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C) LEVY’s PROBLEM - THE TRIANGULAR DAM

C.1) The SAINT-VENANT ‘s equations.

Differentiating a certain e ement of the strain tensor

Eij:%Ji,j+Uj,i%/2 : (c1)

it follows, for example, that

€1122%€22117 (U11)122 ¥ (U 2,2)’11 ~Uz122 " U2211

)
= (Uj,z) o7 (U 2,1) - (Ulz * U2,1) 1o~ 2€1212
Hence
€11,227€22117 2€1212 (c3)
Also,
€22331€332272€2323 (c4)
€3311% €11,337 2€3131 (c5)
Inasimilar way, it follows that
(812,3 TE€231” 831,2) , " €2231
(8 2317 €312~ 812,3) 5~ €3312 (c6)-(c8)

(8312 T€123" 823,1) 1 €11,23
The above equations (c3)-(c8) represent the SAINT-VENANT’s equations of compatibility.

C.2) Themode . Simplifying hypothesis. The planar deformation state.

A horizontal dam of infinite length is considered. The cross-section is represented by a rectangular triangle OAB (Fig.C1).
The length of the base is AB=I and the height is OA=h. On OA catheter is acting the hydrostatic pressure of a liquid (water)
having the specific weight equal to y. As a result, the dam is deformed. The dam is represented by an elastic homogeneous,
isotropic material. Its specific weight is equal to I' and its elastic constants are E and v.
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Fig.C1. A vertical cross section through the dam. N.Hs. is the free surface of the water, acting on OA side by a pressure linearly
increasing with depth.

Because the shape of the dam, the displacement vector has the components like
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1= Up(X1,%2)
EUZ U2(X11X2) (c9)
EU3‘
It follows the strain tensor components are like
€117 U11= €11(X1,x2)
T
€127 5(U2% U21)= €12(X1.X2)
1
813:§(UJ,3+ U3,1): 0
E»n= U2,2:822(X1'X2)
1
823:§(U2,3+ U3,2):0
€337 U33~0

(c10)

Hence the strain matrix is
11 €12 OF

% D_% gxl x2)= glz € 00 (c11)

It corresponds to aplanar state of the strain (the plane here being 1-2).
The components of the stress tensor are

O11= "(811+ 822)+ 2UEq1

O12=HE >
O013= €370
— (c12)
022"‘(811+822)+2“€22
O23=2HE3=0
A
Oa3=ME1* €20) MEa=ME11 €£20)" 20+ 1) (01t 022)=Y(011* 02)
Hence the stress matrix is
0 0 0
E011 O12 B
BI D‘BJ gxl'XZ) 012 022 0 0 (c13)

% 0 0 V(O'11+0'22)%

Because the component 33 of the stress has a non-zero value, eq.(c13) shows that the stress state corresponding to a planar state
of the strain is not generally a planar one too.

C.3) Equations of equilibrium. AIRY’s potential.

The only body force acting on the dam isits weight. The equations of equilibrium are
@111*012 2%l =0

@121*0222‘0

Because the presence of I, egs.(c14) represent a non-homogeneous system. In the beginning, the homogeneous system is
solved, i.e.

(c14)
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P 111721220

3 (c15)
1217 222270
Using an unknown function ¢ , the first equation of (c15) is verified for
0 o
=— == cl6
21175, 2127 Ty (c16)
In the same way, the second equation of (c15) is verified for
oy oy
=— =—— cl7
212 X2 212 X1 (17
It follows that
ﬂ + a_l]J =0 (c18)
0X1 O0X2
i.e. the unknown functions are
A oA
= , =- c19
¢ o 1] ox1 (c19)

Theunknown function A = A (X1,X2) represents the AIRY’s potential. It allows one to obtain the next expressions for

the components of the stress tensor when the body force are absent:

YA - Tt A - 257An (c20)
From (c13), the trace of the stress tensor can be written using LAPLACE’s operator in 1-2 co-ordinates
*
ry> =(1+ v)(zll+ 222):(1+ VA A (c21)
The components of the strain tensor are obtained using the reversed HOOKE’s law

1+v * 1+v * 1+v
g1 A2 AE e g AN VA AL e g A @
Using (c22) and (c3) it follows

A 2222 ‘@* A %22 *A 1111~ V%ﬁ* A %11 =2A 1210 . 2

* %
A-vy AA A =0 (c24)
Because V < 05, it follows that AIRYs potential is a solution of the bi-harmonic equation
* %
AA A =0 (c25)

Because the trace of a tensor is an invariant, eg.(c25) holds too in the general case of the orthogonal curvilinear co-ordinates.
However, eq.(c20) has to be modified.

C.4) Boundary conditions. Thefinal shape of thedam.

On the side OA of the dam is acting the hydrostatic pressure. It follows that

o Ce)d=wie, (c26)
On the side OB of the dam is acting the negligible atmospheric pressure. It follows that
O nN=0 (c27)
where the outer pointing normal at the dam is
n=-sna @t cosa g, (c28)

On the side OA, for X1 [0, h], X2 =0, it follows that
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éblz =0,
FO 22~ "Y1

Ontheside OB it followsfor X1 [0, h],x2 = X1 tana that
@12 Oqqtana =0,
027~ Opptena =0

(c29)

(c30)

Egs.(c29)-(c30) represent 4 boundary conditions, suggesting a solution of the bi-harmonic equation (c25) which depends on 4

unknown coefficients denoted by a,b,c,d,i.e

_a3.b.2 2.4d.3
A (X1,x2) = x1+§x1x2+2x1x2+6x2

Using (c20), the solution of the homogeneous systemis

%112 cx1 +dxo
12 =~(bxg +cx2)

a
6

9p = ax1 tbxp
A particular solution of the non-homogeneous system (c14) is
5011 02270
EUlz =72
It follows the general solution of (c14) is
11=0x1 tdx2

[07p=~(bxg +cx2) —T'x2
O

FO 9o = a1 +bxp
Replacing (c34) into (c29)-(c30) it follows that
[+(bxq +cx2)—Tx2 =0,for xg OJ[0,h] ,x2=0
Eaxl +bxp =-yx1,forxq O[0,h] ,x2=0
B—(cxl +dxo)tana — (bxq +cxp)—Txo2 =0, for xq OJ[0,h] ,Xx2 =x1tana
Fbx1 +cxo +x2)tana +axq + bxo =0, for xq 0[0,h] ,Xx2 =xqtana

It follows that
EP o
=—r+y/tan2a
Eq I/ tana - 2y/tan30(
and
gy —AX1+BX2
EU =-Cx2
EUzz
where
A=vh2/12-T | B=rh/l-2yh3/13 | C=-yh?/1?
Hence

Up1= €11~ C1x1 +C2x2,

where

(c3D)

(c32)

(c33)

(c34)

(c35)

(c36)

(c37)

(c38)

(c39)
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C1=(1+V)[A-V(A-y)]/E , Co=(1-v2)B/E (c40)
It follows that
U= Clxlz 12+ Coxyxp +11(x2) (c41)
where the unknown function f1 follows to be found. In the same manner,
U= C3X1X2+C4X%/2+f2(xl) (c42)
But
1 1 ’ ; 1+v 1+v
€107 E(U:LZ + UZ']_) = E(CZX:L +11(x2) + Cax2 +f2(x1) = ?0'12 = _?CXZ (c43)
Hence

EC2X1 +2(x1) =K
ECst +1(x2) =

(c44)

where K isan arbitrary constant. It follows

f1(x2)=-Cax5/2-Kxg +Kq , fa(x1)=-CoxZ/2+Kxy +K2 (c45)
Hence, the displacement field is

Eul: C1xZ 12+ Coxqxp —[Cg + 2L+ V)C/ Ex5 / 2- Kxg + K1 -
CUp=-CoxX{ 1 2+ Cgxaxp + Cax5 / 2+ Kxq + K2

The last terms into (c46) represent arigid roto-trandation.
It should be outlined that the above boundary conditions on stress values on the sides OA and OB are not complete ones. As a

result, the unknown constants C3, C4are present in (c46). Boundary conditions on stress values (or displacements) on the

side AB are required in order to obtain an unique solution of the problem
For example, consider the case when the points A and B are fixed ones. It follows

;= C1Fk& —h2[ 2+ Co(x1 - h)xo —[C3 + 21+ v)C/ EJxo(1 - x2)/ 2

O (c47)
2_.2
=C - X178l 2+C3x2(x1 —x2h/1)+{Coh—|C3+2(1+Vv)C/ E|l/ 2;(x1 —h
CUp=C2rh” - x{ F/ 2+ Caxa(xy - x2h/ ) +{Cah ~[Cg + 21+ v)C/ E]l/ 2H(x1 ~ )
An arbitrary point placed initially on the side AB has theinitial co-ordinates (X]_ =h; X 2). Itsfinal positionis
@(1=X1+ul(Xl,X2)=h+[C3+2(l+v)C/ EIX2(1-X2)/2
O (c48)
X2 =X2+Uo(X1,X2)=X2 +C3hX2(l-X2)/I
Elementary computations show that
20
ca+ A Vo 1+VB/(1 v) - VI - (2- v)yh—D (c49)
a ol 2P
If
ca+ Vg (c50)

the final shape of the side AB is a concave parabolic segment. Because the possibility of the water to flow below the dam, that
situation is not recommended in real cases. Therefore, it is asked to

y(L=v) =Vl —(2=v)y(h/D%<0 , (c51)

hilz[ya-v)-vr]/(2-v)/y (c52)

For example, assuming thaty =1000Kgs/ mS " = 2400Kgs/ m3 v =025 it followsthat h> 0291 .
EXERCISE. Obtain the final shape of the dam in the above hypothesis.



