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Preface

This is an attempt to collect in a single document the basic traits of the the-
ory describing the deformations of the Earth under peculiar surface loads:
the ice sheets. The book has a mainly pedagogical purpose. It is written in a
simple way, and an effort is made to avoid the sentence it can be shown that.
Almost all of the propositions given here are demonstrated step–by–step,
even when they may appear obvious a priori. This is mainly done to facili-
tate the beginners in the ’art’ of the postglacial rebound, but I also hope that
this transparent style of writing could be useful for more experienced inves-
tigators. The book is written according to an austere minimalism: we only
give the statements which are strictly needed to understand the basic con-
cepts. For this reason, the chapter devoted to the mathematical background
is largely biased towards the main tools, such has differential operators and
spherical harmonics.

The theory illustrated here is implemented in the source code taboo.f90
which is freely distributed by the Samizdat Press along with this document
and the accompanying user guide. At the core of TABOO there is the assump-
tion that the Earth is spherically layered. In the common language this means
that the problems which can be solved by TABOO are 1D problems. Nowadays
several research groups have developed more advanced codes, which account
for the 2D or even for the 3D structure of the lithosphere and the mantle.
However, these codes are not publically available to date, mainly for two rea-
sons. First, their are not totally developed, and some work is still to be done.
Second, differently from TABOO they are often based on numerical techniques
developed with the aid of software packages that are not publically available.
In a sense, TABOO has the aim of closing the chapter of the 1D problems
giving the chance of obtaining a portable source code and a full account of
the theory behind. It is hoped that this will encourage the developers of 2D
and 3D models to to the same with their procedures in the future.

The reader should be warned that TABOO is not a sealevel equation [4]
solver! The sealevel equation will be the subject of a separate review coming
in the next months along with a freely available code (SELEN).

The theory behind TABOO has only the purpose of collecting formulas and
results in an ordered structure. By no means the results presented here are
the product of my own research work. Rather, they constitute a theoretical
framework which has been constructed by a number of Authors in the course
of the last decades. It is not possible to mention all of the contributors to
this enormous (but sparse) work, and for this reason I must apologize for the
very poor bibliography that I have written at the end of this document. The
full set of original papers where the basic ideas have been first developed can
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be reconstructed on the basis of bibliographies of the manuscripts and books
quoted here.

While I have done my best to present a complete account of the theory
behind TABOO (and consequently a complete source code), some work is still
to be done. In particular, the present version of TABOO does not explicitely
compute relevant physical quantities such as the gravity anomalies, the stress
field in the lithosphere and the rotational variations of the Earth. It is my
intention to include these topics in the next versions of the code (which will
also include figures).

A final note concerning notation. I do not like to write vectors by bold
face letters, so that I use arrows throughout. I have been very pedantic in the
demonstration of the various propositions given in this document, certainly
too much for an experienced reader. This is admittedly boring, but I hope it
helps the novices, who are indeed the main target of this booklet. Since the
source code TABOO is totally accessible, I have not described in detail how
and where the single propositions are numerically implemented.

I have been involved in the research on these topics for fifteen years, first
as a student, and later as a teacher. Both need a place where a given formula
can be easily found and demonstrated. After all, this is the main purpose of
TABOO.

The future releases of this document (if any) will benefit from the feedback
of the readers of this first edition. Please feel free to write to

spada@fis.uniurb.it

for questions, comments, and suggestions.

Urbino, October 10, 2003.
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Chapter 1

Mathematical background

This chapter introduces the basic differential operators (gradient, divergence,
curl, and Laplacian) in spherical geometry, a number of conventions, and
definitions concerning the spherical harmonic functions. The Complex (Sur-
face) Spherical Harmonics (CSH), largely employed in quantum mechanics
[8] are useful for their simple and compact algebra. For numerical imple-
mentations, it is more convenient to employ the Real (Surface) Spherical
Harmonics (RSH). We also discuss the Fully Normalized (Surface) Spherical
Harmonics (FNSH), which are sometimes useful for studies concerning the
Earth gravity field. The last part of the chapter is devoted to the definition
the ocean function, the time–dependent functions in general, the Laplace
transform, and the convolution product.

1.1 Differential operators on the sphere

1.1.1 Spherical coordinates

Given a Cartesian reference frame Oxyz, the polar spherical coordinates of a
given point in space will be conventionally denoted with r (radius, 0 ≤ r ≤
∞), θ (colatitude, 0 ≤ θ ≤ π), and λ (longitude, 0 ≤ λ ≤ 2π).

The polar spherical coordinates are related to the Cartesian coordinates
x, y, and z by the formulas:







x
y
z





 = r







sin θ cosλ
sin θ sinλ

cos θ





 , (1.1)

with

x2 + y2 + z2 = r2. (1.2)



2 Mathematical background

Any vector ~u can be written as a combination of the unit, mutually or-
thogonal vectors êx, êy and êz, which point along the x, y, and z axes of the
Cartesian reference frame:

~u = uxêx + uyêy + uz êz, (1.3)

where the vector components ux, uy, and uz are functions of x, y, and z, and

êx × êy = êz, êy × êz = êx, êz × êx = êy, (1.4)

where × is the vector product (in the following, the symbol (·) will be used
to indicate the scalar product). In a similar manner, it is possible to write
~u as a combination of the unit, mutually orthogonal vectors êr, êθ, and êλ,
which point to the directions of increasing r, θ, λ:

~u = urêr + uθêθ + uλêλ, (1.5)

where the vector components ur, uθ, and uλ are functions of r, θ, and λ, and

êθ × êλ = êr, êλ × êr = êθ, êr × êθ = êλ. (1.6)

The relationships between the Cartesian and spherical components of ~u are







ux

uy

uz





 =







sin θ cosλ cos θ cosλ − sinλ
sin θ sinλ cos θ sinλ cosλ

cos θ − sinλ 0













ur

uθ

uλ





 , (1.7)

and conversely







ur

uθ

uλ





 =







sin θ cosλ sin θ sinλ cos θ
cos θ cosλ cos θ sinλ − sin θ
− sinλ cosλ 0













ux

uy

uz





 . (1.8)

1.1.2 Partial derivatives

We employ the following notation for the partial derivatives:

∂ξ =
∂

∂ξ
(1.9)

where ξ is one among r, θ, λ.
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1.1.3 Gradient

The three–dimensional gradient operator is defined as

∇ = êr∂r +
1

r
∇h, (1.10)

where

∇h = êθ∂θ + êλ
1

sin θ
∂λ (1.11)

is the surface gradient operator.

1.1.4 Divergence

Given a vector ~u in the form (1.5), its divergence is

∇ · ~u = ∂rur +
2

r
ur +

1

r
∂θuθ +

cot θ

r
uθ +

1

r sin θ
∂λuλ, (1.12)

or:

∇ · ~u =
(

∂r +
2

r

)

ur +
1

r
∇h · ~u, (1.13)

where the surface divergence of ~u is

∇h · ~u = ∂θuθ + cot θuθ +
1

sin θ
∂λuλ. (1.14)

1.1.5 Curl

Given a vector field ~u in the form (1.5), its curl is

∇× ~u =
êr
r

(

∂θuλ + cot θuλ −
1

sin θ
∂λuθ

)

+

êθ
r

(

1

sin θ
∂λur − r∂ruλ − uλ

)

+ (1.15)

êλ
r

(

r∂ruθ + uθ − ∂θur

)

,

while the surface curl operator is

êr ×∇h = −êθ
1

sin θ
∂λ + êλ∂θ. (1.16)
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1.1.6 Laplacian

The Laplacian operator is defined as

∇2 = ∂2r +
2

r
∂r +

1

r2
∇2h, (1.17)

where the surface Laplacian is

∇2h = ∇h · ∇h = ∂2θ + cot θ∂θ +
1

sin2 θ
∂2λ. (1.18)

1.2 Complex Spherical Harmonics

The complex spherical harmonics (CSH) formalism is traditionally employed
in quantum mechanics. For a summary on the CSH and their properties the
reader is referred to the Appendices of the book of Messiah [8].

We first define the associated Legendre function of degree l (l = 0, 1, 2, . . .)
and order m (m = 0, 1, 2, . . . l) as

Plm(x) = (−)m(1− x2)m/2 d
m

dxm
Pl(x), (1.19)

where (−) ≡ (−1), x = cos θ, θ is colatitude, and the Legendre polynomials
of degree l are defined by the Rodriguez formula

Pl(x) =
1

2ll!

dl

dxl
(x2 − 1)l. (1.20)

With the above definitions, the CSH are

Ylm(θ, λ) = µlmPlm(cos θ) e
ιmλ, (1.21)

where

ι =
√
−1. (1.22)

The normalization constant

µlm =

√

√

√

√

2l + 1

4π

(l −m)!

(l +m)!
(1.23)

ensures that the following orthogonality relationship holds
∫

Ω
Y ∗l′m′(θ, λ)Ylm(θ, λ)dΩ = δll′δmm′ , (1.24)
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where the asterisk denotes complex conjugation, δij is the Kronecker delta1,
and

∫

Ω
(·)dΩ ≡

∫ 2π

0

∫ π

0
(·) sin θdθdλ, (1.25)

where (·) is any scalar function.
We finally observe that the CSH with negative order can be obtained

from those with positive orders by the definition:

Yl−m(θ, λ) ≡ (−)mY ∗lm(θ, λ). (1.26)

1.3 Properties of Ylm, Plm, and Pl

A full account of the properties of the Ylm, Plm, and Pl functions is beyond
our purposes. We only give a few identities useful for the ensuing discussion.
The reader is referred to [1] and [8] for a more complete list of definitions,
formulas, and identities.

1.3.1 Properties of Ylm

Property 1. The spherical harmonic functions Ylm (1.21) are eigenfunctions
of −∇2h with eigenvalue l(l + 1):

∇2hYlm = −l(l + 1)Ylm, (1.27)

where the surface Laplacian ∇2h his given by (1.18).

Property 2 (addition theorem). Let (θ, λ) and (θ′, λ′) the polar spherical co-
ordinates of two points on the surface of a sphere, and let Θ be the colatitude
of the second relative to the first, such that

cosΘ =
~r′ · ~r
rr′

, (1.28)

with r′ = ‖~r′‖ and r = ‖~r‖. The addition theorem states that

Pl(cosΘ) =
4π

2l + 1

+l
∑

m=−l

Y ∗lm(θ
′, λ′)Ylm(θ, λ). (1.29)

1The Kronecker delta is δij = 1 if i = j, and δij = 0 if i 6= j.
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A proof of the addition theorem can be found in [11].

degree order Ylm(θ, λ) =
l m = k ·f(θ, λ)
0 0 (1/4π)1/2 ·1
1 0 (1/2)(3/π)1/2 · cos θ
1 1 −(1/2)(3/2π)1/2 · sin θeιλ
2 0 (1/4)(5/4π)1/2 ·(3 cos2 θ − 1)
2 1 −(1/2)(15/2π)1/2 · sin θ cos θeιλ
2 2 (1/4)(15/4π)1/2 · sin2 θe2ιλ
3 0 (1/4)(7/π)1/2 ·(5 cos3 θ − 3 cos θ)
3 1 −(1/8)(21/π)1/2 · sin θ(5 cos2 θ − 1)eιλ

3 2 (1/4)(105/2π)1/2 · sin2 θ cos θe2ιλ
3 3 −(1/8)(35/2π)1/2 · sin3 θe3ιλ

Table 1.1: Complex spherical harmonics
Table of Ylm(θ, λ) for degree 0 ≤ l ≤ 3 and order m ≥ 0. The harmonics are
factorized as Ylm(θ, λ) = k · f(θ, λ). Harmonics with negative orders can be
obtained by (1.26).

1.3.2 Properties of Plm

Property 1.

Pl0(cos θ) = Pl(cos θ). (1.30)

Proof. This is a straightforward consequence of (1.19).

Property 2 (an integral property).
∫

Ω
P 2lm(cos θ)

{

cos2mλ
sin2mλ

}

dΩ =
2π

2l + 1

(l +m)!

(l −m)!
(m 6= 0). (1.31)

Proof. According to (1.25), the lefthand side of (1.31) is equivalent to
∫ π

0
P 2lm(cos θ) sin θdθ ·

∫ 2π

0

{

cos2mλ
sin2mλ

}

dλ, (1.32)
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where it is easy to verify that:

∫ π

0
cos2mλdλ =

∫ π

0
sin2mλdλ = π (m 6= 0). (1.33)

From the orthogonality relationship (1.24) written for l = l′ we obtain:

δmm′ =
∫

Ω
Ylm(θ, λ)Y

∗
lm′(θ, λ)dΩ

δmm′ = (1.21) = µlmµlm′

∫ 2π

0
eι(m−m′)λdλ ·

·
∫ π

0
Plm(cos θ)Plm′(cos θ) sin θdθ

δmm′ = 2πµlmµlm′δmm′

∫ π

0
Plm(cos θ)Plm′(cos θ) sin θdθ

1 = 2πµ2lm

∫ π

0
P 2lm(cos θ) sin θdθ

1

2πµ2lm
=

∫ π

0
P 2lm(cos θ) sin θdθ

2

2l + 1

(l +m)!

(l −m)!
= (1.23) =

∫ π

0
P 2lm(cos θ) sin θdθ. (1.34)

Once (1.34) and (1.33) are inserted into (1.32), (1.31) is proved •

1.3.3 Properties of Pl

Property 1 (orthogonality). The Legendre polynomials are mutually or-
thogonal in the interval [0, π]:

∫ π

0
Pl(cos θ)Pl′(cos θ) sin θdθ ≡

∫ +1

−1
Pl(x)Pl′(x)dx =

2δll′

2l + 1
. (1.35)

Proof. The statement (1.35) is a consequence of the CSH orthogonality
relationship (1.24) written for m = m′ = 0:

δll′δmm′ =
∫

Ω
Y ∗l′m′(θ, λ)Ylm(θ, λ)dΩ

δll′ = (1.21) =
∫

Ω
µl0µl′0Pl0(cos θ)Pl′0(cos θ)dΩ

= (1.23) = 2π

√

(2l + 1)
√

(2l′ + 1)

4π

∫ +1

−1
Pl(x)Pl′(x)dx, (1.36)
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l m Plm(cos θ)

0 0 1
1 0 cos θ
1 1 − sin θ
2 0 (1/2)(3 cos2 θ − 1)
2 1 −3 sin θ cos θ
2 2 3 sin2 θ
3 0 (1/2)(5 cos3 θ − 3 cos θ)
3 1 (−3/2) sin θ(5 cos2 θ − 1)
3 2 15 sin2 θ cos θ
3 3 −15 sin3 θ

Table 1.2: Associated Legendre functions
Table of the associated Legendre functions Plm(cos θ) for degrees 0 ≤ l ≤ 3.

l Pl(x)

0 1
1 x
2 (1/2)(3x2 − 1)
3 (1/2)(5x3 − 3x)
4 (1/8)(35x4 − 30x2 + 3)
5 (1/8)(63x5 − 70x3 + 15x)

Table 1.3: Legendre polynomials
Table of the Legendre polynomials Pl(x) for degrees 0 ≤ l ≤ 5, with x = cos θ.
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so that:
∫ +1

−1
Pl(x)Pl′(x)dx =

2δll′
√

(2l + 1)
√

(2l′ + 1)
=

2δll′

2l + 1
• (1.37)

Property 2 (link with the Chebichev polynomials). A useful integral property
of the Legendre polynomials is

∫ 1

z

Pn(x)dx√
x− z

=
Tn(z)− Tn+1(z)

(n+ 1
2
)
√
1− z

, (1.38)

where

Tn(z) ≡ cos(nz), (n = 0, 1, 2, . . .) (1.39)

are the Chebichev polynomials of 2nd kind [1].

Property 3 (shifted derivatives).

Pl(x) =
P ′l+1(x)− P ′l−1(x)

2l + 1
, (l ≥ 1), (1.40)

where P ′l (x) ≡
dPl(x)

dx
.

Property 4 (values for x = ±1).
Pl(1) = 1

Pl(−1) = (−)l. (1.41)

Property 5 (a Legendre sum).
∞
∑

l=0

Pl(cos θ) =
1

2 sin θ
2

. (1.42)

Property 6 (Legendre polynomials generating function).
∞
∑

l=0

zlPl(cos θ) =
1√

1− 2z cos θ + z2
, |z| ≤ 1. (1.43)



10 Mathematical background

Property 7 (a useful integral).

Io(θ1, θ2) ≡
∫ cos θ2

cos θ1
Pl(x)dx (1.44)

= (1.40) =
Pl+1(cos θ2)− Pl−1(cos θ2)

2l + 1
+

−Pl+1(cos θ1)− Pl−1(cos θ1)

2l + 1
. (1.45)

In particular:

Io(π, α) = (1.44) =
∫ cosα

−1
Pl(x)dx

= (1.41, 1.45) =
Pl+1(cosα)− Pl−1(cosα)

2l + 1
. (1.46)

1.4 Spherical harmonics expansions of scalar

fields

Here we illustrate the various forms of the spherical harmonics expansion
valid for a scalar field, and the relationships between them. A generic scalar
function of colatitude and longitude can be expanded in series of complex
spherical harmonics (CSH), real spherical harmonics (RSH) or fully normal-
ized spherical harmonics (FNSH). For the functions which only depend on
colatitude (axis–symmetrical functions), a LEG expansion suffices.

1.4.1 CSH expansion

We denote with F (θ, λ) a scalar field. It is often necessary to expand F on
the basis of the CSH, i.e., to determine the (complex) coefficients flm such
that

F (θ, λ) = ΣlmflmYlm(θ, λ), (1.47)

where2 we conventionally write:

Σlm ≡
∞
∑

l=0

+l
∑

m=−l

. (1.48)

2We are not concerned here on the conditions which ensure the convergence of (1.47).
The reader is referred to [11] and to [2] for these issues.
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In the following, we will refer to flm as to the CSH coefficients of the scalar
function F .

The degree variance of F (θ, λ) is:

Sl =

√

√

√

√

1

2l + 1

+l
∑

m=−l

|flm|2. (1.49)

Proposition 1 The coefficients of the CSH expansion (1.47) are

flm =
∫

Ω
Y ∗lm(θ, λ)F (θ, λ)dΩ. (1.50)

Proof.

F = (1.47) = Σl′m′fl′m′Yl′m′

FY ∗lm = Σl′m′fl′m′Yl′m′Y ∗lm
∫

Ω
Y ∗lmFdΩ = Σl′m′fl′m′

∫

Ω
Yl′m′Y ∗lmdΩ

∫

Ω
Y ∗lmFdΩ = (1.24) = Σl′m′fl′m′δll′δmm′

∫

Ω
Y ∗lmFdΩ = flm • (1.51)

Proposition 2 If the field F is real, i.e., if

F = F ∗, (1.52)

the CSH coefficients satisfy the relationship:

fl−m = (−)mf ∗lm. (1.53)

Proof.

fl−m = (1.50) =
∫

Ω
Y ∗l−mFdΩ

= (1.26) =
∫

Ω
(−)mYlmFdΩ

= (−)m
(
∫

Ω
Y ∗lmF

∗dΩ
)∗

= (1.52) = (−)m
(
∫

Ω
Y ∗lmFdΩ

)∗

= (1.50) = (−)mf ∗lm • (1.54)
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Proposition 3 If the field F is real (see 1.52), the degree 0 CSH coefficient
of the expansion (1.47) is real.

Proof. The fact that f00 is real follows immediately from (1.53). The explicit
expression of f00 is

f00 = (1.50) =
∫

Ω
Y ∗00FdΩ

= (table 1.1) =
1√
4π

∫

Ω
FdΩ • (1.55)

Proposition 4 The mean value of a scalar field F on the sphere, defined as

〈F 〉Ω ≡
∫

Ω FdΩ
∫

Ω dΩ
, (1.56)

is proportional to the degree 0 CSH coefficient of (1.47):

〈F 〉Ω =
f00√
4π

(1.57)

Proof.

〈F 〉Ω ≡ (1.56) =

∫

Ω FdΩ
∫

Ω dΩ

= (1.55) =

√
4πf00
4π

=
f00√
4π

• (1.58)

1.4.2 RSH expansion

Due to their simple algebra, the CSH are convenient for theoretical purposes.
However, for computational purposes, it is by far more practical to employ a
real representation of the spherical harmonics. The Real Spherical Harmonic
(RSH) function of degree l and order m has the form

Slm(θ, λ) = (clm cosmλ+ slm sinmλ)Plm(cos θ), (1.59)

where clm and slm (l = 0, 1, 2 . . . ;m = 0, . . . , l) are referred as to cosine and
sine coefficients of the RSH, and Plm(cos θ) is given by (1.19).
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A RSH can be of one of three types. If m = 0, the RSH is a zonal RSH,
which is only function of colatitude. For 0 < m < l, the RSH is a tesseral
RSH, and finally, for m = l, the RSH is called sectorial. The geometrical
features of the three families are well illustrated in e.g. [7].

Below we give some recipes showing how to convert a CSH expansion into
a RSH expansion.

Proposition 5 The CSH expansion of a scalar function

F (θ, λ) = ΣlmflmYlm(θ, λ), (1.60)

can be equivalently written as a RSH expansion:

F (θ, λ) = Σ′lm(clm cosmλ+ slm sinmλ)Plm(cos θ), (1.61)

where the prime indicates that the sum is restricted to m ≥ 0:

Σ′lm ≡
∞
∑

l=0

+l
∑

m=0

, (1.62)

and the cosine and sine coefficients (or, more simply, the RSH coefficients)
of F (θ, λ) are

{

clm
slm

}

= (2− δ0m)µlm

{

Re(flm)
− Im(flm)

}

, (l ≥ 0, 0 ≤ m ≤ l), (1.63)

where µlm is given by (1.23), and Re(flm) and Im(flm) are the real and imag-
inary parts of flm, respectively.

Proof. It suffices to observe that

F (θ, λ) = (1.47) = ΣlmflmYlm

= Σl(Σm<0flmYlm + fl0Yl0 + Σm>0flmYlm)

= Σl(Σp>0fl−pYl−p + fl0Yl0 + Σm>0flmYlm) = (1.26,1.53) =

= Σl(Σp>0(−1)pf ∗lp(−1)pY ∗lp + fl0Yl0 + Σm>0flmYlm)

= Σl(Σm>0f
∗
lmY

∗
lm + fl0Yl0 + Σm>0flmYlm)

= Σl[2Re(Σm>0flmYlm) + fl0Yl0]

= Σl(2− δ0m)Re(Σm≥0flmYlm) = (1.21) =

= Σ′lm(2− δ0m)Re[flmµlmPlm(cos θ)e
ιmλ]

= Σ′lm(2− δ0m)µlmPlmRe(flme
ιmλ)

= Σ′lm(2− δ0m)µlm[Re(flm) cosmλ− Im(flm) sinmλ)]Plm

= Σ′lm(clm cosmλ+ slm sinmλ)Plm(cos θ), (1.64)
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where clm and slm are given by (1.63) •

1.4.3 FNSH expansion

The Fully Normalized Spherical Harmonics (FNSH) differ from the RSH for
their normalization. Given a real scalar function F (θ, λ), its FNSH expansion
is

F (θ, λ) = Σ′lm(c̄lm cosmλ+ s̄lm sinmλ)P̄lm(cos θ), (1.65)

where Σ′lm is defined by (1.62), and the fully normalized associated Legendre
polynomials P̄lm(cos θ) are such that

∫

Ω
P̄ 2lm(cos θ)

{

cos2mλ
sin2mλ

}

dΩ = 4π, (m 6= 0). (1.66)

By comparison of (1.31) with (1.66) we obtain:

P̄lm(cos θ) =

√

√

√

√2(2l + 1)
(l −m)!

(l +m)!
Plm(cos θ), (m 6= 0), (1.67)

which can be extended to the case m = 0 requiring that P̄00(cos θ) = 1:

P̄lm(cos θ) =

√

√

√

√(2− δ0m)(2l + 1)
(l −m)!

(l +m)!
Plm(cos θ), (m ≥ 0). (1.68)

Proposition 6 Given the RSH expansion

F (θ, λ) = Σ′lm(clm cosmλ+ slm sinmλ)Plm(cos θ), (1.69)

the sine and cosine coefficients of the FNSH expansion

F (θ, λ) = Σ′lm(c̄lm cosmλ+ s̄lm sinmλ)P̄lm(cos θ) (1.70)

are
{

c̄lm
s̄lm

}

= hlm

{

clm
slm

}

, (1.71)

where

hlm =

√

√

√

√

1

(2− δ0m)(2l + 1)

(l +m)!

(l −m)!
. (1.72)

Proof. It suffices to use (1.68) into (1.70) and to compare the result with
(1.69) •
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1.4.4 LEG expansion

When a scalar function g(θ) only depends on colatitude, the RSH and CSH
expansions reduce to a sum on the Legendre polynomials (LEG expansion).
Candidates to a LEG expansion are those functions which show an axial
symmetry with respect the z–axis of the Cartesian reference frame. For this
reason, we will refer to them as to axis–symmetrical functions. In the RSH
expansion (1.61) of an axis–symmetrical function g(θ) only the zonal terms
appear:

g(θ) =
∞
∑

l=0

glPl(cos θ), (1.73)

where gl is the LEG coefficient of degree l of g(θ). The main results for the
LEG expansions are given in the following three propositions.

Proposition 7 The LEG coefficients of the expansion:

g(θ) =
∞
∑

l=0

glPl(cos θ) (1.74)

are

gl =
2l + 1

2

∫ π

0
g(θ)Pl(cos θ) sin θdθ, (1.75)

or, equivalently:

gl =
2l + 1

2

∫ +1

−1
g(x)Pl(x)dx, (x ≡ cos θ). (1.76)

Proof.

g(θ) = (1.74) =
∞
∑

l=0

glPl(cos θ)

g(θ)Pl′(cos θ) =
∞
∑

l=0

glPl(cos θ)Pl′(cos θ)

∫ π

0
g(θ)Pl′(cos θ) sin θdθ =

∞
∑

l=0

gl

∫ π

0
Pl(cos θ)Pl′(cos θ) sin θdθ

∫ π

0
g(θ)Pl′(cos θ) sin θdθ = (1.35) =

∞
∑

l=0

gl
2δll′

2l′ + 1
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∫ π

0
g(θ)Pl(cos θ) sin θdθ = gl

2

2l + 1

gl =
2l + 1

2

∫ π

0
g(θ)Pl(cos θ) sin θdθ

=
2l + 1

2

∫ +1

−1
g(x)Pl(x)dx • (1.77)

Proposition 8 Given the axis–symmetrical function g(θ), its LEG expan-
sion (1.74) is equivalent to a RSH expansion with coefficients clm = glδm0
and slm = 0.

Proof.

g(θ) = (1.74) =
∞
∑

l=0

glPl(cos θ)

= (1.30) = Σ′lmglδm0Plm(cos θ)

= Σ′lmglδm0 cosmλPlm(cos θ)

= Σ′lm(clm cosmλ+ slm sinmλ)Plm(cos θ), (1.78)

with clm = glδm0 and slm = 0 •

Proposition 9 Given the axis–symmetrical function g(θ), its LEG expan-
sion (1.74) is equivalent to a CSH expansion with coefficients flm = 1

µlm
δm0gl.

Proof.

g(θ) = (1.74) =
∞
∑

l=0

glPl(cos θ)

= (1.30) = Σlmgl
1

µlm

δm0µlmPlm(cos θ)e
imλ

= (1.21) = Σlmgl
1

µlm

δm0Ylm(θ, λ)

= ΣlmflmYlm(θ, λ), (1.79)

with flm = 1
µlm

δm0gl and where µlm is given by (1.23) •
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1.4.5 Summary conversion Tables

Here we provide summary tables showing how to convert a given spherical
harmonics expansion into another. Some of the formulas displayed are de-
duced explicitely in the previous sections, some others can be obtained by
simple algebra from those that have been demonstrated. The first and the
second columns show the types of the original (old) and of the final (new)
expansions, respectively. The third gives the harmonic coefficients of the old
form, and the equation giving the expansion in the old form is referenced in
the fourth column. The fifth column shows the relationship between the old
and the new coefficients, and the sixth provides a reference equation to the
new expansion.

from to old see new see
coeff. eq. coeff. eq.

CSH RSH flm (1.47) clm = Re(flm)µlm(2− δ0m) (1.61)

slm = −Im(flm)µlm(2− δ0m)

CSH FNSH flm (1.47) c̄lm = Re(flm)(2− δ0m)/4π)
1/2

(1.65)

s̄lm = −Im(flm)(2− δ0m)/4π)
1/2

Table 1.4: CSH conversion table
Conversion table for CSH to RSH and to FNSH. The coefficient µlm is given
by (1.23). Re(flm) and Im(flm) are the real and imaginary part of the CSH
coefficient flm, respectively.

from to old see new see
coeff. eq. coeff. eq.

RSH CSH clm (1.61) flm = (clm − ιslm)/(2− δ0m)µlm (1.47)

slm
RSH FNSH clm (1.61) c̄lm = hlmclm (1.65)

slm s̄lm = hlmslm

Table 1.5: RSH conversion table
Conversion table for RSH to CSH and for RSH to FNSH. The coefficients
hlm and µlm are defined by (1.72) and by (1.23), respectively. The symbol ι
denotes

√
−1.
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from to old see new see
coeff. eq. coeff. eq.

FNSH CSH c̄lm (1.65) Re(flm) = c̄lm[4π/(2− δ0m)]
1/2

(1.47)

s̄lm Im(flm) = −s̄lm[4π/(2− δ0m)]
1/2

FNSH RSH c̄lm (1.65) clm = c̄lm/hlm (1.61)

s̄lm slm = s̄lm/hlm

Table 1.6: FNSH conversion table
Conversion table for FNSH to CSH and to RSH. The coefficients µlm and
hlm are given by (1.23) and (1.72). Re(flm) and Im(flm) denote the real and
imaginary part of the coefficient flm, respectively.

from to old see new see
coeff. eq. coeff. eq.

LEG CSH gl (1.74) flm = glδm0/µlm (1.47)

LEG RSH gl (1.74) clm = glδm0 (1.61)

slm = 0
LEG FNSH gl (1.74) c̄lm = glhlmδm0 (1.65)

s̄lm = 0

Table 1.7: LEG conversion table
Conversion table for LEG to CSH, LEG to RSH, and LEG to FNSH. The
coefficients hlm and µlm are defined by (1.72) and by (1.23), respectively.

1.5 Ocean function

The ocean function is defined as follows:

O(θ, λ) =
{

1 if (θ, λ) ∈ Oceans
0 if (θ, λ) ∈ Land,

(1.80)

where θ and λ colatitude and longitude, respectively.

Proposition 10 The coefficients of the CSH ocean function expansion

O(θ, λ) =
∑

lm

olmYlm(θ, λ) (1.81)
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are:

olm =
∫

Ω∈Oceans
Y ∗lmdΩ. (1.82)

Proof.

olm ≡ (1.50) =
∫

Ω
OY ∗lmdΩ

= (1.80) =
∫

Ω∈Oceans
Y ∗lmdΩ • (1.83)

Proposition 11 The RSH coefficients of the ocean function are:
{

cOlm
sOlm

}

= (2− δ0m)µlm

{

Re(olm)
− Im(olm)

}

. (1.84)

Proof. This is a direct consequence of (1.63) •

Proposition 12 The area of the surface of the oceans is

Aoc =
√
4πa2o00 = 4πa2cO00, (1.85)

where a is the radius of the Earth.

Proof. The area of the surface of the oceans is

Aoc =
∫

Ω∈Oceans
dA, (1.86)

where

dA = a2dΩ (1.87)

is the element of area, with

dΩ = sin θdθdλ (1.88)

(see also 1.25). Hence:

Aoc = a2
∫

Ω∈Oceans
dΩ

=
√
4πa2

∫

Ω∈Oceans

1√
4π

dΩ

= (table 1.1) =
√
4πa2

∫

Ω∈Oceans
Y ∗00dΩ

= (1.82) =
√
4πa2o00. (1.89)

The right equality in (1.85) follows from the first of (1.84) •
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1.5.1 Ocean function low-degree RSH coefficients

Below we give the double precision numerical value of some low-degree RSH
coefficients of the ocean function defined by (1.80). An expansion to harmonic
degree 128 is contained in the file oceano.128 in the TABOO package.

l m cOlm E sOlm E

0 0 0.71311686 0 0.00000000 0
1 0 -.19514428 0 0.00000000 0
1 1 0.18556270 0 0.10244521 0
2 0 -.12529769 0 0.00000000 0
2 1 0.51594067 -1 0.79778124 -1
2 2 0.24431601 -1 -.62126902 -3
3 0 0.14005141 0 0.00000000 0
3 1 -.48729831 -1 0.43897959 -1
3 2 0.21701498 -1 -.30707776 -1
3 3 0.15241890 -2 0.11474542 -1
4 0 -.83171371 -1 0.00000000 0
4 1 -.35013115 -1 -.22466979 -1
4 2 0.19243888 -1 -.53146845 -2
4 3 0.29394751 -2 -.30391754 -3
4 4 0.34639739 -3 -.21057688 -2
5 0 0.34944621 0 0.00000000 0
5 1 0.26141714 -2 -.10522861 -1
5 2 0.77676002 -2 0.42565974 -2
5 3 0.10048663 -2 0.39066894 -3
5 4 -.72146556 -3 0.23722730 -3
5 5 0.10315201 -5 0.11962016 -3

Table 1.8: Ocean function
Table of the RSH coefficients cOlm and sOlm of the ocean function O(θ, λ) for
degrees and orders ≤ 5. The coefficients are in the form a · 10E.

1.6 Time and Laplace domains

We introduce three basic time–dependent functions (the Dirac delta, the
Heaviside function, and the (multi)exponential function) and subsequently
we review the basic properties of the Laplace transforms.
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1.6.1 Time histories

The Dirac delta

The Dirac delta δ(t) is actually a distribution, defined by its integral property

f(t′) =
∫ +∞

−∞
δ(t− t′)f(t)dt, (1.90)

where f(t) is any continuous function of time.

The Heaviside function

This is also known as step function:

H(t) =

{

1 if t ≥ 0
0 if t < 0,

(1.91)

with derivative

δ(t) =
dH(t)

dt
, (1.92)

where δ(t) is the Dirac delta (see 1.90).

The multi–exponential function

We define the multi–exponential function as

mexp(t) = δ(t)fo +
N
∑

i=1

esitfi, (1.93)

where fo, fi, and si are real constants (si < 0), and N is an integer. The
response of a viscoelastic, incompressible, self–gravitating, spherically sym-
metric Earth model to a δ–like forcing is of multi–exponential type, as shown
in §4.2.2.

1.6.2 Laplace transforms

Laplace transforms are useful to compute the response of a viscoelastic Earth
to applied loads, as explained in §4.1.1. We only recall the basic facts.
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Definition

Given a function of time f(t) defined for t ≥ 0, its Laplace transform (LT) is

f(s) ≡
∫ ∞

0
estf(t)dt, (1.94)

where the complex variable s is the Laplace variable. It is assumed that
the integral (1.94) exists so that f(s) is well defined. We will also use the
notation

f(s) = LT[f(t)] (1.95)

to indicate that f(s) is the LT of f(t) and

f(t) = LT−1[f(s)] (1.96)

to say that f(t) is the inverse LT of f(s).

LT of a derivative

Using the definition (1.94) and integrating by parts it is straightforward to
show that:

LT[f ′(t)] = sLT[f(t)]− f(0). (1.97)

where f ′(t) =
df(t)

dt
.

LT transforms of simple functions

From (1.94) we can simply obtain the LT transforms of the elementary func-
tions introduced above:

1.6.3 Time convolution

Definition

Given two functions of time f(t) and g(t), their convolution product is:

c(t) ≡
∫ t

−∞
f(t− t′)g(t′)dt′, (1.98)

which we also denote by:

c(t) = f(t)⊗ g(t). (1.99)
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f(t) LT[f(t)]
δ(t) 1

H(t)
1

s

eαt, α < 0
1

s− α

mexp(t) f0 +
N
∑

i=1

fi
s− si

Table 1.9: Elementary Laplace transforms.

A property of the convolution product

Given two functions f(s) = LT[f(t)] and g(s) = LT[g(t)], ”it can be shown
that”:

LT−1[f(s)g(s)] = f(t)⊗ g(t), (1.100)

i.e., the inverse Laplace transform of the product f(s)g(s) is the convolution
product of the original functions (see e. g. [11]).
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Chapter 2

Displacement and Gravity

This Chapter is devoted to the study of the two relevant geophysical quan-
tities, i.e., the displacement field and the variations of the gravity potential
resulting from forces which perturb the equilibrium of the Earth. The reader
is referred to the literature for a broader and self–contained discussion.

2.1 Toroidal–Poloidal decomposition of dis-

placement

The displacement field is defined as

~u = ~r(t)− ~ro, (2.1)

where ~r(t) is the position of a particle of continuum at time t, and ~ro is its
position in a given reference state.

For most applications, we can assume that the Earth is a perfectly in-
compressible body1. If the Earth equilibrium is perturbed in some way, the
resulting displacement field may be thus regarded as a solenoidal (i. e.,
divergence–free) field:

∇ · ~u = 0. (2.2)

1The current version of TABOO (1.0) is fully based on this assumption.



26 Displacement and Gravity

Proposition 13 If the vector field ~u is solenoidal, there are unique scalar
fields T (r, θ, λ) and P (r, θ, λ) with zero average on the surface of the sphere
such that

~u = ~ut + ~up = ∇× êrT +∇× (∇× êrP ), (2.3)

where T = T (~r) and P (~r) are the toroidal and poloidal scalars, and ~ut and
~up are the toroidal and poloidal parts of ~u, respectively. The expression (2.3)
is known as ”Mie representation” of the solenoidal vector ~u [2].

Proof. The Mie representation of a solenoidal vector field (2.3) derives from
the Helmholtz representation of a tangent vector. Details are given in [2] •

2.1.1 CSH expansion of the displacement field

Our purpose in this section is to write the general expansion of the (solenoidal)
displacement field on the CSH basis. The starting point is the expansion of
the toroidal and the poloidal scalars:

{

T
P

}

(~r) = Σlm

{

tlm(r)
plm(r)

}

Ylm(θ, λ), (2.4)

where, according to proposition 13 and (1.57):

t00(r) = p00(r) = 0. (2.5)

Proposition 14 The components of the (solenoidal) displacement field ~u
can be expanded as follows:



























































ur(~r) = Σlmu
(1)
lm(r)Ylm

uθ(~r) = Σlm

[

+u
(2)
lm(r)∂θYlm +

v
(1)
lm (r)

sin θ
∂λYlm

]

uλ(~r) = Σlm

[

−v(1)lm (r)∂θYlm +
u
(2)
lm(r)

sin θ
∂λYlm

]

(2.6)

with:

u
(1)
lm(r) =

l(l + 1)

r2
plm, u

(2)
lm(r) =

1

r

dplm
dr

, v
(1)
lm (r) =

tlm
r
, (2.7)
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where tlm and plm are the CSH coefficients of the toroidal and poloidal scalars,
respectively (see 2.4). We observe that, due to (2.5), the degree 0 coefficients
of (2.6) vanish identically. This result, which is valid for solenoidal fields, is
also demonstrated in [10].

Proof. We use the definition of curl (1.15) with (2.3) and simple algebra:

ut
r = 0, (2.8)

ut
θ = =

1

r sin θ
∂λT =

1

r sin θ
Σlmtlm∂λYlm, (2.9)

ut
λ = −1

r
∂θT = −1

r
Σlmtlm∂θYlm, (2.10)

up
r = − 1

r2
∇2hP = − 1

r2
Σlmplm∇2hYlm =

1

r2
Σlml(l + 1)plmYlm, (2.11)

up
θ =

1

r
∂2rθP =

1

r
Σlm

dplm
dr

∂θYlm, (2.12)

up
λ =

1

r sin θ
∂2rλP =

1

r sin θ
Σlm

dplm
dr

∂λYlm, (2.13)

which can be summarized as follows:

ur = ut
r + up

r = Σlm
l(l + 1)

r2
plmYlm (2.14)

uθ = ut
θ + up

θ =
1

sin θ
Σlm

tlm
r
∂λYlm + Σlm

1

r

dplm
dr

∂θYlm (2.15)

uλ = ut
λ + up

λ = −Σlm
tlm
r
∂θYlm +

1

sin θ
Σlm

1

r

dplm
dr

∂λYlm. (2.16)

With the definitions (2.7) the expansions (2.6) are thus demonstrated. The

radial functions u
(1)
lm(r) and u

(2)
lm(r), related to plm, have a poloidal nature,

whereas v
(1)
lm has a toroidal character being related to tlm (see 2.7) •

2.2 The gravity field

In this section we first consider the gravity field of a non–rotating body,
without making assumptions on its internal density distribution. The Stokes
coefficients are defined in §2.2.4. The inertia tensor and the position of the
center of mass of the body, introduced in §2.2.2 and 2.2.3 are related with
the low–degree Stokes coefficients of the gravity field, as shown in §2.2.5. In
§2.2.6, 2.2.7 and 2.2.8 the general concepts previously outlined are used to
describe the gravity field within the assumptions of TABOO. In particular, we
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define the potential perturbation and the geoid height change in response
to perturbing forces acting at the Earth surface, and we show how these
quantities are related to variations in the Stokes coefficients and of the inertia
tensor.

2.2.1 Gravity and gravity potential

We consider an arbitrarily shaped body B of finite extent and we denote by
~r′ the position of a mass element dm of B in a Cartesian reference frame
Oxyz. By Newton’s Law of gravitation, the gravity potential at an external
point P with position ~r is:

dU(~r) = G
dm

‖~r′ − ~r‖ , (2.17)

with

dm = ρ(~r′)dV, (2.18)

where ρ(~r′) is the density at ~r′ and

dV = r′2dr′ sin θ′dθ′dλ′ (2.19)

is the volume element in spherical geometry.
The potential of the gravity field due to the whole mass distribution can

be obtained by integration of (2.17) over B:

U(~r) = G
∫

B

dm

‖~r′ − ~r‖ , (2.20)

and is related to the gravity field by

~g(~r) =
−−→∇U = êr∂rU +

1

r

−−→∇hU (2.21)

where the surface gradient operator ∇h is given by (1.11).
An equipotential (EP) surface is a surface on which U takes a constant

value:

U(~r) = c, (2.22)

and that particular EP surface corresponding to the free surface of the oceans
in the absence of winds and currents is called geoid.
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In the special case of a body characterized by a radial density distribution:

ρ(~r′) = ρ(r′), (radial density distribution) (2.23)

the gravity potential can be obtained explicitely from (2.20):

U(r) =
GM

r
, (2.24)

where r is the distance from the center of the body. The result (2.24) shows
that, for a body with radial density distribution, the gravity potential is the
same as if the whole mass of the body were concentrated in its center (see
2.17). The EP surfaces have a spherical shape, and from (2.21) the external
gravity field is directed along the radial direction:

~g(r) = −êr
GM

r2
. (2.25)

2.2.2 Inertia tensor

The elements of the symmetric inertia tensor are defined as follows:

ixx =
∫

B
(y′2 + z′2)dm (2.26)

iyy =
∫

B
(z′2 + x′2)dm (2.27)

izz =
∫

B
(x′2 + y′2)dm (2.28)

ixy ≡ iyx = −
∫

B
x′y′dm (2.29)

ixz ≡ izx = −
∫

B
x′z′dm (2.30)

iyz ≡ izy = −
∫

B
y′z′dm, (2.31)

where the integrals are over the volume of the body, and dm is the mass
element with coordinates (x′, y′, z′) in a Cartesian reference frame Oxyz. The
trace of the inertia tensor is:

Tr(I) ≡ ixx + iyy + izz

= (2.26−2.28) = 2
∫

B
(x′2 + y′2 + z′2)dm

= (1.2) = 2
∫

B
r′2dm, (2.32)
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2.2.3 Center of mass

The center of mass (CM) is defined as:

~Rcm =

∫

B ~r
′dm

∫

B dm
, (2.33)

where dm is the mass element with position vector ~r′. The Cartesian com-
ponents of ~Rcm are:







xcm

ycm
zcm





 =
1

M

∫

B







x′

y′

z′





 dm

= (1.1) =
1

M

∫

B







r′ sin θ′ cosλ′

r′ sin θ′ sinλ′

r′ cos θ′





 dm, (2.34)

where

M =
∫

B
dm (2.35)

is the mass of the body B.

2.2.4 Stokes coefficients

Proposition 15 The gravity potential external to a body B can be expressed
by a multipole expansion:

U(~r) =
∞
∑

l=0

G

r

∫

B

(

r′

r

)l

Pl(cos β)dm, (2.36)

where β is the angle between ~r and ~r′, such that

cos β =
~r · ~r′
rr′

, (2.37)

where r = ‖~r‖ and r′ = ‖~r′‖.

Proof. By the law of cosines:

‖~r′ − ~r‖ = r

√

1− 2
(

r′

r

)

cos β +
(

r′

r

)2

, (2.38)
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hence

U(~r) = (2.20) =
G

r

∫

B

dm
√

1− 2
(

r′

r

)

cos β +
(

r′

r

)2
,

= (1.43) =
∞
∑

l=0

G

r

∫

B

(

r′

r

)l

Pl(cos β)dm • (2.39)

Proposition 16 The potential of the gravity field external to a body B can
be expanded in series of RSH as follows:

U(~r) =
GM

r
Σ′lm

(

a

r

)l

(clm cosmλ+ slm sinmλ)Plm(cos θ), (2.40)

where
{

clm
slm

}

= (2− δ0m)
(l −m)!

(l +m)!

1

M

∫

B

(

r′

a

)l

Plm(cos θ
′)

{

cosmλ′

sinmλ′

}

dm,

(2.41)

are referred as to cosine and sine Stokes coefficients, respectively, ”a” is a
conventionally chosen reference radius (the average radius is a suitable choice
for quasi–spherical bodies), and M is the mass of the body.

Proof.

U(~r) = (2.36) =
∞
∑

l=0

G

r

∫

B

(

r′

r

)l

Pl(cos β)dm

= (1.29) =
∞
∑

l=0

G

r

∫

B

(

r′

r

)l 4π

2l + 1

+l
∑

m=−l

Y ∗lm(θ
′, λ′)Ylm(θ, λ)dm

=
GM

r
Σlm

(

a

r

)l

ΛlmYlm(θ, λ), (2.42)

with coefficients

Λlm =
1

M

4π

2l + 1

∫

B

(

r′

a

)l

Y ∗lm(θ
′, λ′)dm. (2.43)

According to (1.63), (2.42) can be converted into the equivalent RSH form

U(~r) =
GM

r
Σ′lm

(

a

r

)l

(clm cosmλ+ slm sinmλ)Plm(cos θ), (2.44)
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with
{

clm
slm

}

= (2− δ0m)µlm

{

Re(Λlm)
− Im(Λlm)

}

= (2− δ0m)µ
2
lm

1

M

4π

2l + 1

∫

B

(

r′

a

)l
{

cosmλ′

sinmλ′

}

Plm(cos θ)dm

= (2− δ0m)
(l −m)!

(l +m)!

1

M

∫

B

(

r′

a

)l

Plm(cos θ
′)

{

cosmλ′

sinmλ′

}

dm •

(2.45)

Proposition 17 For a body with arbitrary density distribution, the zonal
Stokes sine coefficients vanish identically:

sl0 = 0. (2.46)

Proof. This result derives from (2.41) observing that sinmλ′ = 0 for m = 0.

Proposition 18 For a body with arbitrary density distribution, the degree
zero cosine Stokes coefficient is

c00 = 1. (2.47)

Proof.

c00 = (2.41) =
1

M

∫

B
P00(cos θ

′)dm

= (table 1.2) =
1

M

∫

B
dm

= (2.35) = 1 • (2.48)

Proposition 19 The mass of a spherical body of radius ”a” characterized
by a radial density distribution (see 2.23) is:

M = 4π
∫ a

0
dr′ρ(r′)r′2, (2.49)

and the only non vanishing Stokes coefficient of the body is

c00 = 1. (2.50)
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Proof.

M = (2.35, 2.23, 2.18) =
∫

B
ρ(r′)dV

= (2.19) =
∫ a

0

∫ 2π

0

∫ π

0
ρ(r′)r′2dr′ sin θ′dθ′dλ′ =

= 4π
∫ a

0
dr′ρ(r′)r′2 • (2.51)

To prove the second part of the proposition, it suffices to recall from (2.24)
that in the case of radial density distribution:

U(r) =
GM

r
, (2.52)

which can be cast in the RSH form (2.40), with c00 = 1, s00 = 0, and clm =
slm = 0 for l ≥ 1 •

2.2.5 Low–degree Stokes coefficients

The low–degree Stokes coefficients (l = 0, 1, 2) have a special physical mean-
ing, which is discussed in the following.

Proposition 20 For a body with arbitrary density distribution, the degree 0
Stokes coefficients are:

{

c00 = 1
s00 = 0.

(2.53)

Proof. The first is a repetition of propositions 18, while the second is ob-
tained from proposition 17 with l = 0 •

Proposition 21 For a body with arbitrary density distribution, the degree 1
Stokes coefficients are:











c11
s11
c10











=
1

a











xcm

ycm
zcm











, (2.54)

where xcm, ycm, and zcm are the Cartesian coordinates of the CM (2.34). A
direct consequence is that the degree 1 Stokes coefficients vanish identically
if the origin of the Cartesian reference frame coincides with the CM of the
body.
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Proof. Once again, the relationships (2.54) are a direct consequence of the
definition (2.41). In detail, we have:

c11 = (2.41) =
1

M

∫

B

r′

a
P11(cos θ

′) cosλ′dm

= (table 1.2) =
1

a

1

M

∫

B
r′ sin θ′ cosλ′dm

= (1.1) =
1

a

1

M

∫

B
x′dm

= (2.34) =
xcm

a
• (2.55)

s11 = (2.41) =
1

M

∫

B

r′

a
P11(cos θ

′) sinλ′dm

= (table 1.2) =
1

a

1

M

∫

B
r′ sin θ′ sinλ′dm

= (1.1) =
1

a

1

M

∫

B
y′dm

= (2.34) =
ycm
a

• (2.56)

c10 = (2.41) =
1

M

∫

B

r′

a
P10(cos θ

′)dm

= (table 1.2) =
1

a

1

M

∫

B
r′ cos θ′dm

= (1.1) =
1

a

1

M

∫

B
z′dm

= (2.34) =
zcm
a

• (2.57)

Proposition 22 For a body with arbitrary density distribution, the Stokes
coefficients of harmonic degree 2 can be expressed as linear combinations of
the elements of the inertia tensor:











c20
c21
c22











=
1

Ma2











−[izz − (ixx + iyy)/2]
ixz

−(ixx − iyy)/4











, (2.58)











s20
s21
s22











=
1

Ma2











0
iyz
−ixy/2











, (2.59)
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where ikl is given by (2.26-2.31).

Proof. The demonstration of (2.58) and (2.59) is straightforward but some-
what cumbersome. The details are given in the following.

c20 Stokes coefficient.

c20 = (2.41) =
1

M

∫

B

(

r′

a

)2

P20(cos θ
′)dm

= (table 1.2) =
1

2Ma2

∫

B
r′2(3 cos2 θ′ − 1)dm

= (1.1) =
1

2Ma2

∫

B
(3z′2 − r′2)dm. (2.60)

The last integral can be transformed observing that

ixx + iyy = (2.26, 2.27) =
∫

B
(x′2 + y′2 + 2z′2)dm

= (2.28) = izz + 2
∫

B
z′2dm, (2.61)

hence

∫

B
z′2dm =

ixx + iyy − izz
2

, (2.62)

and from (2.32):

∫

B
r′2dm =

ixx + iyy + izz
2

. (2.63)

We therefore obtain

c20 = (2.60) =
1

2Ma2

[

3

2
(ixx + iyy − izz)−

1

2
(ixx + iyy + izz)

]

=
1

Ma2

[

izz −
ixx + iyy

2

]

• (2.64)
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c21 Stokes coefficient.

c21 = (2.41) =
1

3

1

M

∫

B

(

r′

a

)2

P21(cos θ
′) cosλ′dm

= (table 1.2) =
1

3

1

Ma2

∫

B
r′2(−3 cos θ′ sin θ′) cosλ′dm

= − 1

Ma2

∫

B
(r′ sin θ′ cosλ′)(r′ cos θ′)dm

= (1.1) = − 1

Ma2

∫

B
x′z′dm

= (2.30) =
ixz
Ma2

• (2.65)

c22 Stokes coefficient.

c22 = (2.41) =
1

12

1

M

∫

B

(

r′

a

)2

P22(cos θ
′) cos 2λ′dm

= (table 1.2) =
1

12

1

Ma2

∫

B
r′2(3 sin2 θ′)(cos2 λ′ − sin2 λ′)dm

=
1

4Ma2

∫

B
(r′2 sin2 θ′ cos2 λ′ − r′2 sin2 θ′ sin2 λ′)dm

= (1.1) =
1

4Ma2

∫

B
(x′2 − y′2)dm

= (2.26, 2.27) = − ixx − iyy
4Ma2

• (2.66)

s21 Stokes coefficient.

s21 = (2.41) =
1

3

1

M

∫

B

(

r′

a

)2

P21(cos θ
′) sinλ′dm

= (table 1.2) =
1

3

1

Ma2

∫

B
r′2(−3 cos θ′ sin θ′) sinλ′dm

= − 1

Ma2

∫

B
(r′ sin θ′ sinλ′)(r′ cos θ′)dm

= (1.1) = − 1

Ma2

∫

B
y′z′dm

= (2.31) =
iyz
Ma2

• (2.67)
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s22 Stokes coefficient.

s22 = (2.41) =
1

12

1

M

∫

B

(

r′

a

)2

P22(cos θ
′) sin 2λ′dm

= (table 1.2) =
1

12

1

Ma2

∫

B
r′2(3 sin2 θ′)(2 sinλ′ cosλ′)dm

=
1

2Ma2

∫

B
(r′ sin θ′ cosλ′)(r′ sin θ′ sinλ′)dm

= (1.1) =
1

2Ma2

∫

B
x′y′dm

= (2.29) =
ixy

2Ma2
• (2.68)

2.2.6 Potential perturbation and geoid height

In the following, we consider two distinct states of the Earth: a reference and
a perturbed state. In the reference state (hereafter referred as to ref state),
the gravity field is that of a non–rotating, spherically symmetrical body: the
solid surface of the Earth has a spherical shape, and the relevant geophysical
parameters (density, rigidity, and viscosity) only depend on radius. The
perturbed state results from the action of forces applied at the surface of the
Earth. The spherical symmetry of the ref state is lost, but it is assumed
that the mass of the Earth is unchanged. Since we are only concerned with
surface forces, no lateral density variations at depth are produced in addition
to those due to the deformation of the internal boundaries. The perturbing
forces may be arranged so that to describe the load due to ice sheets or even
the exchange of mass between ice and fresh water reservoirs.2 Since these
surface loads correspond to specific imposed force systems that mimic mass
conservation, they never imply a creation or the disruption of actual mass
on the Earth surface. The Earth mass is always constant to its value in the
ref state.

2However, this procedure is not self–consistent, since the oceans water distribution,
and hence the ocean loads, should be naturally determined by the changes of the gravity
field of the Earth due to deformation, and not imposed as it is done here. The only way to
escape to this difficulty is to solve the sealevel equation, according to the theory illustrated
by Farrell and Clark [4]. This is done by the numerical code SELEN, which will be soon
made available by my postglacial rebound group. In SELEN we have implemented the finite
elements approach to the sealevel equation described by [5].
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Since in the ref state it is assumed a radial density distribution (2.23), we
represent the potential of the Earth gravity field as

U ref (r) =
Gme

r
, (2.69)

where r is the radius measured with respect to the CM of the Earth, me is
the mass of the Earth, and G is the Newton constant (see 2.24). Since in
the ref state any spherical surface is an EP surface, the unperturbed solid
surface of the Earth is a particular EP surface before deformation.

According to (2.21), the gravity field in the ref state can be expressed as

~gref (r) = ∇U ref (r) = −êr
Gme

r2
≡ −êrγo(r) (2.70)

where

γo(r) =
Gme

r2
(2.71)

is the modulus of the unperturbed gravity field at a distance r from the CM.
The ref gravity computed at the unperturbed Earth radius r = a is

γo ≡ γo(a) =
Gme

a2
. (2.72)

In the perturbed state we assume that the gravity potential and the grav-
ity acceleration slightly depart from their values in the ref state. Accordingly,
we write:

U(t, ~r) = U ref (r) + Φ(t, ~r) (2.73)

and

~g(t, ~r) = ~gref (r) + ~g′(t, ~r), (2.74)

where Φ(t, ~r) and ~g′(t, ~r) are the potential perturbation and the gravity per-
turbation, respectively, with

|Φ(t, ~r)| ¿ |U ref (r)| (2.75)

‖~g′(t, ~r)‖ ¿ ‖~gold(r)‖, (2.76)

and

~g′(t, ~r) = ∇Φ(t, ~r). (2.77)
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Since the incremental potential is not totally negligible in front of the per-
turbed potential, the body is a self–gravitating body. A simply gravitating
body is one for which Φ = 0, and consequently ~g = ~gref . In our following
discussion, we will always deal with self–gravitating bodies.

The potential perturbation Φ(t, ~r) accounts for:

1. forces acting on the solid surface of the Earth, which mimic the effect
of continental ice sheets,

2. forces acting on the oceans bottom, which describe modifications of the
water load due to the accretion or ablation of the ice sheets of point 1.
above,

3. the further change in the gravity potential due to the distortions of the
solid Earth under the effect of ice and the water loads.

Accordingly, we write

Φ(t, ~r) = Φr(t, ~r) + Φdef (t, ~r), (2.78)

where Φr describes the effects 1. and 2. above3, and Φdef describes the effect
3. The decomposition (2.78) will be reconsidered in §4.2.1 from another point
of view.

It is convenient to transform the potential perturbation into a physical
quantity with the same dimensions of a displacement, the geoid height:4

N(t, θ, λ) ≡ Φ(t, a, θ, λ)

γo
, (2.79)

where Φ(t, a, θ, λ) = Φ(t, ~r)|r=a, a is the reference radius of the Earth, and
γo is the reference gravity (2.72). Since Φ is a small quantity if compared to
U ref (see 2.75), we can assume that N is small quantity as well, if compared
to the ref radius of the Earth:

N(t, θ, λ)¿ a. (2.80)

3The upperscript r stands for rigid, since Φr can be computed as the Earth was rigid
given that this term is only dependent on the load.

4The use of the term geoid height is conventional. As stated in the text, the geoid is in
fact that particular equipotential surface corresponding to the free surface of the oceans.
The lack of gravitationally self–consistent oceans in TABOO makes impossible a rigorous
implementation of the definition of geoid.
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As any scalar field, the potential perturbation evaluated at the unde-
formed surface of the solid Earth can be expanded in series of CSH functions
(see 1.47):

Φ(t, a, θ, λ) = ΣlmΦlm(t, a)Ylm(θ, λ), (2.81)

so that the CSH expansion of the geoid height is

N(t, θ, λ) = Σlmnlm(t)Ylm(θ, λ), (2.82)

with harmonic coefficients

nlm(t) =
Φlm(t, a)

γo
. (2.83)

Proposition 23 The geoid height N is such that

U(a+N) = U ref (a), (2.84)

where U(a + N) = U(t, ~r)|r=a+N . In words, the perturbed gravity potential
computed on the surface r = a+N equals the old potential computed on the
unperturbed surface r = a. Since r = a is an EP surface

U ref (a) = c, (2.85)

(see 2.69), it follows from (2.84) that r = a + N is also an EP surface,
corresponding to the same constant c. Notice that while r = a is a solid
surface, r = a+N generally is not a solid surface.

Proof. To first order in N , we have:

U(a+N) ' U(a) +N
∂U

∂r









r=a
, (2.86)

where

N
∂U

∂r









r=a
= (2.21) = Nêr · ~g(t, a, θ, λ)

= (2.74) = Nêr · (~gref (a) + ~g′(t, a, θ, λ))

' (2.70) ' −Nγo, (2.87)
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where we have neglected the product of small quantities Nêr · ~g′ (see 2.80
and 2.76). From (2.86), (2.87), and (2.73) we obtain

U(a+N) = U(a)− γoN

= Φ(t, a, θ, λ) + U ref (a)− γoN

= Φ(t, a, θ, λ) + U ref (a)− Φ(t, a, θ, λ)

= U ref (a), (2.88)

so that from (2.85) we conclude that the surface r = a +N is an EP in the
perturbed state, with U(a+N) = c •

2.2.7 Stokes coefficients variations

Here we compute the variations of the Stokes coefficients and of the inertia
tensor with respect to the ref state defined in the previous section.

Proposition 24 In the perturbed state, the geoid height is:

N(t, θ, λ) = a Σ′lm(δclm(t) cosmλ+ δslm(t) sinmλ)Plm(cos θ), (2.89)

where a is the Earth radius in the ref state, and
{

δclm(t) = clm(t)− creflm

δslm(t) = slm(t)− sreflm

(2.90)

are the variations of the Stokes coefficients with respect to the ref state. Since
the mass of the Earth is constant, and it is assumed that the origin of the
reference frame coincides with the CM of the Earth both in the ref and in the
perturbed state, the only non–vanishing terms in the RSH expansion (2.89)
are those with degree l ≥ 2.

Proof. The potential of the gravity field in the spherically symmetric ref
state is

U ref (r) =
Gme

r
, (2.91)

where me is the Earth mass in the ref state, and we assume that the origin
of the reference system coincides with the CM (see 2.69). The reference
potential (2.91) can be formally expanded as

U ref (r) =
Gme

r
Σ′lm

(

a

r

)l

(creflm cosmλ+ sreflm sinmλ)Plm(cos θ), (2.92)
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where a is the ref Earth radius, and the only non–vanishing term is that of
degree zero:















cref00 = 1

cref1m = sref1m = 0, (m = 0, 1)

creflm = sreflm = 0, (l ≥ 2).

(2.93)

According to the general result (2.40) the gravity potential can be ex-
panded as follows in the perturbed state:

U(t, ~r)=
Gme

r
Σ′lm

(

a

r

)l

(clm(t) cosmλ+slm(t) sinmλ)Plm(cos θ), (2.94)

where (clm(t), slm(t)) and me are the Stokes coefficients and the Earth mass
in the perturbed state, respectively, and it is assumed that the origin of the
reference frame still coincides with the CM. Due to (2.47) and (2.54):











c00 = 1
c1m = s1m = 0, (m = 0, 1)
clm 6= slm 6= 0, (l ≥ 2).

(2.95)

From (2.73), the potential perturbation is the difference between the po-
tential of the gravity field in the perturbed and in the reference state:

Φ(t, ~r) = U(t, ~r)− U ref (r), (2.96)

which according to (2.94) and (2.92) can be written as:

Φ(t, ~r)=
Gme

r
Σ′lm

(

a

r

)l

(δclm(t) cosmλ+δslm(t) sinmλ)Plm(cos θ), (2.97)

where δclm(t) and δslm(t) are the variations of the Stokes coefficients:
{

δclm(t) = clm(t)− creflm

δslm(t) = slm(t)− sreflm ,
(2.98)

with

if (l = 0, 1) :

{

δclm(t) = 0
δslm(t) = 0

(2.99)

and

if (l ≥ 2) :

{

δclm(t) = clm
δslm(t) = slm,

(2.100)
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where we have used (2.95) and (2.93). Using (2.97) and the definition of
geoid height (2.79), we finally obtain:

N(t, θ, λ) =
Φ(t, a, θ, λ)

γo
= a Σ′lm(δclm(t) cosmλ+δslm(t) sinmλ)Plm(cos θ), (2.101)

where due to (2.99) and (2.100) the lowest degree of the RSH expansion is
l = 2. We also observe from (2.100) that for l ≥ 2 the variations of the
Stokes coefficients are the Stokes coefficients in the perturbed state •

2.2.8 Inertia tensor variations

According to (2.58) and (2.59), the variations of the Stokes coefficients of
harmonic degree 2 are related to the variations of the elements of the inertia
tensor by
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δc22











(t) =
1

mea2











−[δizz − (δixx + δiyy)/2]
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(t), (2.102)

and
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δs22











(t) =
1

mea2











0
δiyz
−δixy/2











(t), (2.103)

where me and a are the mass and the reference radius of the Earth, respec-
tively. The relationships above cannot be unequivocally inverted in order to
obtain the inertia tensor variations from the Stokes coefficients. A further
condition must be provided, as stated in the following proposition.

Proposition 25 As shown in [10], the trace of the inertia tensor does not
vary provided that the displacement field induced by the perturbing forces is
solenoidal (this statement corresponds to the so–called Darwin’s Theorem).
Since we have assumed that the Earth is incompressible, the displacement
field is solenoidal (2.2). Using the constraint:

δixx + δiyy + δizz = 0, (2.104)



44 Displacement and Gravity

in (2.102) and (2.103), we obtain:
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(t), (2.105)

where we have introduced the normalized inertia tensor:

ī(t) ≡ i(t)

mea2
. (2.106)



Chapter 3

Surface loads

In the previous Chapter we have associated the displacement field (2.6) and
the geoid height (2.89) to generic perturbing forces causing deformation of
the solid Earth. The forces of concern in TABOO are indeed particular, in
that they are related to the accretion or ablation of ice loads placed on
the Earth surface and to the consequent variations of ocean mass. Here we
describe these surface loads in mathematical terms; their relationship with
the displacements and the geoid height is discussed in the next Chapter.

3.1 General properties

3.1.1 Definition

In our discussion we are only concerned with geophysical processes which can
be modeled in terms of normal forces acting on the Earth surface. We define
the surface load as

L(t, θ, λ) = − 1

γ0

dfn
dA

(t, θ, λ), (3.1)

where dfn is the normal force on the surface element of area dA of the Earth
surface at time t, and γo is the reference gravity acceleration at the surface of
the Earth (2.72). The surface load has dimensions of a mass per unit surface.

In this discussion we will limit our attention to the special case of surface
loads which can be factorized as follows:

L(t, θ, λ) = f(t)σ(θ, λ), (3.2)
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where the function σ(θ, λ), called load function, defines the spatial features
of the surface load, and the non–dimensional function f(t) is the load time–
history, which describes its time–evolution.

All of the surface loads considered in this booklet are characterized by
load functions of the type

σ(θ, λ) =

{

HD(θ, λ) if (θ, λ) ∈ D
c if (θ, λ) /∈ D, (3.3)

where D ⊆ Ω is the load function domain, Ω is the surface of the sphere, HD
is a function defined on D, and c is a constant. The particular load functions
and time–histories available in TABOO will be described in §3.2, 3.3, and 7.1.

3.1.2 Dynamic and static load mass

Once L(t, θ, λ) is defined by (3.2) and (3.3), it is useful to introduce the
dynamic mass of the load:

µ(t) ≡
∫

Ω
L(t, θ, λ)dA (3.4)

= (3.2) = f(t)
∫

Ω
σ(θ, λ)dA, (3.5)

where

dA = a2dΩ (3.6)

is the element of area on the surface of the sphere of radius a, with dΩ =
sin θdθdλ (see also 1.25).

It is also useful to introduce the static load mass ms as

ms =
∫

Ω
σ(θ, λ)dA, (3.7)

so that:

µ(t) = f(t)ms. (3.8)

The dynamic mass µ(t) gives information of the spatially averaged surface
load at time t, and as such it can be characterized by negative, null, or
positive values:
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µ(t) = (3.4) =
∫

Ω
L(t, θ, λ)dA

= Ae

∫

Ω L(t, θ, λ)dA

Ae

= (3.6) = Ae

∫

Ω L(t, θ, λ)a
2dΩ

∫

Ω a
2dΩ

= (1.56) = Ae〈L(t, θ, λ)〉Ω
= (3.2) = Aef(t)〈σ(θ, λ〉Ω, (3.9)

where Ae is the area of the surface of the Earth and 〈...〉Ω indicates the
average on Ω (see 1.56).

3.1.3 Balanced loads

In the special case of a surface load with vanishing dynamic mass at any time
t, we are dealing with a balanced load. Due to (3.8), a sufficient condition for
µ(t) = 0 is

ms = 0 (balanced load). (3.10)

Since the balanced loads never create nor destroy a net static mass on the
Earth surface, they are useful to mimic the principle of mass conservation.
It should be remarked that the surface loads, being them balanced or not,
always correspond to distributed forces applied at the Earth surface, which
do not imply any alteration of the effective mass of the Earth.

Suppose that a non–balanced surface load with dynamic mass µ1(t) is as-
signed on a domain D1 and that we want to balance that load introducing an
appropriate compensating surface load with dynamic mass µ2(t) on a domain
D2 (see 3.3). The two surface loads will be also referred as to primary and
secondary surface loads, respectively. In the special case D1 ∪ D2 = Ω, the
secondary load is complementary to the primary.

The load resulting from the juxtaposition of the two unbalanced surface
loads is balanced if

µ(1+2)(t) = µ1(t) + µ2(t) = f 1(t)m1
s + f 2(t)m2

s ≡ 0, (3.11)

where f 1(t) and f 2(t) are the time–histories of the two loads, and m1
s and

m2
s are their static masses, respectively. The condition (3.11) is satisfied if
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f 1(t) = f 2(t) and m1
s = −m2

s, i.e., if the two loads have the same time–
history but opposite static masses. This is the strategy that we will employ
in the following in order to build the compensating secondary surface load
once the primary is assigned. In general, the static mass of the primary load
is ≥ 0, since the primary surface load is associated with an excess of mass
on the Earth surface (e.g., an ice dome, or other). As a consequence, a static
mass ≤ 0 is assigned to the secondary load, which is usually associated with
a mass deficiency (e.g., the sealevel drop due to ice accumulation within the
ice caps).

A special case is that of self–balanced loads, for which the dynamic mass
vanishes without the need of introducing a secondary compensating load. An
example of self–balanced load is given in §3.3.6.

3.1.4 AX and NAX surface loads

For our following discussion, it is important to classify the load functions
σ(θ, λ) into two families. The first contains those load functions which possess
an axis of symmetry, and the corresponding surface loads are called AX loads.
The second family contains the non–axissimmetric loads, referred as to NAX
loads. Of course, any AX load can be viewed as a particular NAX load.

Suppose that, once the load function σ(θ, λ) and the domain D in (3.3)
are specified in the geographical reference frame (GRF), it is possible to
determine a new frame in which σ is only function of the new colatitude Θ.
The z–axis of the new frame, that we call load reference frame (LRF) is the
axis of symmetry of the load. The pole of the (AX) load is that point where
the axis of symmetry pierces the sphere, so that the pole has colatitude Θ = 0
in the LRF. The existence of the LRF depends on the geometrical features of
both σ(θ, λ) and D. The x and y axes of the LRF can be assigned arbitrarily
on the plane perpendicular to z due to the symmetry of the load.

If Θ is the colatitude of point P in the LRF, the cosines theorem of
spherical geometry ensures that

cosΘ = cos θ cos θc + sin θ sin θc cos(λ− λc), (3.12)

where (θ, λ) and (θc, λc) are the spherical coordinates of P and of the pole of
the load in the GRF, respectively.
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3.1.5 Expansion of the NAX load function

Proposition 26 Given a generic NAX surface load, its load function can be
expanded as

σ(θ, λ) = ΣlmσlmYlm(θ, λ), (3.13)

where the CSH coefficients are:

σlm =
∫

Ω
σ(θ, λ)Y ∗lm(θ, λ)dΩ. (3.14)

Proof. The formula (3.13) is just a consequence of the general CSH expan-
sion theorem (1.47), and (3.14) follows from (1.50).

Proposition 27 Given the CSH expansion of the load function associated
with a generic NAX load (3.13), the coefficients of the RSH equivalent ex-
pansion

σ(θ, λ) = Σ′lm(c
σ
lm cosmλ+ sσlm sinmλ)Plm(cos θ) (3.15)

are
{

cσlm
sσlm

}

= (2− δ0m)µlm

{

Re(σlm)
− Im(σlm)

}

, (3.16)

with

Σ′lm ≡
∞
∑

l=0

+l
∑

m=0

. (3.17)

Proof. The formula (3.15) is just a a consequence of (1.63) •

Proposition 28 The static mass of a generic NAX surface load is

ms = a2
√
4πσ00 = 4πa2cσ00, (3.18)

where a is the reference radius of the Earth.
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Proof. We prove the left equality first:

ms = (3.7) = a2
∫

Ω
σ(θ, λ)dΩ

= (3.13) = a2
∫

Ω
ΣlmσlmYlmdΩ

= a2Σlmσlm

∫

Ω
YlmdΩ

= a2Σlmσlm

√
4π
∫

Ω

1√
4π

YlmdΩ

= (table 1.1) = a2Σlmσlm

√
4π
∫

Ω
Y00YlmdΩ

= a2Σlmσlm

√
4π
∫

Ω
Y ∗00YlmdΩ

= (1.24) = a2Σlmσlm

√
4πδl0δm0

= a2
√
4πσ00 • (3.19)

The right equality in (3.18) can be recognized as true observing that from
the first of (3.16) we have cσ00 =

1√
4π
Re(σ00) (see also 1.23). But since σ(θ, λ)

and σ00 are real (1.55), we have σ00 =
√
4πcσ00, which proves (3.18) •

3.2 Two useful NAX loads

We will consider two specific kinds of NAX loads: the rectangular and the
ocean surface loads.

3.2.1 Rectangular load

The rectangular surface load is defined as

L(t, θ, λ) = f(t)σr(θ, λ), (3.20)

where f(t) is the load time–history, and the load function is:

σr(θ, λ) = ρi

{

h if (θ1 ≤ θ ≤ θ2) and (λ1 ≤ λ ≤ λ2)
0 elsewere,

(3.21)

where the parameter h is called load thickness, ρi is the density of the material
which constitutes the load1, and (λ1, λ2) and (θ1, θ2) are the longitudes of

1the label i in ρi stands for ice, since generally (but not necessarily) the disc load is
used to model an ice cap.
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the two meridians and the colatitudes of the two parallels which bound the
rectangular load, respectively. As we will show below, the product ρih is
proportional to the static mass of the rectangular load mr

s.

Proposition 29 The CSH coefficients of the rectangular load function ex-
pansion:

σr(θ, λ) = Σlmσ
r
lmYlm(θ, λ) (3.22)

are

σr
lm = ρih µlm γlm (αm + ιβm), (3.23)

where µlm is given by (1.23), and
{

α0
β0

}

=

{

λ2 − λ1
0

}

, (m = 0) (3.24)

{

αm

βm

}

=
1

m

{

sinmλ2 − sinmλ1
cosmλ2 − cosmλ1

}

, (m 6= 0), (3.25)

γlm ≡ −
∫ cos θ2

cos θ1
Plm(x)dx. (3.26)

Proof.

σr
lm = (3.14) =

∫

Ω
σrY ∗lmdΩ

= (3.21) = ρihµlm

∫ λ2

λ1

dλe−imλ
∫ θ2

θ1
Plm(cos θ) sin θdθ

= −ρihµlm

∫ λ2

λ1

dλe−imλ
∫ cos θ2

cos θ1
Plm(x)dx

= (3.26) = ρihµlmγlm

∫ λ2

λ1

dλe−imλ. (3.27)

For m = 0:
∫ λ2

λ1

dλe−imλ =
∫ λ2

λ1

dλ

= λ2 − λ1

= α0 + ιβ0, (3.28)
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where α0 and β0 are given by (3.24).

For m 6= 0:
∫ λ2

λ1

dλe−imλ = − 1

ιm

[

e−imλ
]λ2

λ1

=
ι

m
(e−imλ2 − e−imλ1)

=
ι

m
(cosλ2 − ι sinλ2 − cosλ1 + ι sinλ1)

=
ι

m
[(cosλ2 − cosλ1)− ι(sinλ2 − sinλ1)]

=
1

m
(sinλ2 − sinλ1) + ι

1

m
(cosλ2 − cosλ1)

= αm + ιβm, (3.29)

where αm and βm are given by (3.25) •

Proposition 30 The static mass of a rectangular load of thickness h and
density ρi is

mr
s = ρiha

2(λ2 − λ1)(cos θ1 − cos θ2). (3.30)

Proof. From (3.18), the static mass of the load is mr
s =
√
4πa2σr

00, where
σr
00 is the degree 0 CSH coefficient of the load function expansion. But from

(3.23), (1.23), and (3.26), we also have σr
00 =

ρih√
4π

(λ2 − λ1) (cos θ1 − cos θ2),

so that for a rectangular load (3.30) holds •

3.2.2 Ocean surface load

The ocean surface load is defined by

L(t, θ, λ) = f(t)σoc(θ, λ), (3.31)

where f(t) is the load time–history, and the ocean load function is

σoc(θ, λ) =
moc

s

Aoc

O(θ, λ), (3.32)

where O(θ, λ) is given by (1.80), moc
s is the static mass of the load, and Aoc

is the area of the surface of the oceans (1.85). By definition of static mass
(see 3.7):

moc
s = a2

∫

Ω
σocdΩ. (3.33)
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3.3 AX loads

As seen in §3.1.4, a generic AX load can be expressed in the LRF by a load
function σAX(Θ), where Θ is the colatitude measured with respect to the axis
of symmetry of the load. When the LRF is not coincident with the GRF,
it is by far more economical to take advantage of the load symmetry and
to expand the load function in Legendre polynomials in the LRF instead of
writing a CSH expansion in the GRF. We thus write:

σAX(Θ) =
∞
∑

l=0

σAX
l Pl(cosΘ), (3.34)

where, according to (1.75), the LEG coefficients of the expansion are:

σAX
l =

2l + 1

2

∫ π

0
σAX(Θ)Pl(cosΘ) sinΘdΘ, (3.35)

or

σAX
l =

2l + 1

2

∫ +1

−1
σAX(x)Pl(x)dx, x ≡ cos θ. (3.36)

Proposition 31 The static mass of an AX load is

mAX
s = 2πa2

∫ π

0
σAX(Θ) sinΘdΘ. (3.37)

Proof. This result can be obtained from the general formula (3.7) written
in the LRF:

mAX
s = a2

∫

Ω
σAX(Θ) sinΘdΘdΛ

= (1.25) = a2
∫ 2π

0

∫ π

0
σAX(Θ) sinΘdΘdΛ

= 2πa2
∫ π

0
σAX(Θ) sinΘdΘ, (3.38)

where Λ and Θ the longitude and the colatitude in the LRF, and we have
taken advantage from the load symmetry •

Proposition 32 The explicit expression for the static mass of an AX load
is:

mAX
s = 4πa2σAX

0 , (3.39)
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where σAX
0 is the degree 0 LEG coefficient of the expansion of the load func-

tion in the LRF.

Proof.

mAX
s ≡ (3.37) = 2πa2

∫ π

0
σAX(Θ) sinΘdΘ

= (3.34) = 2πa2
∫ π

0

∞
∑

l=0

σAX
l Pl(cosΘ) sinΘdΘ

= (table 1.3) = 2πa2
∞
∑

l=0

σAX
l

∫ π

0
P0(cosΘ)Pl(cosΘ) sinΘdΘ

= (1.35) = 2πa2
∞
∑

l=0

σAX
l

2δl0
2l + 1

= 4πa2σAX
0 • (3.40)

Proposition 33 Let us consider an AX load and its LEG expansion in the
LRF:

σAX(Θ) =
∞
∑

l=0

σAX
l Pl(cosΘ), (3.41)

where Θ is the colatitude of an arbitrary point on the Earth surface. This
same point has coordinates (θ, λ) in the GRF. The load function σAX(Θ) will
depend on θ and λ through the dependence of Θ from θ and λ (see 3.12):

σAX(Θ) = σax(θ, λ), (3.42)

where the lower–case upperscript ’ax’ indicates that the corresponding quan-
tity is written in the GRF. Our purpose here is to show that the coefficients
of the CSH expansion

σax(θ, λ) = Σlmσ
ax
lmYlm(θ, λ), (3.43)

are

σax
lm =

4πY ∗lm(θc, λc)

2l + 1
σAX
l , (3.44)

where (θc, λc) are the coordinates of the pole of the load in the GRF.
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Proof. The proof is a direct consequence of the addition theorem:

σAX(Θ) = (3.34) =
∞
∑

l=0

σAX
l Pl(cosΘ)

σax(θ, λ) = (1.29) =
∞
∑

l=0

σAX
l

4π

2l + 1

+l
∑

m=−l

Y ∗lm(θc, λc)Ylm(θ, λ)

= Σlmσ
ax
lmYlm(θ, λ), (3.45)

with

σax
lm =

4πY ∗lm(θc, λc)

2l + 1
σAX
l • (3.46)

3.3.1 Unit load

The response of the Earth to a unit surface load allows to construct the
response to any other load. For this reason, it is important in our discussion.
The unit surface load is defined as:

L(t,Θ) = f(t)σδ(Θ), (3.47)

with load function

σδ(Θ) =
mδ

s

2πa2
δ(1− cosΘ), (3.48)

where δ(x) is the Dirac delta and a is the reference Earth radius. According
to (3.37) the static mass mδ

s of the unit load is

mδ
s = 2πa2

∫

Ω
σδ(Θ) sinΘdΘ, (3.49)

where Θ is the colatitude in the LRF.
For later purposes it is convenient to introduce the potential perturbation

φp associated with a point source with static mass mδ
s placed on the surface

of the Earth in the ref state (§2.2.6). By Newton’s Law of gravitation:

φp =
Gmδ

s

d
, (3.50)

where d is the distance between the observer and the source. By the cosines
theorem:

φp(a,Θ) =
Gmδ

s
√

2a2(1− cosΘ)
, (3.51)
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where a is the reference radius of the Earth, and Θ is the colatitude of the
observer with respect to the point source. Since 1− cosΘ = 2 sin2(Θ/2), we
obtain:

φp(a,Θ) =
Gmδ

s

2a sin
Θ

2

, (3.52)

which can be transformed recalling the Legendre sum (1.42):

φp(a,Θ) =
Gmδ

s

a

∞
∑

l=0

Pl(cosΘ)

=
∞
∑

l=0

φp
l (a)Pl(cosΘ), (3.53)

where the LEG coefficients of the expansion are

φp
l (a) =

Gmδ
s

a
. (3.54)

Proposition 34 The coefficients of the LEG expansion of the unit load func-
tion

σδ(Θ) =
∞
∑

l=0

σδ
l Pl(cosΘ) (3.55)

are

σδ
l = mδ

s

(

2l + 1

4πa2

)

. (3.56)

Proof.

σδ
l = (3.36) =

2l + 1

2

∫ +1

−1
σδ(x)Pl(x)dx

= (3.48) =
2l + 1

2

mδ
s

2πa2

∫ +1

−1
δ(1− x)Pl(x)dx

= (1.90) = mδ
s

(

2l + 1

4πa2

)

Pl(1)

= (1.41) = mδ
s

(

2l + 1

4πa2

)

. (3.57)

From (3.56) we observe that

mδ
s = 4πa2σδ

0, (3.58)

in agreement with the general relationship (3.39) •



3.3 AX loads 57

3.3.2 Disc load

The disc load is the particular AX surface load defined as

L(t,Θ) = f(t)σd(Θ), (3.59)

where f(t) is the load time–history and the load function in the LRF is

σd(Θ) =

{

ρih if 0 ≤ Θ ≤ α
0 if α < Θ ≤ π,

(3.60)

where α is the half–amplitude of the disc load (0 ≤ α ≤ π), h is the thickness
of the load, and ρi is the ice density (see the footnote of page 50).

Proposition 35 The static mass of the disc load is

md
s = 2πa2ρih(1− cosα), (3.61)

so that an alternative form of the disc load function is:

σd(Θ) =











md
s

2πa2(1− cosα)
if 0 ≤ Θ ≤ α

0 if α < Θ ≤ π.
(3.62)

Proof.

md
s = (3.37) = 2πa2

∫ π

0
σd(Θ) sinΘdΘ

= (3.60) = 2πa2ρih
∫ α

0
sinΘdΘ

= 2πa2ρih(1− cosα) • (3.63)

Proposition 36 The coefficients of the LEG expansion of the disc load func-
tion in the LRF

σd(Θ) =
∞
∑

l=0

σd
l Pl(cosΘ) (3.64)

are

σd
l =

ρih

2

{

1− cosα if l = 0
[− Pl+1(cosα) + Pl−1(cosα)] if l ≥ 1.

(3.65)
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Proof. We apply to the disc load the general result (3.35) and we consider
separately the cases l = 0 and l ≥ 1.

1. For l = 0:

σd
0 = (3.35) =

1

2

∫ π

0
σd(Θ)P0(cosΘ) sinΘdΘ

= (3.60) =
ρih

2

∫ α

0
P0(cosΘ) sinΘdΘ

= (table 1.3) =
ρih

2

∫ α

0
sinΘdΘ

=
ρih

2
(1− cosα). (3.66)

2. For l ≥ 1:

σd
l = (3.35) =

2l + 1

2

∫ π

0
σd(Θ)Pl(cosΘ) sinΘdΘ

= (3.60) =
2l + 1

2
ρih

∫ α

0
Pl(cosΘ) sinΘdΘ (3.67)

=
2l + 1

2
ρih

∫ 1

cosα
Pl(x)dx

= (1.40) =
2l + 1

2
ρih

∫ 1

cosα

P ′l+1(x)− P ′l−1(x)

2l + 1
dx

=
ρih

2
[Pl+1(1)− Pl+1(cosα)− Pl−1(1) + Pl−1(cosα)]

= (1.41) =
ρih

2
[1− Pl+1(cosα)− 1 + Pl−1(cosα)]

= −ρih
2

[Pl+1(cosα)− Pl−1(cosα)] • (3.68)

3.3.3 Balanced disc load

The balanced disc load can be expressed in the LRF as:

L(t,Θ) = f(t)
[

σd(Θ) + σc(Θ)
]

, (3.69)

where σd(Θ) is the disc load function (3.60), and σc(Θ) is the complementary
disc load function:

σc(Θ) = ρi

{

0 if 0 ≤ Θ ≤ α
h′ if α < Θ ≤ π,

(3.70)



3.3 AX loads 59

where the thickness h′ is determined below, and ρi the ice density. From
(3.60) and (3.70), the load function of the balanced disc load is:

σcd(Θ) = σd(Θ) + σc(Θ) = ρi

{

h if 0 ≤ Θ ≤ α
h′ if α < Θ ≤ π,

(3.71)

where h is the primary load thickness. To make the constant h′ in (3.71)
explicit, we impose that the total static mass of the balanced load vanishes
(see 3.10):

0 = mcd
s = (3.37) = 2πa2

∫ π

0
σcd(Θ) sinΘdΘ

= (3.71) = 2πa2ρi

[

h
∫ α

0
sinΘdΘ+ h′

∫ π

α
sinΘdΘ

]

= 2πa2ρi[h(− cosΘ)α0 + h′(− cosΘ)πα]

= 2πa2ρi[h(1− cosα) + h′(1 + cosα)],

hence

h′ = h
(

cosα− 1

cosα + 1

)

. (3.72)

Proposition 37 If md
s denotes the static mass the primary disc load and α

its half–amplitude, the balanced disc load can also be described by the following
load function:

σcd(Θ) =
md

s

2πa2























+
1

1− cosα
if 0 ≤ Θ ≤ α

− 1

1 + cosα
if α < Θ ≤ π.

(3.73)

Proof. It suffices to use (3.61) in the first of (3.71) and (3.72) with (3.61) in
the second •

Proposition 38 The LEG coefficients of the expansion of the balanced disk
load

σcd(Θ) =
∞
∑

l=0

σcd
l Pl(cosΘ) (3.74)
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are

σcd
l = ρih











0 if l = 0

−Pl+1(cosα)− Pl−1(cosα)

1 + cosα
if l ≥ 1.

(3.75)

Proof. The cases l = 0 and l ≥ 1 are discussed separately.

1. The result σcd
0 = 0 follows directly from the relationship between the

degree 0 LEG coefficient of a generic AX load and its static mass (3.39)
and from (3.10).

2. For l ≥ 1 we start from the general expression valid for any AX surface
load:

σcd
l = (3.35) =

2l + 1

2

∫ π

0
σcd(Θ)Pl(cosΘ) sinΘdΘ =

= (3.71) =
2l + 1

2

[
∫ α

0
ρihPl(cosΘ) sinΘdΘ+

+
∫ π

α
ρih

′Pl(cosΘ) sinΘdΘ
]

= (3.67) = σd
l +

2l + 1

2
ρih

′
∫ cosα

−1
Pl(x)dx

= (3.68, 1.46) = −ρih
2

[Pl+1(cosα)− Pl−1(cosα)]+

2l + 1

2
ρih

′Pl+1(cosα)− Pl−1(cosα)

2l + 1

= −ρi
2

[

Pl+1(cosα)− Pl−1(cosα)
]

(h− h′)

= (3.72) = −ρi
2

[

Pl+1(cosα)− Pl−1(cosα)
](

h− h
cosα− 1

cosα + 1

)

= −ρih
Pl+1(cosα)− Pl−1(cosα)

1 + cosα
(l ≥ 1) • (3.76)

3.3.4 Parabolic load

The surface load with parabolic cross–section constitutes an improvement
with respect to the disc load, since it does not include unrealistic steep edges.
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According with the general definition of surface load, we define the parabolic
surface load2 in the LRF as

L(t,Θ) = f(t)σp(Θ), (3.77)

where f(t) is the load time–history, and the load function appropriate for
the parabolic load is

σp(Θ) = ρi























ho

√

cosΘ− cosα

1− cosα
if 0 ≤ Θ ≤ α

0 if α < Θ ≤ π,

(3.78)

where ρi is the mass density of the load, α is the half–amplitude, and ho is
the load thickness for Θ = 0, related to the load static and to α by (3.79).
As it will be clear in the following, the particular form of σp(Θ) allows for a
closed–form computation of the LEG expansion coefficients in the LRF and
constitutes a quite realistic equilibrium profile for an ice cap.

Proposition 39 The static mass of the parabolic surface load is

mp
s =

4

3
πa2ρiho(1− cosα). (3.79)

Proof.

mp
s ≡ (3.37) = 2πa2

∫ π

0
σp(Θ) sinΘdΘ

= (3.78) = 2πa2ρiho

∫ α

0

√

cosΘ− cosα

1− cosα
sinΘdΘ

=
2πa2ρiho√
1− cosα

∫ α

0

√
cosΘ− cosα sinΘ dΘ

=
2πa2ρiho√
1− cosα

∫ cosα

1

√
x− cosα (−dx)

=
2πa2ρiho√
1− cosα

∫ 1

cosα

√
x− cosα dx

2As it is clear from (3.78) the profile of the surface load is parabolic in the variable
cosΘ, where Θ is colatitude.
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=
2πa2ρiho√
1− cosα

2

3

(

x− cosα
)3/2







1

cosα

=
4
3
πa2ρiho√
1− cosα

(1− cosα)3/2

=
4

3
πa2ρiho(1− cosα) • (3.80)

Proposition 40 The coefficients of the LEG expansion of the parabolic load
function in the LRF

σp(Θ) =
∞
∑

l=0

σp
l Pl(cosΘ) (3.81)

are

σp
l =

ρiho

3
(1− cosα)

{

1 if l = 0
ξl(α) if l ≥ 1,

(3.82)

where

ξl(α) ≡ −
3
4

(1− cosα)2

[

Tl+1(α)− Tl+2(α)

l + 3/2
− Tl−1(α)− Tl(α)

l − 1/2

]

, (3.83)

and Tl(α) denotes the Chebichev polynomials of 2
nd kind (1.39).

Proof. The cases l = 0 and l ≥ 1 are considered separately.

1. In (3.82), the expression for l = 0 follows from (3.39) and (3.79).

2. For l ≥ 1 we start from the general expression (3.35), valid for any AX
load:

σp
l =

2l + 1

2

∫ π

0
σp(Θ)Pl(cosΘ) sinΘdΘ (3.84)

= (3.78) =
2l + 1

2
ρiho

∫ α

0

√

cosΘ− cosα

1− cosα
Pl(cosΘ) sinΘdΘ

=
2l + 1

2

ρiho√
1− cosα

∫ α

0

√
cosΘ− cosα Pl(cosΘ) sinΘdΘ

=
2l + 1

2

ρiho√
1− cosα

∫ cosα

1

√
x− cosα Pl(x)(−dx)
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=
2l + 1

2

ρiho√
1− cosα

∫ 1

cosα

√
x− cosαPl(x)dx = (1.40) =

=
2l + 1

2

ρiho√
1− cosα

∫ 1

cosα

√
x− cosα

[

P ′l+1(x)− P ′l−1(x)

2l + 1

]

dx

=
ρiho

2
√
1− cosα

[
∫ 1

cosα

√
x− cosα

dPl+1

dx
dx−

∫ 1

cosα

√
x− cosα

dPl+1

dx
dx
]

=
ρiho

2
√
1− cosα

[√
x− cosαPl+1(x)









1

cosα
− 1

2

∫ 1

cosα

Pl+1(x)dx√
x− cosα

−
√
x− cosαPl−1(x)









1

cosα
+

1

2

∫ 1

cosα

Pl−1(x)dx√
x− cosα

]

= (1.41) = − ρiho

4
√
1− cosα

[
∫ 1

cosα

Pl+1(x)dx√
x− cosα

−
∫ 1

cosα

Pl−1(x)dx√
x− cosα

]

= (1.38) = − ρiho

4(1− cosα)

[

Tl+1(α)− Tl+2(α)

l + 3/2
− Tl−1(α)− Tl(α)

l − 1/2

]

= (3.83) =
ρiho

3
(1− cosα)ξl(α) • (3.85)

3.3.5 Balanced parabolic load

The balanced parabolic load can be expressed in the LRF as:

L(t,Θ) = f(t)
[

σp(Θ) + σc(Θ)
]

, (3.86)

where σp(Θ) is the parabolic load function (3.78), and σc(Θ) is the load
function of the complementary disc load (3.70). The load function of the
balanced parabolic load is thus:

σcp(Θ) = σp(Θ) + σc(Θ) = ρi

{

ho

√

cosΘ−cosα
1−cosα if 0 ≤ Θ ≤ α

h′ if α < Θ ≤ π,
(3.87)

where the parameter ho is related to the static mass of the primary load by
(3.79), and to make the constant h′ explicit we impose that the static mass
of the balanced parabolic load vanishes (see 3.10):

0 = mcp
s = (3.37) = 2πa2

∫ π

0
σcp(Θ) sinΘdΘ (3.88)
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= (3.87) = 2πa2
[
∫ α

0
σp(Θ) sinΘdΘ+

∫ π

α
ρih

′ sinΘdΘ
]

= (3.80) =
4

3
πa2ρiho(1− cosα) + 2πa2ρih

′[− cosΘ]πα

=
4

3
πa2ρiho(1− cosα) + 2πa2ρih

′(1 + cosα)

= 2πa2ρi

[

2

3
ho(1− cosα) + h′(1 + cosα)

]

, (3.89)

hence

h′ = −2

3

(

1− cosα

1 + cosα

)

ho. (3.90)

Proposition 41 The LEG coefficients of the expansion of the balanced parabolic
surface load function:

σcp(Θ) =
∞
∑

l=0

σcp
l Pl(cosΘ) (3.91)

are

σcp
l = ρih







0 if l = 0

σp
l +

ρih
′

2
[Pl+1(cosα)− Pl−1(cosα)] if l ≥ 1.

(3.92)

where σp
l are the LEG coefficients of the expansion of the unbalanced parabolic

load function (3.82) and h′ is given by (3.90).

Proof. The proof is into two parts.

1. The case l = 0 in (3.92) follows from the condition of vanishing static
load mass (see 3.88) and from (3.39).

2. For l ≥ 1 we recall the general expression (3.35), valid for any AX
surface load:

σcp
l =

2l + 1

2

∫ π

0
σcp(Θ)Pl(cosΘ) sinΘdΘ = (3.87) =

=
2l + 1

2

[
∫ α

0
σp(Θ)Pl(cosΘ) sinΘdΘ+

+
∫ π

α
ρih

′Pl(cosΘ) sinΘdΘ
]
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= (3.84) = σp
l +

2l + 1

2
ρih

′
∫ cosα

−1
Pl(x)dx

= (1.46) = σp
l +

2l + 1

2
ρih

′Pl+1(cosα)− Pl−1(cosα)

2l + 1

= σp
l +

ρih
′

2
[Pl+1(cosα)− Pl−1(cosα)] • (3.93)

3.3.6 Harmonic load

The harmonic surface load is defined as

L(t,Θ) = f(t)σh(Θ), (3.94)

where f(t) is the load time–history, and the load function is

σh(Θ) = KP`(cosΘ), (3.95)

where K is a constant, and ` is the harmonic degree of the load. Since
P`(1) = 1 (1.41), K represents the value of σh(Θ) at the pole of the load
(Θ = 0).

Proposition 42 The static mass of the harmonic load is

mh
s = 4πa2Kδ`0. (3.96)

As a consequence, for ` 6= 0 the harmonic load is self–balanced (see §3.1.3).

Proof. From (3.39), mh
s = 4πa2σh

0 , and from (3.95): σh
0 = Kδ`0. Hence,

mh
s = 4πa2Kδ`0. Since mh

s = 0 for ` 6= 0, the load is self–balanced for ` 6= 0
•
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Chapter 4

Response to surface loads:

displacement and geoid height

In this Chapter, the response of the Earth to surface loads is expressed in
terms of surface displacement and geoid height at a given point of the Earth
surface. In §4.1 the spectral coefficients of these physical quantities are ax-
iomatically provided and employed to build the response of an elastic Earth
to a generic NAX load in the GRF. As a particular case, the elastic response
to an AX load in the LRF is also obtained.

In §4.1.1 we generalize the elastic solutions to the case of a viscoelastic
Earth, and we subsequently introduce the viscoelastic load–deformation co-
efficients (LDC) by means of the response to an impulsive, unit load (§4.2.1).
This allows for an explicit representation of the response to AX loads in the
LRF (§4.3.1), which is subsequently employed in §4.3.2 to construct the GRF
response to the AX load by means of simple geometrical arguments.

The viscoelastic response formulas valid for NAX loads are provided in
§4.4. They are given both in complex and real forms. In §4.4.3 we view the
response to an AX load as a particular case of the response to a NAX load.
The resulting formulas are not computationally convenient, but are useful
if spectral formulas are sought for an AX load in the GRF. In §4.5 we deal
with the ocean corrections to the responses previously introduced.

4.1 Equilibrium of an elastic Earth

The link between the surface loads and the Earth response to the loads can
be evidenced solving the equilibrium equations of a Spherically symmetric,
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Elastic, Incompressible, and Self–Gravitating Earth (in what follows, we will
use the acronym SEISG to indicate such an Earth model, and SVISG to
denote the its viscoelastic variant). The solution of the equilibrium equations
requires a considerable amount of algebra, but the details can be omitted for
an understanding of the basic functioning of TABOO. The main findings can
be summarized as follows.

Proposition 43 Consider a SEISG Earth model perturbed by a surface load
L(t, θ, λ) = f(t)σ(θ, λ), where f(t) is the load time history and σ(θ, λ) the
load function (§3.1.1). ”It can be shown that:”1

1. The equilibrium equations can be split into two decoupled sets of lin-
ear, first order ordinary differential equations. The first involves the
poloidal fields and the potential perturbation, and the second concerns
the toroidal fields. The toroidal part of the displacement field vanishes
identically due to the assumed spherical symmetry of the model and to
the absence of toroidal terms in the load function expansion (3.13).

2. Due to the elastic behavior of the Earth, the response is proportional to
the perturbing forces:







ulm

vlm
Φlm





 (t, a) =







cl
dl
el





 σlmf(t), (l ≥ 2), (4.1)

where

• ulm and vlm are the poloidal CSH coefficients for the radial and
horizontal components2 of the displacement vector (2.6),

• Φlm is the CSH coefficient of the potential perturbation (2.81),

• σlm is the CSH coefficient of the load function expansion (3.13),

• cl, dl, and el are model-dependent constants.

The special cases l = 0 and l = 1 must be discussed separately, as indicated
by Farrell [3].

1The details will be reported in the next editions of this booklet.
2Notice that in (2.6) we have used the symbols u

(1)
lm and u

(2)
lm instead of ulm and vlm.
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As already observed in §2.1.1, the degree 0 coefficients u00 and v00 vanish
identically due to incompressibility. From (2.97) and (2.99) we also have
Φ00 = 0, since we have assumed that the mass of the Earth is not altered
by the perturbing process that has caused its deformation. Since the degree 0
coefficients vanish independently from the value of σ00, the relationship (4.1)
is valid also for l = 0, provided that cl = dl = el = 0.

The CSH expansion of a given surface load contains, in general, a degree
1 term. At the time of this writing, the formulas required in order to describe
the harmonic degree 1 responses have not yet been implemented in TABOO.
Thus, in what follows the responses are computed as if σ1m = 0 (m = 0, 1).
Since we acknowledge that the degree 1 term may produce non–negligible ef-
fects, it will be implemented in the future releases of the software.

Proposition 44 The components of surface displacement and the potential
perturbation in response to a generic NAX surface load acting on a SEISG
Earth model are:



















ur

uθ

uλ

Φ



















nax

(t, a, θ, λ) =

=
∑

lm



















ulm

vlm
vlm
Φlm



















(t, a) ·



















1
∂θ
∂λ
sin θ

1



















Ylm(θ, λ), (4.2)

where ulm, vlm and Φlm are given by (4.1).

Proof. The first three lines of (4.2) are a direct consequence of the general
toroidal–poloidal decomposition (2.6), in which the toroidal terms are absent
due to proposition 43 above. The fourth derives from (2.81). The expansion
(4.2) formally contains all of the harmonic degrees with l ≥ 0. Actually,
since the degree 0 responses vanish for an incompressible Earth, and since the
degree 1 components of the load functions are simply ignored (see proposition
43), the expansion begins with the term l = 2. This applies to all of the
results presented in this Chapter •
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Proposition 45 Here we consider the particular case of an AX load with its
axis of symmetry coincident with the z–axis of the GRF. In this configuration,
the LRF and the GRF are superimposed, so that R = r, Θ = θ and Λ = λ,
where (R, Θ, Λ) and (r, θ, λ) are the spherical coordinates of a given point in
the LRF and GRF, respectively. We show that in this particular geometrical
configuration the formulas (4.2), which describe the response of a SEISG
Earth, degenerate into



















uR

uΘ
uΛ
Φ



















AX

(t, a,Θ) =
∞
∑

l=0



















ul

vl
0
Φl



















AX

(t, a) ·



















1
∂Θ
0
1



















Pl(cosΘ), (4.3)

with






ul

vl
Φl







AX

(t, a) =







cl
dl
el






σAX
l f(t), (4.4)

where σAX
l is the LEG coefficient of the AX load (3.34), and the constants

cl, dl, and el are the same as in (4.1).

Proof. From proposition 9, the CSH coefficients of an AX load function are

σax
lm =

1

µlm

δm0σ
AX
l , (4.5)

where σAX
l are the LEG coefficients of the load function (3.34). Thus, from

(4.1), the CSH coefficients associated with the radial displacement are:

ulm(t, a) = clσ
ax
lmf(t)

= (4.5) = cl
1

µlm

δm0σ
AX
l f(t), (4.6)

so that from the first of (4.2) (recall that R = r, Θ = θ, and Λ = λ), we
obtain:

uAX
R (t, a,Θ,Λ) = Σlmulm(t, a)Ylm(Θ,Λ)

= (4.6, 1.21) = Σlmcl
1

µlm

δm0σ
AX
l f(t)µlmPlm(cosΘ)eimΛ

=
∞
∑

l=0

uAX
l (t, a)Pl(cosΘ) =

= uAX
R (t, a,Θ), (4.7)
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with

uAX
l (t, a) = clσ

AX
l f(t), (4.8)

where cl is the same as in (4.1). The demonstration is similar for the remain-
ing equations in (4.3) •

4.1.1 Extension to viscoelasticity

Till now, we have limited our attention to the elastic response to an applied
surface load. The extension to the linear viscoelastic response of (4.2) and
(4.3) is simple by virtue of the correspondence principle of linear viscoelas-
ticity. It states that the equilibrium equations for a viscoelastic body with
linear rheology can be obtained from the elastic ones substituting the elastic
moduli with appropriate complex moduli, and the field variables with their
Laplace–transformed [6].

A general demonstration of the correspondence principle is beyond our
purposes. However, it may be useful to illustrate it in the simple case of a
Maxwell body, with the aid of one–dimensional mechanical analogies. The
elastic and viscous components of the Maxwell rheology are described by

εe =
σ

2G
, (4.9)

and

ε̇v =
σ

2V
, (4.10)

where εe is the elastic strain, ε̇v is the viscous strain rate, σ is the applied
stress (not to be confused with the load function), G is the shear modulus,
V is the Maxwell viscosity, and the dot indicates the time derivative. When
the elastic and the viscous elements are arranged in series, the total strain
rate

ε̇ = ε̇e + ε̇v (4.11)

is

ε̇ =
σ̇

2G
+

σ

2V
, (4.12)

which constitutes the rheological law for a Maxwell viscoelastic body in one
dimension. Taking the Laplace transform of both sides of (4.12), using (1.97),
and assuming vanishing strain and stress at time t = 0, we obtain:

ε(s) =
σ(s)

2G(s)
(4.13)
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where σ(s) and ε(s) are the Laplace transforms of σ(t) and ε(t), respectively,
and

G(s) =
Gs

s+G/V
(4.14)

is the complex shear modulus appropriate for the Maxwell rheology.
A comparison between (4.13) and (4.9) reveals that in the Laplace trans-

formed space the Maxwell constitutive equation is formally identical to the
elastic equation in the time domain, provided that the shear modulus is re-
placed by the s–dependent modulus given by (4.14), and the strain and stress
are replaced by their LTs. This statement is not restricted to one–dimensional
problems, and can be extended to other linear viscoelastic rheologies. The
s–dependence of G(s) determines the form of the s–dependent constants cl,
dl, and el in (4.1).

On the basis of the correspondence principle outlined above, the results
(4.2) and (4.3) can be generalized to the linear viscoelastic case as follows.

Proposition 46 The Laplace–transformed components of surface displace-
ment and potential perturbation induced by a generic NAX surface load acting
on a SVISG Earth model are:
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with (see 4.1):
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vlm
Φlm






(s, a) =







cl
dl
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(s) σlmf(s), (4.16)

where f(s) is the Laplace–transformed time–history of the surface load, and
σlm are the CSH coefficients of the load function (3.13).
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Proposition 47 The Laplace–transformed components of surface displace-
ment and potential perturbation induced by an AX surface load in the LRF
acting on a SVISG Earth model are:
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Pl(cosΘ), (4.17)

with (see 4.4):
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AX
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cl
dl
el





 (s) σAX
l f(s). (4.18)

4.2 Response to an impulsive unit load

The impulsive unit load is a particular AX unit load defined as

L(t,Θ) = δ(t)σδ(Θ), (4.19)

where δ(t) is the Dirac delta (hence the attribute impulsive), and σδ(Θ) is the
unit load function (3.48) with LEG expansion coefficients σδ

l given by (3.56).
From (4.18), valid for any AX load, the LEG coefficients of the response are:
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cl
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 (s) σδ
l , (4.20)

since LT[δ(t)] = 1 (see Table 1.9).

4.2.1 Load–deformation coefficients

The s–dependent load–deformation coefficients (LDC) hl(s), ll(s), and kl(s)
are defined with reference to the response to the impulsive unit surface load
(4.20):

1

a







ul

vl
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γo







δ

(s, a) ≡ mδ
s

me







hl

ll
1 + kl





 (s), (l ≥ 2), (4.21)
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where a is the reference Earth radius, γo = Gme/a
2 is the gravity acceleration

at r = a in the unperturbed state (see 2.2.6), mδ
s is the static mass of the

unit load, and me is the mass of the Earth. From (4.21) we see that the
LDC hl(s) and ll(s) are those non–dimensional quantities by which the ratio
mδ/me must be multiplied to give the ratios uδ

l (s)/a and lδl (s)/a.
The definition of kl(s) deviates from that of the other two LDC, but it

can be reconciled with intuition observing that:

Φδ
l (s, a) = (4.21) = aγo

mδ
s

me

[1 + kl(s)]

= (2.72) =
Gmδ

s

a
[1 + kl(s)]

≡ (3.54) = φp
l (a)[1 + kl(s)], (4.22)

where φp
l (a) is the degree l LEG coefficient of the potential perturbation due

to the presence of a point source on the unperturbed Earth surface. Hence,
from above:

Φδ
l (s, a) = φp

l (a) + kl(s)φ
p
l (a)

= φp
l (a) + φdef

l (s, a), (4.23)

where the first term represents the perturbation which would be produced
if the Earth were rigid, and the second represents the perturbation which
arises from the deformation of the Earth under the load. The latter term is
proportional to the former, as it is expected from a linear response to the ap-
plied load. The decomposition (4.23) is the counterpart, in the Legendre and
Laplace–transformed space, of our previous decomposition of the potential
perturbation (2.78). From (4.23), a definition of kl(s) which better clarifies
its meaning is thus

kl(s) =
φdef
l (s, a)

φp
l (a)

. (4.24)

4.2.2 Form of the LDC

Explicit solution of the equilibrium equations for a linear viscoelastic body
subject to an impulsive unit load show that the s–dependent LDC have the
form:
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where

1. The dimensionless terms hE
l , l

E
l , and kE

l are called elastic LDC, since
they describe the response to the impulsive unit load in the limit of
infinite frequency (s 7→ −∞). Their amplitude does not depend on
the viscosity profile of the mantle, but only on the density and shear
modulus profile.

2. The terms hV
li , l

V
li , and kV

li (i=1,. . . , M) are the viscous amplitudes (or
viscous residues) of the LDC. They have the physical dimensions of a
frequency, and their value depends on the viscosity, density, and rigidity
profile.

3. The terms sli (i=1,. . . , M) describe the relaxation of the Earth to the
imposed impulsive unit load. The numerical solution of the equilibrium
equation indicates that the quantities sli are real and negative, even if
a rigorous proof of this statement valid for any Earth model is still to
come. In the case of an incompressible viscoelastic body, the terms sli
are the roots of an algebraic equation of degree M , with M depending
on the number of layers of the Earth model employed and on the nature
of the interfaces between the layers. The reader is referred to [9] and
[13] for more insight on this point. The parameters

τli = −
1

sli
, (i = 1, . . . ,M) (4.26)

are the relaxation times of the Earth model.

According to (4.25) and to the points above, the LDC have the following
multi–exponential form (1.93) in the time domain:
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. (4.27)

The readers are referred to [12] and references therein for more detailed
discussion about the expansion (4.27).
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4.3 Viscoelastic response formulas for AX

loads

Here we provide the explicit expression for the Earth response to AX loads.
Three forms of the response are given. The first is Laplace-transformed and
written in the LRF, while the second is the time domain version of the first.
The third form, written in the GRF, includes the second as a particular case.

4.3.1 Response to AX loads in the LRF

The introduction of the LDC by (4.21) allows to rephrase the response of
the Earth to an AX load when the LRF coincides with the GRF. We can
summarize the main results as follows.

Proposition 48 The Laplace–transformed response of SVISG Earth model
to an AX load in the LRF is:
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Pl(cosΘ),

(4.28)

where

ρ̄e =
3me

4πa3
(4.29)

is the average density of the Earth.

Proof. From the first of (4.17):

uAX
R (s, a,Θ) ≡

∞
∑

l=0

uAX
l (s, a)Pl(cosΘ)

= (4.18) =
∞
∑

l=0

cl(s)σ
AX
l f(s)Pl(cosΘ)

= (4.20) =
∞
∑

l=0

uδ
l (s, a)

σδ
l

σAX
l f(s)Pl(cosΘ)
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= (4.21, 3.56) =
∞
∑

l=0

a
mδ

s

me

σAX
l

mδ
s

(

2l + 1

4πa2

)hl(s)f(s)Pl(cosΘ)

=
4πa3

me

∞
∑

l=0

hl(s)f(s)
σAX
l

2l + 1
Pl(cosΘ)

= (4.29) =
3

ρ̄e

∞
∑

l=0

hl(s)f(s)
σAX
l

2l + 1
Pl(cosΘ), (4.30)

The second and the third of (4.28) can be obtained from the second and the
fourth of (4.17) in a similar way •

Proposition 49 The time–domain response of a SVISG Earth model to an
AX load in the LRF is:











uR

uΘ
Φ
γo











AX

(t, a,Θ) =
3

ρ̄e

∞
∑

l=0











h̄l

l̄l
k̄l











(t)
σAX
l

2l + 1











1
∂Θ
1











Pl(cosΘ),

where ρ̄e =
3me

4πa3 is the average density of the Earth, and
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 (t) ≡







hl(t)
ll(t)

δ(t) + kl(t)





⊗ f(t). (4.31)

Proof. It is sufficient to take the inverse Laplace transform of (4.28) and to
recall (1.100). The time convolutions (4.31) will be made explicit in §7.2 for
the time–histories of §7.1 •

4.3.2 Response to AX loads in the GRF

When the axis of symmetry of the AX load does not coincide with the z–axis
of the GRF, the response can be computed taking advantage of the load
symmetry. The time–domain response is first computed in the LRF using
(4.31), then it is projected along the unit vectors of the GRF. We use the
following notation:

1. (θ, λ) = colatitude and longitude of a point P on the Earth surface in
the GRF.
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2. (êr, êθ, êλ) = unit vectors at P along the directions of increasing radius,
colatitude and longitude in the GRF.

3. (θc, λc) = colatitude and the longitude of the pole of the load in the
GRF (we recall that the pole of the load is the point in which the axis
of symmetry of the AX load pierces the Earth surface).

4. Θ = colatitude of P with respect to the pole of the load (i.e., colatitude
of P in the LRF).

5. (êR, êΘ) = unit vectors at P along the directions of increasing radius
and colatitude. Notice that êr = êR, but êθ 6= êΘ.

6. X = angle between Θ̂ and θ̂.

Proposition 50 The time–domain response of SVISG Earth to an AX load
in the GRF is:
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(t, a,Θ), (4.32)

where uAX
R , uAX

Θ , and ΦAX are the components of displacements vector
and the potential perturbation computed in the LRF by means of (4.31). To
evaluate explicitely (4.32) we need to write cosX, sinX and cosΘ in terms
of the known quantities (θ, λ, θc, λc). This can be done with the aid of:















































cosΘ = cos θ cos θc + sin θ sin θc cos(λ− λc)

cosX =
cos θc − cos θ cosΘ

sin θ
√
1− cos2Θ

sinX =
sin(λ− λc) sin θc√

1− cos2Θ
,

(4.33)

where we notice that for θc = 0 (i.e., when the LRF coincides with the
GRF), from above we obtain cosX = 1, sinX = 0, and cosΘ = cos θ,
respectively, so that (4.32) reduce to (4.31).
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Proof. The proof is in three steps.

1. We first observe that since the potential perturbation is a scalar quan-
tity, its value at a given point P on the Earth surface is the same in
the LFR and in the GRF. This proves the fourth of (4.32).

2. The displacement vector at P can be equivalently expressed into two
different ways:

êrur + êθuθ + êλuλ ≡ êRuR + êΘuΘ, (4.34)

where we have used an abbreviated notation for the sake of simplicity.
Dotting both sides of (4.34) by êθ, êλ, and êr we obtain:

uθ = uΘ êΘ · êθ = uΘ cos(êΘ, êθ) = uΘ cosX

uλ = uΘ êΘ · êλ = uΘ cos(êΘ, êλ) = uΘ sinX (4.35)

ur = uR êR · êr = uR,

which demonstrate the first three lines of (4.32).

3. The relationships (4.33) can be obtained recalling the basic formulas
of the spherical trigonometry. In particular, the first and the second
follow from the cosines theorem applied to the spherical triangle of sides
Θ, θ, and θc, observing that the angle opposite to Θ is λ− λc and that
sinΘ = +

√
1− cos2Θ. The third is a consequence of the sines theorem

applied to the same triangle as above •

4.4 Viscoelastic response formulas for NAX

loads

The objective of this section is to the provide the time–domain response
formulas for a generic NAX load, which were introduced by (4.15) in the
Laplace domain without the aid of the LDC. This will be done in two steps.
First, we will derive the expansions in CSH form, then this will be converted
into a RSH form which is more convenient for computational purposes.
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4.4.1 Response to NAX loads in complex form

Proposition 51 The time–domain response of a SVISG Earth to a generic
NAX load can be expressed as follows in the CSH basis:























ur

uθ

uλ
Φ
γo























nax

(t, a, θ, λ) =
3

ρ̄e

∑

lm



















h̄l

l̄l
l̄l
k̄l



















(t)
σlm

2l + 1



















1
∂θ
∂λ
sin θ

1



















Ylm(θ, λ) (4.36)

where ρ̄e =
3me

4πa3 is the average density of the Earth (4.29), σlm is the CSH
coefficient of the load function (3.14), and the convolutions h̄l(t), l̄l(t), and
k̄l(t) are given by (4.31).

Proof.

unax
r (s, a, θ, λ) = (4.15) =

∑

lm

ulm(s, a)Ylm

= (4.16) =
∑

lm

cl(s)f(s)σlmYlm

= (4.20) =
∑

lm

uδ
l (s, a)

σδ
l

f(s)σlmYlm

= (4.21, 3.56) =
∑

lm

σlma
mδ

s

me

σlm

mδ
s

(

2l + 1

4πa2

)hl(s)f(s)Ylm

= (4.29) =
3

ρ̄e

∑

lm

σlm

2l + 1
hl(s)f(s)Ylm, (4.37)

which can be easily converted to the time domain:

unax
r (t, a, θ, λ) = (1.100) =

3

ρ̄e

∑

lm

σlm

2l + 1
[hl(t)⊗ f(t)]Ylm

= (4.31) =
3

ρ̄e

∑

lm

σlm

2l + 1
h̄l(t)Ylm. (4.38)

The remaining three rows of (4.36) can be demonstrated by the same rea-
soning as above •
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4.4.2 Response to NAX loads in real form

Proposition 52 The time–domain response of a SVISG Earth to a generic
NAX load can be expressed in the following RSH forms:
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Plm(cos θ),

where cσlm and s
σ
lm are the cosine and sine coefficients of the RSH expansion

of the load function (3.15), and ρ̄e =
3me

4πa3 is the average density of the Earth.

Proof.

unax
r (t, a, θ, λ) = (4.38) =

3

ρ̄e

∑

lm

σlm

2l + 1
h̄l(t)Ylm

= Σ′lm(c̄lm cosmλ+ s̄lm sinmλ)Plm(cos θ), (4.40)

where:
{

c̄lm
s̄lm

}

= (1.63) = (2− δ0m)µlm
3h̄l(t)

ρ̄e(2l + 1)

{

Re(σlm)
− Im(σlm)

}

= (3.16) =
3h̄l(t)

ρ̄e(2l + 1)

{

cσlm
sσlm

}

. (4.41)

Hence we obtain:

unax
r (t, a, θ, λ) =

3

ρ̄e
Σ′lm

h̄(t)

2l + 1
(cσlm cosmλ+ sσlm sinmλ)Plm(cos θ),

(4.42)

which coincides with the first of (4.39). The demonstration is similar for the
other components of the displacement and for the potential perturbation •
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4.4.3 AX response as a particular NAX response

Here the general NAX formulas (4.39) are used to compute the response to
an AX load in the GRF. This problem has been already solved before by
means of a direct approach (see 4.32), but we will see here that when the AX
load is viewed as a particular NAX load, it is possible to access directly to
the the RSH coefficients of the response, which otherwise are not available.

Proposition 53 The time–domain RSH response of a SVISG Earth model
to an AX load in the GRF is:
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where θc and λc are the coordinates of the pole of the AX load in the GRF,
ρ̄e =

3me

4πa3 is the average Earth density, and σ
AX
l are the LEG coefficients of

the AX load function (3.35).

Proof . We recall from (3.44) that the CSH coefficients of an AX load in the
GRF are

σax
lm =

4πY ∗lm(θc, λc)

2l + 1
σAX
l , (4.44)

where (θc, λc) are the spherical coordinates of the pole of the load in the
GRF, and σAX

l is the LEG coefficient of the load in the LRF (3.35). Thus, in
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the particular case of an AX load, the RSH coefficients to be used in (4.39)
are:

{

cσlm
sσlm

}

= (3.16) = (2− δ0m)µlm

{

Re(σax
lm)

− Im(σax
lm)

}

= (4.44) = (2− δ0m)µlm
4πσAX

l

2l + 1
µlmPlm(cos θc)

{

cosmλc

sinmλc

}

= (1.23) = (2− δ0m)
(l −m)!

(l +m)!
σAX
l Plm(cos θc)

{

cosmλc

sinmλc

}

,

(4.45)

which substituted into (4.39) provides the result (4.43) •

4.5 Ocean corrections

In this section we discuss the effect of a uniform ocean load on the components
of the displacement vector and on the potential perturbation. The ocean
correction is done introducing an ad–hoc NAX secondary load such that at
any time t the total static mass of the system (primary + secondary load) is
zero (see §3.1.3). The secondary load has the form:

L(t, θ, λ) = f(t)σO(θ, λ), (4.46)

with load function

σO(θ, λ) = −ms

Aoc

O(θ, λ), (4.47)

where ms and f(t) are the static mass of the primary load and its time–
history, respectively, Aoc is the area of the oceans, and O(θ, λ) is the ocean
function (1.80).

According to (4.39), the secondary load so introduced produces the re-
sponse:
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where cOlm and sOlm are the cosine and sine coefficients of the RSH expansion
of the ocean function (1.84), respectively.

The ratio (ms/Aoc) in (4.48) can be transformed in a more meaningful
form. In fact, the area of the surface of the oceans can be written as Aoc =
4πa2cO00 (see 1.85), and the static mass of NAX loads is ms = 4πa2cσ00 (3.18).
Hence:

ms

Aoc

=
cσ00
cO00

(NAX loads). (4.49)

In the case of AX loads, from Table (1.7) we have cσ00= σAX
0 , where σAX

0 is
the degree 0 LEG coefficient of the primary load function expansion, so that:

ms

Aoc

=
σAX
0

cO00
(AX loads). (4.50)

The above results are summarized in the two following propositions, for
NAX and AX loads, respectively.

Proposition 54 The time–domain response of a SVISG Earth model to a
NAX load balanced by means of a secondary ocean load is:
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where the first term on the righthand side is given by (4.39), while the second
is given by (4.48) with (4.49).
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Proposition 55 The time–domain response of a SVISG Earth model to an
AX load balanced by means of a secondary ocean load is:
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where the first term on the righthand side is given by (4.32) or by (4.43),
and the second is given (4.48) with (4.50).
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Chapter 5

Response to surface loads:

Stokes coefficients and inertia

variations

In this Chapter we provide the expressions for the variations of the Stokes
coefficients and of the inertia tensor in response to surface loads.

5.1 Stokes coefficients variations

Proposition 56 The variations of the Stokes coefficients due to the action
of a NAX load on a SVISG Earth model are:

{

δclm
δslm

}nax

(t) =
4πa2

me

k̄l(t)

2l + 1

{

cσlm
sσlm

}

, (5.1)

where me is the mass of the Earth, a is the reference Earth radius, and k̄l(t)
is given by the third of (4.31). Based on the arguments presented in §2.2.7,
the result above is valid for l ≥ 2. Its fully normalized form can be obtained
from (1.71).

Proof. From (2.89), the RSH expansion of the geoid height is:

N(t, θ, λ) = a Σ′lm(δclm(t) cosmλ+ δslm(t) sinmλ)Plm(cos θ), (5.2)

where a is the radius of the Earth in the reference state (see §2.2.6), δclm(t)
and δslm(t) (l ≥ 2) are the variations of the Stokes coefficients in response
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to generic perturbing forces (see 2.90). If these forces are associated with a
general NAX load acting at the Earth surface, using the fourth of (4.39) and
recalling (2.83) we can also write:

N(t, θ, λ) =
3

ρ̄e
Σ′lm

k̄l(t)

2l + 1
· (cσlm cosmλ+ sσlm sinmλ)Plm(cos θ), (5.3)

which can be compared with (5.2) term by term to provide the result (5.1)
•

Proposition 57 The variations of the Stokes coefficients due to the action
of a NAX load balanced on a secondary ocean load with realistic shape on a
SVISG Earth model are:

{

δclm
δslm

}nax+oc

(t) =

{

δclm
δslm

}nax

(t) +

{

δclm
δslm

}oc

(t), (5.4)

where the first term on the righthand side is given by (5.1), and:
{

δclm
δslm

}oc

(t) = −4πa2

me

cσ00
cO00

k̄l(t)

2l + 1

{

cOlm
sOlm

}

, (5.5)

where (cOlm, s
O
lm) are the RSH coefficients of the ocean function (1.84).

Proof. From (4.48) and (2.83), the ocean correction to the geoid height is:

N oc(t, θ, λ)=− 3

ρ̄e

cσ00
cO00

Σ′lm
k̄l(t)

2l + 1
(cOlm cosmλ+sOlm sinmλ)Plm(cos θ), (5.6)

which can be rewritten as

N oc(t, θ, λ) = Σ′lm(δc
oc
lm(t) cosmλ+ δsoclm(t) sinmλ)Plm(cos θ) (5.7)

with coefficients given by (5.5), where we have recalled that the average Earth
density is ρ̄e =

3me

4πa3 •

Proposition 58 The variations of the Stokes coefficients due to the action
of an AX load on a SVISG Earth model are:

{

δclm
δslm

}ax

(t) =
4πa2

me

σAX
l k̄l(t)

2l + 1
(2− δ0m)

(l −m)!

(l +m)!
Plm(cos θc)

{

cosmλc

sinmλc

(5.8)
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where me is the mass of the Earth, a is the reference Earth radius, (θc, λc)
are the coordinates of the pole of the load in the GRF, k̄l(t) is given by the
third of (4.31), and σAX

l is the degree l coefficient of the LEG expansion of
the load function in the LRF (3.35). Based on the arguments presented in
§2.2.7, the result above is valid for l ≥ 2. Its fully normalized form can be
obtained from (1.71).

Proof. According to the arguments of §4.4.3, the AX load can be viewed
as a particular NAX load. By substitution of (4.45) into (5.1) we directly
obtain (5.8) •

Proposition 59 The variations of the Stokes coefficients due to the action
of a AX load balanced on a secondary ocean load with realistic shape on a
SVISG Earth model are:

{

δclm
δslm

}ax+oc

(t) =

{

δclm
δslm

}ax

(t) +

{

δclm
δslm

}oc

(t), (5.9)

where the first term on the righthand side is given by (5.8), and:
{

δclm
δslm

}oc

(t) = −4πa2

me

σAX
0

cO00

k̄l(t)

2l + 1

{

cOlm
sOlm

}

, (5.10)

where (cOlm, s
O
lm) are the RSH coefficients of the ocean function (1.84).

Proof. The ocean correction for an AX load has exactly the same form of
that valid for a NAX load, given by (5.5). We only notice that for an AX
load, cσ00=σ

AX
0 (see also §4.5), which proves (5.10) •

5.2 Inertia variations

Proposition 60 The change of the (normalized) inertia tensor due to the
action of a NAX load on a SVISG Earth model is:
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δīxy







































nax

(t) =
4πa2

5me

k̄2(t)







































cσ20/3− 2cσ22
cσ20/3 + 2cσ22
−2cσ20/3
cσ21
sσ21
−2sσ22







































, (5.11)
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where a is the reference radius of the Earth (§2.2.6), me is its mass, and
k̄2(t) is given by the third of (4.31) computed for degree l = 2. Due to
incompressibility, the trace of the inertia tensor is unchanged: δīxx+δīyy+
δīzz = 0 (see 2.104 and [10]).

Proof. The variation of the (normalized) inertia tensor in response to a
generic perturbing force is expressed by (2.105) in terms of the variations
of the degree 2 Stokes coefficients. In the particular case of a NAX surface
load, the latter can be obtained by (5.1) and substituted into (2.105) to
demonstrate (5.11) •

Proposition 61 The change of the (normalized) inertia tensor due to the
action of a NAX load balanced on a secondary ocean load with realistic shape
on a SVISG Earth model is:
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δīyz
δīxy







































nax+oc

(t) =







































δīxx
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δīyz
δīxy
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(t), (5.12)

where the first term on the righthand side is given by (5.11), and
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. (5.13)

Proof. The ocean correction to the variations of the Stokes coefficients is
given by (5.5). To demonstrate (5.13), it suffices to compute the degree 2
variations and to recall (2.105) •

Proposition 62 The change of the (normalized) inertia tensor due to the
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action of an AX load on a SVISG Earth model is:
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,

(5.14)

where a is the reference radius of the Earth, me is its mass, σ
AX
2 is the degree

2 LEG coefficient of the load function, k̄2(t) is given by the third of (4.31)
computed for harmonic degree l = 2, and (θc, λc) are the coordinates of the
pole of the load in the GRF. Due to incompressibility, the trace of the inertia
tensor is unchanged: δīxx+δīyy+ δīzz = 0 (see 2.104 and [10]).

Proof. We recall that an AX load can always be viewed as a special NAX
load. In particular, the cσ2m and sσ2m coefficients in (5.11) can be replaced by
their equivalent AX expressions given by (4.45) to obtain the result (5.14) in
a straightforward manner •

Proposition 63 The change of the (normalized) inertia tensor due to the
action of an AX load balanced on a secondary ocean load with realistic shape
on a SVISG Earth model is:
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(t), (5.15)

where the first term on the righthand side is given by (5.14), and the ocean
correction is:







































δīxx
δīyy
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. (5.16)
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Proof. The ocean correction for an AX load has the same form of that
valid for a NAX load, given by (5.13). We only notice that for an AX load,
cσ00=σ

AX
0 (see also §4.5), which proves (5.16) •



Chapter 6

Response to surface loads:

baselines variations

This short Chapter is devoted to the study of the response of the Earth to
surface loads in terms of baselines evolutions. Our purpose is to provide a
tool for comparing model predictions with actual GPS or VLBI observations.
As explained in the TABOO user guide, the software is particularly designed
to deal with the NASA GSFC VLBI baselines network1, but it can be also
adapted to study the time evolution of baselines connecting sites belonging
to other geodetic networks, being them real or built ad hoc by the user. The
mathematics employed here is quite straightforward, but as far as I know it
is not reported elsewhere. Any comment is appreciated.

6.1 Baseline unit vectors

We consider two points P1 and P2 on the Earth surface, with position vectors
~ri = (xi, yi, zi) (i = 1, 2) in a Cartesian orthogonal reference frame with origin
in the CM of the Earth, and unit vectors êx, êy, and êz. The points P1 and
P2 correspond to two specific sites (e. g. VLBI stations), connected by a
rectilinear segment called baseline. In the following, we will denote with
(λi, θi) (i = 1, 2) the longitude and colatitude of the two sites, respectively.
Using (1.1), the Cartesian coordinates (xi, yi, zi) (i = 1, 2) can be re-written

1NASA Goddard Space Flight Center VLBI Group, 1999. Data products available
electronically at http://lupus.gsfc.nasa.gov/vlbi.html.
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in terms of the spherical coordinates:






xi

yi
zi





 = a







sin θi cosλi

sin θi sinλi

cos θi





 (i = 1, 2), (6.1)

where a is the reference radius of the Earth (see §2.2.6).
In order to describe the motion of the two sites it is conventional to

introduce a new Cartesian orthogonal reference frame with origin in P2 and
unit vectors defined as:

l̂ =
~r2 − ~r1
‖~r2 − ~r1‖

(6.2)

t̂ =
~r2 × ~r1
‖~r2 × ~r1‖

(6.3)

ν̂ = l̂ × t̂, (6.4)

which are called length, transverse, and vertical baseline (unit) vectors. They
can be decomposed as follows along the axes of the Oxyz frame:

l̂ =
t̂ =
ν̂ =

lxêx + lyêy + lz êz
txêx + tyêy + tz êz
νxêx + νyêy + νz êz

(6.5)

where:






lx
ly
lz





 =
1

C







x2 − x1
y2 − y1
z2 − z1





 (6.6)







tx
ty
tz






=

1

D







y2z1 − y1z2
z2x1 − z1x2
x2y1 − x1y2






(6.7)







νx
νy
νz





 =







lytz − lzty
lztx − lxtz
lxty − lytx





 (6.8)

with

C =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2, (6.9)

and

D =
√

(z1y2 − y1z2)2 + (x1z2 − z1x2)2 + (x2y1 − x1y2)2. (6.10)
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6.2 Baseline rates

We denote by ~v(i; t) (i = 1, 2) the velocity of the two sites connected by the
baseline in the Oxyz reference frame at time t. The vector ~v(i; t) (i = 1, 2)
can be equivalently decomposed along the axes of the Oxyz frame and the
axes of the baseline reference frame:

~v(i; t) = vxêx + vyêy + vz êz (6.11)

= vl l̂ + vtt̂+ vν ν̂ = (6.5) = (6.12)

= vl (lxêx + lyêy + lz êz) +
+ vt (txêx + tyêy + tz êz) +
+ vν (νxêx + νyêy + νz êz) =

(6.13)

= êx (lxvl + txvt + νxvν) +
+ êy (lyvl + tyvt + νyvν) +
+ êz (lzvl + tzvt + νzvν),

(6.14)

hence, comparing (6.11) with (6.14), we obtain:







vx
vy
vz





 (i; t) = B(1, 2; t)







vl
vt
vν





 (i; t), (i = 1, 2), (6.15)

where the elements of the array

B(1, 2) =







lx tx νx
ly ty νy
lz tz νz





 (6.16)

only depend on the longitude and colatitude of points P1 and P2. We can
easily invert (6.15) observing that B(1, 2) is orthogonal, since it describes a
rotation from the Oxyz reference frame to the baseline reference frame:







vl
vt
vν





 (i; t) = Bt(1, 2)







vx
vy
vz





 (i; t), (i = 1, 2) (6.17)

where Bt(1, 2) is the transpose of B(1, 2).
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It is now convenient to introduce the spherical components of ~v(i; t), since
the response formulas of Chapter 4 are all given in spherical form. This can
be done recalling (1.7):







vx
vy
vz





 (i; t) = G(i)







vr
vθ
vλ





 (i; t), (i = 1, 2) (6.18)

with

G(i) =







sin θi cosλi cos θi cosλi − sinλi

sin θi sinλi cos θi sinλi cosλi

cos θi − sinλi 0





 , (i = 1, 2) (6.19)

where θi and λi denote the colatitude and the longitude of the site i in the
GRF. We therefore obtain the final result:







vl
vt
vν





 (i; t) = Bt(1, 2)G(i)







vr
vθ
vλ





 (i; t), (i = 1, 2) (6.20)

which allows to convert the spherical components of velocity into the baseline
components.

Proposition 64 We consider a baseline connecting two sites placed at points
P1 and P2 on the Earth surface. The evolution of the baseline P1-P2 at a given
time t is determined specifying the velocity of the site (2) relative to site (1).
This can be done introducing the three baselines components rates defined as











L̇

Ṫ

V̇











=











vl(2; t) − vl(1; t)
vt(2; t) − vt(1; t)
vν(2; t) − vν(1; t)











, (6.21)

where vl(i; t), vt(i; t), and vν(i; t) are computed using (6.20).



Chapter 7

Appendices

7.1 Time–histories and their derivatives

TABOO can deal with AX and NAX loads characterized by various kinds of
time–histories. For load time–history we indicate the function f(t) which
allows to write

L(θ, λ, t) = f(t)σ(θ, λ), (7.1)

where t is time, and the surface load function σ(θ, λ) has been introduced
in §3.1.1 and made explicit in various forms in the ensuing sections. In the
following we define the set of time–histories available in TABOO, together with
ptheir time–derivatives.

Since the definition of the time–histories is often made easy by the use of
the step function H(t) (1.91), their time–derivatives will contain delta–like
terms (see 1.92). In the formulas that follow and (obviously) in their imple-
mentation in TABOO, these terms are not included. So the reader is warned
that the derivatives given here differ from the ’true’ ones from functions equal
to zero almost everywhere.

7.1.1 f0(t) : Instantaneous loading

The load is absent for times −∞ ≤ t < 0, and constant for time t ≥ 0:

{

f0(t) = H(t)
f ′0(t) = 0.

(7.2)
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7.1.2 f1(t) : Instantaneous un–loading

The load is constant for −∞ ≤ t < 0, and absent for t ≥ 0:
{

f1(t) = 1−H(t)
f ′1(t) = 0.

(7.3)

7.1.3 f2(t) : Instantaneous loading and un–loading

The load is absent for −∞ ≤ t < −τ , constant for −τ ≤ t < 0, and again
absent for t ≥ 0, where τ > 0:

{

f2(t) = H(t+ τ)−H(t)
f ′2(t) = 0.

(7.4)

7.1.4 f3(t) : Simple deglaciation

The load is constant for −∞ ≤ t < 0, it is turned off at a constant rate for
0 ≤ t < τ , and it is absent for t ≥ τ , where τ > 0:

{

f3(t) = 1−H(t) + (1− t/τ)[H(t)−H(t− τ)]
f ′3(t) = −(1/τ)[H(t)−H(t− τ)].

(7.5)

7.1.5 f4(t) : Saw-tooth

The load is characterized by a periodic saw–tooth time–history in which
loading and unloading phases occur at constant rates. The length of each
loading phase is τ , and the length of the unloading phase is δ. The time-
history includes Nr phases of loading and unloading in addition to the more
recent, so that their total number Nr + 1. The end of the last loading phase
(i.e. the beginning of the last unloading phase) occurs at time t=0.

It can be easily realized that the time–history restricted to the nth phase
is

ϕn(t) = [H(t+ nθ + τ)−H(t+ nθ)]ϕ↑n(t) +

[H(t+ nθ)−H(t+ nθ − δ)]ϕ↓n(t)

(n = 0, 1, . . . , Nr), −nθ − τ ≤ t ≤ −nθ + δ, (7.6)

where

θ ≡ τ + δ, (7.7)
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and the functions

ϕ↑n(t) = +
t

τ
+
nθ + τ

τ
(7.8)

ϕ↓n(t) = − t
δ
− nθ − δ

δ
(7.9)

describe the phases of loading and of unloading, respectively. The time–
history and its time derivative are























f4(t) =
Nr
∑

n=0

ϕn(t)

f ′4(t) =
Nr
∑

n=0

ϕ′n(t),

(7.10)

where

ϕ′n(t) = [H(t+ nθ + τ)−H(t+ nθ)]ϕ
′↑
n (t) +

[H(t+ nθ)−H(t+ nθ − δ)]ϕ
′↓
n (t)

(n = 0, 1, . . . , Nr), −nθ − τ ≤ t ≤ −nθ + δ. (7.11)

and

ϕ
′↑
n (t) = +

1

τ
(7.12)

ϕ
′↓
n (t) = −1

δ
. (7.13)

7.1.6 f5(t) : Sinusoidal loading

For −∞ ≤ t ≤ +∞ the load evolves according to























f5(t) =
1

2
(1 + sinωt)

f ′5(t) =
ω

2
cosωt,

(7.14)

where ω ≡ 2π
T

and T is the period of the sinusoid (T > 0).
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7.1.7 f6(t) : Piecewise linear

The load is characterized by a piecewise continuous, linear time-history. For
0 ≡ t0 ≤ t < tN (piecewise linear phase), the time–history is linear over the
(non necessarily identical) intervals tk−1 ≤ t < tk, with k = 1, 2, ..., N , and
ak is the value taken at time tk. For −∞ ≤ t < 0 the time–history has the
constant value a0, whereas for t > 0 it takes the constant value aN .

The time–history and its time–derivative are:


























f6(t) = a0 +
N
∑

j=0

(αj + βjt)H(t− tj)

f ′6(t) =
N
∑

j=0

βjH(t− tj),

(7.15)

where










α0 = (a1 − a0)− r1t1
αj = (aj+1 − aj)− rj+1tj+1 + rjtj (1 ≤ j ≤ N − 1)
αN = rN tN ,

(7.16)

and










β0 = r1
βj = rj+1 − rj (1 ≤ j ≤ N − 1)
βN = −rN ,

(7.17)

with

rj =
aj − aj−1
tj − tj−1

(1 ≤ j ≤ N). (7.18)

7.1.8 f7(t) : Piecewise constant

For 0 ≡ t0 ≤ t < tN (piecewise constant phase), the time–history has the
constant value ak over the identical time intervals tk−1 ≤ t < tk, with k =
1, 2, ..., N . For −∞ ≤ t < 0 the load has the constant value a0. Finally, for
t ≥ tN the load has the constant value aN+1 ≡ aN . The time–history and its
time–derivative are:















f7(t) = a0 +
N
∑

k=0

(ak+1 − ak)H(t− tk)

f ′7(t) = 0.

(7.19)
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7.1.9 f8(t) : Piecewise constant with loading phase

The time–history is identical to the previous for 0 ≡ t0 ≤ t < tN and t ≥ tN .
For −∞ ≤ t < 0 the constant phase of time–history f7(t) is replaced by
a linear loading phase of duration τ . At the end of this loading phase the
time–history takes the value a0. The time–history and its time–derivative
are























f8(t) = f7(t) + a0

{

t

τ
[H(t+ τ)−H(t)] +H(t+ τ)− 1

}

f ′8(t) = f ′7(t) + a0
1

τ
[H(t+ τ)−H(t)].

(7.20)

7.2 Time convolutions and their derivatives

Here we provide the expressions of the time convolutions between each of
the time–histories listed in §7.1 and the LDCs (§4.2.2). No demonstration is
given, since the results given here may be obtained by simple (but admittedly
tedious) algebra. We use the following notation and conventions:

1. With h(t) we indicate one of the LDCs hl(t), ll(t) or δ(t)+kl(t) (§4.2.2),
and we use the symbol hi to denote the viscous amplitude of h(t). The
dependence on the harmonic degree is implicit to simplify the notation.

2. We indicate with si (i = 1, . . . ,M) the negative of the inverse of the
relaxation times (4.26). As above, the l–dependence is implicit in si.

3. According to the conventions above, and to the statements of §4.2.2,
here we assume a multi–exponential form for the LDC:

h(t) = hEδ(t) +
∑

i

esithi, (7.21)

where hE is the elastic part of the LDC (implicitly dependent on the
harmonic degree), and

∑

i stands for
∑M

i=1, whereM is the total number
of viscoelastic relaxation modes.

4. We define the fluid LDC as

hF = hE −
∑

i

hi

si
. (7.22)
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Convolution c0(t) and its derivative c
′
0(t)

c0(t) = H(t)
(

hF +
∑

i

hi

si
esit

)

(7.23)

c′0(t) = H(t)
∑

i

hie
sit • (7.24)

Convolution c1(t) and its derivative c
′
1(t)

c1(t) = hF −H(t)
(

hF +
∑

i

hi

si
esit

)

(7.25)

c′1(t) = −H(t)
∑

i

hie
sit • (7.26)

Convolution c2(t) and its derivative c
′
2(t)

c2(t) = H(t+ τ)
[

hF +
∑

i

hi

si
esi(t+τ)

]

−H(t)
[

hF +
∑

i

hi

si
esit

]

(7.27)

c′2(t) = H(t+ τ)
∑

i

hie
si(t+τ) −H(t)

∑

i

hie
sit • (7.28)

Convolution c3(t) and its derivative c
′
3(t)

c3(t) = hF −

H(t)
[

hE t

τ
−
∑

i

hi

si

(

t

τ
+

1− esit

siτ

)]

+H(t− τ)
[

hF
(

t

τ
− 1

)

−
∑

i

hi

si

1− esi(t−τ)

siτ

]

(7.29)

c′3(t) = −H(t)
[

hE

τ
−
∑

i

hi

si

(

1

τ
− esit

τ

)]

+H(t− τ)
[

hF

τ
+
∑

i

hi

si

esi(t−τ)

τ

]

• (7.30)
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Convolution c4(t) and its derivative c
′
4(t)

c4(t) = hFf4(t) +
Nr
∑

n=0

∑

i

hi

si

{

[(

1

τ
+

1

δ

)(

t+ nθ +
1− esi(t+nθ)

si

)]

H(t+ nθ)

−
[

t+ nθ + τ

τ
+

1− esi(t+nθ+τ)

siτ

]

H(t+ nθ + τ)

−
[

t+ nθ − δ

δ
+

1− esi(t+nθ−δ)

siδ

]

H(t+ nθ − δ)

}

(7.31)

c′4(t) = hFf ′4(t) +
Nr
∑

n=0

∑

i

hi

si

{

[(

1

τ
+

1

δ

)(

1− esi(t+nθ)
)]

H(t+ nθ)

−
[

1

τ
− esi(t+nθ+τ)

τ

]

H(t+ nθ + τ)

−
[

1

δ
− esi(t+nθ−δ)

δ

]

H(t+ nθ − δ)

}

• (7.32)

Convolution c5(t) and its derivative c
′
5(t)

c5(t) = hFf5(t) + Aω cosωt+Bω sinωt (7.33)

c′5(t) = hFf ′5(t)− ωAω sinωt+ ωBω cosωt (7.34)

where

Aω = +
1

2

∑

i

hi

si

ω2

s2i + ω2
(7.35)

Bω = −1

2

∑

i

hi

si

ωsi
s2i + ω2

• (7.36)

Convolution c6(t) and its derivative c
′
6(t)

c6(t) = a0h
F + (7.37)

N
∑

j=0

[

hE(αj + βjt) +
∑

i

hi

si
Qij(t)

]

H(t− tj) (7.38)
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c6(t) =
N
∑

j=0

[

hEβjt+
∑

i

hi

si
Q′ij(t)

]

H(t− tj), (7.39)

where αj and βj are given by (7.16) and (7.17), and

Qij(t) = αj + βjtj + (βj/si)[e
si(t−tj) − 1]− βj(t− tj) (7.40)

Q′ij(t) = βj[e
si(t−tj) − 1] • (7.41)

Convolution c7(t) and its derivative c
′
7(t)

c7(t) = a0h
F +

N
∑

k=0

δak

[

hF +
∑

i

hi

si
esi(t−tk)

]

H(t− tk) (7.42)

c′7(t) =
N
∑

k=0

δak

[

∑

i

hie
si(t−tk)

]

H(t− tk) (7.43)

where

δak ≡ (ak+1 − ak) • (7.44)

Convolution c8(t) and its derivative c
′
8(t)

c8(t) = c7(t) + a0 ·
{

− hF

+
[

hF
(

1 +
t

τ

)

−
∑

i

hi

si

1− esi(t+τ)

siτ

]

H(t+ τ)

−
[

hF t

τ
−
∑

i

hi

si

1− esit

siτ

]

H(t)

}

(7.45)

c′8(t) = c′7(t) + a0 ·
{

+
[

hF 1

τ
+
∑

i

hi

si

esi(t+τ)

τ

]

H(t+ τ)

−
[

hF 1

τ
+
∑

i

hi

si

esit

τ

]

H(t)

}

(7.46)

where c7(t) and c′7(t) are given by (7.42) and (7.43), respectively •
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7.3 Glossary

Here we list some keywords and the page where they are defined first.

• CSH = Complex Spherical Harmonics (page 4).

• RSH = Real Spherical Harmonics (10).

• FNSH = Fully Normalized Spherical Harmonics (10).

• LT = Laplace Transform (22).

• EP = EquiPotential surface (28).

• CM = Center of Mass (30).

• AX = AXis–symmetric load (48).

• NAX = Non AXis–symmetric load (48).

• GRF = Geographical Reference Frame (48).

• LRF = Load Reference Frame (48).

• LDC = Load–Deformation Coefficient (67).

• SEISG = Spherically symmetric, Elastic, Incompressible, Self-Gravitating
(67).

• SVISG = Sphericall symmetric, Viscoelastic, Incompressible, Self-Gravitating
(68).
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