Research Computing at Mines Workshop
Pre-HPC Preliminaries

October 10, 2023

Presented by:
Nicholas A. Danes, PhD
Computational Scientist
Cyber Infrastructure & Advanced Research Computing (ITS)
About Me

• Graduated from Mines in 2019
 • PhD in Computational & Applied Mathematics
 • Advisor: Dr. Karin Leiderman
 • Dissertation: *Computational modeling of extravascular platelet aggregation under flow*
 • Utilized the HPC system “Mio” for my research using Python (FEniCS)

• Computational Engineer at Ball Aerospace
 • September 2019 – August 2020

• Rejoined Mines in August 2020
 • Computational Scientist in the Cyberinfrastructure & Advanced Research Computing Group (ITS)
What is Cyberinfrastructure and Research Computing?

- **Cyberinfrastructure (CI)** is the integrated system of computing resources, data storage, networking infrastructure, software and human technical support that enables modern scientific research and data analysis.
 - Research computing is one major part of CI
- **Research computing (RC)** is a catch-all term using application of computational technology, to support research in science and engineering.
 - It involves the use of high performance computing (HPC), data storage, and other cyberinfrastructure (CI) to process, model, analyze, and/or visualize data.
 - It requires use of specialized software/libraries, advanced computational algorithms and methods, and/or large-scale hardware.
Who supports Cyberinfrastructure and Research Computing at Mines?

Matt Brookover
Solutions Architect

Nicholas Danes
Computational Scientist

Richard Gilmore
Visualization Engineer

Mike Robbert
System Administrator
& Network Engineer

Kira Wells
Manager, Research Infrastructure

Matt Kettering
Sr. Director,
Infrastructure Services
How does CARC help researchers?

• Cyberinfrastructure
 • High Performance Computing
 • Cloud Computing
 • Data Management, Storage and Transfer
 • Advanced Research Computing
 • HPC
 • Job Management
 • Software Build
 • Troubleshooting & Support
• Consulting
 • Parallel Scaling and Optimization
 • Software Optimization
 • Advanced Workflows
 • Scientific Visualization

Help Center Tickets:
https://helpcenter.mines.edu/TDClient/1946/Portal/Requests/TicketRequests/NewForm?ID=4GCSlvW5OYk&RequestorType=Service
What kind of compute do you need?

• Exploratory or “interactive” research
 • Workstation (local, virtual machine, and/or cloud)
 • Examples: ANSYS, Matlab, etc.

• Large multi-node/multi-core jobs? HPC!
 • More on this later!

• Many single-core jobs? High Throughput Computing (HTC)!
 • Workstation
 • Open Science Grid (https://osg-htc.org/)
What kind of storage do you need?

• Local
• Cloud
 • Microsoft OneDrive
 • Dropbox
 • Google Drive
• Shared/Project
 • Orebits Network-Attached Storage (NAS)
 • https://ciarc.mines.edu/data-storage/orebits/
The Anatomy of an HPC, Oversimplified

- **Hardware**
 - **Head/Login Node**
 - e.g. wendian001
 - **Management node**
 - e.g. gengan
 - **Compute nodes**
 - E.g. c001, g005, etc.
 - **Nodes connected via**
 - **Ethernet**: 1 Gb/s
 - **TCP/IP**
 - inexpensive
 - High latency, but widely supported
 - **InfiniBand**: 100 Gb/s
 - Compute communication
 - Specific use case
 - High throughput
 - Low latency
Mines HPC Options

- On-campus
 - HPC
 - Wendian
 - Launched 2018 on campus
 - Core-hour model Off-premise
 - NSF ACCESS
 - https://access-ci.org/
 - Different allocation tiers; requires proposal
 - NSF funding not required
 - CU Boulder “RMACC” Alpine
 - https://www.colorado.edu/rc/alpine
 - Mines Researchers have access through the RMACC program
 - “Gap” funding option for researchers
- AWS and other Cloud Computing
 - CIARC is working on solutions to provide a seamless experience for Researchers
Wendian@Mines

- Available for new users
- Charging based on core-hour model ($0.02 per core-hour)
- Typical CPU node configuration
 - Intel Xeon Gold (Skylake) Dual Socket
 - 12-18 cores, 24-36 threads per socket
 - 192 GB – 384 GB Memory per node
 - ~3000 CPU core total on Wendian
- GPU node available
 - NVIDIA Volta V100 x 4 cards, 24 Skylake cores
- More details: [Systems — HPC@Mines documentation](#)
What skills do I need to be a successful researcher on HPC?

• Linux
 • Log into a remote server
 • Navigate the filesystem in the command line
 • Learn the basics of how software is detected in an environment
 • PATH, LD_LIBRARY_PATH, CPATH, etc.
 • Set up automation via scripting (Bash)

• HPC Job Scheduler
 • Submit jobs to HPC compute node scheduler
 • Know how to request specific resources
 • Check status of jobs, computational efficiency, etc.
What skills do I need to be a successful researcher on HPC?

• Parallel Computing
 • Learning how multi-processing affects simulation/computation time
 • Differences between shared and distributed memory computing
 • GPU computing (if applicable)

• Data Management
 • How to archive and transfer data between systems

• Computational Lab Practices
 • Computational Notebook
 • Version Control (using git)
Lab #1
Intro to Linux & Command Line
What is a batch job? Job scheduler? Queue?

- How are HPC resources utilized?
 - A **batch job** is submitted to a **job scheduler** which sits in a **queue** until **resources** are available.
 - When resources are available, the **batch job** will be given to a compute node to process the job information.
 - **Batch jobs** are submitted using a script which contains the following information:
 - How much and how long resources are required for the program
 - Dependencies of the program from the OS environment
 - What program is run
 - Including options, input files, etc.
 - **Batch jobs** let us create compute workloads that can be automatically submitted to be run an HPC cluster.
What is a batch job? Job scheduler? Queue?

- A **job scheduler** is a software program that automates the scheduling and execution of **batch jobs**.
- The main user-facing component is the job **queue**, which is a list of all the jobs that the scheduler needs to run on the HPC cluster.
- **Resources** are all the compute nodes available on the HPC cluster, which the job scheduler manages.
- During a executed batch job, the job scheduler will allocate the requested resources and run the program within the script provided.
Why do HPCs use a job scheduler?

• Goal of a Job Scheduler: *Maximize* utilization but *minimize* wait times!
• HPC is a shared compute resource
 • Researchers need them for:
 • Different periods of time (e.g. research paper, thesis deadline, etc.),
 • Different resources (single core, single node, GPUs, etc)
 • Different lengths of time (36 hours, 1 hour, etc) AND/OR
 • Different number of jobs
 • For example:
 • 5-node (36 cores per node) molecular dynamics simulation that takes 5 days
 • Researcher runs 5 of these jobs a week
 • 1-core parameter sweep of model, requiring thousands of 1 single-core jobs, each taking 1 hour
 • Researcher may run 100’s or these jobs per week, for months
Slurm HPC Job Scheduler

- Slurm is an open source, cluster management and job scheduler for Linux clusters.
- Several different daemons run on the nodes to manage Slurm’s components.
Slurm: Which jobs run first?

- Slurm uses a **priority** model to decide when jobs run
 - *Mostly* first come, first serve with caveats
- Priority depends on but is not limited to:
 - Job size
 - CPU tasks/cpus per task
 - Memory
 - Time requested
 - Job age
 - Priority of job grows while submitted, but not running
- Fair share
 - Users who've consumed less resources recently get higher priority
 - Prevents overuse by a few heavy users.
Submit jobs with custom options, including but not limited to:

- Cores/Nodes
 - Number of Nodes
 - Tasks – Spawned processes
 - CPUs per task – number of cpu cores a given spawned process can utilize
- Memory
 - Memory per cpu
 - Memory per node
Slurm User Features

Submit jobs with custom options, including but not limited to:

• Time
 • On Wendian, defaults to 6 days
• Partitions
 • Access GPU nodes
• Email Notification – job start, end, etc.
• Track jobs in the queue using `squeue`
• You will learn more about this in the lab!
Choosing software to run on HPC

• Your software application will be dependent on:
 • Research project
 • Your own personal preferences
 • Advisor's personal preferences
• For ease of use and to get things running, we will be using Python for most labs/tutorials in this workshop!
Python

- Widely Available
- Portable – Supported across MacOS, Windows, Linux
- Easy to read and learn
- Large community with scientific computing libraries & support
- Extensible: Supports bindings with
 - C/C++
 - Fortran
 - And more!
Using Python with a GUI/IDE

Popular Options:

• Spyder
• Atom (GitHub)
• Sublime Text 3
• Jupyter Notebooks – HPC compatible (*we will use these today*)

And many more!
Getting started Python on your **local** system

- **Linux**
 - Most up-to-date Linux distros ship Python 3 by default
 - Manage library installs using the python package manager **pip**:
 - e.g. `$ pip install --user numpy`

- **MacOS**
 - Python 2.7 ships by default in MacOS Catalina ^&
 - Python 3.x available through Xcode
 - Homebrew or MacPorts can also provide Python 3 (Xcode required)

- **Windows**
 - Windows Subsystem for Linux can provide a Linux shell on your windows machine to use Python
 - Python can be installed by going to Python.org
Getting started Python on your **local** system

- Cross-platform option: Use Anaconda
 - https://anaconda.org
 - Binary distribution of package management
 - Available on Windows, Mac and Linux (+ our HPC systems)
 - Easy management of various environments
 - Supports **pip** and its own package manager **conda**
 - Community maintained packages available through conda-fg: https://anaconda.org/conda-fg

We will be using this today!
Lab #2
Intro to Slurm and Python
Final Takeaways

• CIARC group provides support for Mines researchers' cyberinfrastructure and research computing needs

• Cyberinfrastructure primarily consists providing support of hardware related to researcher needs

• Research Computing is the application of computing technologies for research needs

• A successful researcher needs basic skills in Cyberinfrastructure and Research Computing, including:
 • Linux/Bash basics
 • HPC Job Schedulers
 • Knowledge of parallel computing
 • Data Management

• PATH, LD_LIBRARY_PATH, AND CPATH are important environment variables that setup your software to be used on a Linux system -> HPC
Final Takeaways

• Python provides a good baseline programming language to get new researchers up and running

• HPC Clusters use job schedulers to manage workloads for all researchers to maximize research usage, but minimize wait times

• PATH, LD_LIBRARY_PATH, AND CPATH are important environment variables that setup your software to be used on a Linux system, including HPC
 • Modules
 • Conda environments
Further Resources

• Mines CIARC HPC Website:
 • https://ciarc.mines.edu/hpc
 • Documentation: Welcome to HPC at Mines documentation! — HPC@Mines documentation

• For HPC-related questions:
 • Submit a ticket to the help desk!
 • https://helpcenter.mines.edu/TDClient/1946/Portal/Requests/ServiceDet?ID=52356
 • Schedule a meeting with one of us
 • https://outlook.office365.com/owa/calendar/CIARCTeamServices@mines0.onmicrosoft.com/bookings/