

• NumPy + Cython
 • https://cython.org/
 • Cython effectively allows one to write static-typed code in Python/“Cython”, which is parsed into C and compiled into a Python module.
Parallel Programming

- Shared vs Distributed Memory Programming
 - Shared (e.g. OpenMP)
 - All CPU cores have access to the same pool of memory
 - Typically, all CPU cores are on the same CPU node
 - Ideal for multi-threaded loops
 - Distributed-memory program (e.g. MPI)
 - Each CPU core is given access to a specific pool of memory, which may or may not be shared
 - A “communicator” designates how each CPU core can talk to another CPU core
 - CPU cores do not have to live on the same CPU node

Shared Memory Parallelism:
1 task, 4 threads

Distributed Memory Parallelism:
4 tasks, 1 thread per task
Shared Memory Parallelism: OpenMP

- OpenMP is a portable, high-level API that is used to write multithreaded applications
 - It provides a set of directives that can be used to parallelize loops, regions of code, and entire functions.
 - Supported by a wide range of compilers and hardware platforms (e.g. C/C++, Fortran, Python, etc)
 - For loops typically a compiler directive is added before a loop to tell the compiler that OpenMP is being used:
 - `#pragma omp parallel`
 - The environment variable OMP_NUM_TASKS will tell the operating system how many OpenMP threads to use in the program.
A note on Python and the GIL: A constraint on shared memory programming

- Python Global Interpreter Lock (GIL)
 - A mechanism with Python which allows only one CPU thread to use the Python interpreter
 - The GIL addressed the problem of memory management for Python programs.
 - Releasing the GIL can cause memory leaks if not managed correctly.

- Solutions:
 - Use multiprocessing instead of multithreading
 - Each process gets its own Python interpreter and memory space
 - Module options: mpi4py, multiprocessing
 - Use a different interpreter
 - Use Cython to release the GIL to allow multithreading within subroutines

Reference: https://realpython.com/python-gil/
Distributed Memory Parallelism: MPI

- MPI stands for message-passing interface, standard provided as a library for exchanging data (called messages) between objects.
- Different libraries have implemented the MPI standard:
 - OpenMPI
 - MPICH
 - Intel MPI
- Objects that can be used to send messages are separated by memory
 - Can be entire CPU nodes, or CPU cores, called ranks.
 - By breaking up by memory of each tasks, a rank can send messages theoretically anywhere as long as there is another layer of network communication
 - MPI most commonly uses Infiniband for node-to-node communication
 - Intra-node communication uses CPU architecture
Distributed Memory Parallelism: MPI

- It provides a set of functions for sending and receiving messages, as well as for synchronizing the execution of different processes. Common functions:
 - Send a message from one rank to another: MPI_SEND
 - Receive a message from a rank: MPI_RECV
 - Broadcast the same message to all ranks from a particular rank: MPI_BCAST
 - Take a message from multiple ranks to a single rank: MPI_GATHER
 - Block messages from continuing until all ranks have finished: MPI_BARRIER
Choosing between Shared vs Distributed Memory Parallelism

• Shared Memory Parallel is ideal for:
 • Single computer/node workloads
 • Speeding up for-loops
 • By splitting up the work across loop iterations

• Distributed Memory Parallel works best for
 • Large memory workloads that require multiple compute nodes

• Shared and distributed memory parallel programming can sometimes be combined
 • Called **hybrid** parallel programming
 • Combining MPI and OpenMP
Lab #2: Running Parallel Code: GROMACS

And exploration of SLURM commands
Summary of Slurm commands to monitor jobs

• squeue – View job queue
• squeue $USER – View job queue for your jobs
• sacct –j <jobid> – Get info on a particular job ID
• sinfo – Show info on nodes
• scontrol show node <name> – show info on a particular node
GPU: Further Accelerate computational workloads

• Use graphical processing units (GPUs)
 • NVIDIA
 • The CUDA library is by far the most popular GPU computing language
 • Provides an API to use NVIDIA CUDA codes
 • Popular CUDA uses:
 • AI/ML: PyTorch, Tensorflow
 • Molecular Dynamics: LAMMPS, GROMACS
 • Scientific Visualization: Paraview
 • OpenCL
 • Open source alternative to CUDA
 • Works on AMD, NVIDIA, and Intel GPUs
 • HIP (Heterogeneous-Compute Interface)
 • GPU acceleration library developed by AMD
Limitations to GPUs

- Hardware is more expensive and less widely available
- Programming for GPUs requires more setup
- Not all workloads can be easily ported to GPUs
Final Takeaways

• When developing your own scientific programs, get the serial case working as efficiently as possible (within time constraints)
 • Try different libraries, compiler options, etc.
 • Run benchmarks to compare setups

• When jumping to parallel programming
 • Understand the differences between shared and distributed memory parallel programming
 • Leverage established libraries to implement parallel programming methods
 • Use software with these libraries already in use (e.g. GROMACS)
Further Resources

Python Parallel Processing:
https://wiki.python.org/moin/ParallelProcessing

Parallel Programming with MP implementations for Python:

Intro to F2Py:
https://www2.atmos.umd.edu/~dkleist/docs/pythonTraining/Slides/F2Py_SSSO.pdf

OpenMP: Open MP specifications
(open-mpi.org)

OpenMP: Specifications – OpenMP

NVIDIA CUDA Toolkit: CUDA Toolkit - Free Tools and Training | NVIDIA Developer